WorldWideScience

Sample records for hanford double-shell primary

  1. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT BUCKLING EVALUATION METHODS & RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2007-02-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to global

  2. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT. DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh

  3. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT-ANSYS BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DOUBLE-SHELL PRIMARY TANK

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2006-01-01

    M and D Professional Services, Inc. (M and D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS

  4. HANFORD DOUBLE-SHELL TANK (DST) THERMAL and SEISMIC PROJECT-BUCKLING EVALUATION METHODS and RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    Mackey, T.C.; Johnson, K.I.; Deibler, J.E.; Pilli, S.P.; Rinker, M.W.; Karri, N.K.

    2007-01-01

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive I-bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads, based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the I-bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive I-bolt failure leading to

  5. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; JOHNSON KI; DEIBLER JE; PILLI SP; RINKER MW; KARRI NK

    2009-01-14

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES&H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor bolt

  6. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT-BUCKLING EVALUATION METHODS AND RESULTS FOR THE PRIMARY TANKS

    International Nuclear Information System (INIS)

    Mackey, T.C.; Johnson, K.I.; Deibler, J.E.; Pilli, S.P.; Rinker, M.W.; Karri, N.K.

    2009-01-01

    This report documents a detailed buckling evaluation of the primary tanks in the Hanford double-shell waste tanks (DSTs), which is part of a comprehensive structural review for the Double-Shell Tank Integrity Project. This work also provides information on tank integrity that specifically responds to concerns raised by the Office of Environment, Safety, and Health (ES and H) Oversight (EH-22) during a review of work performed on the double-shell tank farms and the operation of the aging waste facility (AWF) primary tank ventilation system. The current buckling review focuses on the following tasks: (1) Evaluate the potential for progressive anchor bolt failure and the appropriateness of the safety factors that were used for evaluating local and global buckling. The analysis will specifically answer the following questions: (a) Can the EH-22 scenario develop if the vacuum is limited to -6.6-inch water gage (w.g.) by a relief valve? (b) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario can develop? (c) What is the appropriate factor of safety required to protect against buckling if the EH-22 scenario cannot develop? (2) Develop influence functions to estimate the axial stresses in the primary tanks for all reasonable combinations of tank loads based on detailed finite element analysis. The analysis must account for the variation in design details and operating conditions between the different DSTs. The analysis must also address the imperfection sensitivity of the primary tank to buckling. (3) Perform a detailed buckling analysis to determine the maximum allowable differential pressure for each of the DST primary tanks at the current specified limits on waste temperature, height, and specific gravity. Based on the concrete anchor bolt loads analysis and the small deformations that are predicted at the unfactored limits on vacuum and axial loads, it is very unlikely that the EH-22 scenario (i.e., progressive anchor

  7. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; CARPENTER BG; HENDRIX C; ABATT FG

    2009-01-15

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses. The original scope of the project was to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). Although Milestone M-48-14 has been met, Revision I is being issued to address external review comments with emphasis on changes in the modeling of anchor bolts connecting the concrete dome and the steel primary tank. The work statement provided to M&D (PNNL 2003) required that a nonlinear soil structure interaction (SSI) analysis be performed on the DSTs. The analysis is required to include the effects of sliding interfaces and fluid sloshing (fluid-structure interaction). SSI analysis has traditionally been treated by frequency domain computer codes such as SHAKE (Schnabel, et al. 1972) and SASSI (Lysmer et al. 1999a). Such frequency domain programs are limited to the analysis of linear systems. Because of the contact surfaces, the response of the DSTs to a seismic event is inherently nonlinear and consequently outside the range of applicability of the linear frequency domain programs. That is, the nonlinear response of the DSTs to seismic excitation requires the use of a time domain code. The capabilities and limitations of the commercial time domain codes ANSYS{reg_sign} and MSC Dytran{reg_sign} for performing seismic SSI analysis of the DSTs and the methodology required to perform the detailed seismic analysis of the DSTs has been addressed in Rinker et al (2006a). On the basis of the results reported in Rinker et al

  8. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS OF HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratory (PNNL) to perform seismic analysis of the Hanford Site double-shell tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project--DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST system at Hanford in support of Tri-Party Agreement Milestone M-48-14, The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DSTs assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil and the effects of the primary tank contents. The DSTs and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary

  9. Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton; Czajkowski, Carl J; Divine, James R; Posakony, Gerald J; Johnson, A B; Elmore, Monte R; Reynolds, D A; Anantatmula, Ramamohan P; Sindelar, Robert L; Zapp, Philip E

    2001-06-29

    Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.

  10. Industrial mixing techniques for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Daymo, E.A.

    1997-09-01

    Jet mixer pumps are currently the baseline technology for sludge mobilization and mixing in one-million gallon double-shell tanks at the Hanford and Savannah River Sites. Improvements to the baseline jet mixer pump technology are sought because jet mixer pumps have moving parts that may fail or require maintenance. Moreover, jet mixers are relatively expensive, they heat the waste, and, in some cases, may not mobilize enough of the sludge. This report documents a thorough literature search for commercially available applicable mixing technologies that could be used for double-shell tank sludge mobilization and mixing. Textbooks, research articles, conference proceedings, mixing experts, and the Thomas Register were consulted to identify applicable technologies. While there are many commercial methods that could be used to mobilize sludge or mix the contents of a one-million gallon tank, few will work given the geometrical constraints (e.g., the mixer must fit through a 1.07-m-diameter riser) or the tank waste properties (e.g., the sludge has such a high yield stress that it generally does not flow under its own weight). Pulsed fluid jets and submersible Flygt mixers have already been identified at Hanford and Savannah River Sites for double-shell tank mixing applications. While these mixing technologies may not be applicable for double-shell tanks that have a thick sludge layer at the bottom (since too many of these mixers would need to be installed to mobilize most of the sludge), they may have applications in tanks that do not have a settled solids layer. Retrieval projects at Hanford and other U.S. Department of Energy sites are currently evaluating the effectiveness of these mixing techniques for tank waste applications. The literature search did not reveal any previously unknown technologies that should be considered for sludge mobilization and mixing in one-million gallon double-shell tanks

  11. Hanford double shell tank corrosion monitoring instrument tree prototype

    International Nuclear Information System (INIS)

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion

  12. Retrieval technology development for Hanford double-shell tanks

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Wise, B.M.; Miller, W.C.

    1992-05-01

    This paper describes the combined analytical, computational, and experimental program developed for identifying operating strategies for mobilization and retrieval of radioactive waste stored in double-shell tanks at Hanford. Sludge mobilization, slurry uniformity, and slurry retrieval investigations will produce guidelines for mixer pump and retrieval pump operation based on the physical properties of the waste and the geometric properties of the system (number of operating pumps and pump design and placement)

  13. Hanford double shell tank corrosion monitoring instrument trees

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  14. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SUMMARY OF COMBINED THERMAL & OPERATING LOADS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-17

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TOLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs).

  15. ELECTROCHEMICAL STUDIES OF CARBON STEEL CORROSION IN HANFORD DOUBLE SHELL TANK (DST) WASTE

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, J.B.; WINDISCH, C.F.

    2006-10-13

    This paper reports on the electrochemical scans for the supernatant of Hanford double-shell tank (DST) 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford DST 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  16. Flammable gas project expert elicitation results for Hanford Site double-shell tanks

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    This report documents the results of the second phase of parameter quantification by the flammable gas expert panel. This second phase is focused on the analysis of flammable gas accidents in the Hanford Site double-shell tanks. The first phase of parameter quantification, performed in 1997 was focused on the analysis of Hanford single-shell tanks

  17. Hanford Double-Shell Tank Extent-of-Condition Construction Review

    International Nuclear Information System (INIS)

    Venetz, Theodore J.; Johnson, Jeremy M.; Gunter, Jason R.; Barnes, Travis J.; Washenfelder, Dennis J.; Boomer, Kayle D.

    2013-01-01

    During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. The formal leak assessment, documented in RPP-ASMT-53793,Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure. To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records were performed for the first three DST tank farms constructed, which included tanks 241-AY-101, 241-AZ-101, 241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103. The review for these six tanks involved research and review of dozens of boxes of historical project documentation. These reviews form a basis to better understand the current condition of the three oldest Hanford DST farms. They provide a basis for changes to the current tank inspection program and also provide valuable insight into future tank use decisions. If new tanks are constructed in the future, these reviews provide valuable 'lessons-learned' information about expected difficulties as well as construction practices and techniques that are likely to be successful

  18. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double-Shell Tanks - FY 2001

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    2000-01-01

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities, plan for performance demonstration testing, and a plan for field activities. Also included are a Statement of Work for contractor performance and a protocol to be followed should tank flaws that exceed the acceptance criteria are found

  19. Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    2000-01-01

    This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered

  20. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  1. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    International Nuclear Information System (INIS)

    Kelly, S.E.; Haass, C.C.; Kovach, J.L.; Turner, D.A.

    2010-01-01

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through out the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  2. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    International Nuclear Information System (INIS)

    Haas, C.C.; Kovach, J.L.; Kelly, S.E.; Turner, D.A.

    2010-01-01

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  3. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  4. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  5. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SENSITIVITY OF DOUBLE SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; JOHNSON KI

    2009-01-16

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10{sup 3} Pa and 4.135 x 10{sup 9} Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks

  6. Public involvement in the Hanford Double-Shell Tank waste disposal program

    International Nuclear Information System (INIS)

    Triplett, M.B.; Hunter, V.L.

    1992-06-01

    Hanford's Double-Shell Tank (DST) waste disposal program was redefined following serious challenges to the viability of the previous strategy due to increased regulatory requirements and operating expectations. Redefinition of the DST waste disposal program involved a far-reaching set of decisions and actions. A formal stakeholder involvement process was used to bring the concerns of outside groups into the definition and evaluation of altemative tank waste disposal strategies, broadening the participation and ownership of the revised pregrain. Hanford's Double-Shell Tank (DST) waste disposal strategy, calls for using B-Plant to separate the low-level and high-level portions of the DST waste. This separations step would provide feed to the Hanford Waste Vitrification Plant (HWVP), viewed by many as the cornerstone to Site cleanup. The State of Washington strongly opposed using the 47-year-old B-Plant because it was not built to comply with current environmental regulations. Because of this and other challenges to Hanford's tank waste disposal strategy, the Department of Energy (DOE) Richland Field Office (RL) initiated efforts to redefine the strategy. To support this effort, Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHCP) sought input from outside stakeholder groups (stakeholders are those interest groups that are affected by the outcome of the decision and have a strong desire to ensure that their concerns are addressed) through a formal stakeholder involvement and multi-attribute utility (MAU) analysis process. This paper describes that process and its results

  7. Stakeholder involvement in redefining Hanford's Double-Shell Tank Waste Disposal Program

    International Nuclear Information System (INIS)

    Triplett, M.B.; Hunter, V.L.

    1992-01-01

    Hanford's Double-Shell Tank (DST) waste disposal strategy, outlined in the Final Environmental Impact Statement, Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland, Washington calls for using B-Plant to separate the low-level and high-level portions of the DST waste. This separations step would provide feed to the Hanford Waste Vitrification Plant (HWVP), viewed by many as the cornerstone to Site cleanup. The State of Washington strongly opposed using the 47-year old B-Plant because it was not built to comply with current environmental regulations. Because of this and other challenges to Hanford's tank waste disposal strategy, the Department of Energy (DOE) Richland Field Office (RL) initiated efforts to redefine the strategy. To support this effort, Pacific Northwest Laboratory, (PNL) and Westinghouse Hanford Company, (WHC) and sought input from outside stakeholder (stakeholders are those interest groups that are affected by the outcome of the decision and have a strong desire to ensure that their concerns are addressed) groups through a formal stakeholder involvement and multiattribute utility (MAU) analysis process

  8. Ammonia in simulated Hanford double-shell tank wastes: Solubility and effects on surface tension

    International Nuclear Information System (INIS)

    Norton, J.D.; Pederson, L.R.

    1994-09-01

    Radioactive and wastes left from defense materials production activities are temporarily stored in large underground tanks at the Hanford Site in south central Washington State (Tank Waste Science Panel 1991). Some of these wastes are in the form of a thick slurry (''double-shell slurry'') containing sodium nitrate, sodium nitrite, sodium aluminate, sodium hydroxide, sodium carbonate, organic complexants and buffering agents, complexant fragments and other minor components (Herting et al. 1992a; Herting et al. 1992b; Campbell et al. 1994). As a result of thermal and radiolytic processes, a number of gases are known to be produced by some of these stored wastes, including ammonia, nitrous oxide, nitrogen, hydrogen, and methane (Babad et al. 1991; Ashby et al. 1992; Meisel et al. 1993; Ashby et al. 1993; Ashby et al. 1994; Bryan et al. 1993; US Department of Energy 1994). Before the emplacement of a mixer pump, these gases were retained in and periodically released from Tank 241-SY-101, a double-shell tank at the Hanford Site (Babad et al. 1992; US Department of Energy 1994). Gases are believed to be retained primarily in the form of bubbles attached to solid particles (Bryan, Pederson, and Scheele 1992), with very little actually dissolved in the liquid. Ammonia is an exception. The relation between the concentration of aqueous ammonia in such concentrated, caustic mixtures and the ammonia partial pressure is not well known, however

  9. Gas retention and release behavior in Hanford double-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A. [and others

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior.

  10. Gas retention and release behavior in Hanford double-shell waste tanks

    International Nuclear Information System (INIS)

    Meyer, P.A.; Brewster, M.E.; Bryan, S.A.

    1997-05-01

    This report describes the current understanding of flammable gas retention and release in Hanford double-shell waste tanks AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. This knowledge is based on analyses, experimental results, and observations of tank behavior. The applicable data available from the void fraction instrument, retained gas sampler, ball rheometer, tank characterization, and field monitoring are summarized. Retained gas volumes and void fractions are updated with these new data. Using the retained gas compositions from the retained gas sampler, peak dome pressures during a gas burn are calculated as a function of the fraction of retained gas hypothetically released instantaneously into the tank head space. Models and criteria are given for gas generation, initiation of buoyant displacement, and resulting gas release; and predictions are compared with observed tank behavior

  11. Analysis of Induced Gas Releases During Retrieval of Hanford Double-Shell Tank Waste

    International Nuclear Information System (INIS)

    Wells, Beric E.; Cuta, Judith M.; Hartley, Stacey A.; Mahoney, Lenna A.; Meyer, Perry A.; Stewart, Charles W.

    2002-01-01

    Radioactive waste is scheduled to be retrieved from Hanford double-shell tanks AN-103, AN-104, AN-105, and AW-101 to the vitrification plant beginning about 2009. Retrieval may involve decanting the supernatant liquid and/or mixing the waste with jet pumps. In these four tanks, which contain relatively large volumes of retained gas, both of these operations are expected to induce buoyant displacement gas releases that can potentially raise the tank headspace hydrogen concentration to very near the lower flammability limit. This report describes the theory and detailed physical models for both the supernatant decant and jet mixing processes and presents the results from applying the models to these operations in the four tanks. The technical bases for input parameter distributions are elucidated

  12. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  13. Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102

    International Nuclear Information System (INIS)

    Harrington, Stephanie J.; Sams, Terry L.

    2013-01-01

    Full text - Long Abstract. A routine video inspection of the annulus region of double-shell tank 241-A Y-102 in August of 2012 indicated the presence material in the annulus space between the primary and secondary liners. A comparison was made to previous inspections performed in 2006 and 2007. which indicated that a change had occurred. The material was observed at two locations on the floor of the annulus and one location at the top of the annulus region where the primary and secondary top knuckles meet (RPP-ASMT-53793). Subsequent inspections were performed. leading to additional material observed on the floor of the annulus space in a region that had not previously been inspected (WRPS-PER-2012-1363). The annulus Continuous Air Monitor (CAM) was still operational and was not indicating elevated radiation levels in the annulus region. When the camera from the inspections was recovered. it also did not indicate increased radiation above minimum contamination levels (WRPS-PER-2012-1363). A formal leak assessment team was established August 10, 2012 to review tank 241-AY-102 construction and operating histories and to determine whether the material observed in the annulus had resulted from a leak in the primary tank. The team consisted of individuals from Engineering. Base Operations and Environmental Protection. As this was a first-of-its-kind task. a method for obtaining a sample of the material in the annulus was needed. The consistency of the material was unknown.and the location of a majority of the material was not conducive to using the sampling devices that were currently available at Hanford. A subcontractor was tasked with the development fabrication.and testing of a sampling device that would be able to obtain multiple samples from the material on the annulus floor. as well as the material originating from a refractory air-slot near the floor of the annulus space. This sampler would need to be able to collect and dispense the material it collected into a

  14. Distributions of 15 elements on 58 absorbers from simulated Hanford Double-Shell Slurry Feed (DSSF)

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1994-11-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 58 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, pillared layered materials, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford double-shell slurry feed (DSSF) (pH 14.0). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U and Am), and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 870 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2610 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing DSSF solutions

  15. Discovery of the First Leaking Double-Shell Tank - Hanford Tank 241-AY-102

    International Nuclear Information System (INIS)

    Harrington, Stephanie J.; Sams, Terry L.

    2013-01-01

    A routine video inspection of the annulus space between the primary tank and secondary liner of double-shell tank 241-AY-102 was performed in August 2012. During the inspection, unexpected material was discovered. A subsequent video inspection revealed additional unexpected material on the opposite side of the tank, none of which had been observed during inspections performed in December 2006 and January 2007. A formal leak assessment team was established to review the tank's construction and operating histories, and preparations for sampling and analysis began to determine the material's origin. A new sampling device was required to collect material from locations that were inaccessible to the available sampler. Following its design and fabrication, a mock-up test was performed for the new sampling tool to ensure its functionality and capability of performing the required tasks. Within three months of the discovery of the unexpected material, sampling tools were deployed, material was collected, and analyses were performed. Results indicated that some of the unknown material was indicative of soil, whereas the remainder was consistent with tank waste. This, along with the analyses performed by the leak assessment team on the tank's construction history, lead to the conclusion that the primary tank was leaking into the annulus. Several issues were encountered during the deployment of the samplers into the annulus. As this was the first time samples had been required from the annulus of a double-shell tank, a formal lessons learned was created concerning designing equipment for unique purposes under time constraints

  16. The Remotely Operated Nondestructive Examination System for Examining the Knuckle Region of Hanford's Double Shell Waste Tanks

    International Nuclear Information System (INIS)

    Crawford, Susan L.; Pardini, Allan F.; Donald Thompson and Dale Chimenti

    2005-01-01

    The Pacific Northwest National Laboratory has developed a technology to address the examination requirements associated with the knuckle region of Hanford's double shell waste tanks. This examination poses a significant technical challenge because the area that requires examination is in a confined space, high radiation region and is not accessible using conventional measurement techniques. This paper describes the development, deployment, and modification of the remotely operated nondestructive examination (RONDE) system that utilizes a technique known as Synthetic Aperture Focusing (SAFT). The system detects stress corrosion cracking in the high stress region of the knuckle and characterizes the crack with tandem SAFT. PNNL has qualified the system to perform inspections on the entire knuckle region of Hanford's double shell waste tanks

  17. ESTIMATING HIGH LEVEL WASTE MIXING PERFORMANCE IN HANFORD DOUBLE SHELL TANKS

    International Nuclear Information System (INIS)

    Thien, M.G.; Greer, D.A.; Townson, P.

    2011-01-01

    The ability to effectively mix, sample, certify, and deliver consistent batches of high level waste (HLW) feed from the Hanford double shell tanks (DSTs) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. The Department of Energy's (DOE's) Tank Operations Contractor (TOC), Washington River Protection Solutions (WRPS) is currently demonstrating mixing, sampling, and batch transfer performance in two different sizes of small-scale DSTs. The results of these demonstrations will be used to estimate full-scale DST mixing performance and provide the key input to a programmatic decision on the need to build a dedicated feed certification facility. This paper discusses the results from initial mixing demonstration activities and presents data evaluation techniques that allow insight into the performance relationships of the two small tanks. The next steps, sampling and batch transfers, of the small scale demonstration activities are introduced. A discussion of the integration of results from the mixing, sampling, and batch transfer tests to allow estimating full-scale DST performance is presented.

  18. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SUMMARY OF COMBINED THERMAL AND OPERATING LOADS WITH SEISMIC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; DEIBLER JE; RINKER MW; JOHNSON KI; ABATT FG; KARRI NK; PILLI SP; STOOPS KL

    2009-01-15

    This report summarizes the results of the Double-Shell Tank Thermal and Operating Loads Analysis (TaLA) combined with the Seismic Analysis. This combined analysis provides a thorough, defensible, and documented analysis that will become a part of the overall analysis of record for the Hanford double-shell tanks (DSTs). The bases of the analytical work presented herein are two ANSYS{reg_sign} finite element models that were developed to represent a bounding-case tank. The TaLA model includes the effects of temperature on material properties, creep, concrete cracking, and various waste and annulus pressure-loading conditions. The seismic model considers the interaction of the tanks with the surrounding soil including a range of soil properties, and the effects of the waste contents during a seismic event. The structural evaluations completed with the representative tank models do not reveal any structural deficiencies with the integrity of the DSTs. The analyses represent 60 years of use, which extends well beyond the current date. In addition, the temperature loads imposed on the model are significantly more severe than any service to date or proposed for the future. Bounding material properties were also selected to provide the most severe combinations. While the focus of the analyses was a bounding-case tank, it was necessary during various evaluations to conduct tank-specific analyses. The primary tank buckling evaluation was carried out on a tank-specific basis because of the sensitivity to waste height, specific gravity, tank wall thickness, and primary tank vapor space vacuum limit. For this analysis, the occurrence of maximum tank vacuum was classified as a service level C, emergency load condition. The only area of potential concern in the analysis was with the buckling evaluation of the AP tank, which showed the current limit on demand of l2-inch water gauge vacuum to exceed the allowable of 10.4 inches. This determination was based on analysis at the

  19. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT-SENSITIVITY OF DOUBLE-SHELL DYNAMIC RESPONSE TO THE WASTE ELASTIC PROPERTIES

    International Nuclear Information System (INIS)

    Mackey, T.C.; Abatt, F.G.; Johnson, K.I.

    2009-01-01

    The purpose of this study was to determine the sensitivity of the dynamic response of the Hanford double-shell tanks (DSTs) to the assumptions regarding the constitutive properties of the contained waste. In all cases, the waste was modeled as a uniform linearly elastic material. The focus of the study was on the changes in the modal response of the tank and waste system as the extensional modulus (elastic modulus in tension and compression) and shear modulus of the waste were varied through six orders of magnitude. Time-history analyses were also performed for selected cases and peak horizontal reaction forces and axial stresses at the bottom of the primary tank were evaluated. Because the analysis focused on the differences in the responses between solid-filled and liquid-filled tanks, it is a comparative analysis rather than an analysis of record for a specific tank or set of tanks. The shear modulus was varied between 4 x 10 3 Pa and 4.135 x 10 9 Pa. The lowest value of shear modulus was sufficient to simulate the modal response of a liquid-containing tank, while the higher values are several orders of magnitude greater than the upper limit of expected properties for tank contents. The range of elastic properties used was sufficient to show liquid-like response at the lower values, followed by a transition range of semi-solid-like response to a clearly identifiable solid-like response. It was assumed that the mechanical properties of the tank contents were spatially uniform. Because sludge-like materials are expected only to exist in the lower part of the tanks, this assumption leads to an exaggeration of the effects of sludge-like materials in the tanks. The results of the study show that up to a waste shear modulus of at least 40,000 Pa, the modal properties of the tank and waste system are very nearly the same as for the equivalent liquid-containing tank. This suggests that the differences in critical tank responses between liquid-containing tanks and tanks

  20. Soil structure interaction analysis for the Hanford Site 241-SY-101 double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Giller, R.A.; Weiner, E.O.

    1991-09-01

    The 241-SY-101 tank is a double-shell waste storage tank buried in the 241-SY tank farm in the 200 West Area of the Hanford Site. This analysis addresses the effects of seismic soil-structure interaction on the tank structure and includes a parametric soil-structure interaction study addressing three configurations: two-dimensional soil structure, a two-dimensional structure-soil-structure, and a three-dimensional soil-structure interaction. This study was designed to determine an optimal method for addressing seismic-soil effects on underground storage tanks. The computer programs calculate seismic-soil pressures on the double-shell tank walls and and seismic acceleration response spectra in the tank. The results of this soil-structure interaction parametric study as produced by the computer programs are given in terms of seismic soil pressures and response spectra. The conclusions of this soil-structure interaction evaluation are that dynamically calculated soil pressures in the 241-SY-101 tank are significantly reduce from those using standard hand calculation methods and that seismic evaluation of underground double-shell waste storage tanks must consider soil-structure interaction effects in order to predict conservative structural response. Appendixes supporting this study are available in Volume 2 of this report

  1. Analysis Bounding Double Shell Tank (DST) Performance for the Hanford Tank Waste Operation Simulator Case 2

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2002-01-01

    The purpose of this analysis is to compare the latest Tank Farm Contractor Operation and Utilization Plan (HNF-SD-WM-SP-012, Rev. 3) ''Case 2'' operating scenarios with a previous bounding analysis for the Double-Shell Tank (DST) System in order to provide a technical assessment against the current set of DST System performance requirements. A later update to HNF-SD-WM-SP-012 (i.e., Rev. 3A), released in late December 2001, did not impact the results of this analysis. This analysis provides technical support for revising the Performance Requirements for the Double-Shell Tank System, HNF-2168, Rev. 3, used as the basis for defining performance requirements noted in System Specification for the Double-Shell Tank System, HNF-SD-WM-TRD-007. Rev. 1

  2. Test plan for evaluation of primary exhaust ventilation flow meters for double shell hydrogen watch list tanks

    International Nuclear Information System (INIS)

    Willingham, W.E.

    1996-01-01

    This document is a plan for testing four different flow meters for use in the primary exhaust ventilation ducts of Double Shell Tanks on the hydrogen watch list that do not already have this capability. This currently includes tanks 241-AW-101, 241-AN-103, 241-AN-104, 241-AN-105, and 241-SY-103. The anticipated airflow velocity in these tanks range from 0.25 m/s(50 ft/min) to 1.78 m/s (350 ft/min). Past experiences at Hanford are forcing the evaluation and selection of instruments to be used at the low flow and relatively high humidity conditions found in these tanks. Based on the results of this test, a flow meter shall be chosen for installation in the primary exhaust ventilation ducts of the above mentioned waste tanks

  3. Computational Fluid Dynamics Modeling Of Scaled Hanford Double Shell Tank Mixing - CFD Modeling Sensitivity Study Results

    International Nuclear Information System (INIS)

    Jackson, V.L.

    2011-01-01

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  4. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanfords 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  5. Double-shell tank emergency pumping guide

    International Nuclear Information System (INIS)

    BROWN, M.H.

    1999-01-01

    This Double-Shell Tank Emergency Pumping Guide provides the preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTS. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  6. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABBOTT FG; CARPENTER BG; RINKER MW

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  7. Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, R. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wyrwas, R. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-05-01

    During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting in dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.

  8. Evaluation of alternatives for upgrading double shell tank corrosion monitoring at Hanford

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1996-01-01

    Recent discovery of low hydroxide conditions in Double Shell Tanks have demonstrated that the current corrosion control system of waste sampling and analysis is inadequate to monitor and maintain specified chemistries for dilute and low volume waste tanks. Moreover, waste sampling alone cannot provide adequate information to resolve the questions raised regarding tank corrosion. This report evaluates available technologies which could be used to improve on the existing corrosion control system. The evaluation concludes that a multi-technique corrosion monitoring system is necessary, utilizing ultrasonic and visual examinations for direct evaluation of tank liner condition, probes for rapid detection (alarm) of corrosive conditions, and waste sampling and analysis for determination of corrective action. The probes would incorporate electrochemical noise and linear polarization resistance techniques. When removed from the waste tank, the probe electrodes would be physically examined as corrosion coupons. The probes would be used in addition to a modified regimen of waste sampling and the existing schedule for ultrasonic examination of the tank liners. Supporting information would be obtained by examination of in-tank equipment as it is removed

  9. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT ESTABLISHMENT OF METHODOLOGY FOR TIME DOMAIN SOIL STRUCTURE INTERACTION ANALYSIS OF HANFORD DST

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank DSV Integrity Project-DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DST assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil, and the effects of the primary tank contents. The DST and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste. Soil-structure interaction analyses are traditionally solved in

  10. In situ rheology and gas volume in Hanford double-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Alzheimer, J.M.; Brewster, M.E.; Chen, G.; Reid, H.C.; Shepard, C.L.; Terrones, G.; Mendoza, R.E.

    1996-09-01

    This report is a detailed characterization of gas retention and release in 6 Hanford DS waste tanks. The results came from the ball rheometer and void fraction instrument in (flammable gas watch list) tanks SY-101, SY-103, AW-101, AN-103, AN-104, and AN-105 are presented. Instrument operation and derivation of data reduction methods are presented. Gas retention and release information is summarized for each tank and includes tank fill history and instrumentation, waste configuration, gas release, void fraction distribution, gas volumes, rheology, and photographs of the waste column from extruded core samples. Potential peak burn pressure is computed as a function of gas release fraction to portray the 'hazard signature' of each tank. It is shown that two tanks remain well below the maximum allowable pressure, even if the entire gas content were released and ignited, and that none of the others present a hazard with their present gas release behavior

  11. Structural analysis and evaluation of a mixer pump in a double-shell tank at the Hanford Site

    International Nuclear Information System (INIS)

    Rezvani, M.A.; Strehlow, J.P.; Baliga, R.

    1993-01-01

    The double-shell waste tank 241-SY-101 is a 1,000,000 gallon tank used to store radioactive waste at the Hanford Site near Richland, Washington. With time the waste has formed two layers of sludge, a convective and a nonconvective layer. In addition, a crust has formed over the surface of the waste, isolating the convective layer from the vapor space. Ongoing reactions in the waste cause a buildup of hydrogen molecules that become trapped within the nonconvective layer and under the crust. Over time, this hydrogen buildup increases pressure on the crust from beneath. Every 100 to 140 days, the pressure is released when the crust lifts upward in what is called a waste rollover. To prevent the release of a large volume of hydrogen to the vapor space, a mixer pump has been designed to be installed in the tank to circulate the waste and reduce or prevent the hydrogen buildup. The structural analysis and evaluation designed as part of the hydrogen mitigation test process and presented herein addresses the response of the mixer pump and the tank dome resulting from expected operational and design loads. The loads include deadweight, waste rollover, asymmetric thrust, and pump vibration, as well as seismic loads. The seismically induced loads take into consideration both the convective and the impulsive effects of the waste-filled tank. The structural evaluations were performed in accordance with applicable national codes and standards. The qualification of the mixer pump required the design of a unique mounting assembly to transfer the loads from the pump to the surrounding soil without overstressing the structural components such as the dome penetration riser. Also, special consideration was given to minimize the additional stresses in the already stressed concrete tank dome

  12. Evaluation of mitigation strategies in Facility Group 1 double-shell flammable-gas tanks at the Hanford Site

    International Nuclear Information System (INIS)

    Unal, C.; Sadasivan, P.; Kubic, W.L.; White, J.R.

    1997-11-01

    Radioactive nuclear waste at the Hanford Site is stored in underground waste storage tanks at the site. The tanks fall into two main categories: single-shell tanks (SSTs) and double-shell tanks (DSTs). There are a total of 149 SSTs and 28 DSTs. The wastes stored in the tanks are chemically complex. They basically involve various sodium salts (mainly nitrite, nitrate, carbonates, aluminates, and hydroxides), organic compounds, heavy metals, and various radionuclides, including cesium, strontium, plutonium, and uranium. The waste is known to generate flammable gas (FG) [hydrogen, ammonia, nitrous oxide, hydrocarbons] by complex chemical reactions. The process of gas generation, retention, and release is transient. Some tanks reach a quasi-steady stage where gas generation is balanced by the release rate. Other tanks show continuous cycles of retention followed by episodic release. There currently are 25 tanks on the Flammable Gas Watch List (FGWL). The objective of this report is to evaluate possible mitigation strategies to eliminate the FG hazard. The evaluation is an engineering study of mitigation concepts for FG generation, retention, and release behavior in Tanks SY-101, AN-103, AN 104, An-105, and Aw-101. Where possible, limited quantification of the effects of mitigation strategies on the FG hazard also is considered. The results obtained from quantification efforts discussed in this report should be considered as best-estimate values. Results and conclusions of this work are intended to help in establishing methodologies in the contractor's controls selection analysis to develop necessary safety controls for closing the FG unreviewed safety question. The general performance requirements of any mitigation scheme are discussed first

  13. Structural acceptance criteria for the evaulation of existing double-shell waste storage tanks located at the Hanford site, Richland, Washington

    International Nuclear Information System (INIS)

    Julyk, L.J.; Day, A.D.; Dyrness, A.D.; Moore, C.J.; Peterson, W.S.; Scott, M.A.; Shrivastava, H.P.; Sholman, J.S.; Watts, T.N.

    1995-09-01

    The structural acceptance criteria contained herein for the evaluation of existing underground double-shell waste storage tanks located at the Hanford Site is part of the Life Management/Aging Management Program of the Tank Waste Remediation System. The purpose of the overall life management program is to ensure that confinement of the waste is maintained over the required service life of the tanks. Characterization of the present condition of the tanks, understanding and characterization of potential degradation mechanisms, and development of tank structural acceptance criteria based on previous service and projected use are prerequisites to assessing tank integrity, to projecting the length of tank service, and to developing and applying prudent fixes or repairs. The criteria provided herein summarize the requirements for the analysis and structural qualification of the existing double-shell tanks for continued operation. Code reconciliation issues and material degradation under aging conditions are addressed. Although the criteria were developed for double-shell tanks, many of the provisions are equally applicable to single-shell tanks. However, the criteria do not apply to the evaluation of tank appurtenances and buried piping

  14. Prediction equations for corrosion rates of a A-537 and A-516 steels in Double Shell Slurry, Future PUREX, and Hanford Facilities Wastes

    International Nuclear Information System (INIS)

    Divine, J.R.; Bowen, W.M.; Mackey, D.B.; Bates, D.J.; Pool, K.H.

