WorldWideScience

Sample records for hanford nuclear reservation

  1. Geohydrological studies for nuclear waste isolation at the Hanford Reservation. Volume I. Executive summary

    International Nuclear Information System (INIS)

    Apps, J.; Doe, T.; Doty, B.

    1979-08-01

    A study of the hydrology of the Pasco Basin near Richland, Washington, was initiated during FY 1978 as part of a long-term study on the feasibility of nuclear waste disposal in the Columbia River Basalt underlying the Hanford Reservation. This report summarizes the hydrology field program, Pasco Basin modeling, and groundwater chemistry program. Hanford well logs are also reviewed

  2. Flow sheet development for the remediation of tank SY-102 at the Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    Yarbro, S.L.; Punjak, W.A.; Schreiber, S.B.; Ortiz, E.M.; Jarvinen, G.D.

    1994-01-01

    The U.S. Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of radioactive waste stored in underground tanks at the Hanford Nuclear Reservation. A major task of TWRS is to separate tank wastes into high-level and low-level fractions. This separation is important because of the enormous costs associated with handling high-level waste and the limited repository space that is available. Due to their high activity, segregating the actinides and fission products from the bulk of the waste is required to achieve this goal. As a part of this program, personnel at the Los Alamos National Laboratory have developed and demonstrated a flow sheet to remediate tank SY-102 at the Hanford Site. This presentation documents the results of the flow sheet demonstrations performed with simulated, but radioactive, wastes using an existing glovebox line at the Los Alamos Plutonium Facility. Removal of the actinides from a high-salt, low-acid feed by ion exchange is the key unit operation. The flow sheet produces relatively low waste volumes, can be accomplished with conventional chemical processing equipment, and takes advantage of the components of the waste to increase the efficiency of the TRU elements recovery

  3. Application of Systems Engineering to U.S. Department of Energy Privatization Project Selection at the Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    Layman, John Scott

    1999-01-01

    The privatization efforts at the U.S. Department of Energy's Hanford Nuclear Reservation have been very successful primarily due to a disciplined process for project selection and execution. Early in the development of Privatization at Hanford, the Department of Energy determined that a disciplined alternatives generation and analysis (AGA) process would furnish the candidate projects with the best probability for success. Many factors had to be considered in the selection of projects. Westinghouse Hanford Company was assigned to develop this process and facilitate the selection of the first round of candidate privatization projects. Team members for the AGA process were assembled from all concerned organizations and skill groups. Among the selection criteria were legal, financial and technical considerations which had to be weighed

  4. Relationship of infant and fetal mortality to operations at the Hanford Nuclear Reservation, Washington State, 1946-1982

    International Nuclear Information System (INIS)

    Cate, S.; Hansom, J.

    1986-01-01

    The relationship of infant and fetal mortality to numbers of nuclear reactors at the Hanford Nuclear Reservation was investigated. Mortality rates were obtained using 36 years of United States vital statistics data. Three different exposure groups were selected based on meteorologic studies of the Hanford area: group 1, counties downwind of Hanford all year; group 2, counties seasonally downwind; and group 3, counties not downwind. Washington state was used as an additional comparison group. Four periods of operation based on fluctuations in numbers of reactors were characterized. Log-linear analysis revealed that the three groups and Washington state had similar trends in infant mortality rates over the four time periods. On the other hand, the trend in fetal mortality rates for group 1 did differ significantly from trends for the two other groups and Washington state. The trends of fetal mortality rates for group 2, group 3, and Washington state were not statistically different. Fetal mortality rates in group 1, however, failed to decline from period 1 (1946-1954) to period 2 (1955-1964) as expected by the trends for the two groups and Washington state. During period 2, the greatest number of reactors were operating. County-specific analysis showed that, of the counties in group 1, the trend in fetal mortality for Benton County, where Hanford is located, was significantly different from that for Washington state. A possible link between Hanford and an excess in fetal deaths is suggested by the deviation in trend of group 1, which appears localized to Benton County and the period of peak activity at Hanford

  5. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    International Nuclear Information System (INIS)

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-01-01

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site

  6. COLLABORATIVE NEGOTIATIONS A SUCCESSFUL APPROACH FOR NEGOTIATING COMPLIANCE MILESTONES FOR THE TRANSITION OF THE PLUTONIUM FINISHING PLANT (PFP), HANFORD NUCLEAR RESERVATION, AND HANFORD, WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, J.; Yerxa, J.; Romine, L.; Hopkins, AM; Piippo, R.; Cusack, L.; Bond, R.; Wang, Oliver; Willis, D.

    2003-02-27

    The Hanford Nuclear Reservation is a former U. S. Department of Energy Defense Production Site. The site is currently listed on the National Priorities List of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) and is undergoing cleanup and environmental restoration. The PFP is a former Plutonium metal production facility. The operating mission of the PFP ended with a DOE Headquarters shutdown letter in October of 1996. Generally, the receipt of a shutdown letter initiates the start of Transition (as the first step of Decommissioning) of a facility. The Hanford site is subject to the Hanford Federal Facilities Compliance Act and Consent Order (HFFCCO), an order on consent signed by the DOE, the U. S. Environmental Protection Agency, (EPA) and the Washington Department of Ecology (WDOE). Under the HFFCCO, negotiations for transition milestones begin within six months after the issuance of a shutdown order. In the case of the PFP, the Nuclear Materials disposition and stabilization activities, a DOE responsibility, were necessary as precursor activities to Transition. This situation precipitated a crisis in the negotiations between the agencies, and formal negotiations initiated in 1997 ended in failure. The negotiations reached impasse on several key regulatory and operational issues. The 1997 negotiation was characterized by a strongly positional style. DOE and the regulatory personnel took hard lines early in the negotiations and were unable to move to resolution of key issues after a year and a half. This resulted in unhappy stakeholders, poor publicity and work delays as well as wounded relationships between DOE and the regulatory community. In the 2000-2001 PFP negotiations, a completely different approach was suggested and eventually initiated: Collaborative Negotiations. The collaborative negotiation style resulted in agreement between the agencies on all key issues within 6 months of initiation. All parties were very

  7. COLLABORATIVE NEGOTIATIONS A SUCCESSFUL APPROACH FOR NEGOTIATING COMPLIANCE MILESTONES FOR THE TRANSITION OF THE PLUTONIUM FINISHING PLANT (PFP), HANFORD NUCLEAR RESERVATION, AND HANFORD, WASHINGTON

    International Nuclear Information System (INIS)

    Hebdon, J.; Yerxa, J.; Romine, L.; Hopkins, AM; Piippo, R.; Cusack, L.; Bond, R.; Wang, Oliver; Willis, D.

    2003-01-01

    The Hanford Nuclear Reservation is a former U. S. Department of Energy Defense Production Site. The site is currently listed on the National Priorities List of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) and is undergoing cleanup and environmental restoration. The PFP is a former Plutonium metal production facility. The operating mission of the PFP ended with a DOE Headquarters shutdown letter in October of 1996. Generally, the receipt of a shutdown letter initiates the start of Transition (as the first step of Decommissioning) of a facility. The Hanford site is subject to the Hanford Federal Facilities Compliance Act and Consent Order (HFFCCO), an order on consent signed by the DOE, the U. S. Environmental Protection Agency, (EPA) and the Washington Department of Ecology (WDOE). Under the HFFCCO, negotiations for transition milestones begin within six months after the issuance of a shutdown order. In the case of the PFP, the Nuclear Materials disposition and stabilization activities, a DOE responsibility, were necessary as precursor activities to Transition. This situation precipitated a crisis in the negotiations between the agencies, and formal negotiations initiated in 1997 ended in failure. The negotiations reached impasse on several key regulatory and operational issues. The 1997 negotiation was characterized by a strongly positional style. DOE and the regulatory personnel took hard lines early in the negotiations and were unable to move to resolution of key issues after a year and a half. This resulted in unhappy stakeholders, poor publicity and work delays as well as wounded relationships between DOE and the regulatory community. In the 2000-2001 PFP negotiations, a completely different approach was suggested and eventually initiated: Collaborative Negotiations. The collaborative negotiation style resulted in agreement between the agencies on all key issues within 6 months of initiation. All parties were very

  8. The Hanford Nuclear Reservation (1943-1987): a case study of the interface between physics and biology during the cold war

    Energy Technology Data Exchange (ETDEWEB)

    Macuglia, Daniele [Fishbein Center for the History of Science and Medicine, University of Chicago, IL (United States)

    2011-07-01

    During its active period (1943-1987) the Hanford Nuclear Reservation shaped the history of US nuclear research. It also constitutes an interesting case study of the interface between physics, biology and the politics of Cold War society. Although supposed to turn the US into a stronger military force during the Cold War, the remarkable biological consequences of the nuclear research carried out in the facility ended up overshadowing its original political purpose. The high-level of radioactive waste harmed thousands of people living in the area, causing relevant environmental disasters which make the site the most contaminated area in the US even today. Nuclear research is uniquely dangerous since radiation can cause severe consequences both in terms of lives injured and environmental damage. I address various ways in which nuclear physics and biology were used - and abused - at the Hanford Site to combine the needs of politics with the needs of a healthy society. This paper further investigates the moral responsibility of science to society and the way in which biological research informed nuclear physics about the deleterious consequences of radiation on environment and on the human body.

  9. Radioactive waste management at the Hanford Reservation

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    During some 30 years of plutonium production, the Hanford Reservation has accumulated large quantities of low- and high-level radioactive wastes. The high-level wastes have been stored in underground tanks, and the low-level wastes have been percolated into the soil. In recent years some programs for solidification and separation of the high-level wastes have been initiated. The Hanford waste-management system was studied by a panel of the Committee on Radioactive Waste Management of the National Academy of Sciences. The panel concluded that Hanford waste-management practices were adequate at present and for the immediate future but recommended increased research and development programs related to long-term isolation of the wastes. The panel also considered some alternatives for on-site disposal of the wastes. The Hanford Reservation was originally established for the production of plutonium for military purposes. During more than 30 years of operation, large volumes of high- and low-level radioactive wastes have been accumulated and contained at the site. The Management of these wastes has been the subject of controversy and criticism. To obtain a true technical evaluation of the Hanford waste situation, the Energy Research and Development Administration (now part of the Department of Energy) issued a contract to the National Academy of Sciences and the National Research Councilto conduct an independent review and evaluation of the Hanford waste-management practices and plans. A panel of the Committee on Radioactive Waste Management (CRWM) of the National Academy of Sciences conducted this study between the summer of 1976 and the summer of 1977. This article is a summary of the final report of that panel

  10. Macroencapsulation of mixed waste debris at the Hanford Nuclear Reservation -- Final project report by AST Environmental Services, LLC

    International Nuclear Information System (INIS)

    Baker, T.L.

    1998-01-01

    This report summarizes the results of a full-scale demonstration of a high density polyethylene (HDPE) package, manufactured by Arrow Construction, Inc. of Montgomery, Alabama. The HDPE package, called ARROW-PAK, was designed and patented by Arrow as both a method to macroencapsulation of radioactively contaminated lead and as an improved form of waste package for treatment and interim and final storage and/or disposal of drums of mixed waste. Mixed waste is waste that is radioactive, and meets the criteria established by the United States Environmental Protection Agency (US EPA) for a hazardous material. Results from previous testing conducted for the Department of Energy (DOE) at the Idaho National Engineering Laboratory in 1994 found that the ARROW-PAK fabrication process produces an HDPE package that passes all helium leak tests and drop tests, and is fabricated with materials impervious to the types of environmental factors encountered during the lifetime of the ARROW-PAK, estimated to be from 100 to 300 years. Arrow Construction, Inc. has successfully completed full-scale demonstration of its ARROW-PAK mixed waste macroencapsulation treatment unit at the DOE Hanford Site. This testing was conducted in accordance with Radiological Work Permit No. T-860, applicable project plans and procedures, and in close consultation with Waste Management Federal Services of Hanford, Inc.'s project management, health and safety, and quality assurance representatives. The ARROW-PAK field demonstration successfully treated 880 drums of mixed waste debris feedstock which were compacted and placed in 149 70-gallon overpack drums prior to macroencapsulation in accordance with the US EPA Alternate Debris Treatment Standards, 40 CFR 268.45. Based on all of the results, the ARROW-PAK process provides an effective treatment, storage and/or disposal option that compares favorably with current mixed waste management practices

  11. Environmental status of the Hanford Reservation for CY-1974

    International Nuclear Information System (INIS)

    Fix, J.J.

    1975-09-01

    Environmental data collected at the Hanford Reservation during 1974 showed continued compliance of Hanford operations with all applicable State and Federal regulations. Data are presented on levels of radioactivity in samples of surface air, drinking water, Columbia River water and other surface waters, soil, and tissues of wild animals and water fowl collected at various locations

  12. Hanford Nuclear Energy Center study

    International Nuclear Information System (INIS)

    Harty, H.

    1976-01-01

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants

  13. Hanford Nuclear Energy Center study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1976-03-16

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants.

  14. Moisture movement in soils on the Hanford Reservation

    International Nuclear Information System (INIS)

    Brownell, L.E.; Isaacson, R.E.; Sloughter, J.P.; Veatch, M.D.

    1971-01-01

    Methods being studied are as follows: the thermodynamic method based on water potential and thermocouple psychrometers; the tracer method using atmospheric tritium; the annual water balance based on the annual heat balance; the field lysimeter using thermocouple psychrometers; the influence of soil breathing as a result of changes in barometric pressure; and the influence of soil stratification. Progress to date has involved the installation of thermocouple psychrometers from the surface to the water table 310 feet below. These instruments are in the process of equilibration. Isothermal methods of analyzing water potential must be extended to include nonisothermal conditions which are dominant at the Hanford Reservation. Tracer techniques using tritium analyses of soil samples have successfully demonstrated that archaic water exists in virgin soil at the Hanford Reservation from a depth of approximately 7 meters to the water table, indicating that percolation has been limited to lesser depths. The annual heat balance indicates that quantities of water many times greater than the annual average precipitation of 16 centimeters can be evaporated from the soils at the Hanford Reservation during a normal summer. This indicates that the critical precipitation (P/sub c/) value may be greater than 30 to 50 centimeters of water. More precise values of the Bowen's ratio for the Hanford Reservation are required to refine this computation. The field lysimeter is perhaps the most direct method of determining the critical precipitation values for the Hanford Reservation but as yet has not been used

  15. Behavior of technetium in alkaline solution: Identification of non-pertechnetate species in high-level nuclear waste tanks at the Hanford reservation

    International Nuclear Information System (INIS)

    Lukens, Wayne W. Jr.; Shuh, David K.; Schroeder, Norman C.; Ashley, Kenneth R.

    2003-01-01

    Technetium is a long-lived (99Tc: 213,000 year half-life) fission product found in nuclear waste and is one of the important isotopes of environmental concern. The known chemistry of technetium suggests that it should be found as pertechnetate, TcO4-, in the extremely basic environment of the nuclear waste tanks at the Hanford site. However, other chemical forms of technetium are present in significant amounts in certain tanks, and these non-pertechnetate species complicate the treatment of the waste. The only spectroscopic characterization of these non-pertechnetate species is a series of X-ray absorption near edge structure (XANES) spectra of actual tank waste. To better understand the behavior of technetium under these conditions, we have investigated the reduction of pertechnetate in highly alkaline solution in the presence of compounds found in high-level waste. These results and the X-ray absorption fine structure (XAFS) spectra of these species are compared to the chemical behavior and XANES spectra of the actual non-pertechnetate species. The identity of the nonpertechnetate species is surprising

  16. Modeling long-term risk to environmental and human systems at the Hanford Nuclear Reservation: Scope and findings from the initial model

    International Nuclear Information System (INIS)

    Scott, Michael J.; Brandt, Charles A.; Bunn, Amoret L.; Engel, David W.; Eslinger, Paul W.; Miley, Terri B.; Napier, Bruce A.; Prendergast-Kennedy, Ellen L.; Nieves, Leslie A.

    2005-01-01

    The Groundwater/Vadose Zone (GW/VZ) Integration Project at the U.S. Department of Energy's Hanford Site in Washington state is currently developing the tools and supporting data to assess the cumulative impact to human and ecological health and the region's economy and cultures from waste that will remain at the Hanford Site after the site closes. This integrated system of new and legacy models and data is known as the System Assessment Capability (SAC). The environmental transport modules of the SAC modeling system provide estimates of contaminant concentrations from Hanford Site sources in a time-dependent manner in the vadose zone, groundwater, and the Columbia River and its associated sediments. The Risk/Impact Module uses these estimates of media- and time-specific concentrations to estimate potential impacts on the ecology of the Columbia River corridor, the health of persons who might live in or use the corridor or the upland Hanford environment, the local economy, and the cultural resources. Preliminary Monte Carlo realizations from the SAC modeling system demonstrate the feasibility of large-scale uncertainty analysis of the complex relationships in environmental transport on the one hand and ecological, human, cultural, and economic risk on the other. Initial impact results show successful linking of codes and very small long-term risks for the 10 radionuclides and chemicals evaluated

  17. Hanford spent nuclear fuel project update

    Energy Technology Data Exchange (ETDEWEB)

    Williams, N.H.

    1997-08-19

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building.

  18. Characterization plan for Hanford spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF

  19. Radioactive particle resuspension research experiments on the Hanford Reservation

    International Nuclear Information System (INIS)

    Sehmel, G.A.

    1977-02-01

    Experiments were conducted from 1972 to 1975 at several Hanford Reservation study sites to determine whether radioactive particles from these sites were resuspended and transported by wind and to determine, if possible, any interrelationships between wind speed, direction, airborne soil, and levels of radioactivity on airborne particles. Samples of airborne particles were collected with high volume air samplers and cascade particle impactors using both upwind and downwind air sampling towers. Most samples were analyzed for 137 Cs; some samples were analyzed for 239 Pu, 238 Pu and 241 Am; a few samples were analyzed for 90 Sr. This report summarizes measured air concentration ranges for these radionuclides at the study sites and compares air concentrations with fallout levels measured in 300 Area near the Reservation boundary

  20. Three-dimensional gravity investigation of the Hanford reservation

    International Nuclear Information System (INIS)

    Richard, B.H.; Deju, R.A.

    1977-07-01

    Models of the basalt surface buried under the Hanford reservation are constructed from gravity data. The method uses a modified third order polynomial surface to remove the regional effects and a gravity-geologic method to remove the water table effects. When these influences are subtracted from previous data, the anomaly remaining directly reflects the irregularity of the underlying basalt surface. The Umtanum Anticline and the Cold Creek Syncline are delineated beneath the overlying surficial deposits. Along the crest of the Umtanum Anticline, a number of gravity lows are evident. These may identify locations of breaching by an ancestral river. In addition, the data are examined to determine optimum gravity data spacing for modeling. Optimum results were obtained using a station separation of one per four square miles. Less will delineate only the major underlying structures. It is also very important to have all data points distributed in a regularly spaced grid

  1. The Creative Application of Science, Technology and Work Force Innovations to the Decontamination and Decommissioning of the Plutonium Finishing Plant at the Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    Charboneau, S.; Klos, B.; Heineman, R.; Skeels, B.; Hopkins, A.

    2006-01-01

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D and D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D and D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D and D mission with a can-do attitude. They went into D and D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and the condition and contents of process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox clean-out. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP

  2. High Performance Fuel Laboratory, Hanford Reservation, Richland, Washington. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    The High Performance Fuel Laboratory (HPFL) will provide pilot scale tests of manufacturing processes, equipment, and handling systems and of accountability and safeguards, methods, and equipment while keeping radiological and chemical exposures of the workers, public, and environment at the lowest practicable levels. The experience gained from designing, constructing and operating the HPFL can be used in future commitments to commercial fuel fabrication plants in the late 1980s and beyond for processing of nuclear fuel. The HPFL site is located in the 400 Area of the 559-square mile, federally owned Hanford Reservation. This environmental impact statement considers effects of the HPFL under normal conditions and in the event of an accident

  3. Porter with nuclear reservations

    International Nuclear Information System (INIS)

    Patterson, W.

    1978-01-01

    The Ontario Royal Commission on Electric Power Planning, chaired by Arthur Porter is reviewed. This interim report on nuclear power is relevant to nuclear power planning far beyond the confines of Ontario and discusses nuclear issues in the explicit context of electricity generation and use. Problems considered in the report include safety aspects of uranium mining, milling, and spent fuel disposal, the economic issues which affect nuclear planning and nuclear industry, and the proliferation issue. (U.K.)

  4. Hanford Nuclear Energy Center: a conceptual study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H. (comp.)

    1978-09-30

    The objective of the study is to develop an improved understanding of the nuclear energy center (NEC) concept and to identify research and development needed to evaluate the concept fully. A specific context was selected for the study--the Hanford site. Thus, the study primarily addresses the HNEC concept, but the findings are extrapolated to generic NECs where possible. The major emphasis in the HNEC study was to explore potential technical and environmental problems in a specific context and in sufficient detail to evaluate potential problems and propose practical solutions. The areas of concern are typical of those considered in preparing environmental and safety analysis reports, including: topics dealing with engineering choices (e.g., site selection, heat sink management, electrical transmission, and reliability of generation); environmental matters (e.g., terrestrial and radiological effects); socioeconomic factors (e.g., community impacts); and licensing considerations.

  5. Hydrologic management at the Hanford nuclear waste facility

    International Nuclear Information System (INIS)

    Deju, R.A.; Gephart, R.E.

    1975-05-01

    Since 1944 the Hanford Reservation, located in south-central Washington, has been a site for radioactive waste storage and disposal. Many Hanford research programs are directed toward minimizing and managing the release of radionuclides into the environment. Hydrologic management of the Hanford facility involves such activities as regional and local geohydrologic characterization studies, environmental monitoring, groundwater management, and specific hydrologic research programs. This paper briefly examines each of these activities and reviews the progress to date in understanding the hydrologic flow regime existing beneath the Reservation. (U.S.)

  6. Locations of criticality alarms and nuclear accident dosimeters at Hanford

    International Nuclear Information System (INIS)

    1992-08-01

    Hanford facilities that contain fissionable materials capable of achieving critical mass are monitored with nuclear accident dosimeters (NADS) in compliance with the requirements of DOE Order 5480.11, Chapter XI, Section 4.c. (DOE 1988). The US Department of Energy (DOE) Richland Field Office (RL) has assigned the responsibility for maintaining and evaluating the Hanford NAD system to the Instrumentation and External Dosimetry (I ampersand ED) Section of Pacific Northwest Laboratory's (PNL's) Health Physics Department. This manual provides a description of the Hanford NAD, criteria and instructions for proper NAD placement, and the locations of these dosimeters onsite

  7. Hanford: A Conversation About Nuclear Waste and Cleanup

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2003-01-01

    The author takes us on a journey through a world of facts, values, conflicts, and choices facing the most complex environmental cleanup project in the United States, the U.S. Department of Energy's Hanford Site. Starting with the top-secret Manhattan Project, Hanford was used to create tons of plutonium for nuclear weapons. Hundreds of tons of waste remain. In an easy-to-read, illustrated text, Gephart crafts the story of Hanford becoming the world's first nuclear weapons site to release large amounts of contaminants into the environment. This was at a time when radiation biology was in its infancy, industry practiced unbridled waste dumping, and the public trusted what it was told. The plutonium market stalled with the end of the Cold War. Public accountability and environmental compliance ushered in a new cleanup mission. Today, Hanford is driven by remediation choices whose outcomes remain uncertain. It's a story whose epilogue will be written by future generations. This book is an information resource, written for the general reader as well as the technically trained person wanting an overview of Hanford and cleanup issues facing the nuclear weapons complex. Each chapter is a topical mini-series. It's an idea guide that encourages readers to be informed consumers of Hanford news, to recognize that knowledge, high ethical standards, and social values are at the heart of coping with Hanford's past and charting its future. Hanford history is a window into many environmental conflicts facing our nation; it's about building upon success and learning from failure. And therein lies a key lesson, when powerful interests are involved, no generation is above pretense. Roy E. Gephart is a geohydrologist and senior program manager at the Pacific Northwest National Laboratory, Richland, Washington. He has 30 years experience in environmental studies and the nuclear waste industry

  8. Gravity studies of the Hanford Reservation, Richland, Washington

    International Nuclear Information System (INIS)

    Richard, B.H.; Lillie, J.T.; Deju, R.A.

    1977-07-01

    Gravity studies over Hanford added to the understanding of the geology of the Pasco Basin. The Bouguer anomaly indicated the basin is the site of the greatest thickness of Columbia River Basalt. The residual gravity anomaly delineated the major anticlinal and synclinal structures under Hanford. Three-dimensional gravity models characterized these buried folds by indicating their shape and relief. Finally, two-dimensional gravity models further delineated the shape of these buried folds and suggested locations where ancestral rivers may have breached the Umtanum anticlinal folds within the basin. Analysis of the three-dimensional model studies indicates that one-fifth of the original data would have delineated the buried structures. Two- or three-body gravity models produced better results than a poly-body model. Gravity was found to be an effective and rapid reconnaissance method of studying buried bedrock structures

  9. Overview of the spent nuclear fuel project at Hanford

    International Nuclear Information System (INIS)

    Daily, J.L.

    1995-02-01

    The Spent Nuclear Fuel Project's mission at Hanford is to open-quotes Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.close quotes The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program

  10. Avifauna of waste ponds ERDA Hanford Reservation, Benton County, Washington

    International Nuclear Information System (INIS)

    Fitzner, R.E.; Rickard, W.H.

    1975-06-01

    The presence of small ponds on the Hanford 200 Area plateau provides attractive habitats for birds. During a 29-month period, 126 bird species were observed utilizing these ponds, their associated vegetation, and air space. Waterfowls are the important agents of dispersal of radionuclides from waste ponds based on food habits, abundance, migratory habits, and importance as food in the diet of people. Abundance, long residence time, and food habits identify the American coot as the single most important species to be considered in the biological dispersal of radionuclides from waste ponds. (U.S.)

  11. Core sample descriptions and summary logs of six wells within the Hanford Reservation

    International Nuclear Information System (INIS)

    Summers, W.K.; Hanson, R.T.

    1977-01-01

    From February through May, 1976, selected sites on the Hanford Reservation were core drilled. These six holes provide a loose network of observation holes traversing the reservation in an east--west direction between the Columbia River and State Highway 240. This program represents the first attempt to recover cores from the glaciofluviatile material and Ringold Formation beneath the Hanford Reservation. This contains three parts: an introductory text describing the method of inspection and format for written description; summary logs that illustrate in condensed form the rocks penetrated by the wells drilled; and the detailed written descriptions of core samples. 3 figures, 7 tables

  12. Nuclear isotope measurement in the Hanford environment

    International Nuclear Information System (INIS)

    Wacker, J.F.; Stoffel, J.J.; Kelley, J.M.

    1995-01-01

    The Pacific Northwest Laboratory (PNL) is located at the federal government's Hanford Site in southeastern Washington State, which was built during World War II as part of the secret Manhattan Project to develop the atomic bomb. Monitoring of the Site itself and surrounding environs for Hanford-related radionuclides has been a routine part of the operations since 1944. One of the most sensitive analytical methods used is thermal ionization mass spectrometry (TIMS) with triple-sector mass spectrometers. Normal geometry instruments have an abundance sensitivity of 10 -9 for uranium while the authors' newest Triple-Sector Isotope Mass Spectrometer (TRISM), utilizing a new ion-optical design developed at PNL, has an abundance sensitivity of 10 -11 . In favorable cases, sensitivity is such that complete isotopic analyses are obtained on total samples in the femtogram range; and minor isotopes in the attogram range are measured

  13. Westinghouse Hanford Company special nuclear material vault storage study

    International Nuclear Information System (INIS)

    Borisch, R.R.

    1996-01-01

    Category 1 and 2 Special Nuclear Materials (SNM) require storage in vault or vault type rooms as specified in DOE orders 5633.3A and 6430.1A. All category 1 and 2 SNM in dry storage on the Hanford site that is managed by Westinghouse Hanford Co (WHC) is located in the 200 West Area at Plutonium Finishing Plant (PFP) facilities. This document provides current and projected SNM vault inventories in terms of storage space filled and forecasts available space for possible future storage needs

  14. Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-03-01

    The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site's non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small

  15. Study of Hanford as a nuclear energy center

    International Nuclear Information System (INIS)

    Harty, H.

    1975-01-01

    A study was made of the possible construction of a large nuclear park involving several reactors at Hanford. Savings resulted from continuity of construction, standardization, modularization, fuel cycle treatment, etc. The planning involved consideration of energy transmission cost (0.3 to 0.4 mills/KW-hr) but with present transmission systems upgraded to 500 or 1100 KV. Water resources were adequate, but there was some question of how close the reactors could be to each other in view of the large waste heat effluents from each. Earthquake and other common mode failure possibilities were considered. Due to further questions about safeguards of plutonium materials and nuclear waste transportation, more work is being done on the Hanford nuclear park concept. (U.S.)

  16. Heater test planning for the Near Surface Test Facility at the Hanford reservation. Volume II. Appendix

    International Nuclear Information System (INIS)

    DuBois, A.; Binnall, E.; Chan, T.; McEvoy, M.; Nelson, P.; Remer, J.

    1979-04-01

    Volume II contains the following information: theoretical support for radioactive waste storage projects - development of data analysis methods and numerical models; injectivity temperature profiling as a means of permeability characterization; geophysical holes at the Near Surface Test Facility (NSTF), Hanford; proposed geophysical and hydrological measurements at NSTF; suggestions for characterization of the discontinuity system at NSTF; monitoring rock property changes caused by radioactive waste storage using the electrical resistivity method; microseismic detection system for heated rock; Pasco Basin groundwater contamination study; a letter to Mark Board on Gable Mountain Faulting; report on hydrofracturing tests for in-situ stress measurement, NSTF, Hole DC-11, Hanford Reservation; and borehole instrumentation layout for Hanford Near Surface Test Facility

  17. Hanford K basins spent nuclear fuel project update

    International Nuclear Information System (INIS)

    Williams, N.H.; Hudson, F.G.

    1997-07-01

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building

  18. Expedited action recommended for spent nuclear fuel at Hanford

    International Nuclear Information System (INIS)

    Illman, D.

    1994-01-01

    After six months of study, Westinghouse Hanford Co. has proposed an expedited strategy to deal with spent nuclear fuel stored in rapidly deteriorating basins at the Hanford site in southeastern Washington. The two-phase approach calls for radioactive fuel to be removed from the basins and placed in special canisters, transported by rail to a new vault to be constructed at Hanford,and held there until a processing facility is built. Then the fuel would be stabilized and returned to the vault for interim storage of up to 40 years. The plan calls for waste fuel and sludge to be removed by 2000. More than 2,100 metric tons of spent fuel--nearly 80% of DOE's total spent-fuel inventory nationwide--is housed at the Hanford site in the two obsolete concrete water basins, called K East and K West. A specific location for the storage and processing facilities has not yet been identified, and rounds of environmental impact statements remain to be completed. While a recommended path seems to have been identified, there are miles to go before this spent fuel finally sleeps

  19. Close-out report Fitzner-Eberhardt Arid Lands Ecology Reserve remedial action, Hanford, Washington

    International Nuclear Information System (INIS)

    1996-04-01

    The Fitzner-Eberhardt Arid Lands Ecology (ALE) Reserve consists of 312 km 2 (120 mi 2 ) of shrub-steppe land on the western edge of the Hanford Site. It is located south of Highway 240 and east of the point where the Yakima River borders the site. The land was set aside as a natural research area in 1967 by the Atomic Energy Commission. Historically tribal land, the area was homesteaded by pioneers before it was taken by the federal government in 1943 as a security buffer to protect the Hanford Site defense production facilities. One antiaircraft artillery battery (latter converted to a Nike missile site) was located on this land; plutonium production plants or storage facilities were never built there. A more complete account can be found in the Preliminary Assessment Screening (PAS) Report for the Arid Lands Ecology Reserve, Hanford. With the recent change in mission at the Hanford Site from plutonium production to environmental cleanup, much attention has been given to releasing clean tracts of land for other uses. The ALE Reserve is one such tract of land. The existing areas of contamination in the ALE Reserve were considered to be small. In March 1993, the U.S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed and Agreement in Principle in which they agreed to expedite cleanup of the ALE Reserve. Cleanup activities and a draft close-out report were to be completed by October 1994. Additionally, DOE proposed to mitigate hazards that may pose a physical threat to wildlife or humans

  20. Just in Time DSA the Hanford Nuclear Safety Basis Strategy

    Energy Technology Data Exchange (ETDEWEB)

    JACKSON, M.W.

    2002-06-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford, Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safely Basis Requirements (the Rule) in January 2001 requires that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSAs that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long-term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: Compliance with the Rule; A ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and Consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

  1. Just in Time DSA the Hanford Nuclear Safety Basis Strategy

    International Nuclear Information System (INIS)

    JACKSON, M.W.

    2002-01-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford, Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safely Basis Requirements (the Rule) in January 2001 requires that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSAs that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long-term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: Compliance with the Rule; A ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and Consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD and D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD and D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex

  2. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  3. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State.

    Science.gov (United States)

    Looney, Chris; Zack, Richard S; Labonte, James R

    2014-01-01

    Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  4. Real-time monitoring of Hanford nuclear waste

    International Nuclear Information System (INIS)

    McNeece, S.G.; Glasscock, J.A.; Rosnick, C.K.

    1979-10-01

    Two minicomputers are used to perform real time monitoring of radioactive waste storage tanks on the Hanford Nuclear Reservation. The Computer Automated Surveillance System, CASS, consists of a network of six field microprocessors, a central microprocessor and two central Eclipse minicomputers. The field microprocessors are each responsible for monitoring alarm sensors, liquid levels and temperatures. The field microprocessors report alarm conditions immediately to the central microprocessor. The central minicomputer reports all alarm conditions to the user terminals, requests data from the field on a scheduled and requested basis, and generates reports. It handles all requests for information from the user and stores all incoming data for historical purposes. The CASS software consists of five major segments: (1) process creation, (2) report generation, (3) file updating, (4) terminal communication, and (5) microprocessor communication. Since CASS must operate 24 hours a day, 7 days a week, the system cannot be allowed to abnormally terminate. For this reason all processes are started by the creation process. Having a single process responsible for creating all other processes provides the ability to detect a failure of a subordinate process and to automatically restart the failed process. The report generation process schedules reports, requests the data to be gathered to produce the reports, forms the reports, and distributes the reports to the user terminals. The file updating process handles all data file modifications. There is a terminal communication process for each user terminal which is responsible for printing scheduled reports and for allowing the user to request information from the CASS system. The microprocessor communication process handles all communication with the central microprocessor

  5. Hanford K Basins spent nuclear fuels project update

    International Nuclear Information System (INIS)

    Hudson, F.G.

    1997-01-01

    Twenty one hundred metric tons of spent nuclear fuel are stored in two concrete pools on the Hanford Site, known as the K Basins, near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current wet pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in the K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported into the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building (CSB) in the 200 Area for staging prior to hot conditioning. The conditioning step to remove chemically bound water is performed by holding the MCO at 300 C under vacuum. This step is necessary to prevent excessive pressure buildup during interim storage that could be caused by corrosion. After conditioning, MCOs will remain in the CSB for interim storage until a national repository is completed

  6. Hanford K Basins spent nuclear fuels project update

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, F.G.

    1997-10-17

    Twenty one hundred metric tons of spent nuclear fuel are stored in two concrete pools on the Hanford Site, known as the K Basins, near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current wet pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in the K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported into the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building (CSB) in the 200 Area for staging prior to hot conditioning. The conditioning step to remove chemically bound water is performed by holding the MCO at 300 C under vacuum. This step is necessary to prevent excessive pressure buildup during interim storage that could be caused by corrosion. After conditioning, MCOs will remain in the CSB for interim storage until a national repository is completed.

  7. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions

  8. Hanford Spent Nuclear Fuel Project recommended path forward

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    The Spent Nuclear Fuel Project (the Project), in conjunction with the U.S. Department of Energy-commissioned Independent Technical Assessment (ITA) team, has developed engineered alternatives for expedited removal of spent nuclear fuel, including sludge, from the K Basins at Hanford. These alternatives, along with a foreign processing alternative offered by British Nuclear Fuels Limited (BNFL), were extensively reviewed and evaluated. Based on these evaluations, a Westinghouse Hanford Company (WHC) Recommended Path Forward for K Basins spent nuclear fuel has been developed and is presented in Volume I of this document. The recommendation constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. The overall processing and storage scheme is based on the ITA team's proposed passivation and vault storage process. A dual purpose staging and vault storage facility provides an innovative feature which allows accelerated removal of fuel and sludge from the basins and minimizes programmatic risks beyond any of the originally proposed alternatives. The projects fit within a regulatory and National Environmental Policy Act (NEPA) overlay which mandates a two-phased approach to construction and operation of the needed facilities. The two-phase strategy packages and moves K Basins fuel and sludge to a newly constructed Staging and Storage Facility by the year 2000 where it is staged for processing. When an adjoining facility is constructed, the fuel is cycled through a stabilization process and returned to the Staging and Storage Facility for dry interim (40-year) storage. The estimated total expenditure for this Recommended Path Forward, including necessary new construction, operations, and deactivation of Project facilities through 2012, is approximately $1,150 million (unescalated)

  9. Mobile hot cell transition design phase study for radioactive waste treatment on the Hanford reservation site

    International Nuclear Information System (INIS)

    Pons, Y.

    2010-01-01

    Full text of publication follows: At the US Department of Energy's Hanford Reservation site, 4 caissons in under ground storage contain approximately 23 cubic meters of Transuranic (TRU) waste, in over 5,000 small packages. The retrieval of these wastes presents a number of very difficult issues, including the configuration of the vaults, approximately 50,000 curies of activity, high dose rates, and damaged/degraded waste packages. The waste will require remote retrieval and processing sufficient to produce certifiable RH-TRU waste packages. This RH-TRU will be packaged for staging on site until certification by CCP is completed to authorize shipment to the Waste Isolation Pilot Plant (WIPP). The project has introduced AREVA' s innovative Hot Mobile Cell (HMC) technology to perform size reduction, sorting, characterization, and packaging of the RH waste stream at the point of generation, the retrieval site in the field. This approach minimizes dose and hazard exposure to workers that is usually associated with this operation. The HMC can also be used to provide employee protection, weather protection, and capacity improvements similar to those realized in general burial ground. AREVA TA and his partner AFS will provide this technology based on the existing HMCs developed and operated in France: - ERFB (Bituminized Waste Drum Retrieval Facility): ERFB was built specifically for retrieving the bituminized waste drums (approximately 6,000 stored in trenches in the North zone on the Marcoule site (in operation since 2001). - ERCF (Waste Drum Recovery and Packaging Facility): The ERCF was built specifically to retrieve bituminized waste drums stored in 35 pits located in the south area on Marcoule site (in operation) - FOSSEA (Legacy Waste Removal and Trench Cleanup): The FOSSEA project consists of the retrieval of waste stored on the Basic Nuclear Facility. Waste from the 56 trenches will be inspected, characterised, and if necessary processed or repackaged, and

  10. Characterization of Hanford K basin spent nuclear fuel and sludge

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1996-01-01

    A characterization plan was prepared to support the Integrated Process Strategy (IPS) for resolution of the safety and environmental concerns associated with the deteriorating Spent Nuclear Fuel (SNF) stored in the Hanford Site K Basins. This plan provides the structure and logic and identifies the information needs to be supported by the characterization activities. The IPS involves removal of the fuel elements from the storage canister and placing them in a container, i.e., Multiple Canister Overpack (MCO) capable of holding multiple tiers of baskets full of fuel. The MCOs will be vacuum dried to remove free water and shipped to the Container Storage Building (CSB) where they will be staged waiting for hot vacuum conditioning. The MCO will be placed in interim storage in the CSB following conditioning and disposition

  11. Survey of Technetium Analytical Production Methods Supporting Hanford Nuclear Materials Processing

    International Nuclear Information System (INIS)

    TROYER, G.L.

    1999-01-01

    This document provides a historical survey of analytical methods used for measuring 99 Tc in nuclear fuel reprocessing materials and wastes at Hanford. Method challenges including special sludge matrices tested are discussed. Special problems and recommendations are presented

  12. Status report: conceptual fuel cycle studies for the Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Merrill, E.T.; Fleischman, R.M.

    1975-07-01

    A summary is presented of the current status of studies to determine the logistics of onsite plutonium recycle and the timing involved in introducing the associated reprocessing and fabrication fuel cycle facilities at the Hanford Nuclear Energy Center

  13. Meteorological evaluation of multiple reactor contamination probabilities for a Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Diebel, D.I.

    1978-03-01

    The conceptual Hanford energy center is composed of nuclear power plants, hence the name Hanford Nuclear Energy Center (HNEC). Previous topical reports have covered a variety of subjects related to the HNEC including: electric power transmission, fuel cycle, and heat disposal. This report discusses the probability that a radiation release from a single reactor in the HNEC would contaminate other facilities in the center. The risks, in terms of reliability of generation, of this potential contamination are examined by Clark and Dowis

  14. Safety evaluation report related to the construction of Skagit/Hanford Nuclear Project, Units 1 and 2. Docket Nos. STN 50-522 and 50-523

    International Nuclear Information System (INIS)

    1982-12-01

    Supplement 3 to the Safety Evaluation Report for the application filed by Puget Sound Power and Light Company on behalf of itself, the Pacific Power and Light Company, The Washington Water Power Company, and the Portland General Electric Company for construction permits to build the Skagit/Hanford Nuclear Project has been issued by the Office of Nuclear Reactor Regulation of the United States Nuclear Regulatory Commission. This supplement is an evaluation of the site relocation amendment to the Preliminary Safety Analysis Report. The proposed site has been relocated from Skagit County, Washington, to the Department of Energy's Hanford Reservation

  15. Environmental report of Purex Plant and Uranium Oxide Plant - Hanford reservation

    International Nuclear Information System (INIS)

    1979-04-01

    A description of the site, program, and facilities is given. The data and calculations indicate that there will be no significant adverse environmental impact from the resumption of full-scale operations of the Purex and Uranium Oxide Plants. All significant pathways of radionuclides in Purex Plant effluents are evaluated. This includes submersion in the airborne effluent plumes, consumption of drinking water and foodstuffs irrigated with Columbia River water, ingestion of radioactive iodine through the cow-to-milk pathway, consumption of fish, and other less significant pathways. A summary of research and surveillance programs designed to assess the possible changes in the terresstrial and aquatic environments on or near the Hanford Reservation is presented. The nonradiological discharges to the environment of prinicpal interest are chemicals, sewage, and solid waste. These discharges will not lead to any significant adverse effects on the environment

  16. A multispectral scanner survey of the Idaho National Engineering Laboratory and the Hanford Reservation

    International Nuclear Information System (INIS)

    Brewster, S.B. Jr.; Howard, M.E.; Shines, J.E.

    1994-09-01

    An airborne multispectral scanner survey of selected sites on the Idaho National Engineering Laboratory and the Hanford Reservation was performed in mid-November 1993. Aerial multispectral scanner and photography data were acquired coincidentally with the Big O experiment at both locations. To illustrate two potential applications, the multispectral scanner data were digitally enhanced to facilitate the detection of soil disturbance and evidence of surface water transport. The main conclusion of this study was that multispectral data acquired under these conditions can be useful for soil disturbance detection. The imagery did not prove as useful, however, for direct indications of surface water transport. It was possible to infer some water transport patterns from dry water beds, but only if surface indications were present

  17. Analysis of selected gravity profiles on the Hanford Reservation, Richland, Washington

    International Nuclear Information System (INIS)

    Little, J.T.; Richard, B.H.

    1977-07-01

    Regional gravity surveys have been conducted on the Hanford Reservation in the past. This analysis is an attempt at detailed gravity profiling over selected areas of the reservation. Over 450 gravity readings were taken during the summer of 1976. The Bouguer anomaly values of these stations, along with facies cross sections, were used to construct two-dimensional models. The models depict the buried basalt bedrock surface and the overlying sedimentary cover of the areas selected for profiling. In the eastern section of the reservation, the interpretation of the data suggests that there are three major buried valleys cut into the bedrock. These channels are most likely a combination of structural downwarping and erosion of these downwarps by an ancestral Columbia River. Along the western boundary of the reservation there are two closed depressions which are believed to be the result of the sub-fluvial vortex effect of Kolk erosion. It was found that, although two-dimensional gravity models are useful in determining the buried bedrock surface, they are ineffectual in delineating sedimentary contacts

  18. Ecological aspects of decommissioning and decontamination of facilities on the Hanford Reservation

    International Nuclear Information System (INIS)

    Rickard, W.H.; Klepper, E.L.

    1976-06-01

    The Hanford environment and biota are described in relation to decommissioning of obsolescent facilities contaminated with low-levels of radioactive materials. The aridity at Hanford limits both the productivity and diversity of biota. Both productivity and diversity are increased when water is added, as for example on the margins of ponds. Certain plants, especially Salsola kali (Russian thistle or tumbleweed), are avid accumulators of minerals and will accumulate radioactive materials if their roots come into contact with contaminated soils. Data on concentration ratios (pCi per gDW of plant/pCi per gDW soil) are given for several native plants for long-lived radionuclides. Plants are generally more resistant than animals to ionizing radiation so that impacts of high-level radiation sources would be expected to occur primarily in the animals. Mammals and birds are discussed along with information on where they are to be found on the Reservation and what role they may play in the long-term management of radioactive wastes. Food habits of animals are discussed and plants which are palatable to common herbivores are listed. Food chains leading to man are shown to be very limited, including a soil-plant-mule deer-man path for terrestrial sites and a pond-waterfowl-man pathway for pond sites. Retention basins are discussed as an example of how an ecologically sound decommissioningprogram might be planned. Finally, burial of large volumes of low-level wastes can probably be done if barriers to biological invasion are provided

  19. Ecological aspects of decommissioning and decontamination of facilities on the Hanford Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, W.H.; Klepper, E.L.

    1976-06-01

    The Hanford environment and biota are described in relation to decommissioning of obsolescent facilities contaminated with low-levels of radioactive materials. The aridity at Hanford limits both the productivity and diversity of biota. Both productivity and diversity are increased when water is added, as for example on the margins of ponds. Certain plants, especially Salsola kali (Russian thistle or tumbleweed), are avid accumulators of minerals and will accumulate radioactive materials if their roots come into contact with contaminated soils. Data on concentration ratios (pCi per gDW of plant/pCi per gDW soil) are given for several native plants for long-lived radionuclides. Plants are generally more resistant than animals to ionizing radiation so that impacts of high-level radiation sources would be expected to occur primarily in the animals. Mammals and birds are discussed along with information on where they are to be found on the Reservation and what role they may play in the long-term management of radioactive wastes. Food habits of animals are discussed and plants which are palatable to common herbivores are listed. Food chains leading to man are shown to be very limited, including a soil-plant-mule deer-man path for terrestrial sites and a pond-waterfowl-man pathway for pond sites. Retention basins are discussed as an example of how an ecologically sound decommissioningprogram might be planned. Finally, burial of large volumes of low-level wastes can probably be done if barriers to biological invasion are provided.

  20. Progress on the Hanford K basins spent nuclear fuel project

    International Nuclear Information System (INIS)

    Culley, G.E.; Fulton, J.C.; Gerber, E.W.

    1996-01-01

    This paper highlights progress made during the last year toward removing the Department of Energy's (DOE) approximately, 2,100 metric tons of metallic spent nuclear fuel from the two outdated K Basins at the Hanford Site and placing it in safe, economical interim dry storage. In the past year, the Spent Nuclear Fuel (SNF) Project has engaged in an evolutionary process involving the customer, regulatory bodies, and the public that has resulted in a quicker, cheaper, and safer strategy for accomplishing that goal. Development and implementation of the Integrated Process Strategy for K Basins Fuel is as much a case study of modern project and business management within the regulatory system as it is a technical achievement. A year ago, the SNF Project developed the K Basins Path Forward that, beginning in December 1998, would move the spent nuclear fuel currently stored in the K Basins to a new Staging and Storage Facility by December 2000. The second stage of this $960 million two-stage plan would complete the project by conditioning the metallic fuel and placing it in interim dry storage by 2006. In accepting this plan, the DOE established goals that the fuel removal schedule be accelerated by a year, that fuel conditioning be closely coupled with fuel removal, and that the cost be reduced by at least $300 million. The SNF Project conducted coordinated engineering and technology studies over a three-month period that established the technical framework needed to design and construct facilities, and implement processes compatible with these goals. The result was the Integrated Process Strategy for K Basins Fuel. This strategy accomplishes the goals set forth by the DOE by beginning fuel removal a year earlier in December 1997, completing it by December 1999, beginning conditioning within six months of starting fuel removal, and accomplishes it for $340 million less than the previous Path Forward plan

  1. Characterization program management plan for Hanford K Basin spent nuclear fuel

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1998-01-01

    The management plan developed to characterize the K Basin Spent Nuclear Fuel was revised to incorporate actions necessary to comply with the Office of Civilian Radioactive Waste Management Quality Assurance Requirements Document 0333P. This plan was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. This revision to the Program Management Plan replaces Westinghouse Hanford Company with Duke Engineering and Services Hanford, Inc., updates the various activities where necessary, and expands the Quality Assurance requirements to meet the applicable requirements document. Characterization will continue to utilize the expertise and capabilities of both organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for Duke Engineering and Services Hanford, Inc. and Pacific Northwest National Laboratory to support the Spent Nuclear Fuels Project at Hanford

  2. The economic and community impacts of closing Hanford's N Reactor and nuclear materials production facilities

    International Nuclear Information System (INIS)

    Scott, M.J.; Belzer, D.B.; Nesse, R.J.; Schultz, R.W.; Stokowski, P.A.; Clark, D.C.

    1987-08-01

    This study discusses the negative economic impact on local cities and counties and the State of Washington of a permanent closure of nuclear materials production at the Hanford Site, located in the southeastern part of the state. The loss of nuclear materials production, the largest and most important of the five Department of Energy (DOE) missions at Hanford, could occur if Hanford's N Reactor is permanently closed and not replaced. The study provides estimates of statewide and local losses in jobs, income, and purchases from the private sector caused by such an event; it forecasts impacts on state and local government finances; and it describes certain local community and social impacts in the Tri-Cities (Richland, Kennewick, and Pasco) and surrounding communities. 33 refs., 8 figs., 22 tabs

  3. Formal training program for nuclear material custodians at Hanford Engineering Development Laboratory

    International Nuclear Information System (INIS)

    Scott, D.D.

    1979-01-01

    Hanford Engineering Development Laboratory (HEDL) has established a formal training program for nuclear material (NM) custodians. The program, designed to familiarize the custodian with the fundamental concepts of proper nuclear materials control and accountability, is conducted on a semiannual basis. The program is prepared and presented by the Safeguards and Materials Management Section of HEDL and covers 14 subjects on accountability, documentation, transportation, custodian responsibilities, and the safeguarding of nuclear material

  4. The role of Quality Oversight in nuclear and hazardous waste management and environmental restoration at Westinghouse Hanford Company

    International Nuclear Information System (INIS)

    Fouad, H.Y.

    1994-05-01

    The historical factors that led to the waste at Hanford are outlined. Westinghouse Hanford Company mission and organization are described. The role of the Quality Oversight organization in nuclear hazardous waste management and environmental restoration at Westinghouse Hanford Company is delineated. Tank Waste Remediation Systems activities and the role of the Quality Oversight organization are described as they apply to typical projects. Quality Oversight's role as the foundation for implementation of systems engineering and operation research principles is pointed out

  5. Risk-based prioritization at Hanford Nuclear Site

    International Nuclear Information System (INIS)

    Hesser, W.A.; Mosely, M.T.

    1995-11-01

    This paper describes the method used to incorporate risk-based decision making into the Hanford resource allocation process. This method, the Revised Priority Planning Grid, is used as a tool to calculate benefits and benefit-to-cost ratios for comparison of environmental cleanup activities. The tool is based on Hanford Site objectives. Benefits are determined by estimating the impact on those objectives resulting from funding specific environmental management activities. Impacts are also a function of the weights associated with the objectives. These weights in the Revised Priority Planning Grid reflect US Development of Energy management values, which were obtained through a formal value-elicitation process. With modification to the objectives and weights, the Revised Priority Planning Grid could be used in different situations. By factoring in environmental, safety, and health risk and assigning higher scores to those activities that provide the most benefit, the Revised Priority Planning Grid is a reproducible, scientific way of scoring competing activities or interests

  6. Fluor Hanford Nuclear Material Stabilization Project Welding Manual

    International Nuclear Information System (INIS)

    BERKEY, J.R.

    2000-01-01

    The purpose of this section of the welding manual is to: (1) Provide a general description of the major responsibilities of the organizations involved with welding. (2) Provide general guidance concerning the application of codes related to welding. This manual contains requirements for welding for all Fluor Hanford (FH) welding operators working on the W460 Project, in the Plutonium Finishing Plant (PFP) at the U. S. Department of Energy (DOE) Hanford facilities. These procedures and any additional requirements for these joining processes can be used by all FH welding operators that are qualified. The Welding Procedure Specifications (WPS) found in this document were established from Procedure Qualification Records (PQR) qualified by FH specifically for the W460 Project. PQRs are permanent records of the initial testing and qualification program and are used to backup, and support, the WPS. The identification numbers of the supporting PQR(s) are recorded on each WPS. All PQRs are permanently stored under the supervision of the Fluor Hanford Welding Engineer (FHWE). New PQRs and WPSs will continue to be developed as necessary. The qualification of welders, welding operators and welding procedures will be performed for FH under supervision and concurrent of the FHWE. All new welding procedures to be entered in this manual or welder personnel to be added to the welder qualification database, shall be approved by the FHWE

  7. Draft interim close-out report Fitzner-Eberhardt Arid Lands Ecology Reserve remedial action, Hanford, Washington. Draft A

    International Nuclear Information System (INIS)

    1994-10-01

    The Fitzner-Eberhardt Arid Lands Ecology (ALE) Reserve consists of 120 square miles of shrub-steppe land on the western edge of the Hanford Site. It is located south of Highway 240 and east of the point where the Yakima River borders the site. The land was set aside as a natural research area in 1967 by the Atomic Energy Commission. With the recent change in mission at Hanford from plutonium production to environmental cleanup, much attention has been given to releasing clean tracts of land for other uses. The ALE Reserve is one such tract of land. Consistent with the Record of Decision (ROD) and Preliminary Assessment Screening (PAS), sites identified as having the potential for contamination on the ALE Reserve have been investigated, characterized, and remediated where necessary to comply with MTCA cleanup levels. Hazardous substances released to the environment have either been removed from the site or, in one case when removal was not practical, capped in place. Removal of all of the contaminated soil is supported by the confirmatory sampling results. The existing areas of contamination in the ALE Reserve were considered to be small. In March of 1993, Department of Energy (DOE), the Environmental Protection Agency and the Washington State Department of Ecology signed an Agreement in Principle in which they agreed to expedite cleanup of the ALE Reserve. Cleanup activities and a draft closeout report were to be completed by October 1994. Additionally, DOE proposed to mitigate hazards which may pose a physical threat to wildlife or humans

  8. Groundwater and vadose Zone Integration Project Nuclear Material Mass Flow and Accountability on the Hanford Site

    International Nuclear Information System (INIS)

    GRASHER, A.A.

    2001-01-01

    The purpose of this report is to provide a discussion of the accountable inventory of Hanford Site nuclear material (NM) over the operating period. This report does not provide judgments on impacts to the Hanford Site environs by the reported waste streams or inventory. The focus of this report is on the processes, facilities, and process streams that constituted the flow primarily of plutonium and uranium through the Hanford Site. The material balance reports (MBRS) are the basis of the NM accountable inventory maintained by each of the various contractors used by the U.S. Department of Energy (DOE) and its predecessors to operate the Hanford Site. The inventory was tracked in terms of a starting inventory, receipts, transfers, and ending inventory. The various components of the inventory are discussed as well as the uncertainty in the measurement values used to establish plant inventory and material transfers. The accountable NM inventory does not report all the NM on the Hanford Site and this difference is discussed relative to some representative nuclides. The composition and location of the current accountable inventory are provided, as well as the latest approved set (2000) of flow diagrams of the proposed disposition of the excess accountable NM inventory listed on the Idaho National Engineering and Environmental Laboratory (INEEL) web page

  9. Draft environmental assessment: reference repository location, Hanford Site, Washington. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the reference repository location at the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received on the draft EA. The reference repository location at Hanford is located in the Columbia Plateau, one of five distinct geohydrologic settings that are being considered for the first repository. On the basis of the evaluations reported in this draft EA, the DOE has found that the reference repository location at Hanford is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the reference repository location at Hanford as one of five sites suitable for characterization. Furthermore, having performed a comparative evaluation of the five sites proposed for nomination, the DOE has determined that the reference repository location at Hanford is one of three sites preferred for site characterization

  10. Hanford's Battle with Nuclear Waste Tank SY-101: Bubbles, Toils, and Troubles

    International Nuclear Information System (INIS)

    Stewart, Charles W.

    2006-01-01

    Radioactive waste tank SY-101 is one of 177 big underground tanks that store waste from decades of plutonium production at the Hanford Nuclear Reservation in central Washington State. The chemical reactions and radioactivity in all the tanks make bubbles of flammable gas, mainly hydrogen along with a little methane and ammonia. But SY-101 was the most potent gas producer of all. Every few months the gas built up in the million gallons of extra-thick slurry until it suddenly came up in great rushing ''burps''. A few of the tank's larger burps let off enough gas to make the air space at the top of the tank flammable for a few hours. This flammable gas hazard became a dominating force in DOE nuclear waste management politics in the last two decades of the 20th century. It demanded the toil of scientists, managers, and officials from the time it was filled in 1980, until it was finally declared safe in January 2001. The tank seemed almost a personality--acting with violence and apparent malice, hiding information about itself, deceiving us with false indications, and sometimes lulling us into complacency only to attack in a new way. From 1990 through 1993, SY-101's flammable gas troubles were acknowledged as the highest priority safety issue in the entire DOE complex. Uncontrolled crust growth demanded another high-priority remedial effort from 1998 through April 2000. The direct cost of the bubbles, toils, and troubles was high. Overall, the price of dealing with the real and imagined hazards in SY-101 may have reached $250 million. The indirect cost was also high. Spending all this money fighting SY-101?s safety issues only stirred radioactive waste up and moved it around, but accomplished no cleanup whatever. Worse yet, the flammable gas problem spawned suspicions of a much wider danger that impeded and complicated cleanup in other 176 waste tanks for a decade. The real cleanup job has yet to be done. The SY-101 story is really about the collective experience of

  11. Hanford wells

    International Nuclear Information System (INIS)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

  12. Hydrology model evaluation at the Hanford Nuclear Waste Facility

    International Nuclear Information System (INIS)

    1977-04-01

    One and two-dimensional flow and contaminant transport computer models have been developed at Hanford to assess the rate and direction of contaminant movement from waste disposal sites. The primary objective of this work was to evaluate the potential improvement in accuracy that a three-dimensional model might offer over the simpler one and two-dimensional models. INTERA's hydrology contaminant transport model was used for this evaluation. Although this study was conceptual in nature, an attempt was made to relate it as closely as possible to Hanford conditions. Two-dimensional model runs were performed over the period of 1968 to 1973 using estimates of waste discharge flows, tritium concentrations, vertically averaged values of aquifer properties and boundary conditions. The well test interpretation runs confirmed the applicability of the areal hydraulic conductivity distribution. Velocity fields calculated by the two-dimensional and three-dimensional models and surface concentration profiles calculated by the two-dimensional and three-dimensional models show significant differences. Vertical concentration profiles calculated by a three-dimensional model show better qualitative agreement with the limited observed concentration profile data supplied by ARHCO

  13. Development of a carbonate crust on alkaline nuclear waste sludge at the Hanford site.

    Science.gov (United States)

    Page, Jason S; Reynolds, Jacob G; Ely, Tom M; Cooke, Gary A

    2018-01-15

    Hard crusts on aging plutonium production waste have hindered the remediation of the Hanford Site in southeastern Washington, USA. In this study, samples were analyzed to determine the cause of a hard crust that developed on the highly radioactive sludge during 20 years of inactivity in one of the underground tanks (tank 241-C-105). Samples recently taken from the crust were compared with those acquired before the crust appeared. X-ray diffraction and scanning electron microscopy (SEM) indicated that aluminum and uranium phases at the surface had converted from (hydr)oxides (gibbsite and clarkeite) into carbonates (dawsonite and cejkaite) and identified trona as the cementing phase, a bicarbonate that formed at the expense of thermonatrite. Since trona is more stable at lower pH values than thermonatrite, the pH of the surface decreased over time, suggesting that CO 2 from the atmosphere lowered the pH. Thus, a likely cause of crust formation was the absorption of CO 2 from the air, leading to a reduction of the pH and carbonation of the waste surface. The results presented here help establish a model for how nuclear process waste can age and can be used to aid future remediation and retrieval activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Environmental consequences to water resources from alternatives of managing spent nuclear fuel at Hanford

    International Nuclear Information System (INIS)

    Whelan, G.; McDonald, J.P.; Sato, C.

    1994-11-01

    With an environmental restoration and waste management program, the U.S. Department of Energy (DOE) is involved in developing policies pertinent to the transport, storage, and management of spent nuclear fuel (SNF). The DOE Environmental Impact Statement (EIS) for Programmatic SNF management is documented in a Volume 1 report, which contains an assessment of the Hanford installation, among others. Because the Hanford installation contains approximately 80% of the SNF associated with the DOE complex, it has been included in the decision for the ultimate disposition of the fuel. The Pacific Northwest Laboratory performed a series of assessments on five alternatives at Hanford for managing the SNF: No-Action, Decentralization, 1992/1993 Planning Basis, Regionalization, and Centralization. The environmental consequences associated with implementing these assessment alternatives potentially impact socioeconomic conditions; environmental quality of the air, groundwater, surface water, and surface soil; ecological, cultural, and geological resources; and land-use considerations. The purpose of this report is to support the Programmatic SNF-EIS by investigating the environmental impacts associated with water quality and related consequences, as they apply to the five assessment alternatives at the Hanford installation. The results of these scenarios are discussed and documented

  15. Impact of a Hanford Nuclear Energy Center on ground level fog and humidity

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1977-03-01

    This document presents the details of a study of the atmospheric impacts of an Hanford Nuclear Energy Center (HNEC) that might result from the use of evaporative cooling alternatives. Specific cooling systems considered include once-through river cooling, cooling ponds, cooling towers, helper cooling ponds and towers and hybrid wet/dry cooling towers. The specific impacts evaluated are increases in fog and relative humidity

  16. Seismic qualification of safety class components in non-reactor nuclear facilities at Hanford site

    International Nuclear Information System (INIS)

    Ocoma, E.C.

    1989-01-01

    This paper presents the methods used during the walkdowns to compile as-built structural information to seismically qualify or verify the seismic adequacy of safety class components in the Plutonium Finishing Plant complex. The Plutonium finishing Plant is a non-reactor nuclear facility built during the 1950's and was designed to the Uniform Building Code criteria for both seismic and wind events. This facility is located at the US Department of Energy Hanford Site near Richland, Washington

  17. Characterization program management plan for Hanford K Basin Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1995-01-01

    A management plan was developed for Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratories (PNL) to work together on a program to provide characterization data to support removal, conditioning and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. The Program initially supports gathering data to establish the current state of the fuel in the two basins. Data Collected during this initial effort will apply to all SNF Project objectives. N Reactor fuel has been degrading with extended storage resulting in release of material to the basin water in K East and to the closed conisters in K West. Characterization of the condition of these materials and their responses to various conditioning processes and dry storage environments are necessary to support disposition decisions. Characterization will utilize the expertise and capabilities of WHC and PNL organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for WHC and PNL to support the Spent Nuclear Fuels Project at Hanford

  18. Electrometallurgical treatment of metallic spent nuclear fuel stored at the Hanford Site

    International Nuclear Information System (INIS)

    Laidler, J.J.; Gay, E.C.

    1996-01-01

    The major component of the DOE spent nuclear fuel inventory is the metallic fuel stored at the Hanford site in the southeastern part of the state of Washington. Most of this fuel was discharged from the N-Reactor; a small part of the inventory is fuel from the early Hanford production reactors. The U.S. Department of Energy (DOE) plans to remove these fuels from the spent fuel storage pools in which they are presently stored, dry them, and place them in interim storage at a location at the Hanford site that is far removed from the Columbia River. It is not yet certain that these fuels will be acceptable for disposal in a mined geologic repository without further treatment, due to their potential pyrophoric character. A practical method for treatment of the Hanford metallic spent fuel, based on an electrorefining process, has been developed and has been demonstrated with unirradiated N-Reactor fuel and with simulated single-pass reactor (SPR) spent fuel. The process can be operated with any desired throughput rates; being a batch process, it is simply a matter of setting the size of the electrorefiner modules and the number of such modules. A single module, prototypic of a production-scale module, has been fabricated and testing is in progress at a throughput rate of 150 kg (heavy metal) per day. The envisioned production version would incorporate additional anode baskets and cathode tubes and provide a throughput rate of 333 kgHM/day. A system with four of these modules would permit treatment of Hanford metallic fuels at a rate of at least 250 metric tons per year

  19. PROGRESS WITH K BASINS SLUDGE RETRIEVAL STABILIZATION & PACKAGING AT THE HANFORD NUCLEAR SITE

    Energy Technology Data Exchange (ETDEWEB)

    KNOLLMEYER, P.M.; PHILLIPS, C; TOWNSON, P.S.

    2006-01-30

    This paper shows how Fluor Hanford and BNG America have combined nuclear plant skills from the U.S. and the U.K. to devise methods to retrieve and treat the sludge that has accumulated in K Basins at the Hanford Site over many years. Retrieving the sludge is the final stage in removing fuel and sludge from the basins to allow them to be decontaminated and decommissioned, so as to remove the threat of contamination of the Columbia River. A description is given of sludge retrieval using vacuum lances and specially developed nozzles and pumps into Consolidation Containers within the basins. The special attention that had to be paid to the heat generation and potential criticality issues with the irradiated uranium-containing sludge is described. The processes developed to re-mobilize the sludge from the Consolidation Containers and pump it through flexible and transportable hose-in-hose piping to the treatment facility are explained with particular note made of dealing with the abrasive nature of the sludge. The treatment facility, housed in an existing Hanford building, is described, and the uranium-corrosion and grout packaging processes explained. The uranium corrosion process is a robust, tempered process very suitable for dealing with a range of differing sludge compositions. Optimization and simplification of the original sludge corrosion process design is described and the use of transportable and reusable equipment is indicated. The processes and techniques described in the paper are shown to have wide applicability to nuclear cleanup.

  20. Introduction to the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  1. Introduction to the Hanford Site

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal

  2. Identification of crystals in Hanford nuclear waste using polarized light microscopy

    International Nuclear Information System (INIS)

    Herting, D.L.