    1985-06-01

    Even though the interest in the corrosion of radwaste tanks goes back to the mid-1940's when waste storage was begun, and a fair amount of corrosion work has been done since then, the changes in processes and waste types have outpaced the development of new data pertinent to the new double shell tanks. As a consequence, Pacific Northwest Laboratory (PNL) began a development of corrosion data on a broad base of waste compositions in 1980. The objective of the program was to provide operations personnel with corrosion rate data as a function of waste temperature and composition. The work performed in this program examined A-537 tank steel in Double Shell Slurry and Future PUREX Wastes, at temperatures between 40 and 180 0 C as well as in Hanford Facilities Waste at 25 and 50 0 C. In general, the corrosion rates were less than 1 mpy (0.001 in./y) and usually less than 0.5 mpy. Excessive corrosion rates (>1 mpy) were only found in dilute waste compositions or in concentrated caustic compositions at temperatures above 140 0 C. Stress corrosion cracking was only observed under similar conditions. The results are presented as polynomial prediction equations with examples of the output of existing computer codes. The codes are not provided in the text but are available from the authors. 12 refs., 5 figs., 19 tabs

  15. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE SHELL TANKS

    Energy Technology Data Exchange (ETDEWEB)

    BROWN MH

    2008-11-13

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.

  16. EFFECTS OF CHEMISTRY AND OTHER VARIABLES ON CORROSION AND STRESS CORROSION CRACKING IN HANFORD DOUBLE-SHELL TANKS

    International Nuclear Information System (INIS)

    Brown, M.H.

    2008-01-01

    Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program

  17. Development of a Remotely Operated NDE System for Inspection of Hanford's Double Shell Waste Tank Knuckle Regions

    International Nuclear Information System (INIS)

    Pardini, Allan F; Alzheimer, James M; Crawford, Susan L; Diaz, Aaron A; Gervais, Kevin L; Harris, Robert V; Riechers, Douglas M; Samuel, Todd J; Schuster, George J; Tucker, Joseph C

    2001-01-01

    This report documents work performed at the PNNL in FY01 to support development of a Remotely Operated NDE (RONDE) system capable of inspecting the knuckle region of Hanford's DSTs. The development effort utilized commercial off-the-shelf (COTS) technology wherever possible and provided a transport and scanning device for implementing the SAFT and T-SAFT techniques

  18. Performance testing of a system for remote ultrasonic examination of the Hanford double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Pfluger, D.C.; Somers, T.; Berger, A.D.

    1995-02-01

    A mobile robotic inspection system is being developed for remote ultrasonic examination of the double wall waste storage tanks at Hanford. Performance testing of the system includes demonstrating robot mobility within the tank annulus, evaluating the accuracy of the vision based navigation process, and verifying ultrasonic and video system performance. This paper briefly describes the system and presents a summary of the plan for performance testing of the ultrasonic testing system. Performance test results will be presented at the conference

  19. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT INCREASED LIQUID LEVEL ANALYSIS FOR 241-AP TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    TC MACKEY; JE DEIBLER; MW RINKER; KI JOHNSON; SP PILLI; NK KARRI; FG ABATT; KL STOOPS

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is the analysis of the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. The reevaluation of the AP anchor bolts showed that (for a given temperature increase) the anchor shear load distribution did not change significantly from the initially higher stiffness to the new secant shear stiffness. Therefore, the forces and displacements of the other tank components such as the primary tanks stresses, secondary liner strains, and concrete tank forces and moments also did not change significantly. Consequently, the revised work in Revision 1 focused on the changes in the anchor bolt responses and a full reevaluation of all tank components was judged to be unnecessary.

  20. Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak

    International Nuclear Information System (INIS)

    Girardot, Crystal L.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Engeman, Jason K.

    2013-01-01

    As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor

  1. Descriptions and diagrams of the primary and annulus ventilation systems of the double-shell tank farms as of January 1988

    International Nuclear Information System (INIS)

    Blackman, A.E.; Waters, E.D.

    1994-01-01

    This document is a compilation of information describing the ventilation systems of the Double-Shell Tank farms (214-AN, -AP, -AW, -AW, -AY, -AZ, and -SY). A general description of the primary tank and annulus ventilation systems is given along with specific information on the high efficiency particulate air (HEPA) filters, condensers, preheaters, exhaust fans, and piping. This information is considered to be current as of January 1988. 38 refs, 20 figs, 30 tabs

  2. HANFORD DOUBLE-SHELL TANK THERMAL and SEISMIC PROJECT-DYTRAN BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN FLAT-TOP TANKS

    International Nuclear Information System (INIS)

    MACKEY, T.C.

    2007-01-01

    The work reported in this document was performed in support of a project entitled ''Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work herein was motivated by review comments from a Project Review Meeting held on March 20-21, 2006. One of the recommendations from that meeting was that the effects of the interaction between the tank liquid and the roof be further studied (Rinker, Deibler, Johnson, Karri, Pilli, Abatt, Carpenter, and Hendrix - Appendix E of RPP-RPT-28968, Rev. 1). The reviewers recommended that solutions be obtained for seismic excitation of flat roof tanks containing liquid with varying headspace between the top of the liquid and the tank roof. It was recommended that the solutions be compared with simple, approximate procedures described in BNL (1995) and Malhotra (2005). This report documents the results of the requested studies and compares the predictions of Dytran simulations to the approximate procedures in BNL (1995) and Malhotra (2005) for flat roof tanks. The four cases analyzed all employed a rigid circular cylindrical flat top tank with a radius of 450 in. and a height of 500 in. The initial liquid levels in the tank were 460,480,490, and 500 in. For the given tank geometry and the selected seismic input, the maximum unconstrained slosh height of the liquid is slightly greater than 25 in. Thus, the initial liquid level of 460 in. represents an effectively roofless tank, the two intermediate liquid levels lead to intermittent interaction between the liquid and tank roof, and the 500 in. liquid level represents a completely full tank with no sloshing. Although this work was performed in support of the

  3. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT DYTRAN BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN FLAT TOP TANKS

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY, T.C.

    2007-02-16

    The work reported in this document was performed in support of a project entitled ''Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work herein was motivated by review comments from a Project Review Meeting held on March 20-21, 2006. One of the recommendations from that meeting was that the effects of the interaction between the tank liquid and the roof be further studied (Rinker, Deibler, Johnson, Karri, Pilli, Abatt, Carpenter, and Hendrix - Appendix E of RPP-RPT-28968, Rev. 1). The reviewers recommended that solutions be obtained for seismic excitation of flat roof tanks containing liquid with varying headspace between the top of the liquid and the tank roof. It was recommended that the solutions be compared with simple, approximate procedures described in BNL (1995) and Malhotra (2005). This report documents the results of the requested studies and compares the predictions of Dytran simulations to the approximate procedures in BNL (1995) and Malhotra (2005) for flat roof tanks. The four cases analyzed all employed a rigid circular cylindrical flat top tank with a radius of 450 in. and a height of 500 in. The initial liquid levels in the tank were 460,480,490, and 500 in. For the given tank geometry and the selected seismic input, the maximum unconstrained slosh height of the liquid is slightly greater than 25 in. Thus, the initial liquid level of 460 in. represents an effectively roofless tank, the two intermediate liquid levels lead to intermittent interaction between the liquid and tank roof, and the 500 in. liquid level represents a completely full tank with no sloshing. Although this work was performed

  4. Analysis and characterization of double shell tank 241-AP-108

    International Nuclear Information System (INIS)

    Miller, G.L.

    1994-01-01

    This document is the first part of a three-part report describing the analysis and characterization of double shell tank 241-AP-108 which is located at the Hanford Reservation.This document is the analytical laboratory data package entitled 'Analysis and Characterization of Double Shell Tank 241-AP-108' which contains a case sampling history, the sampling protocols, the analytical procedures, sampling and analysis quality assurance and quality control measures, and chemical analysis results for samples obtained from the tank

  5. HANFORD DST THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; ABATT FG

    2007-02-14

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  6. Double Shell Tank AY-102 Radioactive Waste Leak Investigation

    International Nuclear Information System (INIS)

    Washenfelder, Dennis J.

    2014-01-01

    PowerPoint. The objectives of this presentation are to: Describe Effort to Determine Whether Tank AY-102 Leaked; Review Probable Causes of the Tank AY-102 Leak; and, Discuss Influence of Leak on Hanford's Double-Shell Tank Integrity Program

  7. Mixer pump test plan for double shell tank AZ-101

    International Nuclear Information System (INIS)

    STAEHR, T.W.

    1999-01-01

    Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151

  8. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Doll, S. R.; Cooke, G. A.

    2017-08-31

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in the classification of the waste for shipping, receiving, treatment, and disposal determinations.

  9. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Stephanie R. [Hanford Site (HNF), Richland, WA (United States); Cooke, Gary A. [Hanford Site (HNF), Richland, WA (United States)

    2017-08-31

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion-exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in the classification of the waste for shipping, receiving, treatment, and disposal determinations.

  10. Tank waste processing analysis: Database development, tank-by-tank processing requirements, and examples of pretreatment sequences and schedules as applied to Hanford Double-Shell Tank Supernatant Waste - FY 1993

    International Nuclear Information System (INIS)

    Colton, N.G.; Orth, R.J.; Aitken, E.A.

    1994-09-01

    This report gives the results of work conducted in FY 1993 by the Tank Waste Processing Analysis Task for the Underground Storage Tank Integrated Demonstration. The main purpose of this task, led by Pacific Northwest Laboratory, is to demonstrate a methodology to identify processing sequences, i.e., the order in which a tank should be processed. In turn, these sequences may be used to assist in the development of time-phased deployment schedules. Time-phased deployment is implementation of pretreatment technologies over a period of time as technologies are required and/or developed. The work discussed here illustrates how tank-by-tank databases and processing requirements have been used to generate processing sequences and time-phased deployment schedules. The processing sequences take into account requirements such as the amount and types of data available for the tanks, tank waste form and composition, required decontamination factors, and types of compact processing units (CPUS) required and technology availability. These sequences were developed from processing requirements for the tanks, which were determined from spreadsheet analyses. The spreadsheet analysis program was generated by this task in FY 1993. Efforts conducted for this task have focused on the processing requirements for Hanford double-shell tank (DST) supernatant wastes (pumpable liquid) because this waste type is easier to retrieve than the other types (saltcake and sludge), and more tank space would become available for future processing needs. The processing requirements were based on Class A criteria set by the U.S. Nuclear Regulatory Commission and Clean Option goals provided by Pacific Northwest Laboratory

  11. HANFORD DOUBLE SHELL TANK THERMAL AND SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    TC MACKEY; FG ABATT; MW RINKER

    2009-01-14

    The essential difference between Revision 1 and the original issue of this report is in the spring constants used to model the anchor bolt response for the anchor bolts that tie the steel dome of the primary tank to the concrete tank dome. Consequently, focus was placed on the changes in the anchor bolt responses, and a full reevaluation of all tank components was judged to be unnecessary. To confirm this judgement, primary tank stresses from the revised analysis of the BES-BEC case are compared to the original analysis and it was verified that the changes are small, as expected.

  12. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  13. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  14. 241-AN Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AN double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  15. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  16. 241-SY Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  17. 241-AZ Double-Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-A2 double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  18. 241-AW Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AW double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  19. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    International Nuclear Information System (INIS)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site

  20. Mixer pump test plan for double-shell tank AZ-101. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Symons, G.A.

    1996-02-01

    Westinghouse Hanford Company has undertaken the task to develop and demonstrate a method of retrieval for double-shell tank waste. Mixer pumps were chosen as the planned method of retrieval for DSTs, based on engineering technology studies, past experience with hydraulic sluicing at the Hanford Site, and experience with mixer pumps at the Westinghouse Savannah River Site.

  1. Double-shell tank waste transfer facilities integrity assessment plan

    International Nuclear Information System (INIS)

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  2. Ultrasonic Examination of Double-Shell Tank 241-AY-101. Examination completed October 2007

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Weier, Dennis R.

    2008-01-01

    AREVA NC Inc., under contract from CH2M Hill Hanford Group, has performed an ultrasonic examination of selected portions of Double-Shell Tank 241-AY-101. PNNL is responsible for preparing a report(s) that describes the results of the AREVA ultrasonic examinations. This report is Revision 1 - more data has been added to the original report. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan, RPP-Plan-27202 (Jensen 2005) and summarized on page 1 of this document, are to be reported to CH2M Hill Hanford Group and the Pacific Northwest National Laboratory for further evaluation. Under the contract with CH2M Hill Hanford Group, all data is to be recorded on electronic media and paper copies of all measurements are provided to Pacific Northwest National Laboratory for third-party evaluation. Pacific Northwest National Laboratory is responsible for preparing a report(s) that describes the results of the AREVA NC Inc. ultrasonic examinations.

  3. DOUBLE-SHELL TANK WASTE TRANSFER LINE ENCASEMENT INTEGRITY ASSESSMENT TECHNOLOGY STUDY

    International Nuclear Information System (INIS)

    BOWER, R.R.

    2006-01-01

    The report provides various alternative methods of performing integrity assessment inspections of buried Hanford Double Shell Tank waste transfer line encasements, and provides method recommendations as an alternative to costly encasement pneumatic leak testing. A schedule for future encasement integrity assessments is also included

  4. Hanford DST Thermal and Seismic Project - Dytran Analysis Of Seismically Induced Fluid-Structure Interaction In A Hanford Double-Shell Primary Tank

    International Nuclear Information System (INIS)

    Mackey, T.C.; Rinker, M.W.; Abatt, F.G.

    2007-01-01

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  5. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DST PRIMARY TANK

    International Nuclear Information System (INIS)

    Mackey, T.C.; Abatt, F.G.; Rinker, M.W.

    2009-01-01

    This report (Rev 1) incorporates corrections and clarifications regarding the interpretation of solutions in BNL (1995) per reviewer comments from a June 7-8, 2007 review meeting. The review comments affect Appendixes C and D of this report - the body of the report is unchanged

  6. HANFORD DOUBLE-SHELL TANK THERMAL AND SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID-STRUCTURE INTERACTION IN A HANFORD DST PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; ABATT FG; RINKER MW

    2009-08-18

    This report (Rev 1) incorporates corrections and clarifications regarding the interpretation of solutions in BNL (1995) per reviewer comments from a June 7-8, 2007 review meeting. The review comments affect Appendixes C and D of this report - the body of the report is unchanged.

  7. Project management plan double-shell tank system specification development

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    The Project Hanford Management Contract (PHMC) members have been tasked by the US Department of Energy (DOE) to support removal of wastes from the Hanford Site 200 Area tanks in two phases. The schedule for these phases allows focusing on requirements for the first phase of providing feed to the privatized vitrification plants. The Tank Waste Retrieval Division near-term goal is to focus on the activities to support Phase 1. These include developing an integrated (technical, schedule, and cost) baseline and, with regard to private contractors, establishing interface agreements, constructing infrastructure systems, retrieving and delivering waste feed, and accepting immobilized waste products for interim onsite storage. This document describes the process for developing an approach to designing a system for retrieving waste from double-shell tanks. It includes a schedule and cost account for the work breakdown structure task

  8. Double shell tank waste analysis plan

    International Nuclear Information System (INIS)

    Mulkey, C.H.; Jones, J.M.

    1994-01-01

    Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations

  9. DOUBLE SHELL TANK EMERGENCY PUMPING GUIDE

    International Nuclear Information System (INIS)

    REBERGER, D.W.

    2006-01-01

    This document provides preplanning necessary to expeditiously remove any waste that may leak from the primary tank to the secondary tank for Hanford's 28 DSTs. The strategy is described, applicable emergency procedures are referenced, and transfer routes and pumping equipment for each tank are identified

  10. Double shell tanks emergency pumping plan

    International Nuclear Information System (INIS)

    Tangen, M.J.

    1994-01-01

    At the request of the Department of Energy (DOE), a formal plan for the emergency transfer of waste from a leaking double shell tank to a designated receiver tank has been developed. This plan is in response to the priority 2 safety issue ''Response to a leaking double-shell tank'' in the DOE Report to Congress, 1991. The plan includes the tanks in four of the east tank farms and one of the west farms. The background information and supporting calculations used for the creation of the emergency plan are discussed in this document. The scope of this document is all of the double shell tanks in the AN, AP, AW, AY, and SY farms. The transfer lines, flush pits, and valve pits involved in the transfer of waste between these farms are also included in the scope. Due to the storage of high heat waste, AZ farm is excluded at this time

  11. Double-shell tank waste system assessment status and schedule

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-01-01

    The integrated program for completing the integrity assessments of the dangerous waste tank systems managed by the Tank Waste Remediation System (TWRS) Division of Westinghouse Hanford Company is presented in the Tank Waste Remediation System Tank System Integrity Assessments Program Plan, WHC-SD-AP017, Rev. 1. The program plan identified the assessment requirements and the general scope to which these requirements applied. Some of these assessment requirements have been met and others are either in process of completion or scheduled to be worked. To define the boundary of the double-shell tank (DST) system and the boundaries of the DST system components (or system parts) for the purpose of performing integrity assessment activities; To identify the planned activities to meet the assessment requirements for each component; Provide the status of the assessment activities; and Project a five year assessment activity schedule

  12. Mechanistic analysis of double-shell tank gas release

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Friley, J.R.; Haines, C.E.; Liljegren, L.M.; Somasundaram, S.

    1991-12-01

    Pacific Northwest Laboratory (PNL) is studying possible mechanisms and fluid dynamics contributing to the periodic release of gases from the double-shell waste storage tanks at Hanford. This study is being conducted for Westinghouse Hanford Company (WHC), a contractor for the US Department of Energy (DOE). This interim report discusses the work done through November 1990. Safe management of the wastes at Hanford depends on an understanding of the chemical and physical mechanisms that take place in the waste tanks. An example of the need to understand these mechanisms is tank 101-SY. The waste in this tank is generating and periodically releasing potentially flammable gases into the tank vent system according to observations of the tank. How these gases are generated and become trapped, the causes of periodic release, and the mechanism of the release are not known in detail. In order to develop a safe mitigation strategy, possible physical mechanisms for the periodic release of flammable gases need to be understood.

  13. Constraints for system specifications for the double-shell and single-shell tank systems

    Energy Technology Data Exchange (ETDEWEB)

    SHAW, C.P.

    1999-05-18

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations.

  14. Acceptance criteria for non-destructive examination of double-shell tanks

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1995-09-01

    This supporting document provides requirements for acceptance of relevant indications found during non-destructive examination of double-shell tanks (DSTs) at Hanford 200 areas. Requirements for evaluation of relevant indications are provided to determine acceptability of continued safe operation of the DSTs. Areas of the DSTs considered include the tank wall vapor space, liquid-vapor interface, wetted tank wall, sludge-liquid interface, and the knuckle region

  15. Criticality safety evaluation of disposing of K Basin sludge in double-shell tank AW-105

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    1999-01-01

    A criticality safety evaluation is made of the disposal of K Basin sludge in double-shell tank (DST) AW-105 located in the 200 east area of Hanford Site. The technical basis is provided for limits and controls to be used in the development of a criticality prevention specification (CPS). A model of K Basin sludge is developed to account for fuel burnup. The iron/uranium mass ration required to ensure an acceptable magrin of subcriticality is determined

  16. Constraints for system specifications for the double-shell and single-shell tank systems

    International Nuclear Information System (INIS)

    SHAW, C.P.

    1999-01-01

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations

  17. Material Balance Assessment for Double-Shell Tank Waste Pipeline Transfer

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Wells, Beric E; Hartley, Stacey A; Enderlin, Carl W

    2001-01-01

    PNNL developed a material balance assessment methodology based on conservation of mass for detecting leaks and mis-routings in pipeline transfer of double-shell tank waste at Hanford. The main factors causing uncertainty in these transfers are variable property and tank conditions of density, existence of crust, and surface disturbance due to mixer pump operation during the waste transfer. The methodology was applied to three waste transfers from Tanks AN-105 and AZ-102

  18. Tank characterization report for double-shell tank 241-AP-102

    International Nuclear Information System (INIS)

    LAMBERT, S.L.

    1999-01-01

    In April 1993, Double-Shell Tank 241-AP-102 was sampled to determine waste feed characteristics for the Hanford Grout Disposal Program. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics, expected bulk inventory, and concentration data for the waste contents based on this latest sampling data and information on the history of the tank. Finally, this report makes recommendations and conclusions regarding tank operational safety issues

  19. Heat transfer analyses for grout disposal of radioactive double-shell slurry and customer wastes

    International Nuclear Information System (INIS)

    Robinson, S.M.; Gilliam, T.M.; McDaniel, E.W.

    1987-04-01

    Grout immobilization is being considered by Rockwell Hanford Operations (Rockwell Hanford) as a permanent disposal method for several radioactive waste streams. These include disposal of customer and double-shell slurry wastes in earthen trenches and in single-shell underground waste storage tanks. Heat transfer studies have previously been made to determine the maximum heat loading for grout disposal of various wastes under similar conditions, but a sensitivity analysis of temperature profiles to input parameters was needed. This document presents the results of heat transfer calculations for trenches containing grouted customer and double-shell slurry wastes and for in situ disposal of double-shell wastes in single-shell, domed concrete storage tanks. It discusses the conditions that lead to maximum grout temperatures of 250 0 F during the curing stage and 350 0 F thereafter and shows the dependence of these temperatures on input parameters such as soil and grout thermal conductivity, grout specific heat, waste loading, and disposal geometries. Transient heat transfer calculations were made using the HEATING6 computer code to predict temperature profiles in solidified low-level radioactive waste disposal scenarios at the Rockwell Hanford site. The calculations provide guidance for the development of safe, environmentally acceptable grout formulas for the Transportable Grout Facility. 11 refs

  20. Ultrasonic Examination of Double-Shell Tank 241-AP-104. Examination Completed August 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AP-104. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AP-104 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  1. Ultrasonic Examination of Double-Shell Tank 241-SY-103. Examination completed February 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-103. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-103 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  2. Ultrasonic Examination of Double-Shell Tank 214-AW-102 Knuckle Region. Examination completed February 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic examination of the knuckle region of Double-Shell Tank 241-AW-102 utilizing the Remotely Operated Nondestructive Examination (RONDE) system. The purpose of this examination was to provide information that could be used to evaluate the integrity of the knuckle region of the primary tank. The requirements for the ultrasonic examination of Tank 241-AW-102 were to detect, characterize (identify, size, and locate), and record measurements made of any circumferentially oriented cracks that might be present in the knuckle area of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-7869, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided t o PNNL for third-party evaluation. PNNL is responsible for preparing a report(s) that describes the results of the COGEMA ultrasonic examinations

  3. Ultrasonic Examination of Double-Shell Tank 241-AZ-102 Examination Completed August 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AZ-102. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-AZ-102 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plat (ETP), RPP-11832 (Jensen 2002) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  4. Ultrasonic Examination of Double-Shell Tank 241-SY-102. Examination Completed June 2004

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2004-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-SY-102. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the primary tank. The requirements for the ultrasonic examination of Tank 241-SY-102 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning, pitting, or cracks that might be present in the wall of the primary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP-17750 (Jensen 2003) and/SUMmarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA

  5. Double-shell tank ultrasonic inspection plan. Revision 1

    International Nuclear Information System (INIS)

    Pfluger, D.C.

    1994-01-01

    The waste tank systems managed by the Tank Waste Remediation System Division of Westinghouse Hanford Company includes 28 large underground double-shell tanks (DST) used for storing hazardous radioactive waste. The ultrasonic (UT) inspection of these tanks is part of their required integrity assessment (WAC 1993) as described in the tank systems integrity assessment program plan (IAPP) (Pfluger 1994a) submitted to the Ecology Department of the State of Washington. Because these tanks hold radioactive waste and are located underground examinations and inspections must be done remotely from the tank annuli with specially designed equipment. This document describes the UT inspection system (DSTI system), the qualification of the equipment and procedures, field inspection readiness, DST inspections, and post-inspection activities. Although some of the equipment required development, the UT inspection technology itself is the commercially proven and available projection image scanning technique (P-scan). The final design verification of the DSTI system will be a performance test in the Hanford DST annulus mockup that includes the demonstration of detecting and sizing corrosion-induced flaws

  6. Double shell planar experiments on OMEGA

    Science.gov (United States)

    Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.

    2017-10-01

    The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.

  7. References for HNF-SD-WM-TRD-007, ''System specification for the double-shell tank system: HNF-PROs, CFRs, DOE Orders, WACs''

    International Nuclear Information System (INIS)

    Shaw, C.P.

    1998-01-01

    HNF-SD-WM-TRD-O07, System Specification for the Double-Shell Tank System, (hereafter referred to as DST Specification), defines the requirements of the double-shell tank system at the Hanford Site for Phase 1 privatization. Many of the sections in this document reference other documents for design guidance and requirements. Referenced documents include Project Hanford Management Contract (PHMC) procedures (HNF-PROS), Codes of Federal Regulation (CFRs), DOE Orders, and Washington Administrative Codes (WACs). This document provides rationale for the selection and inclusion of HNF-PROS, CFRs, DOE Orders and WACs

  8. Double-Shell Tank (DST) Utilities Specification

    International Nuclear Information System (INIS)

    SUSIENE, W.T.

    2000-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to he applied during the design of the Double-Shell Tank (DST) Utilities Subsystems that support the first phase of waste feed delivery (WFD). The DST Utilities Subsystems provide electrical power, raw/potable water, and service/instrument air to the equipment and structures used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. The DST Utilities Subsystems also support the equipment and structures used to deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where the waste will be immobilized. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  9. DOUBLE SHELL TANK INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    International Nuclear Information System (INIS)

    WASHENFELDER DJ

    2008-01-01

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  10. Final results of double-shell tank 241-AN-105 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AN-105. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AN-105 primary tank wall primary knuckle, and secondary tank bottom. The inspection found some indication of general and local wall thinning with no cracks detected

  11. System Description for the Double Shell Tank (DST) Confinement System

    International Nuclear Information System (INIS)

    ROSSI, H.

    2000-01-01

    This document provides a description of the Double-Shell Tank (DST) Confinement System. This description will provide a basis for developing functional, performance and test requirements (i.e., subsystem specification), as necessary, for the DST Confinement System

  12. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix contains the engineering design drawings for the double-shell tank system. Included are drawings of the electrical systems, structural members, piping systems, instrumentation and the many auxiliary systems. (JL)

  13. Double Shell Tank (DST) Human Factors Study

    International Nuclear Information System (INIS)

    CHAFFEE, G.A.

    1994-01-01

    This report documents the data collection and analyses that were performed in development of material to be used in the Human Factors chapter for the upgrade to the Safety Analysis Report (SAR) for the Double-Shell Tank Farms (DSTF). This study was conducted to collect the data that is necessary to prepare the Human Factors chapter for the upgrade of the SAR for the DSTF. Requirements for the HF chapter of the SAR generally dictate that the facility management describe how the consideration of operator capabilities and limitations and operating experience are used in ensuring the safe and effective operation of the facility. Additionally, analysis to indicate the contribution of human error to the safety basis accidents or events must be reported. Since the DSTF is a mature operating facility and the requirement to prepare a HF chapter is new, it was not expected that the consideration of HF principles would be an explicit part of DSTF operations. It can be expected, however, that the programs that guide the daily operations at the DSTF contain provisions for the consideration of the needs of their operating personnel and lessons learned from prior experience. Consideration of both the SAR requirements and the nature of the DSTF operations led to the following objectives being defined for the study: (1) to identify the programs at the OSTF where human performance may be considered; (2) to describe how HF principles and operating experience are used to ensure safe and reliable human performance at the DSTF; (3) to describe how HF principles and operating experience are considered as modifications or improvements are made at the DSTF; and (4) to perform task analysis sufficient to understand the potential for human error in OSTF operations

  14. Functional Analysis for Double Shell Tank (DST) Subsystems

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2000-01-01

    This functional analysis identifies the hierarchy and describes the subsystem functions that support the Double-Shell Tank (DST) System described in HNF-SD-WM-TRD-007, System Specification for the Double-Shell Tank System. Because of the uncertainty associated with the need for upgrades of the existing catch tanks supporting the Waste Feed Delivery (WFD) mission, catch tank functions are not addressed in this document. The functions identified herein are applicable to the Phase 1 WFD mission only

  15. Final results of double-shell tank 241-AZ-101 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking

  16. Final results of double-shell tank 241-AY-102 ultrasonic inspection

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AY-102. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AY-102 primary tank wall and welds. The inspection found some indication of insignificant general and local wall thinning with no cracks detected

  17. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  18. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  19. Data Observations on Double Shell Tank (DST) Flammable Gas Watch List Tank Behavior

    Energy Technology Data Exchange (ETDEWEB)

    HEDENGREN, D.C.

    2000-09-28

    This report provides the data from the retained gas sampler, void fraction instrument, ball rheometer, standard hydrogen monitoring system, and other tank data pertinent to gas retention and release behavior in the waste stored in double-shelled Flammable Gas Watch List tanks at Hanford. These include tanks 241-AN-103,241-AN-104, 241-AN-105, 241-AW-101, 241-SY-101, and 241-SY-103. The tanks and the waste they contain are described in terms of fill history and chemistry. The results of mixer pump operation and recent waste transfers and back-dilution in SY-101 are also described. In-situ measurement and monitoring systems are described and the data are summarized under the categories of thermal behavior, waste configuration and properties, gas generation and composition, gas retention and historical gas release behavior.

  20. Tank characterization report for double-shell tank 241-AN-102

    International Nuclear Information System (INIS)

    Jo, J.

    1996-01-01

    This characterization report summarizes the available information on the historical uses, current status, and sampling and analysis results of waste stored in double-shell underground storage tank 241- AN-102. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09 (Ecology et al. 1996). Tank 241-AN-102 is one of seven double-shell tanks located in the AN Tank Farm in the Hanford Site 200 East Area. The tank was hydrotested in 1981, and when the water was removed, a 6-inch heel was left. Tank 241-AN-102 began receiving waste from tank 241-SY-102 beginning in 1982. The tank was nearly emptied in the third quarter of 1983, leaving only 125 kL (33 kgal) of waste. Between the fourth quarter of 1983 and the first quarter of 1984, tank 241-AN-102 received waste from tanks 241-AY-102, 241-SY-102, 241-AW-105, and 241- AN-101. The tank was nearly emptied in the second quarter of 1984, leaving a heel of 129 kL (34 kgal). During the second and third quarters of 1984, the tank was filled with concentrated complexant waste from tank 241-AW-101. Since that time, only minor amounts of Plutonium-Uranium Extraction (PUREX) Plant miscellaneous waste and water have been received; there have been no waste transfer to or from the tank since 1992. Therefore, the waste currently in the tank is considered to be concentrated complexant waste. Tank 241-AN-102 is sound and is not included on any of the Watch Lists

  1. Mechanistic analysis of double-shell tank gas release. Progress report, November 1990

    Energy Technology Data Exchange (ETDEWEB)

    Allemann, R.T.; Antoniak, Z.I.; Friley, J.R.; Haines, C.E.; Liljegren, L.M.; Somasundaram, S.

    1991-12-01

    Pacific Northwest Laboratory (PNL) is studying possible mechanisms and fluid dynamics contributing to the periodic release of gases from the double-shell waste storage tanks at Hanford. This study is being conducted for Westinghouse Hanford Company (WHC), a contractor for the US Department of Energy (DOE). This interim report discusses the work done through November 1990. Safe management of the wastes at Hanford depends on an understanding of the chemical and physical mechanisms that take place in the waste tanks. An example of the need to understand these mechanisms is tank 101-SY. The waste in this tank is generating and periodically releasing potentially flammable gases into the tank vent system according to observations of the tank. How these gases are generated and become trapped, the causes of periodic release, and the mechanism of the release are not known in detail. In order to develop a safe mitigation strategy, possible physical mechanisms for the periodic release of flammable gases need to be understood.

  2. Double Shell Tank (DST) Monitor and Control Subsystem Definition Report

    International Nuclear Information System (INIS)

    BAFUS, R.R.

    2000-01-01

    The system description of the Double-Shell Tank (DST) Monitor and Control Subsystem establishes the system boundaries and describes the interface of the DST Monitor and Control Subsystem with new and existing systems that are required to accomplish the Waste Feed Delivery (WFD) mission

  3. Performance Requirements for the Double Shell Tank (DST) System

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2001-01-01

    This document identifies the upper-level Double-Shell Tank (DST) System functions and bounds the associated performance requirements. The functions and requirements are provided along with supporting bases. These functions and requirements, in turn, will be incorporated into specifications for the DST System

  4. A risk management approach to double-shell tank waste volume versus storage capacity

    International Nuclear Information System (INIS)

    Coles, G.A.; Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J.

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences

  5. A risk management approach to double-shell tank waste volume versus storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Coles, G.A. [Westinghouse Hanford Co., Richland, WA (United States); Thurkow, T.J.; Fritz, R.L.; Nuhlestein, L.O.; Allen, M.R.; Stuart, R.J. [ARES Corp. (United States)

    1996-01-01

    A risk-based assessment of the overall waste volume versus double-shell tank storage capacity was conducted to develop fallback positions for projections where the waste volume was at a high risk of exceeding capacity. This study was initiated to provide that assessment. A working simulation model was the primary deliverable of this study. The model validates the approach and demonstrates that simulation analysis can provide a method of tracking uncertainties in available data, assessing probabilities, and serves as a tool to be used by management to determine the consequences of various off-normal occurrences.

  6. Double Shell Tank (DST) Transfer Piping Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of Waste Feed Delivery. This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Transfer Piping Subsystem that supports the first phase of waste feed delivery. This subsystem transfers waste between transfer-associated structures (pits) and to the River Protection Project (RPP) Privatization Contractor Facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  7. Double Shell Tank (DST) Process Waste Sampling Subsystem Definition Report

    International Nuclear Information System (INIS)

    RASMUSSEN, J.H.

    2000-01-01

    This report defines the Double-Shell Tank (DST) Process Waste Sampling Subsystem (PWSS). This subsystem definition report fully describes and identifies the system boundaries of the PWSS. This definition provides a basis for developing functional, performance, and test requirements (i.e., subsystem specification), as necessary, for the PWSS. The resultant PWSS specification will include the sampling requirements to support the transfer of waste from the DSTs to the Privatization Contractor during Phase 1 of Waste Feed Delivery

  8. Tank characterization report for double-shell Tank 241-AP-107

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    The purpose of this tank characterization report is to describe and characterize the waste in Double-Shell Tank 241-AP-107 based on information gathered from various sources. This report summarizes the available information regarding the waste in Tank 241-AP-107, and arranges it in a useful format for making management and technical decisions concerning this particular waste tank. In addition, conclusion and recommendations based on safety and further characterization needs are given. Specific objectives reached by the sampling and characterization of the waste in Tank 241-AP-107 are: Contribute toward the fulfillment of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-44-05 concerning the characterization of Hanford Site high-level radioactive waste tanks; Complete safety screening of the contents of Tank 241-AP-107 to meet the characterization requirements of the Defense Nuclear Facilities Safety board (DNFSB) Recommendation 93-5; and Provide tank waste characterization to the Tank Waste Remediation System (TWRS) Program Elements in accordance with the TWRS Tank Waste Analysis Plan

  9. Evaluation of Flygt Propeller Xixers for Double Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    Energy Technology Data Exchange (ETDEWEB)

    PACQUET, E.A.

    2000-07-20

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt{trademark} submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt{trademark} mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described.

  10. Tank characterization report for double-shell tank 241-AN-105

    International Nuclear Information System (INIS)

    Jo, J.

    1997-01-01

    A major function of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AN-105. The objectives of this report are: (1) to use characterization data in response to technical issues associated with tank 241-AN-105 waste; and (2) to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of the Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10

  11. Pilot-scale production of grout with simulated double-shell slurry feed. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Whyatt, G.A.

    1994-08-01

    This report describes the pilot-scale production of grout with simulated double-shell slurry feed (DSSF) waste performed in November 1988, and the subsequent thermal behavior of the grout as it cured in a large, insulated vessel. The report was issued in draft form in April 1989 and comments were subsequently received; however, the report was not finalized until 1994. In finalizing this report, references or information gained after the report was drafted in April 1989 have not been incorporated to preserve the report`s historical perspective. This report makes use of criteria from Ridelle (1987) to establish formulation criteria. This document has since been superseded by a document prepared by Reibling and Fadeef (1991). However, the reference to Riddelle (1987) and any analysis based on its content have been maintained within this report. In addition, grout is no longer being considered as the waste form for disposal of Hanford`s low-level waste. However, grout disposal is being maintained as an option in case there is an emergency need to provide additional tank space. Current plans are to vitrify low-level wastes into a glass matrix.

  12. Tank characterization report for double-shell tank 241-AP-105

    International Nuclear Information System (INIS)

    DeLorenzo, D.S.; Simpson, B.C.

    1994-01-01

    Double-Shell Tank 241-AP-105 is a radioactive waste tank most recently sampled in March of 1993. Sampling and characterization of the waste in Tank 241-AP-105 contributes toward the fulfillment of Milestone M-44-05 of the Hanford Federal Facility Agreement and Consent Order (Ecology, EPA, and DOE, 1993). Characterization is also needed tot evaluate the waste's fitness for safe processing through an evaporator as part of an overall waste volume reduction program. Tank 241-AP-105, located in the 200 East Area AP Tank Farm, was constructed and went into service in 1986 as a dilute waste receiver tank; Tank 241AP-1 05 was considered as a candidate tank for the Grout Treatment Facility. With the cancellation of the Grout Program, the final disposal of the waste in will be as high- and low-level glass fractions. The tank has an operational capacity of 1,140,000 gallons, and currently contains 821,000 gallons of double-shell slurry feed. The waste is heterogeneous, although distinct layers do not exist. Waste has been removed periodically for processing and concentration through the 242-A Evaporator. The tank is not classified as a Watch List tank and is considered to be sound. There are no Unreviewed Safety Questions associated with Tank 241-AP-105 at this time. The waste in Tank 241-AP-105 exists as an aqueous solution of metallic salts and radionuclides, with limited amounts of organic complexants. The most prevalent soluble analytes include aluminum, potassium, sodium, hydroxide, carbonate, nitrate, and nitrite. The calculated pH is greater than the Resource Conservation and Recovery Act established limit of 12.5 for corrosivity. In addition, cadmium, chromium, and lead concentrations were found at levels greater than their regulatory thresholds. The major radionuclide constituent is 137 Cs, while the few organic complexants present include glycolate and oxalate. Approximately 60% of the waste by weight is water

  13. Double-Shell Tank (DST) Monitor and Control Subsystem Specification

    International Nuclear Information System (INIS)

    BAFUS, R.R.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied during design of the Double-Shell Tank (DST) Monitor and Control Subsystem that supports the first phase of Waste Feed Delivery. This subsystem specification establishes the interface and performance requirements and provides references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Monitor and Control Subsystem. The DST Monitor and Control Subsystem consists of the new and existing equipment that will be used to provide tank farm operators with integrated local monitoring and control of the DST systems to support Waste Feed Delivery (WFD). New equipment will provide automatic control and safety interlocks where required and provide operators with visibility into the status of DST subsystem operations (e.g., DST mixer pump operation and DST waste transfers) and the ability to manually control specified DST functions as necessary. This specification is intended to be the basis for new project/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  14. Hazard assessments of double-shell flammable gas tanks

    International Nuclear Information System (INIS)

    Fox, G.L.; Stepnewski, D.D.

    1994-01-01

    This report is the fourth in a series of hazard assessments performed on the double-shell flammable gas watch list tanks. This report focuses on hazards associated with the double-shell watch list tanks (101-AW, 103-AN, 104-AN, and 105-AN). While a similar assessment has already been performed for tank 103-SY, it is also included here to incorporate a more representative slurry gas mixture and provide a consistent basis for comparing results for all the flammable gas tanks. This report is intended to provide an in-depth assessment by considering the details of the gas release event and slurry gas mixing as the gas is released from the waste. The consequences of postulated gas ignition are evaluated using a plume burn model and updated ignition frequency predictions. Tank pressurization which results from a gas burn, along with the structural response, is also considered. The report is intended to support the safety basis for work activities in flammable gas tanks by showing margins to safety limits that are available in the design and procedures

  15. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  16. Ultrasonic Examination of Double-Shell Tank 241-AY-101 Examination Completed August 2003

    International Nuclear Information System (INIS)

    Pardini, Allan F.; Posakony, Gerald J.

    2003-01-01

    COGEMA Engineering Corporation (COGEMA), under a contract from CH2M Hill Hanford Group (CH2M Hill), has performed an ultrasonic nondestructive examination of selected portions of Double-Shell Tank 241-AY-101. The purpose of this examination was to provide information that could be used to evaluate the integrity of the wall of the secondary tank. The requirements for the ultrasonic examination of Tank 241-AY-101 were to detect, characterize (identify, size, and locate), and record measurements made of any wall thinning or pitting that might be present in the wall of the secondary tank. Any measurements that exceed the requirements set forth in the Engineering Task Plan (ETP), RPP--11832 (Jensen 2002) and summarized on page 1 of this document, are reported to CH2M Hill and the Pacific Northwest National Laboratory (PNNL) for further evaluation. Under the contract with CH2M Hill, all data is to be recorded on disk and paper copies of all measurements are provided to PNNL for third-party evaluation. PNNL is responsible for preparing a report that describes the results of the COGEMA ultrasonic examinations

  17. Evaluation of scaling correlations for mobilization of double-shell tank waste

    Energy Technology Data Exchange (ETDEWEB)

    Shekarriz, A.; Hammad, K.J.; Powell, M.R.

    1997-09-01

    In this report, we have examined some of the fundamental mechanisms expected to be at work during mobilization of the waste within the double-shell tanks at Hanford. The motivation stems from the idea that in order to properly apply correlations derived from scaled tests, one would have to ensure that appropriate scaling laws are utilized. Further, in the process of delineating the controlling mechanisms during mobilization, the currently used computational codes are being validated and strengthened based on these findings. Experiments were performed at 1/50-scale, different from what had been performed in the previous fiscal years (i.e., 1/12- and 1/25-scale). It was anticipated that if the current empirical correlations are to work, they should be scale invariant. The current results showed that linear scaling between the 1/25-scale and 1/50-scale correlations do not work well. Several mechanisms were examined in the scaled tests which might have contributed to the discrepancies between the results at these two scales. No deficiencies in the experimental approach and the data were found. Cognizant of these results, it was concluded that the use of the current empirical correlations for ECR should be done cautiously taking into account the appropriate properties of the material for yielding.

  18. Evaluation of scaling correlations for mobilization of double-shell tank waste

    International Nuclear Information System (INIS)

    Shekarriz, A.; Hammad, K.J.; Powell, M.R.

    1997-09-01

    In this report, we have examined some of the fundamental mechanisms expected to be at work during mobilization of the waste within the double-shell tanks at Hanford. The motivation stems from the idea that in order to properly apply correlations derived from scaled tests, one would have to ensure that appropriate scaling laws are utilized. Further, in the process of delineating the controlling mechanisms during mobilization, the currently used computational codes are being validated and strengthened based on these findings. Experiments were performed at 1/50-scale, different from what had been performed in the previous fiscal years (i.e., 1/12- and 1/25-scale). It was anticipated that if the current empirical correlations are to work, they should be scale invariant. The current results showed that linear scaling between the 1/25-scale and 1/50-scale correlations do not work well. Several mechanisms were examined in the scaled tests which might have contributed to the discrepancies between the results at these two scales. No deficiencies in the experimental approach and the data were found. Cognizant of these results, it was concluded that the use of the current empirical correlations for ECR should be done cautiously taking into account the appropriate properties of the material for yielding

  19. Durability of double-shell slurry feed grouts: FY-90 results

    International Nuclear Information System (INIS)

    Lokken, R.O.; Martin, P.F.C.

    1992-12-01

    Plans for disposal of the low-level fraction of selected double-shell tank wastes at Hanford include grouting. Grout disposal is the process of mixing low-level liquid waste with cementitious powders and pumping the slurry to near-surface, underground concrete vaults; hydration results in the formation of a solid product that binds/encapsulates the radioactive/hazardous constituents. In this durability program, previous studies have indicated a strong impact from curing temperature/time on strength and leach resistance of DSSF grouts. The current studies were expanded to determine whether these impacts could be attributed to other factors, such as dry blend composition and waste concentration. Major conclusions: grouts from dry blends with 40 wt% limestone had lower strengths; compressive strengths and leach resistance decreased with increased curing temperature/time; leach resistance increased for grouts prepared with dilute DSSF; nitrate leach resistance increased with high slag/cement ratios, dilute DSSF, and low curing temperatures; amount of drainable liquids for grouts using diluted DSSF was lowest when slag content was high; the 2 most significant factors affecting grout properties were the slag/cement ratio and waste dilution (slag-waste reactions appear to dominate the properties of DSSF grouts)

  20. A methodology to predict the uniformity of double-shell waste slurries based on mixer pump operation

    International Nuclear Information System (INIS)

    Liljegren, L.M.; Bamberger, J.A.

    1992-08-01

    Dimensional analysis is used to determine the similarity parameters that describe the uniformity of radioactive slurry wastes to be suspended by mixer pumps. The results of this analysis are applied to the design of scaled experiments that will determine the operating parameters that will ensure an adequately uniform feed stream during waste retrieval from Hanford double-shell tanks. Ten dimensionless parameters describing the slurry mixing process were identified. Of these, three describe purely geometric features, three describe slurry properties only, one is a dimensionless time scale, and three describe important dynamic factors. The three parameters describing the dynamic features are the Reynolds number, which describes the degree of turbulence in the tank; the Froude number, which describes the effects of stratification on the circulation patterns; and the gravitational settling number, which describes the balance between the work done by gravity to cause settling and the work done by the pump to resuspend particles

  1. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2001-01-01

    This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the Double-Shell Tank (DST) Transfer Pump Subsystem that supports the first phase of waste feed delivery (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and/or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Waste Treatment Plant where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  2. Double-shell target fabrication workshop-2016 report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. Morris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oertel, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Farrell, Michael [General Atomics, San Diego, CA (United States); Baumann, Ted [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huang, Haibo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikroo, Abbas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-10

    On June 30, 2016, over 40 representatives from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), General Atomics (GA), Laboratory for Laser Energetics (LLE), Schafer Corporation, and NNSA headquarter attended a double-shell (DS) target fabrication workshop at Livermore, California. Pushered-single-shell (PSS) and DS metalgas platforms potentially have a large impact on programmatic applications. The goal of this focused workshop is to bring together target fabrication scientists, physicists, and designers to brainstorm future PSS and DS target fabrication needs and strategies. This one-day workshop intends to give an overall view of historical information, recent approaches, and future research activities at each participating organization. Five topical areas have been discussed that are vital to the success of future DS target fabrications, including inner metal shells, foam spheres, outer ablators, fill tube assembly, and metrology.

  3. Double shell slurry low-temperature corrosion tests

    International Nuclear Information System (INIS)

    Divine, J.R.; Bowen, W.M.; McPartland, S.A.; Elmore, R.P.; Engel, D.W.

    1983-09-01

    A series of year-long tests have been completed on potential double shell slurry (DSS) compositions at temperatures up to 100 0 C. These tests have sought data on uniform corrosion, pitting, and stress-corrosion cracking. No indication of the latter two types of corrosion were observed within the test matrix. Corrosion rates after four months were generally below the 1 mpy (25 μm/y) design limit. By the end of twelve months all results were below this limit and, except for very concentrated mixtures, all were below 0.5 mpy. Prediction equations were generated from a model fitted to the data. The equations provide a rapid means of estimating the corrosion rate for proposed DSS compositions

  4. Restoration of Secondary Containment in Double Shell Tank (DST) Pits

    Energy Technology Data Exchange (ETDEWEB)

    SHEN, E.J.

    2000-10-05

    Cracks found in many of the double-shell tank (DST) pump and valve pits bring into question the ability of the pits to provide secondary containment and remain in compliance with State and Federal regulations. This study was commissioned to identify viable options for maintain/restoring secondary containment capability in these pits. The basis for this study is the decision analysis process which identifies the requirements to be met and the desired goals (decision criteria) that each option will be weighed against. A facilitated workshop was convened with individuals knowledgeable of Tank Farms Operations, engineering practices, and safety/environmental requirements. The outcome of this workshop was the validation or identification of the critical requirements, definition of the current problem, identification and weighting of the desired goals, baselining of the current repair methods, and identification of potential alternate solutions. The workshop was followed up with further investigations into the potential solutions that were identified in the workshop and through other efforts. These solutions are identified in the body of this report. Each of the potential solutions were screened against the list of requirements and only those meeting the requirements were considered viable options. To expand the field of viable options, hybrid concepts that combine the strongest features of different individual approaches were also examined. Several were identified. The decision analysis process then ranked each of the viable options against the weighted decision criteria, which resulted in a recommended solution. The recommended approach is based upon installing a sprayed on coating system.

  5. Restoration of Secondary Containment in Double Shell Tank (DST) Pits

    International Nuclear Information System (INIS)

    SHEN, E.J.

    2000-01-01

    Cracks found in many of the double-shell tank (DST) pump and valve pits bring into question the ability of the pits to provide secondary containment and remain in compliance with State and Federal regulations. This study was commissioned to identify viable options for maintain/restoring secondary containment capability in these pits. The basis for this study is the decision analysis process which identifies the requirements to be met and the desired goals (decision criteria) that each option will be weighed against. A facilitated workshop was convened with individuals knowledgeable of Tank Farms Operations, engineering practices, and safety/environmental requirements. The outcome of this workshop was the validation or identification of the critical requirements, definition of the current problem, identification and weighting of the desired goals, baselining of the current repair methods, and identification of potential alternate solutions. The workshop was followed up with further investigations into the potential solutions that were identified in the workshop and through other efforts. These solutions are identified in the body of this report. Each of the potential solutions were screened against the list of requirements and only those meeting the requirements were considered viable options. To expand the field of viable options, hybrid concepts that combine the strongest features of different individual approaches were also examined. Several were identified. The decision analysis process then ranked each of the viable options against the weighted decision criteria, which resulted in a recommended solution. The recommended approach is based upon installing a sprayed on coating system

  6. Double-Shell Tank (DST) Diluent and Flush Subsystem Specification

    International Nuclear Information System (INIS)

    GRAVES, C.E.

    2000-01-01

    The Double-Shell Tank (DST) Diluent and Flush Subsystem is intended to support Waste Feed Delivery. The DST Diluent and Flush Subsystem specification describes the relationship of this system with the DST System, describes the functions that must be performed by the system, and establishes the performance requirements to be applied to the design of the system. It also provides references for the requisite codes and standards. The DST Diluent and Flush Subsystem will treat the waste for a more favorable waste transfer. This will be accomplished by diluting the waste, dissolving the soluble portion of the waste, and flushing waste residuals from the transfer line. The Diluent and Flush Subsystem will consist of the following: The Diluent and Flush Station(s) where chemicals will be off-loaded, temporarily stored, mixed as necessary, heated, and metered to the delivery system; and A piping delivery system to deliver the chemicals to the appropriate valve or pump pit Associated support structures. This specification is intended to be the basis for new projects/installations. This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  7. Double Shell Tank (DST) Transfer Pump Subsystem Specification

    International Nuclear Information System (INIS)

    LESHIKAR, G.A.

    2000-01-01

    This specification establishes the performance requirements and provides references to the requisite codes and standards to be applied to the Double-Shell Tank (DST) Transfer Pump Subsystem which supports the first phase of Waste Feed Delivery (WFD). This specification establishes the performance requirements and provides the references to the requisite codes and standards to be applied during the design of the DST Transfer Pump Subsystem that supports the first phase of (WFD). The DST Transfer Pump Subsystem consists of a pump for supernatant and or slurry transfer for the DSTs that will be retrieved during the Phase 1 WFD operations. This system is used to transfer low-activity waste (LAW) and high-level waste (HLW) to designated DST staging tanks. It also will deliver blended LAW and HLW feed from these staging tanks to the River Protection Project (RPP) Privatization Contractor facility where it will be processed into an immobilized waste form. This specification is intended to be the basis for new projects/installations (W-521, etc.). This specification is not intended to retroactively affect previously established project design criteria without specific direction by the program

  8. On buckling of double-shell-stiffened cylindrical steel structures

    International Nuclear Information System (INIS)

    Chen, S.J.; Chiu, K.D.; Odar, E.

    1981-01-01

    Buckling analysis methods and acceptance criteria for single shells of various configurations are well documented and adequately covered by many codes. There are, however, no guidelines or criteria for large Double-Shell-Stiffened (DSS) structures, which have been used recently in nuclear power plant applications. The existing codes for buckling analysis cannot be directly utilized because of the uniqueness of structural configuration and complexity of loading. This paper discusses a method for determining the critical buckling loads for this type of structure under a multitude load and suggests buckling criteria for the design of DSS structures. The method commonly used to determine the critical buckling loads for a single shell with or without stiffeners applies reduction factors to the theoretical results. The capacity reduction factors, which are often obtained from experimental results, include plasticity corrections and account for the difference between actual and theoretical buckling loads resulting from the effects of imperfections and nonlinearities. The interaction formulas derived from experimental results can be used to compute the interaction effects of three stress components. This paper extends these concepts and discusses their applicability to a DSS cylindrical structure. (orig./HP)

  9. Performance requirements for the double-shell tank system: Phase 1

    International Nuclear Information System (INIS)

    Claghorn, R.D.

    1998-01-01

    This document establishes performance requirements for the double-shell tank system. These requirements, in turn, will be incorporated in the System Specification for the Double-Shell Tank System (Grenard and Claghorn 1998). This version of the document establishes requirements that are applicable to the first phase (Phase 1) of the Tank Waste Remediation System (TWRS) mission described in the TWRS Mission Analysis Report (Acree 1998). It does not specify requirements for either the Phase 2 mission or the double-shell tank system closure period

  10. Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks

    International Nuclear Information System (INIS)

    Lee, Kearn P.; Thien, Michael G.

    2013-01-01

    The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs' ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased

  11. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  12. Impacts and Compliance Implementation Plans and Required Deviations for Toxic Substance Control Act (TSCA) Regulation of Double Shell Tanks (DST)

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    2000-01-01

    In May 2000, the U.S. Department of Energy, Office of River Protection (DOE-ORP) and the U.S. Environmental Protection Agency (EPA) held meetings regarding the management of polychlorinated biphenyls (PCBs) in the Hanford tank waste. It was decided that the radioactive waste currently stored in the double-shell tanks (DSTs) contain waste which will become subject to the Toxic Substance Control Act (TSCA) (40 CFR 761). As a result, DOE-ORP directed the River Protection Project tank farm contractor (TFC) to prepare plans for managing the PCB inventory in the DSTs. Two components of the PCB management plans are this assessment of the operational impacts of TSCA regulation and the identifications of deviations from TSCA that are required to accommodate tank farm unique limitations. This plan provides ORP and CH2M HILL Hanford Group, Inc. (CHG) with an outline of TSCA PCB requirements and their applicability to tank farm activities, and recommends a compliance/implementation approach. Where strict compliance is not possible, the need for deviations from TSCA PCB requirements is identified. The purpose of assembling this information is to enhance the understanding of PCB management requirements, identify operational impacts and select impact mitigation strategies. This information should be useful in developing formal agreements with EPA where required

  13. Evaluation of Flygt Propeller Mixers for Double-Shell Tank (DST) High Level Waste Auxiliary Solids Mobilization

    International Nuclear Information System (INIS)

    PACQUET, E.A.

    2000-01-01

    The River Protection Project (RPP) is planning to retrieve radioactive waste from the single-shell tanks (SST) and double-shell tanks (DST) underground at the Hanford Site. This waste will then be transferred to a waste treatment plant to be immobilized (vitrified) in a stable glass form. Over the years, the waste solids in many of the tanks have settled to form a layer of sludge at the bottom. The thickness of the sludge layer varies from tank to tank, from no sludge or a few inches of sludge to about 15 ft of sludge. The purpose of this technology and engineering case study is to evaluate the Flygt(trademark) submersible propeller mixer as a potential technology for auxiliary mobilization of DST HLW solids. Considering the usage and development to date by other sites in the development of this technology, this study also has the objective of expanding the knowledge base of the Flygt(trademark) mixer concept with the broader perspective of Hanford Site tank waste retrieval. More specifically, the objectives of this study delineated from the work plan are described

  14. Hanford Site waste management and environmental restoration integration plan

    International Nuclear Information System (INIS)

    Merrick, D.L.

    1990-01-01

    The ''Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs

  15. Tank characterization report for double-shell tank 241-AW-105

    International Nuclear Information System (INIS)

    Sasaki, L.M.

    1997-01-01

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for double-shell tank 241-AW-105. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AW-105 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order milestone Characterization. information presented in this report originated from sample analyses and known historical sources. While only the results of a recent sampling event will be used to fulfill the requirements of the data quality objectives (DQOs), other information can be used to support or question conclusions derived from these results. Historical information for tank 241-AW-105 is provided in Appendix A, including surveillance information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a process knowledge model. The recent sampling event listed, as well as pertinent sample data obtained before 1996, are summarized in Appendix B along with the sampling results. The results of the 1996 grab sampling event satisfied the data requirements specified in the sampling and analysis plan (SAP) for this tank. In addition, the tank headspace flammability was measured, which addresses

  16. Tank characterization report for double-shell tank 241-AP-101. Revision 1

    International Nuclear Information System (INIS)

    Conner, J.M.

    1997-01-01

    One major function of the Tank Waste Remediation System (TWRS) is to characterize wastes m support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis and other available information about a tank are compiled and maintained in a tank characterization report (TCR). This report and its appendixes serve as the TCR for double-shell tank 241-AP-101. The objectives of this report are to use characterization data in response to technical issues associated with tank 241-AP-101 waste; and to provide a standard characterization of this waste in terms of a best-basis inventory estimate. Section 2.0 summarizes the response to technical issues, Section 3.0 provides the best-basis inventory estimate, and Section 4.0 makes recommendations about safety status and additional sampling needs. The appendixes contain supporting data and information. This report supported the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-05. The characterization information in this report originated from sample analyses and known historical sources. Appendix A provides historical information for tank 241-AP-101 including surveillance, information, records pertaining to waste transfers and tank operations, and expected tank contents derived from a model based upon process knowledge. Appendix B summarizes recent sampling events and historical sampling information. Tank 241-AP-101 was grab sampled in November 1995, when the tank contained 2,790 kL (737 kgal) of waste. An addition1034al 1,438 kL (380 kgal) of waste was received from tank 241-AW-106 in transfers on March 1996 and January 1997. This waste was the product of the 242-A Evaporator Campaign 95-1. Characterization information for the additional 1,438 kL (380 kgal) was obtained using grab sampling data from tank 241-AW-106 and a slurry sample from the evaporator. Appendix C reports on the statistical analysis and numerical manipulation of data used in

  17. Derived Requirements for Double Shell Tank (DST) High Level Waste (HLW) Auxiliary Solids Mobilization

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, A.R.

    2000-02-28

    The potential need for auxiliary double-shell tank waste mixing and solids mobilization requires an evaluation of optional technologies. This document formalizes those operating and design requirements needed for further engineering evaluations.

  18. Derived Requirements for Double-Shell Tank (DST) High Level Waste (HLW) Auxiliary Solids Mobilization

    International Nuclear Information System (INIS)

    TEDESCHI, A.R.

    2000-01-01

    The potential need for auxiliary double-shell tank waste mixing and solids mobilization requires an evaluation of optional technologies. This document formalizes those operating and design requirements needed for further engineering evaluations

  19. Hanford Waste Tank Bump Accident and Consequence Analysis

    International Nuclear Information System (INIS)

    BRATZEL, D.R.

    2000-01-01

    This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks

  20. Aluminum precipitation from Hanford DSSF

    International Nuclear Information System (INIS)

    Borgen, D.; Frazier, P.; Staton, G.

    1994-01-01

    A series of pilot scale tests using simulated Double Shell Slurry Feed (DSSF) showed that well-settled aluminum precipitate can be produced in Hanford double shell tank (DST) high level waste by slow neutralization with carbon dioxide. This pretreatment could provide an early grout feed and free tank space, as well as facilitate downstream processes such as ion exchange by providing a less caustic feed. A total of eight test runs were completed using a 10-ft tall 3-in i.d. glass column. The 10-ft height corresponds to about one third of the vertical height of a DST, hence providing a reasonable basis for extrapolating the observed precipitate settling and compaction to the actual waste tank environment. Four runs (three with a simplified simulant and one with a chemically complete simulant) produced well settled precipitates averaging 1.5 to 2 feet high. Aluminum gel rather than settled precipitate resulted from one test where neutralization was too rapid

  1. Technology Review of Nondestructive Methods for Examination of Water Intrusion Areas on Hanford’s Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Michael L.; Pardini, Allan F.

    2008-05-09

    Under a contract with CH2M Hill Hanford Group, Inc., PNNL has performed a review of the NDE technology and methods for examination of the concrete dome structure of Hanford’s double-shell tanks. The objective was to provide a matrix of methodologies that could be evaluated based on applicability, ease of deployment, and results that could provide information that could be used in the ongoing structural analysis of the tank dome. PNNL performed a technology evaluation with the objective of providing a critical literature review for all applicable technologies based on constraints provided by CH2M HILL. These constraints were not mandatory, but were desired. These constraints included performing the evaluation without removing any soil from the top of the tank, or if necessary, requesting that the hole diameter needed to gain access to evaluate the top of the tank structure to be no greater than approximately 12-in. in diameter. PNNL did not address the details of statistical sampling requirements as they depend on an unspecified risk tolerance. PNNL considered these during the technology evaluation and have reported the results in the remainder of this document. Many of the basic approaches to concrete inspection that were reviewed in previous efforts are still in use. These include electromagnetic, acoustic, radiographic, etc. The primary improvements in these tools have focused on providing quantitative image reconstruction, thus providing inspectors and analysts with three-dimensional data sets that allow for operator visualization of relevant abnormalities and analytical integration into structural performance models. Available instruments, such as radar used for bridge deck inspections, rely on post-processing algorithms and do not provide real-time visualization. Commercially available equipment only provides qualitative indications of relative concrete damage. It cannot be used as direct input for structural analysis to assess fitness for use and if

  2. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    International Nuclear Information System (INIS)

    Washenfelder, Dennis J.

    2015-01-01

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  3. Performance assessment of grouted double-shell tank waste disposal at Hanford. Revision 1

    International Nuclear Information System (INIS)

    Shade, J.W., Kincaid, C.T.; Whyatt, G.A.; Rhoads, K.; Westsik, J.H. Jr.; Freshley, M.D.; Blanchard, K.A.; Shade, J.W.; Piepho, M.G.; Voogd, J.A.

    1994-09-01

    This document assesses the performance of the Grout Disposal Facility after closure. The facility and disposal environment are modeled to predict the long-term impacts of the disposal action. The document concludes that the disposal system provides reasonable assurance that doses to the public will remain within the performance objectives. This document is required for DOC Order 5820.2A

  4. Hanford Double-Shell Tank AY-102 Radioactive Waste Leak Investigation Update

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States)

    2015-02-03

    The presentation outline is: Briefly review leak integrity status of tank AY-102 and current leak behavior; Summarize recent initiatives to understand leak mechanism and to verify integrity of remaining waste confinement structures; describe planned waste recovery activities; and, introduce other papers on tank AY-102 topics.

  5. Hanford waste vitrification systems risk assessment

    International Nuclear Information System (INIS)

    Miller, W.C.; Hamilton, D.W.; Holton, L.K.; Bailey, J.W.

    1991-09-01

    A systematic Risk Assessment was performed to identify the technical, regulatory, and programmatic uncertainties and to quantify the risks to the Hanford Site double-shell tank waste vitrification program baseline (as defined in December 1990). Mitigating strategies to reduce the overall program risk were proposed. All major program elements were evaluated, including double-shell tank waste characterization, Tank Farms, retrieval, pretreatment, vitrification, and grouting. Computer-based techniques were used to quantify risks to proceeding with construction of the Hanford Waste Vitrification Plant on the present baseline schedule. Risks to the potential vitrification of single-shell tank wastes and cesium and strontium capsules were also assessed. 62 refs., 38 figs., 26 tabs

  6. Metallic double shell hollow nanocages: the challenges of their synthetic techniques.

    Science.gov (United States)

    Mahmoud, M A; El-Sayed, M A

    2012-03-06

    Hollow metallic nanoparticles have been attracting the attention of many researchers in the past five years due to their new properties and potential applications. The unique structure of the hollow nanoparticles; presence of two surfaces (internal and external), and the presence of both cavities and pores in the wall surfaces of these nanoparticles are responsible for their unique properties and applications. Here the galvanic replacement technique is used to prepare nanocages made of gold, platinum, and palladium. In addition, hollow double shell nanoparticles are made of two metal shells like Au-Pt, Pt-Au, Au-Pd, Pd-Au, Pd-Pt, and Pt-Pd. Silver nanocubes are used as templates during the synthesis of hollow nanoparticles with single metal shell or double shell nanocages. Most of the problems that could affect the synthesis of solid Silver nanocubes used as template as well as the double shell nanocages and their possible solutions are discussed in a detail. The sizes and shapes of the single-shell and double-shell nanocages were characterized by a regular and high-resolution TEM. A SEM mapping technique is also used to image the surface atoms for the double shell hollow nanoparticles in order to determine the thickness of the two metal shells. In addition, optical studies are used to monitor the effect of the dielectric properties of the other metals on the plasmonic properties of the gold nanoshell in these mixed nanoparticles.

  7. Characterization of the first core sample of neutralized current acid waste from double-shell tank 101-AZ

    International Nuclear Information System (INIS)

    Peterson, M.E.; Scheele, R.D.; Tingey, J.M.

    1989-09-01

    In FY 1989, Westinghouse Hanford Company (WHC) successfully obtained four core samples (totaling seven segments) of neutralized current acid waste (NCAW) from double-shell tanks (DSTs) 101-AZ and 102-AZ. A segment was a 19-in.-long and 1-in.-diameter cylindrical sample of waste. A core sample consisted of enough 19-in.-long segments to obtain the waste of interest. Three core samples were obtained from DST 101-AZ and one core sample from DST 102-AZ. Two DST 101-AZ core samples consisted of two segments per core, and the third core sample consisted of only one segment. The third core consisted of the solids from the bottom of the tank and was used to determine the relative abrasiveness of this NCAW. The DST 102-AZ core sample consisted of two segments. The core samples were transported to the Pacific Northwest Laboratory (PNL), where the waste was extruded from its sampler and extensively characterized. A characterization plan was followed that simulated the processing of the NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical and radiochemical properties were measured throughout the process steps. The characterization of the first core sample from DST 101-AZ was completed, and the results are provided in this report. The results for the other core characterizations will be reported in future reports. 3 refs., 13 figs., 10 tabs

  8. Preliminary Heat Transfer Studies for the Double Shell Tanks (DST) Transfer Piping

    International Nuclear Information System (INIS)

    HECHT, S.L.

    2000-01-01

    Heat transfer studies were made to determine the thermal characteristics of double-shell tank transfer piping under both transient and steady-state conditions. A number of design and operation options were evaluated for this piping system which is in its early design phase

  9. Double Shell Tanks (DST) and Waste Feed Delivery Project Management Quality Affecting Procedures Management Plan

    International Nuclear Information System (INIS)

    LUND, D.P.

    2000-01-01

    The purpose of the Double Shell Tanks (DST) and Waste Feed Delivery (WFD) Management Assessment Plan is to define how management assessments within DST h WFD will be conducted. The plan as written currently includes only WFD Project assessment topics. Other DST and WFD group assessment topics will be added in future revisions

  10. Evaluation of remaining life of the double-shell tank waste systems

    International Nuclear Information System (INIS)

    Schwenk, E.B.

    1995-01-01

    A remaining life assessment of the DSTs (double-shell tanks) and their associated waste transfer lines, for continued operation over the next 10 years, was favorable. The DST assessment was based on definition of significant loads, evaluation of data for possible material degradation and geometric changes and evaluation of structural analyses. The piping assessment was based primarily on service experience

  11. Evaluation of remaining life of the double-shell tank waste systems

    Energy Technology Data Exchange (ETDEWEB)

    Schwenk, E.B.

    1995-05-04

    A remaining life assessment of the DSTs (double-shell tanks) and their associated waste transfer lines, for continued operation over the next 10 years, was favorable. The DST assessment was based on definition of significant loads, evaluation of data for possible material degradation and geometric changes and evaluation of structural analyses. The piping assessment was based primarily on service experience.

  12. Hanford low-level tank waste interim performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1997-01-01

    The Hanford Low-Level Tank Waste Interim Performance Assessment examines the long-term environmental and human health effects associated with the disposal of the low-level fraction of the Hanford single and double-shell tank waste in the Hanford Site 200 East Area. This report was prepared as a good management practice to provide needed information about the relationship between the disposal system design and performance early in the disposal system project cycle. The calculations in this performance assessment show that the disposal of the low-level fraction can meet environmental and health performance objectives

  13. Phenomenology and modeling of particulate corrosion product behavior in Hanford N Reactor primary coolant

    International Nuclear Information System (INIS)

    Bechtold, D.B.

    1983-01-01

    The levels and composition of filterable corrosion products in the Hanford N Reactor Primary Loop are measurable by filtration. The suspended crud level has ranged from 0.0005 ppM to 6.482 ppM with a median 0.050 ppM. The composition approximates magnetite. The particle size distribution has been found in 31 cases to be uniformly a log normal distribution with a count median ranging from 1.10 to 2.31 microns with a median of 1.81 microns, and the geometric standard deviation ranging from 1.60 to 2.34 with a median of 1.84. An auto-correcting inline turbidimeter was found to respond to linearly to suspended crud levels over a range 0.05 to at least 6.5 ppM by direct comparison with filter sample weights. Cause of crud bursts in the primary loop were found to be power decreases. The crud transients associated with a reactor power drop, several reactor shutdowns, and several reactor startups could be modeled consistently with each other using a simple stirred-tank, first order exchange model of particulate between makeup, coolant, letdown, and loosely adherent crud on pipe walls. Over 3/10 of the average steady running particulate crud level could be accounted for by magnetically filterable particulate in the makeup feed. A simulation model of particulate transport has been coded in FORTRAN

  14. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  15. Listed waste history at Hanford facility TSD units

    International Nuclear Information System (INIS)

    Miskho, A.G.