    1984-09-01

    The use of polarized light microscopy for identifying crystals encountered in Rockwell Hanford Operations chemical studies is described. Identifying characteristics and full-color photographs are presented for crystals commonly found in Hanford Site nuclear waste, including sodium nitrate, sodium nitrite, sodium aluminate, sodium phosphate, sodium fluoride, ammonium heptafluorozirconate, sodium sulfate, sodium carbonate, and ammonium nitrate. These characteristics are described in terms of birefringence, extinction position, interference figure, sign of elongation, optic sign, and crystal morphology. Background information on crystal optics is presented so that these traits can be understood by the nonmicroscopist. Detailed operational instructions are given so that the novice microscope user can make the proper adjustments of the instrument to search for and observe the identifying features of the crystals

  3. Nuclear graphite development, operational problems, and resolution of these problems at the Hanford production reactors

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1996-01-01

    This paper chronicles the history of the Hanford Production Reactor, from the initial design considerations for B, D, and F Reactors through the selection of the agreed method for safe disposal of the decommissioned reactors. The operational problems that challenged the operations and support staff of each new generation of production reactors, the engineering actions an operational changes that alleviated or resolved the immediate problems, the changes in reactor design and design-bases for the next generation of production reactors, and the changes in manufacturing variables that resulted in new ''improved'' grades of nuclear graphites for use in the moderators of the Hanford Production Reactors are reviewed in the context of the existing knowledge-base and the mission-driven priorities on the time. 14 refs, 6 figs, 3 tabs

  4. Soils of the Pacific Northwest shrub-steppe. Occurrence and properties of soils on the Arid Land Ecology Reserve, Hanford Reservation

    International Nuclear Information System (INIS)

    Wildung, R.E.

    1977-07-01

    The soils of the Arid Land Ecology Reserve, encompassing the IBP Grassland Biome intensive study site on the ERDA Hanford Reservation, are representative of a larger geographical region including much of the Columbia Plateau and Pacific Northwest shrub-steppe. This results from a unique diversity in parent materials of mixed origin derived from the loess eolian, lacustrine and stream-laid material including glacial outwashes, river terraces, flood plains and alluvial fans and meteorological factors accompanying a marked change in altitude within the Reserve resulting in development of soils over a range in temperature, moisture and vegetative regimes. The Reserve and the IBP Grassland Biome intensive study site serve as valuable, representative areas for the study of soil genesis and morphology in the shrub-steppe. The role of soils can be determined in basic environmental processes involving the flow of energy, cyclization of nutrients or the fate and behavior of pollutants. These processes may be examined to provide baseline information for comparison to other, more disturbed areas. Or, for investigative purposes, processes may be systematically altered to determine the influence of soil-perturbing activities such as agriculture, mining and industry on the terrestrial ecosystem

  5. Site characterization plan overview: reference repository location, Hanford Site, Washington: Consultation draft: Nuclear Waste Policy Act (Section 113)

    International Nuclear Information System (INIS)

    1988-01-01

    As part of the process for siting the nation's first geologic repository for radioactive waste, the Department of Energy (DOE) is preparing a site characterization plan for the Hanford site in Benton County, Washington. As a step in the preparation of that plan, the DOE has provided, for information and review, a consultation draft of the plan to the State of Washington, the affected Indian Tribes - the Confederated Tribes of the Umatilla Indian Reservation, the Nez Perce Indian Tribe, and the Yakima Indian Nation - and the US Nuclear Regulatory Commission. The Hanford site is one of three sites that the DOE currently plans to characterize;the other sites are the Deaf Smith County site in Texas and the Yucca Mountain site in Nevada. After site characterization has been completed and its results evaluated, the DOE will identify from among the three characterized sites the site that is preferred for the repository. The overview presented here consists of brief summaries of important topics covered in the consulation draft of the site characterization plan;it is not a substitute for the site characterization plan. The arrangement of the overview is similar to that of the plan itself, with breif descriptions of the dispoal system - the site, the repository, and the waste package - preceding the discussion of the characterization program to be carried out at the Hanford site. It is intended primarily for the management staff of organizations involved in the DOE's repository program or other persons who might wish to understand the general scope of the site-characterization program, the activities to be conducted, and the facilities to be constructed rather than the technical details of site characterization

  6. Ecological distribution and fate of plutonium and americium in a processing waste pond on the Hanford Reservation

    International Nuclear Information System (INIS)

    Emergy, R.M.; Klopfer, D.C.; McShane, M.C.

    1978-01-01

    U Pond, located on the Hanford Reservation, has received low-level quantities of plutonium (Pu) and americium (Am) longer than any other aquatic environment in the world. Its ecological complexity and content of transuranics make it an ideal resource for information concerning the movement of these actinides within and out of an aquatic ecosystem. U Pond has been intensively inventoried for Pu concentrations in the ecological compartments and characterized limnologically in terms of its physicochemial parameters, biological productivity, and community structure. This work provides a basis for evaluating the pond's performance in retaining waste transuranics. The quantitative estimation of export routes developed by this study is important in determining how effectively such ponds act as retainers for transuranic wastes

  7. Just in Time DSA-The Hanford Nuclear Safety Basis Strategy

    International Nuclear Information System (INIS)

    Olinger, S. J.; Buhl, A. R.

    2002-01-01

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD and D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD and D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex

  8. Just in Time DSA-The Hanford Nuclear Safety Basis Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Olinger, S. J.; Buhl, A. R.

    2002-02-26

    The U.S. Department of Energy, Richland Operations Office (RL) is responsible for 30 hazard category 2 and 3 nuclear facilities that are operated by its prime contractors, Fluor Hanford Incorporated (FHI), Bechtel Hanford, Incorporated (BHI) and Pacific Northwest National Laboratory (PNNL). The publication of Title 10, Code of Federal Regulations, Part 830, Subpart B, Safety Basis Requirements (the Rule) in January 2001 imposed the requirement that the Documented Safety Analyses (DSA) for these facilities be reviewed against the requirements of the Rule. Those DSA that do not meet the requirements must either be upgraded to satisfy the Rule, or an exemption must be obtained. RL and its prime contractors have developed a Nuclear Safety Strategy that provides a comprehensive approach for supporting RL's efforts to meet its long term objectives for hazard category 2 and 3 facilities while also meeting the requirements of the Rule. This approach will result in a reduction of the total number of safety basis documents that must be developed and maintained to support the remaining mission and closure of the Hanford Site and ensure that the documentation that must be developed will support: compliance with the Rule; a ''Just-In-Time'' approach to development of Rule-compliant safety bases supported by temporary exemptions; and consolidation of safety basis documents that support multiple facilities with a common mission (e.g. decontamination, decommissioning and demolition [DD&D], waste management, surveillance and maintenance). This strategy provides a clear path to transition the safety bases for the various Hanford facilities from support of operation and stabilization missions through DD&D to accelerate closure. This ''Just-In-Time'' Strategy can also be tailored for other DOE Sites, creating the potential for large cost savings and schedule reductions throughout the DOE complex.

  9. Evidence for dawsonite in Hanford high-level nuclear waste tanks.

    Science.gov (United States)

    Reynolds, Jacob G; Cooke, Gary A; Herting, Daniel L; Warrant, R Wade

    2012-03-30

    Gibbsite [Al(OH)(3)] and boehmite (AlOOH) have long been assumed to be the most prevalent aluminum-bearing minerals in Hanford high-level nuclear waste sludge. The present study shows that dawsonite [NaAl(OH)(2)CO(3)] is also a common aluminum-bearing phase in tanks containing high total inorganic carbon (TIC) concentrations and (relatively) low dissolved free hydroxide concentrations. Tank samples were probed for dawsonite by X-ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive Spectrometry (SEM-EDS) and Polarized Light Optical Microscopy. Dawsonite was conclusively identified in four of six tanks studied. In a fifth tank (AN-102), the dawsonite identification was less conclusive because it was only observed as a Na-Al bearing phase with SEM-EDS. Four of the five tank samples with dawsonite also had solid phase Na(2)CO(3) · H(2)O. The one tank without observable dawsonite (Tank C-103) had the lowest TIC content of any of the six tanks. The amount of TIC in Tank C-103 was insufficient to convert most of the aluminum to dawsonite (Al:TIC mol ratio of 20:1). The rest of the tank samples had much lower Al:TIC ratios (between 2:1 and 0.5:1) than Tank C-103. One tank (AZ-102) initially had dawsonite, but dawsonite was not observed in samples taken 15 months after NaOH was added to the tank surface. When NaOH was added to a laboratory sample of waste from Tank AZ-102, the ratio of aluminum to TIC in solution was consistent with the dissolution of dawsonite. The presence of dawsonite in these tanks is of significance because of the large amount of OH(-) consumed by dawsonite dissolution, an effect confirmed with AZ-102 samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. NO/sub x/ emissions from Hanford nuclear fuels reprocessing plants

    International Nuclear Information System (INIS)

    Pajunen, A.L.; Dirkes, R.L.

    1978-01-01

    Operation of the existing Hanford nuclear fuel reprocessing facilities will increase the release of nitrogen oxides (NO/sub x/) to the atmosphere over present emission rates. Stack emissions from two reprocessing facilities, one waste storage facility and two coal burning power plants will contain increased concentrations of NO/sub x/. The opacity of the reprocessing facilities' emissions is predicted to periodically exceed the State and local opacity limit of twenty percent. Past measurements failed to detect differences in the ambient air NO/sub x/ concentration with and without reprocessing plant operations. Since the facilities are not presently operating, increases in the non-occupational ambient air NO/sub x/ concentration were predicted from theoretical diffusion models. Based on the calculations, the annual average ambient air NO/sub x/ concentration will increase from the present level of less than 0.004 ppM to less than 0.006 ppM at the Hanford site boundaries. The national standard for the annual mean ambient air NO 2 concentration is 0.05 ppM. Therefore, the non-occupational ambient air NO/sub x/ concentration will not be increased to significant levels by reprocessing operations in the Hanford 200 Areas

  11. Automated Leak Detection Of Buried Tanks Using Geophysical Methods At The Hanford Nuclear Site

    International Nuclear Information System (INIS)

    Calendine, S.; Schofield, J.S.; Levitt, M.T.; Fink, J.B.; Rucker, D.F.

    2011-01-01

    At the Hanford Nuclear Site in Washington State, the Department of Energy oversees the containment, treatment, and retrieval of liquid high-level radioactive waste. Much of the waste is stored in single-shelled tanks (SSTs) built between 1943 and 1964. Currently, the waste is being retrieved from the SSTs and transferred into newer double-shelled tanks (DSTs) for temporary storage before final treatment. Monitoring the tanks during the retrieval process is critical to identifying leaks. An electrically-based geophysics monitoring program for leak detection and monitoring (LDM) has been successfully deployed on several SSTs at the Hanford site since 2004. The monitoring program takes advantage of changes in contact resistance that will occur when conductive tank liquid leaks into the soil. During monitoring, electrical current is transmitted on a number of different electrode types (e.g., steel cased wells and surface electrodes) while voltages are measured on all other electrodes, including the tanks. Data acquisition hardware and software allow for continuous real-time monitoring of the received voltages and the leak assessment is conducted through a time-series data analysis. The specific hardware and software combination creates a highly sensitive method of leak detection, complementing existing drywell logging as a means to detect and quantify leaks. Working in an industrial environment such as the Hanford site presents many challenges for electrical monitoring: cathodic protection, grounded electrical infrastructure, lightning strikes, diurnal and seasonal temperature trends, and precipitation, all of which create a complex environment for leak detection. In this discussion we present examples of challenges and solutions to working in the tank farms of the Hanford site.

  12. Nuclear waste inventory characterization for mixer pumps and long length equipment removed from Hanford waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1998-01-01

    The removal and disposition of contaminated equipment from Hanford high-level nuclear waste tanks presents many challenges. One of which is the characterization of radioactive contaminants on components after removal. A defensible assessment of the radionuclide inventory of the components is required for disposal packaging and classification. As examples of this process, this paper discusses two projects: the withdrawal of thermocouple instrument tubes from Tank 101-AZ, and preparation for eventual replacement of the hydrogen mitigation mixer pump in Tank 101-SY. Emphasis is on the shielding analysis that supported the design of radiation detection systems and the interpolation of data recorded during the equipment retrieval operations

  13. Lead test assembly irradiation and analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-07-01

    The U.S. Department of Energy (DOE) needs to confirm the viability of using a commercial light water reactor (CLWR) as a potential source for maintaining the nation's supply of tritium. The Proposed Action discussed in this environmental assessment is a limited scale confirmatory test that would provide DOE with information needed to assess that option. This document contains the environmental assessment results for the Lead test assembly irradiation and analysis for the Watts Bar Nuclear Plant, Tennessee, and the Hanford Site in Richland, Washington

  14. Nuclear criticality project plan for the Hanford Site tank farms

    Energy Technology Data Exchange (ETDEWEB)

    Bratzel, D.R., Westinghouse Hanford

    1996-08-06

    The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste

  15. Heater test planning for the near surface test facility at the Hanford reservation

    International Nuclear Information System (INIS)

    DuBois, A.; Binnall, E.; Chan, T.; McEvoy, M.; Nelson, P.; Remer, J.

    1979-03-01

    The underground test facility NSTF being constructed at Gable Mountain, is the site for a group of experiments designed to evaluate the thermo-mechanical suitability of a deep basalt stratum as a permanent repository for nuclear waste. Thermo-mechanical modeling was performed to help design the instrumentation arrays for the three proposed heater tests (two full scale tests and one time scale test) and predict the thermal environment of the heaters and instruments. The modeling does not reflect recent RHO revisions to the in situ heater experiment plan. Heaters, instrumentation, and data acquisition system designs and recommendations were adapted from those used in Sweden

  16. The economic and community impacts of closing Hanford's N Reactor and nuclear materials production facilities

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Belzer, D.B.; Nesse, R.J.; Schultz, R.W.; Stokowski, P.A.; Clark, D.C.

    1987-08-01

    This study discusses the negative economic impact on local cities and counties and the State of Washington of a permanent closure of nuclear materials production at the Hanford Site, located in the southeastern part of the state. The loss of nuclear materials production, the largest and most important of the five Department of Energy (DOE) missions at Hanford, could occur if Hanford's N Reactor is permanently closed and not replaced. The study provides estimates of statewide and local losses in jobs, income, and purchases from the private sector caused by such an event; it forecasts impacts on state and local government finances; and it describes certain local community and social impacts in the Tri-Cities (Richland, Kennewick, and Pasco) and surrounding communities. 33 refs., 8 figs., 22 tabs.

  17. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    International Nuclear Information System (INIS)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Duncan, D.R.

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations

  18. Characterization Program Management Plan for Hanford K Basin Spent Nuclear Fuel (SNF) (OCRWM)

    International Nuclear Information System (INIS)

    BAKER, R.B.; TRIMBLE, D.J.

    2000-01-01

    The management plan developed to characterize the K Basin spent nuclear fuel (SNF) and sludge was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the SNF stored at the Hanford K Basins. The plan also addressed necessary characterization for the removal, transport, and storage of the sludge from the Hanford K Basins. This plan was revised in 1999 (i.e., Revision 2) to incorporate actions necessary to respond to the deficiencies revealed as the result of Quality Assurance surveillances and audits in 1999 with respect to the fuel characterization activities. Revision 3 to this Program Management Plan responds to a Worker Assessment resolution determined in Fical Year 2000. This revision includes an update to current organizational structures and other revisions needed to keep this management plan consistent with the current project scope. The plan continues to address both the SNF and the sludge accumulated at K Basins. Most activities for the characterization of the SNF have been completed. Data validation, Office of Civilian Radioactive Waste Management (OCRWM) document reviews, and OCRWM data qualification are the remaining SNF characterization activities. The transport and storage of K Basin sludge are affected by recent path forward revisions. These revisions require additional laboratory analyses of the sludge to complete the acquisition of required supporting engineering data. Hence, this revision of the management plan provides the overall work control for these remaining SNF and sludge characterization activities given the current organizational structure of the SNF Project

  19. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    Energy Technology Data Exchange (ETDEWEB)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  20. The regulatory approach for spent nuclear storage and conditioning facility: The Hanford example

    International Nuclear Information System (INIS)

    Sellers, E.D.; Mooers, G.C. III; Daschke, K.D.; Driggers, S.A.; Timmins, D.C.

    1996-01-01

    Hearings held before the House Subcommittee on Energy and Mineral Resources in March 1994, requested that officials of federal agencies and other experts explore options for providing regulatory oversight of the US Department of Energy (DOE) facilities and operations. On January, 25, 1995, the DOE, supported by the White House Office of Environmental Quality and the Office of Management and Budget, formally initiated an Advisory Committee on External Regulation of DOE Nuclear Safety. In concert with this initiative and public opinion, the DOE Richland Operations Office has initiated the K Basin Spent Nuclear Fuel Project -- Regulatory Policy. The DOE has established a program to move the spent nuclear fuel presently stored in the K Basins to a new storage facility located in the 200 East Area of the Hanford Site. New facilities will be designed and constructed for safe conditioning and interim storage of the fuel. In implementing this Policy, DOE endeavors to achieve in these new facilities ''nuclear safety equivalency'' to comparable US Nuclear Regulatory Commission (NRC)-licensed facilities. The DOE has established this Policy to take a proactive approach to better align its facilities to the requirements of the NRC, anticipating the future possibility of external regulation. The Policy, supplemented by other DOE rules and directives, form the foundation of an enhanced regulatory, program that will be implemented through the DOE K Basin Spent Nuclear Fuel Project (the Project)

  1. Comparative ecology of nuclear waste ponds and streams on the Hanford Site

    International Nuclear Information System (INIS)

    Emery, R.M.; McShane, M.C.

    1978-10-01

    Limnological and radiological parameters were investigated in ponds and streams on the Hanford Site to develop comprehensive radioecological profiles. While Hanford ponds and streams can be grouped into three categories of nuclide content, only one system (100-N trench) has dose rates exceeding 1 R/week. However, maximum α concentrations in Z-19 ditch water and maximum β-γ concentrations in 100-N trench water both exceeded 10 4 pCi/l. These aquatic environments support populations of commonly occurring algae, macrophytes, invertebrates, and in some cases, fish. Although the variety in algal populations is reduced in 100-N trench and Z-19 ditch, variety in other types of biota are not apparently associated with amounts of radioactivity. The productivity rates of plant life, invertebrates and fish in these systems resemble those in aquatic environments not associated with nuclear activities. Only 100-N trench contains enough radioactivity to be potentially harmful to some aquatic organisms and terrestrial communities. 7 figures, 7 tables

  2. Comparative ecology of nuclear waste ponds and streams on the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Emery, R.M.; McShane, M.C.

    1978-10-01

    Limnological and radiological parameters were investigated in ponds and streams on the Hanford Site to develop comprehensive radioecological profiles. While Hanford ponds and streams can be grouped into three categories of nuclide content, only one system (100-N trench) has dose rates exceeding 1 R/week. However, maximum ..cap alpha.. concentrations in Z-19 ditch water and maximum ..beta..-..gamma.. concentrations in 100-N trench water both exceeded 10/sup 4/ pCi/l. These aquatic environments support populations of commonly occurring algae, macrophytes, invertebrates, and in some cases, fish. Although the variety in algal populations is reduced in 100-N trench and Z-19 ditch, variety in other types of biota are not apparently associated with amounts of radioactivity. The productivity rates of plant life, invertebrates and fish in these systems resemble those in aquatic environments not associated with nuclear activities. Only 100-N trench contains enough radioactivity to be potentially harmful to some aquatic organisms and terrestrial communities. 7 figures, 7 tables.

  3. POTENTIAL FOR HYDROGEN BUILDUP IN HANFORD SEALED AIR FILLED NUCLEAR STORAGE VESSELS

    International Nuclear Information System (INIS)

    HEY BE

    2008-01-01

    This calculation is performed in accordance with HNF-PRO-8259, PHMC Calculation Preparation and Issue and addresses the question as to whether a flammable mixture of hydrogen gas can accumulate in a Hanford sealed nuclear storage vessel where the only source of hydrogen is the moisture in the air that initially filled the vessel Of specific concern is nuclear fuel inside IDENT 69-Gs, placed in Core Component Containers (CCCs) located inside Interim Storage Vaults (ISVs) at the Plutonium Finishing Plant (PFP) The CCCs are to be removed from the ISVs and placed inside a Hanford Unirradiated Fuel Package (HUFP) for transport and interim storage. The repackaging procedures mandated that no plastics were permitted, all labels and tape were to be removed and the pins to be clean and inspected Loading of the fuel into the CCC/ISV package was permitted only if it was not raining or snowing. This was to preclude the introduction of any water The purpose was to minimize the presence of any hydrogenous material inside the storage vessels. The scope of NFPA 69, 'Standard on Explosion Prevention Systems', precludes its applicability for this case. The reactor fuel pins are helium bonded. The non-fuel pins, such as the pellet stacks, are also helium bonded. The fuel pellets were sintered at temperatures that preclude any residual hydrogenous material. Hydrogen gas can be formed from neutron and gamma radiolysis of water vapor. The radiolysis reaction is quite complex involving several intermediate radicals, and competing recombination reactions. Hydrogen gas can also be formed through corrosion. This analysis takes a simplistic approach and assumes that all water vapor present in the storage vessel is decomposed into hydrogen gas. Although the analysis is needed to specifically address HUFP storage of nuclear fuel, it is equally applicable to any sealed fuel storage vessel under the assumptions listed

  4. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  5. Nuclear industry in a country with a substantial oil reserve

    International Nuclear Information System (INIS)

    Alvarez, R.; Castillo, H.; Costa, D.; Galan, I.; Martinez, M.

    1981-01-01

    The importance of the development of a nuclear industry in a country like Mexico, with a substantial oil reserve is analyzed, taking into account the technical, economical, political, ecological and social aspects of the problem. (author)

  6. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Raymond, R. E.; Evans, K. M.

    2012-01-01

    CH2M Hill Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material)

  7. High performance gamma measurements of equipment retrieved from Hanford high-level nuclear waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Troyer, G.L.

    1997-03-17

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to 90% saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed.

  8. High performance gamma measurements of equipment retrieved from Hanford high-level nuclear waste tanks

    International Nuclear Information System (INIS)

    Troyer, G.L.

    1997-01-01

    The cleanup of high level defense nuclear waste at the Hanford site presents several progressive challenges. Among these is the removal and disposal of various components from buried active waste tanks to allow new equipment insertion or hazards mitigation. A unique automated retrieval system at the tank provides for retrieval, high pressure washing, inventory measurement, and containment for disposal. Key to the inventory measurement is a three detector HPGe high performance gamma spectroscopy system capable of recovering data at up to 90% saturation (200,000 counts per second). Data recovery is based on a unique embedded electronic pulser and specialized software to report the inventory. Each of the detectors have different shielding specified through Monte Carlo simulation with the MCNP program. This shielding provides performance over a dynamic range of eight orders of magnitude. System description, calibration issues and operational experiences are discussed

  9. On the nuclear fuel and fossil fuel reserves

    International Nuclear Information System (INIS)

    Fettweis, G.

    1978-01-01

    A short discussion of the nuclear fuel and fossil fuel reserves and the connected problem of prices evolution is presented. The need to regard fuel production under an economic aspect is emphasized. Data about known and assessed fuel reserves, world-wide and with special consideration of Austria, are reviewed. It is concluded that in view of the fuel reserves situation an energy policy which allows for a maximum of options seems adequate. (G.G.)

  10. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams

  11. Application of nuclear-geophysical methods to reserves estimation

    International Nuclear Information System (INIS)

    Bessonova, T.B.; Karpenko, I.A.

    1980-01-01

    On the basis of the analysis of reports dealing with calculations of mineral reserves considered are shortcomings in using nuclear-geophysical methods and in assessment of the reliability of geophysical sampling. For increasing efficiency of nuclear-geophysical investigations while prospecting ore deposits, it is advisable to introduce them widely instead of traditional geological sampling methods. For this purpose it is necessary to increase sensitivity and accuracy of radioactivity logging methods, to provide determination of certain elements in ores by these methods

  12. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II

  13. Hanford site environment

    International Nuclear Information System (INIS)

    Isaacson, R.E.

    1976-01-01

    A synopsis is given of the detailed characterization of the existing environment at Hanford. The following aspects are covered: demography, land use, meteorology, geology, hydrology, and seismology. It is concluded that Hanford is one of the most extensively characterized nuclear sites

  14. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  15. Selection of heat disposal methods for a Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Young, J.R.; Kannberg, L.D.; Ramsdell, J.V.; Rickard, W.H.; Watson, D.G.

    1976-06-01

    Selection of the best method for disposal of the waste heat from a large power generation center requires a comprehensive comparison of the costs and environmental effects. The objective is to identify the heat dissipation method with the minimum total economic and environmental cost. A 20 reactor HNEC will dissipate about 50,000 MWt of waste heat; a 40 reactor HNEC would release about 100,000 MWt. This is a much larger discharge of heat than has occurred from other concentrated industrial facilities and consequently a special analysis is required to determine the permissibility of such a large heat disposal and the best methods of disposal. It is possible that some methods of disposal will not be permissible because of excessive environmental effects or that the optimum disposal method may include a combination of several methods. A preliminary analysis is presented of the Hanford Nuclear Energy Center heat disposal problem to determine the best methods for disposal and any obvious limitations on the amount of heat that can be released. The analysis is based, in part, on information from an interim conceptual study, a heat sink management analysis, and a meteorological analysis

  16. DEVELOPING AND QUANTIFYING PARAMETERS FOR CLOSURE WELDING OVERPACKS CONTAINING RESEARCH REACTOR SPENT NUCLEAR FUEL AT HANFORD

    International Nuclear Information System (INIS)

    CANNELL GR

    2007-01-01

    Fluor engineers developed a Gas Tungsten Arc Welding (GTAW) technique and parameters, demonstrated requisite weld quality and successfully closure-welded packaged spent nuclear fuel (SNF) overpacks at the Hanford Site. This paper reviews weld development and qualification activities associated with the overpack closure-welding and provides a summary of the production campaign. The primary requirement of the closure weld is to provide leaktight confinement of the packaged material against release to the environment during interim storage (40-year design term). Required weld quality, in this case, was established through up-front development and qualification, and then verification of parameter compliance during production welding. This approach was implemented to allow for a simpler overpack design and more efficient production operations than possible with approaches using routine post-weld testing and nondestructive examination (NDE). . A series of welding trials were conducted to establish the desired welding technique and parameters. Qualification of the process included statistical evaluation and American Society of Mechanical Engineers (ASME) Section IX testing. In addition, pull testing with a weighted mockup, and thermal calculation/physical testing to identify the maximum temperature the packaged contents would be subject to during welding, was performed. Thirteen overpacks were successfully packaged and placed into interim storage. The closure-welding development activities (including pull testing and thermal analysis) provided the needed confidence that the packaged SNF overpacks could be safely handled and placed into interim storage, and remain leaktight for the duration of the storage term

  17. Radioactive waste shipments to Hanford retrievable storage from Westinghouse Advanced Reactors and Nuclear Fuels Divisions, Cheswick, Pennsylvania

    International Nuclear Information System (INIS)

    Duncan, D.; Pottmeyer, J.A.; Weyns, M.I.; Dicenso, K.D.; DeLorenzo, D.S.

    1994-04-01

    During the next two decades the transuranic (TRU) waste now stored in the burial trenches and storage facilities at the Hanford Sits in southeastern Washington State is to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico for final disposal. Approximately 5.7 percent of the TRU waste to be retrieved for shipment to WIPP was generated by the decontamination and decommissioning (D ampersand D) of the Westinghouse Advanced Reactors Division (WARD) and the Westinghouse Nuclear Fuels Division (WNFD) in Cheswick, Pennsylvania and shipped to the Hanford Sits for storage. This report characterizes these radioactive solid wastes using process knowledge, existing records, and oral history interviews

  18. The association betweeen cancers and low level radiation: An evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    International Nuclear Information System (INIS)

    Britton, J.

    1993-05-01

    Cancer has traditionally been linked to exposure to high doses of radiation, but there is considerable controversy regarding the carcinogenicity of low doses of ionizing radiation in humans. Over the past 30 years there have been 14 studies conducted on employees at the Hanford nuclear weapons facility to investigate the relationship between exposure to low doses of radiation and mortality due to cancer (1-14). Interest in this issue was originally stimulated by the Atomic Energy Commission (AEC) which was trying to determine whether the linear extrapolation of health effects from high to low dose exposure was accurate. If the risk has been underestimated, then the maximum permissible occupational radiation exposure in the United States had been set too high. Because the health risk associated with low level radiation are unclear and controversial it seems appropriate to review the studies relating to Hanford at this time

  19. Nuclear science

    International Nuclear Information System (INIS)

    1989-01-01

    This fact sheet answers specific questions about the Department of Energy's possible acquisition and conversion of a partially completed commercial nuclear power plant to a nuclear materials production facility. The nuclear power plant is the Washington Nuclear Plant number sign 1 owned by the Washington Public Power Supply System and is located on DOE's Hanford Reservation near Richland, Washington

  20. Nuclear science

    International Nuclear Information System (INIS)

    1989-04-01

    This report answers questions about the Department of Energy's possible acquisition and conversion of a partially completed commercial nuclear power plant to a nuclear materials production facility. The nuclear power plant is the Washington Nuclear Plant No.1 owned by the Washington Public Power Supply System and is located on DOE's Hanford Reservation near Richland, Washington

  1. Hanford Spent Nuclear Fuel Project: Recommended path forward. Volume 2: Alternatives and path forward evaluation

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    The Hanford Spent Nuclear Fuel Project has completed an evaluation of four alternatives for expediting the removal of spent nuclear fuel from the K Basins and stabilizing and placing the fuel into interim storage. Four alternatives were compared: (1) Containerizing fuel in the K Basins, transporting fuel to a facility for stabilization, and interim storage of stabilized fuel in a dry storage facility (DSF); (2) Containerizing fuel in the K Basins, transporting fuel to a wet temporary staging facility, moving fuel to a facility for stabilization, and transporting stabilized fuel to an interim DSF; (3) Containerizing fuel in the K Basins in multi-canister overpacks, transporting fuel directly to a stabilization facility for passivation in the overpack, and interim storage of stabilized fuel in a DSF; (4) Packaging fuel for transport overseas and shipping fuel to a foreign reprocessing facility for reprocessing with eventual return of U, Pu and vitrified high level waste. The comparative evaluation consisted of a multi-attribute utility decision analysis, a public, worker and environmental health risk assessment, and a programmatic risk evaluation. The evaluation concluded that the best Path Forward combines the following concepts: Removal of K Basin fuel and sludge is uncoupled from the operation of a stabilization facility; A storage capability is provided to act as a lag storage or staging operation for overpack fuel containers as they are removed from the K Basins; Metal fuel drying and passivation should be maintained as the fuel stabilization process with the option of further refinements as more information becomes available; and The near term NEPA strategy should focus on expeditious removal of fuel and sludge from K Basins and placing overpacked fuel in temporary storage

  2. Geomicrobiology of High Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Fredrickson, Jim K.; Zachara, John M.; Balkwill, David L.; Kennedy, David W.; Li, Shu-Mei W.; Kostandarithes, Heather M.; Daly, Michael J.; Romine, Margaret F.; Brockman, Fred J.

    2004-01-01

    Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), 137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to ∼104 7 CFU g-1 but viable microorganisms were recovered from 11 of 16 samples including several of the most radioactive ones (e.g., > 10 ?Ci/g 137Cs). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known Gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples but other high G+C phyla were also represented including Rhodococcus and Nocardia. Two isolates from the second most radioactive sample (>20 ?Ci 137Cs g-1) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20kGy. Many of the Gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that Gram-positive bacteria, predominantly high G+C phyla, are indigenous to Hanford vadose sediments and some are effective at surviving the extreme physical and chemical stress associated with radioactive waste

  3. Alternatives for long-term management of defense high-level radioactive waste, Hanford Reservations, Richland, Washington

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this document is to provide information or alternatives that are being considered for the long-term management of defense high-level radioactive waste stored at Hanford in underground tanks and in stainless steel-lined concrete basins. For purposes of basic programmatic decision making, four major alternatives based on disposal location are considered. The steps leading to placement of the waste in the following locations are illustrated: existing waste tanks; onsite engineered surface facilities; onsite geologic repository; and offsite geologic repository. The four major disposal alternatives are expanded into 27 alternative plans by considering: (1) variations in the final form of the high-level fraction (with radionuclide removal) to include glass, concrete, and powder; (2) variations in the final form of the dehydrated waste product to include glass, calcined clay, and powder; and (3) variations in the treatment and handling of encapsulated waste to include packaging of capsules in canisters and conversion of the strontium fluoride and cesium chloride to glass; canisters stored in sealed casks on the surface are disposed of in a surface vault after the radionuclides have decayed sufficiently to avoid a heat-transfer problem. A description of the technology, a preliminary risk assessment, and preliminary cost estimates for each of these 27 plans are presented. The technology required to implement any of the 27 alternative plans has not been developed to the point where any plan can be considered completely technically sound and feasible

  4. On the home front: The cold war legacy of the Hanford nuclear site

    International Nuclear Information System (INIS)

    Stenehjem Gerber, M.

    1992-01-01

    The Hanford plutonium factory in Washington State is among the oldest and largest relics of the Cold War and is also among the dirtiest. In this book, the author states that the release of radiaoactive and toxic waste without public knowledge poses fundamental questions about American democracy. No conclusive answers to the problems at Hanford are presented, although the important questions are addressed. The reviewer feels the book may be of use as a reference catalog, within its context as a piece essentially concerned with public relations

  5. Geohydrological studies for nuclear waste isolation at the Hanford Reservation. Volume II. Final report

    International Nuclear Information System (INIS)

    Apps, J.; Doe, T.; Doty, B.