    1996-01-01

    This document was prepared to close out an occurrence report that Westinghouse Hanford Company issued on December 29, 1994. Occurrence Report RL-WHC-GENERAL-1994-0020 was issued because knowledge became available that could have impacted start up of a Hanford Site facility. The knowledge pertained to how certain wastes on the Hanford Site were treated, stored, or disposed of. This document consolidates the research performed by Westinghouse Hanford Company regarding listed waste management at onsite laboratories that transfer waste to the Double-Shell Tank System. Liquid and solid (non-liquid) dangerous wastes and mixed wastes at the Hanford Site are generated from various Site operations. These wastes may be sampled and characterized at onsite laboratories to meet waste management requirements. In some cases, the wastes that are generated in the field or in the laboratory from the analysis of samples require further management on the Hanford Site and are aggregated together in centralized tank storage facilities. The process knowledge presented herein documents the basis for designation and management of 242-A Evaporator Process Condensate, a waste stream derived from the treatment of the centralized tank storage facility waste (the Double-Shell Tank System). This document will not be updated as clean up of the Hanford Site progresses

  16. CHANGING THE SAFETY CULTURE IN HANFORD TANK FARMS

    Energy Technology Data Exchange (ETDEWEB)

    BERRIOCHOA MV; ALCALA LJ

    2009-01-06

    In 2000 the Hanford Tank Farms had one of the worst safety records in the Department of Energy Complex. By the end of FY08 the safety performance of the workforce had turned completely around, resulting in one of the best safety records in the DOE complex for operations of its kind. This paper describes the variety of programs and changes that were put in place to accomplish such a dramatic turn-around. The U.S. Department of Energy's 586-square-mile Hanford Site in Washington State was established during World War II as part of the Manhattan Project to develop nuclear materials to end the war. For the next several decades it continued to produce plutonium for the nation's defense, leaving behind vast quantities of radioactive and chemical waste. Much of this waste, 53,000,000 gallons, remains stored in 149 aging single-shell tanks and 28 newer double-shell tanks. One of the primary objectives at Hanford is to safely manage this waste until it can be prepared for disposal, but this has not always been easy. These giant underground tanks, many of which date back to the beginning of the Manhattan Project, range in size from 55,000 gallons up to 1.1 million gallons, and are buried beneath 10 feet of soil near the center of the site. Up to 67 of the older single-shell tanks have leaked as much as one million gallons into the surrounding soil. Liquids from the single-shell tanks were removed by 2003 but solids remain in the form of saltcake, sludges and a hardened heel at the bottom of some tanks. The Department of Energy's Office of River Protection was established to safely manage this waste until it could be prepared for disposal. For most of the last seven years the focus has been on safely retrieving waste from the 149 aging single-shell and moving it to the newer double-shell tanks. Removing waste from the tanks is a difficult and complex task. The tanks were made to put waste in, not take it out. Because of the toxic nature of the waste, both

  17. Reactivity of Primary Soil Minerals and Secondary Precipitates Beneath Leaking Hanford Waste Tanks

    International Nuclear Information System (INIS)

    Nagy, Kathryn L.; Sturchio, Neil C.

    2003-01-01

    This project, renewal of a previous EMSP project of the same title, is in its first year of funding at the University of Illinois at Chicago. The purpose is to continue investigating rates and mechanisms of reactions between primary sediment minerals found in the Hanford subsurface and leaked waste tank solutions. The goals are to understand processes that result in (1) changes in porosity and permeability of the sediment and resultant changes in flow paths of the contaminant plumes, (2) formation of secondary precipitates that can take up contaminants in their structures, and (3) release of mineral components that can drive redox reactions affecting dissolved contaminant mobility. A post-doctoral scientist, Dr. Sherry Samson, has been hired and two masters of science students are beginning to conduct experimental research. One research project that is underway is focused on measurement of the dissolution rates of plagioclase feldspar in high pH, high nitrate, high Al-bearing solutions characteristic of the BX tank farms. The first set of experiments is being conduced at room temperature. Subsequent experiments will examine the role of temperature because tank solutions in many cases were near boiling when leakage is thought to have occurred and temperature gradients have been observed beneath the SX and BX tank farms. The dissolution experiments are being conducted in stirred-flow kinetic reactors using powdered labradorite feldspar from Pueblo Park, New Mexico

  18. Hanford Waste Transfer Planning and Control - 13465

    Energy Technology Data Exchange (ETDEWEB)

    Kirch, N.W.; Uytioco, E.M.; Jo, J. [Washington River Protection Solutions, LLC, Richland, Washington (United States)

    2013-07-01

    Hanford tank waste cleanup requires efficient use of double-shell tank space to support single-shell tank retrievals and future waste feed delivery to the Waste Treatment and Immobilization Plant (WTP). Every waste transfer, including single-shell tank retrievals and evaporator campaign, is evaluated via the Waste Transfer Compatibility Program for compliance with safety basis, environmental compliance, operational limits and controls to enhance future waste treatment. Mixed radioactive and hazardous wastes are stored at the Hanford Site on an interim basis until they can be treated, as necessary, for final disposal. Implementation of the Tank Farms Waste Transfer Compatibility Program helps to ensure continued safe and prudent storage and handling of these wastes within the Tank Farms Facility. The Tank Farms Waste Transfer Compatibility Program is a Safety Management Program that is a formal process for evaluating waste transfers and chemical additions through the preparation of documented Waste Compatibility Assessments (WCA). The primary purpose of the program is to ensure that sufficient controls are in place to prevent the formation of incompatible mixtures as the result of waste transfer operations. The program defines a consistent means of evaluating compliance with certain administrative controls, safety, operational, regulatory, and programmatic criteria and specifies considerations necessary to assess waste transfers and chemical additions. Current operations are most limited by staying within compliance with the safety basis controls to prevent flammable gas build up in the tank headspace. The depth of solids, the depth of supernatant, the total waste depth and the waste temperature are monitored and controlled to stay within the Compatibility Program rules. Also, transfer planning includes a preliminary evaluation against the Compatibility Program to assure that operating plans will comply with the Waste Transfer Compatibility Program. (authors)

  19. Hanford tank waste operation simulator operational waste volume projection verification and validation procedure

    International Nuclear Information System (INIS)

    HARMSEN, R.W.

    1999-01-01

    The Hanford Tank Waste Operation Simulator is tested to determine if it can replace the FORTRAN-based Operational Waste Volume Projection computer simulation that has traditionally served to project double-shell tank utilization. Three Test Cases are used to compare the results of the two simulators; one incorporates the cleanup schedule of the Tri Party Agreement

  20. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  1. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  2. Cost analysis for final disposal of double-shell tank waste

    International Nuclear Information System (INIS)

    Seifert, T.W.; Markillie, K.D.

    1996-01-01

    The Cost Analysis For Final Disposal of Double-Shell Tank Waste provides the Department of Energy (DOE) and DOE contractors with a better understanding of costs associated with the transfer, storage, and treatment of liquid mixed wasted within the Double-Shell Tank System (DST). In order to evaluate waste minimization/pollution prevention ideas, it is necessary to have reliable cost data that can be used in cost/benefit analyses; preparation of funding requests and/or proposals; and provide a way for prioritizing and allocating limited resources. This cost per gallon rate will be used by DST waste generators to assess the feasibility of Pollution Prevention Opportunity Assessments (P20A) and to determine the cost avoidances or savings associated with the implementation of those P20As

  3. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    Energy Technology Data Exchange (ETDEWEB)

    Bratzel, D.R.

    1998-04-17

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop {number_sign}2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages.

  4. Double-Shell Tank (DST) Maintenance and Recovery Subsystem Definition Report

    International Nuclear Information System (INIS)

    SMITH, E.A.

    2000-01-01

    The description of the Double-Shell Tank (DST) Maintenance and Recovery Subsystem presented in this document was developed to establish its boundaries. The DST Maintenance and Recovery Subsystem consists of new and existing equipment and facilities used to provide tank farm operators logistic support and problem resolution for the DST System during operations. This support will include evaluating equipment status, performing preventive and corrective maintenance, developing work packages, managing spares and consumables, supplying tooling, and training maintenance and operations personnel

  5. Flammable gas double shell tank expert elicitation presentations (Part A and Part B)

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1998-01-01

    This document is a compilation of presentation packages and white papers for the Flammable Gas Double Shell Tank Expert Elicitation Workshop number-sign 2. For each presentation given by the different authors, a separate section was developed. The purpose for issuing these workshop presentation packages and white papers as a supporting document is to provide traceability and a Quality Assurance record for future reference to these packages

  6. Aluminum Removal And Sodium Hydroxide Regeneration From Hanford Tank Waste By Lithium Hydrotalcite Precipitation Summary Of Prior Lab-Scale Testing

    International Nuclear Information System (INIS)

    Sams, T.L.; Guillot, S.

    2011-01-01

    Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

  7. Assuring safe interim storage of Hanford high-level tank wastes

    International Nuclear Information System (INIS)

    Bacon, R.F.; Babad, H.; Lerch, R.E.

    1996-01-01

    The federal government established the Hanford Site in South-Eastern Washington near the City of Richland in 1943 to produce plutonium for national defense purposes. The Hanford Site occupies approximately 1,450 square kilometers (560 square miles) of land North of the City of Richland. The production mission ended in 1988, transforming the Hanford Site mission to waste management, environmental restoration, and waste disposal. Thus the primary site mission has shifted from production to the management and disposal of radioactive, hazardous, and mixed waste that exist at the Hanford Site. This paper describes the focus and challenges facing the Tank Waste Remediation System (TWRS) Program related to the dual and parallel missions of interim safe storage and disposal of the tank associated waste. These wastes are presently stored in 2.08E+05 liters (55,000) to 4.16E+06 liters (1,100,000) gallon low-carbon steel tanks. There are 149 single- and 28 double-shell radioactive underground storage tanks, as well as approximately 40 inactive miscellaneous underground storage tanks. In addition, the TWRS mission includes the storage and disposal of the inventory of 1,929 cesium and strontium capsules created as part of waste management efforts. Tank waste was a by-product of producing plutonium and other defense related materials. From 1944 through 1990, four (4) different major chemical processing facilities at the Hanford Site processed irradiated (spent) fuel from defense reactors to separate and recover plutonium for weapons production. As new and improved processes were developed over the last 50 years, the processing efficiency improved and the waste compositions sent to the tanks for storage changed both chemically and radiologically. The earliest separation processes (e.g., bismuth phosphate coprecipitation) carried out in T Plant (1944-1956) and B Plant (1945-1952) recovered only plutonium

  8. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.; Bauman, Nathan N.; Guzman, Anthony D.; Arduino, P.; Keller, P. J.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  9. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Tank Characterization Data subject area of the Hanford Environmental Information System (HEIS) is to manage data acquired from waste tank characterization efforts. Tank samples provide the data stored in this subject area. Also included are data from tank inventories. These data are analyzed to determine disposal requirements, such as suitability for grout or vitrification. The data provide the basis for developing safety analyses and closure plans, and for establishing and verifying compliance with waste acceptance specifications. Two major sources of data make up the tank characterization data subject area: Data from single-shell and double-shell tank core samples -- core sampling analytical results include physical properties, radionuclides, major chemicals, and hazardous components; and data from waste tank supernatant samples. Four types of data are stored in the TCD subject area. Qualifiers for TCD analytical result data are listed in Appendix A. Data loading and verification procedures are described in Appendix B

  10. A methodology to define the flow rate and pressure requirements for transfer of double-shell tank waste slurries

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Liljegren, L.M.

    1993-04-01

    This document presents an analysis of the pressure drop and flow rate double-shell tank slurries. Experiments to requirements for transport of characterize the transport of double-shell tank slurries through piping networks and to resuspend materials that settle during pump outages are proposed. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the flow regimes that are likely to occur during transport. The results of these evaluations indicate that the slurry will be pseudohomogeneous during transport and that the slurry rheology is sufficiently non-Newtonian to affect both the pressure drop achieved during transport and the critical Reynolds number. The transport data collected in the non-Newtonian experiment will be used to determine whether a non-Newtonian correlation developed by Hanks (1978) adequately describes the experimental results

  11. Preliminary assessment of blending Hanford tank wastes

    International Nuclear Information System (INIS)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications

  12. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  13. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1992-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides a land use plan for the Hanford Site and presents a picture of what is currently known and anticipated in accordance with DOE Order 4320.1B. Site Development Planning. The HSDP wig be updated annually as future decisions further shape the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  14. Tank characterization report for double-shell Tank 241-AW-105

    International Nuclear Information System (INIS)

    DiCenso, A.T.; Amato, L.C.; Franklin, J.D.; Lambie, R.W.; Stephens, R.H.; Simpson, B.C.

    1994-01-01

    In May 1990, double-shell Tank 241-AW-105 was sampled to determine proper handling of the waste, to address corrosivity and compatibility issues, and to comply with requirements of the Washington Administrative Code. This Tank Characterization Report presents an overview of that tank sampling and analysis effort, and contains observations regarding waste characteristics. It also addresses expected concentration and bulk inventory data for the waste contents based on this latest sampling data and background tank information. This report summarizes the available information regarding the waste in Tank 241-AW-105, and using the historical information to place the analytical data in context, arranges this information in a useful format for making management and technical decisions concerning this waste tank. In addition, conclusions and recommendations are given based on safety issues and further characterization needs

  15. Decision analysis for mobilizing and retrieving sludge from double-shell tanks

    International Nuclear Information System (INIS)

    Brothers, A.J.; Williams, N.C.; Dukelow, J.S.; Hansen, R.I.

    1997-09-01

    This decision analysis evaluates alternative technologies for the initial mobilization and retrieval of sludges in double-shell tanks (DSTs). The analysis is from the perspective of the need to move sludges from one DST to another for interim retrieval. It supports the more general decision of which technologies to use to retreive various types of DST waste. The initial analysis is from the perspective of a typical DST with 2 ft of sludge to mobilize. During the course of the analysis, it became clear that it was important to also consider sludge mobilization in support of the high-level waste (HLW) vitrification demonstration plant, and in particular the risks associated with failing to meeting the minimum order requirements for the vendor, as well as the cost of mobilization and retrieval from the HLW vitrification source tanks

  16. Structural qualification of the multifunctional instrument tree for installation in double-shell and 100-series single-shell tanks

    International Nuclear Information System (INIS)

    Strohlow, J.P.

    1995-12-01

    This document provides the technical basis and methodology for qualifying the multifunctional instrument tree (MIT) structure for installation in double-shell and 100-series single-shell tanks. Structural qualification for MIT installations in specific tanks are also contained in this document

  17. Functions and Requirements for Automated Liquid Level Gauge Instruments in Single-Shell and Double-Shell Tank Farms

    International Nuclear Information System (INIS)

    CARPENTER, K.E.

    1999-01-01

    This functions and requirements document defines the baseline requirements and criteria for the design, purchase, fabrication, construction, installation, and operation of automated liquid level gauge instruments in the Tank Farms. This document is intended to become the technical baseline for current and future installation, operation and maintenance of automated liquid level gauges in single-shell and double-shell tank farms

  18. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  19. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    International Nuclear Information System (INIS)

    SEDERBURG, J.P.

    1999-01-01

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed

  20. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-01

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  1. Waste minimization -- Hanford`s strategy for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Merry, D.S.

    1998-01-30

    The Hanford Site cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single-shell storage tanks, treating waste stored in 28 double-shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored onsite, removing thousands of structures, and dealing with significant solid waste, groundwater, and land restoration issues. The Pollution Prevention/Waste Minimization (P2/WMin) Program supports the Hanford Site mission to safely clean up and manage legacy waste and to develop and deploy science and technology in many ways. Once such way is through implementing and documenting over 231 waste reduction projects during the past five years, resulting in over $93 million in cost savings/avoidances. These savings/avoidances allowed other high priority cleanup work to be performed. Another way is by exceeding the Secretary of Energy`s waste reduction goals over two years ahead of schedule, thus reducing the amount of waste to be stored, treated and disposed. Six key elements are the foundation for these sustained P2/WMin results.

  2. Hanford and Savannah River Site Programmatic and Technical Integration

    International Nuclear Information System (INIS)

    Ramsey, William Gene

    2013-01-01

    Abstract only. The Hanford Site and the Savannah River Site (SRS) were the primary plutonium production facilities within the U.S. nuclear weapons complex. Radioactive wastes were generated as part of these missions and are stored in similar fashion. The majority of radioactivity maintained by the two sites is located in underground carbon steel tanks in the physical form of supernatant, saltcake, or sludge. Disposition of SRS tank waste is ongoing by converting it into glass (pathway for sludge and radionuclides separated from supernatant or dissolved saltcake) or cement (pathway for the decontaminated supernatant and dissolved saltcake). Tank closure activity has also begun at SRS and will continue for the duration of mission. The Hanford tank waste inventory is roughly 2/3rds larger than SRS's by volume- but nominally half the radioactivity. The baseline disposition path includes high-level and low-activity waste vitrification with separate disposition of contact-handled transuranic tank waste. Retrieval of tank waste from aging single shell tanks (SSTs) into double-shell tanks (DSTs) is currently ongoing. As vitrification commences later this decade, Hanford will be in a similar operations mode as SRS. Site integration is increasing as the missions align. The ongoing integration is centered on key issues that impact both sites- regardless of mission timeframe. Three recent workshop exchanges have been held to improve communication with the primary intent of improving operations and technical work organization. The topics of these workshops are as follows: DST space utilization, optimization, and closure; Waste Feed Qualification; and, Cementitious Waste Forms. Key goals for these and future exchanges include aligning research and technology, preparing for joint initiatives (to maximize budgetary value for the customer), and reviewing lessons learned. Each site has played a leading role in the development of technology and operational practices that can be used

  3. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  4. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  5. X-ray backlighting requirements for the double-shell target

    International Nuclear Information System (INIS)

    Larsen, J.T.

    1980-01-01

    We have analyzed one specific NOVA double-shell target design and have determined the x-ray energies required for probing the performance of the implosion. It is virtually impossible to study the compression of the fuel or the motion of the inner pusher. An x-ray energy of about 9 keV appears to be ideal for measuring the behavior of the outer TaCOH shell for the majority of its travel. However, it would be advantageous to have an x-ray source of about 25 keV to measure the contact between the two shells. Development of narrowband x-ray line sources are more desirable than broadband continuum sources since the intensity per keV is many times greater in the line. Intensities of the probes are determined by the self-emission levels of the target capsule. For the 9 keV line source, an intensity of upwards to 10 15 keV/keV/sh/cm 2 /sr is required with a source area of about 0.01 cm 2

  6. Interface Control Document Between the Double Shell Tanks (DST) System and the Plutonium Finishing Plan (PFP)

    International Nuclear Information System (INIS)

    MAY, T.H.

    1999-01-01

    This document identifies the requirements and responsibilities for all parties to support waste transfer from the Plutonium Finishing Plant (PFP) facility to the Double-Shell Tank (DST) System of the River Protection Project (RPP). This Interface Control Document (ICD) will not attempt to control the physical portion of this interface because the physical equipment making up this interface, and any associated interface requirements, are already in place, operational and governed by existing operating specifications and other documentation. The PFP and DST Systems have a direct physical interface (the waste transfer pipeline) that travels between the 241-2 Building (TK-D5) and DST SY-102 via 244-TX double-contained receiver tank (DCRT). The purpose of the ICD process is to formalize working agreements between the RPP DST System and organization/companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort

  7. Facile synthesis of hierarchical double-shell WO{sub 3} microspheres with enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhenfeng [College of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin 300387 (China); Chu, Deqing, E-mail: dqingchu@163.com [College of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin 300387 (China); Wang, Limin, E-mail: wanglimin@tjpu.edu.cn [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); State Key Laboratory of Hollow-Fiber Membrane Materials and Membrane Processes, Tianjin 300387 (China); Wang, Lipeng [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Hu, Wenhui; Chen, Xiangyu; Yang, Huifang [College of Environment and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Sun, Jingjing [School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2017-02-28

    Highlights: • HDS-WO{sub 3} were fabricated via mild process. • A possible growth mechanism for HDS-WO{sub 3} is proposed. • The excellent photocatalytic activity is attributed to the larger surface area of the HDS-WO{sub 3} nanostructures. - Abstract: Hierarchical double-shell WO{sub 3} microspheres (HDS-WO{sub 3}) have been successfully obtained through the thermal decomposition of WO{sub 3}·H{sub 2}O formed by metal salts as the templates. The products were characterized by X-ray diffraction (XRD), and the morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the HDS-WO{sub 3} microspheres were analyzed by the Thermogravimetric (TG) and Brunauer-Emmett-Teller (BET) analysis. The synthetic mechanism of the products with hierarchical structures was proposed. The obtained HDS-WO{sub 3} exhibits excellent photocatalytic efficiency (84.9%), which is much higher than other WO{sub 3} sample under visible light illumination.

  8. Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Zhang, Yayun; Zhong, Yanmei [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2015-08-30

    Graphical abstract: - Highlights: • A facile method was designed to synthesize Au@Ag@C core-double shell nanocomposites. • Carbon nanomaterials at the outermost layer could protect Au and Ag nanoparticles from oxidation and aggregation. • The Au@Ag@C core-double shell nanocomposites showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide. • The hydrogen peroxide sensor has a wide linear range of 5.0 μM to 4.75 mM and a limit of detection as low as 0.14 μM. - Abstract: The well-designed Au@Ag@C core-double shell nanocomposites were synthesized via a facile method, and were used to fabricate an enzyme-free amperometric hydrogen peroxide (H{sub 2}O{sub 2}) sensor. The size, shape, elementary composition and structure of the nanocomposites were characterized by transmission electron microscope (TEM), energy-dispersed spectrum (EDS) and X-ray diffraction (XRD). The outermost layer of the nanocomposites was amorphous carbon, the second layer was Ag and the core was Au. The Au@Ag@C core-double shell nanocomposites exhibit attractive activity for electrocatalytic reduction of H{sub 2}O{sub 2} according to the electrochemical experiments. It also demonstrates the H{sub 2}O{sub 2} sensor possess well performance with a wide linear range of 5.0 μM to 4.75 mM and a limit of detection (LOD) as low as 0.14 μM (S/N = 3). Furthermore, the interference from the common interfering species, such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided. In a word, the Au@Ag@C nanocomposites are promising candidates for enzyme-free H{sub 2}O{sub 2} sensor.

  9. Literature review of stabilization/solidification of volatile organic compounds and the implications for Hanford grouts

    International Nuclear Information System (INIS)

    Spence, R.D.; Osborne, S.C.

    1993-09-01

    A literature review was conducted on the stabilization/solidification of volatile organic compounds (VOCs). Based on this literature, it is likely that the limestone-containing grout will not permanently immobilize VOCs and that no presently available additives can guarantee permanent immobilization. The Westinghouse hanford company grout may be fairly effective at retarding aqueous leaching of VOCs, and commercial additives can improve this performance. Significant VOC losses do occur during stabilization/solidification, and the high temperatures of the Westinghouse Hanford Company waste and grout should exacerbate this problem. In fact, these high temperatures raise doubts about the presence of VOCs in the double-shell tanks supernates

  10. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    International Nuclear Information System (INIS)

    Peeler, D.

    1999-01-01

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  11. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.

    1999-06-22

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  12. Hanford wells

    International Nuclear Information System (INIS)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

  13. Soil load above Hanford waste storage tanks (2 volumes)

    International Nuclear Information System (INIS)

    Pianka, E.W.

    1995-01-01

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs

  14. Work Plan for Updating Double Shell Tank (DST) Sub-System Specifications (TBR 120.020)

    International Nuclear Information System (INIS)

    GRENARD, C.E.

    1999-01-01

    The DST System stores waste from the processing of nuclear material at the Hanford Nuclear Reservation. The program to dispose of this waste has been divided into several phases with Phase 1 being the demonstration of the waste disposal technology by a private contractor. Subsystem specifications are being prepared providing requirements for the subsystems that are necessary for the continued safe storage of waste in the DST System and the removal of selected waste for processing by the privatized facility during Phase 1. This document provides the detailed plans for updating subsystem specifications developed during EY99

  15. Maximum credibly yield for deuteriuim-filled double shell imaging targets meeting requirements for yield bin Category A

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Douglas Carl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Loomis, Eric Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-17

    We are anticipating our first NIF double shell shot using an aluminum ablator and a glass inner shell filled with deuterium shown in figure 1. The expected yield is between a few 1010 to a few 1011 dd neutrons. The maximum credible yield is 5e+13. This memo describes why, and what would be expected with variations on the target. This memo evaluates the maximum credible yield for deuterium filled double shell capsule targets with an aluminum ablator shell and a glass inner shell in yield Category A (< 1014 neutrons). It also pertains to fills of gas diluted with hydrogen, helium (3He or 4He), or any other fuel except tritium. This memo does not apply to lower z ablator dopants, such as beryllium, as this would increase the ablation efficiency. This evaluation is for 5.75 scale hohlraum targets of either gold or uranium with helium gas fills with density between 0 and 1.6 mg/cc. It could be extended to other hohlraum sizes and shapes with slight modifications. At present only laser pulse energies up to 1.5 MJ were considered with a single step laser pulse of arbitrary shape. Since yield decreases with laser energy for this target, the memo could be extended to higher laser energies if desired. These maximum laser parameters of pulses addressed here are near the edge of NIF’s capability, and constitute the operating envelope for experiments covered by this memo. We have not considered multiple step pulses, would probably create no advantages in performance, and are not planned for double shell capsules. The main target variables are summarized in Table 1 and explained in detail in the memo. Predicted neutron yields are based on 1D and 2D clean simulations.

  16. Reengineering Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success.

  17. Reengineering Hanford

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success

  18. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-03-23

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste [HLW]) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  19. Hanford Sludge Simulant Selection for Soil Mechanics Property Measurement

    International Nuclear Information System (INIS)

    Wells, Beric E.; Russell, Renee L.; Mahoney, Lenna A.; Brown, Garrett N.; Rinehart, Donald E.; Buchmiller, William C.; Golovich, Elizabeth C.; Crum, Jarrod V.

    2010-01-01

    The current System Plan for the Hanford Tank Farms uses relaxed buoyant displacement gas release event (BDGRE) controls for deep sludge (i.e., high level waste (HLW)) tanks, which allows the tank farms to use more storage space, i.e., increase the sediment depth, in some of the double-shell tanks (DSTs). The relaxed BDGRE controls are based on preliminary analysis of a gas release model from van Kessel and van Kesteren. Application of the van Kessel and van Kesteren model requires parametric information for the sediment, including the lateral earth pressure at rest and shear modulus. No lateral earth pressure at rest and shear modulus in situ measurements for Hanford sludge are currently available. The two chemical sludge simulants will be used in follow-on work to experimentally measure the van Kessel and van Kesteren model parameters, lateral earth pressure at rest, and shear modulus.

  20. HANFORD TANK CLEANUP UPDATE MAY 2009

    International Nuclear Information System (INIS)

    Holloway, J.N.

    2009-01-01

    Retrieval of waste from single-shell tank C-110 resumed in January making it the first waste retrieval operation for WRPS since taking over Hanford's Tank Operations Contract last October. Now, with approximately 90 percent of the waste removed, WRPS believes that modified sluicing has reached the limits of the technology to remove any further waste and is preparing documentation for use in decision making about any future retrieval actions. Tank C-110 is located in C Fann near the center of the Hanford Site. It is a 530,000 gallon tank, built in 1946, and held approximately 126,000 gallons of sludge and other radioactive and chemical waste materials when retrieval resumed. Modified sluicing technology uses liquid waste from a nearby double-shell tank to break up, dissolve and mobilize the solid material so it can be pumped. Because of the variety of waste fon11S, sluicing is often not able to remove all of the waste. The remaining waste will next be sampled for analysis, and results will be used to guide decisions regarding future actions. Work is moving rapidly in preparation to retrieve waste from a second single-shell tank this summer and transfer it to safer double-shell tank storage. Construction activities necessary to retrieve waste from Tank C-104, a 530,000 gallon tank built in 1943, are approximately 60 percent complete as WRPS maintains its focus on reducing the risk posed by Hanford's aging single-shell waste tanks. C-104 is one of Hanford's oldest radioactive and chemical waste storage tanks, containing approximately 263,000 gallons of wet sludge with a top layer that is dry and powdery. This will be the largest sludge volume retrieval ever attempted using modified sluicing technology. Modified sluicing uses high pressure water or liquid radioactive waste sprayed from nozzles above the waste. The liquid dissolves and/or mobilizes the waste so it can be pumped. In addition to other challenges, tank C-104 contains a significant amount of plutonium and

  1. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  2. Preliminary flowsheet: Ion exchange for separation of cesium from Hanford tank waste using resorcinol-formaldehyde resin

    International Nuclear Information System (INIS)

    Penwell, D.L.

    1994-01-01

    This preliminary flowsheet document describes an ion exchange process which uses resorcinol-formaldehyde (R-F) resin to remove cesium from Hanford tank waste. The flowsheet describes one possible equipment configuration, and contains mass balances based on that configuration with feeds of Neutralized Current Acid Waste, and Double Shell Slurry Feed. The flowsheet also discusses process alternatives, unresolved issues, and development needs associated with the ion exchange process. It is expected that this flowsheet will evolve as open issues are resolved and progress is made on development needs. This is part of the Tank Waste Remediation Program at Hanford. 26 refs, 6 figs, 25 tabs

  3. Synthesis and electrochemical properties of porous double-shelled Mn2O3 hollow microspheres as a superior anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Qiao, Yu; Yu, Yan; Jin, Yi; Guan, Yi-Biao; Chen, Chun-Hua

    2014-01-01

    Highlights: • Double-shelled Mn 2 O 3 hollow microspheres are prepared by a multi-step. • synthesis procedure. • Solid, hollow and yolk-structured Mn 2 O 3 spheres are prepared for comparison. • The double-shelled hollow Mn 2 O 3 is superior in electrochemical properties. - Abstract: By means of a specially designed multi-step synthesis procedure involving steps of precipitation, controlled oxidation, selective etching and calcination, porous double-shelled Mn 2 O 3 hollow microspheres are synthesized. Solid, hollow and yolk-structured Mn 2 O 3 are also similarly synthesized for comparison. X-ray diffraction, scanning and transmission electron microscopies, IR spectroscopy, thermogravimetry, and Brunauer-Emmett-Teller measurements are employed to investigate their structures and compositions. Galvanostatic cell cycling and impedance spectroscopy are used to characterize the electrochemical properties of Mn 2 O 3 /Li cells. The results show that the hierarchical hollow structured (double-shelled, hollow and yolk-structured) Mn 2 O 3 anode materials deliver higher reversible capacities and excellent cycling stabilities than the solid Mn 2 O 3 . Moreover, among the three hierarchical hollow structured samples, the double shelled sample possesses the best cycling performance, especially at a high current density

  4. EMSP Project 70070: Reactivity of Primary Soil Minerals and Secondary Precipitates Beneath Leaking Hanford Waste Tanks - Final Report

    International Nuclear Information System (INIS)

    Nagy, Kathryn L.

    2004-01-01

    Since the late 1950s, leaks from 67 single-shell tanks at the Hanford Site have released about 1 million curies to the underlying sediments. The radioactive material was contained in water-based solutions generally characterized as having high pH values (basic solutions), high nitrate and nitrite concentrations, and high aluminum concentrations. The solutions were also hot, in some cases at or near boiling, as well as complex and highly variable in composition reflecting solutions obtained from multiple methods of reprocessing spent nuclear fuel. In order to understand the observed and probable distribution of radionuclides in the ground at Hanford, major reactions that likely occurred between the leaked fluids and the sediment minerals were investigated in laboratory experiments simulating environmental conditions. Reactions involving the dissolution of quartz and biotite and the simultaneous formation of new minerals were quantified at controlled pH values and temperature. Result s show that the dissolution of quartz and formation of new zeolite-like minerals could have altered the flow path of ground water and contaminant plumes and provided an uptake mechanism for positively-charged soluble radionuclides, such as cesium. The dissolution of biotite, a layered-iron-aluminum-silicate mineral, provided iron in a reduced form that could have reacted with negatively-charged soluble chromium, a toxic component of the wastes, to cause its reduction and precipitation as a new reduced-chromium mineral. The quantity of iron released in the experiments is sufficient to explain observations of reductions in dissolved chromium concentration in a plume beneath one Hanford tank. Fundamental data obtained in the project are the rates of the reactions at variable temperatures and pHs. Fundamental data were also obtained on aspects of the surface reactivity of clay or layered-silicate minerals, a small proportion of the total mass of the sediment minerals, but a large proportion

  5. Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis

    International Nuclear Information System (INIS)

    Amendt, Peter; Colvin, J.D.; Tipton, R.E.; Hinkel, D.E.; Edwards, M.J.; Landen, O.L.; Ramshaw, J.D.; Suter, L.J.; Varnum, W.S.; Watt, R.G.

    2002-01-01

    Analysis and design of indirect-drive National Ignition Facility double-shell targets with hohlraum temperatures of 200 eV and 250 eV are presented. The analysis of these targets includes the assessment of two-dimensional radiation asymmetry and nonlinear mix. Two-dimensional integrated hohlraum simulations indicate that the x-ray illumination can be adjusted to provide adequate symmetry control in hohlraums specially designed to have high laser-coupling efficiency [Suter et al., Phys. Plasmas 7, 2092 (2000)]. These simulations also reveal the need to diagnose and control localized 10-15 keV x-ray emission from the high-Z hohlraum wall because of strong absorption by the high-Z inner shell. Preliminary estimates of the degree of laser backscatter from an assortment of laser-plasma interactions suggest comparatively benign hohlraum conditions. The application of a variety of nonlinear mix models and phenomenological tools, including buoyancy-drag models, multimode simulations and fall-line optimization, indicates a possibility of achieving ignition, i.e., fusion yields greater than 1 MJ. Planned experiments on the Omega laser will test current understanding of high-energy radiation flux asymmetry and mix-induced yield degradation in double-shell targets

  6. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor

    International Nuclear Information System (INIS)

    Moussiere, S.

    2006-12-01

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  7. Double-shelled silicon anode nanocomposite materials: A facile approach for stabilizing electrochemical performance via interface construction

    Science.gov (United States)

    Du, Lulu; Wen, Zhongsheng; Wang, Guanqin; Yang, Yan-E.