    1979-08-01

    A field testing program to provide data for mathematical modeling of ground water flow in the deep basalts of the Pasco Basin was initiated in FY 1978. Tests performed in DC-2 and water level responses in neighboring DC-1 suggest possible leakage between the three lower piezometers in DC-1 and indicate a downward gradient in the upper basalt layers down to 4000 ft, beneath which there may be an upward gradient. A sharp steepening of the downward gradient near the Umtanum Unit suggest that Umtanum may be acting as a barrier to vertical flow. Pressure testing in well DC-8 in the basalts above the Vantage sandstone at 1700 to 2700 ft indicate a downward gradient. Water level elevations were higher and downward gradients steeper than in wells DC-1/DC-2. Well DC-6 was artesian, with a production rate of about 17 gpm, with 75% of this flow coming from the depth interval 3650 to 3800 ft. Pressure tests between 2200 and 4300 ft indicate artesian conditions in every zone. Water level elevations in the Grande Ronde basalts in DC-6 were higher than in the same zones in DC-1/DC-2. As in DC-1/DC-2, there appears to be a local heat minimum within 600 ft below the bottom of the Umtanum with higher heads at greater depth. The Gable Mountain anticline may be a flow barrier separating Cold Creek Valley from the Columbia River Valley to the north and east. Recharge to the deep basalts in Cold Creek Valley appears small, with drainage occurring to the southeast, parallel to the Cold Creek syncline. The lowest head elevation in DC-2 was 360 ft, which indicates that the deep flow systems in this area may be discharging to the Columbia River, probably at or below the Tri-Cities area. Presence of tritium in DC-2 at 20% of the Columbia River value was still present after swabbing 64,000 gal of water from the packed-off zone. Recommendations are presented for a continued well drilling and testing program

  6. SAFETY AT FLUOR HANFORD (A) CASE STUDY - PREPARED BY THUNDERBIRD SCHOOL OF GLOBAL MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    ARNOLD LD

    2009-09-25

    By November of 1997, Fluor Hanford (Fluor) had been the site manager of the Hanford nuclear reservation for a year. The Hanford site had been established as part of the Manhattan Project in the 1940s that gave birth to the atomic bomb. Hanford produced two thirds of U.S. plutonium during the Cold War period. The Hanford site was half the size of Rhode Island and occupied 586 square miles in southeastern Washington State. The production of plutonium for more than 40 years left a huge legacy of chemical and radiological contamination: 80 square miles of contaminated groundwater; 2,300 tons of spent nuclear fuel stored in underwater basins; 20 tons of plutonium-laced contaminated materials; and 500 contaminated facilities. The cleanup involved a challenging combination of radioactive material handling within an infrastructure constructed in the 1940s and 1950s. The cleanup that began in 1988 was expected to take 30 years or more. Improving safety at Hanford had already proven to be a significant challenge. As the new site manager at Hanford, Fluor Hanford inherited lower- and mid-level managers and thousands of unionized employees, many of whom were second or third generation Hanford employees. These employees had seen many contractors come and go over the years. Some of the managers who had worked with the previous contractor saw Fluor's emphasis on safety as getting in the way of operations. Union-management relations were fractious. Hanford's culture was described as 'production driven-management told everyone what to do, and, if you didn't do it, there were consequences'. Worker involvement in designing and implementing safety programs was negligible. Fluor Hanford also was having trouble satisfying its client, the Department of Energy (DOE). The DOE did not see a clear path forward for performance improvements at Hanford. Clearly, major change was necessary, but how and where should it be implemented?

  7. SAFETY AT FLUOR HANFORD (A) CASE STUDY - PREPARED BY THUNDERBIRD SCHOOL OF GLOBAL MANAGEMENT

    International Nuclear Information System (INIS)

    Arnold, L.D.

    2009-01-01

    By November of 1997, Fluor Hanford (Fluor) had been the site manager of the Hanford nuclear reservation for a year. The Hanford site had been established as part of the Manhattan Project in the 1940s that gave birth to the atomic bomb. Hanford produced two thirds of U.S. plutonium during the Cold War period. The Hanford site was half the size of Rhode Island and occupied 586 square miles in southeastern Washington State. The production of plutonium for more than 40 years left a huge legacy of chemical and radiological contamination: 80 square miles of contaminated groundwater; 2,300 tons of spent nuclear fuel stored in underwater basins; 20 tons of plutonium-laced contaminated materials; and 500 contaminated facilities. The cleanup involved a challenging combination of radioactive material handling within an infrastructure constructed in the 1940s and 1950s. The cleanup that began in 1988 was expected to take 30 years or more. Improving safety at Hanford had already proven to be a significant challenge. As the new site manager at Hanford, Fluor Hanford inherited lower- and mid-level managers and thousands of unionized employees, many of whom were second or third generation Hanford employees. These employees had seen many contractors come and go over the years. Some of the managers who had worked with the previous contractor saw Fluor's emphasis on safety as getting in the way of operations. Union-management relations were fractious. Hanford's culture was described as 'production driven-management told everyone what to do, and, if you didn't do it, there were consequences'. Worker involvement in designing and implementing safety programs was negligible. Fluor Hanford also was having trouble satisfying its client, the Department of Energy (DOE). The DOE did not see a clear path forward for performance improvements at Hanford. Clearly, major change was necessary, but how and where should it be implemented?

  8. Environmental surveillance at Hanford for CY-1974

    International Nuclear Information System (INIS)

    Fix, J.J.

    1975-04-01

    During 1974, the work at Hanford included N Reactor operation, nuclear fuel fabrication, liquid waste solidification, continued construction of the Fast Flux Test Facility, continued construction of Washington Public Power Supply System (WPPSS) No. 2 power reactor, Arid Lands Ecology studies, as well as continued use of a variety of research and laboratory facilities. Environmental data collected during 1974 showed continued compliance of Hanford operations with all applicable state and federal regulations. Levels of radioactivity in the atmosphere from Hanford operations at all offsite sampling locations were indistinguishable from levels due to natural causes and fallout from nuclear detonations in the atmosphere. Air quality measurements of NO 2 in the Hanford environs recorded a maximum yearly average concentration of 0.006 ppM or 12 percent of the ambient air standard. There was no indication that Hanford operations contributed significantly to these levels. All SO 2 results were less than the detection limit of 0.005 ppM or 25 percent of the ambient air quality standard. Routine radiological, chemical, biological, and physical analyses of Columbia River water upstream and downstream of the Hanford Reservation operations with the possible exception of water temperature. Levels of radioactivity were similar at both locations and were due to natural and fallout radioactivity. Estimates are included of the radiation dose to the human population within an 80-kilometer (50-mile) radius of the site during 1974. Methods used in calculations of the annual dose and 50-year dose commitment from radioactive effluents are discussed. (U.S.)

  9. Hanford work faces change

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is a discussion of DOE efforts in the awarding of a large engineering-construction contract at the Hanford Reservation. Though the announced winner was a group lead by J. A. Jones Construction/Duke Engineering Services, the incumbent (ICF-Kaiser Engineers) protested the announced award. The protest was dismissed by the GAO, but DOE officials still reopened the bidding. There was also a short note regarding the award of the ERMC at Hanford

  10. Removal of radionuclides from the water-soluble fraction of Hanford nuclear defense wastes

    International Nuclear Information System (INIS)

    Strachan, D.M.; Schulz, W.W.

    1980-01-01

    The current Hanford Waste Management Program has operated since 1968 to remove the bulk of the long-lived heat emitters /sup 90/Sr and /sup 137/Cs from stored high-level wastes. The liquid waste remaining after removal of /sup 90/Sr and /sup 137/Cs is returned to underground tanks for eventual evaporation to damp solid salt cake. Approximately 95,000 m/sup 3/ of salt cake and 49,000 m/sup 3/ of ''sludge'' will eventually accumulate in approximately 50 underground single-shell tanks. One alternative for long-term management of high-level Hanford wastes involves retrieval, after a yet-to-be determined interim storage time, conversion to more immobile forms, and terminal storage in a suitable geologic repository. Another alternative for long-term management of salt cake and residual liquid involves removing most of the long-lived radionuclides and many of the shorter-lived ones from these wastes. This paper describes conditions and results of recent hot cell tests of the complete Hanford Radionuclide Removal Process. These advanced tests, made with actual residual liquid containing large concentrations of ethylenediaminetetracetic acid (EDTA) and other organic compounds, provided a rigorous and convincing proof of the process flowsheet. 16 refs

  11. Storage of non-defense production reactor spent nuclear fuel at the Department of Energy's Hanford Site

    International Nuclear Information System (INIS)

    Carlson, A.B.

    1998-01-01

    In 1992, the US Department of Energy (DOE) established a program at the Hanford Site for management of DOE-owned spent nuclear fuel (SNF) until final disposition. Currently, the DOE-owned SNF Program is developing and implementing plans to assure existing storage, achieve interim storage, and prepare DOE-owned SNF for final disposition. Program requirements for management of the SNF are delineated in the DOE-owned SNF Program Plan.(DOE 1995a) and the DOE Spent Fuel Program's Requirements Document (DOE 1994a). Major program requirements are driven by the following: commitments established in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1 Implementation Plan (DOE 1995b); corrective action plans for resolving vulnerabilities identified in the DOE Spent Fuel Working Group's Report on Health, Safety, and Environmental Vulnerabilities for Reactor Irradiated Nuclear Materials (DOE 1993); the settlement agreement between the US Department of Navy, the US Department of Energy, and the State of Idaho on the record of decision (ROD) from the DOE Programmatic SNF Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (DOE Programmatic SNF EIS) (Idaho, 1995)

  12. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  13. Hanford Spent Nuclear Fuel Project evaluation of multi-canister overpack venting and monitoring options during staging of K basins fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wiborg, J.C.

    1995-12-01

    This engineering study recommends whether multi-canister overpacks containing spent nuclear fuel from the Hanford K Basins should be staged in vented or a sealed, but ventable, condition during staging at the Canister Storage Building prior to hot vacuum conditioning and interim storage. The integrally related issues of MCO monitoring, end point criteria, and assessing the practicality of avoiding venting and Hot Vacuum Conditioning for a portion of the spent fuel are also considered.

  14. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Science.gov (United States)

    2013-02-12

    ... Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy. ACTION: Notice; Correction SUMMARY: The Department of Energy (DOE) published a document in the Federal... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...

  15. Studies Related to Chemical Mechanisms of Gas Formation in Hanford High-Level Nuclear Wastes

    International Nuclear Information System (INIS)

    Barefield, E. Kent; Liotta, Charles L.; Neumann, Henry M.

    2002-01-01

    The objective of this work is to develop a more detailed mechanistic understanding of the thermal reactions that lead to gas production in certain high-level waste storage tanks at the Hanford, Washington site. Prediction of the combustion hazard for these wastes and engineering parameters for waste processing depend upon both a knowledge of the composition of stored wastes and the changes that they undergo as a result of thermal and radiolytic decomposition. Since 1980 when Delagard first demonstrated that gas production (H2and N2O initially, later N2 and NH3)in the affected tanks was related to oxidative degradation of metal complexants present in the waste, periodic attempts have been made to develop detailed mechanisms by which the gases were formed. These studies have resulted in the postulation of a series of reactions that account for many of the observed products, but which involve several reactions for which there is limited, or no, precedent. For example, Al(OH)4 has been postulated to function as a Lewis acid to catalyze the reaction of nitrite ion with the metal complexants, NO is proposed as an intermediate, and the ratios of gaseous products may be a result of the partitioning of NO between two or more reactions. These reactions and intermediates have been the focus of this project since its inception in 1996

  16. Reengineering Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success.

  17. Reengineering Hanford

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success

  18. Preliminary Hanford technical input for the Department of Energy programmatic spent nuclear fuel management and Idaho National Engineering Laboratory environmental restoration and waste management programs environmental impact statement

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1995-03-01

    The US Department of Energy (DOE) is currently evaluating its programmatic options for the safe management of its diverse spent nuclear fuel (SNF) inventory in the Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Environmental Impact Statement (SNF and INEL EIS). In the SNF and INEL EIS, the DOE is assessing five alternatives for SNF management, which consider at which of the DOE sites each of the various SNF types should be managed until ultimate disposition. The range of SNF inventories considered for management at the Hanford Site in the SNF and INEL EIS include the current Hanford Site inventory, only the current Hanford Site defense production SNF inventory, the DOE complex-wide SNF inventory, or none at all. Site-specific SNF management decisions will be evaluated in separate National Environmental Policy Act evaluations. Appendixes A and B include information on (1) additional facilities required to accommodate inventories of SNF within each management alternative, (2) existing and new SNF management facility descriptions, (3) facility costs for construction and operation, (4) facility workforce requirements for construction and operation, and (5) facility discharges. The information was extrapolated from existing analyses to the extent possible. New facility costs, manpower requirements, and similar information are based on rough-order-of-magnitude estimates

  19. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  20. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  1. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  2. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  3. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    International Nuclear Information System (INIS)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0

  4. Characterization program management plan for Hanford K basin spent nuclear fuel

    International Nuclear Information System (INIS)

    TRIMBLE, D.J.

    1999-01-01

    The program management plan for characterization of the K Basin spent nuclear fuel was revised to incorporate corrective actions in response to SNF Project QA surveillance 1K-FY-99-060. This revision of the SNF Characterization PMP replaces Duke Eng

  5. Ministerial ordinance on the establishment of a reserve fund for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    1984-01-01

    The ministerial ordinance provides for a reserve fund for spent nuclear fuel reprocessing, according to the Electricity Enterprises Act. The Government designates an electricity enterprise that must deposit a reserve fund for spent nuclear fuel reprocessing. The electricity enterprise concerned must deposit a certain sum of money as a reserve fund which is the payment left over from spent fuel reprocessing at the end of a fiscal year minus the same at the end of the preceding year less a certain sum, when the former exceeds the latter. Then, concerning the remainder of the reserve fund in the preceding year, a certain sum must be subtracted from this reserve fund. (Mori, K.)

  6. Review of Nuclear Criticality Safety Requirements Implementation for Hanford Tank Farms Facility

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    In November 1999, the Deputy Secretary of the Department of Energy directed a series of actions to strengthen the Department's ongoing nuclear criticality safety programs. A Review Plan describing lines of inquiry for assessing contractor programs was included. The Office of River Protection completed their assessment of the Tank Farm Contractor program in May 2000. This document supports that assessment by providing a compliance statement for each line of inquiry

  7. ChemWaste appeals Hanford permit stance

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Chemical Waste Management, Inc. is appealing the Washington State Department of Ecology's decision to suspend its review of the company's proposal to build a hazardous waste incinerator and two mixed waste incinerators at the Hanford Nuclear Site near Richland, Washington. The company wants to build the incinerators on a 200 acre parcel in the DOE reservation that is leased to the State. The State contends the two mixed waste incinerators meet siting criteria, but the hazardous waste unit does not. A compromise may be reached between DOE and Washington state involving the transfer of title to the leased land from DOE to the State

  8. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  9. Native Americans and cultural impact analysis: The proposed nuclear waste repository at Hanford

    International Nuclear Information System (INIS)

    Walker, D.E. Jr.

    1987-01-01

    Beneath a surface patterning of legal, political, economic and other formal structures, Native American reservations and their tribes possess many culturally distinctive values and patterns of life. Generally it is this ancient underlying culture that Native American leaders wish to preserve and nourish. Their primary objective is tribal survival, and socioeconomic and cultural impact assessment theories and methods must reflect this objective. Conventional impact analysis rarely meets the needs of tribal leadership. Current, fragmented approaches must be replaced by integrative, holistic alternatives

  10. Hanford process review

    International Nuclear Information System (INIS)

    1991-12-01

    This report is a summary of past incidents at the US Department of Energy's (DOE) Hanford Site. The purpose of the report is to provide the major, significant, nuclear-safety-related incidents which incurred at the Hanford Site in a single document for ease of historical research. It should be noted that the last major accident occurred in 1980. This document is a summary of reports released and available to the public in the DOE Headquarters and Richland public reading rooms. This document provides no new information that has not previously been reported. This report is not intended to cover all instances of radioactivity release or contamination, which are already the subject of other major reviews, several of which are referenced in Section 1.3

  11. Reserve seismic capacity determination of a nuclear power plant braced frame with piping

    International Nuclear Information System (INIS)

    Nelson, T.A.

    1979-01-01

    The Lawrence Livermore Laboratory has been asked by the U.S. Nuclear Regulatory Commission to investigate the inelastic behavior of a representative non-category I structure to determine the amount of reserve seismic capacity that is available beyond elastic design levels. This reserve capacity can be an important consideration when evaluating the ability of existing structures to withstand upgraded seismic hazards. (orig.)

  12. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options

    International Nuclear Information System (INIS)

    Meyer, Bettina

    2012-01-01

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  13. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  14. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  15. Draft environmental assessment for characterization of the Hanford Site pursuant to the Nuclear Waste Policy Act of 1982 (Public Law 97-425), Hanford Site, Richland, Benton County, Washington

    International Nuclear Information System (INIS)

    1983-02-01

    The Hanford Site is evaluated in this draft environmental assessment. The results of this evaluation are the basis for nominating the Hanford Site for site characterization leading to selection of the first repository site. The major conclusions are presented. 120 refs., 26 figs., 8 tabs

  16. Collaborative Negotiations: A Successful Approach for Negotiation Compliance Milestones for the transition of the PFP Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    HOPKINS, A.M.

    2003-01-01

    The new approach to negotiations was termed collaborative (win-win) rather than positional (win-lose). Collaborative negotiations were conducted to establish milestones for the decommissioning of the Plutonium Finishing Plant, PFP

  17. Fluor Hanford Project Focused Progress at Hanford

    International Nuclear Information System (INIS)

    HANSON, R.D.

    2000-01-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL)

  18. Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE

  19. Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE.

  20. Vadose zone monitoring plan using geophysical nuclear logging for radionuclides discharged to Hanford liquid waste disposal facilities

    International Nuclear Information System (INIS)

    Price, R.K.

    1995-11-01

    During plutonium production at Hanford, large quantities of hazardous and radioactive liquid effluent waste have been discharged to the subsurface (vadose zone). These discharges at over 330 liquid effluent disposal facilities (ie. cribs, ditches, and ponds) account for over 3,000,000 curies of radioactive waste released into the subsurface. It is estimated that 10% of the contaminants have reached the groundwater in many places. Continuing migration may further impact groundwater quality in the future. Through the RCRA Operational Monitoring Program, a Radionuclide Logging System (RLS) has been obtained by Hanford Technical Services (HTS) and enhanced to measure the distribution of contaminants and monitor radionuclide movement in existing groundwater and vadose zone boreholes. Approximately 100 wells are logged by HTS each year in this program. In some cases, movement has been observed years after discharges were terminated. A similar program is in place to monitor the vadose zone at the Tank Farms. This monitoring plan describes Hanford Programs for monitoring the movement of radioactive contamination in the vadose zone. Program background, drivers, and strategy are presented. The objective of this program is to ensure that DOE-RL is aware of any migration of contaminants in the vadose zone, such that groundwater can be protected and early actions can be taken as needed

  1. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates

  2. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates

  3. Technical basis for selecting radionuclide concentrations for use in Hanford tank basis for interim operation source term

    International Nuclear Information System (INIS)

    Cowley, W.L.

    1997-01-01

    This paper describes the development of a radiological source term for waste tanks at the Hanford Site Nuclear Reservation. It describes the methodology used to identify the most important radionuclides, determine appropriate concentrations, and define unit liter doses. An example of how unit liter doses are used is given

  4. Hanford Generic Interim Safety Basis

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  5. Hanford Generic Interim Safety Basis

    International Nuclear Information System (INIS)

    Lavender, J.C.

    1994-01-01

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports

  6. Women and the Hanford Site

    Science.gov (United States)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  7. Hanford Waste Vitrification Plant dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    This report presents engineering drawings of the vitrification plant at Hanford Reservation. Individual sections in the report cover piping and instrumentation, process flow schemes, and material balance tables

  8. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1992-03-01

    This report describes risk assessment methodology associated with the remedial action programs at the Hanford Reservation. Topics addressed include human health evaluation, pollutant and radionuclide transport through the environment, and environmental transport pathways

  9. Hand calculation of safe separation distances between natural gas pipelines and boilers and nuclear facilities in the Hanford site 300 Area

    International Nuclear Information System (INIS)

    Daling, P.M.; Graham, T.M.

    1999-01-01

    The US Department of Energy has undertaken a project to reduce energy expenditures and improve energy system reliability in the 300 Area of the Hanford Site near Richland, Washington. This project replaced the centralized heating system with heating units for individual buildings or groups of buildings, constructed a new natural-gas distribution system to provide a fuel source for many of these units, and constructed a central control building to operate and maintain the system. The individual heating units include steam boilers that are housed in individual annex buildings located in the vicinity of a number of nuclear facilities operated by the Pacific Northwest National Laboratory (PNNL). The described analysis develops the basis for siting the package boilers and natural-gas distribution system used to supply steam to PNNL's 300 Area nuclear facilities. Minimum separation distances that would eliminate or reduce the risks of accidental dispersal of radioactive and hazardous materials in nearby nuclear facilities were calculated based on the effects of four potential fire and explosion (detonation) scenarios involving the boiler and natural-gas distribution system. These minimum separation distances were used to support siting decisions for the boilers and natural-gas pipelines

  10. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates

  11. Studies related to chemical mechanisms of gas formation in Hanford high-level nuclear wastes. 1997 annual progress report

    International Nuclear Information System (INIS)

    Barefield, E.K.; Liotta, C.L.; Neumann, H.M.

    1997-01-01

    'Work during the past year has been concentrated in three areas: Analysis of the Relative Contributions of Thermal versus Radiolytic Pathways for Complexant Decomposition in Tank 101SY; Synthesis of Potential Precursors to HNO/NO - , and Analysis of the Kinetics of Decomposition of Piloty''s Acid at High [OH - ]. The undergraduate student worked on the aluminum catalyzed reactions of nitrite ion with 2-hydroxyethylamines. This is a follow-up to earlier work done under Westinghouse Hanford and PNNL funding that will be expanded to include an exploration of the complexation of nitrite ion by aluminum when Ms. Chalfant''s lab skills are sufficiently established. A brief synopsis of work in each of the first three areas.'

  12. Effect of composition and temperature on viscosity and electrical conductivity of borosilicate glasses for Hanford nuclear waste immobilization

    International Nuclear Information System (INIS)

    Hrma, P.; Piepel, G.F.; Smith, D.E.; Redgate, P.E.; Schweiger, M.J.

    1993-04-01

    Viscosity and electrical conductivity of 79 simulated borosilicate glasses in the expected range of compositions to be produced in the Hanford Waste Vitrification Plant were measured within the temperature span from 950 to 1250 degree C. The nine major oxide components were SiO 2 , B 2 O 3 , Li 2 O, Na 2 O, CaO, MgO, Fe 2 O 3 , Al 2 O 3 , and ZrO 2 . The test compositions were generated statistically. The data were fitted by Fulcher and Arrhenius equations with temperature coefficients being multilinear functions of the mass fractions of the oxide components. Mixture models were also developed for the natural logarithm of viscosity and that of electrical conductivity at 1150 degree C. Least squares regression was used to obtain component coefficients for all the models

  13. Researchers take up environmental challenge at Hanford

    International Nuclear Information System (INIS)

    Illman, D.L.

    1993-01-01

    The Hanford nuclear site, built to produce plutonium for the nation's first atomic weapons, occupies 560 square miles of desert in southeastern Washington State. Only 29 months after ground was broken at the site in March 1943, the Hanford project delivered the plutonium used in the bomb that was dropped on Nagasaki, Japan, at the end of World War II. Secrecy surrounding the nuclear weapons program continued through the Cold War years, concealing the fact that for decades, hazardous and radioactive wastes were discharged to the ground, water, and air at Hanford. Only in 1986 were documents finally declassified--tens of thousands of them--describing the construction, operation, and maintenance of the Hanford facilities, allowing a picture to be pieced together of the environmental cost there of the nuclear weapons buildup. That cost may never be completely tallied. But Westinghouse Hanford, Co., the principal operations contractor on the site, and Pacific Northwest Laboratories (PNL), operated by Battelle Memorial Institute for the Department of Energy (DOE), have now begun working together to develop new technologies that are needed to address the short-term and long-term challenges of environmental restoration at Hanford. The paper discusses the problems and possible solutions that are being investigated

  14. Nuclear medicine to image applied pathophysiology: Evaluation of reserves by emission computerized tomography

    International Nuclear Information System (INIS)

    Buell, U.; Schicha, H.

    1990-01-01

    Nuclear procedures have long been successful in displaying parameters related to physiological and/or pathophysiological mechanisms inherent in organs or systems. Since a major advantage of PET is its ability to measure actual concentration, we now expect to gain such data in absolute terms. The use of stimuli, however, makes it possible to determine parameters in the form of ratios (stimulus-to-rest). Moreover, these ratios are correlated closely with the capacity of reserve mechanisms experienced from applied pathophysiology, in addition to which some are accessible by means of SPET. The clinical validity of findings related to coronary and cerebrovascular perfusion reserves have already been confirmed by SPET and/or PET. These results, if complemented by parameters of metabolic reserve, would constitute a most powerful tool in functional clinical diagnostics, allowing determination of differences between actual values and critical thresholds. This is one of the most promising approaches exclusively available from PET. (orig.)

  15. Interpreting the mineral reservation of the Stock-Raising Homestead Act: Watt v. Western Nuclear, Inc

    International Nuclear Information System (INIS)

    Steel, C.

    1985-01-01

    The Supreme Court interpreted the Stock-Raising Homestead Act (SRHA) in Watt v. Western Nuclear, Inc. as reserving common gravel deposits to the US because they are minimal in character. This ignored traditional rules of statutory construction, an adopted an all-inclusive definition of the term minerals that is limited only by fluctuating market conditions. The Court subjugated the original congressional objective of settling the West to the current policy of reserving all assets absolutely. Rather than clarifying the definition of reserved minerals, this injected additional ambiguity into the land title area in which the Court has been unwilling to upset settled expectations. Such a departure from the common use and understanding of the term and from property rights cannot be justified by either policy considerations or notions of justice and fair play

  16. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed

  17. TRACKING CLEAN UP AT HANFORD

    International Nuclear Information System (INIS)

    CONNELL, C.W.

    2005-01-01

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  18. Reactivity of Peroxynitrite: Implications for Hanford Waste Management and Remediation

    International Nuclear Information System (INIS)

    Hurst, James K.

    2003-01-01

    The purpose of this grant has been to provide basic chemical research in support of a major project undertaken at Brookhaven National Laboratory (BNL) whose purpose was to provide better understanding of the complex chemical processes occurring an nuclear storage tanks on the Hanford reservation. More specifically, the BNL grant was directed at evaluating the extend of radiation-induced formation of peroxynitrite anion (ONOO) in the tanks and its possible use in was incorporated as a subcontract EMSP 73824, but was later changed to an independent grant to avoid unnecessary duplication of administrative support at both WSU and BNL

  19. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  20. Hanford Tanks Initiative quality assurance implementation plan

    International Nuclear Information System (INIS)

    Huston, J.J.

    1998-01-01

    Hanford Tanks Initiative (HTI) Quality Assurance Implementation Plan for Nuclear Facilities defines the controls for the products and activities developed by HTI. Project Hanford Management Contract (PHMC) Quality Assurance Program Description (QAPD)(HNF-PRO599) is the document that defines the quality requirements for Nuclear Facilities. The QAPD provides direction for compliance to 10 CFR 830.120 Nuclear Safety Management, Quality Assurance Requirements. Hanford Tanks Initiative (HTI) is a five-year activity resulting from the technical and financial partnership of the US Department of Energy's Office of Waste Management (EM-30), and Office of Science and Technology Development (EM-50). HTI will develop and demonstrate technologies and processes for characterization and retrieval of single shell tank waste. Activities and products associated with HTI consist of engineering, construction, procurement, closure, retrieval, characterization, and safety and licensing

  1. Parallel inversion of a massive ERT data set to characterize deep vadose zone contamination beneath former nuclear waste infiltration galleries at the Hanford Site B-Complex (Invited)

    Science.gov (United States)

    Johnson, T.; Rucker, D. F.; Wellman, D.

    2013-12-01

    The Hanford Site, located in south-central Washington, USA, originated in the early 1940's as part of the Manhattan Project and produced plutonium used to build the United States nuclear weapons stockpile. In accordance with accepted industrial practice of that time, a substantial portion of relatively low-activity liquid radioactive waste was disposed of by direct discharge to either surface soil or into near-surface infiltration galleries such as cribs and trenches. This practice was supported by early investigations beginning in the 1940s, including studies by Geological Survey (USGS) experts, whose investigations found vadose zone soils at the site suitable for retaining radionuclides to the extent necessary to protect workers and members of the general public based on the standards of that time. That general disposal practice has long since been discontinued, and the US Department of Energy (USDOE) is now investigating residual contamination at former infiltration galleries as part of its overall environmental management and remediation program. Most of the liquid wastes released into the subsurface were highly ionic and electrically conductive, and therefore present an excellent target for imaging by Electrical Resistivity Tomography (ERT) within the low-conductivity sands and gravels comprising Hanford's vadose zone. In 2006, USDOE commissioned a large scale surface ERT survey to characterize vadose zone contamination beneath the Hanford Site B-Complex, which contained 8 infiltration trenches, 12 cribs, and one tile field. The ERT data were collected in a pole-pole configuration with 18 north-south trending lines, and 18 east-west trending lines ranging from 417m to 816m in length. The final data set consisted of 208,411 measurements collected on 4859 electrodes, covering an area of 600m x 600m. Given the computational demands of inverting this massive data set as a whole, the data were initially inverted in parts with a shared memory inversion code, which

  2. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  3. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  4. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    International Nuclear Information System (INIS)

    1996-02-01

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operation of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts

  5. Reform of reserve requirements for nuclear decommissioning, dismantling and disposal; Reform der Atomrueckstellungen fuer Stilllegung/Rueckbau und Entsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Bettina [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany); Kuechler, Swantje; Wronski, Rupert [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany). Bereich Energiepolitik

    2015-07-15

    This article reports on the ongoing intense discussion as to whether the financial reserves of nuclear power plant operators are sufficient. It starts out with an overview of the current scientific and political debate. This is followed by a brief analysis of nuclear financial reserves in 2014 and preceding years. The authors then present the reform concept of the Forum Oekologisch-Soziale Marktwirtschaft (FOes) and go on to compare it with concepts from the political realm.

  6. Disposal of Radioactive Waste at Hanford Creates Problems

    Science.gov (United States)

    Chemical and Engineering News, 1978

    1978-01-01

    Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)

  7. Fluor Hanford ALARA Center is a D and D Resource

    International Nuclear Information System (INIS)

    Waggoner, L.O.

    2008-01-01

    The mission at the Hanford Nuclear Reservation changed when the last reactor plant was shut down in 1989 and work was started to place all the facilities in a safe condition and begin decontamination, deactivation, decommissioning, and demolition (D and D). These facilities consisted of old shutdown reactor plants, spent fuel pools, processing facilities, and 177 underground tanks containing 53 million gallons of highly radioactive and toxic liquids and sludge. New skills were needed by the workforce to accomplish this mission. By 1995, workers were in the process of getting the facilities in a safe condition and it became obvious improvements were needed in their tools, equipment and work practices. The Hanford ALARA Program looked good on paper, but did little to help contractors that were working in the field. The Radiological Control Director decided that the ALARA program needed to be upgraded and a significant improvement could be made if workers had a place they could visit that had samples of the latest technology and could talk to experienced personnel who have had success doing D and D work. Two senior health physics personnel who had many years experience in doing radiological work were chosen to obtain tools and equipment from vendors and find a location centrally located on the Hanford site. Vendors were asked to loan their latest tools and equipment for display. Most vendors responded and the Hanford ALARA Center of Technology opened on October 1, 1996. Today, the ALARA Center includes a classroom for conducting training and a mockup area with gloveboxes. Two large rooms have a containment tent, several glove bags, samples of fixatives/expandable foam, coating displays, protective clothing, heat stress technology, cutting tools, HEPA filtered vacuums, ventilation units, pumps, hydraulic wrenches, communications equipment, shears, nibblers, shrouded tooling, and several examples of innovative tools developed by the Hanford facilities. See Figures I and

  8. Hanford Site existing irradiated fuel storage facilities description

    Energy Technology Data Exchange (ETDEWEB)

    Willis, W.L.

    1995-01-11

    This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

  9. National Register of Historic Places multiple property documentation form -- Historic, archaeological, and traditional cultural properties of the Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Nickens, P.R.

    1997-08-01

    The US Department of Energy`s Hanford Site encompasses an area of 560 square miles on the Columbia River in southeastern Washington. Since 1943, the Hanford Site has existed as a protected area for activities primarily related to the production of radioactive materials for national defense uses. For cultural resources on the Hanford Site, establishment of the nuclear reservation as a high security area, with public access restricted, has resulted in a well-protected status, although no deliberate resource protection measures were in effect to mitigate effects of facilities construction and associated activities. Thus, the Hanford Site contains an extensive record of aboriginal archaeological sites and Native American cultural properties, along with pre-Hanford Euro-American sites (primarily archaeological in nature with the removal of most pre-1943 structures), and a considerable number of Manhattan Project/Cold War era buildings and structures. The recent mission change from production to clean up and disposal of DOE lands created a critical need for development and implementation of new and different cultural resource management strategies. DOE-RL has undertaken a preservation planning effort for the Hanford Site. The intent of this Plan is to enable DOE-RL to organize data and develop goals, objectives, and priorities for the identification, evaluation, registration, protection, preservation, and enhancement of the Site`s historical and cultural properties. Decisions made about the identification, evaluation, registration and treatment of historic properties are most aptly made when relationships between individual properties and other similar properties are considered. The historic context and the multiple property documentation (NTD) process provides DOE-RL the organizational framework for these decisions. Once significant patterns are identified, contexts developed, and expected properties are defined, the NTD process provides the foundation for future

  10. Progress and challenges in cleaning up Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D. [Dept. of Energy, Richland, WA (United States)

    1997-08-01

    This paper presents captioned viewgraphs which briefly summarize cleanup efforts at the Hanford Site. Underground waste tank and spent nuclear fuel issues are described. Progress is reported for the Plutonium Finishing Plant, PUREX plant, B-Plant/Waste Encapsulation Storage Facility, and Fast Flux Test Facility. A very brief overview of costs and number of sites remediated and/or decommissioned is given.