    2018-04-01

    The rapid capacity fading induced by volumetric changes is the main issue that hinders the widespread application of silicon anode materials. Thus, double-shelled silicon composite materials where lithium silicate was located between an Nb2O5 coating layer and a silicon active core were configured to overcome the chemical compatibility issues related to silicon and oxides. The proposed composites were prepared via a facile co-precipitation method combined with calcination. Transmission electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated that a transition layer of lithium silicate was constructed successfully, which effectively hindered the thermal inter-diffusion between the silicon and oxide coating layers during heat treatment. The electrochemical performance of the double-shelled silicon composites was enhanced dramatically with a retained specific capacity of 1030 mAh g-1 after 200 cycles at a current density of 200 mA g-1 compared with 598 mAh g-1 for a core-shell Si@Nb2O5 composite that lacked the interface. The lithium silicate transition layer was shown to play an important role in maintaining the high electrochemical stability.

  8. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    Science.gov (United States)

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  9. Interim Hanford Waste Management Technology Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The Interim Hanford Waste Management Technology Plan (HWMTP) is a companion document to the Interim Hanford Waste Management Plan (HWMP). A reference plan for management and disposal of all existing and certain projected future radioactive Hanford Site Defense Wastes (HSDW) is described and discussed in the HWMP. Implementation of the reference plan requires that various open technical issues be satisfactorily resolved. The principal purpose of the HWMTP is to present detailed descriptions of the technology which must be developed to close each of the technical issues associated with the reference plan identified in the HWMP. If alternative plans are followed, however, technology development efforts including costs and schedules must be changed accordingly. Technical issues addressed in the HWMTP and HWMP are those which relate to disposal of single-shell tank wastes, contaminated soil sites, solid waste burial sites, double-shell tank wastes, encapsulated 137 CsCl and 90 SrF 2 , stored and new solid transuranic (TRU) wastes, and miscellaneous wastes such as contaminated sodium metal. Among the high priority issues to be resolved are characterization of various wastes including early determination of the TRU content of future cladding removal wastes; completion of development of vitrification (Hanford Waste Vitrification Plant) and grout technology; control of subsidence in buried waste sites; and development of criteria and standards including performance assessments of systems proposed for disposal of HSDW. Estimates of the technology costs shown in this report are made on the basis that all identified tasks for all issues associated with the reference disposal plan must be performed. Elimination of, consolidation of, or reduction in the scope of individual tasks will, of course, be reflected in corresponding reduction of overall technology costs

  10. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  11. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    International Nuclear Information System (INIS)

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0

  12. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    International Nuclear Information System (INIS)

    Amendt, Peter; Cerjan, C.; Hamza, A.; Hinkel, D. E.; Milovich, J. L.; Robey, H. F.

    2007-01-01

    The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (≅4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT (≅790 atm) in the inner shell, strict concentricity requirements on the two shells ( 2 nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010

  13. Interface Control Document Between the Double-Shell Tank (DST) system and the Waste Encapsulation and Storage Facility (WESF)

    International Nuclear Information System (INIS)

    HOFFERBER, G.A.

    2000-01-01

    This Interface Control Document (ICD) describes interfaces between the Double-Shell Tanks (DST) System and Waste Encapsulation and Storage Facility (WESF) (figure 1). WESF is currently operational as a storage facility for cesium and strontium capsules. This ICD covers current operational interfaces and those envisioned during Terminal Clean Out (TCO) activities in the future. WESF and the DST System do not have a direct physical interface. The waste will be moved by tank trailer to the 204-AR waste unloading facility. The purpose of the ICD process is to formalize working agreements between the River Protection Project (RPP) DST System and systems/facilities operated by organizations or companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort

  14. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Becker, D.L.

    1994-11-01

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  15. Waste minimization - Hanford's strategy for sustainability

    International Nuclear Information System (INIS)

    Merry, D.S.

    1998-01-01

    The Hanford Site cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single-shell storage tanks, treating waste stored in 28 double-shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored onsite, removing thousands of structures, and dealing with significant solid waste, groundwater, and land restoration issues. The Pollution Prevention/Waste Minimization (P2/WMin) Program supports the Hanford Site mission to safely clean up and manage legacy waste and to develop and deploy science and technology in many ways. Once such way is through implementing and documenting over 231 waste reduction projects during the past five years, resulting in over $93 million in cost savings/avoidances. These savings/avoidances allowed other high priority cleanup work to be performed. Another way is by exceeding the Secretary of Energy's waste reduction goals over two years ahead of schedule, thus reducing the amount of waste to be stored, treated and disposed. Six key elements are the foundation for these sustained P2/WMin results

  16. Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction

    Science.gov (United States)

    Zhang, Ying; Zhou, Jiabin; Cai, Weiquan; Zhou, Jun; Li, Zhen

    2018-02-01

    In this study, hierarchical double-shelled NiO/ZnO hollow spheres heterojunction were prepared by calcination of the metallic organic frameworks (MOFs) as a sacrificial template in air via a one-step solvothermal method. Additionally, the photocatalytic activity of the as-prepared samples for the degradation of Rhodamine B (RhB) under UV-vis light irradiation were also investigated. NiO/ZnO microsphere comprised a core and a shell with unique hierarchically porous structure. The photocatalytic results showed that NiO/ZnO hollow spheres exhibited excellent catalytic activity for RhB degradation, causing complete decomposition of RhB (200 mL of 10 g/L) under UV-vis light irradiation within 3 h. Furthermore, the degradation pathway was proposed on the basis of the intermediates during the photodegradation process using liquid chromatography analysis coupled with mass spectroscopy (LC-MS). The improvement in photocatalytic performance could be attributed to the p-n heterojunction in the NiO/ZnO hollow spheres with hierarchically porous structure and the strong double-shell binding interaction, which enhances adsorption of the dye molecules on the catalyst surface and facilitates the electron/hole transfer within the framework. The degradation mechanism of pollutant is ascribed to the hydroxyl radicals (rad OH), which is the main oxidative species for the photocatalytic degradation of RhB. This work provides a facile and effective approach for the fabrication of porous metal oxides heterojunction with high photocatalytic activity and thus can be potentially used in the environmental purification.

  17. Piezo-phototronic effect enhanced UV photodetector based on CuI/ZnO double-shell grown on flexible copper microwire.

    Science.gov (United States)

    Liu, Jingyu; Zhang, Yang; Liu, Caihong; Peng, Mingzeng; Yu, Aifang; Kou, Jinzong; Liu, Wei; Zhai, Junyi; Liu, Juan

    2016-12-01

    In this work, we present a facile, low-cost, and effective approach to fabricate the UV photodetector with a CuI/ZnO double-shell nanostructure which was grown on common copper microwire. The enhanced performances of Cu/CuI/ZnO core/double-shell microwire photodetector resulted from the formation of heterojunction. Benefiting from the piezo-phototronic effect, the presentation of piezocharges can lower the barrier height and facilitate the charge transport across heterojunction. The photosensing abilities of the Cu/CuI/ZnO core/double-shell microwire detector are investigated under different UV light densities and strain conditions. We demonstrate the I-V characteristic of the as-prepared core/double-shell device; it is quite sensitive to applied strain, which indicates that the piezo-phototronic effect plays an essential role in facilitating charge carrier transport across the CuI/ZnO heterojunction, then the performance of the device is further boosted under external strain.

  18. History of Hanford Site Defense Production (Brief)

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2001-01-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  19. Slurry growth, gas retention, and flammable gas generation by Hanford radioactive waste tanks: Synthetic waste studies, FY 1991

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Ryan, J.L.; Scheele, R.D.; Tingey, J.M.

    1992-08-01

    Of 177 high-level waste storage tanks on the Hanford Site, 23 have been placed on a safety watch list because they are suspected of producing flammable gases in flammable or explosive concentrate. One tankin particular, Tank 241-SY-101 (Tank 101-SY), has exhibited slow increases in waste volume followed by a rapid decrease accompanied by venting of large quantities of gases. The purpose of this study is to help determine the processes by which flammable gases are produced, retained, and eventually released from Tank 101-SY. Waste composition data for single- and double-shell waste tanks on the flammable gas watch listare critically reviewed. The results of laboratory studies using synthetic double-shell wastes are summarized, including physical and chemical properties of crusts that are formed, the stoichiometry and rate ofgas generation, and mechanisms responsible for formation of a floating crust

  20. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  1. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  2. Historical tank content estimate for the southeast quadrant of the Hanford 200 Areas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This document provides historical evaluations of the radioactive and mixed waste stored in the Hanford site underground double-shell tanks. A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy and Department of Defense contractors. The historical data will supplement information that is currently being gathered from core sampling. Historical waste transfer and level data, tank physical information, temperature data, and sampling data have been compiled for this report and supporting documents.

  3. Historical tank content estimate for the southeast quadrant of the Hanford 200 Areas

    International Nuclear Information System (INIS)

    1995-06-01

    This document provides historical evaluations of the radioactive and mixed waste stored in the Hanford site underground double-shell tanks. A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy and Department of Defense contractors. The historical data will supplement information that is currently being gathered from core sampling. Historical waste transfer and level data, tank physical information, temperature data, and sampling data have been compiled for this report and supporting documents

  4. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  5. 1997 annual report on waste generation and waste minimization progress as required by DOE Order 5400.1, Hanford Site

    International Nuclear Information System (INIS)

    Segall, P.

    1998-01-01

    Hanford's missions are to safely clean up and manage the site's legacy wastes, and to develop and deploy science and technology. Through these missions Hanford will contribute to economic diversification of the region. Hanford's environmental management or cleanup mission is to protect the health and safety of the public, workers, and the environment; control hazardous materials; and utilize the assets (people, infra structure, site) for other missions. Hanford's science and technology mission is to develop and deploy science and technology in the service of the nation including stewardship of the Hanford Site. Pollution Prevention is a key to the success of these missions by reducing the amount of waste to be managed and identifying/implementing cost effective waste reduction projects. Hanford's original mission, the production of nuclear materials for the nation's defense programs, lasted more than 40 years, and like most manufacturing operations, Hanford's operations generated large quantities of waste and pollution. However, the by-products from Hanford operations pose unique problems like radiation hazards, vast volumes of contaminated water and soil, and many contaminated structures including reactors, chemical plants and evaporation ponds. The cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single shell storage tanks, treating 28 double shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored on site, removing numerous structures, and dealing with significant solid waste, ground water, and land restoration issues

  6. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  7. Candidate reagents and procedures for the dissolution of Hanford Site single-shell tank sludges

    International Nuclear Information System (INIS)

    Schulz, W.W.; Kupfer, M.J.

    1991-10-01

    At least some of the waste in the 149 single-shell tanks (SST) at the US Department of Energy (DOE) Hanford Site will be retrieved, treated, and disposed of. Although the importance of devising efficient and cost-effective sludge dissolution procedures has long been recognized, a concerted bench-scale effort to devise and test such procedures with actual solids representative of those in Hanford Site SSTs has not been performed. Reagents that might be used, either individually or serially, to dissolve sludges include HNO 3 , HNO 3 -oxalic acid, and HNO 3 -HF. This report consolidates and updates perspectives and recommendations concerning reagents and procedures for dissolving Hanford Site SST and selected double-shell tank (DST) sludges. The principal objectives of this report are as follows: (1) Compile and review existing experimental data on dissolution of actual Hanford Site SST and DST sludges. (2) Further inform Hanford Site engineers and scientists concerning the utility of combinations of thermally unstable complexants (TUCS) reagents and various reducing agents for dissolving SST and DST sludges. (This latter technology has recently been explored at the Argonne National Laboratory.) (3) Provide guidance in laying out a comprehensive experimental program to develop technology for dissolving all types of Hanford Site SST and DST sludges. 6 refs., 1 fig., 4 tabs

  8. Fluor Hanford Project Focused Progress at Hanford

    International Nuclear Information System (INIS)

    HANSON, R.D.

    2000-01-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL)

  9. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  10. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  11. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  12. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

  13. From harmful Microcystis blooms to multi-functional core-double-shell microsphere bio-hydrochar materials.

    Science.gov (United States)

    Bi, Lei; Pan, Gang

    2017-11-13

    Harmful algal blooms (HABs) induced by eutrophication is becoming a serious global environmental problem affecting public health and aquatic ecological sustainability. A novel strategy for the utilization of biomass from HABs was developed by converting the algae cells into hollow mesoporous bio-hydrochar microspheres via hydrothermal carbonization method. The hollow microspheres were used as microreactors and carriers for constructing CaO 2 core-mesoporous shell-CaO 2 shell microspheres (OCRMs). The CaO 2 shells could quickly increase dissolved oxygen to extremely anaerobic water in the initial 40 min until the CaO 2 shells were consumed. The mesoporous shells continued to act as regulators restricting the release of oxygen from CaO 2 cores. The oxygen-release time using OCRMs was 7 times longer than when directly using CaO 2 . More interestingly, OCRMs presented a high phosphate removal efficiency (95.6%) and prevented the pH of the solution from rising to high levels in comparison with directly adding CaO 2 due to the OH - controlled-release effect of OCRMs. The distinct core-double-shell micro/nanostructure endowed the OCRMs with triple functions for oxygen controlled-release, phosphorus removal and less impact on water pH. The study is to explore the possibility to prepare smarter bio-hydrochar materials by utilizing algal blooms.

  14. The compatibility of various polymeric liner and pipe materials with simulated double-shell slurry feed at 90 degree C

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Hymas, C.R.

    1989-08-01

    The purpose of this study was to evaluate the compatibility of various polymeric liner and pipe materials with a low-level radioactive waste slurry called double-shell slurry feed (DSSF). The evaluation was necessary as part of the permitting process authorized by the Resource Conservation and Recovery Act (RCRA), PL-94-580. Materials that were examined included five flexible membrane liners (Hytrel reg sign polyester, polyurethane, 8130 XR5 reg sign, polypropylene, and high-density polyethylene) and high-density polyethylene (HDPE) pipe. The liner and pipe samples were immersed for 120 days in the synthetic DSSE at 90 degree C, the maximum expected temperature in the waste disposal scenario. Physical properties of the liner and pipe samples were measured before immersion and every 30 days after immersion, in accordance with EPA Method 9090. In addition, some of the materials were exposed to four different radiation doses after 30 days of immersion. Physical properties of these materials were measured immediately after exposure and after an additional 90 days of immersion to determine each material's response to radiation, and whether radiation exposure affected the chemical compatibility of the material. 20 refs., 41 figs., 13 tabs

  15. Protein-assisted synthesis of double-shelled CaCO3 microcapsules and their mineralization with heavy metal ions.

    Science.gov (United States)

    Li, Xuan Qi; Feng, Zhiwei; Xia, Yinyan; Zeng, Hua Chun

    2012-02-13

    Calcium carbonate (CaCO(3)) is one of the most abundant and important biominerals in nature. Due to its biocompatibility, biodegradability and nontoxicity, CaCO(3) has been investigated extensively in recent years for various fundamental properties and technological applications. Inspired by basic wall structures of cells, we report a protein-assisted approach to synthesize CaCO(3) into a double-shelled structural configuration. Due to varying reactivities of outer and inner shells, the CaCO(3) microcapsules exhibit different sorption capacities and various resultant structures toward different kinds of heavy metal ions, analogical to biologically controlled mineralization (BCM) processes. Surprisingly, three mineralization modes resembling those found in BCM were found with these bacterium-like "CaCO(3) cells". Our investigation of the cytotoxicity (MTT assay protocol) also indicates that the CaCO(3) microcapsules have almost no cytotoxicity against HepG2 cells, and they might be useful for future application of detoxifying heavy metal ions after further study. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Hanford Waste Vitrification Plant Clean Air Act permit application

    International Nuclear Information System (INIS)

    1990-04-01

    This document briefly describes the Hanford Site and provides a general overview of the Hanford Waste Vitrification Plant (HWVP). Other topics include sources of emissions, facility operating parameters, facility emissions, pollutant and radionuclide control technology and air quality. The HWVP will convert mixed wastes (high-activity radioactive and hazardous liquid wastes) to a solid vitrified form (borosilicate glass) for disposal. Mixed wastes pretreated in the Hanford Site B Plant will be pumped into double- shell tanks in the 200 East Area for interim storage. This pretreated mixed waste will be batch transferred from interim storage to the HWVP facility, where the waste will be concentrated by evaporation, treated with chemicals, and mixed with glass-forming materials. The mixture will then be continuously fed into an electrically heated glass melter. The molten glass will be poured into canisters that will be cooled, sealed, decontaminated, and stored until the vitrified product can be transferred to a geologic repository. 25 refs., 18 figs., 32 tabs

  17. Self-template synthesis of double shelled ZnS-NiS1.97 hollow spheres for electrochemical energy storage

    Science.gov (United States)

    Wei, Chengzhen; Ru, Qinglong; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-03-01

    In this work, double shelled ZnS-NiS1.97 hollow spheres have been achieved via a simple self-template route, which involves the synthesis of Zn-Ni solid spheres precursors as the self-template and then transformation into double shelled ZnS-NiS1.97 hollow spheres by sulfidation treatment. The as-prepared double shelled ZnS-NiS1.97 hollow spheres possess a high surface area (105.26 m2 g-1) and porous structures. Benefiting from the combined characteristics of novel structures, multi-component, high surface area and porous. When applied as electrode materials for supercapacitors, the double shelled ZnS-NiS1.97hollow spheres deliver a large specific capacitance of 696.8C g-1 at 5.0 A g-1 and a remarkable long lifespan cycling stability (less 5.5% loss after 6000 cycles). Moreover, an asymmetric supercapacitor (ASC) was assembled by utilizing ZnS-NiS1.97 (positive electrode) and activated carbon (negative electrode) as electrode materials. The as-assembled device possesses an energy density of 36 W h kg-1, which can be yet retained 25.6 W h kg-1 even at a power density of 2173.8 W Kg-1, indicating its promising applications in electrochemical energy storage. More importantly, the self-template route is a simple and versatile strategy for the preparation of metal sulfides electrode materials with desired structures, chemical compositions and electrochemical performances.

  18. Double-Shell Tank (DST) Ventilation System Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples from the primary ventilation systems of the AN, AP, AW, and AY/AZ tank farms. Sampling will be performed in accordance with Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Air DQO) (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications. Vapor samples will be obtained from tank farm ventilation systems, downstream from the tanks and upstream of any filtration. Samples taken in support of the DQO will consist of SUMMA(trademark) canisters, triple sorbent traps (TSTs), sorbent tube trains (STTs), polyurethane foam (PUF) samples. Particulate filter samples and tritium traps will be taken for radiation screening to allow the release of the samples for analysis. The following sections provide the general methodology and procedures to be used in the preparation, retrieval, transport, analysis, and reporting of results from the vapor samples

  19. Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye

    Science.gov (United States)

    Jiang, De Bin; Liu, Xiaoying; Xu, Xuan; Zhang, Yu Xin

    2018-01-01

    In this work we demonstrate the synthesis of novel Fe2O3 nanosheets with double-shell hollow morphology by replica molding from diatomite framework. The nanostructures of Fe2O3 nanosheets were examined by focused-ion-beam scanning electron microscopy (FIB/SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET) specific surface area measurements and Fourier transform infrared (FT-IR) spectroscopy. The results reveal that (1) Pure Fe2O3 nanosheets were successfully obtained; (2) The double-shell Fe2O3 hollow structure achieved via the NaOH etching silica method was observed; (3) Fe2O3 nanosheets possessed uniformly distributed porous nanosheets. Such structural features enlarged the specific surface area of Fe2O3 nanosheets and led to more catalytic active sites. In the heterogeneous photo-Fenton reaction, the double-shell Fe2O3 hollow morphology exhibited excellent catalytic capability for the degradation of malachite green (MG) at circumneutral pH condition. Under optimum condition, MG solution was almost completely decolorized in 60 min (99.9%). The Fe2O3 nanosheets also showed good stability and recyclability, demonstrating great potential as a promising photo-Fenton catalyst for the effective degradation of MG dye in wastewater.

  20. Formation of NiCo{sub 2}V{sub 2}O{sub 8} yolk-double shell spheres with enhanced lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Nai, Jianwei; Lou, Xiong Wen David [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (Singapore)

    2018-03-05

    Complex nanostructures with multi-components and intricate architectures hold great potential in developing high-performance electrode materials for lithium-ion batteries (LIBs). Herein, we demonstrate a facile self-templating strategy for the synthesis of metal vanadate nanomaterials with complex chemical composition of NiCo{sub 2}V{sub 2}O{sub 8} and a unique yolk-double shell structure. Starting with the Ni-Co glycerate spheres, NiCo{sub 2}V{sub 2}O{sub 8} yolk-double shell spheres are synthesized through an anion-exchange reaction of Ni-Co glycerate templates with VO{sub 3}{sup -} ions, followed by an annealing treatment. By virtue of compositional and structural advantages, these NiCo{sub 2}V{sub 2}O{sub 8} yolk-double shell spheres manifest outstanding lithium storage properties when evaluated as anodes for LIBs. Impressively, an extra-high reversible capacity of 1228 mAh g{sup -1} can be retained after 500 cycles at a high current density of 1.0 Ag{sup -1}. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington

    International Nuclear Information System (INIS)

    Murthy, K.S.; Stout, L.A.; Napier, B.A.; Reisenauer, A.E.; Landstrom, D.K.

    1983-06-01

    This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removal level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented

  2. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter trademark vitrification system

  3. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    Science.gov (United States)

    Amendt, Peter

    2006-10-01

    The goal of demonstrating ignition on the National Ignition Facility (NIF) has motivated a revisit of double-shell (DS) [1] targets as a complementary path to the baseline cryogenic single-shell approach [2]. Benefits of DS targets include room-temperature deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures (4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances [3], and loose shock timing requirements. On the other hand, DS ignition presents several challenges, including room-temperature containment of high-pressure DT (790 atm) in the inner shell; strict concentricity requirements on the two shells; development of nanoporous, low-density, metallic foams for structural support of the inner shell and hydrodynamic instability mitigation; and effective control of perturbation growth on the high-Atwood number interface between the DT fuel and the high-Z inner shell. Recent progress in DS ignition target designs using vacuum hohlraums is described, offering the potential for low levels of laser backscatter from stimulated Raman and Brillouin processes. In addition, vacuum hohlraums have the operational advantages of room temperature fielding and fabrication simplicity, as well as benefiting from extensive benchmarking on the Nova and Omega laser facilities. As an alternative to standard cylindrical hohlraums, a rugby-shaped geometry is also introduced that may provide energetics and symmetry tuning benefits for more robust DS designs with yields exceeding 10 MJ for 2 MJ of 3w laser energy. The recent progress in hohlraum designs and required advanced materials development are scheduled to culminate in a prototype demonstration of a NIF-scale ignition-ready DS in 2007. [1] P. Amendt et al., PoP 9, 2221 (2002). [2] J.D. Lindl et al., PoP 11, 339 (2004). [3] M.N. Chizhkov et al., Laser Part. Beams 23, 261 (2005). In collaboration with C. Cerjan, A. Hamza, J. Milovich and H. Robey.

  4. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Li, Yancai, E-mail: liyancai@mnnu.edu.cn [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Li, Shunxing [College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000 (China); Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2016-08-15

    Highlights: • A novel Au@C@Pt core-double shell nanocomposite was synthesized and characterized by SEM(*), TEM and EDS, etc. • The synthesized Au@C@Pt core-double shell nanocomposite showed high sensitivity and selectivity to electrocatalytic reduction of hydrogen peroxide (H{sub 2}O{sub 2}) and can be used to fabricate enzyme-free H{sub 2}O{sub 2} electrochemical sensor. • The H{sub 2}O{sub 2} sensor has two linear range of 9.0 μM–1.86 mM and 1.86 mM–7.11 mM, respectively, with a low limit of detection of 0.13 μM. • The H{sub 2}O{sub 2} sensor also displays high anti-interference ability, good stability and reproducibility. - Abstract: A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H{sub 2}O{sub 2}). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H{sub 2}O{sub 2} reduction at 0.0 V and can be used as H{sub 2}O{sub 2} sensor. The sensor displays two wide linear ranges towards H{sub 2}O{sub 2} detection. The one is 9.0 μM–1.86 mM with high sensitivity of 144.7 μA mM{sup −1} cm{sup −2}, and the other is 1.86 mM–7.11 mM with sensitivity of 80.1 μA mM{sup −1} cm{sup −2}. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H{sub 2}O{sub 2} detection. Additionally, the H{sub 2}O{sub 2} sensor also displays good stability and reproducibility.

  5. Hanford tank clean up: A guide to understanding the technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, R.E.; Lundgren, R.E.

    1995-12-31

    One of the most difficult technical challenges in cleaning up the US Department of Energy`s (DOE) Hanford Site in southeast Washington State will be to process the radioactive and chemically complex waste found in the Site`s 177 underground storage tanks. Solid, liquid, and sludge-like wastes are contained in 149 single- and 28 double-shelled steel tanks. These wastes contain about one half of the curies of radioactivity and mass of hazardous chemicals found on the Hanford Site. Therefore, Hanford cleanup means tank cleanup. Safely removing the waste from the tanks, separating radioactive elements from inert chemicals, and creating a final waste form for disposal will require the use of our nation`s best available technology coupled with scientific advances, and an extraordinary commitment by all involved. The purpose of this guide is to inform the reader about critical issues facing tank cleanup. It is written as an information resource for the general reader as well as the technically trained person wanting to gain a basic understanding about the waste in Hanford`s tanks -- how the waste was created, what is in the waste, how it is stored, and what are the key technical issues facing tank cleanup. Access to information is key to better understanding the issues and more knowledgeably participating in cleanup decisions. This guide provides such information without promoting a given cleanup approach or technology use.

  6. Hanford site ER and WM needs

    International Nuclear Information System (INIS)

    Hunter, J.R.

    1993-01-01

    This paper provides an overview of the environmental restoration and waste management needs of the Hanford site. Since 1944, waste has been put into cribs, tanks, or various kinds of burial grounds. The waste volume produced per ton of processed material has dramatically decreased over this time period, but the amount of waste is still very large. Initially high-level processing wastes were stored in 149 single-shell tanks (SSTs), with a single carbon steel shell, backed by concrete. By the late 1950's some of these tanks were leaking, and the supernate was removed from the tanks, leaving salt cake material. Double shell tanks, holding roughly 1 million gallons each, have replaced the single shell tanks (28 in total). Cribs were used early, as the soil column was found to be perfect for retaining certain radionuclides. Solid wastes include retrievably stored transuranic wastes, and wastes generated since 1970. Wastes and fuel assemblies from EBR-2 and FFTF are included. Some TRU wastes were packaged in 55 gal drums, and dumped. A number of sites and reactors are being decontaminated, including canyon type facilities, processing facilities, the B Plant, the REDOX, D Plant, C Plant, and PUREX Plant, not all of which were even flushed before being shut down

  7. EVALUATION OF FROST HEAVE ON WASTE TRANSFER LINES WITH SHALLOW DEPTHS IN DST (DOUBLE SHELL TANK) FARMS

    Energy Technology Data Exchange (ETDEWEB)

    HAQ MA

    2009-05-12

    The purpose of this document is to evaluate the effect of frost heave on waste transfer lines with shallow depths in DST farms. Because of the insulation, well compacted sandy material around waste transfer lines, the type of sandy and gravel soil, and relatively low precipitation at Hanford site, it is concluded that waste transfer lines with one foot of soil covers (sandy cushion material and insulation) are not expected to undergo frost heave damaging effects.

  8. TANK WASTE RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    DODD, R.A.

    2006-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the US Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60% of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring the waste to the DST system since 1997 as part of the interim stabilization program. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. This paper presents lessons learned from retrieval of tank waste at the Hanford Site and discusses how this information is used to optimize retrieval system efficiency, improve overall cost effectiveness of retrieval operations, and ensure that HFFACO requirements are met

  9. Work Plan for Updating Double Shell Tank (DST) Sub-System Specifications ICDS (TBR-120.005)

    International Nuclear Information System (INIS)

    LEONARD, M.W.

    1999-01-01

    The DST System stores waste from the processing of nuclear material at the Hanford Nuclear Reservation. The program to dispose of this waste has been divided into several phases with Phase 1 being the demonstration of the waste disposal technology by a private contractor. A DST System specification is being prepared providing the top-level requirements for the continued safe storage of waste in the DST System and the removal of selected waste for processing by the privatized facility during Phase 1. This document provides the detailed plans for finalizing and issuing Rev. 0 of the DST System specification in FY-2000 and for the release of several interface control documents

  10. Facile synthesis of mercaptosuccinic acid-capped CdTe/CdS/ZnS core/double shell quantum dots with improved cell viability on different cancer cells and normal cells

    Energy Technology Data Exchange (ETDEWEB)

    Parani, Sundararajan [University of Madras, Department of Inorganic Chemistry (India); Bupesh, Giridharan [Bharath University, Central Research Laboratory, Sree Balaji Medical College and Hospital (India); Manikandan, Elayaperumal [Thiruvalluvar University, Department of Physics, TUCAS, Thennangur-604408 (India); Pandian, Kannaiyan [University of Madras, Department of Inorganic Chemistry (India); Oluwafemi, Oluwatobi Samuel, E-mail: oluwafemi.oluwatobi@gmail.com [University of Johannesburg, Department of Applied Chemistry (South Africa)

    2016-11-15

    Water-soluble, mercaptosuccinic acid (MSA)-capped CdTe/CdS/ZnS core/double shell quantum dots (QDs) were prepared by successive growth of CdS and ZnS shells on the as-synthesized CdTe/CdS{sub thin} core/shell quantum dots. The formation of core/double shell structured QDs was investigated by ultraviolet-visible (UV–Vis) absorption and photoluminescence (PL) spectroscopy, PL decay studies, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The core/double shell QDs exhibited good photoluminescence quantum yield (PLQY) which is 70% higher than that of the parent core/shell QDs, and they are stable for months. The average particle size of the core/double shell QDs was ∼3 nm as calculated from the transmission electron microscope (TEM) images. The cytotoxicity of the QDs was evaluated on a variety of cancer cells such as HeLa, MCF-7, A549, and normal Vero cells by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay. The results showed that core/double shell QDs were less toxic to the cells when compared to the parent core/shell QDs. MCF-7 cells showed proliferation on incubation with QDs, and this is attributed to the metalloestrogenic activity of cadmium ions released from QDs. The core/double shell CdTe/CdS/ZnS (CSS) QDs were conjugated with transferrin and successfully employed for the biolabeling and fluorescent imaging of HeLa cells. These core/double shell QDs are highly promising fluorescent probe for cancer cell labeling and imaging applications.

  11. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  12. Independent engineering review of the Hanford Waste Vitrification System

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs

  13. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumed to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely

  14. Independent engineering review of the Hanford Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  15. Maximum surface level and temperature histories for Hanford waste tanks

    International Nuclear Information System (INIS)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-01-01

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data

  16. Hanford tank clean up: A guide to understanding the technical issues

    International Nuclear Information System (INIS)

    Gephart, R.E.; Lundgren, R.E.

    1995-01-01

    One of the most difficult technical challenges in cleaning up the US Department of Energy's (DOE) Hanford Site in southeast Washington State will be to process the radioactive and chemically complex waste found in the Site's 177 underground storage tanks. Solid, liquid, and sludge-like wastes are contained in 149 single- and 28 double-shelled steel tanks. These wastes contain about one half of the curies of radioactivity and mass of hazardous chemicals found on the Hanford Site. Therefore, Hanford cleanup means tank cleanup. Safely removing the waste from the tanks, separating radioactive elements from inert chemicals, and creating a final waste form for disposal will require the use of our nation's best available technology coupled with scientific advances, and an extraordinary commitment by all involved. The purpose of this guide is to inform the reader about critical issues facing tank cleanup. It is written as an information resource for the general reader as well as the technically trained person wanting to gain a basic understanding about the waste in Hanford's tanks -- how the waste was created, what is in the waste, how it is stored, and what are the key technical issues facing tank cleanup. Access to information is key to better understanding the issues and more knowledgeably participating in cleanup decisions. This guide provides such information without promoting a given cleanup approach or technology use

  17. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    International Nuclear Information System (INIS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-01-01

    Double-shelled sea urchin-like yolk-shell Fe 3 O 4 /TiO 2 /Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe 3 O 4 /TiO 2 support by a in situ reduction of HAuCl 4 with NaBH 4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO 2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe 3 O 4 /TiO 2 microspheres. The sea urchin-like structure composed of TiO 2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe 3 O 4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe 3 O 4 /TiO 2 /Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min −1 and turnover frequency is 5457 h −1 . (paper)

  18. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  19. Microwave-Assisted Synthesis of NiCo2O4 Double-Shelled Hollow Spheres for High-Performance Sodium Ion Batteries

    Science.gov (United States)

    Zhang, Xiong; Zhou, Yanping; Luo, Bin; Zhu, Huacheng; Chu, Wei; Huang, Kama

    2018-03-01

    The ternary transitional metal oxide NiCo2O4 is a promising anode material for sodium ion batteries due to its high theoretical capacity and superior electrical conductivity. However, its sodium storage capability is severely limited by the sluggish sodiation/desodiation reaction kinetics. Herein, NiCo2O4 double-shelled hollow spheres were synthesized via a microwave-assisted, fast solvothermal synthetic procedure in a mixture of isopropanol and glycerol, followed by annealing. Isopropanol played a vital role in the precipitation of nickel and cobalt, and the shrinkage of the glycerol quasi-emulsion under heat treatment was responsible for the formation of the double-shelled nanostructure. The as-synthesized product was tested as an anode material in a sodium ion battery, was found to exhibit a high reversible specific capacity of 511 mAh g-1 at 100 mA g-1, and deliver high capacity retention after 100 cycles. [Figure not available: see fulltext.

  20. Shape evolution of new-phased lepidocrocite VOOH from single-shelled to double-shelled hollow nanospheres on the basis of programmed reaction-temperature strategy.

    Science.gov (United States)

    Wu, Changzheng; Zhang, Xiaodong; Ning, Bo; Yang, Jinlong; Xie, Yi

    2009-07-06

    Solid templates have been long regarded as one of the most promising ways to achieve single-shelled hollow nanostructures; however, few effective methods for the construction of multishelled hollow objects from their solid template counterparts have been developed. We report here, for the first time, a novel and convenient route to synthesizing double-shelled hollow spheres from the solid templates via programming the reaction-temperature procedures. The programmed temperature strategy developed in this work then provides an essential and general access to multishelled hollow nanostructures based on the designed extension of single-shelled hollow objects, independent of their outside contours, such as tubes, hollow spheres, and cubes. Starting from the V(OH)(2)NH(2) solid templates, we show that the relationship between the hollowing rate and the reaction temperature obey the Van't Hoff rule and Arrhenius activation-energy equation, revealing that it is the chemical reaction rather than the diffusion process that guided the whole hollowing process, despite the fact that the coupled reaction/diffusion process is involved in the hollowing process. Using the double-shelled hollow spheres as the PCM (CaCl(2).6H(2)O) matrix grants much better thermal-storage stability than that for the nanoparticles counterpart, revealing that the designed nanostructures can give rise to significant improvements for the energy-saving performance in future "smart house" systems.

  1. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2006-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records & Information Capture Architecture (ERICA) database

  2. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  3. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.

  4. Scoring methods and results for qualitative evaluation of public health impacts from the Hanford high-level waste tanks. Integrated Risk Assessment Program

    International Nuclear Information System (INIS)

    Buck, J.W.; Gelston, G.M.; Farris, W.T.

    1995-09-01

    The objective of this analysis is to qualitatively rank the Hanford Site high-level waste (HLW) tanks according to their potential public health impacts through various (groundwater, surface water, and atmospheric) exposure pathways. Data from all 149 single-shell tanks (SSTs) and 23 of the 28 double-shell tanks (DSTs) in the Tank Waste Remediation System (TWRS) Program were analyzed for chemical and radiological carcinogenic as well as chemical noncarcinogenic health impacts. The preliminary aggregate score (PAS) ranking system was used to generate information from various release scenarios. Results based on the PAS ranking values should be considered relative health impacts rather than absolute risk values

  5. History of Hanford Site Defense Production (Brief)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  6. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  7. Reducing the effects of X-ray pre-heat in double shell NIF capsules by over-coating the high Z shell

    Science.gov (United States)

    Wilson, Douglas; Milovich, J. L.; Daughton, W. S.; Loomis, E. N.; Sauppe, J. P.; Dodd, E. S.; Merritt, E. C.; Montgomery, D. S.; Renner, D. B.; Haines, B. M.; Cardenas, T.; Desjardins, T.; Palaniyappan, S.; Batha, S. H.

    2017-10-01

    Hohlraum generated X-rays will penetrate the ablator of a double shell capsule and be absorbed in the outer surface of the inner capsule. The ablative pressure this generates drives a shock into the central fuel, and a reflected shock that reaches the inner high-Z shell surface before the main shock even enters the fuel. With a beryllium over-coat preheat X-rays deposit just inside the beryllium/high z interface. The beryllium tamps the preheat expansion, eliminating ablation, and dramatically reducing pressure. The slow shock or pressure wave it generates is then overtaken by the main shock, avoiding an early shock in the fuel and increasing capsule yield.

  8. Hanford site environment

    International Nuclear Information System (INIS)

    Isaacson, R.E.

    1976-01-01

    A synopsis is given of the detailed characterization of the existing environment at Hanford. The following aspects are covered: demography, land use, meteorology, geology, hydrology, and seismology. It is concluded that Hanford is one of the most extensively characterized nuclear sites

  9. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  10. TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE

    International Nuclear Information System (INIS)

    DODD RA

    2008-01-01

    One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an

  11. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    International Nuclear Information System (INIS)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-01-01

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy's Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m"3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  12. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-11-05

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  13. Optimization of quantitative waste volume determination technique for hanford waste tank closure

    International Nuclear Information System (INIS)

    Monts, David L.; Jang, Ping-Rey; Long, Zhiling; Okhuysen, Walter P.; Norton, Olin P.; Gresham, Lawrence L.; Su, Yi; Lindner, Jeffrey S.

    2011-01-01

    The Hanford Site is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the uncertainty with which that volume is known. The Institute for Clean Energy Technology (ICET) at Mississippi State University is currently developing a quantitative in-tank imaging system based on Fourier Transform Profilometry, FTP. FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. In this paper, efforts to characterize the accuracy and precision of quantitative volume determination using FTP and the use of these results to optimize the FTP system for deployment within Hanford waste tanks are described. (author)

  14. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  15. Hanford Site Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  16. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J.; Yancey, E.F.

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs

  17. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    Gerber, Michele S.

    1992-01-01

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  18. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Place, B.G.

    1998-01-01

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site's pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office's (RL's) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program

  19. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  20. Hanford Site Infrastructure Plan

    International Nuclear Information System (INIS)

    1990-01-01

    The Hanford Site Infrastructure Plan (HIP) has been prepared as an overview of the facilities, utilities, systems, and services that support all activities on the Hanford Site. Its purpose is three-fold: to examine in detail the existing condition of the Hanford Site's aging utility systems, transportation systems, Site services and general-purpose facilities; to evaluate the ability of these systems to meet present and forecasted Site missions; to identify maintenance and upgrade projects necessary to ensure continued safe and cost-effective support to Hanford Site programs well into the twenty-first century. The HIP is intended to be a dynamic document that will be updated accordingly as Site activities, conditions, and requirements change. 35 figs., 25 tabs

  1. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  2. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  3. Biological toxicity evaluation of Hanford Site waste grouts

    International Nuclear Information System (INIS)

    Rebagay, T.V. Dodd, D.A.; Voogd, J.A.

    1992-10-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 50 years of operation of the Hanford Site of the US Department of Energy near Richland, Washington. These wastes are currently stored onsite in single- and double-shell carbon steel tanks. To effectively handle and treat these wastes, their degree of toxicity must be determined. The disposal of the low-level radioactive liquid portion of the wastes involves mixing the wastes with pozzolanic blends to form grout. Potential environmental hazards posed by grouts are largely unknown. Biological evaluation of grout toxicity is needed to provide information on the potential risks of animal and plant exposure to the grouts. The fish, rat, and Microtox toxicity tests described herein indicate that the grouts formed from Formulations I and 2 are nonhazardous and nondangerous. Using the Microtox solid-phase protocol, both soluble and insoluble organic and inorganic toxicants in the grouts can be detected. This protocol may be used for rapid screening of environmental pollutants and toxicants

  4. Hanford cultural resources laboratory

    International Nuclear Information System (INIS)

    Wright, M.K.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act

  5. Hanford cultural resources laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.K.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act.

  6. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  7. Hanford work faces change

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is a discussion of DOE efforts in the awarding of a large engineering-construction contract at the Hanford Reservation. Though the announced winner was a group lead by J. A. Jones Construction/Duke Engineering Services, the incumbent (ICF-Kaiser Engineers) protested the announced award. The protest was dismissed by the GAO, but DOE officials still reopened the bidding. There was also a short note regarding the award of the ERMC at Hanford

  8. Managing risk at Hanford

    International Nuclear Information System (INIS)

    Hesser, W.A.; Stillwell, W.G.; Rutherford, W.A.

    1994-01-01

    Clearly, there is sufficient motivation from Washington for the Hanford community to pay particular attention to the risks associated with the substantial volumes of radiological, hazardous, and mixed waste at Hanford. But there is also another reason for emphasizing risk: Hanford leaders have come to realize that their decisions must consider risk and risk reduction if those decisions are to be technically sound, financially affordable, and publicly acceptable. The 560-square miles of desert land is worth only a few thousand dollars an acre (if that) -- hardly enough to justify the almost two billion dollars that will be spent at Hanford this year. The benefit of cleaning up the Hanford Site is not the land but the reduction of potential risk to the public and the environment for future generations. If risk reduction is our ultimate goal, decisions about priority of effort and resource allocation must consider those risks, now and in the future. The purpose of this paper is to describe how Hanford is addressing the issues of risk assessment, risk management, and risk-based decision making and to share some of our experiences in these areas

  9. Hanford immobilized low-activity tank waste performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1998-01-01

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  10. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  11. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  12. Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors

    International Nuclear Information System (INIS)

    Vellakkat, Mini; Hundekkal, Devendrappa

    2016-01-01

    Nanostructured ternary composite of polyaniline (PANI), Co 3 O 4 nanoparticles, and Chitosan (CS) has been prepared by an in situ chemical oxidation method, and the nanocomposites (CPAESCO) were used as supercapacitor electrodes. The Co 3 O 4 nanoparticles are uniformly coated with CS and PANI layers in it. Different techniques (Fourier transform infrared spectrophotometry, x-ray diffraction, thermal gravimetric analysis, UV−visible spectroscopy, scanning electron microscopy, transmission electron microscopy and electro chemical analysis-cyclic voltammetry, galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy) were used to analyse the optical, structural, thermal, chemical and supercapacitive aspects of the nanocomposites. Core/double shell ternary composite electrode exhibits significantly increased specific capacitance than PANI/Co 3 O 4 or PANI/CS binary composites in supercapacitors. The ternary nanocomposite with 40% nanoparticle exhibits a highest specific capacitance reaching 687 F g −1 , Energy density of (95.42 Wh kg −1 at 1 A g −1 ) and power density of (1549 W kg −1 at 3 A g −1 ) and outstanding cycling performance, with, 91% capacitance retained over 5000 cycles. It is found that this unique bio compatible nano composite with synergy is a new multifunctional material which will be useful in the design of supercapacitor electrodes and other energy conversion devices too. (paper)

  13. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  14. Physical Properties of Hanford Transuranic Waste Sludge

    International Nuclear Information System (INIS)

    Poloski, A. P.

    2004-01-01

    This project has two primary objectives. The first is to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at WIPP. The second primary objective is to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of this research effort will enhance the existing understanding of agglomeration phenomena and the properties of complex colloidal suspensions. In addition, the knowledge gained and capabilities developed during this effort will aid in the development and optimization of techniques to process the wastes at various DOE sites. These objectives will be accomplished by: (1) characterizing the TRU sludges contained in the Hanford tanks that are intended for shipment to WIPP; (2) determining the physical behavior of the Hanford TRU tank sludges under conditions that might exist during treatment and packaging; (3) and modeling the retrieval, treatment, and packaging operations that will be performed at Hanford to dispose of TRU tank sludges

  15. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-05-01

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  16. Effect of double-shell structure on reduction of field errors in the STP-3(M) reversed-field pinch

    International Nuclear Information System (INIS)

    Yamada, S.; Masamune, S.; Nagata, A.; Arimoto, H.; Oshiyama, H.; Sato, K.I.

    1988-08-01

    Reversed-field pinch (RFP) operation on STP-3 (M) proved that the adition of a quasistational vertical field B sub(perpendicular) together with large reduction of irregular magnetic field at the shell gap could remarkably improve properties of the plasma confinement. Here, the gaps of a thick shell is wholely covered with the single primary coil having a shell shape. The measured field error at the gap is as small as 7.5 % of the poloidal field. The application of B sub(perpendicular) sets the plasma at a more perfect equilibrium. In this operation, the plasma resistivety much decreased by a factor 2 and the electron temperature rose up to 0.8 keV. (author)

  17. Review of Hanford international activities

    International Nuclear Information System (INIS)

    Panther, D.G.

    1993-01-01

    Hanford initiated a review of international activities to collect, review, and summarize information on international environmental restoration and waste management initiatives considered for use at Hanford. This effort focused on Hanford activities and accomplishments, especially international technical exchanges and/or the implementation of foreign-developed technologies

  18. Automated Leak Detection Of Buried Tanks Using Geophysical Methods At The Hanford Nuclear Site

    International Nuclear Information System (INIS)

    Calendine, S.; Schofield, J.S.; Levitt, M.T.; Fink, J.B.; Rucker, D.F.

    2011-01-01

    At the Hanford Nuclear Site in Washington State, the Department of Energy oversees the containment, treatment, and retrieval of liquid high-level radioactive waste. Much of the waste is stored in single-shelled tanks (SSTs) built between 1943 and 1964. Currently, the waste is being retrieved from the SSTs and transferred into newer double-shelled tanks (DSTs) for temporary storage before final treatment. Monitoring the tanks during the retrieval process is critical to identifying leaks. An electrically-based geophysics monitoring program for leak detection and monitoring (LDM) has been successfully deployed on several SSTs at the Hanford site since 2004. The monitoring program takes advantage of changes in contact resistance that will occur when conductive tank liquid leaks into the soil. During monitoring, electrical current is transmitted on a number of different electrode types (e.g., steel cased wells and surface electrodes) while voltages are measured on all other electrodes, including the tanks. Data acquisition hardware and software allow for continuous real-time monitoring of the received voltages and the leak assessment is conducted through a time-series data analysis. The specific hardware and software combination creates a highly sensitive method of leak detection, complementing existing drywell logging as a means to detect and quantify leaks. Working in an industrial environment such as the Hanford site presents many challenges for electrical monitoring: cathodic protection, grounded electrical infrastructure, lightning strikes, diurnal and seasonal temperature trends, and precipitation, all of which create a complex environment for leak detection. In this discussion we present examples of challenges and solutions to working in the tank farms of the Hanford site.

  19. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Christian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kyle, Jennifer E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tfaily, Malak M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle MV [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martijn L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tartakovsky, Guzel D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leavy, Ian I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McElroy, Erin M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carroll, Matthew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chu, Rosalie K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cordova, Elsa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Last, George V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Hope [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaplan, Daniel I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Garcia, Whitney L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kerisit, Sebastien N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Odeta [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowden, Mark E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Frances N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Toyoda, Jason G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Plymale, Andrew E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-09-01

    Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, or (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.

  20. QUEST Hanford Site Computer Users - What do they do?

    Energy Technology Data Exchange (ETDEWEB)

    WITHERSPOON, T.T.

    2000-03-02

    The Fluor Hanford Chief Information Office requested that a computer-user survey be conducted to determine the user's dependence on the computer and its importance to their ability to accomplish their work. Daily use trends and future needs of Hanford Site personal computer (PC) users was also to be defined. A primary objective was to use the data to determine how budgets should be focused toward providing those services that are truly needed by the users.

  1. In-situ construction of Au nanoparticles confined in double-shelled TiO2/mSiO2 hollow architecture for excellent catalytic activity and enhanced thermal stability

    Science.gov (United States)

    Fang, Jiasheng; Zhang, Yiwei; Zhou, Yuming; Zhang, Chao; Zhao, Shuo; Zhang, Hongxing; Sheng, Xiaoli

    2017-01-01

    A facile strategy has been developed for the synthesis of H-TS-Au microspheres (MCs) with double-shelled hollow architecture and sub-5 nm Au nanoparticles (Au NPs). The synthetic procedure involves the successive sol-gel template-assisted method for the preparation of uniform hierarchical hollow-in-hollow H-TS MCs with TiO2/mSiO2 as yolks/shells, and the unique deposition-precipitation method mediated with Au(en)2Cl3 precursors for the in-situ construction of extremely stable Au NPs under a low-temperature hydrogen reduction. The synthesized H-TS-Au MCs were characterized by TEM, SEM, FTIR, XRD, BET and UV-vis absorption spectra. Catalytic activity of H-TS-Au was evaluated using the reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) by NaBH4. Results established that H-TS-Au MCs possessed a large-size double-shelled architecture with high structural integrity and robustness,which can effectively confine numerous tiny Au NPs and restrict them from sintering aggregation even up to further calcination at 800 °C. Owing to the advantageous structural configuration and the synergistic effect of TiO2/mSiO2 double shells, the H-TS-Au MCs were demonstrated to exhibit a remarkable catalytic activity and stability, and preserve the intact morphology after 6 repeating reduction of 4-NP.

  2. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  3. Hanford Area 2000 Population

    International Nuclear Information System (INIS)

    Elliott, Douglas B.; Scott, Michael J.; Antonio, Ernest J.; Rhoads, Kathleen

    2004-01-01

    This report was prepared for the U.S. Department of Energy (DOE) Richland Operations Office, Surface Environmental Surveillance Project, to provide demographic data required for ongoing environmental assessments and safety analyses at the DOE Hanford Site near Richland, Washington. This document includes 2000 Census estimates for the resident population within an 80-kilometer (50-mile) radius of the Hanford Site. Population distributions are reported relative to five reference points centered on meteorological stations within major operating areas of the Hanford Site - the 100 F, 100 K, 200, 300, and 400 Areas. These data are presented in both graphical and tabular format, and are provided for total populations residing within 80 km (50 mi) of the reference points, as well as for Native American, Hispanic and Latino, total minority, and low-income populations

  4. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  5. Design of second generation Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    Edgemon, G.L.

    1998-01-01

    The Hanford Site has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Twenty-eight tanks have a double shell and are constructed of welded ASTM A537-Class 1 (UNS K02400), ASTM A515-Grade 60 (UNS K02401), or ASTM A516-Grade 60 (UNS K02100) material. The inner tanks of the double-shell tanks (DSTS) were stress relieved following fabrication. One hundred and forty-nine tanks have a single shell, also constructed of welded mild steel, but not stress relieved following fabrication. Tank waste is in liquid, solid, and sludge forms. Tanks also contain a vapor space above the solid and liquid waste regions. The composition of the waste varies from tank to tank but generally has a high pH (>12) and contains sodium nitrate, sodium hydroxide, sodium nitrite, and other minor radioactive constituents resulting from plutonium separation processes. Leaks began to appear in the single-shell tanks shortly after the introduction of nitrate-based wastes in the 1950s. Leaks are now confirmed or suspected to be present in a significant number of single-shell tanks. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking (SCC) and pitting. Previous efforts to monitor internal corrosion of waste tank systems have included linear polarization resistance (LPR) and electrical resistance techniques. These techniques are most effective for monitoring uniform corrosion, but are not well suited for detection of localized corrosion (pitting and SCC). The Savannah River Site (SRS) investigated the characterization of electrochemical noise (EN) for monitoring waste tank corrosion in 1993, but the tests were not conclusive. The SRS effort has recently been revived and additional testing is underway. For many years, EN has been observed during corrosion and other electrochemical reactions, and the phenomenon is well established. Typically, EN consists of low frequency (< 1 Hz) and

  6. Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 12518

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2012-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. In 2010 Washington River Protection Solutions and the Pacific Northwest National Laboratory began evaluating the ultrasonic PulseEcho instrument to accurately identify critical velocities in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of >50 micrometers. In 2011 the PulseEcho instrument was further evaluated to identify critical velocities for slurries containing fast-settling, high-density particles with a mean particle diameter of <15 micrometers. This two-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  7. Technical Performance Capability of Fourier Transform Profilometry for Quantitative Waste Volume Determination under Hanford Waste Tank Condition

    International Nuclear Information System (INIS)

    Monts, D.L.; Jang, P.R.; Long, Z.; Norton, O.P.; Okhuysen, W.P.; Su, Y.; Waggoner, Ch.A.

    2009-01-01

    The Hanford Site is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the chemical makeup of the residue. The Institute for Clean Energy Technology (ICET) at Mississippi State University is currently developing a quantitative in-tank inspection system based on Fourier Transform Profilometry (FTP). FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. We report the results of a technical feasibility study to document the accuracy and precision of quantitative volume determination using the Fourier transform profilometry technique under simulated Hanford waste tank conditions. (authors)

  8. Axial Dispersion during Hanford Saltcake Washing

    International Nuclear Information System (INIS)

    Josephson, Gary B.; Geeting, John GH; Lessor, Delbert L.; Barton, William B.

    2006-01-01

    Clean up of Hanford salt cake wastes begins with dissolution retrieval of the sodium rich salts that make up the dominant majority of mass in the tanks. Water moving through the porous salt cake dissolves the soluble components and also displaces the soluble radionuclides (e.g. 137Cs and 99TcO4- ). The separation that occurs from this displacement, known as Selective dissolution, is an important component in Hanford?s pretreatment of low activity wastes for subsequent Supplemental treatment. This paper describes lab scale testing conducted to evaluate Selective dissolution of cesium from non-radioactive Hanford tank 241-S-112 salt cake simulant containing the primary chemicals found the actual tank. An modified axial dispersion model with increasing axial dispersion was developed to predict cesium removal. The model recognizes that water dissolves the salt cake during washing, which causes an increase in the axial dispersion during the wash. This model was subsequently compared with on-line cesium measurements from the retrieval of tank 241-S-112. The model had remarkably good agreement with both the lab scale and full scale data

  9. Low temperature hydrothermal processing of organic contaminants in Hanford tank waste

    International Nuclear Information System (INIS)

    Jones, E.O.; Pederson, L.R.; Freeman, H.D.; Schmidt, A.J.; Babad, H.

    1993-02-01

    Batch and continuous flow reactor tests at Pacific Northwest Laboratory (PNL) have shown that organics similar to those present in the single-shell and double-shell underground storage tanks at Hanford can be decomposed in the liquid phase at relatively mild temperatures of 150 degree C to 350 degree C in an aqueous process known as hydrothermal processing (HTP). The organics will react with the abundant oxidants such s nitrite already present in the Hanford tank waste to form hydrogen, carbon dioxide, methane, and ammonia. No air or oxygen needs to be added to the system. Ferrocyanides and free cyanide will hydrolyze at similar temperatures to produce formate and ammonia and may also react with nitrates or other oxides. During testing, the organic carbon was transformed first to oxalate at∼310 degree C and completely oxidized to carbonate at ∼350 degree C accompanied by hydroxide consumption. Solids were formed at higher temperatures, causing a small-diameter outlet tube to plug. The propensity for plugging was reduced by diluting the feed with concentrated hydroxide

  10. High-level core sample x-ray imaging at the Hanford Site

    International Nuclear Information System (INIS)

    Weber, J.R.; Keye, J.K.

    1995-01-01

    Waste tank sampling of radioactive high-level waste is required for continued operations, waste characterization, and site safety. Hanford Site Tank farms consist of 28 double-shell and 149 single-shell underground storage tanks. The single shell tanks are out-of-service and no longer receive liquid waste. Core samples of salt cake and sludge waste are remotely obtained using truck-mounted, core drill platforms. Samples are recovered from tanks through a 2.25 inch (in.) drill pipe in 26-in. steel tubes, 1.5 in. diameter. Drilling parameters vary with different waste types. Because sample recovery has been marginal and inadequate at times, a system was needed to provide drill truck operators with real-time feedback about the physical conditions of the sample and the percent recovery, prior to making nuclear assay measurements and characterizations at the analytical laboratory. Westinghouse hanford Company conducted proof-of -principal radiographic testing to verify the feasibility of a proposed imaging system

  11. Glass optimization for vitrification of Hanford Site low-level tank waste

    International Nuclear Information System (INIS)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design

  12. Simulations of Ar gas-puff Z-pinch radiation sources with double shells and central jets on the Z generator

    Science.gov (United States)

    Tangri, V.; Harvey-Thompson, A. J.; Giuliani, J. L.; Thornhill, J. W.; Velikovich, A. L.; Apruzese, J. P.; Ouart, N. D.; Dasgupta, A.; Jones, B.; Jennings, C. A.

    2016-10-01

    Radiation-magnetohydrodynamic simulations using the non-local thermodynamic equilibrium Mach2-Tabular Collisional-Radiative Equilibrium code in (r, z) geometry are performed for two pairs of recent Ar gas-puff Z-pinch experiments on the refurbished Z generator with an 8 cm diameter nozzle. One pair of shots had an outer-to-inner shell mass ratio of 1:1.6 and a second pair had a ratio of 1:1. In each pair, one of the shots had a central jet. The experimental trends in the Ar K-shell yield and power are reproduced in the calculations. However, the K-shell yield and power are significantly lower than the other three shots for the case of a double-shell puff of 1:1 mass ratio and no central jet configuration. Further simulations of a hypothetical experiment with the same relative density profile of this configuration, but higher total mass, show that the coupled energy from the generator and the K-shell yield can be increased to levels achieved in the other three configurations, but not the K-shell power. Based on various measures of effective plasma radius, the compression in the 1:1 mass ratio and no central jet case is found to be less because the plasma inside the magnetic piston is hotter and of lower density. Because of the reduced density, and the reduced radiation cooling (which is proportional to the square of the density), the core plasma is hotter. Consequently, for the 1:1 outer-to-inner shell mass ratio, the load mass controls the yield and the center jet controls the power.

  13. Multi-functional integration of pore P25@C@MoS{sub 2} core-double shell nanostructures as robust ternary anodes with enhanced lithium storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Biao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072 (China); Wei, Chaopeng; Zhou, Jingwen; He, Fang; Shi, Chunsheng; He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin 300072 (China)

    2017-04-15

    Highlights: • P25@carbon supported MoS{sub 2} composite was prepared by a one-step process. • The distribution and interaction of C, MoS{sub 2} and TiO{sub 2} are systematically examined. • The enjoyable features of the three components are complementarily integrated. • The smart ternary electrode exhibits excellent cycling stability and rate capability. - Abstract: Ternary anodes have attracted more and more attention due to the characteristic advantages resulting from the effect integration of three different materials on the lithium storage mechanism with functional interfaces interaction. However, clarifying the distribution and interaction of carbon, MoS{sub 2} and TiO{sub 2} in the MoS{sub 2}/C/TiO{sub 2} composite, which is helpful for the understanding of the formation and lithium storage mechanism of the ternary anodes, is a well-known challenge. Herein, a novel pore core-double shell nanostructure of P25@carbon network supported few-layer MoS{sub 2} nanosheet (P25@C@FL-MoS{sub 2}) is successfully synthesized by a one-pot hydrothermal approach. The distribution and interaction of the carbon, MoS{sub 2} and TiO{sub 2} in the obtained P25@C@FL-MoS{sub 2} hybrid are systematically characterized by transmission electron microscopy, Raman spectra and X-ray photoelectron spectroscopy analysis et al. It is found that the carbon serves as binder, which supports few-layer MoS{sub 2} shell and coats the P25 core via Ti−O−C bonds at the same time. Such multi-functional integration with smart structure and strong interfacial contact generates favorable structure stability and interfacial pseudocapacity-like storage mechanism. As a consequence, superior cycling and rate capacity of the muti-functional integration ternary P25@C@FL-MoS{sub 2} anode are achieved.

  14. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    Energy Technology Data Exchange (ETDEWEB)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (μm). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  15. DOE wants Hanford change

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Nine months ago, Energy Secretary Hazel O'Leary promised local officials running the agency's huge Hanford, Washington, weapon complex more control in directing its projected $57-billion waste cleanup. Earlier this month, she returned to the site for a follow-on open-quotes summit,close quotes this time ordering teamwork with contractors, regulators and local activities

  16. Evaluation of fourier transform profilometry performance: quantitative waste volume determination under simulated Hanford waste tank conditions

    International Nuclear Information System (INIS)

    Jang, Ping-Rey; Leone, Teresa; Long, Zhiling; Mott, Melissa A.; Perry Norton, O.; Okhuysen, Walter P.; Monts, David L.

    2007-01-01

    The Hanford Site is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the chemical makeup of the residue. The objective of Mississippi State University's Institute for Clean Energy Technology's (ICET) efforts is to develop, fabricate, and deploy inspection tools for the Hanford waste tanks that will (1) be remotely operable; (2) provide quantitative information on the amount of wastes remaining; and (3) provide information on the spatial distribution of chemical and radioactive species of interest. A collaborative arrangement has been established with the Hanford Site to develop probe-based inspection systems for deployment in the waste tanks. ICET is currently developing an in-tank inspection system based on Fourier Transform Profilometry, FTP. FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. We have completed a preliminary performance evaluation of FTP in order to document the accuracy, precision, and operator dependence (minimal) of FTP under conditions similar to those that can be expected to pertain within Hanford waste tanks. Based on a Hanford C-200 series tank with camera access through a riser with significant offset relative to the centerline, we devised a testing methodology that encompassed a range of obstacles likely to be encountered 'in tank'. These test objects were inspected by use

  17. Graphene wrapped porous Co_3O_4/NiCo_2O_4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor

    International Nuclear Information System (INIS)

    Xue, Bei; Li, Kezhi; Feng, Lei; Lu, Jinhua; Zhang, Leilei

    2017-01-01

    Highlights: • Graphene wrapped Co_3O_4/NiCo_2O_4 DSNCs has been prepared for detection of glucose. • Sensing performance was improved by synergy between electrocatalytic activity and efficient electron transport. • The sensor has excellent sensing performance with high sensitivity and low detection limit. • The developed method was successfully applied to detect glucose in human serum. - Abstract: Graphene (G) wrapped porous Co_3O_4/NiCo_2O_4 double-shelled nanocages (Co_3O_4/NiCo_2O_4 DSNCs@G) were prepared by the formation of Co_3O_4/NiCo_2O_4 DSNCs using zeolite imidazole frameworks-67 as template with the subsequent calcination and package of G by hydrothermal method. The abundant accessible active sites provided by the porous structure of Co_3O_4/NiCo_2O_4 DSNCs and efficient electron transport pathways for electrocatalytic reaction offered by the high conductive G worked very well together in a ferocious synergy, which endowed Co_3O_4/NiCo_2O_4 DSNCs@G with excellent electrocatalytic behaviors for determining glucose. A comparison between Co_3O_4/NiCo_2O_4 DSNCs without G packing and Co_3O_4/NiCo_2O_4 DSNCs@G showed that former had linear response window concentrations of 0.01-3.52 mM (correlation coefficient = 0.999), detection limit of 0.744 μM (S/N = 3) and sensitivity of 0.196 mA mM"−"1 cm"−"2, whereas the latter exhibited linear response window concentrations of 0.01-3.52 mM (correlation coefficient = 0.999), detection limit of 0.384 μM (S/N = 3) and sensitivity of 0.304 mA mM"−"1 cm"−"2. The combination of Co_3O_4/NiCo_2O_4 DSNCs and G was a meaningful strategy to fabricate high-performance non-enzyme glucose sensors with low detection limit, good selectivity and high sensitivity.

  18. Hanford spent fuel inventory baseline

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1994-01-01

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors

  19. Deactivation completed at historic Hanford Fuels Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site`s boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO{sub 2}) and enriched uranium oxide (UO{sub 2}) residues and powders in the facility`s equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America`s primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world`s supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D&D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process.

  20. Deactivation completed at historic Hanford Fuels Laboratory

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site's boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO 2 ) and enriched uranium oxide (UO 2 ) residues and powders in the facility's equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America's primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world's supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D ampersand D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process

  1. Hanford well custodians. Revision 1

    International Nuclear Information System (INIS)

    Schatz, A.L.; Underwood, D.J.

    1995-01-01

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993

  2. Reinventing government: Reinventing Hanford

    International Nuclear Information System (INIS)

    Mayeda, J.T.

    1994-05-01

    The Hanford Site was established in 1943 as one of the three original Manhattan Project locations involved in the development of atomic weapons. It continued as a defense production center until 1988, when its mission changed to environmental restoration and remediation. The Hanford Site is changing its business strategy and in doing so, is reinventing government. This new development has been significantly influenced by a number of external sources. These include: the change in mission, reduced security requirements, new found partnerships, fiscal budgets, the Tri-Party agreement and stakeholder involvement. Tight budgets and the high cost of cleanup require that the site develop and implement innovative cost saving approaches to its mission. Costeffective progress is necessary to help assure continued funding by Congress

  3. Hanford process review

    International Nuclear Information System (INIS)

    1991-12-01

    This report is a summary of past incidents at the US Department of Energy's (DOE) Hanford Site. The purpose of the report is to provide the major, significant, nuclear-safety-related incidents which incurred at the Hanford Site in a single document for ease of historical research. It should be noted that the last major accident occurred in 1980. This document is a summary of reports released and available to the public in the DOE Headquarters and Richland public reading rooms. This document provides no new information that has not previously been reported. This report is not intended to cover all instances of radioactivity release or contamination, which are already the subject of other major reviews, several of which are referenced in Section 1.3

  4. Hanford Site performance summary: EM funded programs

    International Nuclear Information System (INIS)

    Edwards, C.

    1995-09-01

    Hanford performance at fiscal year end reflects a three percent unfavorable schedule variance ($46.3 million*) which was an improvement over August 1995 ($46.3 million for September versus $65.9 million for August) and is below established reporting thresholds (greater than 3 percent). The majority of the behind schedule condition (53 percent) is attributed to EM-40 (Office of Environmental Restoration [ER]) and is a result of late receipt of funds, procurement delays, and US Army Corps of Engineers (USACE) work planned but not accomplished. Other primary contributors to the behind schedule condition are associated with tank farm upgrades, high-level waste disposal and work for others (support to the US Department of Energy-Headquarters [DOE-HQ]). The remaining behind schedule condition is distributed throughout the remaining Hanford programs and do not share common causes. A breakdown of individuals listed on page 8

  5. High-level core sample x-ray imaging at the Hanford Site

    International Nuclear Information System (INIS)

    Weber, J.R.; Keve, J.K.

    1995-10-01

    Waste tank sampling of radioactive high-level waste is required for continued operations, waste characterization, and site safety. Hanford Site tank farms consist of 28 double-shell and 149 single-shell underground storage tanks. The single shell tanks are out-of-service an no longer receive liquid waste. Core samples of salt cake and sludge waste are remotely obtained using truck-mounted, core drill platforms. Samples are recovered from tanks through a 2.25 inch (in.) drill pipe in 26-in. steel tubes, 1.5 in. diameter. Drilling parameters vary with different waste types. Because sample recovery has been marginal an inadequate at times, a system was needed to provide drill truck operators with ''real-time feedback'' about the physical condition of the sample and the percent recovery, prior to making nuclear assay measurements and characterizations at the analytical laboratory. The Westinghouse Hanford Company conducted proof-of-principal radiographic testing to verify the feasibility of a proposed imaging system. Tests were conducted using an iridium 192 radiography source to determine the effects of high radiation on image quality. The tests concluded that samplers with a dose rate in excess of 5000 R/hr could be imaged with only a slight loss of image quality and samples less than 1000 R/hr have virtually no effect on image quality. The Mobile Core Sample X-Ray Examination System, a portable vendor-engineered assembly, has components uniquely configured to produce a real-time radiographic system suitable for safely examining radioactive tank core segments collected at the Hanford Site. The radiographic region of interest extends from the bottom (valve) of the sampler upward 19 to 20 in. The purpose of the Mobile Core Sample X-Ray Examination System is to examine the physical contents of core samples after removal from the tank and prior to placement in an onsite transfer cask

  6. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  7. HANFORD CHEMICAL VAPORS WORKER CONCERNS and EXPOSURE EVALUATION

    International Nuclear Information System (INIS)

    ANDERSON, T.J.

    2006-01-01

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors

  8. Mortality studies of Hanford workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1986-04-01

    Radiation exposures at Hanford have been deliberately limited as a protection to the worker. This means that if current estimates of radiation risks, which have been determined by national and international groups, are correct, it's highly unlikely that noticeable radiation-induced health effects will be identified among Hanford workers. 1 fig., 4 tabs

  9. CORROSION MONITORING IN HANFORD NUCLEAR WASTE STORAGE TANKS, DESIGN AND DATA FROM 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM

    International Nuclear Information System (INIS)

    ANDA, V.S.; EDGEMON, G.L.; HAGENSEN, A.R.; BOOMER, K.D.; CAROTHERS, K.G.