  11. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford

  12. Nuclear criticality safety: general. 6. Application of Fixed Neutron Absorbers in the New Hanford PFP Horizontal Rack Design

    International Nuclear Information System (INIS)

    Lan, J.S.; Miller, E.M.; Toffer, H.; Mo, B.S.

    2001-01-01

    The Hanford Plutonium Finishing Plant (PFP) is currently in a waste cleanup and plutonium stabilization mode. Plutonium-bearing materials are processed through thermal treatment, creating forms of oxides suitable for long-term storage. Stabilized materials at PFP are stored in a variety of cans such as the bag-less transfer cans (BTCs), which are ultimately contained in the U.S. Department of Energy (DOE) 3013 can; both cans are larger than previously used plutonium storage containers and hold more plutonium. To compensate for the increased plutonium loadings, added engineered safety features were considered in the storage facilities. The vaults in PFP, subdivided into concrete-walled cubicles, will contain both new and older cans. The DOE 3013 and BTC cans may be loaded with up to 4.4 kg of plutonium as a compound (mostly oxide). New racks that store cans horizontally are being constructed to hold both new and older containers. The loading objective is to accommodate 70 kg of plutonium per cubicle. Two design analysis approaches for the new racks were considered. The first approach incorporated neutron absorption provided by the structural materials of the rack and the cans in determining a safe configuration. A rack loading arrangement was determined as shown in Fig. 1 and specified in Table I. This approach provides compliance with criticality control requirements; however, added administrative controls were needed to accommodate a sufficient number of cans in specific locations to achieve 70 kg of plutonium per cubicle. The 4.4-kg plutonium container can be placed only in predetermined locations. The second approach evaluated the addition of a fixed neutron absorber plate along the back wall of the cubicle (Fig. 1). The location of the special plate facilitates installation of the racks and provides additional criticality safety margin beyond the first approach. Its presence permits loading of racks with up to 4.4-kg plutonium cans in any storage locations

  13. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1992-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides a land use plan for the Hanford Site and presents a picture of what is currently known and anticipated in accordance with DOE Order 4320.1B. Site Development Planning. The HSDP wig be updated annually as future decisions further shape the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  14. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs

  15. Hanford Site Performance Report - March 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  16. Hanford Site Performance Report - May 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  17. Hanford Site Performance Report - April 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  18. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  19. Hanford Waste Vitrification Project overview and status

    International Nuclear Information System (INIS)

    Swenson, L.D.; Smets, J.L.

    1993-01-01

    The Hanford Waste Vitrification Project (HWVP) is being constructed at the US DOE's Hanford Site in Richland, WA. Engineering and design are being accomplished by Fluor Daniel Inc. in Irvine, CA. Technical input is furnished by Westinghouse Hanford Co. and construction management services by UE ampersand C-Catalytic Inc. The HWVP will immobilize high level nuclear waste in a glass matrix for eventual disposal in the federal repository. The HWVP consists of several structures, the major ones being the Vitrification Building, the Canister Storage Building, fan house, sand filter, waste hold tank, pump house, and administration and construction facilities. Construction started in April 1992 with the clearing and grubbing activities that prepared the site for fencing and construction preparation. Several design packages have been released for procurement activities. The most significant package release is for the Canister Storage Building, which will be the first major structure to be constructed

  20. Environmental monitoring at Hanford for 1987

    International Nuclear Information System (INIS)

    Jacquish, R.E.; Mitchell, P.J.

    1988-05-01

    Envoronmental monitoring activities performed on the Hanford Site for 1987 are discussed in this report. Samples of environmental media were collected to determine radionuclide and chemical concentrations at locations in the geographical area. Results are discussed in detail in subsequent sections of this report. Surveillance of radioactivity in the Hanford vicinity during 1987 indicated concentrations well below applicable DOE and US Environmental Protection Agency (EPA) standards. Radioactive materials released from Hanford operations were generally indistinguishable above background in the offsite environment. Continued influence from the 1986 reactor accident at the Chernobyl Nuclear Power Station in the USSR was not apparent this year. Chemical concentrations in air were below applicable standards established by the EPA and the State of Washington. Chemicals detected in the ground water beneath the Site can be attributed to both Site operations and natural background levels. Several chemicals regulated by the EPA and the State of Washington exceeded EPA drinking water standards (DWS). 106 refs., 71 figs., 110 tabs

  1. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  2. Independent technical review of the Hanford Tank Farm Operations

    International Nuclear Information System (INIS)

    1992-07-01

    The Independent Technical Assessment of the Hanford Tank Farm Operations was commissioned by the Assistant Secretary for Environmental Restoration and Waste Management on November 1, 1991. The Independent Technical Assessment team conducted on-site interviews and inspections during the following periods: November 18 to 22,1991; April 13 to 17; and April 27 to May 1, 1992. Westinghouse Hanford Company is the management and operating contractor for the Department of Energy at the Hanford site. The Hanford Tank Farm Operations consists of 177 underground storage tanks containing 61 million gallons of high-level radioactive mixed wastes from the chemical reprocessing of nuclear fuel. The Tank Farm Operations also includes associated transfer lines, ancillary equipment, and instrumentation. The Independent Technical Assessment of the Hanford Tank Farm Operations builds upon the prior assessments of the Hanford Waste Vitrification System and the Hanford Site Tank Waste Disposal Strategy.The objective of this technical assessment was to determine whether an integrated and sound program exists to manage the tank-waste storage and tankfarm operations consistent with the Assistant Secretary for Environmental Restoration and Waste Management's guidance of overall risk minimization. The scope of this review includes the organization, management, operation, planning, facilities, and mitigation of the safety-concerns of the Hanford Tank Waste Remediation System. The assessments presented in the body of this report are based on the detailed observations discussed in the appendices. When the assessments use the term ''Hanford'' as an organizational body it means DOE-RL and Westinghouse Hanford Company as a minimum, and in many instances all of the stake holders for the Hanford site

  3. A Short History of Waste Management at the Hanford Site

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2010-01-01

    The world's first full-scale nuclear reactors and chemical reprocessing plants built at the Hanford Site in the desert of eastern Washington State produced two-thirds of the plutonium generated in the United States for nuclear weapons. Operating these facilities also created large volumes of radioactive and chemical waste, some of which was released into the environment exposing people who lived downwind and downstream. Hanford now contains the largest accumulation of nuclear waste in the Western Hemisphere. Hanford's last reactor shut down in 1987 followed by closure of the last reprocessing plant in 1990. Today, Hanford's only mission is cleanup. Most onsite radioactive waste and nuclear material lingers inside underground tanks or storage facilities. About half of the chemical waste remains in tanks while the rest persists in the soil, groundwater, and burial grounds. Six million dollars each day, or nearly two billion dollars each year, are spent on waste management and cleanup activities. There is significant uncertainty in how long cleanup will take, how much it will cost, and what risks will remain for future generations. This paper summarizes portions of the waste management history of the Hanford Site published in the book 'Hanford: A Conversation about Nuclear Waste and Cleanup.'

  4. Natural phenomena analyses, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1989-01-01

    Probabilistic seismic hazard studies completed for the Washington Public Power Supply System's Nuclear Plant 2 and for the US Department of Energy's N Reactor sites, both on the Hanford Site, suggested that the Lawrence Livermore National Laboratory seismic exposure estimates were lower than appropriate, especially for sites near potential seismic sources. A probabilistic seismic hazard assessment was completed for those areas that contain process and/or waste management facilities. the lower bound magnitude of 5.0 is used in the hazard analysis and the characteristics of small-magnitude earthquakes relatively common to the Hanford Site are addressed. The recommended ground motion for high-hazard facilities is somewhat higher than the Lawrence Livermore National Laboratory model and the ground motion from small-magnitude earthquakes is addressed separately from the moderate- to large-magnitude earthquake ground motion. The severe wind and tornado hazards determined for the Hanford Siste are in agreement with work completed independently using 43 years of site data. The low-probability, high-hazard, design-basis flood at the Hanford Site is dominated by dam failure on the Columbia River. Further evaluation of the mechanisms and probabilities of such flooding is in progress. The Hanford Site is downwind from several active Cascade volcanoes. Geologic and historical data are used to estimate the ashfall hazard

  5. 1976 Hanford americium accident

    International Nuclear Information System (INIS)

    Heid, K.R.; Breitenstein, B.D.; Palmer, H.E.; McMurray, B.J.; Wald, N.

    1979-01-01

    This report presents the 2.5-year medical course of a 64-year-old Hanford nuclear chemical operator who was involved in an accident in an americium recovery facility in August 1976. He was heavily externally contaminated with americium, sustained a substantial internal deposition of this isotope, and was burned with concentrated nitric acid and injured by flying debris about the face and neck. The medical care given the patient, including the decontamination efforts and clinical laboratory studies, are discussed. In-vivo measurements were used to estimate the dose rates and the accumulated doses to body organs. Urinary and fecal excreta were collected and analyzed for americium content. Interpretation of these data was complicated by the fact that the intake resulted both from inhalation and from solubilization of the americium embedded in facial tissues. A total of 1100 μCi was excreted in urine and feces during the first 2 years following the accident. The long-term use of diethylenetriaminepentate (DTPA), used principally as the zinc salt, is discussed including the method, route of administration, and effectiveness. To date, the patient has apparently experienced no complications attributable to this extensive course of therapy, even though he has been given approximately 560 grams of DTPA. 4 figures, 1 table

  6. Human factor - an important reserve in increasing efficiency and safety of nuclear power plants

    International Nuclear Information System (INIS)

    Simunek, P.

    1982-01-01

    It is demonstrated that the relationship between man and technical equipment in a nuclear power plant should be studied using the systems analysis approach. The consistent use of ergonomic knowledge in nuclear power plants makes it possible with relatively small additional expenditure to achieve considerable economic effect. The establishment is therefore suggested of a workplace to coordinate the use of applied ergonomics in nuclear power plants. (Ha)

  7. Hanford Site Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  8. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J.; Yancey, E.F.

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs

  9. Hanford environmental analytical methods (methods as of March 1990)

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    Techniques in use at the Hanford Reservation as of March, 1990 for the analysis of liquids and radioactive effluents are described. Limitations and applications of the techniques are included. This report is Appendix A3-R

  10. Hanford Environmental Analytical Methods (methods as of March 1990)

    International Nuclear Information System (INIS)

    Goheen, S.C.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    Techniques in use at the Hanford Reservation as of March, 1990 for the analysis of liquids, organic wastes, soils, and sediments, are described. Limitations and applications of the techniques are included

  11. Hanford environmental analytical methods (methods as of March 1990)

    International Nuclear Information System (INIS)

    Goheen, S.D.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    Information is provided on the techniques employed towards the chemical analysis of volatile, semi-volatile matter, pesticides and PCB's at the Hanford Reservation. Sample preparation methods are included

  12. Demonstration of retrieval methods for Westinghouse Hanford Corporation October 20, 1995

    International Nuclear Information System (INIS)

    1996-10-01

    Westinghouse Hanford Corporation has been pursuing strategies to break up and retrieve the radioactive waste material in single shell storage tanks at the Hanford Nuclear Reservation, by working with non-radioactive ''saltcake'' and sludge material that simulate the actual waste. It has been suggested that the use of higher volumes of water than used in the past (10 gpm nozzles at 10,000 psi) might be successful in breaking down the hard waste simulants. Additionally, the application of these higher volumes of water might successfully be applied through commercially available tooling using methods similar to those used in the deslagging of large utility boilers. NMW Industrial Services, Inc., has proposed a trial consisting of three approaches each to dislodging both the solid (saltcake) simulant and the sludge simulant

  13. Demonstration of retrieval methods for Westinghouse Hanford Corporation October 20, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Westinghouse Hanford Corporation has been pursuing strategies to break up and retrieve the radioactive waste material in single shell storage tanks at the Hanford Nuclear Reservation, by working with non-radioactive ``saltcake`` and sludge material that simulate the actual waste. It has been suggested that the use of higher volumes of water than used in the past (10 gpm nozzles at 10,000 psi) might be successful in breaking down the hard waste simulants. Additionally, the application of these higher volumes of water might successfully be applied through commercially available tooling using methods similar to those used in the deslagging of large utility boilers. NMW Industrial Services, Inc., has proposed a trial consisting of three approaches each to dislodging both the solid (saltcake) simulant and the sludge simulant.

  14. Graphics-based site information management at Hanford TRU burial grounds

    International Nuclear Information System (INIS)

    Rod, S.R.

    1992-01-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and data base techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three-dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualizations of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations

  15. Graphics-based site information management at Hanford TRU burial grounds

    International Nuclear Information System (INIS)

    Rod, S.R.

    1992-04-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and database techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three- dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualization of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations

  16. Hanford Works monthly report, October 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-11-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of October 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  17. Hanford Works monthly report, December 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-01-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of December 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  18. Hanford Works monthly report, May 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-06-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of May 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  19. Hanford Works monthly report, July 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-08-18

    This is a progress report of the production reactors on the Hanford Reservation for the month of July 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  20. Hanford Works monthly report, March 1952

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-04-18

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  1. Hanford Works monthly report, April 1952

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-05-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  2. Hanford Works monthly report, July 1952

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-08-15

    This is a progress report of the production reactors on the Hanford Reservation for the month of July 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  3. Hanford Works monthly report, January 1952

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-02-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of January 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  4. Hanford Works monthly report, September 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-10-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of September 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  5. Hanford Works monthly report, July 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-08-24

    This is a progress report of the production reactors on the Hanford Reservation for the month of July 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  6. Hanford Works monthly report, March 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-04-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of March 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  7. Hanford Works monthly report, June 1951

    Energy Technology Data Exchange (ETDEWEB)

    1951-07-20

    This is a progress report of the production on the Hanford Reservation for the month of June 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  8. Hanford works monthly report, September 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-10-19

    This is a progress report of the production reactors on the Hanford Reservation for the month of September 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  9. Hanford Works monthly report, May 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-06-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of May 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  10. Hanford Works monthly report, June 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-07-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of June 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  11. Hanford Works monthly report, November 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-12-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of November 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  12. Hanford Works monthly report, August 1951

    Energy Technology Data Exchange (ETDEWEB)

    1951-09-24

    This is a progress report of the production reactors on the Hanford Reservation for the month of August 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  13. Hanford Works monthly report, August 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-09-18

    This is a progress report of the production reactors on the Hanford Reservation for the month of August 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  14. Hanford Works monthly report, November 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-12-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of November 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  15. Hanford Works monthly report, February 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-03-20

    This is a progress report of the production on the Hanford Reservation for the month of February 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  16. Hanford Works monthly report, December 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-01-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of December 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  17. Hanford Works monthly report, January 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-02-16

    This is a progress report of the production reactors on the Hanford Reservation for the month of January 1951. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  18. Hanford Works monthly report, April 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-05-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  19. Hanford Works monthly report, March 1949

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1949-04-19

    This is a progress report of the production reactors on the Hanford Reservation for the month of March 1949. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month. (MB)

  20. Hanford Site Infrastructure Plan

    International Nuclear Information System (INIS)

    1990-01-01

    The Hanford Site Infrastructure Plan (HIP) has been prepared as an overview of the facilities, utilities, systems, and services that support all activities on the Hanford Site. Its purpose is three-fold: to examine in detail the existing condition of the Hanford Site's aging utility systems, transportation systems, Site services and general-purpose facilities; to evaluate the ability of these systems to meet present and forecasted Site missions; to identify maintenance and upgrade projects necessary to ensure continued safe and cost-effective support to Hanford Site programs well into the twenty-first century. The HIP is intended to be a dynamic document that will be updated accordingly as Site activities, conditions, and requirements change. 35 figs., 25 tabs

  1. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  2. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  3. Assessment of groundwater management at Hanford

    International Nuclear Information System (INIS)

    Deju, R.A.

    1975-01-01

    A comprehensive review of the groundwater management and environmental monitoring programs at the Hanford reservation was initiated in 1973. A large number of recommendations made as a result of this review are summarized. The purpose of the Hanford Hydrology Program is to maintain a groundwater surveillance network to assess contamination of the natural water system. Potential groundwater contamination is primarily a function of waste management decisions. The review revealed that although the hydrology program would greatly benefit from additional improvements, it is adequate to predict levels of contaminants present in the groundwater system. Studies are presently underway to refine advanced mathematical models to use results of the hydrologic investigation in forecasting the response of the system to different long-term management decisions. No information was found which indicates that a hazard through the groundwater pathway presently exists as a result of waste operations at Hanford. (CH)

  4. Hanford analytical sample projections FY 1996 - FY 2001. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, S.M.

    1997-07-02

    This document summarizes the biannual Hanford sample projections for fiscal year 1997-2001. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Wastes Remediation Systems, Solid Wastes, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition to this revision, details on Laboratory scale technology (development), Sample management, and Data management activities were requested. This information will be used by the Hanford Analytical Services program and the Sample Management Working Group to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  5. Hanford cultural resources laboratory

    International Nuclear Information System (INIS)

    Wright, M.K.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act

  6. Hanford cultural resources laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.K.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act.

  7. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  8. Environmental assessment overview, Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization. 3 figs

  9. Managing risk at Hanford

    International Nuclear Information System (INIS)

    Hesser, W.A.; Stillwell, W.G.; Rutherford, W.A.

    1994-01-01

    Clearly, there is sufficient motivation from Washington for the Hanford community to pay particular attention to the risks associated with the substantial volumes of radiological, hazardous, and mixed waste at Hanford. But there is also another reason for emphasizing risk: Hanford leaders have come to realize that their decisions must consider risk and risk reduction if those decisions are to be technically sound, financially affordable, and publicly acceptable. The 560-square miles of desert land is worth only a few thousand dollars an acre (if that) -- hardly enough to justify the almost two billion dollars that will be spent at Hanford this year. The benefit of cleaning up the Hanford Site is not the land but the reduction of potential risk to the public and the environment for future generations. If risk reduction is our ultimate goal, decisions about priority of effort and resource allocation must consider those risks, now and in the future. The purpose of this paper is to describe how Hanford is addressing the issues of risk assessment, risk management, and risk-based decision making and to share some of our experiences in these areas

  10. Technical limits on performance reserves and life expectancy in nuclear power stations with light water reactors

    International Nuclear Information System (INIS)

    Wanner, R.; Brosi, S.; Duijvestijn, G.

    1990-01-01

    The safety margin (i.e. the difference between the loads equipment can take and those actually imposed on components) in a reactor pressure vessel is a major factor in the life expectancy of a nuclear power station. This safety margin is reduced considerably by reductions in the toughness of equipment caused by neutron irradiation and growth of cracks. Once the minimum safety margin is infringed, the nuclear power station is at the end of its working life. 13 figs., 11 refs

  11. Successful Deployment of System for the Storage and Retrieval of Spent/Used Nuclear Fuel from Hanford K-West Fuel Storage Basin-13051

    International Nuclear Information System (INIS)

    Quintero, Roger; Smith, Sahid; Blackford, Leonard Ty; Johnson, Mike W.; Raymond, Richard; Sullivan, Neal; Sloughter, Jim

    2013-01-01

    In 2012, a system was deployed to remove, transport, and interim store chemically reactive and highly radioactive sludge material from the Hanford Site's 105-K West Fuel Storage Basin that will be managed as spent/used nuclear fuel. The Knockout Pot (KOP) sludge in the 105-K West Basin was a legacy issue resulting from the spent nuclear fuel (SNF) washing process applied to 2200 metric tons of highly degraded fuel elements following long-term underwater storage. The washing process removed uranium metal and other non-uranium constituents that could pass through a screen with 0.25-inch openings; larger pieces are, by definition, SNF or fuel scrap. When originally retrieved, KOP sludge contained pieces of degraded uranium fuel ranging from 600 microns (μm) to 6350 μm mixed with inert material such as aluminum hydroxide, aluminum wire, and graphite in the same size range. In 2011, a system was developed, tested, successfully deployed and operated to pre-treat KOP sludge as part of 105-K West Basin cleanup. The pretreatment process successfully removed the vast majority of inert material from the KOP sludge stream and reduced the remaining volume of material by approximately 65 percent, down to approximately 50 liters of material requiring management as used fuel. The removal of inert material resulted in significant waste minimization and project cost savings because of the reduced number of transportation/storage containers and improvement in worker safety. The improvement in worker safety is a result of shorter operating times and reduced number of remote handled shipments to the site fuel storage facility. Additionally in 2011, technology development, final design, and cold testing was completed on the system to be used in processing and packaging the remaining KOP material for removal from the basin in much the same manner spent fuel was removed. This system was deployed and successfully operated from June through September 2012, to remove and package the last

  12. Future Remains: Industrial Heritage at the Hanford Plutonium Works

    Science.gov (United States)

    Freer, Brian

    This dissertation argues that U.S. environmental and historic preservation regulations, industrial heritage projects, history, and art only provide partial frameworks for successfully transmitting an informed story into the long range future about nuclear technology and its related environmental legacy. This argument is important because plutonium from nuclear weapons production is toxic to humans in very small amounts, threatens environmental health, has a half-life of 24, 110 years and because the industrial heritage project at Hanford is the first time an entire U.S. Department of Energy weapons production site has been designated a U.S. Historic District. This research is situated within anthropological interest in industrial heritage studies, environmental anthropology, applied visual anthropology, as well as wider discourses on nuclear studies. However, none of these disciplines is really designed or intended to be a completely satisfactory frame of reference for addressing this perplexing challenge of documenting and conveying an informed story about nuclear technology and its related environmental legacy into the long range future. Others have thought about this question and have made important contributions toward a potential solution. Examples here include: future generations movements concerning intergenerational equity as evidenced in scholarship, law, and amongst Native American groups; Nez Perce and Confederated Tribes of the Umatilla Indian Reservation responses to the Hanford End State Vision and Hanford's Canyon Disposition Initiative; as well as the findings of organizational scholars on the advantages realized by organizations that have a long term future perspective. While these ideas inform the main line inquiry of this dissertation, the principal approach put forth by the researcher of how to convey an informed story about nuclear technology and waste into the long range future is implementation of the proposed Future Remains clause, as

  13. Hanford Environmental Dose Reconstruction Project monthly report, August 1992

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography; food consumption; and agriculture; and environmental pathway and dose estimates

  14. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    International Nuclear Information System (INIS)

    Bergman, T.B.

    2011-01-01

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the ∼200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the

  15. Hanford Site performance report - December 1998

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the Environmental Management (EM) mission. This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. Currently, the report focuses on the EM mission, and will be expanded in the future to include non-EM activities. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a tabular performance profile with associated analyses, Critical Issues, Key Integration Activities, a look at Significant Trends, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators. The Site Summary is a compilation of performance data from all of the Mission Areas and the Projects that comprise these Mission Areas; the information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or the Site Summary sections. At the end of this report, a glossary of terms is provided

  16. Waste minimization -- Hanford`s strategy for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Merry, D.S.

    1998-01-30

    The Hanford Site cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single-shell storage tanks, treating waste stored in 28 double-shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored onsite, removing thousands of structures, and dealing with significant solid waste, groundwater, and land restoration issues. The Pollution Prevention/Waste Minimization (P2/WMin) Program supports the Hanford Site mission to safely clean up and manage legacy waste and to develop and deploy science and technology in many ways. Once such way is through implementing and documenting over 231 waste reduction projects during the past five years, resulting in over $93 million in cost savings/avoidances. These savings/avoidances allowed other high priority cleanup work to be performed. Another way is by exceeding the Secretary of Energy`s waste reduction goals over two years ahead of schedule, thus reducing the amount of waste to be stored, treated and disposed. Six key elements are the foundation for these sustained P2/WMin results.

  17. Hanford general employee training - A million dollar cost beneficial program

    International Nuclear Information System (INIS)

    Gardner, P.R.

    1991-02-01

    In January 1990, Westinghouse Hanford Company implemented an interactive videodisc training program entitled Hanford General Employee Training. Covering all Institute of Nuclear Power Operations general employee training objectives, training mandated by US Department of Energy orders, and training prescribed by internal Westinghouse Hanford Company policies, Hanford General Employee Training presents and manages engaging training programs individually tailored to each of the 9,000 employees. Development costs for a sophisticated program such as Hanford General Employee Training were high compared to similar costs for developing ''equivalent'' traditional training. Hardware ($500,000) and labor costs ($400,000) totaled $900,000. Annual maintenance costs, equipment plus labor, are totalling about $200,000. On the benefit side, by consolidating some 17 previous Westinghouse Hanford Company courses and more effectively managing the instructional process, Hanford General Employee Training reduced the average student training time from over 11 hours to just under 4 hours. For 9,000 employees, the computed net annual savings exceeds $1.3 million. 2 refs

  18. Hanford Site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. (eds.)

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality.

  19. Hanford Site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1992-06-01

    This report of the Hanford Reservation is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The following sections: describe the Hanford Site and its mission; summarize the status in 1991 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; present information on environmental surveillance and the ground-water protection and monitoring program; and discuss activities to ensure quality

  20. Review of Hanford international activities

    International Nuclear Information System (INIS)

    Panther, D.G.

    1993-01-01

    Hanford initiated a review of international activities to collect, review, and summarize information on international environmental restoration and waste management initiatives considered for use at Hanford. This effort focused on Hanford activities and accomplishments, especially international technical exchanges and/or the implementation of foreign-developed technologies

  1. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates

  2. Hanford science and technology needs statements, 2000

    International Nuclear Information System (INIS)

    BERLIN, G.T.

    1999-01-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2000; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract and the Environmental Restoration Contract) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL Management, site stakeholders, state and federal regulators, and Tribal Nations. The Science and Technology Needs Document is organized by major problem areas and coincides with the STCG subgroups which are as follows: Deactivation and Decommissioning, Mixed Waste, Subsurface Contaminants, High Level Waste Tanks, and Spent Nuclear Fuel. Each problem area begins with a technology needs index table. This table is followed by detailed descriptions of each technology need, including a problem statement and current baseline information associated with that need. Following the technology need description for each problem area is a table listing the science needs, followed by detailed descriptions of the functional need and the problem to be solved as currently understood. Finally, a crosswalk table is provided at the end of each problem area which ties together last years needs and this years needs, provides brief justification for elimination of any needs, and identifies any other significant changes which took place during the revision process

  3. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  4. Hanford Area 2000 Population

    International Nuclear Information System (INIS)

    Elliott, Douglas B.; Scott, Michael J.; Antonio, Ernest J.; Rhoads, Kathleen

    2004-01-01

    This report was prepared for the U.S. Department of Energy (DOE) Richland Operations Office, Surface Environmental Surveillance Project, to provide demographic data required for ongoing environmental assessments and safety analyses at the DOE Hanford Site near Richland, Washington. This document includes 2000 Census estimates for the resident population within an 80-kilometer (50-mile) radius of the Hanford Site. Population distributions are reported relative to five reference points centered on meteorological stations within major operating areas of the Hanford Site - the 100 F, 100 K, 200, 300, and 400 Areas. These data are presented in both graphical and tabular format, and are provided for total populations residing within 80 km (50 mi) of the reference points, as well as for Native American, Hispanic and Latino, total minority, and low-income populations

  5. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  6. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  7. Hanford Site National Environmental Policy Act (NEPA) Characterization. Revision 5

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided.

  8. Hanford Site National Environmental Policy Act (NEPA) Characterization

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1992-12-01

    This fifth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Information is presented on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels, prepared by Pacific Northwest Laboratory (PNL) staff. Models are described that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Federal and state regulations, DOE orders and permits, and environmental standards directly applicable for the NEPA documents at the Hanford Site, are provided

  9. Hanford analytical sample projections FY 1998 - FY 2002

    International Nuclear Information System (INIS)

    Joyce, S.M.

    1998-01-01

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs

  10. Hanford analytical sample projections FY 1998--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, S.M.

    1998-02-12

    Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

  11. Draft site characterization analysis of the site characterization report for the Basalt Waste Isolation Project, Hanford, Washington Site. Main report and Appendices A through D

    International Nuclear Information System (INIS)

    1983-03-01

    On November 12, 1982, the US Department of Energy submitted to the US Nuclear Regulatory Commission the Site Characterization Report for the Basalt Waste Isolation Project (DOE/RL 82-3). The Basalt Waste Isolation Project is located on DOE's Hanford Reservation in the State of Washington. NUREG-0960 contains the detailed analysis, by the NRC staff, of the site characterization report. Supporting technical material is contained in Appendices A through W

  12. Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Klein, J.A.; Turner, D.W.

    1994-01-01

    Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation's total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shielding Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory's (ORNL's) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels

  13. Scenarios for the Hanford Immobilized Low-Activity Waste (ILAW) performance assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    1999-01-01

    Scenarios describing representative exposure cases associated with the disposal of low activity waste from the Hanford Waste Tanks have been defined. These scenarios are based on guidance from the Department of Energy, the U.S. Nuclear Regulatory Commission, and previous Hanford waste disposal performance assessments

  14. Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

    2010-09-22

    The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

  15. DOE wants Hanford change

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Nine months ago, Energy Secretary Hazel O'Leary promised local officials running the agency's huge Hanford, Washington, weapon complex more control in directing its projected $57-billion waste cleanup. Earlier this month, she returned to the site for a follow-on open-quotes summit,close quotes this time ordering teamwork with contractors, regulators and local activities

  16. Reserve seismic capacity determination of a nuclear power plant braced frame with piping

    International Nuclear Information System (INIS)

    Nelson, T.A.

    1979-01-01

    A typical diagonal braced steel frame was developed to determine the amount of reserve capacity that is available beyond elastic design levels. The frame was analyzed first using elastic static and dynamic analyses. The loadings included dead and live load, an equivalent static lateral earthquake load, two response spectra and a suite of eight earthquake time history records. The response spectra used were the Housner and Regulatory Guide 1.60. The time histories represented different site conditions, distances to causative faults and magnitudes. The lateral static load and Housner spectrum represent vintage design criteria, while the R.G. 1.60 and time history analyses reflect current methodology. The elastic limit responses of the structure were determined along with the accompanying threshold peak ground accelerations (threshold g values). The frame was then analyzed using the program DRAIN-2D to perform two-dimensional elastic--plastic analyses for the eight time histories

  17. Deactivation completed at historic Hanford Fuels Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site`s boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO{sub 2}) and enriched uranium oxide (UO{sub 2}) residues and powders in the facility`s equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America`s primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world`s supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D&D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process.

  18. Deactivation completed at historic Hanford Fuels Laboratory

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site's boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO 2 ) and enriched uranium oxide (UO 2 ) residues and powders in the facility's equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America's primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world's supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D ampersand D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process

  19. Using public relations strategies to prompt populations at risk to seek health information: the Hanford Community Health Project.

    Science.gov (United States)

    Thomas, Gregory D; Smith, Stephen M; Turcotte, Joseph A

    2009-01-01

    The Hanford Community Health Project (HCHP) addressed health concerns among "downwinders" exposed to releases of radioactive iodine (I-131) from the Hanford Nuclear Reservation in the 1940s and 1950s. After developing educational materials and conducting initial outreach, HCHP had to decide whether to apply its limited resources to an advertising or public relations approach. The decision to apply public relations strategies was effective in driving awareness of the risk communication message at the community level, reinvigorating the affected community, and ultimately increasing the number of people who sought information about their risk of exposure and related health issues. HCHP used a series of communication tools to reach out to local and regional media, medical and health professionals, and community organizations. The campaign was successful in increasing the number of unique visitors to HCHP Web site and educating and activating the medical community around the releases of I-131 and patient care choices.

  20. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    International Nuclear Information System (INIS)

    Cushing, C.E.; Baker, D.A.; Chamness, M.A.

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts

  1. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1995-09-01

    This seventh revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology, hydrology, environmental monitoring, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors. Chapter 5.0 was not updated from the sixth revision (1994). It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE Orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be used directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  2. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 6

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.; Baker, D.A.; Chamness, M.A. [and others

    1994-08-01

    This sixth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. Chapter 4.0 summarizes up-to-date information on climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels prepared by Pacific Northwest Laboratory (PNL) staff. More detailed data are available from reference sources cited or from the authors; Chapter 5.0 has been significantly updated from the fifth revision. It describes models, including their principal underlying assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclide transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions; The updated Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site, following the structure of Chapter 4.0. No conclusions or recommendations are given in this report. Rather, it is a compilation of information on the Hanford Site environment that can be utilized directly by Site contractors. This information can also be used by any interested individual seeking baseline data on the Hanford Site and its past activities by which to evaluate projected activities and their impacts.

  3. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS, DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    International Nuclear Information System (INIS)

    ANDA, V.S.; EDGEMON, G.L.; HAGENSEN, A.R.; BOOMER, K.D.; CAROTHERS, K.G.

    2009-01-01

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation

  4. Hanford spent fuel inventory baseline

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1994-01-01

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors

  5. Hanford well custodians. Revision 1

    International Nuclear Information System (INIS)

    Schatz, A.L.; Underwood, D.J.

    1995-01-01

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993

  6. Reinventing government: Reinventing Hanford

    International Nuclear Information System (INIS)

    Mayeda, J.T.

    1994-05-01

    The Hanford Site was established in 1943 as one of the three original Manhattan Project locations involved in the development of atomic weapons. It continued as a defense production center until 1988, when its mission changed to environmental restoration and remediation. The Hanford Site is changing its business strategy and in doing so, is reinventing government. This new development has been significantly influenced by a number of external sources. These include: the change in mission, reduced security requirements, new found partnerships, fiscal budgets, the Tri-Party agreement and stakeholder involvement. Tight budgets and the high cost of cleanup require that the site develop and implement innovative cost saving approaches to its mission. Costeffective progress is necessary to help assure continued funding by Congress

  7. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  8. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  9. UPDATE HANFORD SITE D and D PROGRAMS ACCELERATE EXPAND

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2004-01-01

    A large, new decontamination and decommissioning organization targeted toward rapid, focused work on aging and highly contaminated structures was formed at the DOE's Hanford Site in southeast Washington state in autumn 2003. Managed by prime contractor Fluor Hanford, the new organization has made significant progress during its first six months. Under the direction of Mike Lackey, who recently joined Fluor from the Portland General Electric Trojan Plant, the Fluor Hanford DandD organization is tackling the Plutonium Finishing Plant (PFP) complex and the Fast Flux Test Facility (FFTF), and is nearly finished demolishing the 233-S Plutonium Concentration Facility. In addition, the DandD organization is progressing through the development and public comment phases of its required environmental permitting, planning work and procurement services to DandD three other Hanford facilities: 224-T and 224-B Plutonium Concentration Facilities, and the U Plant radiochemical processing facility. It is also planning and beginning to DandD the spent fuel handling areas of the Site's 100-K Reactor Area. The 586-square mile Hanford Site, the oldest plutonium production center in the world, served as the ''workhorse'' of the American nuclear defense arsenal from 1944 through 1989. Hanford produced the special nuclear material for the plutonium cores of the Trinity (test) and Nagasaki explosions, and then went on to produce more than half of the weapons plutonium ever manufactured by the United States, and about one-fourth of that manufactured worldwide. As a result, Hanford, the top-secret ''Paul Bunyan'' in the desert, is one of the most contaminated areas in the world. Its cleanup agreement with state and federal regulators, known as the ''Tri-Party Agreement,'' celebrates its 15th anniversary this spring, at a time when operations dealing with unstable plutonium leftovers, corroded spent fuel, and liquids wastes in single-shelled tanks conclude. As these crucial jobs are coming to

  10. DNFSB Recommendation 94-1 Hanford site integrated stabilization management plan, volumes 1 and 2

    International Nuclear Information System (INIS)

    Gerber, E.W.

    1996-01-01

    This document comprises the Hanford Site Integrated Stabilization Management Plan (SISMP). This document describes the DOE's plans at the Hanford Site to address concerns identified in Defense Nuclear Facilites Safety Board (DNFSB) Recommendation 94-1. This document also identifies plans for other spent nuclear fuel (SNF) inventories at the Hanford Site which are not within the scope of DNFSB Recommendation 94-1 for reference purposes because of their interrelationship with plans for SNF within the scope of DNFSB Recommendation 94-1. The SISMP was also developed to assist DOE in initial formulation of the Research and Development Plan and the Integrated Facilities Plan

  11. The Hanford Environmental Dose Reconstruction Project: Overview

    International Nuclear Information System (INIS)

    Haerer, H.A.; Freshley, M.D.; Gilbert, R.O.; Morgan, L.G.; Napier, B.A.; Rhoads, R.E.; Woodruff, R.K.

    1990-01-01

    In 1988, researchers began a multiyear effort to estimate radiation doses that people could have received since 1944 at the U.S. Department of Energy's Hanford Site. The study was prompted by increasing concern about potential health effects to the public from more than 40 yr of nuclear activities. We will provide an overview of the Hanford Environmental Dose Reconstruction Project and its technical approach. The work has required development of new methods and tools for dealing with unique technical and communication challenges. Scientists are using a probabilistic, rather than the more typical deterministic, approach to generate dose distributions rather than single-point estimates. Uncertainties in input parameters are reflected in dose results. Sensitivity analyses are used to optimize project resources and define the project's scope. An independent technical steering panel directs and approves the work in a public forum. Dose estimates are based on review and analysis of historical data related to operations, effluents, and monitoring; determination of important radionuclides; and reconstruction of source terms, environmental conditions that affected transport, concentrations in environmental media, and human elements, such as population distribution, agricultural practices, food consumption patterns, and lifestyles. A companion paper in this volume, The Hanford Environmental Dose Reconstruction Project: Technical Approach, describes the computational framework for the work

  12. Vienna convention on civil liability for nuclear damage. Signatures, ratifications, accessions and successions and text of reservations/declarations. Status as of 31 December 1996

    International Nuclear Information System (INIS)

    1997-01-01

    The document refers to the Vienna Convention on Civil Liability for Nuclear Damage (IAEA-INFCIRC-500), giving the status of signatures, ratifications, accessions and successions, and the texts of reservations/declarations as of 31 December 1996

  13. Vienna convention on civil liability for nuclear damage. Signatures, ratifications, accessions and successions and text of reservations/declarations. Status as of 31 December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-28

    The document refers to the Vienna Convention on Civil Liability for Nuclear Damage (IAEA-INFCIRC-500), giving the status of signatures, ratifications, accessions and successions, and the texts of reservations/declarations as of 31 December 1996.

  14. Conceptual design analyses for Hanford Site deployable remote spectroscopy systems

    International Nuclear Information System (INIS)

    Philipp, B.L.; Reich, F.R.

    1994-09-01

    This document identifies potential remote, NIR spectroscopic waste surface moisture monitoring system design alternatives to be operated inside one of the Hanford Site, high level, nuclear waste storage tanks. Potential tank waste moisture data impacts from the remote NIR signal transfer through high humidity vapor space is evaluated

  15. Hanford Site air operating permit application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  16. Hanford Site air operating permit application

    International Nuclear Information System (INIS)

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ''regulated'' pollutants. Regulated pollutants include ''criteria'' pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ''Hazardous'' Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995

  17. Mortality studies of Hanford workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1986-04-01

    Radiation exposures at Hanford have been deliberately limited as a protection to the worker. This means that if current estimates of radiation risks, which have been determined by national and international groups, are correct, it's highly unlikely that noticeable radiation-induced health effects will be identified among Hanford workers. 1 fig., 4 tabs

  18. Plans for Managing Hanford Remote Handled Transuranic (TRU) Waste

    International Nuclear Information System (INIS)

    MCKENNEY, D.E.

    2001-01-01

    The current Hanford Site baseline and life-cycle waste forecast predicts that approximately 1,000 cubic meters of remote-handled transuranic (RH-TRU) waste will be generated by waste management and environmental restoration activities at Hanford. These 1,000 cubic meters, comprised of both transuranic and mixed transuranic (TRUM) waste, represent a significant portion of the total estimated inventory of RH-TRU to be disposed of at the Waste Isolation Pilot Plant (WIPP). A systems engineering approach is being followed to develop a disposition plan for each RH-TRU/TRUM waste stream at Hanford. A number of significant decision-making efforts are underway to develop and finalize these disposition plans, including: development and approval of a RH-TRU/TRUM Waste Project Management Plan, revision of the Hanford Waste Management Strategic Plan, the Hanford Site Options Study (''Vision 2012''), the Canyon Disposal Initiative Record-of-Decision, and the Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (SW-EIS). Disposition plans may include variations of several options, including (1) sending most RH-TRU/TRUM wastes to WIPP, (2) deferrals of waste disposal decisions in the interest of both efficiency and integration with other planned decision dates and (3) disposition of some materials in place consistent with Department of Energy Orders and the regulations in the interest of safety, risk minimization, and cost. Although finalization of disposition paths must await completion of the aforementioned decision documents, significant activities in support of RH-TRU/TRUM waste disposition are proceeding, including Hanford participation in development of the RH TRU WIPP waste acceptance criteria, preparation of T Plant for interim storage of spent nuclear fuel sludge, sharing of technology information and development activities in cooperation with the Mixed Waste Focus Area, RH-TRU technology demonstrations and deployments, and

  19. Glass forms for immobilization of Hanford wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Dressen, A.L.; Hobbick, C.W.; Babad, H.

    1975-03-01

    Approximately 140 million liters of solid salt cake (mainly NaNO 3 ), produced by evaporation of aged alkaline high-level liquid wastes, will be stored in underground tanks when the present Hanford Waste Management Program is completed in the early 1980's. At this time also, large volumes of various other solid radioactive wastes (sludges, excavated Pu-contaminated soil, and doubly encapsulated 137 CsCl and 90 SrF 2 ) will be stored on the Hanford Reservation. All these solid wastes can be converted to immobile silicate and aluminosilicate glasses of low water leachability by melting them at 1100 0 to 1400 0 C with appropriate amounts of basalt (or sand) and other glass-formers such as B 2 O 3 or CaO. Reviewed in this paper are formulations and other melt conditions used successfully in batch tests to make glasses from actual and synthetic wastes; leachability and other properties of these glasses show them to be satisfactory vehicles for immobilization of the Hanford wastes. (U.S.)

  20. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  1. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  2. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification

    International Nuclear Information System (INIS)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program

  3. A discussion on the methodology for calculating radiological and toxicological consequences for the spent nuclear fuel project at the Hanford Site

    International Nuclear Information System (INIS)

    RITTMANN, P.D.

    1999-01-01

    This report contains technical information used to determine accident consequences for the Spent Nuclear Fuel Project safety documents. It does not determine accident consequences or describe specific accident scenarios, but instead provides generic information

  4. PHYSICAL EFFECTS OF THE HANFORD WINDSTORMS OF JANUARY 11, 1972 AND JANUARY 21, 1972

    Energy Technology Data Exchange (ETDEWEB)

    Henager, C. H.; Fuquay, J. J.

    1972-06-01

    The windstorm of January 11 caused a minor amount of damage to the Hanford Reservation and Hanford vicinity. Damage sustained to Hanford Reservation structures (roofing, flashing, fences, windows) was approximately $20,000. One building did receive structural damage to roof members. Evidence that wind pressures did not reach 30 lb/ft{sup 2} during the January 11 windstorm was provided in the fact that specially designed exterior wall panels did not fail. These panels were designed and carefully proof-tested to insure that they would fail at a loading of 30 lb/ft{sup 2} as a requirement of structural safety in the original design-construction program in 1952-1954. There was one power outage on the Hanford Reservation due to the January 11 windstorm (Rattlesnake Mountain Observatory). Damage to power lines and electrical facilities amounted to about $1600. Damage to structures in the Hanford vicinity (excluding the Hanford Reservation) from the January 11 windstorm was estimated to cost $13,000. This does not include damage to private residences, etc., which has been estimated by others to be near $250,000. Power line damage in the Hanford vicinity amounted to about $80,000, of which $60,000 was accounted for in the loss of four transmission towers in the tie-line between Priest Rapids and Wanapum Dams. The January 21 windstorm, which struck Toppenish, Washington, was a straight-wind of the catabatic foehn type and not a tornado-type wind as described in newspaper accounts. No funnel cloud was associated with this windstorm. The maximum gust was about 85 mph at 30 ft above the ground. Cost estimates of damage in Toppenish were not available. There were no power outages or structural damage on the Hanford Reservation from the January 21 windstorm. Total damage to the Hanford Reservation from the two windstorms was estimated to be about $22,500.

  5. Screening the Hanford tanks for trapped gas

    International Nuclear Information System (INIS)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford's nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list

  6. Hanford inventory program user's manual

    International Nuclear Information System (INIS)

    Hinkelman, K.C.

    1994-01-01

    Provides users with instructions and information about accessing and operating the Hanford Inventory Program (HIP) system. The Hanford Inventory Program is an integrated control system that provides a single source for the management and control of equipment, parts, and material warehoused by Westinghouse Hanford Company in various site-wide locations. The inventory is comprised of spare parts and equipment, shop stock, special tools, essential materials, and convenience storage items. The HIP replaced the following systems; ACA, ASP, PICS, FSP, WSR, STP, and RBO. In addition, HIP manages the catalog maintenance function for the General Supplies inventory stocked in the 1164 building and managed by WIMS

  7. Hanford Atomic Products Operation monthly report, February 1954

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1954-03-23

    This is a progress report of the production reactors on the Hanford Reservation for the month of February 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  8. Establishing a predictive maintenance program at the Hanford Site

    International Nuclear Information System (INIS)

    Winslow, R.W.

    1994-05-01

    This document contains information about a new Predictive Maintenance Program being developed and implemented at the Hanford Reservation. Details of the document include: background on persons developing the program, history of predictive maintenance, implementation of new program, engineering task analysis, network development and new software, issues to be resolved, benefits expected, and appendix gives information about the symposium from which this paper is based

  9. Hanford Federal Facility state of Washington leased land

    International Nuclear Information System (INIS)

    1993-11-01

    This report was prepared to provide information concerning past solid and hazardous waste management practices for all leased land at the US DOE Hanford Reservation. This report contains sections including land description; land usage; ground water, air and soil monitoring data; and land uses after 1963. Numerous appendices are included which provide documentation of lease agreements and amendments, environmental assessments, and site surveys

  10. Hanford Atomic Products Operation monthly report, April 1953

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1953-05-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  11. Hanford Federal Facility state of Washington leased land

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This report was prepared to provide information concerning past solid and hazardous waste management practices for all leased land at the US DOE Hanford Reservation. This report contains sections including land description; land usage; ground water, air and soil monitoring data; and land uses after 1963. Numerous appendices are included which provide documentation of lease agreements and amendments, environmental assessments, and site surveys.

  12. Hanford Atomic Products Operation monthly report, January 1954

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1954-02-25

    This is a progress report of the production reactors on the Hanford Reservation for the month of January 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes the accomplishments and employee relations for that month.

  13. Hanford Atomic Products Operation monthly report, March 1953

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1953-04-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of March 1953. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  14. Hanford Atomic Products Operation monthly report, April 1954

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1954-05-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  15. Decision management for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Roberds, W.J.; Haerer, H.A. [Golder Associates, Inc., Redmond, WA (United States); Winterfeldt, D.V. [Decision Insights, Laguna Beach, CA (United States)

    1992-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is in the process of developing estimates for the radiation doses that individuals and population groups may have received as a result of past activities at the Hanford Reservation in Eastern Washington. A formal decision-aiding methodology has been developed to assist the HEDR Project in making significant and defensible decisions regarding how this study will be conducted. These decisions relate primarily to policy (e.g., the appropriate level of public participation in the study) and specific technical aspects (e.g., the appropriate domain and depth of the study), and may have significant consequences with respect to technical results, costs, and public acceptability.

  16. Toxicity assessment of Hanford Site wastes by bacterial bioluminescence

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.; Voogd, J.A.

    1991-09-01

    This paper examines the toxicity of the nonradioactive component of low-level wastes stored in tanks on the Hanford reservation. The use of a faster, cheaper bioassay to replace the 96 hour fish acute toxicity test is examined. The new bioassay is based on loss of bioluminescence of Photobacter phosphoreum (commonly called Microtox) following exposure to toxic materials. This bioassay is calibrated and compares well to the standard fish acute toxicity test for characterization of Hanford Wastes. 4 refs., 11 figs., 11 tabs

  17. Decision management for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Roberds, W.J.; Haerer, H.A.; Winterfeldt, D.V.

    1992-04-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is in the process of developing estimates for the radiation doses that individuals and population groups may have received as a result of past activities at the Hanford Reservation in Eastern Washington. A formal decision-aiding methodology has been developed to assist the HEDR Project in making significant and defensible decisions regarding how this study will be conducted. These decisions relate primarily to policy (e.g., the appropriate level of public participation in the study) and specific technical aspects (e.g., the appropriate domain and depth of the study), and may have significant consequences with respect to technical results, costs, and public acceptability

  18. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  19. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  20. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  1. Hanford Facility RCRA permit handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  2. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  3. Mortality studies of Hanford workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1986-03-01

    The relationships of cancer mortality with radiation exposure as influenced by age, sex, follow-up time length of employment, and job category are discussed in relation to workers at the Hanford facilities

  4. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  5. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  6. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  7. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    International Nuclear Information System (INIS)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-01-01

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford

  8. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  9. HANFORD WASTE MINERALOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  10. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  11. Hanford Waste Mineralogy Reference Report

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  12. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  13. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    DIEDIKER, L.P.

    1999-07-29

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  14. Hanford Site near-facility environmental monitoring data report for calendar year 1998

    International Nuclear Information System (INIS)

    DIEDIKER, L.P.

    1999-01-01

    This document summarizes the results of the U.S. Department of Energy's Near-Facility Environmental Monitoring program conducted by Waste Management Federal Services of Hanford, Inc. for Fluor Daniel Hanford, Inc. for 1998 in the 100,200/600, and 300/400 Areas of the Hanford Site, in southcentral Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with federal, state, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years

  15. Hanford Environmental Dose Reconstruction Project independent direction and oversight

    International Nuclear Information System (INIS)

    Blazek, M.L.; Power, M.

    1991-01-01

    Hanford was selected in 1942 as one of the sites for the Manhattan Project. It produced plutonium for one of the world's first nuclear weapons. The US Department of Energy (DOE) and its predecessors continued to make plutonium for nuclear weapons at Hanford for more than four decades. In the early days of Hanford operations, radioactive materials routinely were released to the environment by many processes. The DOE disclosed documents about these releases in 1986. In 1987, Washington, Oregon, and regional Indian tribes gathered an independent panel of experts. This group recommended dose reconstruction and health effects feasibility studies. Later that year, DOE hired Battelle Pacific Northwest Laboratory (PNL) to reconstruct potential public radiation doses from Hanford's past releases of radioactive material. The DOE agreed with the states and tribes that project direction would come from an independent technical steering panel (TSP). This approach was critical to gain public credibility for the project and the science. The TSP directs the project and makes policy. That is now clear - but, it was hard-earned. Conducting science in an open public process is new, challenging, and clearly worthwhile. The panel's product is good science that is believed and accepted by the public - our client

  16. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.

  17. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization.

  18. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization

  19. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization

  20. Hanford Environmental Dose Reconstruction Project, Quarterly report, September--November 1993

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1993-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates); Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  1. Managing the nation's nuclear waste. Site descriptions: Cypress Creek, Davis Canyon, Deaf Smith, Hanford Reference, Lavender Canyon, Richton Dome, Swisher, Vacherie Dome, and Yucca Mountain

    International Nuclear Information System (INIS)

    1985-01-01

    In 1982, the Congress enacted the Nuclear Waste Policy Act (Public Law 97-425), which established a comprehensive national program directed toward siting, constructing, and operating geologic repositories for the permanent disposal of high-level radioactive waste. In February 1983, the United States Department of Energy (DOE) identified the nine referenced repository locations as potentially acceptable sites for a mined geologic repository. These sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. The DOE findings and determinations are based on the evaluations contained in the draft Environmental Assessments (EA). A final EA will be prepared after considering the comments received on the draft EA. The purpose of this document is to provide the public with specific site information on each potential repository location

  2. The search of the best mode of the reserve power supply consumption during the nuclear reactor’s emergency shutdown procedures in case of force majeure circumstances

    Science.gov (United States)

    Zagrebaev, A. M.; Trifonenkov, A. V.

    2017-01-01

    This article deals with the problem of the control mode choice for a power supply system in case of force majeure circumstances. It is not known precisely, when a force majeure incident occurs, but the threatened period is given, when the incident is expected. It is supposed, that force majeure circumstances force nuclear reactor shutdown at the moment of threat coming. In this article the power supply system is considered, which consists of a nuclear reactor and a reserve power supply, for example, a hydroelectric pumped storage power station. The reserve power supply has limited capacity and it doesn’t undergo the threatened incident. The problem of the search of the best reserve supply time-distribution in case of force majeure circumstances is stated. The search is performed according to minimization of power loss and damage to the infrastructure. The software has been developed, which performs automatic numerical search of the approximate optimal control modes for the reserve power supply.

  3. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    Energy Technology Data Exchange (ETDEWEB)

    EVANS, C B

    2004-12-21

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  4. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    International Nuclear Information System (INIS)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals

  5. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  6. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  7. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Segall, P.

    1998-01-01

    Hanford's missions are to safely clean up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues

  8. Long-Term Stewardship At DOE's Hanford Site - 12575

    International Nuclear Information System (INIS)

    Moren, R.J.; Grindstaff, K.D.

    2012-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)(1), which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S and M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation

  9. Hanford Site peak gust wind speeds

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1998-01-01

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site

  10. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  11. Hanford Patrol Academy Demolition Sites Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    From 1975 to 1991 the Hanford Patrol Academy Demolition Sites (HPADS) were used for demolition events. These demolition events were a form of thermal treatment for spent or abandoned chemical waste. Because the HPADS will no longer be used for this thermal activity, the sites will be closed. Closure will be conducted pursuant to the requirements of the Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and 40 CFR 270.1. Closure also will satisfy closure requirements of WAC 173-303-680 and for the thermal treatment closure requirements of 40 CFR 265.381. This closure plan presents a description of the HPADS, the history of the waste treated, and the approach that will be followed to close the HPADS. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. Only dangerous constituents derived from HPADS operations will be addressed in this closure plan in accordance with WAC 173-303-610(2)(b)(i). The HPADS are actually two distinct soil closure areas within the Hanford Patrol Academy training area

  12. Waste minimization - Hanford's strategy for sustainability

    International Nuclear Information System (INIS)

    Merry, D.S.

    1998-01-01

    The Hanford Site cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single-shell storage tanks, treating waste stored in 28 double-shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored onsite, removing thousands of structures, and dealing with significant solid waste, groundwater, and land restoration issues. The Pollution Prevention/Waste Minimization (P2/WMin) Program supports the Hanford Site mission to safely clean up and manage legacy waste and to develop and deploy science and technology in many ways. Once such way is through implementing and documenting over 231 waste reduction projects during the past five years, resulting in over $93 million in cost savings/avoidances. These savings/avoidances allowed other high priority cleanup work to be performed. Another way is by exceeding the Secretary of Energy's waste reduction goals over two years ahead of schedule, thus reducing the amount of waste to be stored, treated and disposed. Six key elements are the foundation for these sustained P2/WMin results

  13. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  14. The Hanford Site focus, 1994

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1994-03-01

    This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE's Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion

  15. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  16. Differential turbidity at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Stokes, G.M.

    1980-01-01

    Experiments continued in FY 1979 to examine differential turbidity effects on insolation as measured at the earth's surface. These experiments are primarily intended to provide means for interpreting insolation-data assessment studies. These data are also valuable for inferring aerosol radiative or optical effects, which is an important consideration in evaluating inadvertent climate modification and visibility degradation as a result of aerosols. The experiments are characterized by frequent, nearly simultaneous observations at the Rattlesnake Mountain Observatory (RMO) and the Hanford Meteorological Station (HMS) and take advantage of the nearly 1-km altitude difference between these two observing sites. This study indicated that nearly simultaneous measurements of the direct solar beam from stationary sites that are separated in altitude can be used to monitor the incremental optical depth arising from aerosols in the intervening layer. Once appropriate calbiration procedures have been established for the MASP unit, the direct solar data can be used to document on a routine basis aerosol variations in the first kilometer between HMS and RMO

  17. Hanford gas dispersion analysis

    International Nuclear Information System (INIS)

    Fujita, R.K.; Travis, J.R.

    1994-01-01

    An analysis was performed to verify the design of a waste gas exhauster for use in support of rotary core sampling activities at the Westinghouse Hanford Waste Tank Farm. The exhauster was designed to remove waste gases from waste storage tanks during the rotary core drilling process of the solid materials in the tank. Some of the waste gases potentially are very hazardous and must be monitored during the exhauster's operation. If the toxic gas concentrations in specific areas near the exhauster exceed minimum Threshold Limit Values (TLVs), personnel must be excluded from the area. The exhauster stack height is of interest because an increase in stack height will alter the gas concentrations at the critical locations. The exhaust stack is currently ∼4.6 m (15 ft) high. An equipment operator will be located within a 6.1 m (20 ft) radius of the exhaust stack, and his/her head will be at an elevation 3.7 m (12 ft) above ground level (AGL). Therefore, the maximum exhaust gas concentrations at this location must be below the TLV for the toxic gases. Also, the gas concentrations must be within the TLV at a 61 m (200 ft) radius from the stack. If the calculated gas concentrations are above the TLV, where the operator is working below the stack at the 61 m (200 ft) radius location, the stack height may need to be increased

  18. A Short History of Hanford Waste Generation, Storage, and Release

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2003-01-01

    Nine nuclear reactors and four reprocessing plants at Hanford produced nearly two-thirds of the plutonium used in the United States for government purposes . These site operations also created large volumes of radioactive and chemical waste. Some contaminants were released into the environment, exposing people who lived downwind and downstream. Other contaminants were stored. The last reactor was shut down in 1987, and the last reprocessing plant closed in 1990. Most of the human-made radioactivity and about half of the chemicals remaining onsite are kept in underground tanks and surface facilities. The rest exists in the soil, groundwater, and burial grounds. Hanford contains about 40% of all the radioactivity that exists across the nuclear weapons complex. Today, environmental restoration activities are under way.

  19. Westinghouse Hanford Company FY 1996 Materials Management Plan (MMP)

    International Nuclear Information System (INIS)

    Higginson, M.C.

    1995-12-01

    The safe and sound operation of facilities and the storage of nuclear material are top priorities within Hanford's environmental management, site restoration mission. The assumptions, plans and Special Nuclear Material (SNM) inventory summaries contained in this document were prepared for Department of Energy (DOE) use for interim and long- range planning. In accordance with Richland DOE field office (DOE-RL) direction, year-end inventory values were not projected over an 11 year period, as historically done in previous MMP documents. This decision was made since significant SNM movements to or from Hanford are not projected in the foreseeable future. Instead, the inventory summaries within this document reflect an ''as of date'' of June 30, 1995

  20. HANSF 1.3 Users Manual FAI/98-40-R2 Hanford Spent Nuclear Fuel (SNF) Safety Analysis Model [SEC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, D.R.

    1999-10-07

    The HANSF analysis tool is an integrated model considering phenomena inside a multi-canister overpack (MCO) spent nuclear fuel container such as fuel oxidation, convective and radiative heat transfer, and the potential for fission product release. This manual reflects the HANSF version 1.3.2, a revised version of 1.3.1. HANSF 1.3.2 was written to correct minor errors and to allow modeling of condensate flow on the MCO inner surface. HANSF 1.3.2 is intended for use on personal computers such as IBM-compatible machines with Intel processors running under Lahey TI or digital Visual FORTRAN, Version 6.0, but this does not preclude operation in other environments.

  1. Identification of the non-pertechnetate species in Hanford waste tanks, Tc(I) carbonyl complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W.; Shuh, David K.; Schroeder, Norman C.; Ashley, Kenneth R.

    2003-10-16

    Immobilization of the high-level nuclear waste stored at the Hanford Reservation has been complicated by the presence of soluble, lower-valent technetium species. Previous work by Schroeder and Blanchard has shown that these species cannot be removed by ion-exchange and are difficult to oxidize. The Tc-K edge XANES spectra of the species in Tanks SY-101 and SY-103 were reported by Blanchard, but they could not be assigned to any known technetium complex. We report that the XANES spectra are most likely those of Tc(I) carbonyl species, especially fac-Tc(CO){sub 3}(gluconate){sup 2-}. This is further supported by EXAFS and {sup 99}Tc-NMR studies in nonradioactive simulants of these tank wastes.

  2. Hanford land disposal restrictions plan for mixed wastes

    International Nuclear Information System (INIS)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs

  3. Hanford Site National Evnironmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  4. Hanford Site National Evnironmental Policy Act (NEPA) characterization. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. [ed.

    1991-12-01

    This fourth revision of the Hanford Site National Environmental Policy (NEPA) Characterization presents current environmental data regarding the Hanford Site and its immediate environs. This information is intended for use in preparing Site-related NEPA documentation. In Chapter 4.0 are presented summations of up-to-date information about climate and meteorology, geology and hydrology, ecology, history and archaeology, socioeconomics, land use, and noise levels. Chapter 5.0 describes models, including their principal assumptions, that are to be used in simulating realized or potential impacts from nuclear materials at the Hanford Site. Included are models of radionuclides transport in groundwater and atmospheric pathways, and of radiation dose to populations via all known pathways from known initial conditions. Chapter 6.0 provides the preparer with the federal and state regulations, DOE orders and permits, and environmental standards directly applicable for environmental impact statements for the Hanford Site, following the structure Chapter 4.0. NO conclusions or recommendations are given in this report.

  5. The Japanese aerial attack on Hanford Engineer Works

    Science.gov (United States)

    Clark, Charles W.

    The day before the Pearl Harbor attack, December 6, 1941, the University of Chicago Metallurgical Laboratory was given four goals: design a plutonium (Pu) bomb; produce Pu by irradiation of uranium (U); extract Pu from the irradiated U; complete this in time to be militarily significant. A year later the first controlled nuclear chain reaction was attained in Chicago Pile 1 (CP-1). In January 1943, Hanford, WA was chosen as the site of the Pu factory. Neutron irradiation of 238U was to be used to make 239Pu. This was done by a larger version of CP-1, Hanford Reactor B, which went critical in September 1944. By July 1945 it had made enough Pu for two bombs: one used at the Trinity test in July; the other at Nagasaki, Japan in August. I focus on an ironic sidelight to this story: disruption of hydroelectric power to Reactor B by a Japanese fire balloon attack on March 10, 1945. This activated the costly coal-fired emergency backup plant to keep the reactor coolant water flowing, thwarting disaster and vindicating the conservative design of Hanford Engineer Works. Management of the Hanford Engineer Works in World War II, H. Thayer (ASCE Press 1996).

  6. Site-specific calibration of the Hanford personnel neutron dosimeter

    International Nuclear Information System (INIS)

    Endres, A.W.; Brackenbush, L.W.; Baumgartner, W.V.; Rathbone, B.A.

    1994-10-01

    A new personnel dosimetry system, employing a standard Hanford thermoluminescent dosimeter (TLD) and a combination dosimeter with both CR-39 nuclear track and TLD-albedo elements, is being implemented at Hanford. Measurements were made in workplace environments in order to verify the accuracy of the system and establish site-specific factors to account for the differences in dosimeter response between the workplace and calibration laboratory. Neutron measurements were performed using sources at Hanford's Plutonium Finishing Plant under high-scatter conditions to calibrate the new neutron dosimeter design to site-specific neutron spectra. The dosimeter was also calibrated using bare and moderated 252 Cf sources under low-scatter conditions available in the Hanford Calibration Laboratory. Dose equivalent rates in the workplace were calculated from spectrometer measurements using tissue equivalent proportional counter (TEPC) and multisphere spectrometers. The accuracy of the spectrometers was verified by measurements on neutron sources with calibrations directly traceable to the National Institute of Standards and Technology (NIST)

  7. Simulation of the cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Ludowise, J.D.; Allen, G.K.

    1992-12-01

    The Hanford Site is a 1,450-km 2 (560-mi 2 ) tract of semiarid land in southeastern Washington State. Nuclear materials for the nation's defense programs were manufactured at the Hanford Site for more than 40 years. The waste generated by these activities has been treated, stored, or disposed of in a variety of ways. The Hanford Site strategic analysis provides a general comparison analysis tool to guide selection and future modification of the integrated Site cleanup plan. A key element of the Hanford strategic analysis is a material flow model that tracks 80 individual feed elements containing 60 componentsof interest through 50 functional processing blocks in 12 different configurations. The material flow model was developed for parametric analyses using separation factors and parameters specific to individual feeds. The model was constructed so that the effects of individual feed streams can be traced through a flowsheet, and the performance parameters of each functional block can be varied independently. The material flow model has five major elements: input database, process flow diagrams, sequential modular process simulation, output database, and output summing program

  8. Preliminary Hanford Waste Vitrification Plan Waste Form Qualification Plan

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1987-09-01

    This Waste Form Qualification Plan describes the waste form qualification activities that will be followed during the design and operation of the Hanford Waste Vitrification Plant to ensure that the vitrified Hanford defense high-level wastes will meet the acceptance requirements of the candidate geologic repositories for nuclear waste. This plan is based on the defense waste processing facility requirements. The content of this plan is based on the assumption that the Hanford Waste Vitrification Plant high-level waste form will be disposed of in one of the geologic repository projects. Proposed legislation currently under consideration by Congress may change or delay the repository site selection process. The impacts of this change will be assessed as details of the new legislation become available. The Plan describes activities, schedules, and programmatic interfaces. The Waste Form Qualification Plan is updated regularly to incorporate Hanford Waste Vitrification Plant-specific waste acceptance requirements and to serve as a controlled baseline plan from which changes in related programs can be incorporated. 10 refs., 5 figs., 5 tabs

  9. Hanford land disposal restrictions plan for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  10. Recovery and evaluation of historical environmental monitoring data at Hanford

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that populations could have received from the nuclear operations at the Hanford site since 1944. The Environmental Monitoring Data Task within HEDR is charged with assembling, evaluating, and summarizing key historical measurements of radionuclide concentrations in the environment on and around the Hanford site. The recovery and evaluation of historical environmental monitoring data are integral parts of the environmental dose reconstruction process. The data generated through historical environmental monitoring programs may be critical in the development of dose modeling codes and in performing a meaningful environmental pathway analysis. In addition, environmental monitoring data are essential in the verification of model calculations and in the validation of the model itself. The paper a task logic flowchart illustrating how the process evolves within the Environmental Monitoring Data Task and the interaction with other project tasks. The reconstruction of such data presents numerous challenges, many of which are not generally encountered in typical scientific studies. This paper discusses the process of reconstructing historical environmental monitoring data at Hanford. Several of the difficulties encountered during this process are presented. Items that may be beneficial and should be considered in performing such a task are identified

  11. Accelerated clean-up at the Hanford Site

    International Nuclear Information System (INIS)

    Frain, J.M.; Johnson, W.L.

    1994-01-01

    The Hanford Site began operations in 1943 as one of the sites for plutonium production associated with the Manhattan Project. It has been used, in part, for nuclear reactor operation, reprocessing of spent fuel, and management of radioactive waste. The Hanford Site covers approximately 1,434 km 2 (560 mi 2 2) in southeastern Washington State. The subject of this paper, the 618-9 Burial Ground, is located on the Hanford Site approximately 1.6 km (1 mi) west of the Columbia River, and a few miles north of Richland, Washington. Throughout Hanford Site history, prior to legislation regarding disposal of chemical waste products, some chemical waste byproducts were disposed ,ia burial in trenches. One such trench was the 618-9 Burial Ground. This burial ground was suspected to contain approximately 19,000 L (5,000 gal) of uranium-contaminated organic solvent, disposed in standard 55-gal (208-L) metal drums. The waste was produced from research and development activities related to fuel reprocessing

  12. Diets of black-tailed hares on the Hanford Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Uresk, D.W.; Cline, J.F.; Rickard, W.H.

    1975-04-01

    A fecal pellet analyses showed that black-tailed hares (jackrabbits) were selective in plants chosen as food. The most abundant herbaceous plant, cheatgrass, was not found in the pellets. Sagebrush and bitterbrush, woody plants, were not an important part of the hares' diet. Forbs, rabbitbrush, and certain grass species were preferred foods. (auth)

  13. Hanford Site sustainable development initiatives

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project

  14. Reserves for nuclear power plant decommissioning and radwaste disposal in Germany. An analysis and evaluation from the angle of energy policy

    International Nuclear Information System (INIS)

    Buerger, V.

    1998-01-01

    The study, which is the first of its kind in Germany, presents a comprehensive survey of total reserves set up by the German nuclear industry for liabilities and costs for nuclear power plant decommissioning and resulting radwaste disposal, which is a legal and foreseeable responsibility but uncertain in amount. The study looks into the various ways the earmarked money was invested and analyses the funds with respect to their efficiency and reliability to provide financial security for the given tasks and purpose. The question put in this context is: Are the reserves set up so far in line with official cost estimates, i.e. will they cover estimated costs, or do they even exceed the estimated amounts? The conclusions drawn and explained in this document are: The reserves for nuclear decommissioning have been used by the nuclear power plant operators and electricity companies as a significant capital source. Some of the capital accrued is being increasingly used at present to cover expenses arising for restructuring of business and diversification into new business segments of interest in the open national and European electricity markets. Companies such as RWE, Preussen Elektra, and Bayernwerk, which until deregulation of the energy sector were just power supply companies, have been transformed into conglomerate companies and international players in the markets, like RWE Holding, VEBA, and VIAG. It can be safely assumed that the companies would not have been able to reach the important positions they currently hold in the German economy without tapping the reserves for nuclear decommissioning. (orig./CB) [de

  15. Preliminary assessment of nuclear waste transportation cost and risk for operation of the first repository at candidate sites

    International Nuclear Information System (INIS)

    Peterson, R.W.; McSweeney, T.I.; Varadarajan, R.V.; Wilmot, E.L.; Cashwell, J.W.; Joy, D.S.

    1983-01-01

    To support the selection of the first commercial nuclear waste repository site in 1987, environmental analyses of five candidate site locations are currently being performed. The five locations are in the Gulf Interior Region, the Permian Basin, the Paradox Basin, Yucca Mountain and the Hanford reservation. Costs and operational risks associated with the transportation of nuclear wastes to a single repository located in these regions have been calculated for a life-cycle of 26 years

  16. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  17. Westinghouse Hanford Company Operational Environmental Monitoring. Annual report, CY 1993

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1994-07-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1993 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite conditions, the differences are less than in previous years. At certain locations on or directly adjacent to nuclear facilities and waste sites, levels can be several times higher than offsite conditions

  18. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena. (JRD)

  19. Hanford environment as related to radioactive waste burial grounds and transuranium waste storage facilities

    International Nuclear Information System (INIS)

    Brown, D.J.; Isaacson, R.E.

    1977-06-01

    A detailed characterization of the existing environment at Hanford was provided by the U.S. Energy Research and Development Administration (ERDA) in the Final Environmental Statement, Waste Management Operations, Hanford Reservation, Richland, Washington, December 1975. Abbreviated discussions from that document are presented together with current data, as they pertain to radioactive waste burial grounds and interim transuranic (TRU) waste storage facilities. The discussions and data are presented in sections on geology, hydrology, ecology, and natural phenomena

  20. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  1. SGN-Reseau Eurisys participates to the Hanford military site rehabilitation

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Numatec Hanford Corporation, a subsidiary company of SGN-Reseau Eurisys and Cogema, gained with Fluor Daniel the contract for the rehabilitation of the old military nuclear centre of Hanford (Washington, USA). This contract of 5 years represents 5 billions of US dollars with 300 millions of dollars for the French part. This short paper gives a general description of the Hanford installations and of the partners involved in the contract: Fluor Daniel consortium, Lockheed Martin, Babcock and Wilcox, Duke Engineering and Services, Rust Federal Services, Numatec Hanford Corporation (NHC), SGN-Eurisys Services Corporation (SESC). The schedule comprises: the stabilisation of the residual plutonium in all installations before December 1999, the removal of muds and debris from the K storage pool of irradiated fuels before June 2000, the draining and cleaning of the high activity storage tanks before December 2001 and the general decontamination of the installations up to the year 2005. (J.S.)

  2. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  3. Hanford science and technology needs statements, 2000

    Energy Technology Data Exchange (ETDEWEB)

    BERLIN, G.T.

    1999-07-16

    In the aftermath of the Cold War, the United States has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex mission could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and colleges and universities on those needs. This document describes those needs that the Hanford Site has identified as requiring additional science or technology to complete.

  4. Hanford science and technology needs statements, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, G.T.

    1998-09-30

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex decisions could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and collages and universities on those needs. This document describes those needs which the Hanford Site has identified as requiring additional science or technology to complete.

  5. Hanford Site technical baseline database. Revision 1

    International Nuclear Information System (INIS)

    Porter, P.E.

    1995-01-01

    This report lists the Hanford specific files (Table 1) that make up the Hanford Site Technical Baseline Database. Table 2 includes the delta files that delineate the differences between this revision and revision 0 of the Hanford Site Technical Baseline Database. This information is being managed and maintained on the Hanford RDD-100 System, which uses the capabilities of RDD-100, a systems engineering software system of Ascent Logic Corporation (ALC). This revision of the Hanford Site Technical Baseline Database uses RDD-100 version 3.0.2.2 (see Table 3). Directories reflect those controlled by the Hanford RDD-100 System Administrator. Table 4 provides information regarding the platform. A cassette tape containing the Hanford Site Technical Baseline Database is available

  6. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of US. Department of Energy (DOE) 0 435.1, ''Radioactive Waste Management,'' and the Contact-Handled (CH) Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WIPP-WAC). WIPP-WAC requirements are derived from the WIPP Technical Safety Requirements, WIPP Safety Analysis Report, TRUPACT-II SARP, WIPP Land Withdrawal Act, WIPP Hazardous Waste Facility Permit, and Title 40 Code of Federal Regulations (CFR) 191/194 Compliance Certification Decision. The WIPP-WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WPP-WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their program for managing TRU waste and TRU waste shipments before transferring waste to WIPP. Waste characterization activities provide much of the data upon which certification decisions are based. Waste characterization requirements for TRU waste and TRU mixed waste that contains constituents regulated under the Resource Conservation and Recovery Act (RCRA) are established in the WIPP Hazardous Waste Facility Permit Waste Analysis Plan (WAP). The Hanford Site Quality Assurance Project Plan (QAPjP) (HNF-2599) implements the applicable requirements in the WAP and includes the qualitative and quantitative criteria for making hazardous waste determinations. The Hanford Site must also ensure that its TRU waste destined for disposal at WPP meets requirements for transport in the Transuranic Package Transporter-11 (TRUPACT-11). The US. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-11 requirements in the Safety Analysis Report for the TRUPACT-II Shipping Package (TRUPACT-11 SARP). In

  7. HANFORD PLUTONIUM FINISHG PLAN (PFP) COMPLETES PLUTONIUM STABILIZATION KEY SAFETY ISSUES CLOSED

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2004-01-01

    A long and intense effort to stabilize and repackage nearly 18 metric tons (MT) of plutonium-bearing leftovers from defense production and nuclear experiments concluded successfully in February, bringing universal congratulations to the Department of Energy's Hanford Site in southeast Washington State. The victorious stabilization and packaging endeavor at the Plutonium Finishing Plant (PFP), managed and operated by prime contractor Fluor Hanford, Inc., finished ahead of all milestones in Hanford's cleanup agreement with regulators, and before deadlines set by the Defense Nuclear Facilities Safety Board (DNFSB), a part of the federal Executive Branch that oversees special nuclear materials. The PFP stabilization and packaging project also completed under budget for its four-year tenure, and has been nominated for a DOE Secretarial Award. It won the Project of the Year Award in the local chapter competition of the Project Management Institute, and is being considered for awards at the regional and national level

  8. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  9. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  10. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  11. Differential turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Bates, J.A.; Kleckner, E.W.; Michalsky, J.J.; Schrotke, P.M.; Thorp, J.M.

    1978-01-01

    An experiment to exmine differential turbidity effects on measured insolation between the Rattlesnake Observatory and the Hanford Meteorological Station was conducted during summer 1977. Several types of solar radiation instruments were used, including pyranometers, multiwavelength sunphotometers, and an active cavity radiometer. Preliminary results show dramatic temporal variability of aerosol loading at HMS and significant insolation and turbidity differences between the Observatory and HMS

  12. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  13. Mortality of Hanford radiation workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1979-01-01

    The effects of occupational exposure to low level ionizing radiation at the Hanford plant in southeastern Washington were investigated. Death rates were related to exposure status. To provide perspective, the rates were also compared with the death rates of the US population

  14. Hanford site operator changes management

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a brief discussion of management changes at the Westinghouse Hanford Corporation. A. LeMar Trego has relieved Thomas Anderson as president of WHC. This was in response to recent shortcomings in Westinghouse's management of the environmental restoration and their failure to receive a $10M performance bonus

  15. Hanford Environmental Analytical Methods (methods as of March 1990). Volume 2, Appendix A1-O and appendix A1-I

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.C.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    Techniques in use at the Hanford Reservation as of March, 1990 for the analysis of liquids, organic wastes, soils, and sediments, are described. Limitations and applications of the techniques are included.

  16. Hanford environmental analytical methods (methods as of March 1990). Appendix A3-O and Appendix A3-I

    Energy Technology Data Exchange (ETDEWEB)

    Goheen, S.D.; McCulloch, M.; Daniel, J.L.

    1993-05-01

    Information is provided on the techniques employed towards the chemical analysis of volatile, semi-volatile matter, pesticides and PCB`s at the Hanford Reservation. Sample preparation methods are included.

  17. Description of a Multipurpose Processing and Storage Complex for the Hanford Site's radioactive material

    International Nuclear Information System (INIS)

    Nyman, D.H.; Wolfe, B.A.; Hoertkorn, T.R.

    1993-05-01

    The mission of the US Department of Energy's (DOE) Hanford Site has changed from defense nuclear materials production to that of waste management/disposal and environmental restoration. ne Multipurpose Processing and Storage Complex (MPSC) is being designed to process discarded waste tank internal hardware contaminated with mixed wastes, failed melters from the vitrification plant, and other Hanford Site high-level solid waste. The MPSC also will provide interim storage of other radioactive materials (irradiated fuel, canisters of vitrified high-level waste [HLW], special nuclear material [SNM], and other designated radioactive materials)

  18. Nuclear-fuel-cycle education: Module 2. Exploration, reserve estimation, mining, milling, conversion, and properties of uranium

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1981-12-01

    In this module geological and geochemical data pertinent to locating, mining, and milling of uranium are examined. Chapters are devoted to: uranium source characteristics; uranium ore exploration methods; uranium reserve estimation for sandstone deposits; mining; milling; conversion processes for uranium; and properties of uranium, thorium, plutonium and their oxides and carbides

  19. Monitoring fish, wildlife, radionuclides and chemicals at Hanford, Washington

    International Nuclear Information System (INIS)

    Gray, R.H.

    1989-02-01

    Concern about the effects of potential releases from nuclear and non-nuclear activities on the US Department of Energy's Hanford Site in southeastern Washington has evolved over four decades into a comprehensive environmental monitoring and surveillance program. The program includes field sampling, and chemical and physical analyses of air, surface and ground water, fish, wildlife, soil, foodstuffs, and natural vegetation. In addition to monitoring radioactivity in fish and wildlife, population numbers of key species are determined, usually during the breeding season. Data from monitoring efforts are used to assess the environmental impacts of Hanford operations and calculate the overall radiological dose to humans onsite, at the Site perimeter, or residing in nearby communities. Chinook salmon (Oncorhynchus tshawytscha) spawning in the Columbia River at Hanford has increased in recent years with a concomitant increase in winter nesting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is also increasing. Nesting Canada goose (Branta canadensis) and great blue heron (Ardea herodias), and various other animals, e.g., mule deer (Odocoileus hemionus) and coyotes (Canis latrans) are common. Measured exposure to penetrating radiation and calculated radiation doses to the public are well below applicable regulatory limits. 35 refs., 4 figs

  20. Site Support Program Plan for ICF Kaiser Hanford Company

    International Nuclear Information System (INIS)

    Benedetti, R.L.

    1994-10-01

    This document describes the Hanford Reservation site support program plan for each support division, in terms of safety, environmental concerns, costs, and reliability. Support services include the following: Piped Utilities; Electrical utilities; transportation; Energy management; General Administration Support Buildings; electrical safety upgrades. Contained in this Volume II is information covering the following: Operations and maintenance Utilities; Piped Utilities; Water systems Administration and Sampling; electrical utilities

  1. Site Support Program Plan for ICF Kaiser Hanford Company

    International Nuclear Information System (INIS)

    Benedetti, R.L.

    1994-10-01

    This document describes the Hanford Reservation site support program plan for each support division, in terms of safety, environmental concerns, costs, and reliability. Support services include the following: Piped Utilities; Electrical utilities; transportation; Energy management; General Administration Support Buildings; electrical safety upgrades. This Volume III discusses Operations and Maintenance Transportation and the Transportation Department including fleet maintenance, railroad operations and track maintenance, bus operations, solid waste disposal, special delivery services, and road maintenance

  2. In situ characterization of Hanford K Basins fuel

    Energy Technology Data Exchange (ETDEWEB)

    Pitner, A.L.

    1998-01-06

    Irradiated N Reactor uranium metal fuel is stored underwater in the Hanford K East and K West Basins. In K East Basin, fuel is stored in open canisters and defected fuel is free to react with the basin water. In K West Basin, the fuel is stored in sealed canisters filled with water containing a corrosion inhibitor (potassium nitrite). To gain a better understanding of the physical condition of the fuel in these basins, visual surveys using high resolution underwater cameras were conducted. The inspections included detailed lift and look examinations of a number of fuel assemblies from selected canisters in each basin. These examinations formed the bases for selecting specific fuel elements for laboratory testing and analyses as prescribed in the characterization plan for Hanford K Basin Spent Nuclear Fuel.

  3. HANFORDS PUBLIC TOUR PROGRAM - AN EXCELLENT EDUCATIONAL TOOL

    Energy Technology Data Exchange (ETDEWEB)

    SINCLAIR KM

    2010-12-07

    Prior to 2001, the Department of Energy (DOE) sponsored limited tours of the Hanford Site for the public, but discontinued the program after the 9/11 terrorist attacks on the U.S. In 2003, DOE's Richland Operations Office (DOE-RL) requested the site's prime contractor to reinstate the public tour program starting in 2004 under strict controls and security requirements. The planning involved a collaborative effort among the security, safety and communications departments of DOE-RL and the site's contracting companies. This paper describes the evolution of, and enhancements to, Hanford's public tours, including the addition of a separate tour program for the B Reactor, the first full-scale nuclear reactor in the world. Topics included in the discussion include the history and growth of the tour program, associated costs, and visitor surveys and assessments.

  4. Hanford's Public Tour Program - An Excellent Educational Tool

    International Nuclear Information System (INIS)

    Sinclair, K.M.

    2010-01-01

    Prior to 2001, the Department of Energy (DOE) sponsored limited tours of the Hanford Site for the public, but discontinued the program after the 9/11 terrorist attacks on the U.S. In 2003, DOE's Richland Operations Office (DOE-RL) requested the site's prime contractor to reinstate the public tour program starting in 2004 under strict controls and security requirements. The planning involved a collaborative effort among the security, safety and communications departments of DOE-RL and the site's contracting companies. This paper describes the evolution of, and enhancements to, Hanford's public tours, including the addition of a separate tour program for the B Reactor, the first full-scale nuclear reactor in the world. Topics included in the discussion include the history and growth of the tour program, associated costs, and visitor surveys and assessments.

  5. Integration of models for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Napier, B.A.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at Hanford since 1944. The objective of phase 1 of the project was to demonstrate through calculations that adequate models and support data exist or could be developed to allow realistic estimations of doses to individuals from releases of radionuclides to the environment that occurred as long as 45 years ago. Much of the data used in phase 1 was preliminary; therefore, the doses calculated must be considered preliminary approximations. This paper describes the integration of various models that was implemented for initial computer calculations. Models were required for estimating the quantity of radioactive material released, for evaluating its transport through the environment, for estimating human exposure, and for evaluating resultant doses

  6. Work plan for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that populations could have received from nuclear operations at the Hanford Site since 1944, with descriptions of uncertainties inherent in such estimates. The secondary objective is to make project records--information that HEDR staff members used to estimate radiation doses--available to the public. Preliminary dose estimates for a limited geographic area and time period, certain radionuclides, and certain populations are planned to be available in 1990; complete results are planned to be reported in 1993. Project reports and references used in the reports are available to the public in the DOE Public Reading Room in Richland, Washington. Project progress is documented in monthly reports, which are also available to the public in the DOE Public Reading Room.

  7. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  8. History of Hanford Site Defense Production (Brief)

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2001-01-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  9. PROJECT HANFORD MANAGEMENT CONTRACT (PHMC) PERFORMANCE REPORT 05/2004 (WWW.HANFORD.GOV/EMPR.INDEX.CFM)

    International Nuclear Information System (INIS)

    PIELSTICK, R.M.

    2004-01-01

    This report is the monthly performance summary of the Central Plateau Contractors. FH work scope responsibilities are described, and other contractor/RL-managed work is excluded. Section A, Overview, provides a summary of the cost, schedule, and technical performance described in this report. It summarizes performance for the period covered, highlights areas worthy of management attention, and provides key performance activities as extracted from the contractor baseline. Subsequent sections of this report provide detailed performance data relative to contract sections (e.g., Project Hanford Cleanup Work Summary, Waste and Spent Nuclear Fuel Management Operations, Infrastructure and Hanford Site Services, and other Work Scope). All information is as of the end of May 2004 unless otherwise noted

  10. Environmental surveillance at Hanford for CY-1981

    International Nuclear Information System (INIS)

    Sula, M.J.; McCormack, W.D.; Dirkes, R.L.; Price, K.R.; Eddy, P.A.

    1982-05-01

    Environmental surveillance activities performed by the Pacific Northwest Laboratory for 1981 are discussed. The results are summarized as follows: Radionuclide concentrations and radiation dose measurements were below applicable concentration guides and radiation dose standards. There was no difference detected between airborne radionuclide concentrations in samples collected near to and far from the Hanford Site. A difference in 129 I concentration in Columbia River water downstream compared to upstream was observed. Strontium-90 concentrations downstream remained similar to past years while reduced concentrations were observed in the upstream samples. In addition, 60 Co and 131 I were observed more frequently in the downstream river water samples than in the upstream samples. In all cases, the downstream radionuclide concentrations were small in comparison to DOE radionuclide concentration guides and state and EPA drinking water standards. Low concentrations of radionuclides attributed to operations were observed in wildlife collected onsite. Low concentrations of fallout radionuclides from worldwide atmospheric nuclear testing were observed in foodstuffs and in soil and vegetation; there was no indication of a Hanford contribution to radionuclide levels. The highest penetrating dose rates were in the vicinities of the 100N and 300 Areas. Dose rates at both locations resulted from the presence, within the operating areas, of contained radioactive materials. Nonradiological water quality parameters were all within State Water Quality Standards for the Columbia River. The maximum 50-year whole body dose commitment to an individual from effluents released in 1981 was calculated to be 0.4 mrem. The maximum 50-year dose to a single organ, considering all pathways was approximately 1.3 mrem to the bone, primarily due to 90 Sr in the Columbia River

  11. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  12. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  13. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  14. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    International Nuclear Information System (INIS)

    Prendergast-Kennedy, Ellen L.; Harvey, David W.

    2006-01-01

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  15. Westinghouse Hanford Company operational environmental monitoring annual report, calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Fassett, J.W.; Johnson, A.R.; Johnson, V.G.; Markes, B.M.; McKinney, S.M.; Moss, K.J.; Perkins, C.J.; Richterich, L.R.

    1995-08-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1994 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  16. Westinghouse Hanford Company operational environmental monitoring annual report - calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W., Westinghouse Hanford

    1996-07-30

    This document summarizes the results of the Westinghouse Hanford Company (WHC) near-facility operational environmental monitoring for 1995 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water,groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  17. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Ellen P.; Harvey, David W.

    2006-09-08

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  18. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  19. Pollution prevention opportunity assessments at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Betsch, M.D., Westinghouse Hanford

    1996-06-26

    The Pollution Prevention Opportunity Assessment (PPOA) is a pro- active way to look at a waste generating activity and identify opportunities to minimize wastes through a cost benefit analysis. Hanford`s PPOA process is based upon the graded approach developed by the Kansas City Plant. Hanford further streamlined the process while building in more flexibility for the individual users. One of the most challenging aspects for implementing the PPOA process at Hanford is one overall mission which is environmental restoration, Now that the facilities are no longer in production, each has a different non- routine activity making it difficult to quantify the inputs and outputs of the activity under consideration.

  20. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    Energy Technology Data Exchange (ETDEWEB)

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  1. Field trip guide to the Hanford Site

    International Nuclear Information System (INIS)

    Reidel, S.P.; Lindsey, K.A.; Fecht, K.R.

    1992-11-01

    This report is designed to provide a guide to the key geologic and hydrologic features of the US Department of Energy's Hanford Site located in south-central Washington. The guide is divided into two parts. The first part is a general introduction to the geology of the Hanford Site and its relation to the regional framework of south-central Washington. The second part is a road log that provides directions to important geologic features on the Hanford Site and descriptions of the locality. The exposures described were chosen for their accessibility and importance to the geologic history of the Hanford Site and to understanding the geohydrology of the Site

  2. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  3. Mortality of Hanford radiation workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1980-01-01

    Mortality from all causes for white males employed at Hanford for at least two years is 75 percent of that expected on the basis of US vital statistics. Mortality from cancer is 85 percent of that expected. These results are typical of a working population. Neither death from all causes nor death from all cancer types shows a positive correlation with external radiation exposures. Myeloid leukemia, the disease that several studies have found to be associated most strongly with radiation exposure, is not correlated with external radiation exposure of Hanford workers. Two specific cancers, multiple myeloma and to a lesser extent cancer of the pancreas, were found to be positively correlated with radiation exposure. The correlations identified result entirely from a small number of deaths (3 each for multiple myeloma and cancer of the pancreas) with cumulative exposure greater than 15 rem

  4. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs

  5. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Well subject area of the Hanford Environmental Information System (HEIS) manages data relevant to wells, boreholes and test pits constructed at the Hanford Site for soil sampling, geologic analysis and/or ground-water monitoring, and sampling for hydrochemical and radiological analysis. Data stored in the Well subject area include information relevant to the construction of the wells and boreholes, structural modifications to existing wells and boreholes, the location of wells, boreholes and test pits, and the association of wells, boreholes and test pits with organization entities such as waste sites. Data resulting from ground-water sampling performed at wells are stored in tables in the Ground-Water subject area. Geologic data collected during drilling, including particle sizing and interpretative geologic summaries, are stored in tables in the Geologic subject area. Data from soil samples taken during the drilling or excavation and sent for chemical and/or radiological analysis are stored in the Soil subject area

  6. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Biota subject area of the Hanford Environmental Information System (HEIS) is to manage the data collected from samples of plants and animals. This includes both samples taken from the plant or animal or samples related to the plant or animal. Related samples include animal feces and animal habitat. Data stored in the Biota subject area include data about the biota samples taken, analysis results counts from population studies, and species distribution maps

  7. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Soil subject area of the Hanford Environmental Information System (HEIS) is to manage the data acquired from soil samples, both geologic and surface, and sediment samples. Stored in the Soil subject area are data relevant to the soil samples, laboratory analytical results, and field measurements. The two major types of data make up the Soil subject area are data concerning the samples and data about the chemical and/or radiologic analyses of soil samples

  8. Progress and future directions for remediation of Hanford facilities and contaminated sites

    International Nuclear Information System (INIS)

    McClain, L.K.; Nemec, J.F.

    1996-01-01

    A great deal of physical progress is being made in the Hanford Environmental Restoration (ER) Project, which is responsible for the portion of work at Hanford that deals with contaminated soil and groundwater, and with inactive nuclear facilities. This work accounts for 10 to 15 percent of the Hanford site budget. (Other US Department of Energy [DOE] programs and contractors are responsible for the high-level liquid waste in underground storage tanks and the spent nuclear fuel). The project open-quotes closed the circleclose quotes on environmental restoration at Hanford this summer when the Environmental Restoration Disposal Facility (ERDF) went into operation and began receiving wastes being excavated from contaminated areas in Hanford's open-quotes 100 Areaclose quotes along the Columbia River. With this milestone event, environmental restoration at Hanford now has a clear path forward: (1) Waste areas along the Columbia River have been identified, volume estimates are being refined, and excavation has started. (2) The million-cubic-yard capacity ERDF is receiving waste from excavation in the 100 Area. (3) Deactivation of the N Reactor will be completed within a year. (4) Numerous other facilities in the 100 Area are being decommissioned, eliminating hazards and reducing the costs of surveillance and maintenance (S ampersand M). (5) A demonstration of long-term protective storage for one of the reactor blocks is in progress. (6) A comprehensive groundwater treatment strategy is in place. This paper describes the Hanford ER project, the progress being made, and the management techniques that are making the project successful

  9. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. HEIS is an information system with an inclusive database. Although the database is the nucleus of the system, HEIS also provides user access software: query-by-form data entry, extraction, and browsing facilities; menu-driven reporting facilities; an ad hoc query facility; and a geographic information system (GIS). These features, with the exception of the GIS, are described in this manual set. Because HEIS contains data from the entire Hanford Site, many varieties of data are included and have.been divided into subject areas. Related subject areas comprise several volumes of the manual set. The manual set includes a data dictionary that lists all of the fields in the HEIS database, with their definitions and a cross reference of their locations in the database; definitions of data qualifiers for analytical results; and a mapping between the HEIS software functions and the keyboard keys for each of the supported terminals or terminal emulators

  10. Hanford Site surface environmental surveillance

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1998-01-01

    Environmental surveillance of the Hanford Site and the surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to US Department of Energy (DOE) environmental protection policies, support DOE environmental management decisions, and provide information to the public. The Surface Environmental Surveillance Project (SESP) is a multimedia environmental monitoring program conducted to measure the concentrations of radionuclides and chemical contaminants in the environment and assess the integrated effects of these contaminants on the environment and the public. The monitoring program includes sampling air, surface water, sediments, soil, natural vegetation, agricultural products, fish, and wildlife. Functional elements inherent in the operation of the SESP include project management, quality assurance/control, training, records management, environmental sampling network design and implementation, sample collection, sample analysis, data management, data review and evaluation, exposure assessment, and reporting. The SESP focuses on those contaminant/media combinations calculated to have the highest potential for contributing to off-site exposure. Results of the SESP indicate that contaminant concentrations in the Hanford environs are very low, generally below environmental standards, at or below analytical detection levels, and indicative of environmental levels. However, areas of elevated contaminant concentrations have been identified at Hanford. The extent of these areas is generally limited to past operating areas and waste disposal sites

  11. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs

  12. RADIONUCLIDE AIR EMISSIONS REPORT FOR THE HANFORD SITE CY2003

    International Nuclear Information System (INIS)

    ROKKAN, D.J.

    2004-01-01

    This report documents radionuclide air emissions from the US Department of Energy (DOE) Hanford Site in 2003 and the resulting effective dose equivalent (EDE) to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities''; Washington Administrative Code (WAC) Chapter 246-247, ''Radiation Protection-Air Emissions''; 10 CFR 830.120, Quality Assurance; DOE Order 414.1B, Quality Assurance; NQA-1, Quality Assurance Requirements for Nuclear Facility Application; EPA QA/R-2, EPA Requirements for Quality Management Plans; and EPA QA/R-5, Requirements for Quality Assurance Project Plans. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from DOE facilities and the resulting public dose from those emissions. A standard of 10 mrem/yr EDE is not to be exceeded. The EDE to the MEI due to routine and nonroutine emissions in 2003 from Hanford Site point sources was 0.022 mrem (0.00022 mSv), or 0.22 percent of the federal standard. The portions of the Hanford Site MEI dose attributable to individual point sources as listed in Section 2.0 are appropriate for use in demonstrating the compliance of abated stack emissions with applicable terms of the Hanford Site Air Operating Permit and of Notices of Construction. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations, yet further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. WAC 246-247 also requires the reporting of radionuclide emissions from all Hanford Site sources during routine as well as nonroutine operations. The EDE from

  13. Hanford Radiological Protection Support Services Annual Report for 1999

    International Nuclear Information System (INIS)

    TP Lynch; DE Bihl; ML Johnson; MA MacLellan; RK Piper

    2000-01-01

    During calendar year (CY) 1999, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations Office (RL) and the Hanford contractors. These services included: (1) external dosimetry, (2) internal dosimetry, (3) in vivo measurements, (4) radiological records, (5) instrument calibration and evaluation, and (6) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST). The services were provided under a number of programs as summarized here. Along with providing site-wide nuclear accident and environmental dosimetry capabilities, the Hanford External Dosimetry Program (HEDP) supports Hanford radiation protection programs by providing external radiation monitoring capabilities for all Hanford workers and visitors to help ensure their health and safety. Processing volumes decreased in CY 1999 relative to prior years for all types of dosimeters, with an overall decrease of 19%. During 1999, the HEDP passed the National Voluntary Laboratory Accreditation Program (NVLAP) performance testing criteria in 15 different categories. HEDP computers and processors were tested and upgraded to become Year 2000 (Y2K) compliant. Several changes and improvements were made to enhance the interpretation of dosimeter results. The Hanford Internal Dosimetry Program (HIDP) provides for the assessment and documentation of occupational dose from intakes of radionuclides at the Hanford Site. Performance problems carried over from CY 1998 continued to plague the in vitro bioassay contractor. A new contract was awarded for the in vitro bioassay program. A new computer system was put into routine operation by the in vivo bioassay program. Several changes to HIDP protocols were made that were related to bioassay grace periods, using field data to characterize the amount of alpha activity present and using a new default particle

  14. Hanford Radiological Protection Support Services Annual Report for 1999

    Energy Technology Data Exchange (ETDEWEB)

    TP Lynch; DE Bihl; ML Johnson; MA MacLellan; RK Piper

    2000-05-19

    During calendar year (CY) 1999, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations Office (RL) and the Hanford contractors. These services included: (1) external dosimetry, (2) internal dosimetry, (3) in vivo measurements, (4) radiological records, (5) instrument calibration and evaluation, and (6) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST). The services were provided under a number of programs as summarized here. Along with providing site-wide nuclear accident and environmental dosimetry capabilities, the Hanford External Dosimetry Program (HEDP) supports Hanford radiation protection programs by providing external radiation monitoring capabilities for all Hanford workers and visitors to help ensure their health and safety. Processing volumes decreased in CY 1999 relative to prior years for all types of dosimeters, with an overall decrease of 19%. During 1999, the HEDP passed the National Voluntary Laboratory Accreditation Program (NVLAP) performance testing criteria in 15 different categories. HEDP computers and processors were tested and upgraded to become Year 2000 (Y2K) compliant. Several changes and improvements were made to enhance the interpretation of dosimeter results. The Hanford Internal Dosimetry Program (HIDP) provides for the assessment and documentation of occupational dose from intakes of radionuclides at the Hanford Site. Performance problems carried over from CY 1998 continued to plague the in vitro bioassay contractor. A new contract was awarded for the in vitro bioassay program. A new computer system was put into routine operation by the in vivo bioassay program. Several changes to HIDP protocols were made that were related to bioassay grace periods, using field data to characterize the amount of alpha activity present and using a new default particle

  15. Hanford Waste Vitrification Plant - the project and process systems

    International Nuclear Information System (INIS)

    Swenson, L.D.; Miller, W.C.; Smith, R.A.

    1990-01-01

    The Hanford Waste Vitrification Plant (HWVP) project is scheduled to start construction on the Hanford reservation in southeastern Washington State in 1991. The project will immobilize the liquid high-level defense waste stored there. The HWVP represents the third phase of the U.S. Department of Energy (DOE) activities that are focused on the permanent disposal of high-level radioactive waste, building on the experience of Defense Waste Processing Facility (DWPF) at the Savannah River site, South Carolina, and of the West Valley Demonstration Plant (WVDP), New York. This sequential approach to disposal of the country's commercial and defense high-level radioactive waste allows HWVP to make extensive use of lessons learned from the experience of its predecessors, using mature designs from the earlier facilities to achieve economies in design and construction costs while enhancing operational effectiveness

  16. Gas generation from Hanford grout samples

    International Nuclear Information System (INIS)

    Jonah, C.D.; Kapoor, S.; Matheson, M.S.; Mulac, W.A.; Meisel, D.

    1996-01-01

    In an extension of our work on the radiolytic processes that occur in the waste tanks at the Hanford site, we studied the gas generation from grout samples that contained nuclear waste simulants. Grout is one option for the long-term storage of low-level nuclear waste solutions but the radiolytic effects on grout have not been thoroughly defined. In particular, the generation of potentially flammable and hazardous gases required quantification. A research team at Argonne examined this issue and found that the total amount of gases generated radiolytically from the WHC samples was an order of magnitude higher than predicted. This implies that novel pathways fro charge migration from the solid grout to the associated water are responsible for gas evolution. The grout samples produced hydrogen, nitrous oxide, and carbon monoxide as well as nitrogen and oxygen. Yields of each of these substances were determined for doses that are equivalent to about 80 years storage of the grout. Carbon monoxide, which was produced in 2% yield, is of particular importance because even small amounts may adversely affect catalytic conversion instrumentation that has been planned for installation in the storage vaults

  17. Hanford contact-handled transuranic drum retrieval project planning document

    International Nuclear Information System (INIS)

    DEMITER, J.A.

    1998-01-01

    The Hanford Site is one of several US Department of Energy (DOE) sites throughout the US that has generated and stored transuranic (TRU) wastes. The wastes were primarily placed in 55-gallon drums, stacked in trenches, and covered with soil. In 1970, the Nuclear Regulatory Commission ordered that TRU wastes be segregated from other radioactive wastes and placed in retrievable storage until such time that the waste could be sent to a geologic repository and permanently disposed. Retrievable storage also defined container storage life by specifying that a container must be retrievable as a contamination-free container for 20 years. Hanford stored approximately 37,400 TRU containers in 20-year retrievable storage from 1970 to 1988. The Hanford TRU wastes placed in 20-year retrievable storage are considered disposed under existing Resource Conservation and Recovery Act (RCRA) regulations since they were placed in storage prior to September 1988. The majority of containers were 55-gallon drums, but 20-year retrievable storage includes several TRU wastes covered with soil in different storage methods

  18. Hanford double shell tank corrosion monitoring instrument trees

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  19. System Planning With The Hanford Waste Operations Simulator

    International Nuclear Information System (INIS)

    Crawford, T.W.; Certa, P.J.; Wells, M.N.

    2010-01-01

    At the U. S. Department of Energy's Hanford Site in southeastern Washington State, 216 million liters (57 million gallons) of nuclear waste is currently stored in aging underground tanks, threatening the Columbia River. The River Protection Project (RPP), a fully integrated system of waste storage, retrieval, treatment, and disposal facilities, is in varying stages of design, construction, operation, and future planning. These facilities face many overlapping technical, regulatory, and financial hurdles to achieve site cleanup and closure. Program execution is ongoing, but completion is currently expected to take approximately 40 more years. Strategic planning for the treatment of Hanford tank waste is by nature a multi-faceted, complex and iterative process. To help manage the planning, a report referred to as the RPP System Plan is prepared to provide a basis for aligning the program scope with the cost and schedule, from upper-tier contracts to individual facility operating plans. The Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulation and mass balance computer model, is used to simulate the current planned RPP mission, evaluate the impacts of changes to the mission, and assist in planning near-term facility operations. Development of additional modeling tools, including an operations research model and a cost model, will further improve long-term planning confidence. The most recent RPP System Plan, Revision 4, was published in September 2009.

  20. Environmental status of the Hanford Site for CY-1981

    International Nuclear Information System (INIS)

    Sula, M.J.; Blumer, P.J.; Dirkes, R.L.

    1982-08-01

    Samples of air, surface water, soil, vegetation, and wildlife were collected and external penetrating radiation dose measurements were made in the vicinity of the major operating areas on the Hanford Site. The samples were analyzed for radioactive constituents including tritium, strontium-90, plutonium, and gamma-emitting radionuclides. In addition, site roads, railroad tracks, and burial grounds were surveyed periodically to detect any abnormal levels of radioactivity. Radioactive and nonradioactive waste discharges and environmentally related unusual occurrences reported for the major operating areas were reviewed and summarized. Results indicate that general levels of airborne particulate radioactivity in the Hanford environs were greater in 1981 than in recent years as a result of fallout from a foreign atmospheric nuclear test conducted in late 1980. Levels of radioactivity in airborne particulates began decreasing during the summer and by the end of the year had returned to levels observed prior to the test. Airborne strontium-90, plutonium, and tritium concentrations at the onsite sampling stations were not significantly different from background measurements. Radioiodine was not identified in any air sample during 1981. Strontium-90 and cesium-137 concentrations in B-Pond water were lower compared to levels observed during 1980. Analyses of tissue samples from several types of wildlife collected onsite continue to indicate that Hanford-produced radionuclides in some areas are accessible to wildlife. Several onsite soil and vegetation samples contained radionuclide concentrations above background levels. However, observed levels were similar to those reported in recent years

  1. The changing face of Hanford security 1990--1994

    International Nuclear Information System (INIS)

    Thielman, J.

    1995-01-01

    The meltdown of the Cold War was a shock to the systems built to cope with it. At the DOE's Hanford Site in Washington State, a world-class safeguards and security system was suddenly out of step with the times. The level of protection for nuclear and classified materials was exceptional. But the cost was high and the defense facilities that funded security were closing down. The defense mission had created an umbrella of security over the sprawling Hanford Site. Helicopters designed to ferry special response teams to any trouble spot on the 1,456 square-kilometer site made the umbrella analogy almost literally true. Facilities were grouped into areas, fenced off like a military base, and entrance required a badge check for everyone. Within the fence, additional rings of protection were set up around security interests or targets. The security was effective, but costly to operate and inconvenient for employees and visitors alike. Moreover, the umbrella meant that virtually all employees needed a security clearance just to get to work, whether they worked on classified or unclassified projects. Clearly, some fundamental rethinking of safeguards and security was needed. The effort to meet that challenge is the story of transition at Hanford and documented here

  2. Making a Lasting Impression: Recovery Act Reporting At Hanford - 12528

    Energy Technology Data Exchange (ETDEWEB)

    Tebrugge, Kimberly; Disney, Maren [CH2MHILL Plateau Remediation Company, Richland, WA (United States)

    2012-07-01

    The award of American Recovery and Reinvestment Act funding came with an unprecedented request for transparency to showcase to the American public how the stimulus funding was being put to work to achieve the goals put forth by the U.S. Government. At the U.S. Department of Energy Hanford Site, this request manifested in a contract requirement to provide weekly narrative, photos and video to highlight Recovery Act-funded projects. For DOE contractor CH2M HILL Plateau Remediation Company (CH2M HILL), the largest recipient of Hanford's funding, the reporting mechanism evolved into a communications tool for documenting the highly technical cleanup, then effectively sharing that story with the DOE and its varying stakeholder audiences. The report set the groundwork for building a streaming narrative of week-by-week progress. With the end of the Recovery Act, CH2M HILL is applying lessons learned from this stringent, transparent reporting process to its long-term reporting and communications of the progress being made in nuclear decommissioning at Hanford. (authors)

  3. Hydrologic test plans for large-scale, multiple-well tests in support of site characterization at Hanford, Washington

    International Nuclear Information System (INIS)

    Rogers, P.M.; Stone, R.; Lu, A.H.

    1985-01-01

    The Basalt Waste Isolation Project is preparing plans for tests and has begun work on some tests that will provide the data necessary for the hydrogeologic characterization of a site located on a United States government reservation at Hanford, Washington. This site is being considered for the Nation's first geologic repository of high level nuclear waste. Hydrogeologic characterization of this site requires several lines of investigation which include: surface-based small-scale tests, testing performed at depth from an exploratory shaft, geochemistry investigations, regional studies, and site-specific investigations using large-scale, multiple-well hydraulic tests. The large-scale multiple-well tests are planned for several locations in and around the site. These tests are being designed to provide estimates of hydraulic parameter values of the geologic media, chemical properties of the groundwater, and hydrogeologic boundary conditions at a scale appropriate for evaluating repository performance with respect to potential radionuclide transport

  4. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  5. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  6. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  7. Public involvement in environmental surveillance at Hanford

    International Nuclear Information System (INIS)

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation's first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford's perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools

  8. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  9. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  10. Hanford Site Risk Assessment Methodology. Revision 3

    International Nuclear Information System (INIS)

    1995-05-01

    This methodology has been developed to prepare human health and ecological evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigations (RI) and the Resource conservation and Recovery Act of 1976 (RCRA) facility investigations (FI) performed at the Hanford Site pursuant to the hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies site-specific risk assessment considerations and integrates them with approaches for evaluating human and ecological risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  11. Interface agreement for the management of 308 Building Spent Nuclear Fuel. Revision 1

    International Nuclear Information System (INIS)

    Danko, A.D.

    1995-01-01

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. Specifically, the mission of the SNF Project on the Hanford Site is to ''provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it for final disposition.'' The current mission of the Fuel Fabrication Facilities Transition Project (FFFTP) is to transition the 308 Building for turn over to the Environmental Restoration Contractor for decontamination and decommissioning

  12. Immobilization of Radionuclides in the Hanford Vadose Zone by Incorporation in Solid Phases

    International Nuclear Information System (INIS)

    Brown, Gordon E. Jr.; Catalano, Jeffrey G.; Warner, Jeffrey A.; Samual Shaw; Daniel Grolimund

    2005-01-01

    The Department of Energy's Hanford Nuclear Site located in Washington State has accumulated over 2 million curies of radioactive waste from activities related to the production of plutonium (Ahearne, 1997). Sixty-seven of the single-shelled tanks located at the site are thought to have leaked, allowing between 2 and 4 million liters of waste fluids into the underlying vadose zone. The chemical processes employed at the Hanford Site to extract plutonium, as well as the need to minimize corrosion of the high-carbon steel storage tanks, resulted in uncharacterized hyperalkaline waste streams rich in radionuclides as well as other species including significant amounts of sodium and aluminum

  13. Tank farm nuclear criticality review

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1996-01-01

    The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site

  14. Hanford coring bit temperature monitor development testing results report

    International Nuclear Information System (INIS)

    Rey, D.

    1995-05-01

    Instrumentation which directly monitors the temperature of a coring bit used to retrieve core samples of high level nuclear waste stored in tanks at Hanford was developed at Sandia National Laboratories. Monitoring the temperature of the coring bit is desired to enhance the safety of the coring operations. A unique application of mature technologies was used to accomplish the measurement. This report documents the results of development testing performed at Sandia to assure the instrumentation will withstand the severe environments present in the waste tanks

  15. The Westinghouse Hanford Company Operational Environmental Monitoring Program CY-93

    International Nuclear Information System (INIS)

    Schmidt, J.W.

    1993-10-01

    The Operational Environmental Monitoring Program (OEMP) provides facility-specific environmental monitoring to protect the environment adjacent to facilities under the responsibility of Westinghouse Hanford Company (WHC) and assure compliance with WHC requirements and local, state, and federal environmental regulations. The objectives of the OEMP are to evaluate: compliance with federal (DOE, EPA), state, and internal WHC environmental radiation protection requirements and guides; performance of radioactive waste confinement systems; and trends of radioactive materials in the environment at and adjacent to nuclear facilities and waste disposal sites. This paper identifies the monitoring responsibilities and current program status for each area of responsibility

  16. IMPACTS OF SAFETY and QUALITY IN ENVIRONMENTAL RESTORATION AT HANFORD

    International Nuclear Information System (INIS)

    PREVETTE, S.S.

    2004-01-01

    The aim of this paper is to demonstrate the integration of safety methodology, quality tools, leadership, and teamwork at Hanford and their significant positive impact on safe performance of work. Control charts, Pareto Charts, Dr. W. Edward Deming's Red Bead Experiment, and Dr. Deming's System of Profound Knowledge have been the principal tools and theory of an integrated management system. Coupled with involved leadership and teamwork they have led to significant improvements in worker safety and protection, and environmental restoration at one of the nation's largest nuclear cleanup sites

  17. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    International Nuclear Information System (INIS)

    Peeler, D.

    1999-01-01

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  18. High level waste at Hanford: Potential for waste loading maximization

    International Nuclear Information System (INIS)

    Hrma, P.R.; Bailey, A.W.

    1995-09-01

    The loading of Hanford nuclear waste in borosilicate glass is limited by phase-related phenomena, such as crystallization or formation of immiscible liquids, and by breakdown of the glass structure because of an excessive concentration of modifiers. The phase-related phenomena cause both processing and product quality problems. The deterioration of product durability determines the ultimate waste loading limit if all processing problems are resolved. Concrete examples and mass-balance based calculations show that a substantial potential exists for increasing waste loading of high-level wastes that contain a large fraction of refractory components

  19. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.

    1999-06-22

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  20. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    International Nuclear Information System (INIS)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented

  1. Chernobyl reaction: Harris, Seabrook hit; DOE backs Hanford-N

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The Chernobyl-4 reactor did not cause as intense an antinuclear reaction as the Three Mile Island accident. Turnout at public protest demonstrations was modest, with the largest taking place at the Seabrook and Harris sites. A review of the Hanford-N reactor which is similar to the Soviet design, is underway. The Nuclear Regulatory Commission reports pressure switch failures at the LaSalle-2 units, litigation over the power licensing of the Shorham unit, and other safety compliance and accident problems associated with other units seeking licensing. The report also covers court actions involving rate actions and debt ratings

  2. Transportation risk assessment of radioactive wastes generated by the N-Reactor stabilization program at the Hanford Site, Washington

    International Nuclear Information System (INIS)

    Wheeler, T.

    1994-12-01

    The potential radiological and nonradiological risks associated with specific radioactive waste shipping campaigns at the Hanford Site are estimated. The shipping campaigns analyzed are associated with the transportation of wastes from the N-Reactor site at the 200-W Area, both within the Hanford Reservation, for disposal. The analysis is based on waste that would be generated from the N-Reactor stabilization program

  3. A study plan for determining recharge rates at the Hanford Site using environmental tracers

    International Nuclear Information System (INIS)

    Murphy, E.M.; Szercsody, J.E.; Phillips, S.J.

    1991-02-01

    This report presents a study plan for estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, 36 Cl, 3 H, and 2 H/ 18 O. Atmospheric levels of 36 Cl and 3 H increased during nuclear bomb testing in the Pacific, and the resulting ''bomb pulse'' or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resulted in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, 129 I, and 99 Tc. Seven study sites on the Hanford Site have been selected, in two primary soil types that are believed to represent the extremes in recharge, the Quincy sand and the Warden silt loam. An additional background study site upwind of the Hanford facilities has been chosen at the Yakima Firing Center. Six tracer techniques (total chloride, 36 Cl, 3 H, nitrate, 129 I, and 99 Tc) will be tested on at least one site in the Quincy sand, one site in the Warden silt loam, and the background site, to determine which combination of tracers works best for a given soil type. In subsequent years, additional sites will be investigated. The use of environmental tracers is perhaps the only cost-effective method for estimating the spatial variability of recharge at a site as large as Hanford. The tracer techniques used at Hanford have wide applicability at other arid sites. 166 refs., 41 figs., 16 tabs

  4. Application of new technologies for characterization of Hanford Site high-level waste

    International Nuclear Information System (INIS)

    Winters, W.I.

    1998-01-01

    To support remediation of Hanford Site high-level radioactive waste tanks, new chemical and physical measurement technologies must be developed and deployed. This is a major task of the Chemistry Analysis Technology Support (CATS) group of the Hanford Corporation. New measurement methods are required for efficient and economical resolution of tank waste safety, waste retrieval, and disposal issues. These development and deployment activities are performed in cooperation with Waste Management Federal Services of Hanford, Inc. This paper provides an overview of current analytical technologies in progress. The high-level waste at the Hanford Site is chemically complex because of the numerous processes used in past nuclear fuel reprocessing there, and a variety of technologies is required for effective characterization. Programmatic and laboratory operational needs drive the selection of new technologies for characterizing Hanford Site high-level waste, and these technologies are developed for deployment in laboratories, hot cells or in the field. New physical methods, such as the propagating reactive systems screening tool (PRSST) to measure the potential for self-propagating reactions in stored wastes, are being implemented. Technology for sampling and measuring gases trapped within the waste matrix is being used to evaluate flammability hazards associated with gas releases from stored wastes. Application of new inductively coupled plasma and laser ablation mass spectrometry systems at the Hanford Site's 222-S Laboratory will be described. A Raman spectroscopy probe mounted in a cone penetrometer to measure oxyanions in wastes or soils will be described. The Hanford Site has used large volumes of organic complexants and acids in processing waste, and capillary zone electrophoresis (CZE) methods have been developed for determining several of the major organic components in complex waste tank matrices. The principles involved, system installation, and results from

  5. The Hanford Site: An anthology of early histories

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford's early reactors were crucial to the sites's history; T-Plant made chemical engineering history; the UO 3 plant has a long history of service. PUREX Plant: the Hanford Site's Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon

  6. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  7. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    This report discusses the procedures that establish the configuration control processes for the Hanford Environmental Information System (HEIS) software. The procedures also provide the charter and function of the HEIS Configuration Control Board (CCB) for maintaining software. The software configuration control items covered under these procedures include the HEIS software and database structure. The configuration control processes include both administrative and audit functions. The administrative role includes maintaining the overall change schedule, ensuring consistency of proposed changes, negotiating change plan adjustments, setting priorities, and tracking the status of changes. The configuration control process audits to ensure that changes are performed to applicable standards

  8. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    Schreck, R.I.

    1994-01-01

    The Hanford Environmental Information System (HEIS) Subject Area manuals are designed as reference guides, that is, each chapter provides the information needed to make best use of each subject area, its tables, and reporting capabilities. Each subject area is documented in a chapter in one of the subject area manuals. Because these are reference manuals, most of the information is also available in the online help system as well. See Section 5.4.2 of the HEIS User's Guide (DOE-RL 1994a) for a detailed description of the online help

  9. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  10. Hanford general employee training: Computer-based training instructor's manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Computer-Based Training portion of the Hanford General Employee Training course is designed to be used in a classroom setting with a live instructor. Future references to this course'' refer only to the computer-based portion of the whole. This course covers the basic Safety, Security, and Quality issues that pertain to all employees of Westinghouse Hanford Company. The topics that are covered were taken from the recommendations and requirements for General Employee Training as set forth by the Institute of Nuclear Power Operations (INPO) in INPO 87-004, Guidelines for General Employee Training, applicable US Department of Energy orders, and Westinghouse Hanford Company procedures and policy. Besides presenting fundamental concepts, this course also contains information on resources that are available to assist students. It does this using Interactive Videodisk technology, which combines computer-generated text and graphics with audio and video provided by a videodisk player.

  11. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    International Nuclear Information System (INIS)

    Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

    1995-09-01

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks

  12. Computational model design specification for Phase 1 of the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Napier, B.A.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emission from nuclear operations at Hanford since their inception in 1944. The purpose of this report is to outline the basic algorithm and necessary computer calculations to be used to calculate radiation doses specific and hypothetical individuals in the vicinity of Hanford. The system design requirements, those things that must be accomplished, are defined. The system design specifications, the techniques by which those requirements are met, are outlined. Included are the basic equations, logic diagrams, and preliminary definition of the nature of each input distribution. 4 refs., 10 figs., 9 tabs

  13. Soil structural analysis tools and properties for Hanford site waste tank evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

    1995-09-01

    As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks.

  14. Computational model design specification for Phase 1 of the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Napier, B.A.

    1991-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emission from nuclear operations at Hanford since their inception in 1944. The purpose of this report is to outline the basic algorithm and necessary computer calculations to be used to calculate radiation doses specific and hypothetical individuals in the vicinity of Hanford. The system design requirements, those things that must be accomplished, are defined. The system design specifications, the techniques by which those requirements are met, are outlined. Included are the basic equations, logic diagrams, and preliminary definition of the nature of each input distribution. 4 refs., 10 figs., 9 tabs.

  15. Hanford Site Cleanup Challenges and Opportunities for Science and Technology--A Strategic Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W.; Johnson, Wayne L.; Kreid, Dennis K.; Walton, Terry L.

    2001-02-01

    The sheer expanse of the Hanford Site, the inherent hazards associated with the significant inventory of nuclear materials and wastes, the large number of aging contaminated facilities, the diverse nature and extent of environmental contamination, and the proximity to the Columbia River make Hanford perhaps the world's largest and most complex environmental cleanup project. It is not possible to address the more complex elements of this enormous challenge in a cost-effective manner without strategic investments in science and technology. Success requires vigorous and sustained efforts to enhance the science and technology basis, develop and deploy innovative solutions, and provide firm scientific bases to support site cleanup and closure decisions at Hanford.

  16. TBP and diluent mass balances in the PUREX Plant at Hanford, 1955--1991

    International Nuclear Information System (INIS)

    Sederburg, J.P.; Reddick, J.A.

    1994-12-01

    The purpose of this report is to develop an estimate of the quantities of tributyl phosphate and diluent discharged in aqueous waste streams to the tank farms from the Hanford Purex Plant over its operating life. Purex was not the sole source of organics in the tank farms, but was a major contributor. Tributyl phosphate (TBP) and diluent, which changed from Shell E-2342 reg-sign to Soltrol-170 reg-sign and then to normal paraffin hydrocarbon (NPH), were organic chemicals used in the Purex solvent extraction process at Hanford to separate plutonium and uranium from spent nuclear fuels. This report is an estimate of the material balances for these chemicals in the Purex Plant at Hanford over its entire operating life. The Purex Plant had cold start up in November 1955 and shut down in 1990. It's process used a solution of 30 vol% TBP in diluent

  17. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    International Nuclear Information System (INIS)

    TEDESCHI AR

    2008-01-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process

  18. Report on the vitrification and devitrification of Hanford, Washington soil. Final report

    International Nuclear Information System (INIS)

    King, J.A.; SubbaRao, S.C.

    1983-01-01

    This study as focused principally on the effects of melting or vitrification and recrystallization or devitrification on soil from the Hanford Reservation in Washington State. The fusion properties of soil are important because the containment of nuclear material in in-situ vitrified soil is a possible requirement. An understanding of the physical and chemical properties of the soil is important in determinaing how the soil can contain the nuclear material. The soil itself is composed of a plagioclastic feldspar, quartz, and hematite. The feldspar is made up of albite and anorthite. When the soil is heated, the first mineral to melt is the albite between 1100 0 C and 1200 0 C. The mineral anorthite melts above 1310 0 C and hematite below 1700 0 C. The quartz does not melt until the temperature exceeds 1715 0 C. The albite in the glass is sodium aluminosilicate. When the albite melts, microscopic spheres of non-crystalline, low-melting sodium silicate form. This indicates that the aluminosilicate matrix decomposes when heated. When crystals, which were previously fused, are heated: crystals begin to reform above 900 0 C. The minerals which crystallize are feldspar and magnetite, an iron oxide. Recrystallization should begin at a temperature 250 0 C below the liquidus point. The leaching of sodium, copper, calcium, and aluminum decreased with increasing fusion temperature, while the leaching of iron and barium increased with increasing fusion temperature

  19. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    International Nuclear Information System (INIS)

    GERBER MS

    2007-01-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site

  20. Isotopic Tracking of Hanford 300 Area Derived Uranium in the Columbia River

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, John N.; Dresel, P. Evan; Conrad, Mark E.; Patton, Gregory W.; DePaolo, Donald J.

    2010-10-31

    Our objectives in this study are to quantify the discharge rate of uranium (U) to the Columbia River from the Hanford Site's 300 Area, and to follow that U down river to constrain its fate. Uranium from the Hanford Site has variable isotopic composition due to nuclear industrial processes carried out at the site. This characteristic makes it possible to use high-precision isotopic measurements of U in environmental samples to identify even trace levels of contaminant U, determine its sources, and estimate discharge rates. Our data on river water samples indicate that as much as 3.2 kg/day can enter the Columbia River from the 300 Area, which is only a small fraction of the total load of dissolved natural background U carried by the Columbia River. This very low-level of Hanford derived U can be discerned, despite dilution to < 1 percent of natural background U, 350 km downstream from the Hanford Site. These results indicate that isotopic methods can allow the amounts of U from the 300 Area of the Hanford Site entering the Columbia River to be measured accurately to ascertain whether they are an environmental concern, or are insignificant relative to natural uranium background in the Columbia River.

  1. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  2. Concrete structural analysis tools and properties for Hanford site waste tank evaluation

    International Nuclear Information System (INIS)

    Moore, C.J.; Peterson, W.S.; Winkel, B.V.; Weiner, E.O.

    1995-09-01

    As Hanford Site Contractors address maintenance and future structural demands on nuclear waste tanks built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice has building codes for reinforced concrete design guidelines, the tanks were not constructed to today's building codes and future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current practice. The Hanford Site engineering staff has embraced nonlinear finite-element modeling of concrete in an effort to obtain a more accurate understanding of the actual tank margins. This document brings together and integrates past Hanford Site nonlinear reinforced concrete analysis methods, past Hanford Site concrete testing, public domain research testing, and current concrete research directions. This document, including future revisions, provides the structural engineering overview (or survey) for a consistent, accurate approach to nonlinear finite-element modeling of reinforced concrete for Hanford Site waste storage tanks. This report addresses concrete strength and modulus degradation with temperature, creep, shrinkage, long-term sustained loads, and temperature degradation of rebar and concrete bonds. Recommendations are given for parameter studies and evaluation techniques for review of nonlinear finite-element analysis of concrete

  3. RCRA permitting strategies for the development of innovative technologies: Lessons from Hanford

    International Nuclear Information System (INIS)

    Gajewski, S.W.; Donaghue, J.F.

    1994-01-01

    The Hanford Site restoration is the largest waste cleanup operation in history. The Hanford plutonium production mission generated two-thirds of all the nuclear waste, by volume, in the Department of Energy (DOE) Complex. Cleanup challenges include not only large stored volumes of radioactive, hazardous, and mixed waste, but contaminated soil and groundwater and scores of major structures slated for decontamination, decommissioning, and demolition. DOE and its contractors will need to invent the technology required to do the job on a timetable driven by negotiated milestones, public concerns, and budgetary constraints. This paper will discuss the effort at Hanford to develop an integrated, streamlined strategy for compliance with the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) in the conduct of research, development, and demonstration (RD ampersand D) of innovative cleanup technologies. The aspects that will be discussed include the following: the genesis of the RD ampersand D permitting challenge at Hanford; permitting options in the existing regulatory framework; regulatory options that offered the best fit for Hanford RD ampersand D activities, and the problems associated with them; and conclusions and recommendations made to regulatory bodies

  4. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1985-01-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous 85 Kr air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where 85 Kr was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State-of-the-art 85 Dr sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of 85 Kr

  5. Ambient krypton-85 air sampling at Hanford

    International Nuclear Information System (INIS)

    Trevathan, M.S.; Price, K.R.

    1984-10-01

    In the fall of 1982, the Environmental Evaluations Section of Pacific Northwest Laboratory (PNL) initiated a network of continuous krypton-85 air samplers located on and around the Hanford Site. This effort was in response to the resumption of operations at a nuclear fuel reprocessing plant located onsite where krypton-85 was to be released during fuel dissolution. Preoperational data were collected using noble gas samplers designed by the Environmental Protection Agency-Las Vegas (EPA-LV). The samplers functioned erratically resulting in excessive maintenance costs and prompted a search for a new sampling system. State of the art krypton-85 sampling methods were reviewed and found to be too costly, too complex and inappropriate for field application, so a simple bag collection system was designed and field tested. The system is composed of a reinforced, heavy plastic bag, connected to a variable flow pump and housed in a weatherproof enclosure. At the end of the four week sampling period the air in the bag is transferred by a compressor into a pressure tank for easy transport to the laboratory for analysis. After several months of operation, the air sampling system has proven its reliability and sensitivity to ambient levels of krypton-85. 3 references, 3 figures, 1 table

  6. Characterization of the Hanford Site and environs

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1991-03-01

    The US Department of Energy (DOE) proposes to site, construct, and operate a new production reactor (NPR) intended to produce materials for the US nuclear weapons program. The DOE has determined that this proposed action constitutes an action that may significantly affect the quality of the human environment; therefore, the DOE is preparing an environmental impact statement (EIS) to assess the potential impacts of the proposed action and reasonable alternatives on the human and natural environment. The NPR-EIS is being prepared in accordance with Section 102(2)(C) of the National Environmental Policy Act of 1969 (NEPA), as implemented in regulations (40 CFR 1500--1508) promulgated by the Council on Environmental Quality (CEQ). Information on the potentially affected environment at the Hanford Site and its environs was provided to ANL by PNL in various submissions during CY-1989, and some of that information was consolidated into this report, which is considered to be supporting documentation for the NPR-EIS. 93 refs., 35 figs., 46 tabs.

  7. Hanford Waste Vitrification Plant hydrogen generation

    International Nuclear Information System (INIS)

    King, R.B.; King, A.D. Jr.; Bhattacharyya, N.K.

    1996-02-01

    The most promising method for the disposal of highly radioactive nuclear wastes is a vitrification process in which the wastes are incorporated into borosilicate glass logs, the logs are sealed into welded stainless steel canisters, and the canisters are buried in suitably protected burial sites for disposal. The purpose of the research supported by the Hanford Waste Vitrification Plant (HWVP) project of the Department of Energy through Battelle Pacific Northwest Laboratory (PNL) and summarized in this report was to gain a basic understanding of the hydrogen generation process and to predict the rate and amount of hydrogen generation during the treatment of HWVP feed simulants with formic acid. The objectives of the study were to determine the key feed components and process variables which enhance or inhibit the.production of hydrogen. Information on the kinetics and stoichiometry of relevant formic acid reactions were sought to provide a basis for viable mechanistic proposals. The chemical reactions were characterized through the production and consumption of the key gaseous products such as H 2 . CO 2 , N 2 0, NO, and NH 3 . For this mason this research program relied heavily on analyses of the gases produced and consumed during reactions of the HWVP feed simulants with formic acid under various conditions. Such analyses, used gas chromatographic equipment and expertise at the University of Georgia for the separation and determination of H 2 , CO, CO 2 , N 2 , N 2 O and NO

  8. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  9. Hanford 200 Areas Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Daly, K.S.

    1993-08-01

    The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas.

  10. Cancer mortality in Hanford workers

    International Nuclear Information System (INIS)

    Marks, S.; Gilbert, E.S.; Breitenstein, B.D.

    1978-01-01

    Personnel and radiation exposure data for past and present employees of the Hanford plant have been collected and analysed for a possible relationship of exposure to mortality. The occurrence of death in workers was established by the Social Security Administration and the cause of death obtained from death certificates. Mortality from all causes, all cancer cases and specific cancer types was related to the population at risk. Standardized mortality ratios were calculated for white males, using age- and calendar year-specific mortality rates for the U.S. population in the calculation of expected deaths. This analysis showed a substantial 'healthy worker effect' and no significantly high standardized mortality ratios for specific disease categories. A test for association of mortality with levels of radiation exposure revealed no correlation for all causes and all cancer. In carrying out this test, adjustment was made for age and calendar year of death, length of employment and occupational category. A statistically significant test for trend was obtained for multiple myeloma and carcinoma of the pancreas. However, in view of the absence of such a correlation for diseases more commonly associated with radiation exposure such as myeloid leukaemia, as well as the small number of deaths in higher exposure groups, the results cannot be considered definitive. Any conclusions based on these associations should be viewed in relation to the results of other studies. These results are compared with those of other investigators who have analysed the Hanford data. (author)

  11. Hanford transuranic storage corrosion review

    International Nuclear Information System (INIS)

    Nelson, J.L.; Divine, J.R.

    1980-12-01

    The rate of atmospheric corrosion of the transuranic (TRU) waste drums at the US Department of Energy's Hanford Project, near Richland, Washington, was evaluated by Pacific Northwest Laboratory (PNL). The rate of corrosion is principally contingent upon the effects of humidity, airborne pollutants, and temperature. Results of the study indicate that actual penetration of barrels due to atmospheric corrosion will probably not occur within the 20-year specified recovery period. Several other US burial sites were surveyed, and it appears that there is sufficient uncertainty in the available data to prevent a clearcut statement of the corrosion rate at a specific site. Laboratory and site tests are recommended before any definite conclusions can be made. The corrosion potential at the Hanford TRU waste site could be reduced by a combination of changes in drum materials (for example, using galvanized barrels instead of the currently used mild steel barrels), environmental exposure conditions (for example, covering the barrels in one of numerous possible ways), and storage conditions

  12. Hanford 200 Areas Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Daly, K.S.

    1993-08-01

    The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas

  13. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  14. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  15. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)

    2013-07-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  16. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    International Nuclear Information System (INIS)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2012-01-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W PandT) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012

  17. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    International Nuclear Information System (INIS)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J.

    2013-01-01

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  18. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  19. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    Energy Technology Data Exchange (ETDEWEB)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  20. Collaboration in long-term stewardship at DOE Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Moren, R. J.; Zeisloft, J. H.; Feist, E. T.; Brown, D.; Grindstaff, K. D.

    2013-01-10

    The U.S. Department of Energy's (DOE) Hanford Site comprises approximately 1,517 km{sup 2} (586 mi{sup 2}) of land in southeastern Washington. The site was established in 1943 as part of the Manhattan Project to produce plutonium for the nation's nuclear weapons program. As the Cold War era came to an end, the mission of the site transitioned from weapons production to environmental cleanup. As the River Corridor area of the site cleanup is completed, the mission for that portion of the site will transition from active cleanup to continued protection of environment through the Long-Term Stewardship (LTS) Program. The key to successful transition from cleanup to LTS is the unique collaboration among three (3) different DOE Programs and three (3) different prime contractors with each contractor having different contracts. The LTS Program at the site is a successful model of collaboration resulting in efficient resolution of issues and accelerated progress that supports DOE's Richland Office 2015 Vision for the Hanford Site. The 2015 Vision for the Hanford Site involves shrinking the active cleanup footprint of the surface area of the site to approximately 20 mi{sup 2} on the Central Plateau. Hanford's LTS Program is defined in DOE's planning document, Hanford Long-Term Stewardship Program Plan, DOE/RL-2010-35 Rev 1. The Plan defines the relationship and respective responsibilities between the federal cleanup projects and the LTS Program along with their respective contractors. The LTS Program involves these different parties (cleanup program and contractors) who must work together to achieve the objective for transition of land parcels. Through the collaborative efforts with the prime contractors on site over the past two years, 253.8 km{sup 2} (98 mi{sup 2}) of property has been successfully transitioned from the cleanup program to the LTS Program upon completion of active surface cleanup. Upcoming efforts in the near term will include transitioning another large