    2009-01-01

    In 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was installed in double-shell tank 241-AN-102 on the U.S. Department of Energy's Hanford Site in Washington State. Developmental design work included laboratory testing in simulated tank 241-AN-102 waste to evaluate metal performance for installation on the MPCMS as secondary metal reference electrodes. The MPCMS design includes coupon arrays as well as a wired probe which facilitates measurement of tank potential as well as corrosion rate using electrical resistance (ER) sensors. This paper presents the MPCMS design, field data obtained following installation of the MPCMS in tank 241-AN-102, and a comparison between laboratory potential data obtained using simulated waste and tank potential data obtained following field installation

  10. INITIAL SINGLE-SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.

    2007-01-01

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  11. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    WEBER RA

    2009-01-16

    The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as

  12. METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    FOWLER KD

    2007-12-27

    This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient

  13. Hanford Waste Vitrification Plant technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  14. Hanford Waste Vitrification Plant technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version

  15. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  16. Reactive turbulent flow CFD study in supercritical water oxidation process: application to a stirred double shell reactor; Etude par simulation numerique des ecoulements turbulents reactifs dans les reacteurs d'oxydation hydrothermale: application a un reacteur agite double enveloppe

    Energy Technology Data Exchange (ETDEWEB)

    Moussiere, S

    2006-12-15

    Supercritical water oxidation is an innovative process to treat organic liquid waste which uses supercritical water properties to mix efficiency the oxidant and the organic compounds. The reactor is a stirred double shell reactor. In the step of adaptation to nuclear constraints, the computational fluid dynamic modeling is a good tool to know required temperature field in the reactor for safety analysis. Firstly, the CFD modeling of tubular reactor confirms the hypothesis of an incompressible fluid and the use of k-w turbulence model to represent the hydrodynamic. Moreover, the EDC model is as efficiency as the kinetic to compute the reaction rate in this reactor. Secondly, the study of turbulent flow in the double shell reactor confirms the use of 2D axisymmetric geometry instead of 3D geometry to compute heat transfer. Moreover, this study reports that water-air mixing is not in single phase. The reactive turbulent flow is well represented by EDC model after adaptation of initial conditions. The reaction rate in supercritical water oxidation reactor is mainly controlled by the mixing. (author)

  17. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  18. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  19. Overview Of Hanford Single Shell Tank (SST) Structural Integrity - 12123

    International Nuclear Information System (INIS)

    Rast, R.S.; Rinker, M.W.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS(reg s ign) The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  20. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  1. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  2. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  3. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2007-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records and Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  5. Application Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At Hanford

    International Nuclear Information System (INIS)

    Tedeschi, A.R.; Wilson, R.A.

    2010-01-01

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  6. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  7. Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104

    International Nuclear Information System (INIS)

    Onishi, Y.; Recknagle, K.P.

    1998-07-01

    The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPEST simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5

  8. APPLICATION OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; WILSON RA

    2010-01-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORP/DOE), through Columbia Energy & Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper discusses results of pre-project pilot-scale testing by Columbia Energy and ongoing technology maturation development scope through fiscal year 2012, including planned additional pilot-scale and full-scale simulant testing and operation with actual radioactive tank waste.

  9. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    International Nuclear Information System (INIS)

    Onishi, Y.; Recknagle, K.P.; Wells, B.E.

    2000-01-01

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m 3 ) of supernatant liquid and 95,000 gallons (360 m 3 ) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom

  10. Residual herbicide study on selected Hanford Site roadsides

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    1993-08-01

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  11. New approaches to glove box design at Hanford

    International Nuclear Information System (INIS)

    Lini, D.C.; Fisher, F.D.; Walters, F.F.

    1986-01-01

    Glove boxes provide the primary environmental containment system for plutonium processing operations at US Dept. of Energy (DOE)-owned facilities such as Rockwell Hanford. As noted in previous presentations, glove box designs and operations have evolved through stages that are a result of advances in processing techniques, new regulatory requirements, and cost escalation. These factors will continue to influence the current glove box designs and operations. The purpose of this presentation is to discuss required upgrades and changes that are being incorporated into glove boxes being installed at Rockwell Hanford and other DOE installations or are being evaluated for future upgrades

  12. Hanford inventory program user's manual

    International Nuclear Information System (INIS)

    Hinkelman, K.C.

    1994-01-01

    Provides users with instructions and information about accessing and operating the Hanford Inventory Program (HIP) system. The Hanford Inventory Program is an integrated control system that provides a single source for the management and control of equipment, parts, and material warehoused by Westinghouse Hanford Company in various site-wide locations. The inventory is comprised of spare parts and equipment, shop stock, special tools, essential materials, and convenience storage items. The HIP replaced the following systems; ACA, ASP, PICS, FSP, WSR, STP, and RBO. In addition, HIP manages the catalog maintenance function for the General Supplies inventory stocked in the 1164 building and managed by WIMS

  13. An evaluation of the management system verification pilot at Hanford

    International Nuclear Information System (INIS)

    Briggs, C.R.; Ramonas, L.; Westendorf, W.

    1998-01-01

    The Chemical Management System (CMS), currently under development at Hanford, was used as the ''test program'' for pilot testing the value added aspects of the Chemical Manufacturers Association's (CMA) Management Systems Verification (MSV) process. The MSV process, which was developed by CMA's member chemical companies specifically as a tool to assist in the continuous improvement of environment, safety and health (ESH) performance, represents a commercial sector ''best practice'' for evaluating ESH management systems. The primary purpose of Hanford's MSV Pilot was to evaluate the applicability and utility of the MSV process in the Department of Energy (DOE) environment. However, because the Integrated Safety Management System (ISMS) is the framework for ESH management at Hanford and at all DOE sites, the pilot specifically considered the MSV process in the context of a possible future adjunct to Integrated Safety Management System Verification (ISMSV) efforts at Hanford and elsewhere within the DOE complex. The pilot involved the conduct of two-hour interviews with four separate panels of individuals with functional responsibilities related to the CMS including the Department of Energy Richland Operations (DOE-RL), Fluor Daniel Hanford (FDH) and FDH's major subcontractors (MSCS). A semi-structured interview process was employed by the team of three ''verifiers'' who directed open-ended questions to the panels regarding the development, integration and effectiveness of management systems necessary to ensure the sustainability of the CMS effort. An ''MSV Pilot Effectiveness Survey'' also was completed by each panel participant immediately following the interview

  14. Environmental monitoring at Hanford by the state of Washington

    International Nuclear Information System (INIS)

    Conklin, A.W.; Mooney, R.R.; Erickson, J.L.

    1990-01-01

    The Department of Social and Health Services' Office of Radiation Protection (ORP), Washington State's radiation control agency, has a mandate to protect the public from radiation. In 1985, ORP was instructed by the legislature to establish a statewide environmental radiological base line, beginning with Hanford, to verify federal environmental programs, and to enforce federal and state Clean Air Acts. The primary mission of the agency is to protect public health by active involvement in Hanford monitoring and oversight. The state's program was designed not to duplicate but to supplement existing programs and to identify any sampling gaps or problems. Split, side-by-side, and independent samples are collected, with analysis performed by the state's own laboratory. Media sampled have included surface and drinking water, seep and ground water, fruits and vegetables, milk, soils, and air particulates; ambient radiation levels have been determined. Special activities have included split sampling of river seeps with multiple agencies, preliminary dose assessment of early Hanford releases, investigations of 129 I in the environment and in Franklin County drinking water, verification of U.S. Department of Energy (DOE) data on erroneous alarms at the Hanford Plutonium Uranium Extraction Plant, split sampling with a DOE headquarters survey, and participation in several General Accounting Office investigations and a National Academy of Sciences review. The independence of ORP programs guarantees that the public has access to environmental data on the activities of DOE and its contractors. We will describe the interrelationship of ORP and Hanford programs and present results of ORP activities

  15. 1995 project of the year Hanford Environmental compliance project nomination

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J.R.

    1996-02-01

    The completion of the Hanford Environmental Compliance (HEC) Project in December 1995 brought to a successful close a long line of major contributions to environmental cleanup. Not since the early days of the Hanford Site during and shortly after World War 11 had such a large group of diverse construction activities, with a common goal, been performed at Hanford. Key to this success was the unique combination of 14 subprojects under the HEC Project which afforded the flexibility to address evolving subproject requirements. This strategy resulted in the accomplishment of the HEC Project stakeholders` objectives on an aggressive schedule, at a $33 million cost savings to the customer. The primary objectives of the HEC Project were to upgrade selected Hanford Site facilities and systems to bring them into compliance with current environmental standards and regulations. The HEC Project contributed significantly towards the Hanford site compliance with Clean Water Act, Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. It provided, in part, those construction activities required to comply with those requirements in the areas of liquid and solid waste treatment and disposal, waste characterization, and groundwater monitoring.

  16. 1995 project of the year Hanford Environmental compliance project nomination

    International Nuclear Information System (INIS)

    Kelly, J.R.

    1996-02-01

    The completion of the Hanford Environmental Compliance (HEC) Project in December 1995 brought to a successful close a long line of major contributions to environmental cleanup. Not since the early days of the Hanford Site during and shortly after World War 11 had such a large group of diverse construction activities, with a common goal, been performed at Hanford. Key to this success was the unique combination of 14 subprojects under the HEC Project which afforded the flexibility to address evolving subproject requirements. This strategy resulted in the accomplishment of the HEC Project stakeholders' objectives on an aggressive schedule, at a $33 million cost savings to the customer. The primary objectives of the HEC Project were to upgrade selected Hanford Site facilities and systems to bring them into compliance with current environmental standards and regulations. The HEC Project contributed significantly towards the Hanford site compliance with Clean Water Act, Resource Conservation and Recovery Act (RCRA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements. It provided, in part, those construction activities required to comply with those requirements in the areas of liquid and solid waste treatment and disposal, waste characterization, and groundwater monitoring

  17. 界面聚合聚脲/聚氨酯双层微胶囊相变材料的研制与性能%Characterization of Polyurea/Polyurethane Double-Shell MicroPCMs Prepared by Interfacial Polymerization

    Institute of Scientific and Technical Information of China (English)

    陆少锋; 邢建伟; 吴钦; 贺江平; 任燕

    2011-01-01

    以硬脂酸丁酯为芯材,苯乙烯马来酸酐共聚物(SMA)为乳化分散剂,采用界面聚合制备双层微胶囊相变材料,其外壳体为甲苯-2,4-二异氰酸酯(TDI)和二乙烯三胺(DETA)反应形成的聚脲壳层,内壳体为TDI与聚丙二醇2000(PPG2000)反应形成的聚氨酯壳层.采用差示扫描量热仪(DSC)、热重分析仪(TGA)、扫描电镜(SEM)、光学显微镜等分别对微胶囊的热性能、表面形态做了研究和分析.结果表明,所制备的双层微胶囊表面光滑致密,相变温度24.1℃,相变热85 J/g.所制备双层微胶囊的致密性和耐热稳定性均比单层微胶囊有很大程度的提高.%Double-shell microcapsules containing butyl stearate were prepared by interracial polymerization. The outer shell is polyurea formed by polymerization of toluene-2,4-diisocyanate (TDI) and diethylene triamine (DETA),the inner shell is polyurethane formed by polymerization of TDI and polypropylene glycol 2000 (PPG2000). Styrene maleic anhydride copolymer (SMA) was used as emulsifier. The thermal properties, surface morphologies of microcapsules were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA),scanning electron microscope (SEM) and optical microscope, respectively. The results indicate that the surface of the prepared double-shell microPCMs is smooth and compact, and the microPCMs have an phase change temperature of 24.1 ℃ and phase change heat of 85 J/g. The compactness and stabilities of the double-shell microcapsule are obviously improved compared with that of single-shell microcapsule.

  18. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  19. Introduction to the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  20. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  1. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  2. Introduction to the Hanford Site

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal

  3. Hanford Facility RCRA permit handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  4. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  5. Mortality studies of Hanford workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1986-03-01

    The relationships of cancer mortality with radiation exposure as influenced by age, sex, follow-up time length of employment, and job category are discussed in relation to workers at the Hanford facilities

  6. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  7. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  8. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  9. Hanford Site cleanup and transition: Risk data needs for decision making (Hanford risk data gap analysis decision guide)

    International Nuclear Information System (INIS)

    Gajewski, S.; Glantz, C.; Harper, B.; Bilyard, G.; Miller, P.

    1995-10-01

    Given the broad array of environmental problems, technical alternatives, and outcomes desired by different stakeholders at Hanford, DOE will have to make difficult resource allocations over the next few decades. Although some of these allocations will be driven purely by legal requirements, almost all of the major objectives of the cleanup and economic transition missions involve choices among alternative pathways. This study examined the following questions: what risk information is needed to make good decisions at Hanford; how do those data needs compare to the set(s) of risk data that will be generated by regulatory compliance activities and various non-compliance studies that are also concerned with risk? This analysis examined the Hanford Site missions, the Hanford Strategic Plan, known stakeholder values, and the most important decisions that have to be made at Hanford to determine a minimum domain of risk information required to make good decisions that will withstand legal, political, and technical scrutiny. The primary risk categories include (1) public health, (2) occupational health and safety, (3) ecological integrity, (4) cultural-religious welfare, and (5) socio-economic welfare

  10. Technical performance characterization of fourier transform profilometry for quantitative waste volume determination under Hanford waste tank conditions - 16281

    International Nuclear Information System (INIS)

    Monts, David L.; Jang, Ping-Rey; Long, Zhiling; Norton, Olin P.; Gresham, Lawrence L.; Su, Yi; Lindner, Jeffrey S.

    2009-01-01

    The Hanford Site in western Washington state is currently in the process of an extensive effort to empty and close its radioactive single-shell and double-shell waste storage tanks. Before this can be accomplished, it is necessary to know how much residual material is left in a given waste tank and the chemical makeup of the residue. The Institute for Clean Energy Technology (ICET) at Mississippi State University is currently developing an quantitative in-tank inspection system based on Fourier Transform Profilometry, FTP. FTP is a non-contact, 3-D shape measurement technique. By projecting a fringe pattern onto a target surface and observing its deformation due to surface irregularities from a different view angle, FTP is capable of determining the height (depth) distribution (and hence volume distribution) of the target surface, thus reproducing the profile of the target accurately under a wide variety of conditions. Hence FTP has the potential to be utilized for quantitative determination of residual wastes within Hanford waste tanks. We report the results of a technical feasibility study to document the accuracy and precision of quantitative volume determination using the Fourier transform profilometry technique under simulated Hanford waste tank conditions. We have initiated a technical feasibility assessment of the Fourier transform profilometry (FTP) technique for determining the volume of residual waste in Hanford radioactive waste tanks; preliminary results to date are presented in this paper. We find that we achieve FTP volume determinations with relatively small errors under conditions corresponding to the most challenging within a Hanford waste tank-viewing non-descript targets at a distance of 16.1 m (53 ft) and an angle of 62 deg.. We have determined that we can minimize measurement uncertainty by maximizing the camera-to-projector distance d, using an optical zoom of at least 5x, and ensuring that FTP images are only recorded after instrumental warm

  11. Evaluation of the potential for significant ammonia releases from Hanford waste tanks

    International Nuclear Information System (INIS)

    Palmer, B.J.; Anderson, C.M.; Chen, G.; Cuta, J.M.; Ferryman, T.A.; Terrones, G.

    1996-07-01

    Ammonia is ubiquitous as a component of the waste stored in the Hanford Site single-shell tanks (SSTs) and double-shell tanks (DSTs). Because ammonia is both flammable and toxic, concerns have been raised about the amount of ammonia stored in the tanks and the possible mechanisms by which it could be released from the waste into the head space inside the tanks as well as into the surrounding atmosphere. Ammonia is a safety issue for three reasons. As already mentioned, ammonia is a flammable gas and may contribute to a flammability hazard either directly, if it reaches a high enough concentration in the tank head space, or by contributing to the flammability of other flammable gases such as hydrogen (LANL 1994). Ammonia is also toxic and at relatively low concentrations presents a hazard to human health. The level at which ammonia is considered Immediately Dangerous to Life or Health (IDLH) is 300 ppm (WHC 1993, 1995). Ammonia concentrations at or above this level have been measured inside the head space in a number of SSTs. Finally, unlike hydrogen and nitrous oxide, ammonia is highly soluble in aqueous solutions, and large amounts of ammonia can be stored in the waste as dissolved gas. Because of its high solubility, ammonia behaves in a qualitatively different manner from hydrogen or other insoluble gases. A broader range of scenarios must be considered in modeling ammonia storage and release

  12. Gas retention and release behavior in Hanford single-shell waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large ({approximately}100 m{sup 3}) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given.

  13. Gas retention and release behavior in Hanford single-shell waste tanks

    International Nuclear Information System (INIS)

    Stewart, C.W.; Brewster, M.E.; Gauglitz, P.A.; Mahoney, L.A.; Meyer, P.A.; Recknagle, K.P.; Reid, H.C.

    1996-12-01

    This report describes the current understanding of flammable gas retention and release in Hanford single-shell waste tanks based on theory, experimental results, and observations of tank behavior. The single-shell tanks likely to pose a flammable gas hazard are listed and described, and photographs of core extrusions and the waste surface are included. The credible mechanisms for significant flammable gas releases are described, and release volumes and rates are quantified as much as possible. The only mechanism demonstrably capable of producing large (∼100 m 3 ) spontaneous gas releases is the buoyant displacement, which occurs only in tanks with a relatively deep layer of supernatant liquid. Only the double-shell tanks currently satisfy this condition. All release mechanisms believed plausible in single-shell tanks have been investigated, and none have the potential for large spontaneous gas releases. Only small spontaneous gas releases of several cubic meters are likely by these mechanisms. The reasons several other postulated gas release mechanisms are implausible or incredible are also given

  14. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  15. Hanford immobilized LAW product acceptance: Initial Tanks Focus Area testing data package

    Energy Technology Data Exchange (ETDEWEB)

    JD Vienna; A Jiricka; BP McGrail; BM Jorgensen; DE Smith; BR Allen; JC Marra; DK Peeler; KG Brown; IA Reamer; WL Ebert

    2000-03-08

    The Hanford Site's mission has been to produce nuclear materials for the US Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during plutonium production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The total volume of LAW requiring immobilization will include the LAW separated from the tank waste, as well as new wastes generated by the retrieval, pretreatment, and immobilization processes. Per the Tri-Party Agreement (1994), both the LAW and HLW will be vitrified. It has been estimated that vitrification of the LAW waste will result in over 500,000 metric tons or 200,000 m{sup 3} of immobilized LAW (ILAW) glass. The ILAW glass is to be disposed of onsite in a near-surface burial facility. It must be demonstrated that the disposal system will adequately retain the radionuclides and prevent contamination of the surrounding environment. This report describes a study of the impacts of systematic glass-composition variation on the responses from accelerated laboratory corrosion tests of representative LAW glasses. A combination of two tests, the product consistency test and vapor-hydration test, is being used to give indictations of the relative rate at which a glass could be expected to corrode in the burial scenario.

  16. Experimental logistics plan in support of Extensive Separations for Hanford tank waste remediation systems

    International Nuclear Information System (INIS)

    Enderlin, W.I.; Swanson, J.L.; Carlson, C.D.; Hirschi, E.J.

    1993-12-01

    All proposed methods for remediating the radioactive and chemical waste stored in single- and double-shell tanks (SSTs and DSTs) at the Hanford Site require the separation of the waste mixtures in the tank into high-level and low-level fractions, the safe transport of this separated waste to appropriate immobilization facilities, and the long-term disposal of the immobilized waste forms. Extensive experimentation, especially in waste separations, will be required to develop the technologies and to produce the data that support the most effective and safe cleanup processes. As part of this effort, Pacific Northwest Laboratory (PNL) is developing this detailed experimental logistics plan to determine the logistical/resource requirements, and ultimately the critical paths, necessary to effectively and safely conduct the multitude of experiments within the Extensive Separations Development Program, which addresses the experimental needs of a concept that provides a high degree of separation for the high-level and low-level waste fractions. The logistics issues developed for this program are expected to be similar to those for other programs aimed at remediating and disposing of the wastes

  17. Hanford immobilized LAW product acceptance: Initial Tanks Focus Area testing data package

    International Nuclear Information System (INIS)

    JD Vienna; A Jiricka; BP McGrail; BM Jorgensen; DE Smith; BR Allen; JC Marra; DK Peeler; KG Brown; IA Reamer; WL Ebert

    2000-01-01

    The Hanford Site's mission has been to produce nuclear materials for the US Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during plutonium production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The total volume of LAW requiring immobilization will include the LAW separated from the tank waste, as well as new wastes generated by the retrieval, pretreatment, and immobilization processes. Per the Tri-Party Agreement (1994), both the LAW and HLW will be vitrified. It has been estimated that vitrification of the LAW waste will result in over 500,000 metric tons or 200,000 m 3 of immobilized LAW (ILAW) glass. The ILAW glass is to be disposed of onsite in a near-surface burial facility. It must be demonstrated that the disposal system will adequately retain the radionuclides and prevent contamination of the surrounding environment. This report describes a study of the impacts of systematic glass-composition variation on the responses from accelerated laboratory corrosion tests of representative LAW glasses. A combination of two tests, the product consistency test and vapor-hydration test, is being used to give indictations of the relative rate at which a glass could be expected to corrode in the burial scenario

  18. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  19. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  20. HANFORD WASTE MINERALOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  1. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  2. Hanford Waste Mineralogy Reference Report

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  3. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  5. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  6. Laboratory characterization and vitrification of Hanford radioactive high-level waste

    International Nuclear Information System (INIS)

    Tingey, J.M.; Elliott, M.L.; Larson, D.E.; Morrey, E.V.

    1991-05-01

    Radioactive high-level wastes generated at the Department of Energy's Hanford Site are stored in underground carbon steel tanks. Two double-shell tanks contain neutralized current acid waste (NCAW) from the reprocessing of irradiated nuclear fuel in the Plutonium and Uranium Extraction (PUREX) Plant. The tanks were sampled for characterization and waste immobilization process/product development. The high-level waste generated in PUREX was denitrated with sugar to form current acid waste (CAW). The CAW was ''neutralized'' to a pH of approximately 14 by adding sodium hydroxide to reduce corrosion of the tanks. This ''neutralized'' waste is called Neutralized Current Acid Waste. Both precipitated solids and liquids are stored in the NCAW waste tanks. The NCAW contains small amounts of plutonium and most of the fission products and americium from the irradiated fuel. NCAW also contains stainless steel corrosion products, and iron and sulfate from the ferrous sulfamate reductant used in the PUREX process. The NCAW will be retrieved, pretreated, and immobilized prior to final disposal. Pretreatment consists of water washing the precipitated NCAW solids for sulfate and soluble salts removal as a waste reduction step prior to vitrification. This waste is expected to be the first waste type to be retrieved and vitrified in the Hanford Waste Vitrification Plant (HWVP). A characterization plan was developed that details the processing of the small-volume NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical, and radiochemical properties were measured throughout these process steps. The results of nonradioactive simulant tests were used to develop appropriate pretreatment and vitrification process steps. The processing and characterization of simulants and actual NCAW tank samples are used to evaluate the operation of these processes. 3 refs., 1 fig., 4 tabs

  7. Thermophysical properties of Hanford high-level tank wastes: A preliminary survey of recent data

    International Nuclear Information System (INIS)

    Willingham, C.E.

    1994-03-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving thermophysical properties of Hanford high-level tank wastes. PNL has gathered and summarized the available information on density, viscosity, thermal conductivity, heat capacity, particle size, shear strength, and heat generation. The information was compiled from documented characterization reports of Hanford single-shell and double-shell tanks. The report summarizes the thermophysical properties of the various waste materials, the anticipated range for the various waste forms, and estimates of the variability of the measured data. The thermophysical information compiled in this study is useful as input to sensitivity and parametric studies for the Multi-Function Waste Tank Facility Project. Information from only 33 of the 177 high-level waste storage tanks was compiled. Density data are well characterized for the tanks selected in this study. It was found that the reported viscosity of the wastes varies widely and that a single value should not be used to represent viscosity for all waste. Significant variations in reported shear strength and heat generation values were also found. Very few of the tank characterization reports described information on waste heat capacity. In addition, there was no supernatant vapor pressure information reported in the waste characterization reports examined in this study. Although thermal conductivity measurements were made for a number of tanks, most of the measurements were made in 1975. Finally, particle size distribution measurements of waste in 20 tanks were compiled. The analyst must be cognizant of differences between the number and volume distributions reported for particle size

  8. Women and the Hanford Site

    Science.gov (United States)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  9. FY 1992 revised task plans for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.

    1992-04-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses from Hanford Site operations since 1944 to populations and individuals. The primary objectives of work to be performed in FY 1992 is to determine the appropriate scope (space, time, and radionuclides, pathways and individuals/population groups) and accuracy (level of uncertainty in dose estimates) for the project. Another objective is to use a refined computer model to estimate Native American tribal doses and individual doses for the Hanford Thyroid Disease Study (HTDS). Project scope and accuracy requirements defined in FY 1992 can translated into model and data requirements that must be satisfied during FY 1993

  10. Hanford Site Composite Analysis Technical Approach Description: Radionuclide Inventory and Waste Site Selection Process.

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Will E.; Mehta, Sunil

    2017-09-13

    The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.

  11. Technetium Inventory, Distribution, and Speciation in Hanford Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey; Rapko, Brian M.

    2014-05-02

    The purpose of this report is three fold: 1) assemble the available information regarding technetium (Tc) inventory, distribution between phases, and speciation in Hanford’s 177 storage tanks into a single, detailed, comprehensive assessment; 2) discuss the fate (distribution/speciation) of Tc once retrieved from the storage tanks and processed into a final waste form; and 3) discuss/document in less detail the available data on the inventory of Tc in other "pools" such as the vadose zone below inactive cribs and trenches, below single-shell tanks (SSTs) that have leaked, and in the groundwater below the Hanford Site. A thorough understanding of the inventory for mobile contaminants is key to any performance or risk assessment for Hanford Site facilities because potential groundwater and river contamination levels are proportional to the amount of contaminants disposed at the Hanford Site. Because the majority of the total 99Tc produced at Hanford (~32,600 Ci) is currently stored in Hanford’s 177 tanks (~26,500 Ci), there is a critical need for knowledge of the fate of this 99Tc as it is removed from the tanks and processed into a final solid waste form. Current flow sheets for the Hanford Waste Treatment and Immobilization Plant process show most of the 99Tc will be immobilized as low-activity waste glass that will remain on the Hanford Site and disposed at the Integrated Disposal Facility (IDF); only a small fraction will be shipped to a geologic repository with the immobilized high-level waste. Past performance assessment studies, which focused on groundwater protection, have shown that 99Tc would be the primary dose contributor to the IDF performance.

  12. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  13. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  14. Hanford Site peak gust wind speeds

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1998-01-01

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site

  15. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  16. The Hanford Site focus, 1994

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1994-03-01

    This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE's Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion

  17. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  18. Final characterization and safety screen report of double shell tank 241-AP-104 for 242-A evaporator, campaign 96-1

    International Nuclear Information System (INIS)

    Miller, G.L.

    1996-01-01

    This data package satisfies the requirement for a format IV, final report. It is a follow-up to the 45-day safety screen report for tank AP-104. Evaporator candidate feed from tank 241-AP-104 (hereafter referred to as AP-104) was characterized for physical, inorganic, organic and radiochemical parameters by the Westinghouse Hanford Company, 222-S Laboratory, and by the Battelle Pacific Northwest National Laboratory (PNNL), Analytical Chemistry Laboratory (ACL) as directed by the Tank Sample and Analysis Plan (TSAP), References 1 through 4. Preliminary data in the form of summary analytical tables were provided to the project in advance of this final report to enable early estimation of evaporator operational parameters, using the Predict modeling program. Laboratory analyses at ACL Laboratory was performed according to the TSAP. Analyses were performed at the 222-S Laboratory as defined and specified in the TSAP and the Laboratory's Quality Assurance Plan, References 5 and 6. Any deviations from the instructions documented in the TSAP are discussed in this narrative and are supported with additional documentation. SAMPLING The TSAP, section 2, provided sampling information for waste samples collected from tank AP-104. The bottle-on-a-string method was used to collect liquid grab samples from the tank. Each glass sample bottle was amber, precleaned, and contained approximately 100 milliliters. Each bottle was closed with a teflon seal cap (or teflon septum for volatile organic analysis samples). Field blank samples were prepared by placing deionized water into sampling bottles, lowering the unclosed bottles into the riser for a period of time, retrieving them from the riser, and then closing the bottles with the same types of caps used for the tank samples. None of the samples were preserved by acidification. Upon receipt, the sample bottles destined for organic analyses were placed in a refrigerator. No attempt was made during sampling to assure the complete

  19. Differential turbidity at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Stokes, G.M.

    1980-01-01

    Experiments continued in FY 1979 to examine differential turbidity effects on insolation as measured at the earth's surface. These experiments are primarily intended to provide means for interpreting insolation-data assessment studies. These data are also valuable for inferring aerosol radiative or optical effects, which is an important consideration in evaluating inadvertent climate modification and visibility degradation as a result of aerosols. The experiments are characterized by frequent, nearly simultaneous observations at the Rattlesnake Mountain Observatory (RMO) and the Hanford Meteorological Station (HMS) and take advantage of the nearly 1-km altitude difference between these two observing sites. This study indicated that nearly simultaneous measurements of the direct solar beam from stationary sites that are separated in altitude can be used to monitor the incremental optical depth arising from aerosols in the intervening layer. Once appropriate calbiration procedures have been established for the MASP unit, the direct solar data can be used to document on a routine basis aerosol variations in the first kilometer between HMS and RMO

  20. Hanford gas dispersion analysis

    International Nuclear Information System (INIS)

    Fujita, R.K.; Travis, J.R.

    1994-01-01

    An analysis was performed to verify the design of a waste gas exhauster for use in support of rotary core sampling activities at the Westinghouse Hanford Waste Tank Farm. The exhauster was designed to remove waste gases from waste storage tanks during the rotary core drilling process of the solid materials in the tank. Some of the waste gases potentially are very hazardous and must be monitored during the exhauster's operation. If the toxic gas concentrations in specific areas near the exhauster exceed minimum Threshold Limit Values (TLVs), personnel must be excluded from the area. The exhauster stack height is of interest because an increase in stack height will alter the gas concentrations at the critical locations. The exhaust stack is currently ∼4.6 m (15 ft) high. An equipment operator will be located within a 6.1 m (20 ft) radius of the exhaust stack, and his/her head will be at an elevation 3.7 m (12 ft) above ground level (AGL). Therefore, the maximum exhaust gas concentrations at this location must be below the TLV for the toxic gases. Also, the gas concentrations must be within the TLV at a 61 m (200 ft) radius from the stack. If the calculated gas concentrations are above the TLV, where the operator is working below the stack at the 61 m (200 ft) radius location, the stack height may need to be increased

  1. 1976 Hanford americium accident

    International Nuclear Information System (INIS)

    Heid, K.R.; Breitenstein, B.D.; Palmer, H.E.; McMurray, B.J.; Wald, N.

    1979-01-01

    This report presents the 2.5-year medical course of a 64-year-old Hanford nuclear chemical operator who was involved in an accident in an americium recovery facility in August 1976. He was heavily externally contaminated with americium, sustained a substantial internal deposition of this isotope, and was burned with concentrated nitric acid and injured by flying debris about the face and neck. The medical care given the patient, including the decontamination efforts and clinical laboratory studies, are discussed. In-vivo measurements were used to estimate the dose rates and the accumulated doses to body organs. Urinary and fecal excreta were collected and analyzed for americium content. Interpretation of these data was complicated by the fact that the intake resulted both from inhalation and from solubilization of the americium embedded in facial tissues. A total of 1100 μCi was excreted in urine and feces during the first 2 years following the accident. The long-term use of diethylenetriaminepentate (DTPA), used principally as the zinc salt, is discussed including the method, route of administration, and effectiveness. To date, the patient has apparently experienced no complications attributable to this extensive course of therapy, even though he has been given approximately 560 grams of DTPA. 4 figures, 1 table

  2. FY 2001 Hanford Waste Management Strategic Plan

    International Nuclear Information System (INIS)

    COLLINS, M.S.

    2001-01-01

    We are pleased to present the 2001 Hanford Waste Management Program Strategic Plan. This plan supports the newly developed U. S. Department of Energy Site outcomes strategy. The 2001 Plan reflects current and projected needs for Waste Management Program services in support of Hanford Site cleanup, and updates the objectives and actions using new waste stream oriented logic for the strategic goals: (1) waste treatment/processing, storage, and disposal; (2) interfaces; and (3) program excellence. Overall direction for the Program is provided by the Waste Management Division, Office of the Assistant Manager for Environmental Restoration and Waste Management, U. S. Department of Energy, Richland Operations Office. Fluor Hanford, Inc. is the operating contractor for the program. This Plan documents proactive strategies for planning and budgeting, with a major focus on helping meet regulatory commitments in a timely and efficient manner and concurrently assisting us in completing programs cheaper, better and quicker. Newly developed waste stream oriented logic was incorporated to clarify Site outcomes. External drivers, technology inputs, treatment/processing, storage and disposal strategies, and stream specific strategies are included for the six major waste types addressed in this Plan (low-level waste, mixed low-level waste, contact-handled transuranic waste, remote-handled transuranic waste, liquid waste, and cesium/strontium capsules). The key elements of the strategy are identification and quantification of the needs for waste management services, assessment of capabilities, and development of cost-effective actions to meet the needs and to continuously improve performance. Accomplishment of specific actions as set forth in the Plan depends on continued availability of the required resources and funding. The primary objectives of Plan are: (1) enhance the Waste Management Program to improve flexibility, become more holistic especially by implementing new

  3. Hanford Site sustainable development initiatives

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project

  4. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  5. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  6. Testing of a Rotary Micro-filter for Hanford Applications

    International Nuclear Information System (INIS)

    Poirier, M.R.; Herman, D.T.; Stefanko, D.B.; Fink, S.D.

    2009-01-01

    Savannah River National Laboratory (SRNL) researchers are investigating and developing a rotary micro-filter for solid-liquid separation applications with emphasis on deployment in radioactive services. The Department of Energy (DOE) Office of Waste Processing employed the SRNL team to evaluate the use of this rotary micro-filter for the Hanford Supplemental Pretreatment process. The authors tested a full-scale, 25-disk filter unit containing 0.5 μ filter media using a Hanford Tank AN-105 simulant at solids loadings of 0.06, 0.29, and 1.29 wt %. Based on recommendations from prior tests, the authors modified the filter unit by replacing the primary mechanical seal with an air seal. They also replaced the bushing with alternate materials of construction aimed at extended mean time between maintenance events. The testing provides the following conclusions. - The rotary filter produces a higher flux than the crossflow filter for the Hanford simulant. The gain in performance is less than previously seen for Savannah River Site simulants. - Filtrate clarity proved excellent with turbidity of <4 NTU (nephelometric turbidity units) in all samples. - Inspection of the primary mechanical seal faces after ∼140 hours of operation showed an expected minimal amount of initial wear, no passing of process fluid through the seal faces, and very little change in the air channeling grooves on the stationary face. - Some polishing of surfaces occurred at the bottom of the shaft bushing. The authors recommend improving the shaft bushing by holding it in place with a locking ring and incorporating grooves to provide additional cooling. - The authors recommend that Hanford test other pore size media to determine the optimum pore size for Hanford waste. - During final facility operation, the filter should be rinsed with filtrate or dilute caustic and drained prior to an extended shutdown to prevent the formation of a layer of settled solids on top of the filter disks. (authors)

  7. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates

  8. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates

  9. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  10. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Garth M. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Saunders, Scott A. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)

    2013-07-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  11. Improved Management of the Technical Interfaces Between the Hanford Tank Farm Operator and the Hanford Waste Treatment Plant - 13383

    International Nuclear Information System (INIS)

    Duncan, Garth M.; Saunders, Scott A.

    2013-01-01

    The Department of Energy (DOE) is constructing the Waste Treatment and Immobilization Plant (WTP) at the Hanford site in Washington to treat and immobilize approximately 114 million gallons of high level radioactive waste (after all retrievals are accomplished). In order for the WTP to be designed and operated successfully, close coordination between the WTP engineering, procurement, and construction contractor, Bechtel National, Inc. and the tank farms operating contractor (TOC), Washington River Protection Solutions, LLC, is necessary. To develop optimal solutions for DOE and for the treatment of the waste, it is important to deal with the fact that two different prime contractors, with somewhat differing contracts, are tasked with retrieving and delivering the waste and for treating and immobilizing that waste. The WTP and the TOC have over the years cooperated to manage the technical interface. To manage what is becoming a much more complicated interface as the WTP design progresses and new technical issues have been identified, an organizational change was made by WTP and TOC in November of 2011. This organizational change created a co-located integrated project team (IPT) to deal with mutual and interface issues. The Technical Organization within the One System IPT includes employees from both TOC and WTP. This team has worked on a variety of technical issues of mutual interest and concern. Technical issues currently being addressed include: - The waste acceptance criteria; - Waste feed delivery and the associated data quality objectives (DQO); - Evaluation of the effects of performing a riser cut on a single shell tank on WTP operations; - The disposition of secondary waste from both TOC and WTP; - The close coordination of the TOC double shell tank mixing and sampling program and the Large Scale Integrated Test (LSIT) program for pulse jet mixers at WTP along with the associated responses to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation

  12. Hanford Site background: Evaluation of existing soil radionuclide data

    International Nuclear Information System (INIS)

    1995-07-01

    This report is an evaluation of the existing data on radiological background for soils in the vicinity of the Hanford Site. The primary purpose of this report is to assess the adequacy of the existing data to serve as a radiological background baseline for use in environmental restoration and remediation activities at the Hanford Site. The soil background data compiled and evaluated in this report were collected by the Pacific Northwest Laboratory (PNL) and Washington State Department of Health (DOH) radiation surveillance programs in southeastern Washington. These two programs provide the largest well-documented, quantitative data sets available to evaluate background conditions at the Hanford Site. The data quality objectives (DQOs) considered in this evaluation include the amount of data, number of sampling localities, spatial coverage, number and types of radionuclides reported, frequency of reporting, documentation and traceability of sampling and laboratory methods used, and comparability between sets of data. Although other data on soil radionuclide abundances around the Hanford Site exist, they are generally limited in scope and lack the DQOs necessary for consideration with the PNL and DOH data sets. Collectively, these two sources provide data on the activities of 25 radionuclides and four other parameters (gross alpha, gross beta, total uranium, and total thorium). These measurements were made on samples from the upper 2.5 cm of soil at over 70 localities within the region

  13. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  14. DOE Hanford Network Upgrades and Disaster Recovery Exercise Support the Cleanup Mission Now and into the Future

    International Nuclear Information System (INIS)

    Eckman, Todd J.; Hertzel, Ali K.; Lane, James J.

    2013-01-01

    In 2013, the U.S. Department of Energy's (DOE) Hanford Site, located in Washington State, funded an update to the critical network infrastructure supporting the Hanford Federal Cloud (HFC). The project, called ET-50, was the final step in a plan that was initiated five years ago called 'Hanford's IT Vision, 2015 and Beyond.' The ET-50 project upgraded Hanford's core data center switches and routers along with a majority of the distribution layer switches. The upgrades allowed HFC the network intelligence to provide Hanford with a more reliable and resilient network architecture. The culmination of the five year plan improved network intelligence and high performance computing as well as helped to provide 10 Gbps capable links between core backbone devices (10 times the previous bandwidth). These improvements allow Hanford the ability to further support bandwidth intense applications, such as video teleconferencing. The ET-50 switch upgrade, along with other upgrades implemented from the five year plan, have prepared Hanford's network for the next evolution of technology in voice, video, and data. Hand-in-hand with ET-50's major data center outage, Mission Support Alliance's (MSA) Information Management (IM) organization executed a disaster recovery (DR) exercise to perform a true integration test and capability study. The DR scope was planned within the constraints of ET-50's 14 hour datacenter outage window. This DR exercise tested Hanford's Continuity of Operations (COOP) capability and failover plans for safety and business critical Hanford Federal Cloud applications. The planned suite of services to be tested was identified prior to the outage and plans were prepared to test the services ability to failover from the primary Hanford data center to the backup data center. The services tested were: Core Network (backbone, firewall, load balancers); Voicemail; Voice over IP (VoIP); Emergency Notification; Virtual desktops; and, Select set of production applications

  15. Hanford Site technical baseline database. Revision 1

    International Nuclear Information System (INIS)

    Porter, P.E.

    1995-01-01

    This report lists the Hanford specific files (Table 1) that make up the Hanford Site Technical Baseline Database. Table 2 includes the delta files that delineate the differences between this revision and revision 0 of the Hanford Site Technical Baseline Database. This information is being managed and maintained on the Hanford RDD-100 System, which uses the capabilities of RDD-100, a systems engineering software system of Ascent Logic Corporation (ALC). This revision of the Hanford Site Technical Baseline Database uses RDD-100 version 3.0.2.2 (see Table 3). Directories reflect those controlled by the Hanford RDD-100 System Administrator. Table 4 provides information regarding the platform. A cassette tape containing the Hanford Site Technical Baseline Database is available

  16. Pilot-Scale Test Results Of A Thin Film Evaporator System For Management Of Liquid High-Level Wastes At The Hanford Site Washington USA -11364

    International Nuclear Information System (INIS)

    Corbett, J.E.; Tedesch, A.R.; Wilson, R.A.; Beck, T.H.; Larkin, J.

    2011-01-01

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  17. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    Energy Technology Data Exchange (ETDEWEB)

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  18. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-11-09

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 270 triggers during the second quarter of fiscal year (FY) 1999 and 229 triggers during the third quarter on the primary recording system. During the second quarter, 22 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 6 were earthquakes in the crystalline basement, and 5 were quarry blasts. Two earthquakes appear to be related to major geologic structures, eight earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. During the third quarter, 23 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 4 were earthquakes in the pre-basalt sediments, 4 were earthquakes in the crystalline basement, and 4 were quarry blasts. Five earthquakes occurred in known swarm areas, six earthquakes formed a new swarm near the Horse Heavens Hills and Presser, Washington, and eight earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second or third quarters of FY 1999.

  19. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2010-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the

  20. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  1. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  2. Differential turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Bates, J.A.; Kleckner, E.W.; Michalsky, J.J.; Schrotke, P.M.; Thorp, J.M.

    1978-01-01

    An experiment to exmine differential turbidity effects on measured insolation between the Rattlesnake Observatory and the Hanford Meteorological Station was conducted during summer 1977. Several types of solar radiation instruments were used, including pyranometers, multiwavelength sunphotometers, and an active cavity radiometer. Preliminary results show dramatic temporal variability of aerosol loading at HMS and significant insolation and turbidity differences between the Observatory and HMS

  3. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  4. Mortality of Hanford radiation workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1979-01-01

    The effects of occupational exposure to low level ionizing radiation at the Hanford plant in southeastern Washington were investigated. Death rates were related to exposure status. To provide perspective, the rates were also compared with the death rates of the US population

  5. Hanford site operator changes management

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a brief discussion of management changes at the Westinghouse Hanford Corporation. A. LeMar Trego has relieved Thomas Anderson as president of WHC. This was in response to recent shortcomings in Westinghouse's management of the environmental restoration and their failure to receive a $10M performance bonus

  6. Description of the process used to create 1992 Hanford Morality Study database

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, E. S.; Buchanan, J. A.; Holter, N. A.

    1992-12-01

    An updated and expanded database for the Hanford Mortality Study has been developed by PNL's Epidemiology and Biometry Department. The purpose of this report is to document this process. The primary sources of data were the Occupational Health History (OHH) files maintained by the Hanford Environmental Health Foundation (HEHF) and including demographic data and job histories; the Hanford Mortality (HMO) files also maintained by HEHF and including information of deaths of Hanford workers; the Occupational Radiation Exposure (ORE) files maintained by PNL's Health Physics Department and containing data on external dosimetry; and a file of workers with confirmed internal depositions of radionuclides also maintained by PNL's Health Physics Department. This report describes each of these files in detail, and also describes the many edits that were performed to address the consistency and accuracy of data within and between these files.

  7. Description of the process used to create 1992 Hanford Morality Study database

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, E.S.; Buchanan, J.A.; Holter, N.A.

    1992-12-01

    An updated and expanded database for the Hanford Mortality Study has been developed by PNL`s Epidemiology and Biometry Department. The purpose of this report is to document this process. The primary sources of data were the Occupational Health History (OHH) files maintained by the Hanford Environmental Health Foundation (HEHF) and including demographic data and job histories; the Hanford Mortality (HMO) files also maintained by HEHF and including information of deaths of Hanford workers; the Occupational Radiation Exposure (ORE) files maintained by PNL`s Health Physics Department and containing data on external dosimetry; and a file of workers with confirmed internal depositions of radionuclides also maintained by PNL`s Health Physics Department. This report describes each of these files in detail, and also describes the many edits that were performed to address the consistency and accuracy of data within and between these files.

  8. TRACKING CLEAN UP AT HANFORD

    International Nuclear Information System (INIS)

    CONNELL, C.W.

    2005-01-01

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  9. Degradation of dome cutting minerals in Hanford waste-13100

    International Nuclear Information System (INIS)

    Reynolds, Jacob G.; Huber, Heinz J.; Cooke, Gary A.

    2013-01-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high-pH regimes

  10. Degradation of Dome Cutting Minerals in Hanford Waste - 13100

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jacob G.; Cooke, Gary A.; Huber, Heinz J. [Washington River Protection Solutions, LLC, P.O. Box 850, Richland, WA 99352 (United States)

    2013-07-01

    At the Hanford Tank Farms, recent changes in retrieval technology require cutting new risers in several single-shell tanks. The Hanford Tank Farm Operator is using water jet technology with abrasive silicate minerals such as garnet or olivine to cut through the concrete and rebar dome. The abrasiveness of these minerals, which become part of the high-level waste stream, may enhance the erosion of waste processing equipment. However, garnet and olivine are not thermodynamically stable in Hanford waste, slowly degrading over time. How likely these materials are to dissolve completely in the waste before the waste is processed in the Waste Treatment and Immobilization Plant can be evaluated using theoretical analysis for olivine and collected direct experimental evidence for garnet. Based on an extensive literature study, a large number of primary silicates decompose into sodalite and cancrinite when exposed to Hanford waste. Given sufficient time, the sodalite also degrades into cancrinite. Even though cancrinite has not been directly added to any Hanford tanks during process times, it is the most common silicate observed in current Hanford waste. By analogy, olivine and garnet are expected to ultimately also decompose into cancrinite. Garnet used in a concrete cutting demonstration was immersed in a simulated supernate representing the estimated composition of the liquid retrieving waste from Hanford tank 241-C-107 at both ambient and elevated temperatures. This simulant was amended with extra NaOH to determine if adding caustic would help enhance the degradation rate of garnet. The results showed that the garnet degradation rate was highest at the highest NaOH concentration and temperature. At the end of 12 weeks, however, the garnet grains were mostly intact, even when immersed in 2 molar NaOH at 80 deg. C. Cancrinite was identified as the degradation product on the surface of the garnet grains. In the case of olivine, the rate of degradation in the high

  11. Y2O3:Yb,Er@mSiO2-CuxS double-shelled hollow spheres for enhanced chemo-/photothermal anti-cancer therapy and dual-modal imaging

    Science.gov (United States)

    Yang, Dan; Yang, Guixin; Wang, Xingmei; Lv, Ruichan; Gai, Shili; He, Fei; Gulzar, Arif; Yang, Piaoping

    2015-07-01

    Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large specific surface area and uniform shape is composed of an inner shell of luminescent Y2O3:Yb,Er and an outer mesoporous silica shell. Ultra small CuxS nanoparticles (about 2.5 nm) served as photothermal agents, and a chemotherapeutic agent (doxorubicin, DOX) was then attached onto the surface of mesoporous silica, forming a DOX-DSHS-CuxS composite. The composite exhibits high anti-cancer efficacy due to the synergistic photothermal therapy (PTT) induced by the attached CuxS nanoparticles and the enhanced chemotherapy promoted by the heat from the CuxS-based PTT when irradiated by 980 nm near-infrared (NIR) light. Moreover, the composite shows excellent in vitro and in vivo X-ray computed tomography (CT) and up-conversion fluorescence (UCL) imaging properties owing to the doped rare earth ions, thus making it possible to achieve the target of imaging-guided synergistic therapy.Multifunctional composites have gained significant interest due to their unique properties which show potential in biological imaging and therapeutics. However, the design of an efficient combination of multiple diagnostic and therapeutic modes is still a challenge. In this contribution, Y2O3:Yb,Er@mSiO2 double-shelled hollow spheres (DSHSs) with up-conversion fluorescence have been successfully prepared through a facile integrated sacrifice template method, followed by a calcination process. It is found that the double-shelled structure with large

  12. Grout Placement and Property Evaluation for Closing Hanford High-Level Waste Tanks - Scale-Up Testing

    International Nuclear Information System (INIS)

    LANGTON, CHRISTINE

    2003-01-01

    Hanford has 149 single-shell high level waste (HLW) tanks that were constructed between 1943 and 1964. Many of these tanks have leaked or are suspected of leaking HLW into the soil above the ground water. Consequently, a major effort is ongoing to transfer the liquid portion of the waste to the 28 newer, double-shell tanks. Savannah River National Laboratory (SRNL) was tasked to develop grout formulations for the three-layer closure concept selected by CH2M HILL for closing Tank C-106. These grout formulations were also evaluated for use as fill materials in the next six tanks scheduled to be closed. The overall scope consisted of both bench-scale testing to confirm mix designs and scale-up testing to confirm placement properties. This report provides results of the scale-up testing for the three-phase tank closure strategy. It also contains information on grouts for equipment and riser filling. The three-phase fill strategy is summarized as follows: Phase I fill encapsulates and minimizes dispersion of the residual waste in the tank. This fill is referred to as the Stabilization Layer and consists of the Stabilization Grout. The Phase II fill provides structural stability to the tank system and prevents subsidence. It is referred to as the Structural Layer and consists of the Structural Grout. A final Phase III fill consists of a grout designed to provide protection against intrusion and is referred to as the Capping Layer or Capping Grout

  13. Steady-State Flammable Gas Release Rate Calculation And Lower Flammability Level Evaluation For Hanford Tank Waste

    International Nuclear Information System (INIS)

    Meacham, J.E.

    2008-01-01

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for al1 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 13 days for DSTs (i.e., tank 241-AZ-102) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 12 days for DSTs (i.e., tank 241-AZ-102) and 34 days for SSTs (i.e., tank 241-B-203).

  14. Steady-State Flammable Gas Release Rate Calculation And Lower Flammability Level Evaluation For Hanford Tank Waste

    International Nuclear Information System (INIS)

    Meacham, J.E.

    2009-01-01

    This report assesses the steady state flammability level under off normal ventilation conditions in the tank headspace for 28 double-shell tanks (DST) and 149 single shell-tanks (SST) at the Hanford Site. Flammability was calculated using estimated gas release rates, Le Chatelier's rule, and lower flammability limits of fuels in an air mixture. This revision updates the hydrogen generation rate input data for all 177 tanks using waste composition information from the Best Basis Inventory Detail Report (data effective as of August 4,2008). Assuming only barometric breathing, the shortest time to reach 25% of the lower flammability limit is 11 days for DSTs (i.e., tank 241-AZ-10l) and 36 days for SSTs (i.e., tank 241-B-203). Assuming zero ventilation, the shortest time to reach 25% of the lower flammability limit is 10 days for DSTs (i.e., tank 241-AZ-101) and 34 days for SSTs (i.e., tank 241-B-203).

  15. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    International Nuclear Information System (INIS)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-01-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): Electrical Resistivity Tomography (ERT); Cross-Borehole Electromagnetic Induction (CEMI) ; High-Resolution Resistivity (HRR); Cross-Borehole Radar (XBR); Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone

  16. Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

    2002-03-01

    During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

  17. FULL SCALE TESTING TECHNOLOGY MATURATION OF A THIN FILM EVAPORATOR FOR HIGH-LEVEL LIQUID WASTE MANAGEMENT AT HANFORD - 12125

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI AR; CORBETT JE; WILSON RA; LARKIN J

    2012-01-26

    Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactive species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.

  18. SIGNIFICANT PROGRESS IN THE DEPLOYMENT OF NEW TECHNOLOGIES FOR THE RETRIEVAL OF HANFORD RADIOACTIVE WASTE STORAGE TANKS

    International Nuclear Information System (INIS)

    RAYMOND RE; DODD RA; CARPENTER KE; STURGES MH

    2008-01-01

    Significant enhancements in the development and deployment of new technologies for removing waste from storage tanks at the Hanford Site have resulted in accelerated progress and reduced costs for tank cleanup. CH2M HILL Hanford Group, Inc. is the U.S. Department of Energy, Office of River Protection's prime contractor responsible for safely storing and retrieving approximately 53 million gallons of highly-radioactive and hazardous waste stored in 177 underground tanks. The waste is stored in 149 older single-shell tanks (SST) and 28 newer double-shell tanks (DST) that are grouped in 18 so-called farms near the center of the Hanford Site, located in southeastern Washington State. Tank contents include materials from years of World-War II and post-war weapons production, which account for 60 percent by volume of the nation's high-level radioactive waste. A key strategy for improved cleanup is the development and deployment of innovative technologies, which enhance worker safety, resolve technical challenges, streamline retrieval processes, and cut project costs and durations. During the past seven years of tank cleanout projects we have encountered conditions and waste chemistry that defy conventional approaches, requiring a variety of new tools and techniques. Through the deployment of advanced technology and the creative application of resources, we are finding ways to accomplish the retrieval process safely, swiftly, and economically. To date, retrieval operations have been completed in seven tanks, including a record six tanks in a two-year period. Retrieval operations are in progress for another three tanks. This paper describes the following tank cleanup technologies deployed at Hanford in the past few years: Modified waste sluicing, High pressure water lance, Mobile retrieval tools, Saltcake dissolution, Vacuum retrieval, Sparging of wastes, Selective dissolution for waste treatment, Oxalic acid dissolution, High-pressure water mixers, Variable height pumps

  19. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  20. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  1. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  2. Pollution prevention opportunity assessments at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Betsch, M.D., Westinghouse Hanford

    1996-06-26

    The Pollution Prevention Opportunity Assessment (PPOA) is a pro- active way to look at a waste generating activity and identify opportunities to minimize wastes through a cost benefit analysis. Hanford`s PPOA process is based upon the graded approach developed by the Kansas City Plant. Hanford further streamlined the process while building in more flexibility for the individual users. One of the most challenging aspects for implementing the PPOA process at Hanford is one overall mission which is environmental restoration, Now that the facilities are no longer in production, each has a different non- routine activity making it difficult to quantify the inputs and outputs of the activity under consideration.

  3. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    Energy Technology Data Exchange (ETDEWEB)

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  4. Field trip guide to the Hanford Site

    International Nuclear Information System (INIS)

    Reidel, S.P.; Lindsey, K.A.; Fecht, K.R.

    1992-11-01

    This report is designed to provide a guide to the key geologic and hydrologic features of the US Department of Energy's Hanford Site located in south-central Washington. The guide is divided into two parts. The first part is a general introduction to the geology of the Hanford Site and its relation to the regional framework of south-central Washington. The second part is a road log that provides directions to important geologic features on the Hanford Site and descriptions of the locality. The exposures described were chosen for their accessibility and importance to the geologic history of the Hanford Site and to understanding the geohydrology of the Site

  5. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  6. Mortality of Hanford radiation workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1980-01-01

    Mortality from all causes for white males employed at Hanford for at least two years is 75 percent of that expected on the basis of US vital statistics. Mortality from cancer is 85 percent of that expected. These results are typical of a working population. Neither death from all causes nor death from all cancer types shows a positive correlation with external radiation exposures. Myeloid leukemia, the disease that several studies have found to be associated most strongly with radiation exposure, is not correlated with external radiation exposure of Hanford workers. Two specific cancers, multiple myeloma and to a lesser extent cancer of the pancreas, were found to be positively correlated with radiation exposure. The correlations identified result entirely from a small number of deaths (3 each for multiple myeloma and cancer of the pancreas) with cumulative exposure greater than 15 rem

  7. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed

  8. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs

  9. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Well subject area of the Hanford Environmental Information System (HEIS) manages data relevant to wells, boreholes and test pits constructed at the Hanford Site for soil sampling, geologic analysis and/or ground-water monitoring, and sampling for hydrochemical and radiological analysis. Data stored in the Well subject area include information relevant to the construction of the wells and boreholes, structural modifications to existing wells and boreholes, the location of wells, boreholes and test pits, and the association of wells, boreholes and test pits with organization entities such as waste sites. Data resulting from ground-water sampling performed at wells are stored in tables in the Ground-Water subject area. Geologic data collected during drilling, including particle sizing and interpretative geologic summaries, are stored in tables in the Geologic subject area. Data from soil samples taken during the drilling or excavation and sent for chemical and/or radiological analysis are stored in the Soil subject area

  10. Work plan for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that populations could have received from nuclear operations at the Hanford Site since 1944, with descriptions of uncertainties inherent in such estimates. The secondary objective is to make project records--information that HEDR staff members used to estimate radiation doses--available to the public. Preliminary dose estimates for a limited geographic area and time period, certain radionuclides, and certain populations are planned to be available in 1990; complete results are planned to be reported in 1993. Project reports and references used in the reports are available to the public in the DOE Public Reading Room in Richland, Washington. Project progress is documented in monthly reports, which are also available to the public in the DOE Public Reading Room.

  11. Hanford site: A guide to record series supporting epidemiologic studies conducted for the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-06

    The primary purpose of this guide is to describe each series of records which pertains to studies of worker health and mortality funded by the U.S. Department of Energy (DOE) at the Hanford site. Additionally, the guide provides information on the location and classification of the records and how they may be accessed. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project, HAI`s role in the project, the history of the DOE and the Hanford site, and Hanford`s organizational structure. It provides information on the methodology used to inventory and describe pertinent records stored in various onsite offices, in Hanford`s Records Holding Area (RHA), and at the Seattle Federal Records Center (SFRC). Other topics include the methodology used to produce the guide, the arrangement of the record Series descrimations, and information on accessing records repositories.

  12. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  13. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Biota subject area of the Hanford Environmental Information System (HEIS) is to manage the data collected from samples of plants and animals. This includes both samples taken from the plant or animal or samples related to the plant or animal. Related samples include animal feces and animal habitat. Data stored in the Biota subject area include data about the biota samples taken, analysis results counts from population studies, and species distribution maps

  14. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Soil subject area of the Hanford Environmental Information System (HEIS) is to manage the data acquired from soil samples, both geologic and surface, and sediment samples. Stored in the Soil subject area are data relevant to the soil samples, laboratory analytical results, and field measurements. The two major types of data make up the Soil subject area are data concerning the samples and data about the chemical and/or radiologic analyses of soil samples

  15. Hanford Generic Interim Safety Basis

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  16. Hanford Generic Interim Safety Basis

    International Nuclear Information System (INIS)

    Lavender, J.C.

    1994-01-01

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports

  17. Hanford Seismic Annual Report and Fourth Quarter Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    AC Rohay; DC Hartshorn; SP Reidel

    1999-12-07

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network. (EWRN) consist of 40 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. A major reconfiguration of the HSN was initiated at the end of this quarter and the results will be reported in the first quarter report for next fiscal year (FY2000). For the HSN, there were 390 triggers during the fourth quarter of fiscal year(FY) 1999 on the primary recording system. With the implementation of dual backup systems during the second quarter of the fiscal year and an overall increase observed in sensitivity, a total of 1632 triggers were examined, identified, and processed during this fiscal year. During the fourth quarter, 24 seismic events were located by the HSN within the reporting region of 46 degrees to 47 degrees north latitude and 119 degrees to 120 degrees west longitude 9 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 10 were earthquakes in the crystalline basement; and 2 were quarry blasts. One earthquake appears to be related to a major geologic structure, 14 earthquakes occurred in known swarm areas, and 7 earthquakes were random occurrences.

  18. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. HEIS is an information system with an inclusive database. Although the database is the nucleus of the system, HEIS also provides user access software: query-by-form data entry, extraction, and browsing facilities; menu-driven reporting facilities; an ad hoc query facility; and a geographic information system (GIS). These features, with the exception of the GIS, are described in this manual set. Because HEIS contains data from the entire Hanford Site, many varieties of data are included and have.been divided into subject areas. Related subject areas comprise several volumes of the manual set. The manual set includes a data dictionary that lists all of the fields in the HEIS database, with their definitions and a cross reference of their locations in the database; definitions of data qualifiers for analytical results; and a mapping between the HEIS software functions and the keyboard keys for each of the supported terminals or terminal emulators

  19. Hanford Site surface environmental surveillance

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1998-01-01

    Environmental surveillance of the Hanford Site and the surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to US Department of Energy (DOE) environmental protection policies, support DOE environmental management decisions, and provide information to the public. The Surface Environmental Surveillance Project (SESP) is a multimedia environmental monitoring program conducted to measure the concentrations of radionuclides and chemical contaminants in the environment and assess the integrated effects of these contaminants on the environment and the public. The monitoring program includes sampling air, surface water, sediments, soil, natural vegetation, agricultural products, fish, and wildlife. Functional elements inherent in the operation of the SESP include project management, quality assurance/control, training, records management, environmental sampling network design and implementation, sample collection, sample analysis, data management, data review and evaluation, exposure assessment, and reporting. The SESP focuses on those contaminant/media combinations calculated to have the highest potential for contributing to off-site exposure. Results of the SESP indicate that contaminant concentrations in the Hanford environs are very low, generally below environmental standards, at or below analytical detection levels, and indicative of environmental levels. However, areas of elevated contaminant concentrations have been identified at Hanford. The extent of these areas is generally limited to past operating areas and waste disposal sites

  20. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs

  1. A study plan for determining recharge rates at the Hanford Site using environmental tracers

    International Nuclear Information System (INIS)

    Murphy, E.M.; Szercsody, J.E.; Phillips, S.J.

    1991-02-01

    This report presents a study plan for estimating recharge at the Hanford Site using environmental tracers. Past operations at the Hanford Site have led to both soil and groundwater contamination, and recharge is one of the primary mechanisms for transporting contaminants through the vadose zone and into the groundwater. An alternative to using fixed lysimeters for determining recharge rates in the vadose zone is to use environmental tracers. Tracers that have been used to study water movement in the vadose zone include total chloride, 36 Cl, 3 H, and 2 H/ 18 O. Atmospheric levels of 36 Cl and 3 H increased during nuclear bomb testing in the Pacific, and the resulting ''bomb pulse'' or peak concentration can be measured in the soil profile. Locally, past operations at the Hanford Site have resulted in the atmospheric release of numerous chemical and isotopic tracers, including nitrate, 129 I, and 99 Tc. Seven study sites on the Hanford Site have been selected, in two primary soil types that are believed to represent the extremes in recharge, the Quincy sand and the Warden silt loam. An additional background study site upwind of the Hanford facilities has been chosen at the Yakima Firing Center. Six tracer techniques (total chloride, 36 Cl, 3 H, nitrate, 129 I, and 99 Tc) will be tested on at least one site in the Quincy sand, one site in the Warden silt loam, and the background site, to determine which combination of tracers works best for a given soil type. In subsequent years, additional sites will be investigated. The use of environmental tracers is perhaps the only cost-effective method for estimating the spatial variability of recharge at a site as large as Hanford. The tracer techniques used at Hanford have wide applicability at other arid sites. 166 refs., 41 figs., 16 tabs

  2. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  3. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  4. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  5. Public involvement in environmental surveillance at Hanford

    International Nuclear Information System (INIS)

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation's first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford's perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools

  6. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  7. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  8. Hanford Site Risk Assessment Methodology. Revision 3

    International Nuclear Information System (INIS)

    1995-05-01

    This methodology has been developed to prepare human health and ecological evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigations (RI) and the Resource conservation and Recovery Act of 1976 (RCRA) facility investigations (FI) performed at the Hanford Site pursuant to the hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies site-specific risk assessment considerations and integrates them with approaches for evaluating human and ecological risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  9. HANFORD Pu-238 DRUM INTEGRITY ASSESSMENT

    International Nuclear Information System (INIS)

    CANNELL, G.R.

    2004-01-01

    Hanford is presently retrieving contact-handled, transuranic (CH-TRU) waste drums from the site's Low-Level Burial Grounds (LLBG) for processing and disposition. A subgroup of these drums (12 total), referred to as Pu-238 drums, has some unique characteristics that may impact the current drum handling and processing activities. These characteristics include content, shielding, thermal, pressurization and criticality issues. An effort to evaluate these characteristics, for the purpose of developing a specific plan for safe retrieval of the Pu-238 drums, is underway. In addition to the above evaluation, the following integrity assessment of the inner container material and/or confinement properties, with primary emphasis on the Source Capsule (primary confinement barrier) and Shipping Container has been performed. Assessment included review of the inner container materials and the potential impact the service history may have had on material and/or confinement properties. Several environmental degradation mechanisms were considered with the objective of answering the following question: Is it likely the container material and/or confinement properties have been significantly altered as a result of service history?

  10. Hanford Site Groundwater Protection Management Program: Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site

  11. Hanford beta-gamma personnel dosimeter prototypes and evaluation

    International Nuclear Information System (INIS)

    Fix, J.J.; Holbrook, K.L.; Soldat, K.L.

    1983-04-01

    Upgraded and modified Hanford dosimeter prototypes were evaluated for possible use at Hanford as a primary beta-gamma dosimeter. All prototypes were compatible with the current dosimeter card and holder design, as well as processing with the automated Hanford readers. Shallow- and deep-dose response was determined for selected prototypes using several beta sources, K-fluorescent x rays and filtered x-ray techniques. All prototypes included a neutron sensitive chip. A progressive evaluation of the performance of each of the upgrades to the current dosimeter is described. In general, the performance of the current dosimeter can be upgraded using individual chip sensitivity factors to improve precision and an improved algorithm to minimize bias. The performance of this dosimeter would be adequate to pass all categories of the ANSI N13.11 performance criteria for dosimeter procesors, provided calibration techniques compatible with irradiations adopted in the standard were conducted. The existing neutron capability of the dosimeter could be retained. Better dosimeter performance to beta-gamma radiation can be achieved by modifying the Hanford dosimeter so that four of the five chip positions are devoted to calculating these doses instead of the currently used two chip positions. A neutron sensitive chip was used in the 5th chip position, but all modified dosimeter prototypes would be incapable of discriminating between thermal and epithermal neutrons. An improved low energy beta response can be achieved for the current dosimeter and all prototypes considered by eliminating the security credential. Further improvement can be obtained by incorporating the 15-mil thick TLD-700 chips

  12. The Hanford Site: An anthology of early histories

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford's early reactors were crucial to the sites's history; T-Plant made chemical engineering history; the UO 3 plant has a long history of service. PUREX Plant: the Hanford Site's Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon

  13. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  14. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    This report discusses the procedures that establish the configuration control processes for the Hanford Environmental Information System (HEIS) software. The procedures also provide the charter and function of the HEIS Configuration Control Board (CCB) for maintaining software. The software configuration control items covered under these procedures include the HEIS software and database structure. The configuration control processes include both administrative and audit functions. The administrative role includes maintaining the overall change schedule, ensuring consistency of proposed changes, negotiating change plan adjustments, setting priorities, and tracking the status of changes. The configuration control process audits to ensure that changes are performed to applicable standards

  15. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    Schreck, R.I.

    1994-01-01

    The Hanford Environmental Information System (HEIS) Subject Area manuals are designed as reference guides, that is, each chapter provides the information needed to make best use of each subject area, its tables, and reporting capabilities. Each subject area is documented in a chapter in one of the subject area manuals. Because these are reference manuals, most of the information is also available in the online help system as well. See Section 5.4.2 of the HEIS User's Guide (DOE-RL 1994a) for a detailed description of the online help

  16. Analyses and characterization of double shell tank

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-04

    Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams.

  17. Double shell tanks plutonium inventory assessment

    International Nuclear Information System (INIS)

    Tusler, L.A.

    1995-01-01

    This report provides an evaluation that establishes plutonium inventory estimates for all DSTs based on known tank history information, the DST plutonium inventory tracking system, tank characterization measurements, tank transfer records, and estimated average concentration values for the various types of waste. These estimates use data through December 31, 1994, and give plutonium estimates as of January 1, 1995. The plutonium inventory values for the DSTs are given in Section 31. The plutonium inventory estimate is 224 kg for the DSTs and 854 kg for the SSTs for a total of 1078 kg. This value compares favorably with the total plutonium inventory value of 981 kg obtained from the total plutonium production minus plutonium recovery analysis estimates

  18. Analyses and characterization of double shell tank

    International Nuclear Information System (INIS)

    1994-01-01

    Evaporator candidate feed from tank 241-AP-108 (108-AP) was sampled under prescribed protocol. Physical, inorganic, and radiochemical analyses were performed on tank 108-AP. Characterization of evaporator feed tank waste is needed primarily for an evaluation of its suitability to be safely processed through the evaporator. Such analyses should provide sufficient information regarding the waste composition to confidently determine whether constituent concentrations are within not only safe operating limits, but should also be relevant to functional limits for operation of the evaporator. Characterization of tank constituent concentrations should provide data which enable a prediction of where the types and amounts of environmentally hazardous waste are likely to occur in the evaporator product streams

  19. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  20. Hanford 200 Areas Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Daly, K.S.

    1993-08-01

    The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas.