WorldWideScience

Sample records for hanford company lmhc

  1. Westinghouse Hanford Company environmental surveillance annual report

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Johnson, A.R.; McKinney, S.M.; Perkins, C.J.; Webb, C.R.

    1992-07-01

    This document presents the results of near-facility operational environmental monitoring in 1991 of the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State, as performed by Westinghouse Hanford Company. These activities are conducted to assess and to control the impacts of operations on the workers and the local environment and to monitor diffuse sources. Surveillance activities include sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys are taken at waste disposal sites, radiologically controlled areas, and roads

  2. Westinghouse Hanford Company waste minimization actions

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1988-09-01

    Companies that generate hazardous waste materials are now required by national regulations to establish a waste minimization program. Accordingly, in FY88 the Westinghouse Hanford Company formed a waste minimization team organization. The purpose of the team is to assist the company in its efforts to minimize the generation of waste, train personnel on waste minimization techniques, document successful waste minimization effects, track dollar savings realized, and to publicize and administer an employee incentive program. A number of significant actions have been successful, resulting in the savings of materials and dollars. The team itself has been successful in establishing some worthwhile minimization projects. This document briefly describes the waste minimization actions that have been successful to date. 2 refs., 26 figs., 3 tabs

  3. Criticality safety training at Westinghouse Hanford Company

    International Nuclear Information System (INIS)

    Rogers, C.A.; Paglieri, J.N.

    1983-01-01

    In 1972 the Westinghouse Hanford Company (WHC) established a comprehensive program to certify personnel who handle fissionable materials. As the quantity of fissionable material handled at WHC has increased so has the scope of training to assure that all employes perform their work in a safe manner. This paper describes training for personnel engaged in fuel fabrication and handling activities. Most of this training is provided by the Fissionable Material Handlers Certification Program. This program meets or exceeds all DOE requirements for training and has been attended by more than 475 employes. Since the program was instituted, the rate of occurrence of criticality safety limit violations has decreased by 50%

  4. Westinghouse Hanford Company Engineering Indoctrination Program

    International Nuclear Information System (INIS)

    Hull, K.J.

    1991-02-01

    Westinghouse Hanford Company has recognized that a learning curve exists in its engineering design programs. A one-year training program is under way to shorten this learning curve by introducing new engineers, both recent graduates and experienced new hires, to both company standards and intuitive engineering design processes. The participants are organized into multi-disciplined teams and assigned mentor engineers who assist them in completing a team project. Weekly sessions alternate between information presentations and time to work on team design projects. The presentations include information that is applicable to the current phase of the design project as well as other items of interest, such as site tours, creative thinking, and team brainstorming techniques. 1 fig

  5. Westinghouse Hanford Company package testing capabilities

    International Nuclear Information System (INIS)

    Hummer, J.H.; Mercado, M.S.

    1993-07-01

    The Department of Energy's Hanford Site is a 1,450-km 2 (560-mi 2 ) installation located in southeastern Washington State. Established in 1943 as a plutonium production facility, Hanford's role has evolved into one of environmental restoration and remediation. Many of these environmental restoration and remediation activities involve transportation of radioactive/hazardous materials. Packagings used for the transportation of radioactive/hazardous materials must be capable of meeting certain normal transport and hypothetical accident performance criteria. Evaluations of performance to these criteria typically involve a combination of analysis and testing. Required tests may include the free drop, puncture, penetration, compression, thermal, heat, cold, vibration, water spray, water immersion, reduced pressure, and increased pressure tests. The purpose of this paper is to outline the Hanford capabilities for performing each of these tests

  6. Westinghouse Hanford Company risk management strategy for retired surplus facilities

    International Nuclear Information System (INIS)

    Taylor, W.E.; Coles, G.A.; Shultz, M.V.; Egge, R.G.

    1993-09-01

    This paper describes an approach that facilitates management of personnel safety and environmental release risk from retired, surplus Westinghouse Hanford Company-managed facilities during the predemolition time frame. These facilities are located in the 100 and 200 Areas of the 1,450-km 2 (570-mi 2 ) Hanford Site in Richland, Washington. The production reactors are located in the 100 Area and the chemical separation facilities are located in the 200 Area. This paper also includes a description of the risk evaluation process, shows applicable results, and includes a description of comparison costs for different risk reduction options

  7. Managing the process for storage and disposal of immobilized high- and low-level tank waste at the Hanford Site

    International Nuclear Information System (INIS)

    Murkowski, R.J.

    1998-01-01

    Lockheed Martin Hanford Corporation (LMHC) is one of six subcontractors under Fluor Daniel Hanford, Inc., the Management and Integration contractor for the Project Hanford Management Contract working for the US Department of Energy. One of LMHC's responsibilities is to prepare storage and disposal facilities to receive immobilized high and low-level tank waste by June of 2002. The immobilized materials are to be produced by one or more vendors working under a privatization contract. The immobilized low-activity waste is to be permanently disposed of at the Hanford Site while the immobilized high-level waste is to be stored at the Hanford Site while awaiting shipment to the offsite repository. Figure 1 is an overview of the entire cleanup mission with the disposal portion of the mission. Figure 2 is a representation of major activities required to complete the storage and disposal mission. The challenge for the LNIHC team is to understand and plan for accepting materials that are described in the Request for Proposal. Private companies will submit bids based on the Request for Proposal and other Department of Energy requirements. LMHC, however, must maintain sufficient flexibility to accept modifications that may occur during the privatization bid/award process that is expected to be completed by May 1998. Fundamental to this planning is to minimize the risks of stand-by costs if storage and disposal facilities are not available to receive the immobilized waste. LMHC has followed a rigorous process for the identification of the functions and requirements of the storage/disposal facilities. A set of alternatives to meet these functions and requirements were identified and evaluated. The alternatives selected were (1) to modify four vaults for disposal of immobilized low-activity waste, and (2) to retrofit a portion of the Canister Storage Building for storage of immobilized high-level waste

  8. Westinghouse Hanford Company Pollution Prevention Program Implementation Plan

    International Nuclear Information System (INIS)

    Floyd, B.C.

    1994-10-01

    This plan documents Westinghouse Hanford Company's (WHC) Pollution Prevention (P2) (formerly Waste Minimization) program. The program includes WHC; BCS Richland, Inc. (BCSR); and ICF Kaiser Hanford Company (ICF KH). The plan specifies P2 program activities and schedules for implementing the Hanford Site Waste Minimization and Pollution Prevention Awareness (WMin/P2) Program Plan requirements (DOE 1994a). It is intended to satisfy the U.S. Department of Energy (DOE) and other legal requirements that are discussed in both the Hanford Site WMin/P2 plan and paragraph C of this plan. As such, the Pollution Prevention Awareness Program required by DOE Order 5400.1 (DOE 1988) is included in the WHC P2 program. WHC, BCSR, and ICF KH are committed to implementing an effective P2 program as identified in the Hanford Site WMin/P2 Plan. This plan provides specific information on how the WHC P2 program will develop and implement the goals, activities, and budget needed to accomplish this. The emphasis has been to provide detailed planning of the WHC P2 program activities over the next 3 years. The plan will guide the development and implementation of the program. The plan also provides background information on past program activities. Because the plan contains greater detail than in the past, activity scope and implementation schedules may change as new priorities are identified and new approaches are developed and realized. Some activities will be accelerated, others may be delayed; however, all of the general program elements identified in this plan and contractor requirements identified in the Site WMin/P2 plan will be developed and implemented during the next 3 years. This plan applies to all WHC, BCSR, and ICF KH organizations and subcontractors. It will be distributed to those with defined responsibilities in this plan; and the policy, goals, objectives, and strategy of the program will be communicated to all WHC, BCSR, and ICF KH employees

  9. Westinghouse Hanford Company Operational Environmental Monitoring. Annual report, CY 1993

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Johnson, A.R.; Markes, B.M.; McKinney, S.M.; Perkins, C.J.

    1994-07-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1993 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite conditions, the differences are less than in previous years. At certain locations on or directly adjacent to nuclear facilities and waste sites, levels can be several times higher than offsite conditions

  10. The Westinghouse Hanford Company Operational Environmental Monitoring Program CY-93

    International Nuclear Information System (INIS)

    Schmidt, J.W.

    1993-10-01

    The Operational Environmental Monitoring Program (OEMP) provides facility-specific environmental monitoring to protect the environment adjacent to facilities under the responsibility of Westinghouse Hanford Company (WHC) and assure compliance with WHC requirements and local, state, and federal environmental regulations. The objectives of the OEMP are to evaluate: compliance with federal (DOE, EPA), state, and internal WHC environmental radiation protection requirements and guides; performance of radioactive waste confinement systems; and trends of radioactive materials in the environment at and adjacent to nuclear facilities and waste disposal sites. This paper identifies the monitoring responsibilities and current program status for each area of responsibility

  11. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    International Nuclear Information System (INIS)

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units

  12. Site support program plan for ICF Kaiser Hanford Company, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This document is the general administrative plan implemented by the Hanford Site contractor, ICF Kaiser Hanford Company. It describes the mission, administrative structure, projected staffing, to be provided by the contractor. The report breaks out the work responsibilities within the different units of the company, a baseline schedule for the different groups, and a cost summary for the different operating units.

  13. Atlantic Richfield Hanford Company chemical operator training program

    International Nuclear Information System (INIS)

    Zumhoff, R.G.

    1975-01-01

    Formal training and testing of Chemical Operators at Hanford were initiated as part of a negotiated union settlement in 1966. Consequently, it was agreed that 25 percent of the chemical operator force would receive a higher rated job (Lead Nuclear Chemical Operator) provided they satisfactorily completed a training program including testing. The training and testing program was developed in two parts. The first covered subjects of a general nature and was applicable to an operator's duties no matter what the assignment. Part II was more specifically oriented to the presently assigned work area. Renewed interest in retraining and requalification of all chemical operators was taken in 1971. This evolved from a Company concern that a program be developed to assure the fact that operators were qualified to do their assigned jobs, and an Atomic Energy Commission request for an outline of a retraining and requalification program for chemical operators. Building upon the experience gained in the LNCO (Lead Nuclear Chemical Operator) program, the two part format is retained. The use of video tapes is used to complement the manuals. An arrangement where an operator can view a lecture-type presentation is provided in seven plant locations. A small studio for in-house production of the video tapes is available to the training Specialists. A script is developed from a training manual by condensing the information into 20-minute presentations. A prime objective of each tape is to highlight the safety and control aspects that accompany operator responsibilities in each of these areas. Testing is also handled on a two part basis; one test covers the fundamentals and a separate test is designed for each of the plant subjects. A walk-through examination is also performed for the plant portion. Operators are required to be requalified on emergency procedures on an annual basis and at two-year intervals in the other areas. (U.S.)

  14. Fluor Daniel Hanford company standards requirements identification document

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1997-01-01

    This document, the Standards/Requirements Identification Document (S/RID) for the Fluor Daniel Hanford Contract, represents the necessary and sufficient requirements to provide an adequate level of protection of the worker, public health and safety, and the environment

  15. 1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

  16. Westinghouse Hanford Company special nuclear material vault storage study

    International Nuclear Information System (INIS)

    Borisch, R.R.

    1996-01-01

    Category 1 and 2 Special Nuclear Materials (SNM) require storage in vault or vault type rooms as specified in DOE orders 5633.3A and 6430.1A. All category 1 and 2 SNM in dry storage on the Hanford site that is managed by Westinghouse Hanford Co (WHC) is located in the 200 West Area at Plutonium Finishing Plant (PFP) facilities. This document provides current and projected SNM vault inventories in terms of storage space filled and forecasts available space for possible future storage needs

  17. The role of Quality Oversight in nuclear and hazardous waste management and environmental restoration at Westinghouse Hanford Company

    International Nuclear Information System (INIS)

    Fouad, H.Y.

    1994-05-01

    The historical factors that led to the waste at Hanford are outlined. Westinghouse Hanford Company mission and organization are described. The role of the Quality Oversight organization in nuclear hazardous waste management and environmental restoration at Westinghouse Hanford Company is delineated. Tank Waste Remediation Systems activities and the role of the Quality Oversight organization are described as they apply to typical projects. Quality Oversight's role as the foundation for implementation of systems engineering and operation research principles is pointed out

  18. Westinghouse Hanford Company waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Craig, P.A.; Nichols, D.H.; Lindsey, D.W.

    1991-08-01

    The purpose of this plan is to establish the Westinghouse Hanford Company's Waste Minimization Program. The plan specifies activities and methods that will be employed to reduce the quantity and toxicity of waste generated at Westinghouse Hanford Company (Westinghouse Hanford). It is designed to satisfy the US Department of Energy (DOE) and other legal requirements that are discussed in Subsection C of the section. The Pollution Prevention Awareness Program is included with the Waste Minimization Program as permitted by DOE Order 5400.1 (DOE 1988a). This plan is based on the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, which directs DOE Field Office, Richland contractors to develop and maintain a waste minimization program. This waste minimization program is an organized, comprehensive, and continual effort to systematically reduce waste generation. The Westinghouse Hanford Waste Minimization Program is designed to prevent or minimize pollutant releases to all environmental media from all aspects of Westinghouse Hanford operations and offers increased protection of public health and the environment. 14 refs., 2 figs., 1 tab

  19. Information storage and retrieval system at Westinghouse Hanford Company Hanford Engineering Development Laboratory (HEDL)

    International Nuclear Information System (INIS)

    Theo, M.G.

    1977-01-01

    The information storage and retrieval system developed at Westinghouse--Hanford is described. It will be able to store over two million documents on line. The system uses an interactive minicomputer to search for keyworded documents. Documents of interest can be displayed on CRTs or printed on microfilm reader--printers. 31 figures

  20. Westinghouse Hanford Company FY 1996 Materials Management Plan (MMP)

    International Nuclear Information System (INIS)

    Higginson, M.C.

    1995-12-01

    The safe and sound operation of facilities and the storage of nuclear material are top priorities within Hanford's environmental management, site restoration mission. The assumptions, plans and Special Nuclear Material (SNM) inventory summaries contained in this document were prepared for Department of Energy (DOE) use for interim and long- range planning. In accordance with Richland DOE field office (DOE-RL) direction, year-end inventory values were not projected over an 11 year period, as historically done in previous MMP documents. This decision was made since significant SNM movements to or from Hanford are not projected in the foreseeable future. Instead, the inventory summaries within this document reflect an ''as of date'' of June 30, 1995

  1. Site Support Program Plan for ICF Kaiser Hanford Company

    International Nuclear Information System (INIS)

    Benedetti, R.L.

    1994-10-01

    This document describes the Hanford Reservation site support program plan for each support division, in terms of safety, environmental concerns, costs, and reliability. Support services include the following: Piped Utilities; Electrical utilities; transportation; Energy management; General Administration Support Buildings; electrical safety upgrades. Contained in this Volume II is information covering the following: Operations and maintenance Utilities; Piped Utilities; Water systems Administration and Sampling; electrical utilities

  2. Site Support Program Plan for ICF Kaiser Hanford Company

    International Nuclear Information System (INIS)

    Benedetti, R.L.

    1994-10-01

    This document describes the Hanford Reservation site support program plan for each support division, in terms of safety, environmental concerns, costs, and reliability. Support services include the following: Piped Utilities; Electrical utilities; transportation; Energy management; General Administration Support Buildings; electrical safety upgrades. This Volume III discusses Operations and Maintenance Transportation and the Transportation Department including fleet maintenance, railroad operations and track maintenance, bus operations, solid waste disposal, special delivery services, and road maintenance

  3. Westinghouse Hanford Company (WHC) standards/requirements identification document (S/RID)

    International Nuclear Information System (INIS)

    Bennett, G.L.

    1996-01-01

    This Standards/Requirements Identification Document (S/RID) set forth the Environmental Safety and Health (ES ampersand amp;H) standards/requirements for Westinghouse Hanford Company Level Programs, where implementation and compliance is the responsibility of these organizations. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment

  4. Westinghouse Hanford Company (WHC) standards/requirements identification document (S/RID)

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, G.L.

    1996-03-15

    This Standards/Requirements Identification Document (S/RID) set forth the Environmental Safety and Health (ES&H) standards/requirements for Westinghouse Hanford Company Level Programs, where implementation and compliance is the responsibility of these organizations. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  5. Westinghouse Hanford Company environmental surveillance annual report -- 200/600 Areas

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Huckfeldt, C.R.; Johnson, A.R.; McKinney, S.M.

    1990-06-01

    This document presents the results of near-field environmental surveillance as performed by Westinghouse Hanford Company in 1989 for the Operations Area of the Hanford Site, Richland, Washington. These activities were conducted in the 200 and 600 Areas to assess operational control on the work environment. Surveillance activities included external radiation measurements and radiological surveys of waste disposal sites, radiological control areas, and roads, as well as sampling and analysis of ambient air, surface water, groundwater, sediments, soil, and biota. 15 refs., 3 figs., 1 tab

  6. Westinghouse Hanford Company Environmental surveillance annual report--200/600 Areas

    International Nuclear Information System (INIS)

    Schmidt, J.W.; Huckfeldt, C.R.; Johnson, A.R.; McKinney, S.M.

    1991-06-01

    This document presents the results of near-field environmental surveillance in 1990 of the Operations Area of the Hanford Site, in south central Washington State, as performed by Westinghouse Hanford Company. These activities are conducted in the 200 and 600 Areas to assess and control the impacts of operations on the workers and the local environment. Surveillance activities include sampling and analyses of ambient air, surface water, groundwater, sediments, soil, and biota. Also, external radiation measurements and radiological surveys are taken of waste disposal sites, radiological control areas, and roads. 16 refs., 3 figs., 1 tab

  7. Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)

    International Nuclear Information System (INIS)

    Higginson, M.C.

    1994-10-01

    The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford's environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO 3 plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996)

  8. Westinghouse Hanford Company operational environmental monitoring annual report, calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.; Fassett, J.W.; Johnson, A.R.; Johnson, V.G.; Markes, B.M.; McKinney, S.M.; Moss, K.J.; Perkins, C.J.; Richterich, L.R.

    1995-08-01

    This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1994 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  9. Westinghouse Hanford Company operational environmental monitoring annual report - calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, J.W., Westinghouse Hanford

    1996-07-30

    This document summarizes the results of the Westinghouse Hanford Company (WHC) near-facility operational environmental monitoring for 1995 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water,groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

  10. Descriptive display of total alpha, energetics, TOC, oxlate as TOC, and H2O sample data from Hanford waste tanks

    International Nuclear Information System (INIS)

    SIMPSON, B.C.

    1999-01-01

    In March 1999, staff at Lockheed Makn Hanford Company (LMHC) were asked to make a presentation to the Defense Nuclear Facilities Safety Board (DNFSB) about the safety of the waste tanks at the Hanford Site and the necessity for further tank sampling. Pacific Northwest National Laboratory provided a statistical analysis of available tank data to help determine whether additional sampling would in fact be required. The analytes examined were total alpha, energetics, total organic carbon (TOC), oxalate as TOC and moisture. These analytes serve as indicators of the stability of tank contents; if any of them fall above or below certain values, further investigation is warranted (Dukelow et al. 1995). PNNL performed an analysis of the data collected on these safety screening analytes with respect to empirical distributions and the established Safety Screening Data Quality Objectives (SS DQO) thresholds and Basis for Interim Operations (BIO) limits. Both univariate and bivariate analyses were performed. Summary statistics and graphical representations of the data were generated

  11. Westinghouse Hanford Company health and safety performance report

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.

    1996-05-15

    Topping the list of WHC Safety recognition during this reporting period is a commendation received from the National Safety Council (NSC). The NSC bestowed their Award of Honor upon WHC for significant reduction of incidence rates during CY 1995. The award is based upon a reduction of 48 % or greater in cases involving days away from work, a 30 % or greater reduction in the number of days away, and a 15% or greater reduction in the total number of occupational injuries and illnesses. (page 2-1). A DOE-HQ review team representing the Office of Envirorunent, Safety and Health (EH), visited the Hanford Site during several weeks of the quarter. Ile 40-member Safety Management Evaluation Team (SMET) assessed WHC in the areas of management responsibility, comprehensive requirements, and competence commensurate with responsibility. As part of their new approach to oversight, they focused on the existence of management systems and programs (comparable approach to VPP). Plant/project areas selected for review within WHC were PFP, B Plant/WESF, Tank Farms, and K-Basins (page 2-2). Effective safety meetings, prejob safety meetings, etc., are a cornerstone of any successful safety program. In an effort to improve the reporting of safety meetings, the Safety/Security Meeting Report form was revised. It now provides a mechanism for recording and tracking safety issues (page 2-4). WHC has experienced an increase in the occupational injury and illness incidence rates during the first quarter of CY 1996. Trends show this increase can be partially attributed to inattention to workplace activities due 0999to the uncertainty Hanford employees currently face with recent reduction of force, reorganization, and reengineering efforts (page 2-7). The cumulative CY 1995 lost/restricted workday case incidence rate for the first quarter of CY 1996 (1.28) is 25% below the DOE CY 1991-93 average (1.70). However, the incidence rate increased 24% from the CY 1995 rate of 1.03 (page 2-8). The

  12. Westinghouse Hanford Company health and safety performance report

    International Nuclear Information System (INIS)

    Rogers, L.

    1996-01-01

    Topping the list of WHC Safety recognition during this reporting period is a commendation received from the National Safety Council (NSC). The NSC bestowed their Award of Honor upon WHC for significant reduction of incidence rates during CY 1995. The award is based upon a reduction of 48 % or greater in cases involving days away from work, a 30 % or greater reduction in the number of days away, and a 15% or greater reduction in the total number of occupational injuries and illnesses. (page 2-1). A DOE-HQ review team representing the Office of Envirorunent, Safety and Health (EH), visited the Hanford Site during several weeks of the quarter. Ile 40-member Safety Management Evaluation Team (SMET) assessed WHC in the areas of management responsibility, comprehensive requirements, and competence commensurate with responsibility. As part of their new approach to oversight, they focused on the existence of management systems and programs (comparable approach to VPP). Plant/project areas selected for review within WHC were PFP, B Plant/WESF, Tank Farms, and K-Basins (page 2-2). Effective safety meetings, prejob safety meetings, etc., are a cornerstone of any successful safety program. In an effort to improve the reporting of safety meetings, the Safety/Security Meeting Report form was revised. It now provides a mechanism for recording and tracking safety issues (page 2-4). WHC has experienced an increase in the occupational injury and illness incidence rates during the first quarter of CY 1996. Trends show this increase can be partially attributed to inattention to workplace activities due 0999to the uncertainty Hanford employees currently face with recent reduction of force, reorganization, and reengineering efforts (page 2-7). The cumulative CY 1995 lost/restricted workday case incidence rate for the first quarter of CY 1996 (1.28) is 25% below the DOE CY 1991-93 average (1.70). However, the incidence rate increased 24% from the CY 1995 rate of 1.03 (page 2-8). The

  13. Westinghouse Hanford Company effluent releases and solid waste management report for 1987: 200/600/1100 Areas

    International Nuclear Information System (INIS)

    Coony, F.M.; Howe, D.B.; Voigt, L.J.

    1988-05-01

    The purpose of this report is to fulfill the reporting requirements of US Department of Energy (DOE) Order 5484.1, Environmental Protection, Safety, and Health Protection Information Reporting Requirements. Quantities of airborne and liquid wastes discharged by Westinghouse Hanford Company (Westinghouse Hanford) in the 200 Areas, 600 Area, and 1100 Area in 1987 are presented in this report. Also, quantities of solid wastes stored and buried by Westinghouse Hanford in the 200 Areas are presented in this report. The report is also intended to demonstrate compliance with Westinghouse Hanford administrative control limit (ACL) values for radioactive constituents and with applicable guidelines and standards for nonradioactive constituents. The summary of airborne release data, liquid discharge data, and solid waste management data for calendar year (CY) 1987 and CY 1986 are presented in Table ES-1. Data values for 1986 are cited in Table ES-1 to show differences in releases and waste quantities between 1986 and 1987. 19 refs., 3 figs., 19 tabs

  14. Application of quality assurance to scientific activities at Westinghouse Hanford Company

    International Nuclear Information System (INIS)

    Delvin, W.L.; Farwick, D.G.

    1988-01-01

    The application of quality assurance to scientific activities has been an ongoing subject of review, discussion, interpretation, and evaluation within the nuclear community for the past several years. This paper provides a discussion on the natures of science and quality assurance and presents suggestions for integrating the two successfully. The paper shows how those actions were used at the Westinghouse Hanford Company to successfully apply quality assurance to experimental studies and materials testing and evaluation activities that supported a major project. An important factor in developing and implementing the quality assurance program was the close working relationship that existed between the assigned quality engineers and the scientists. The quality engineers, who had had working experience in the scientific disciplines involved, were able to bridge across from the scientists to the more traditional quality assurance personnel who had overall responsibility for the project's quality assurance program

  15. Westinghouse Hanford Company effluent discharges and solid waste management report for calendar year 1989: 200/600 Areas

    International Nuclear Information System (INIS)

    Brown, M.J.; P'Pool, R.K.; Thomas, S.P.

    1990-05-01

    This report presents calendar year 1989 radiological and nonradiological effluent discharge data from facilities in the 200 Areas and the 600 Area of the Hanford Site. Both summary and detailed effluent data are presented. In addition, radioactive and nonradioactive solid waste storage and disposal data for calendar year 1989 are furnished. Where appropriate, comparisons to previous years are made. The intent of the report is to demonstrate compliance of Westinghouse Hanford Company-operated facilities with administrative control values for radioactive constituents and applicable guidelines and standards (including Federal permit limits) for nonradioactive constituents. 11 refs., 20 tabs

  16. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    International Nuclear Information System (INIS)

    Busche, D.M.

    1995-09-01

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ''Unreviewed Safety Questions,'' DOE 5480.22, ''Technical Safety Requirements,'' and DOE 5480.23, ''Nuclear Safety Analysis Reports.'' WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ''Safety Basis'' for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules

  17. Westinghouse Hanford Company plan for certifying newly generated contact -- handled transuranic waste. Revision 1

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Backlund, E.G.

    1995-09-01

    All transuranic (TRU) waste generators are required by US Department of Energy (DOE) Order 5820.2A to package their TRU waste in order to comply wit the Waste Isolation Pilot Plant (WIPP) -- Waste Acceptance Criteria (WAC) or keep non-certifiable containers segregated. The Westinghouse Hanford Company (WHC) Transuranic Waste Certification Plan was developed to ensure that TRU newly generated waste at WHC meets the DOE Order 5820.2A and the WHC-WAC which includes the State of Washington Department of Ecology -- Washington Administrative Code (DOE-WAC). The metho used at WHC to package TRU waste are described in sufficient detail to meet the regulations. This document is organized to provide a brief overview of waste generation operations at WHC. The methods used to implement this plan are discussed briefly along with the responsibilities and authorities of applicable organizations. This plan describes how WHC complies with all applicable regulations and requirements set forth in the latest approved revision of WHC-EP-0063-4

  18. Westinghouse Hanford Company plan for certifying newly generated contact-handled transuranic waste for emplacement in the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Lipinski, R.M.; Sheehan, J.S.

    1992-07-01

    Westinghouse Hanford Company (Westinghouse Hanford) currently manages an interim storage site for Westinghouse Hanford and non-Westinghouse Hanford-generated transuranic (TRU) waste and operates TRU waste generating facilities within the Hanford Site in Washington State. Approval has been received from the Waste Acceptance Criteria Certification Committee (WACCC) and Westinghouse Hanford TRU waste generating facilities to certify newly generated contact-handled TRU (CH-TRU) solid waste to meet the Waste Acceptance Criteria (WAC). This document describes the plan for certifying newly generated CH-TRU solid waste to meet the WAC requirements for storage at the Waste Isolation Pilot Plant (WIPP) site. Attached to this document are facility-specific certification plans for the Westinghouse Hanford TRU waste generators that have received WACCC approval. The certification plans describe operations that generate CH-TRU solid waste and the specific procedures by which these wastes will be certified and segregated from uncertified wastes at the generating facilities. All newly generated CH-TRU solid waste is being transferred to the Transuranic Storage and Assay Facility (TRUSAF) and/or a controlled storage facility. These facilities will store the waste until the certified TRU waste can be sent to the WIPP site and the non-certified TRU waste can be sent to the Waste Receiving and Processing Facility. All non-certifiable TRU waste will be segregated and clearly identified

  19. Quality assurance project plan for ground water monitoring activities managed by Westinghouse Hanford Company. Revision 3

    International Nuclear Information System (INIS)

    Stauffer, M.

    1995-11-01

    This quality assurance project plan (QAPP) applies specifically to the field activities and laboratory analysis performed for all RCRA groundwater projects conducted by Hanford Technical Services. This QAPP is generic in approach and shall be implemented in conjunction with the specific requirements of individual groundwater monitoring plans

  20. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  1. Analysis of volatile headspace gases sampled by cryogenic traps from Westinghouse Hanford Company Tank 242-C-112 March 1992

    International Nuclear Information System (INIS)

    Lucke, R.B.; Clauss, S.A.

    1993-10-01

    Results are given from gas chromatography/mass spectrometry (GC/MS) analyses of the headspace samples obtained by using cryogenic traps from Westinghouse Hanford Company (WHC) Tank 112-C during the month of March, 1992. Samples were analyzed as received with no sample preparation. Analyses included direct GC/MS for volatile/semivolatile components, and direct GC/MS for ammonia. Purge and trap GC/MS analysis was not done. In addition, aliquots were sent to Karl Pool, Pacific Northwest Laboratory, for hydrogen cyanide analysis by ion chromatography, the results are reported here. All concentrations are reported for the methanol extract solutions. To calculate concentrations in the headspace, the cryo-sampling air volume and the methanol rinse volume must be obtained from cryo-sampling personnel at WHC. Triplicate analyses were done on all samples, and average concentrations and standard deviations are reported. One significant result was that no ammonia was detected

  2. Geochemical data package for the Hanford immobilized low-activity tank waste performance assessment (ILAW PA)

    International Nuclear Information System (INIS)

    DI Kaplan; RJ Serne

    2000-01-01

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are stored in single- and double-shell tanks at the Hanford Site. The preferred method of disposing of the portion that is classified as low-activity waste is to vitrify the liquid/slurry and place the solid product in near-surface, shallow-land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford Immobilized Low-Activity Tank Waste (ILAW) Performance Assessment (PA) activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the porewater of the vadose zone. Pacific Northwest National Laboratory assists LMHC in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the disposal facility, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (K d ) and the thermodynamic solubility product (K sp ), respectively. In this data package, the authors approximate the solubility of contaminants using a more simplified construct, called the

  3. Assessment of Westinghouse Hanford Company methods for estimating radionuclide release from ground disposal of waste water at the N Reactor sites

    International Nuclear Information System (INIS)

    1988-09-01

    This report summarizes the results of an independent assessment by Golder Associates, Inc. of the methods used by Westinghouse Hanford Company (Westinghouse Hanford) and its predecessors to estimate the annual offsite release of radionuclides from ground disposal of cooling and other process waters from the N Reactor at the Hanford Site. This assessment was performed by evaluating the present and past disposal practices and radionuclide migration data within the context of the hydrology, geology, and physical layout of the N Reactor disposal site. The conclusions and recommendations are based upon the available data and simple analytical calculations. Recommendations are provided for conducting more refined analyses and for continued field data collection in support of estimating annual offsite releases. Recommendations are also provided for simple operational and structural measures that should reduce the quantities of radionuclides leaving the site. 5 refs., 9 figs., 1 tab

  4. Biota of the 300-FF-1 operable unit. [Westinghouse Hanford Company

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, W.H. Jr.; Fitzner, R.E.; Brandt, C.A.

    1990-10-01

    This report summarizes Task 5a-2 of the Phase I Remedial Investigation -- Operable Unit Characterization of the 300-FF-1 Operable Unit on the Hanford Site, near Richland, Washington. The ultimate goal of Phase I is to determine the nature and extent of the threat to public health and the environment from releases of hazardous substances from the operable unit. The purpose of Task 5a-2 was to determine what species inhabit the 300-FF-1 Operable Unit and how they use the unit. The focus is on those species listed as endangered or threatened, those that are economically important, or those that constitute significant components of the human food chain. 39 refs., 5 figs., 5 tabs.

  5. US Department of Energy, Westinghouse Hanford Company ARECO cesium transportation plan

    Energy Technology Data Exchange (ETDEWEB)

    Clements, E.P., Westinghouse Hanford

    1996-07-15

    The U.S. Department of Energy (DOE) is committed to the safe, efficient, and cost-effective transportation of all materials that support its various programs and activities. DOE strives to ensure that hazardous materials (particularly radioactive),hazardous substances, and hazardous mixed waste are handled and transported in compliance with all applicable federal, state,tribal, and local rules and regulations. This plan outlines the activities and responsibilities of DOE and other agencies that will be followed to conclude a significant movement of radioactive cesium (Cs) chloride capsules in a safe and uneventful manner. DOE-Headquarters (DOE-HQ) has directed that Cs capsules manufactured at the Waste Encapsulation and Storage Facility (WESF) be returned to WESF, located at DOE`s Hanford Site in southeast Washington State. Currently, there are 25 Cs capsules at the Applied Radiant Energy Corporation (ARECO)facility utilized for the polymerization of wood products in Lynchburg, Virginia, that requires removal as part of the overall Cs capsule return effort. This plan has been prepared in cooperation with member states of the Western Governors` Association (WGA) and the Southern States Energy Board (SSEB);the Council of State Governments Midwestern Office; and the Confederated Tribes of the Umatilla Indian Reservations, through whose jurisdictions these shipments will pass, and is an example of DOE-HQ`s commitment to early coordination and substantive involvement in its decision-making processes. This transportation plan identifies responsibilities, requirements,and procedures to ensure the success of the capsule return program. The plan summarizes transportation activities,organizational responsibilities, emergency preparedness guidelines, and other methods for achieving safe transport.

  6. Westinghouse Hanford Company ALARA year-end report, Calendar Year 1994: Revision 3A, Radiological engineering and ALARA

    International Nuclear Information System (INIS)

    Berglund, O.D.

    1995-06-01

    It has long been the US Department of Energy's (DOE's) Policy that radiation doses should be maintained as far below the dose limits as is reasonably achievable. This policy, known as the ''ALARA Principle of radiation protection,'' maintains that radiation exposures should be maintained as low as reasonably achievable, taking into account social, technical, economic, practical, and public policy considerations. The ALARA Principle is based on the hypothesis that even very low radiation doses carry some risk. As a result, it is not enough to maintain doses at/or slightly below limits; the lower the doses, the lower the risks. Because it is not possible to reduce all doses at DOE facilities to zero, economic and social factors must be considered to determine the optimal level of radiation doses. According to the ALARA Principle, if doses are too high, resources should be well spent to reduce them. At some point, the resources being spent to maintain low doses are exactly balanced by the risks avoided. Reducing doses below this point results in a misallocation of resources; the resources could be spent elsewhere and have a greater positive impact on health and safety. The objective of the Westinghouse Hanford Company (WHC) ALARA/Contamination Control Improvement Project (CCIP) Program is to manage and control exposures (both individual and collective) to the work force, the general public, and the environment to levels as low as is reasonable using the aforementioned ALARA Principle

  7. Test and evaluation report for Westinghouse Hanford Company's Hedgehog Shielded Container, Docket 94-39-7A, Type A container

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1995-01-01

    This report documents the US Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the Westinghouse Hanford Company Hedgehog Shielded Container. The Hedgehog packaging configurations provide primary and secondary containment. The packaging configurations tested consisted of an internal bottle, varying in size. Testing showed that the bottles are not required for the packaging to pass Type A requirements, with the exception of the 1-liter version, in which the polyvinyl chloride (PVC)-coated glass bottle used in testing is considered a part of the containment system. The packaging configurations were evaluated and tested in February 1995. The packaging configurations described in this report are designed to ship Type A quantities of radioactive materials, normal form. Contents may be in solid or liquid form. Liquids may have a specific gravity ≤2. The solid versions would allow the shipment of normal or special form solids. The solid materials would be limited in weight--to include packaging--to the gross weight of the as-tested liquids and bottles. The packaging configurations described in this document may be transported by air, and they meet the applicable International Air Transport Association/International Civil Aviation Organization (IATA/ICAO) Dangerous Goods Regulations in addition to the DOT-7A requirements

  8. Fire hazard analysis for the Westinghouse Hanford Company managed low-level mixed waste Trench 31 and 34

    International Nuclear Information System (INIS)

    Howard, B.J.

    1995-01-01

    This analysis is to assess comprehensively the risks from fire within the new lined landfills, provided by W-025 and designated Trench 31 and 34 of Burial Ground 218-W-5; they are located in the 200 West area of the Hanford Site, and are designed to receive low-level mixed waste

  9. Criticality codes migration to workstations at the Hanford site

    International Nuclear Information System (INIS)

    Miller, E.M.

    1993-01-01

    Westinghouse Hanford Company, Hanford Site Operations contractor, Richland, Washington, currently runs criticality codes on the Cray X-MP EA/232 computer but has recommended that US Department of Energy DOE-Richland replace the Cray with more economical workstations

  10. NHC's contribution to cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Chauve, H.D.

    1998-01-01

    The one billion dollars per year Project Hanford Management Contract (PHMC), managed by Fluor Daniel Hanford, calls for cleanup of the Hanford Site for the Department of Energy. Project Hanford comprises four major subprojects, each managed by a different major contractor. Numatec Hanford Corporation (NHC) is a fifth major subcontractor which provides energy and technology to each of the Hanford projects. NHC draws on the experience and capabilities of its parent companies, COGEMA and SGN, and relies on local support from its sister Company in Richland, COGEMA Engineering Corporation, to bring the best commercial practices and new technology to the Project

  11. Hanford inventory program user's manual

    International Nuclear Information System (INIS)

    Hinkelman, K.C.

    1994-01-01

    Provides users with instructions and information about accessing and operating the Hanford Inventory Program (HIP) system. The Hanford Inventory Program is an integrated control system that provides a single source for the management and control of equipment, parts, and material warehoused by Westinghouse Hanford Company in various site-wide locations. The inventory is comprised of spare parts and equipment, shop stock, special tools, essential materials, and convenience storage items. The HIP replaced the following systems; ACA, ASP, PICS, FSP, WSR, STP, and RBO. In addition, HIP manages the catalog maintenance function for the General Supplies inventory stocked in the 1164 building and managed by WIMS

  12. Hanford wells

    International Nuclear Information System (INIS)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

  13. Reengineering Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success.

  14. Reengineering Hanford

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success

  15. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  16. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  17. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  18. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  19. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  20. Fluor Hanford Project Focused Progress at Hanford

    International Nuclear Information System (INIS)

    HANSON, R.D.

    2000-01-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL)

  1. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  2. Hanford: The evolution of a dinosaur

    International Nuclear Information System (INIS)

    Fulton, J.

    1995-01-01

    This article describes how the Westinghouse Hanford Company is reinventing the US DOE's Hanford Site, turning a 1940s-era dinosaur into a 1990s-style business. The major topics covered include the following: breaking the logjam by ending the inefficient cost-plus days; Concentrating resources on resolving urgent safety issues; contract reform with more incentive, greater risk; finally reengineering: the next step

  3. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  4. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  5. Hanford Waste Vitrification Plant applied technology plan

    International Nuclear Information System (INIS)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs

  6. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  7. Independent technical review of the Hanford Tank Farm Operations

    International Nuclear Information System (INIS)

    1992-07-01

    The Independent Technical Assessment of the Hanford Tank Farm Operations was commissioned by the Assistant Secretary for Environmental Restoration and Waste Management on November 1, 1991. The Independent Technical Assessment team conducted on-site interviews and inspections during the following periods: November 18 to 22,1991; April 13 to 17; and April 27 to May 1, 1992. Westinghouse Hanford Company is the management and operating contractor for the Department of Energy at the Hanford site. The Hanford Tank Farm Operations consists of 177 underground storage tanks containing 61 million gallons of high-level radioactive mixed wastes from the chemical reprocessing of nuclear fuel. The Tank Farm Operations also includes associated transfer lines, ancillary equipment, and instrumentation. The Independent Technical Assessment of the Hanford Tank Farm Operations builds upon the prior assessments of the Hanford Waste Vitrification System and the Hanford Site Tank Waste Disposal Strategy.The objective of this technical assessment was to determine whether an integrated and sound program exists to manage the tank-waste storage and tankfarm operations consistent with the Assistant Secretary for Environmental Restoration and Waste Management's guidance of overall risk minimization. The scope of this review includes the organization, management, operation, planning, facilities, and mitigation of the safety-concerns of the Hanford Tank Waste Remediation System. The assessments presented in the body of this report are based on the detailed observations discussed in the appendices. When the assessments use the term ''Hanford'' as an organizational body it means DOE-RL and Westinghouse Hanford Company as a minimum, and in many instances all of the stake holders for the Hanford site

  8. Hanford general employee training - A million dollar cost beneficial program

    International Nuclear Information System (INIS)

    Gardner, P.R.

    1991-02-01

    In January 1990, Westinghouse Hanford Company implemented an interactive videodisc training program entitled Hanford General Employee Training. Covering all Institute of Nuclear Power Operations general employee training objectives, training mandated by US Department of Energy orders, and training prescribed by internal Westinghouse Hanford Company policies, Hanford General Employee Training presents and manages engaging training programs individually tailored to each of the 9,000 employees. Development costs for a sophisticated program such as Hanford General Employee Training were high compared to similar costs for developing ''equivalent'' traditional training. Hardware ($500,000) and labor costs ($400,000) totaled $900,000. Annual maintenance costs, equipment plus labor, are totalling about $200,000. On the benefit side, by consolidating some 17 previous Westinghouse Hanford Company courses and more effectively managing the instructional process, Hanford General Employee Training reduced the average student training time from over 11 hours to just under 4 hours. For 9,000 employees, the computed net annual savings exceeds $1.3 million. 2 refs

  9. Hanford Site radioactive hazardous materials packaging directory

    International Nuclear Information System (INIS)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations ampersand Development (PO ampersand D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage

  10. Hanford Site radioactive hazardous materials packaging directory

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  11. Hanford Mission Plan risk-based prioritization methodologies

    International Nuclear Information System (INIS)

    Hesser, W.A.; Madden, M.S.; Pyron, N.M.; Butcher, J.L.

    1994-08-01

    Sites across the US Department (DOE) complex recognize the critical need for a systematic method for prioritizing among their work scope activities. Here at the Hanford Site, Pacific Northwest Laboratory and Westinghouse Hanford Company (WHC) conducted preliminary research into techniques to meet this need and assist managers in making financial resource allocation decisions. This research is a subtask of the risk management task of the Hanford Mission Plan as described in the WHC Integrated Planning Work Breakdown Structure 1.8.2 Fiscal Year 1994 Work Plan. The research team investigated prioritization techniques used at other DOE sites and compared them with the Priority Planning Grid (PPG), a tool used at Hanford. The authors concluded that the PPG could be used for prioritization of resource allocation, but it needed to be revised to better reflect the Site's priorities and objectives. The revised PPG was tested with three Hanford programs, the PPG was modified, and updated procedures were prepared

  12. Implementation plan for HANDI 2000 TWRS master equipment list

    International Nuclear Information System (INIS)

    BENNION, S.I.

    1999-01-01

    This document presents the implementation plan for an additional deliverable of the HANDI 2000 Project. The PassPort Equipment Data module processes include those portions of the COTS PassPort system required to support tracking and management of the Master Equipment List for Lockheed Martin Hanford Company (LMHC) and custom software created to work with the COTS products

  13. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    International Nuclear Information System (INIS)

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S ampersand T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford's highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S ampersand T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ''problem owners'' (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S ampersand T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders

  14. Listed waste history at Hanford facility TSD units

    International Nuclear Information System (INIS)

    Miskho, A.G.

    1996-01-01

    This document was prepared to close out an occurrence report that Westinghouse Hanford Company issued on December 29, 1994. Occurrence Report RL-WHC-GENERAL-1994-0020 was issued because knowledge became available that could have impacted start up of a Hanford Site facility. The knowledge pertained to how certain wastes on the Hanford Site were treated, stored, or disposed of. This document consolidates the research performed by Westinghouse Hanford Company regarding listed waste management at onsite laboratories that transfer waste to the Double-Shell Tank System. Liquid and solid (non-liquid) dangerous wastes and mixed wastes at the Hanford Site are generated from various Site operations. These wastes may be sampled and characterized at onsite laboratories to meet waste management requirements. In some cases, the wastes that are generated in the field or in the laboratory from the analysis of samples require further management on the Hanford Site and are aggregated together in centralized tank storage facilities. The process knowledge presented herein documents the basis for designation and management of 242-A Evaporator Process Condensate, a waste stream derived from the treatment of the centralized tank storage facility waste (the Double-Shell Tank System). This document will not be updated as clean up of the Hanford Site progresses

  15. Hanford site environment

    International Nuclear Information System (INIS)

    Isaacson, R.E.

    1976-01-01

    A synopsis is given of the detailed characterization of the existing environment at Hanford. The following aspects are covered: demography, land use, meteorology, geology, hydrology, and seismology. It is concluded that Hanford is one of the most extensively characterized nuclear sites

  16. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  17. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1992-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides a land use plan for the Hanford Site and presents a picture of what is currently known and anticipated in accordance with DOE Order 4320.1B. Site Development Planning. The HSDP wig be updated annually as future decisions further shape the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  18. Hanford Site Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. (Westinghouse Hanford Co., Richland, WA (USA)); Yancey, E.F. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  19. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J.; Yancey, E.F.

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs

  20. Use of decision analysis techniques to determine Hanford cleanup priorities

    International Nuclear Information System (INIS)

    Fassbender, L.; Gregory, R.; Winterfeldt, D. von; John, R.

    1992-01-01

    In January 1991, the U.S. Department of Energy (DOE) Richland Field Office, Westinghouse Hanford Company, and the Pacific Northwest Laboratory initiated the Hanford Integrated Planning Process (HIPP) to ensure that technically sound and publicly acceptable decisions are made that support the environmental cleanup mission at Hanford. One of the HIPP's key roles is to develop an understanding of the science and technology (S and T) requirements to support the cleanup mission. This includes conducting an annual systematic assessment of the S and T needs at Hanford to support a comprehensive technology development program and a complementary scientific research program. Basic to success is a planning and assessment methodology that is defensible from a technical perspective and acceptable to the various Hanford stakeholders. Decision analysis techniques were used to help identify and prioritize problems and S and T needs at Hanford. The approach used structured elicitations to bring many Hanford stakeholders into the process. Decision analysis, which is based on the axioms and methods of utility and probability theory, is especially useful in problems characterized by uncertainties and multiple objectives. Decision analysis addresses uncertainties by laying out a logical sequence of decisions, events, and consequences and by quantifying event and consequence probabilities on the basis of expert judgments

  1. Hanford Site Infrastructure Plan

    International Nuclear Information System (INIS)

    1990-01-01

    The Hanford Site Infrastructure Plan (HIP) has been prepared as an overview of the facilities, utilities, systems, and services that support all activities on the Hanford Site. Its purpose is three-fold: to examine in detail the existing condition of the Hanford Site's aging utility systems, transportation systems, Site services and general-purpose facilities; to evaluate the ability of these systems to meet present and forecasted Site missions; to identify maintenance and upgrade projects necessary to ensure continued safe and cost-effective support to Hanford Site programs well into the twenty-first century. The HIP is intended to be a dynamic document that will be updated accordingly as Site activities, conditions, and requirements change. 35 figs., 25 tabs

  2. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  3. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  4. ChemWaste appeals Hanford permit stance

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Chemical Waste Management, Inc. is appealing the Washington State Department of Ecology's decision to suspend its review of the company's proposal to build a hazardous waste incinerator and two mixed waste incinerators at the Hanford Nuclear Site near Richland, Washington. The company wants to build the incinerators on a 200 acre parcel in the DOE reservation that is leased to the State. The State contends the two mixed waste incinerators meet siting criteria, but the hazardous waste unit does not. A compromise may be reached between DOE and Washington state involving the transfer of title to the leased land from DOE to the State

  5. Hanford cultural resources laboratory

    International Nuclear Information System (INIS)

    Wright, M.K.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act

  6. Hanford cultural resources laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.K.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report describes activities of the Hanford Cultural Resources Laboratory (HCRL) which was established by the Richland Operations Office in 1987 as part of PNL.The HCRL provides support for the management of the archaeological, historical, and traditional cultural resources of the site in a manner consistent with the National Historic Preservation Act, the Native American Graves Protection and Repatriation Act, and the American Indian Religious Freedom Act.

  7. Hanford Facility contingency plan

    International Nuclear Information System (INIS)

    Sutton, L.N.; Miskho, A.G.; Brunke, R.C.

    1993-10-01

    The Hanford Facility Contingency Plan, together with each TSD unit-specific contingency plan, meets the WAC 173-303 requirements for a contingency plan. This plan includes descriptions of responses to a nonradiological hazardous materials spill or release at Hanford Facility locations not covered by TSD unit-specific contingency plans or building emergency plans. This plan includes descriptions of responses for spills or releases as a result of transportation activities, movement of materials, packaging, and storage of hazardous materials

  8. Hanford work faces change

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This article is a discussion of DOE efforts in the awarding of a large engineering-construction contract at the Hanford Reservation. Though the announced winner was a group lead by J. A. Jones Construction/Duke Engineering Services, the incumbent (ICF-Kaiser Engineers) protested the announced award. The protest was dismissed by the GAO, but DOE officials still reopened the bidding. There was also a short note regarding the award of the ERMC at Hanford

  9. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy's Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan

  10. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy`s Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

  11. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy's Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

  12. Managing risk at Hanford

    International Nuclear Information System (INIS)

    Hesser, W.A.; Stillwell, W.G.; Rutherford, W.A.

    1994-01-01

    Clearly, there is sufficient motivation from Washington for the Hanford community to pay particular attention to the risks associated with the substantial volumes of radiological, hazardous, and mixed waste at Hanford. But there is also another reason for emphasizing risk: Hanford leaders have come to realize that their decisions must consider risk and risk reduction if those decisions are to be technically sound, financially affordable, and publicly acceptable. The 560-square miles of desert land is worth only a few thousand dollars an acre (if that) -- hardly enough to justify the almost two billion dollars that will be spent at Hanford this year. The benefit of cleaning up the Hanford Site is not the land but the reduction of potential risk to the public and the environment for future generations. If risk reduction is our ultimate goal, decisions about priority of effort and resource allocation must consider those risks, now and in the future. The purpose of this paper is to describe how Hanford is addressing the issues of risk assessment, risk management, and risk-based decision making and to share some of our experiences in these areas

  13. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  14. Review of Hanford international activities

    International Nuclear Information System (INIS)

    Panther, D.G.

    1993-01-01

    Hanford initiated a review of international activities to collect, review, and summarize information on international environmental restoration and waste management initiatives considered for use at Hanford. This effort focused on Hanford activities and accomplishments, especially international technical exchanges and/or the implementation of foreign-developed technologies

  15. Hanford groundwater scenario studies

    International Nuclear Information System (INIS)

    Arnett, R.C.; Gephart, R.E.; Deju, R.A.; Cole, C.R.; Ahlstrom, S.W.

    1977-05-01

    This report documents the results of two Hanford groundwater scenario studies. The first study examines the hydrologic impact of increased groundwater recharge resulting from agricultural development in the Cold Creek Valley located west of the Hanford Reservation. The second study involves recovering liquid radioactive waste which has leaked into the groundwater flow system from a hypothetical buried tank containing high-level radioactive waste. The predictive and control capacity of the onsite Hanford modeling technology is used to evaluate both scenarios. The results of the first study indicate that Cold Creek Valley irrigationis unlikely to cause significant changes in the water table underlying the high-level waste areas or in the movement of radionuclides already in the groundwater. The hypothetical tank leak study showed that an active response (in this case waste recovery) can be modeled and is a possible alternative to passive monitoring of radionuclide movement in the unlikely event that high-level waste is introduced into the groundwater

  16. Hanford Area 2000 Population

    International Nuclear Information System (INIS)

    Elliott, Douglas B.; Scott, Michael J.; Antonio, Ernest J.; Rhoads, Kathleen

    2004-01-01

    This report was prepared for the U.S. Department of Energy (DOE) Richland Operations Office, Surface Environmental Surveillance Project, to provide demographic data required for ongoing environmental assessments and safety analyses at the DOE Hanford Site near Richland, Washington. This document includes 2000 Census estimates for the resident population within an 80-kilometer (50-mile) radius of the Hanford Site. Population distributions are reported relative to five reference points centered on meteorological stations within major operating areas of the Hanford Site - the 100 F, 100 K, 200, 300, and 400 Areas. These data are presented in both graphical and tabular format, and are provided for total populations residing within 80 km (50 mi) of the reference points, as well as for Native American, Hispanic and Latino, total minority, and low-income populations

  17. Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Larson, D.E.; Allen, C.R.; Kruger, O.L.; Weber, E.T.

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs

  18. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Anantatmula, R.P.; Watrous, R.A.; Nelson, J.L.; Perez, J.M.; Peters, R.D.; Peterson, M.E.

    1991-09-01

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company's (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP

  19. DOE wants Hanford change

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Nine months ago, Energy Secretary Hazel O'Leary promised local officials running the agency's huge Hanford, Washington, weapon complex more control in directing its projected $57-billion waste cleanup. Earlier this month, she returned to the site for a follow-on open-quotes summit,close quotes this time ordering teamwork with contractors, regulators and local activities

  20. Residual herbicide study on selected Hanford Site roadsides

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.L.; Kemp, C.J.; Sackschewsky, M.R.

    1993-08-01

    Westinghouse Hanford Company routinely treats roadsides with herbicides to control undesirable plant growth. An experiment was conducted to test perennial grass germination in soils adjacent to roadways of the Hanford Site. The primary variable was the distance from the roadside. A simple germination test was executed in a controlled-environment chamber to determine the residual effects of these applications. As expected, the greatest herbicide activity was found directly adjacent to the roadway, approximately 0 to 20 ft (0 to 6.3 m) from the roadway.

  1. Legend and legacy: Fifty years of defense production at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ``flagship`` of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program.

  2. Legend and legacy: Fifty years of defense production at the Hanford Site

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ''flagship'' of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program

  3. Hanford spent fuel inventory baseline

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1994-01-01

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors

  4. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  5. Integrated environmental monitoring program at the Hanford Site

    International Nuclear Information System (INIS)

    Jaquish, R.E.

    1990-08-01

    The US Department of Energy's Hanford Site, north of Richland, Washington, has a mission of defense production, waste management, environmental restoration, advanced reactor design, and research development. Environmental programs at Hanford are conducted by Pacific Northwest Laboratory (PNL) and the Westinghouse Hanford Company (WHC). The WHC environmental programs include the compliance and surveillance activities associated with site operations and waste management. The PNL environmental programs address the site-wide and the of-site areas. They include the environmental surveillance and the associated support activities, such as dose calculations, and also the monitoring of environmental conditions to comply with federal and state environmental regulations on wildlife and cultural resources. These are called ''independent environmental programs'' in that they are conducted completely separate from site operations. The Environmental Surveillance and Oversight Program consists of the following projects: surface environmental surveillance; ground-water surveillance; wildlife resources monitoring; cultural resources; dose overview; radiation standards and calibrations; meteorological and climatological services; emergency preparedness

  6. Hanford high level waste: Sample Exchange/Evaluation (SEE) Program

    International Nuclear Information System (INIS)

    King, A.G.

    1994-08-01

    The Pacific Northwest Laboratory (PNL)/Analytical Chemistry Laboratory (ACL) and the Westinghouse Hanford Company (WHC)/Process Analytical Laboratory (PAL) provide analytical support services to various environmental restoration and waste management projects/programs at Hanford. In response to a US Department of Energy -- Richland Field Office (DOE-RL) audit, which questioned the comparability of analytical methods employed at each laboratory, the Sample Exchange/Exchange (SEE) program was initiated. The SEE Program is a selfassessment program designed to compare analytical methods of the PAL and ACL laboratories using sitespecific waste material. The SEE program is managed by a collaborative, the Quality Assurance Triad (Triad). Triad membership is made up of representatives from the WHC/PAL, PNL/ACL, and WHC Hanford Analytical Services Management (HASM) organizations. The Triad works together to design/evaluate/implement each phase of the SEE Program

  7. CO{sub 2} pellet decontamination technology at Westinghouse Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, T.L.; Aldrich, L.K. II; Bowman, E.V. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-03-01

    Experimentation and testing with CO{sub 2} pellet decontamination technology is being conducted at Westinghosue Hanford Company (WHC), Richland, Washington. There are 1,100 known existing waste sites at Hanford. The sites specified by federal and state agencies are currently being studied to determine the appropriate cleanup methods best for each site. These sites are contaminated and work on them is in compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). There are also 63 treatment, storage, and disposal units, for example: groups of waste tanks or drums. In 1992, there were 100 planned activities scheduled to bring these units into the Resource Conservation and Recovery Act (RCRA) compliance or close them after waste removal. Ninety-six of these were completed. The remaining four were delayed or are being negotiated with regulatory agencies. As a result of past defense program activities at Hanford a tremendous volume of materials and equipment have accumulated and require remediation.

  8. Pollution prevention opportunity assessments. Guidance for the Hanford Site

    International Nuclear Information System (INIS)

    Engel, J.A.

    1994-10-01

    The purpose of this document is to provide help to you, Hanford waste generators, in finding ways to reduce waste through Pollution Prevention (P2) and Pollution Prevention Opportunity Assessments (P2OAs). It is based on guidance from other sites, and serves to compliment the Hanford-specific training on P2OAs offered by the Pollution Prevention group at Westinghouse Hanford Company (WHC). The chapters of this document include help on how to choose major waste generating activities, how to conduct a P2OA, how to get results, and how to show progress. There is also a chapter on special situations and problems your facility may encounter. This first chapter tells you why you should consider conducting P2OAs and why they may be required

  9. Hanford well custodians. Revision 1

    International Nuclear Information System (INIS)

    Schatz, A.L.; Underwood, D.J.

    1995-01-01

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993

  10. Reinventing government: Reinventing Hanford

    International Nuclear Information System (INIS)

    Mayeda, J.T.

    1994-05-01

    The Hanford Site was established in 1943 as one of the three original Manhattan Project locations involved in the development of atomic weapons. It continued as a defense production center until 1988, when its mission changed to environmental restoration and remediation. The Hanford Site is changing its business strategy and in doing so, is reinventing government. This new development has been significantly influenced by a number of external sources. These include: the change in mission, reduced security requirements, new found partnerships, fiscal budgets, the Tri-Party agreement and stakeholder involvement. Tight budgets and the high cost of cleanup require that the site develop and implement innovative cost saving approaches to its mission. Costeffective progress is necessary to help assure continued funding by Congress

  11. Hanford process review

    International Nuclear Information System (INIS)

    1991-12-01

    This report is a summary of past incidents at the US Department of Energy's (DOE) Hanford Site. The purpose of the report is to provide the major, significant, nuclear-safety-related incidents which incurred at the Hanford Site in a single document for ease of historical research. It should be noted that the last major accident occurred in 1980. This document is a summary of reports released and available to the public in the DOE Headquarters and Richland public reading rooms. This document provides no new information that has not previously been reported. This report is not intended to cover all instances of radioactivity release or contamination, which are already the subject of other major reviews, several of which are referenced in Section 1.3

  12. Hanford Tank Cleanup Update

    International Nuclear Information System (INIS)

    Berriochoa, M.V.

    2011-01-01

    Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

  13. An evaluation of the management system verification pilot at Hanford

    International Nuclear Information System (INIS)

    Briggs, C.R.; Ramonas, L.; Westendorf, W.

    1998-01-01

    The Chemical Management System (CMS), currently under development at Hanford, was used as the ''test program'' for pilot testing the value added aspects of the Chemical Manufacturers Association's (CMA) Management Systems Verification (MSV) process. The MSV process, which was developed by CMA's member chemical companies specifically as a tool to assist in the continuous improvement of environment, safety and health (ESH) performance, represents a commercial sector ''best practice'' for evaluating ESH management systems. The primary purpose of Hanford's MSV Pilot was to evaluate the applicability and utility of the MSV process in the Department of Energy (DOE) environment. However, because the Integrated Safety Management System (ISMS) is the framework for ESH management at Hanford and at all DOE sites, the pilot specifically considered the MSV process in the context of a possible future adjunct to Integrated Safety Management System Verification (ISMSV) efforts at Hanford and elsewhere within the DOE complex. The pilot involved the conduct of two-hour interviews with four separate panels of individuals with functional responsibilities related to the CMS including the Department of Energy Richland Operations (DOE-RL), Fluor Daniel Hanford (FDH) and FDH's major subcontractors (MSCS). A semi-structured interview process was employed by the team of three ''verifiers'' who directed open-ended questions to the panels regarding the development, integration and effectiveness of management systems necessary to ensure the sustainability of the CMS effort. An ''MSV Pilot Effectiveness Survey'' also was completed by each panel participant immediately following the interview

  14. Quantitative measurement of cyanide complexes in simulated and actual Hanford ferrocyanide wastes

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pool, K.H.; Sell, R.L.; Bryan, S.L.

    1994-01-01

    Cyanide-containing radioactive waste from radiocesium scavenging processes conducted during the 1950's at Hanford is currently stored in 24 single shell tanks. As part of ongoing tank characterization efforts, the quantity and chemical form of cyanide in these tanks need to be determined. This report summarizes the results of studies conducted at Pacific Northwest Laboratory (PNL) under contract to Westinghouse Hanford Company (WHC) to develop methods for the quantification of total cyanide and identification of major cyanide-containing species in Ferrocyanide Tank Waste. Results from the application of FTIR, IC, and microdistillation procedures to simulated and actual Hanford waste are presented and compared where applicable

  15. Review of technologies for the pretreatment of retrieved single-shell tank waste at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1992-08-01

    The purpose of the study reported here was to identify and evaluate innovative processes that could be used to pretreat mixed waste retrieved from the 149 single-shell tanks (SSTs) on the US Department of Energy's (DOE) Hanford site. The information was collected as part of the Single Shell Tank Waste Treatment project at Pacific Northwest Laboratory (PNL). The project is being conducted for Westinghouse Hanford Company under their SST Disposal Program

  16. Mortality studies of Hanford workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1986-04-01

    Radiation exposures at Hanford have been deliberately limited as a protection to the worker. This means that if current estimates of radiation risks, which have been determined by national and international groups, are correct, it's highly unlikely that noticeable radiation-induced health effects will be identified among Hanford workers. 1 fig., 4 tabs

  17. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  18. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  19. Characterization program management plan for Hanford K Basin spent nuclear fuel

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1998-01-01

    The management plan developed to characterize the K Basin Spent Nuclear Fuel was revised to incorporate actions necessary to comply with the Office of Civilian Radioactive Waste Management Quality Assurance Requirements Document 0333P. This plan was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. This revision to the Program Management Plan replaces Westinghouse Hanford Company with Duke Engineering and Services Hanford, Inc., updates the various activities where necessary, and expands the Quality Assurance requirements to meet the applicable requirements document. Characterization will continue to utilize the expertise and capabilities of both organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for Duke Engineering and Services Hanford, Inc. and Pacific Northwest National Laboratory to support the Spent Nuclear Fuels Project at Hanford

  20. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  1. Introduction to the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.

  2. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  3. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  4. Introduction to the Hanford Site

    International Nuclear Information System (INIS)

    Cushing, C.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal

  5. Hanford Facility RCRA permit handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Purpose of this Hanford Facility (HF) RCRA Permit Handbook is to provide, in one document, information to be used for clarification of permit conditions and guidance for implementing the HF RCRA Permit.

  6. Mortality studies of Hanford workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1986-03-01

    The relationships of cancer mortality with radiation exposure as influenced by age, sex, follow-up time length of employment, and job category are discussed in relation to workers at the Hanford facilities

  7. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  8. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  9. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  10. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  11. Literature review of stabilization/solidification of volatile organic compounds and the implications for Hanford grouts

    International Nuclear Information System (INIS)

    Spence, R.D.; Osborne, S.C.

    1993-09-01

    A literature review was conducted on the stabilization/solidification of volatile organic compounds (VOCs). Based on this literature, it is likely that the limestone-containing grout will not permanently immobilize VOCs and that no presently available additives can guarantee permanent immobilization. The Westinghouse hanford company grout may be fairly effective at retarding aqueous leaching of VOCs, and commercial additives can improve this performance. Significant VOC losses do occur during stabilization/solidification, and the high temperatures of the Westinghouse Hanford Company waste and grout should exacerbate this problem. In fact, these high temperatures raise doubts about the presence of VOCs in the double-shell tanks supernates

  12. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Cannon, S.D.; Finch, S.M.

    1992-10-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates):Source Terms, Environmental Transport, Environmental Monitoring Data, Demography, Food Consumption, and Agriculture, and Environmental Pathways and Dose Estimates

  13. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  14. HANFORD WASTE MINERALOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  15. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  16. Hanford Waste Mineralogy Reference Report

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  17. Hanford internal dosimetry program manual

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs

  18. Drilling history core hole DC-6 Hanford, Washington

    International Nuclear Information System (INIS)

    1978-06-01

    Core hole DC-6 was completed in May 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scisson, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-6. Core hole DC-6 is located within the boundary of the Hanford Site at the old Hanford town site. The Hanford Site coordinates for DC-6 are North 54,127.17 feet and West 17,721.00 feet. The surface elevation is approximately 402 feet above sea level. The purpose of core hole DC-6 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrologic testing. The total depth of core hole DC-6 was 4336 feet. Core recovery was 98.4% of the total footage cored

  19. Hanford Site physical separations CERCLA treatability test plan

    International Nuclear Information System (INIS)

    1992-03-01

    This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test

  20. Test plan for Fauske and Associates to perform tube propagation experiments with simulated Hanford tank wastes

    International Nuclear Information System (INIS)

    Carlson, C.D.; Babad, H.

    1996-05-01

    This test plan, prepared at Pacific Northwest National Laboratory for Westinghouse Hanford Company, provides guidance for performing tube propagation experiments on simulated Hanford tank wastes and on actual tank waste samples. Simulant compositions are defined and an experimental logic tree is provided for Fauske and Associates (FAI) to perform the experiments. From this guidance, methods and equipment for small-scale tube propagation experiments to be performed at the Hanford Site on actual tank samples will be developed. Propagation behavior of wastes will directly support the safety analysis (SARR) for the organic tanks. Tube propagation may be the definitive tool for determining the relative reactivity of the wastes contained in the Hanford tanks. FAI have performed tube propagation studies previously on simple two- and three-component surrogate mixtures. The simulant defined in this test plan more closely represents actual tank composition. Data will be used to support preparation of criteria for determining the relative safety of the organic bearing wastes

  1. Hanford low-level vitrification melter testing -- Master list of data submittals

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1995-01-01

    The Westinghouse Hanford Company (WHC) is conducting a two-phased effort to evaluate melter system technologies for vitrification of liquid low-level radioactive waste (LLW) streams. The evaluation effort includes demonstration testing of selected glass melter technologies and technical reports regarding the applicability of the glass melter technologies to the vitrification of Hanford LLW tank waste. The scope of this document is to identify and list vendor document submittals in technology demonstration support of the Hanford Low-Level Waste Vitrification melter testing program. The scope of this document is limited to those documents responsive to the Statement of Work, accepted and issued by the LLW Vitrification Program. The purpose of such a list is to maintain configuration control of vendor supplied data and to enable ready access to, and application of, vendor supplied data in the evaluation of melter technologies for the vitrification of Hanford low-level tank wastes

  2. Modifying the rheological properties of melter feed for the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Blair, H.T.; McMakin, A.H.

    1986-03-01

    Selected high-level nuclear wastes from the Hanford Site may be vitrified in the future Hanford Waste Vitrification Plant (HWVP) by Rockwell Hanford Company, the contractor responsible for reprocessing and waste management at the Hanford Site. The Pacific Northwest Laboratory (PNL), is responsible for providing technical support for the HWVP. In this capacity, PNL performed rheological evaluations of simulated HWVP feed in order to determine which processing factors could be modified to best optimize the vitrification process. To accomplish this goal, a simulated HWVP feed was first created and characterized. Researchers then evaluated how the chemical and physical form of the glass-forming additives affected the rheological properties and melting behavior of melter feed prepared with the simulated HWVP feed. The effects of adding formic acid to the waste were also evaluated. Finally, the maximum melter feed concentration with acceptable rheological properties was determined

  3. SGN-Reseau Eurisys participates to the Hanford military site rehabilitation

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Numatec Hanford Corporation, a subsidiary company of SGN-Reseau Eurisys and Cogema, gained with Fluor Daniel the contract for the rehabilitation of the old military nuclear centre of Hanford (Washington, USA). This contract of 5 years represents 5 billions of US dollars with 300 millions of dollars for the French part. This short paper gives a general description of the Hanford installations and of the partners involved in the contract: Fluor Daniel consortium, Lockheed Martin, Babcock and Wilcox, Duke Engineering and Services, Rust Federal Services, Numatec Hanford Corporation (NHC), SGN-Eurisys Services Corporation (SESC). The schedule comprises: the stabilisation of the residual plutonium in all installations before December 1999, the removal of muds and debris from the K storage pool of irradiated fuels before June 2000, the draining and cleaning of the high activity storage tanks before December 2001 and the general decontamination of the installations up to the year 2005. (J.S.)

  4. The Hanford Site generic component failure-rate database compared with other generic failure-rate databases

    International Nuclear Information System (INIS)

    Reardon, M.F.; Zentner, M.D.

    1992-11-01

    The Risk Assessment Technology Group, Westinghouse Hanford Company (WHC), has compiled a component failure rate database to be used during risk and reliability analysis of nonreactor facilities. Because site-specific data for the Hanford Site are generally not kept or not compiled in a usable form, the database was assembled using information from a variety of other established sources. Generally, the most conservative failure rates were chosen from the databases reviewed. The Hanford Site database has since been used extensively in fault tree modeling of many Hanford Site facilities and systems. The purpose of this study was to evaluate the reasonableness of the data chosen for the Hanford Site database by comparing the values chosen with the values from the other databases

  5. Women and the Hanford Site

    Science.gov (United States)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  6. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria with in which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP

  7. Hanford Site Transuranic (TRU) Waste Certification Plan

    Energy Technology Data Exchange (ETDEWEB)

    GREAGER, T.M.

    1999-09-09

    The Hanford Site Transuranic Waste Certification Plan establishes the programmatic framework and criteria within which the Hanford Site ensures that contract-handled TRU wastes can be certified as compliant with the WIPP WAC and TRUPACT-II SARP.

  8. Hanford Site peak gust wind speeds

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1998-01-01

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site

  9. Hanford general employee training: Computer-based training instructor's manual

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Computer-Based Training portion of the Hanford General Employee Training course is designed to be used in a classroom setting with a live instructor. Future references to this course'' refer only to the computer-based portion of the whole. This course covers the basic Safety, Security, and Quality issues that pertain to all employees of Westinghouse Hanford Company. The topics that are covered were taken from the recommendations and requirements for General Employee Training as set forth by the Institute of Nuclear Power Operations (INPO) in INPO 87-004, Guidelines for General Employee Training, applicable US Department of Energy orders, and Westinghouse Hanford Company procedures and policy. Besides presenting fundamental concepts, this course also contains information on resources that are available to assist students. It does this using Interactive Videodisk technology, which combines computer-generated text and graphics with audio and video provided by a videodisk player.

  10. Tolerancing requirements for remote handling at the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Van Katwijk, C.; Keenan, R.M.; Bullis, R.E.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed by Fluor Daniel, Inc. with Waste Chem Corporation as Fluor Daniel, Inc.'s major subcontractor specializing in vitrification and remote system technologies. United Engineers and Constructors (UE ampersand C)/Catalytic (UCAT) will construct the plant. Westinghouse Hanford Company is the Project Integration manager and Business manager, and as the plant operator it provides technical direction to the Architect/ Engineer team (A/E) and constructor on behalf of the US Department of Energy - Richland Field Office. The A/E has developed, in cooperation with UE ampersand C, Westinghouse Hanford Company, and the US Department of Energy, a new and innovative approach to installations of the many remote nozzles and electrical connectors that must be installed to demanding tolerances. This paper summarizes the key elements of the HWVP approach

  11. Organic carbon in Hanford single-shell tank waste

    International Nuclear Information System (INIS)

    Toth, J.J.; Willingham, C.E.; Heasler, P.G.; Whitney, P.D.

    1994-07-01

    This report documents an analysis performed by Pacific Northwest Laboratory (PNL) involving the organic carbon laboratory measurement data for Hanford single-shell tanks (SSTS) obtained from a review of the laboratory analytical data. This activity was undertaken at the request of Westinghouse Hanford Company (WHC). The objective of this study is to provide a best estimate, including confidence levels, of total organic carbon (TOC) in each of the 149 SSTs at Hanford. The TOC analyte information presented in this report is useful as part of the criteria to identify SSTs for additional measurements or monitoring for the organic safety program. This report is a precursor to an investigation of TOC and moisture in Hanford SSTS, in order to provide best estimates for each together in one report. Measured laboratory data were obtained for 75 of the 149 SSTS. The data represent a thorough investigation of data from 224 tank characterization datasets, including core-sampling and process laboratory data. Liquid and solid phase TOC values were investigated by examining selected tanks with both reported TOC values in solid and liquid phases. Some relationships were noted, but there was no clustering of data or significance between the solid and liquid phases. A methodology was developed for estimating the distribution and levels of TOC in SSTs using a logarithmic scale and an analysis of variance (ANOVA) technique. The methodology grouped tanks according to waste type using the Sort On Radioactive Waste Type (SORWT) grouping method. The SORWT model categorizes Hanford SSTs into groups of tanks expected to exhibit similar characteristics based on major waste types and processing histories. The methodology makes use of laboratory data for the particular tank and information about the SORWT group of which the tank is a member. Recommendations for a simpler tank grouping strategy based on organic transfer records were made

  12. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.

  13. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    International Nuclear Information System (INIS)

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ''milked'' from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country

  14. Headspace vapor characterization of Hanford Waste Tank 241-U-112: Results from samples collected on 7/09/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-112 at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company

  15. Hanford Sitewide Groundwater Remediation Strategy

    International Nuclear Information System (INIS)

    Knepp, A.J.; Isaacs, J.D.

    1997-09-01

    This document fulfills the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-13-81, to develop a concise statement of strategy that describe show the Hanford Site groundwater remediation will be accomplished. The strategy addresses objectives and goals, prioritization of activities, and technical approaches for groundwater cleanup. The strategy establishes that the overall goal of groundwater remediation on the Hanford Site is to restore groundwater to its beneficial uses in terms of protecting human health and the environment, and its use as a natural resource. The Hanford Future Site Uses Working Group established two categories for groundwater commensurate with various proposed landuses: (1) restricted use or access to groundwater in the Central Plateau and in a buffer zone surrounding it and (2) unrestricted use or access to groundwater for all other areas. In recognition of the Hanford Future Site Uses Working Group and public values, the strategy establishes that the sitewide approach to groundwater cleanup is to remediate the major plumes found in the reactor areas that enter the Columbia River and to contain the spread and reduce the mass of the major plumes found in the Central Plateau

  16. The Hanford Site focus, 1994

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1994-03-01

    This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE's Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion

  17. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  18. Differential turbidity at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Stokes, G.M.

    1980-01-01

    Experiments continued in FY 1979 to examine differential turbidity effects on insolation as measured at the earth's surface. These experiments are primarily intended to provide means for interpreting insolation-data assessment studies. These data are also valuable for inferring aerosol radiative or optical effects, which is an important consideration in evaluating inadvertent climate modification and visibility degradation as a result of aerosols. The experiments are characterized by frequent, nearly simultaneous observations at the Rattlesnake Mountain Observatory (RMO) and the Hanford Meteorological Station (HMS) and take advantage of the nearly 1-km altitude difference between these two observing sites. This study indicated that nearly simultaneous measurements of the direct solar beam from stationary sites that are separated in altitude can be used to monitor the incremental optical depth arising from aerosols in the intervening layer. Once appropriate calbiration procedures have been established for the MASP unit, the direct solar data can be used to document on a routine basis aerosol variations in the first kilometer between HMS and RMO

  19. Hanford gas dispersion analysis

    International Nuclear Information System (INIS)

    Fujita, R.K.; Travis, J.R.

    1994-01-01

    An analysis was performed to verify the design of a waste gas exhauster for use in support of rotary core sampling activities at the Westinghouse Hanford Waste Tank Farm. The exhauster was designed to remove waste gases from waste storage tanks during the rotary core drilling process of the solid materials in the tank. Some of the waste gases potentially are very hazardous and must be monitored during the exhauster's operation. If the toxic gas concentrations in specific areas near the exhauster exceed minimum Threshold Limit Values (TLVs), personnel must be excluded from the area. The exhauster stack height is of interest because an increase in stack height will alter the gas concentrations at the critical locations. The exhaust stack is currently ∼4.6 m (15 ft) high. An equipment operator will be located within a 6.1 m (20 ft) radius of the exhaust stack, and his/her head will be at an elevation 3.7 m (12 ft) above ground level (AGL). Therefore, the maximum exhaust gas concentrations at this location must be below the TLV for the toxic gases. Also, the gas concentrations must be within the TLV at a 61 m (200 ft) radius from the stack. If the calculated gas concentrations are above the TLV, where the operator is working below the stack at the 61 m (200 ft) radius location, the stack height may need to be increased

  20. 1976 Hanford americium accident

    International Nuclear Information System (INIS)

    Heid, K.R.; Breitenstein, B.D.; Palmer, H.E.; McMurray, B.J.; Wald, N.

    1979-01-01

    This report presents the 2.5-year medical course of a 64-year-old Hanford nuclear chemical operator who was involved in an accident in an americium recovery facility in August 1976. He was heavily externally contaminated with americium, sustained a substantial internal deposition of this isotope, and was burned with concentrated nitric acid and injured by flying debris about the face and neck. The medical care given the patient, including the decontamination efforts and clinical laboratory studies, are discussed. In-vivo measurements were used to estimate the dose rates and the accumulated doses to body organs. Urinary and fecal excreta were collected and analyzed for americium content. Interpretation of these data was complicated by the fact that the intake resulted both from inhalation and from solubilization of the americium embedded in facial tissues. A total of 1100 μCi was excreted in urine and feces during the first 2 years following the accident. The long-term use of diethylenetriaminepentate (DTPA), used principally as the zinc salt, is discussed including the method, route of administration, and effectiveness. To date, the patient has apparently experienced no complications attributable to this extensive course of therapy, even though he has been given approximately 560 grams of DTPA. 4 figures, 1 table

  1. HANFORDS PUBLIC TOUR PROGRAM - AN EXCELLENT EDUCATIONAL TOOL

    Energy Technology Data Exchange (ETDEWEB)

    SINCLAIR KM

    2010-12-07

    Prior to 2001, the Department of Energy (DOE) sponsored limited tours of the Hanford Site for the public, but discontinued the program after the 9/11 terrorist attacks on the U.S. In 2003, DOE's Richland Operations Office (DOE-RL) requested the site's prime contractor to reinstate the public tour program starting in 2004 under strict controls and security requirements. The planning involved a collaborative effort among the security, safety and communications departments of DOE-RL and the site's contracting companies. This paper describes the evolution of, and enhancements to, Hanford's public tours, including the addition of a separate tour program for the B Reactor, the first full-scale nuclear reactor in the world. Topics included in the discussion include the history and growth of the tour program, associated costs, and visitor surveys and assessments.

  2. Hanford's Public Tour Program - An Excellent Educational Tool

    International Nuclear Information System (INIS)

    Sinclair, K.M.

    2010-01-01

    Prior to 2001, the Department of Energy (DOE) sponsored limited tours of the Hanford Site for the public, but discontinued the program after the 9/11 terrorist attacks on the U.S. In 2003, DOE's Richland Operations Office (DOE-RL) requested the site's prime contractor to reinstate the public tour program starting in 2004 under strict controls and security requirements. The planning involved a collaborative effort among the security, safety and communications departments of DOE-RL and the site's contracting companies. This paper describes the evolution of, and enhancements to, Hanford's public tours, including the addition of a separate tour program for the B Reactor, the first full-scale nuclear reactor in the world. Topics included in the discussion include the history and growth of the tour program, associated costs, and visitor surveys and assessments.

  3. Tank vapor mitigation requirements for Hanford Tank Farms

    International Nuclear Information System (INIS)

    Rakestraw, L.D.

    1994-01-01

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks

  4. Tank vapor mitigation requirements for Hanford Tank Farms

    Energy Technology Data Exchange (ETDEWEB)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  5. Tolerancing requirements for remote handling at the Hanford vitrification project

    International Nuclear Information System (INIS)

    Keenan, R.M.; Bullis, R.E.; Van Katwijk, C.

    1993-01-01

    The Hanford Waste Vitrification Plant is being designed by Fluor Daniel, Inc. with WasteChem Corporation as Fluor Daniel's major subcontractor specializing in vitrification and remote system technologies. United Engineers and Constructors/Catalytic (UE ampersand C) will construct the plant. Westinghouse Hanford Company (WHC) is the Project Integration manager, manager and as the plant operator provides technical direction to the Architect/Engineer team (A/E) and constructor on behalf of the Department of Energy - Richland Field Office. The A/E has developed, in cooperation with UE ampersand C, WHC and DOE, a new and innovative approach to installations of the many remote nozzles and electrical connectors that must be installed to demanding tolerances. This paper summarizes the key elements of the HWVP approach

  6. Hanford Site sustainable development initiatives

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project

  7. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  8. Stakeholder involvement in redefining Hanford's Double-Shell Tank Waste Disposal Program

    International Nuclear Information System (INIS)

    Triplett, M.B.; Hunter, V.L.

    1992-01-01

    Hanford's Double-Shell Tank (DST) waste disposal strategy, outlined in the Final Environmental Impact Statement, Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland, Washington calls for using B-Plant to separate the low-level and high-level portions of the DST waste. This separations step would provide feed to the Hanford Waste Vitrification Plant (HWVP), viewed by many as the cornerstone to Site cleanup. The State of Washington strongly opposed using the 47-year old B-Plant because it was not built to comply with current environmental regulations. Because of this and other challenges to Hanford's tank waste disposal strategy, the Department of Energy (DOE) Richland Field Office (RL) initiated efforts to redefine the strategy. To support this effort, Pacific Northwest Laboratory, (PNL) and Westinghouse Hanford Company, (WHC) and sought input from outside stakeholder (stakeholders are those interest groups that are affected by the outcome of the decision and have a strong desire to ensure that their concerns are addressed) groups through a formal stakeholder involvement and multiattribute utility (MAU) analysis process

  9. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E. [Pacific Northwest Lab., Richland, WA (United States); Weiss, S.G.; Stegen, J.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  10. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1991-04-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from released to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and, environmental pathways and dose estimates

  11. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Finch, S.M.; McMakin, A.H.

    1992-06-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Battelle Pacific Northwest Laboratories under contract with the Centers for Disease Control. The independent Technical Steering Panel (TSP) provides technical direction. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demography, food consumption, and agriculture; environmental pathways and dose estimates

  12. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  13. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    International Nuclear Information System (INIS)

    Herborn, D.I.

    1993-11-01

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals

  14. Hanford Site Permanent Isolation Surface Barrier Development Program: Fiscal year 1992 and 1993 highlights

    International Nuclear Information System (INIS)

    Cadwell, L.L.; Link, S.O.; Gee, G.W.

    1993-09-01

    The Hanford Site Permanent Isolation Surface Barrier Development Program was jointly developed by the Pacific Northwest Laboratory and Westinghouse Hanford Company to design and test an earthen cover system that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. Kaiser Engineers Hanford Company provided engineering design support for the program. Work on barrier design has been under way at Hanford for nearly 10 years. The comprehensive development of a long-term barrier, formerly the Hanford Site Protective Barrier Development Program, was initiated in FY 1986, and a general field-tested design is expected to be completed by FY 1998. Highlights of efforts in FY 1992 and FY 1993 included the resumption of field testing, the completion of the prototype barrier design, and the convening of an external peer review panel, which met twice with the barrier development team. The review panel provided helpful guidance on current and future barrier development activities, while commending the program for its significant technical contributions to innovative barrier technology development

  15. Hanford Site technical baseline database. Revision 1

    International Nuclear Information System (INIS)

    Porter, P.E.

    1995-01-01

    This report lists the Hanford specific files (Table 1) that make up the Hanford Site Technical Baseline Database. Table 2 includes the delta files that delineate the differences between this revision and revision 0 of the Hanford Site Technical Baseline Database. This information is being managed and maintained on the Hanford RDD-100 System, which uses the capabilities of RDD-100, a systems engineering software system of Ascent Logic Corporation (ALC). This revision of the Hanford Site Technical Baseline Database uses RDD-100 version 3.0.2.2 (see Table 3). Directories reflect those controlled by the Hanford RDD-100 System Administrator. Table 4 provides information regarding the platform. A cassette tape containing the Hanford Site Technical Baseline Database is available

  16. Safety evaluation report related to the construction of Skagit/Hanford Nuclear Project, Units 1 and 2. Docket Nos. STN 50-522 and 50-523

    International Nuclear Information System (INIS)

    1982-12-01

    Supplement 3 to the Safety Evaluation Report for the application filed by Puget Sound Power and Light Company on behalf of itself, the Pacific Power and Light Company, The Washington Water Power Company, and the Portland General Electric Company for construction permits to build the Skagit/Hanford Nuclear Project has been issued by the Office of Nuclear Reactor Regulation of the United States Nuclear Regulatory Commission. This supplement is an evaluation of the site relocation amendment to the Preliminary Safety Analysis Report. The proposed site has been relocated from Skagit County, Washington, to the Department of Energy's Hanford Reservation

  17. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  18. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  19. Differential turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Bates, J.A.; Kleckner, E.W.; Michalsky, J.J.; Schrotke, P.M.; Thorp, J.M.

    1978-01-01

    An experiment to exmine differential turbidity effects on measured insolation between the Rattlesnake Observatory and the Hanford Meteorological Station was conducted during summer 1977. Several types of solar radiation instruments were used, including pyranometers, multiwavelength sunphotometers, and an active cavity radiometer. Preliminary results show dramatic temporal variability of aerosol loading at HMS and significant insolation and turbidity differences between the Observatory and HMS

  20. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  1. Mortality of Hanford radiation workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1979-01-01

    The effects of occupational exposure to low level ionizing radiation at the Hanford plant in southeastern Washington were investigated. Death rates were related to exposure status. To provide perspective, the rates were also compared with the death rates of the US population

  2. Hanford site operator changes management

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    This article is a brief discussion of management changes at the Westinghouse Hanford Corporation. A. LeMar Trego has relieved Thomas Anderson as president of WHC. This was in response to recent shortcomings in Westinghouse's management of the environmental restoration and their failure to receive a $10M performance bonus

  3. TRACKING CLEAN UP AT HANFORD

    International Nuclear Information System (INIS)

    CONNELL, C.W.

    2005-01-01

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  4. Hanford low-level waste process chemistry testing data package

    International Nuclear Information System (INIS)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a open-quotes proof of principleclose quotes test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock ampersand Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM)

  5. Hanford double shell tank corrosion monitoring instrument trees

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  6. Restart oversight assessment of Hanford 242-A evaporator: Summary report

    International Nuclear Information System (INIS)

    1994-08-01

    This report summarizes a January 17--28, 1994, oversight assessment of restart activities for the 242-A Evaporator at the US Department of Energy's (DOE's) Hanford Site about 25 miles northeast of Hanford, Washington. The assessment was conducted by qualified staff and consultants from the DOE Office of Environment, Safety and Health (EH). Its focus was the readiness of the facility for the resumption of safe operations, in particular those operations involved in the treatment and disposal of condensate from the evaporation of liquid radioactive waste, a key element of the tank waste remediation project administered by the DOE Richland Operations Office (DOE-RL). Overall, the assessment yielded eight programmatic concerns, supported by 38 individual findings. Of the concerns, four have already been closed, and the other four have been resolved. Results pointed up strengths in management and engineering design, as well as effective support of facility training programs by the management and operating contractor, Westinghouse Hanford Company (WHC). Weaknesses were evident, however, in conduct of operations, maintenance, and radiological practices. Furthermore, problems in the submittal and approval of Compliance Schedule Approvals--that is, WHC documentation of the status of compliance with DOE orders--were indicative of a programmatic breakdown in the DOE Order compliance process. According to the results of this assessment, there are no safety and health issues that would preclude or delay restart of the evaporator

  7. Making a Lasting Impression: Recovery Act Reporting At Hanford - 12528

    Energy Technology Data Exchange (ETDEWEB)

    Tebrugge, Kimberly; Disney, Maren [CH2MHILL Plateau Remediation Company, Richland, WA (United States)

    2012-07-01

    The award of American Recovery and Reinvestment Act funding came with an unprecedented request for transparency to showcase to the American public how the stimulus funding was being put to work to achieve the goals put forth by the U.S. Government. At the U.S. Department of Energy Hanford Site, this request manifested in a contract requirement to provide weekly narrative, photos and video to highlight Recovery Act-funded projects. For DOE contractor CH2M HILL Plateau Remediation Company (CH2M HILL), the largest recipient of Hanford's funding, the reporting mechanism evolved into a communications tool for documenting the highly technical cleanup, then effectively sharing that story with the DOE and its varying stakeholder audiences. The report set the groundwork for building a streaming narrative of week-by-week progress. With the end of the Recovery Act, CH2M HILL is applying lessons learned from this stringent, transparent reporting process to its long-term reporting and communications of the progress being made in nuclear decommissioning at Hanford. (authors)

  8. History of Hanford Site Defense Production (Brief)

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2001-01-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  9. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  10. Potential radiation doses from 1994 Hanford Operations

    Energy Technology Data Exchange (ETDEWEB)

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  11. Potential radiation doses from 1994 Hanford Operations

    International Nuclear Information System (INIS)

    Soldat, J.K.; Antonio, E.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site

  12. Fiscal year 1992 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.K.

    1993-09-01

    During FY 1992, the Hanford Cultural Resources Laboratory (HCRL) conducted a field survey of the 100-HR-3 Operable Unit (600 Area) and tested three sites near the 100 Area reactor compounds on the US Department of Energy`s Hanford Site at the request of Westinghouse Hanford Company. These efforts were conducted in compliance with Section 106 of the National Historic Preservation Act (NHPA) and are part of a cultural resources review of 100 Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization studies.The results of the FY 1992 survey and test excavation efforts are discussed in this report. 518 ha in the 100-HR-3 Operable Unit and conducted test excavations at three prehistoric sites near the 100-F and 100-K reactors to determine their eligibility for listing on the National Register of Historic Places.

  13. Installation and routing of critical embedments at the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Van Katwijk, C.; Keenan, R.M.; Watts, C.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed by Fluor Daniel. Waste Chem Corporation is providing specialized expertise as Fluor Daniel's major subcontractor for vitrification and remote systems technologies. Westinghouse Hanford Company (Westinghouse Hanford) is the Project Integration manager and Business manager, and as the plant operator it provides technical direction to the Architect/Engineer team and constructor on behalf of the US Department of Energy, Richland Field Office. The Hot Cell portion of HWVP Vitrification Building contains very congested piping systems in the walls that penetrate in to the cells to nozzles for remote piping jumper assemblies. These nozzles require very tight tolerances to ensure a leak-tight fit to the jumpers. An approach has been developed that minimizes the time and expense of installing these nozzles in the wall to tight construction tolerances. This approach is called the Ganged Embed Plate (GEP) design

  14. Hanford Site Solid Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-17

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  15. Pollution prevention opportunity assessments at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Betsch, M.D., Westinghouse Hanford

    1996-06-26

    The Pollution Prevention Opportunity Assessment (PPOA) is a pro- active way to look at a waste generating activity and identify opportunities to minimize wastes through a cost benefit analysis. Hanford`s PPOA process is based upon the graded approach developed by the Kansas City Plant. Hanford further streamlined the process while building in more flexibility for the individual users. One of the most challenging aspects for implementing the PPOA process at Hanford is one overall mission which is environmental restoration, Now that the facilities are no longer in production, each has a different non- routine activity making it difficult to quantify the inputs and outputs of the activity under consideration.

  16. HANFORD SCIENCE & TECHNOLOGY NEEDS STATEMENTS 2002

    Energy Technology Data Exchange (ETDEWEB)

    WIBLE, R.A.

    2002-04-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2002; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract, the Environmental Restoration Contract and the River Protection Project) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL and DOE-ORP Management, site stakeholders, state and federal regulators, and Tribal Nations. These needs are reviewed and updated on an annual basis and given a broad distribution.

  17. Field trip guide to the Hanford Site

    International Nuclear Information System (INIS)

    Reidel, S.P.; Lindsey, K.A.; Fecht, K.R.

    1992-11-01

    This report is designed to provide a guide to the key geologic and hydrologic features of the US Department of Energy's Hanford Site located in south-central Washington. The guide is divided into two parts. The first part is a general introduction to the geology of the Hanford Site and its relation to the regional framework of south-central Washington. The second part is a road log that provides directions to important geologic features on the Hanford Site and descriptions of the locality. The exposures described were chosen for their accessibility and importance to the geologic history of the Hanford Site and to understanding the geohydrology of the Site

  18. Hanford Site Solid Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    1993-01-01

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities

  19. Mortality of Hanford radiation workers

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1980-01-01

    Mortality from all causes for white males employed at Hanford for at least two years is 75 percent of that expected on the basis of US vital statistics. Mortality from cancer is 85 percent of that expected. These results are typical of a working population. Neither death from all causes nor death from all cancer types shows a positive correlation with external radiation exposures. Myeloid leukemia, the disease that several studies have found to be associated most strongly with radiation exposure, is not correlated with external radiation exposure of Hanford workers. Two specific cancers, multiple myeloma and to a lesser extent cancer of the pancreas, were found to be positively correlated with radiation exposure. The correlations identified result entirely from a small number of deaths (3 each for multiple myeloma and cancer of the pancreas) with cumulative exposure greater than 15 rem

  20. Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    McMakin, A.H.; Cannon, S.D.; Finch, S.M.

    1992-07-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in environmental pathways, epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering, radiation dosimetry, and cultural anthropology. Included are appointed technical members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source terms, environmental transport, environmental monitoring data, demography, food consumption, and agriculture, and environmental pathways and dose estimates. Progress is discussed

  1. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs

  2. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Well subject area of the Hanford Environmental Information System (HEIS) manages data relevant to wells, boreholes and test pits constructed at the Hanford Site for soil sampling, geologic analysis and/or ground-water monitoring, and sampling for hydrochemical and radiological analysis. Data stored in the Well subject area include information relevant to the construction of the wells and boreholes, structural modifications to existing wells and boreholes, the location of wells, boreholes and test pits, and the association of wells, boreholes and test pits with organization entities such as waste sites. Data resulting from ground-water sampling performed at wells are stored in tables in the Ground-Water subject area. Geologic data collected during drilling, including particle sizing and interpretative geologic summaries, are stored in tables in the Geologic subject area. Data from soil samples taken during the drilling or excavation and sent for chemical and/or radiological analysis are stored in the Soil subject area

  3. Hanford waste tank cone penetrometer

    International Nuclear Information System (INIS)

    Seda, R.Y.

    1995-12-01

    A new tool is being developed to characterize tank waste at the Hanford Reservation. This tool, known as the cone penetrometer, is capable of obtaining chemical and physical properties in situ. For the past 50 years, this tool has been used extensively in soil applications and now has been modified for usage in Hanford Underground Storage tanks. These modifications include development of new ''waste'' data models as well as hardware design changes to accommodate the hazardous and radioactive environment of the tanks. The modified cone penetrometer is scheduled to be deployed at Hanford by Fall 1996. At Hanford, the cone penetrometer will be used as an instrumented pipe which measures chemical and physical properties as it pushes through tank waste. Physical data, such as tank waste stratification and mechanical properties, is obtained through three sensors measuring tip pressure, sleeve friction and pore pressure. Chemical data, such as chemical speciation, is measured using a Raman spectroscopy sensor. The sensor package contains other instrumentation as well, including a tip and side temperature sensor, tank bottom detection and an inclinometer. Once the cone penetrometer has reached the bottom of the tank, a moisture probe will be inserted into the pipe. This probe is used to measure waste moisture content, water level, waste surface moisture and tank temperature. This paper discusses the development of this new measurement system. Data from the cone penetrometer will aid in the selection of sampling tools, waste tank retrieval process, and addressing various tank safety issues. This paper will explore various waste models as well as the challenges associated with tank environment

  4. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Biota subject area of the Hanford Environmental Information System (HEIS) is to manage the data collected from samples of plants and animals. This includes both samples taken from the plant or animal or samples related to the plant or animal. Related samples include animal feces and animal habitat. Data stored in the Biota subject area include data about the biota samples taken, analysis results counts from population studies, and species distribution maps

  5. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Soil subject area of the Hanford Environmental Information System (HEIS) is to manage the data acquired from soil samples, both geologic and surface, and sediment samples. Stored in the Soil subject area are data relevant to the soil samples, laboratory analytical results, and field measurements. The two major types of data make up the Soil subject area are data concerning the samples and data about the chemical and/or radiologic analyses of soil samples

  6. Hanford Generic Interim Safety Basis

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  7. Hanford Generic Interim Safety Basis

    International Nuclear Information System (INIS)

    Lavender, J.C.

    1994-01-01

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports

  8. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. HEIS is an information system with an inclusive database. Although the database is the nucleus of the system, HEIS also provides user access software: query-by-form data entry, extraction, and browsing facilities; menu-driven reporting facilities; an ad hoc query facility; and a geographic information system (GIS). These features, with the exception of the GIS, are described in this manual set. Because HEIS contains data from the entire Hanford Site, many varieties of data are included and have.been divided into subject areas. Related subject areas comprise several volumes of the manual set. The manual set includes a data dictionary that lists all of the fields in the HEIS database, with their definitions and a cross reference of their locations in the database; definitions of data qualifiers for analytical results; and a mapping between the HEIS software functions and the keyboard keys for each of the supported terminals or terminal emulators

  9. Hanford Site surface environmental surveillance

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1998-01-01

    Environmental surveillance of the Hanford Site and the surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to US Department of Energy (DOE) environmental protection policies, support DOE environmental management decisions, and provide information to the public. The Surface Environmental Surveillance Project (SESP) is a multimedia environmental monitoring program conducted to measure the concentrations of radionuclides and chemical contaminants in the environment and assess the integrated effects of these contaminants on the environment and the public. The monitoring program includes sampling air, surface water, sediments, soil, natural vegetation, agricultural products, fish, and wildlife. Functional elements inherent in the operation of the SESP include project management, quality assurance/control, training, records management, environmental sampling network design and implementation, sample collection, sample analysis, data management, data review and evaluation, exposure assessment, and reporting. The SESP focuses on those contaminant/media combinations calculated to have the highest potential for contributing to off-site exposure. Results of the SESP indicate that contaminant concentrations in the Hanford environs are very low, generally below environmental standards, at or below analytical detection levels, and indicative of environmental levels. However, areas of elevated contaminant concentrations have been identified at Hanford. The extent of these areas is generally limited to past operating areas and waste disposal sites

  10. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs

  11. Best Available Technology (economically achievable) guidance document for the Hanford Site

    International Nuclear Information System (INIS)

    1988-07-01

    This document provides Westinghouse Hanford Company (Westinghouse Hanford) and the US Department of Energy (DOE) with a step-by-step procedure for the identification and documentation of the Best Available Technology (BAT) economically achievable for treating liquid effluents on the Hanford Site. The BAT determination is a key element in the DOE strategy to eliminate use of the soil column for contaminated effluents disposal. Following application of BAT, a liquid effluent is considered suitable for discharge to the environment, including the soil column. Liquid effluents on the Hanford Site are currently disposed of in accordance with DOE orders that require protection of public health and safety, and to the extent possible, minimize adverse impacts on the environment. The determination of BAT on a liquid effluent will only occur after the effluent meets all applicable release limits. As a result, the application of BAT may involve an additional level of control, as well as contribute to the overall Hanford Site as low as reasonably achievable (ALARA) program. 27 refs., 7 figs., 1 tab

  12. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    International Nuclear Information System (INIS)

    GERBER MS

    2007-01-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site

  13. Hanford Site Welding Program Successfully Providing A Single Site Function For Use By Multiple Contractors

    International Nuclear Information System (INIS)

    Cannell, G.R.

    2009-01-01

    The Department of Energy, Richland Operations (DOE-RL) recently restructured its Hanford work scope, awarding two new contracts over the past several months for a total of three contracts to manage the sites cleanup efforts. DOE-RL met with key contractor personnel prior to and during contract transition to ensure site welding activities had appropriate oversight and maintained code compliance. The transition also provided an opportunity to establish a single site-wide function that would provide welding and materials engineering services to the Hanford site contractors: CH2M HILL Plateau Remediation Company (CHPRC); Mission Support Alliance (MSA); Washington River Protection Solutions (WRPS); and Washington Closure Hanford (WCH). Over the years, multiple and separate welding programs (amongst the several contractors) existed at the Hanford site leading to inefficiencies resulting from duplication of administrative efforts, maintenance of welding procedures, welder performance certifications, etc. The new, single program eliminates these inefficiencies. The new program, co-managed by two of the sites' new contractors, the CHPRC ('owner' of the program and responsible for construction welding services) and the MSA (provides maintenance welding services), provides more than just the traditional construction and maintenance welding services. Also provided, are welding engineering, specialty welding development/qualification for the closure of radioactive materials containers and materials evaluation/failure analysis. The following describes the new Hanford site welding program.

  14. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  15. Public involvement in the Hanford Double-Shell Tank waste disposal program

    International Nuclear Information System (INIS)

    Triplett, M.B.; Hunter, V.L.

    1992-06-01

    Hanford's Double-Shell Tank (DST) waste disposal program was redefined following serious challenges to the viability of the previous strategy due to increased regulatory requirements and operating expectations. Redefinition of the DST waste disposal program involved a far-reaching set of decisions and actions. A formal stakeholder involvement process was used to bring the concerns of outside groups into the definition and evaluation of altemative tank waste disposal strategies, broadening the participation and ownership of the revised pregrain. Hanford's Double-Shell Tank (DST) waste disposal strategy, calls for using B-Plant to separate the low-level and high-level portions of the DST waste. This separations step would provide feed to the Hanford Waste Vitrification Plant (HWVP), viewed by many as the cornerstone to Site cleanup. The State of Washington strongly opposed using the 47-year-old B-Plant because it was not built to comply with current environmental regulations. Because of this and other challenges to Hanford's tank waste disposal strategy, the Department of Energy (DOE) Richland Field Office (RL) initiated efforts to redefine the strategy. To support this effort, Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHCP) sought input from outside stakeholder groups (stakeholders are those interest groups that are affected by the outcome of the decision and have a strong desire to ensure that their concerns are addressed) through a formal stakeholder involvement and multi-attribute utility (MAU) analysis process. This paper describes that process and its results

  16. Smart Companies.

    Science.gov (United States)

    Galagan, Patricia A.

    1997-01-01

    Capturing and leveraging knowledge is an important new management trend that is as yet undefined. Some companies are accounting for their intellectual capital and applying it to the company balance sheets. (JOW)

  17. Iodine-131 releases from the Hanford Site, 1944--1947

    International Nuclear Information System (INIS)

    Heeb, C.M.

    1992-10-01

    Detailed results of the Hanford Environmental Dose Reconstruction (HEDR) iodine-131 release reconstruction are presented in this volume. Included are daily data on B, D, and F Plant, reactor operations from the P-Department Daily Reports (General Electric Company 1947). Tables of B and T Plant material processed from the three principal sources on separations plant operations: The Jaech report (Jaech undated), the 200 Area Report (Acken and Bird 1945; Bird and Donihee 1945), and the Metal History Reports (General Electric Company 1946). A transcription of the Jaech report is also provided because it is computer-generated and is not readily readable in its original format. The iodine-131 release data are from the STRM model. Cut-by-cut release estimates are provided, along with daily, monthly, and yearly summations. These summations are based on the hourly release estimates. The hourly data are contained in a 28 megabyte electronic file. Interested individuals may request a copy

  18. Fluor Hanford ALARA Center is a D and D Resource

    International Nuclear Information System (INIS)

    Waggoner, L.O.

    2008-01-01

    II. The ALARA Center staff routinely researches and tests new technology, sponsor vendor demonstrations, and redistribute tools, equipment and temporary shielding that may not be needed at one facility to another facility that needs it. The ALARA Center staff learns about new technology in several ways. This includes past radiological work experience, interaction with vendors, lessons learned, networking with other DOE sites, visits to the Hanford Technical Library, attendance at off-site conferences and ALARA Workshops. Personnel that contact the ALARA Center for assistance report positive results when they implement the tools, equipment and work practices recommended by the ALARA Center staff. This has translated to reduced exposure for workers and reduced the risk of contamination spread. For example: using a hydraulic shear on one job saved 16 Rem of exposure that would have been received if workers had used saws-all tools to cut piping in twenty-nine locations. Currently, the ALARA Center staff is emphasizing D and D techniques on size-reducing materials, decontamination techniques, use of remote tools/video equipment, capture ventilation, fixatives, using containments and how to find lessons learned. The ALARA Center staff issues a weekly report that discusses their interaction with the workforce and any new work practices, tools and equipment being used by the Hanford contractors. Distribution of this weekly report is to about 130 personnel on site and 90 personnel off site. This effectively spreads the word about ALARA throughout the DOE Complex. DOE EM-23, in conjunction with the D and D and Environmental Restoration work group of the Energy Facility Contractors Organization (EFCOG) established the Hanford ALARA Center as the D and D Hotline for companies who have questions about how D and D work is accomplished. The ALARA Center has become a resource to the nuclear industry and routinely helps contractors at other DOE Sites, power reactors, DOD sites, and

  19. Hanford Site Long-term Surface Barrier Development Program: Fiscal year 1994 highlights

    International Nuclear Information System (INIS)

    Petersen, K.L.; Link, S.O.; Gee, G.W.

    1995-08-01

    The Hanford Site Surface Barrier Development Program was organized in 1985 to test the effectiveness of various barrier designs in minimizing the effects of water infiltration; plant, animal and human intrusion; and wind and water erosion on buried wastes, plus preventing or minimizing the emanation of noxious gases. A team of scientists from the Pacific Northwest Laboratory (PNL) and engineers from Westinghouse Hanford Company (WHC) direct the barrier development effort. ICF Kaiser Hanford Company, in conjunction with WHC and PNL, developed design drawings and construction specifications for a 5-acre prototype barrier. The highlight of efforts in FY 1994 was the construction of the prototype barrier. The prototype barrier was constructed on the Hanford Site at the 200 BP-1 Operable Unit of the 200 East Area. Construction was completed in August 1994 and monitoring instruments are being installed so experiments on the prototype barrier can begin in FY 1995. The purpose of the prototype barrier is to provide insights and experience with issues regarding barrier design, construction, and performance that have not been possible with individual tests and experiments conducted to date. Additional knowledge and experience was gained in FY 1994 on erosion control, physical stability, water infiltration control, model testing, Resource Conservation and Recovery Act (RCRA) comparisons, biointrusion control, long-term performance, and technology transfer

  20. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  1. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  2. Public involvement in environmental surveillance at Hanford

    International Nuclear Information System (INIS)

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation's first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford's perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools

  3. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  4. Hanford Environmental Management Program implementation plan

    International Nuclear Information System (INIS)

    1988-08-01

    The Hanford Environmental Management Program (HEMP) was established to facilitate compliance with the applicable environmental statues, regulations, and standards on the Hanford Site. The HEMP provides a structured approach to achieve environmental management objectives. The Hanford Environmental Management Program Plan (HEMP Plan) was prepared as a strategic level planning document to describe the program management, technical implementation, verification, and communications activities that guide the HEMP. Four basic program objectives are identified in the HEMP Plan as follows: establish ongoing monitoring to ensure that Hanford Site operations comply with environmental requirements; attain regulatory compliance through the modification of activities; mitigate any environmental consequences; and minimize the environmental impacts of future operations at the Hanford Site. 2 refs., 24 figs., 27 tabs

  5. Hanford Site Risk Assessment Methodology. Revision 3

    International Nuclear Information System (INIS)

    1995-05-01

    This methodology has been developed to prepare human health and ecological evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) remedial investigations (RI) and the Resource conservation and Recovery Act of 1976 (RCRA) facility investigations (FI) performed at the Hanford Site pursuant to the hanford Federal Facility Agreement and Consent Order (Ecology et al. 1994), referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies site-specific risk assessment considerations and integrates them with approaches for evaluating human and ecological risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site

  6. The Hanford Site: An anthology of early histories

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford's early reactors were crucial to the sites's history; T-Plant made chemical engineering history; the UO 3 plant has a long history of service. PUREX Plant: the Hanford Site's Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon

  7. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  8. Waste minimization -- Hanford`s strategy for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Merry, D.S.

    1998-01-30

    The Hanford Site cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single-shell storage tanks, treating waste stored in 28 double-shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored onsite, removing thousands of structures, and dealing with significant solid waste, groundwater, and land restoration issues. The Pollution Prevention/Waste Minimization (P2/WMin) Program supports the Hanford Site mission to safely clean up and manage legacy waste and to develop and deploy science and technology in many ways. Once such way is through implementing and documenting over 231 waste reduction projects during the past five years, resulting in over $93 million in cost savings/avoidances. These savings/avoidances allowed other high priority cleanup work to be performed. Another way is by exceeding the Secretary of Energy`s waste reduction goals over two years ahead of schedule, thus reducing the amount of waste to be stored, treated and disposed. Six key elements are the foundation for these sustained P2/WMin results.

  9. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    This report discusses the procedures that establish the configuration control processes for the Hanford Environmental Information System (HEIS) software. The procedures also provide the charter and function of the HEIS Configuration Control Board (CCB) for maintaining software. The software configuration control items covered under these procedures include the HEIS software and database structure. The configuration control processes include both administrative and audit functions. The administrative role includes maintaining the overall change schedule, ensuring consistency of proposed changes, negotiating change plan adjustments, setting priorities, and tracking the status of changes. The configuration control process audits to ensure that changes are performed to applicable standards

  10. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    Schreck, R.I.

    1994-01-01

    The Hanford Environmental Information System (HEIS) Subject Area manuals are designed as reference guides, that is, each chapter provides the information needed to make best use of each subject area, its tables, and reporting capabilities. Each subject area is documented in a chapter in one of the subject area manuals. Because these are reference manuals, most of the information is also available in the online help system as well. See Section 5.4.2 of the HEIS User's Guide (DOE-RL 1994a) for a detailed description of the online help

  11. Hanford 200 Areas Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, C.A.; Daly, K.S.

    1993-08-01

    The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas.

  12. Cancer mortality in Hanford workers

    International Nuclear Information System (INIS)

    Marks, S.; Gilbert, E.S.; Breitenstein, B.D.

    1978-01-01

    Personnel and radiation exposure data for past and present employees of the Hanford plant have been collected and analysed for a possible relationship of exposure to mortality. The occurrence of death in workers was established by the Social Security Administration and the cause of death obtained from death certificates. Mortality from all causes, all cancer cases and specific cancer types was related to the population at risk. Standardized mortality ratios were calculated for white males, using age- and calendar year-specific mortality rates for the U.S. population in the calculation of expected deaths. This analysis showed a substantial 'healthy worker effect' and no significantly high standardized mortality ratios for specific disease categories. A test for association of mortality with levels of radiation exposure revealed no correlation for all causes and all cancer. In carrying out this test, adjustment was made for age and calendar year of death, length of employment and occupational category. A statistically significant test for trend was obtained for multiple myeloma and carcinoma of the pancreas. However, in view of the absence of such a correlation for diseases more commonly associated with radiation exposure such as myeloid leukaemia, as well as the small number of deaths in higher exposure groups, the results cannot be considered definitive. Any conclusions based on these associations should be viewed in relation to the results of other studies. These results are compared with those of other investigators who have analysed the Hanford data. (author)

  13. Hanford transuranic storage corrosion review

    International Nuclear Information System (INIS)

    Nelson, J.L.; Divine, J.R.

    1980-12-01

    The rate of atmospheric corrosion of the transuranic (TRU) waste drums at the US Department of Energy's Hanford Project, near Richland, Washington, was evaluated by Pacific Northwest Laboratory (PNL). The rate of corrosion is principally contingent upon the effects of humidity, airborne pollutants, and temperature. Results of the study indicate that actual penetration of barrels due to atmospheric corrosion will probably not occur within the 20-year specified recovery period. Several other US burial sites were surveyed, and it appears that there is sufficient uncertainty in the available data to prevent a clearcut statement of the corrosion rate at a specific site. Laboratory and site tests are recommended before any definite conclusions can be made. The corrosion potential at the Hanford TRU waste site could be reduced by a combination of changes in drum materials (for example, using galvanized barrels instead of the currently used mild steel barrels), environmental exposure conditions (for example, covering the barrels in one of numerous possible ways), and storage conditions

  14. Hanford 200 Areas Development Plan

    International Nuclear Information System (INIS)

    Rinne, C.A.; Daly, K.S.

    1993-08-01

    The purpose of the Hanford 200 Areas Development Plan (Development Plan) is to guide the physical development of the 200 Areas (which refers to the 200 East Area, 200 West Area, and 200 Area Corridor, located between the 200 East and 200 West Areas) in accordance with US Department of Energy (DOE) Order 4320.lB (DOE 1991a) by performing the following: Establishing a land-use plan and setting land-use categories that meet the needs of existing and proposed activities. Coordinating existing, 5-year, and long-range development plans and guiding growth in accordance with those plans. Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities. Identifying site development issues that need further analysis. Integrating program plans with development plans to ensure a logical progression of development. Coordinate DOE plans with other agencies [(i.e., Washington State Department of Ecology (Ecology) and US Environmental Protection Agency (EPA)]. Being a support document to the Hanford Site Development Plan (DOE-RL 1990a) (parent document) and providing technical site information relative to the 200 Areas

  15. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  16. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  17. Hanford Site Pollution Prevention Plan Progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This report tracks progress against the goals stated in the Hanford Site 5-year Pollution Prevention Plan. The executive summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, executive summary, and the progress reports are elements of a pollution prevention planning program that is required by Washington Administrative Code (WAC) 173-307 for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement Chapter 70.95C, Revised Code of Washington, an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the inprocess reuse or reclamation of valuable spent material. Although the Hanford Site is exempt, it is voluntarily complying with this state regulatory-mandated program. This is the first year the Hanford Site is submitting a progress report. It covers calendar year 1993 plus the last quarter of 1992. What is reported, in accordance with WAC 173-307, are reductions in hazardous substance use and hazardous waste generated. A system of Process Waste Assessments (PWA) was chosen to meet the requirements of the program. The PWAs were organized by a physical facility or company organization. Each waste-generating facility/organization performed PWAs to identify, screen, and analyze their own reduction options. Each completed PWA identified any number of reduction opportunities, that are listed individually in the plan and summarized by category in the executive summary. These opportunities were to be implemented or evaluated further over the duration of the 5-year plan. The basis of this progress report is to track action taken on these PWA reduction opportunities in relationship to achieving the goals stated in the Pollution Prevention Plan.

  18. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    International Nuclear Information System (INIS)

    Cadwell, L.L.

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs

  19. Hanford Site Protective Barrier Development Program: Fiscal year 1990 highlights

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, L.L. (ed.)

    1991-09-01

    The Hanford Site Protective Barrier Development Program was jointly developed by Pacific Northwest Laboratory (PNL) and Westinghouse Hanford Company (WHC) to design and test an earthen cover system(s) that can be used to inhibit water infiltration; plant, animal, and human intrusion; and wind and water erosion. The joint PNL/WHC program was initiated in FY 1986. To date, research findings support the initial concepts of barrier designs for the Hanford Site. A fine-soil surface is planned to partition surface water into runoff and temporary storage. Transpiration by vegetation that grows in the fine-soil layer will return stored water to the atmosphere as will surface evaporation. A capillary break created by the interface of the fine-soil layer and coarser textured materials below will further limit the downward migration of surface water, making it available over a longer period of time for cycling to the atmosphere. Should water pass the interface, it will drain laterally through a coarse textured sand/gravel layer. Tested barrier designs appear to work adequately to prevent drainage under current and postulated wetter-climate (added precipitation) conditions. Wind and water erosion tasks are developing data to predict the extent of erosion on barrier surfaces. Data collected during the last year confirm the effectiveness of small burrowing animals in removing surface water. Water infiltrating through burrows of larger mammals was subsequently lost by natural processes. Natural analog and climate change studies are under way to provide credibility for modeling the performance of barrier designs over a long period of time and under shifts in climate. 10 refs., 30 figs.

  20. Hanford Site Pollution Prevention Plan Progress report, 1993

    International Nuclear Information System (INIS)

    1994-08-01

    This report tracks progress against the goals stated in the Hanford Site 5-year Pollution Prevention Plan. The executive summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, executive summary, and the progress reports are elements of a pollution prevention planning program that is required by Washington Administrative Code (WAC) 173-307 for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement Chapter 70.95C, Revised Code of Washington, an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the inprocess reuse or reclamation of valuable spent material. Although the Hanford Site is exempt, it is voluntarily complying with this state regulatory-mandated program. This is the first year the Hanford Site is submitting a progress report. It covers calendar year 1993 plus the last quarter of 1992. What is reported, in accordance with WAC 173-307, are reductions in hazardous substance use and hazardous waste generated. A system of Process Waste Assessments (PWA) was chosen to meet the requirements of the program. The PWAs were organized by a physical facility or company organization. Each waste-generating facility/organization performed PWAs to identify, screen, and analyze their own reduction options. Each completed PWA identified any number of reduction opportunities, that are listed individually in the plan and summarized by category in the executive summary. These opportunities were to be implemented or evaluated further over the duration of the 5-year plan. The basis of this progress report is to track action taken on these PWA reduction opportunities in relationship to achieving the goals stated in the Pollution Prevention Plan

  1. Overview of the Hanford risk management plan

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1998-01-01

    The Project Hanford Management Contract called for the enhancement of site-wide decision processes, and development of a Hanford Risk Management Plan to adopt or develop a risk management system for the Hanford Site. This Plan provides a consistent foundation for Site issues and addresses site-wide management of risks of all types. It supports the Department of Energy planning and sitewide decision making policy. Added to this requirement is a risk performance report to characterize the risk management accomplishments. This paper presents the development of risk management within the context of work planning and performance. Also discussed are four risk elements which add value to the context

  2. Headspace vapor characterization of Hanford waste tank 241-U-108: Results from samples collected on 8/29/95

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Pool, K.H.; Olsten, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1996-05-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-108 (Tank U-108) at the Hanford Site in Washington State. The results described in the report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC

  3. Restart oversight assessment of Hanford 242-A evaporator: Technical report

    International Nuclear Information System (INIS)

    Lagdon, R.; Lasky, R.

    1994-08-01

    An assessment team from the Office of Environment, Safety and Health (EH), US Department of Energy (DOE), conducted an independent assessment of the 242-A Evaporator at the Hanford Site during January 17--28, 1994. An EH team member remained on-site following the assessment to track corrective actions and resolve prestart findings. The primary objective of this assessment was independent assurance that the DOE Office of Environmental Management (EM), the DOE Richland Operations Office (DOE-RL), and Westinghouse Hanford Company (WHC) can safely restart the evaporator. Another objective of the EH team was to assess EM's Operational Readiness Evaluation (ORE) to determine if the programs, procedures, and management systems implemented for operation of the 241-A Evaporator ensure the protection of worker safety and health. The following section of this report provides background information on the 242-A Evaporator and Operational Readiness Review (ORR) activities conducted to date. The next chapter is divided into sections that address the results of discrete assessment activities. Each section includes a brief statement of conclusions for the functional area in question, descriptions of the review bases and methods, and a detailed discussion of the results. Concerns identified during the assessment are listed for the section to which they apply, and the specific findings upon which the concern is based can be found immediately thereafter

  4. Risk management study for the retired Hanford Site facilities

    International Nuclear Information System (INIS)

    Coles, G.A.; Shultz, M.V.; Taylor, W.E.

    1993-04-01

    Risk from retired surplus facilities has always been assumed to be low at the Hanford Site as the facilities are inactive and have few potentials for causing an offsite hazardous material release. However,the fatal accident that occurred in the spring of 1992 in which an employee fell through a deteriorated roof at the 105-F Reactor Building has raised the possibility that retired facilities represent a greater risk than was originally assumed. Therefore, Westinghouse Hanford Company and the US Department of Energy management have determined that facility risk management strategies and programmatic plans should be reevaluated to assure risks are identified and appropriate corrective action plans are developed. To evaluate risk management strategies, accurate risk information about the current and projected condition of the facilities must be developed. This work procedure has been created to address the development of accurate and timely risk information. By using the evaluation results in this procedure, it will be possible to create a prioritized baseline for managing facility risk until all retired surplus facilities are demolished

  5. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    International Nuclear Information System (INIS)

    West, L.D.

    2011-01-01

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W and FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m 3 of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% (∼8,000 m 3 ) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  6. Hanford Laboratories monthly activities report, November 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-12-15

    This is the monthly report for the Hanford Laboratories Operation, November 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research.

  7. Hanford Laboratories monthly activities report, March 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-04-15

    This is the monthly report for the Hanford Laboratories Operation March 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  8. Hanford Site baseline risk assessment methodology

    International Nuclear Information System (INIS)

    1992-03-01

    This report describes risk assessment methodology associated with the remedial action programs at the Hanford Reservation. Topics addressed include human health evaluation, pollutant and radionuclide transport through the environment, and environmental transport pathways

  9. Hanford Laboratories monthly activities report, December 1963

    Energy Technology Data Exchange (ETDEWEB)

    1964-01-15

    The monthly report for the Hanford Laboratories Operation, December 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.

  10. Hanford Environmental Information System Configuration Management Plan

    International Nuclear Information System (INIS)

    1996-06-01

    The Hanford Environmental Information System (HEIS) Configuration Management Plan establishes the software and data configuration control requirements for the HEIS and project-related databases maintained within the Environmental Restoration Contractor's data management department

  11. Hanford Laboratories monthly activities report, October 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-11-15

    This is the monthly report for the Hanford Laboratories Operation, October 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  12. Hanford Laboratories monthly activities report, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-02-14

    This is the monthly report for the Hanford Laboratories Operation, January 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  13. Hanford Laboratories monthly activities report, August 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-09-16

    This is the monthly report for the Hanford Laboratories Operation, August 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  14. Hanford Laboratories monthly activities report, May 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  15. Hanford Laboratories monthly activities report, January 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-02-15

    This is the monthly report for the Hanford Laboratories Operation January 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  16. Hanford Laboratories monthly activities report, September 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-10-15

    This is the monthly report for the Hanford Laboratories Operation, September 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  17. Hanford Laboratories monthly activities report, July 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-08-15

    This is the monthly report for the Hanford Laboratories Operation, July 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  18. Hanford Laboratories monthly activities report, May 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-06-14

    The monthly report for the Hanford Laboratories Operation, May 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operation are discussed.

  19. Hanford Laboratories monthly activities report, February 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  20. Hanford Laboratories monthly activities report, June 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-07-15

    This is the monthly report for the Hanford Laboratories Operation, June 1963. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  1. Continuing study of mortality in Hanford workers

    International Nuclear Information System (INIS)

    Marks, S.; Gilbert, E.S.

    1979-10-01

    The mortality of workers at the Hanford Plant in southeastern Washington who have been exposed to penetrating external ionizing radiation is studied. Deaths are analyzed statistically and compared to standardized mortality ratios. Cancer deaths in particular are examined

  2. Hanford Laboratories monthly activities report, April 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  3. Hanford Laboratories monthly activities report, July 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-14

    This is the monthly report for the Hanford Laboratories Operation, July 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  4. Hanford Laboratories monthly activities report, March 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  5. Hanford Laboratories monthly activities report, April, 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics operation, programming, and radiation protection operation discussed.

  6. Hanford Laboratories monthly activities report, August 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-09-15

    The monthly report for the Hanford Laboratories Operation, August 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.

  7. Hanford Laboratories monthly activities report, October 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-11-16

    The monthly report for the Hanford Laboratories Operation, October 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operations are discussed.

  8. Hanford Engineer Works technical manual

    Energy Technology Data Exchange (ETDEWEB)

    1944-05-01

    The uranium metal, as discharged from the piles in the 100 Areas, contains the alpha emitting product, plutonium, in concentration in the neighborhood of 150--250 grams per metric ton, along with similar amounts of beta and gamma fission elements. It is the purpose of the Separations Plant to effect the separation of this product from the uranium metal and fission elements, and to prepare a concentrated, relatively pure solution of plutonium nitrate as the final product of the Hanford Plant. This section of the manual discusses the chemistry of the separations process, describes the buildings and equipment provided for carrying out the various steps in the operation, and presents the detailed operating procedures used. There are included, in many instances, references to other documents presenting a more detailed view of a specific point in the process.

  9. Hanford Nuclear Energy Center study

    International Nuclear Information System (INIS)

    Harty, H.

    1976-01-01

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants

  10. Hanford cultural resources management plan

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C. (ed.)

    1989-06-01

    As a federal agency, the US Department of Energy (DOE) has been directed by Congress and the President to provide leadership in the preservation of prehistoric, historical, and cultural resources on lands it administers, to manage these in a spirit of stewardship for future generations, and to protect and preserve the rights of Native Americans to religious freedom. The purpose of this document is to describe how the DOE-Richland Operations (DOE-RL) will meet those responsibilities on the Hanford Site, pursuant to guidelines for Agency Responsibilities under the Historic Preservation Act (FR 53:31, February 17, 1988). This document is intended for multiple uses. Among other things, the text is designed as a manual for cultural resource managers to follow and as an explanation of the process of cultural resource regulatory compliance for the DOE-RL and Site contractors. 10 refs., 17 figs., 11 tabs.

  11. Hanford 300 Area Development Plan

    International Nuclear Information System (INIS)

    Daly, K.S.; Seiler, S.W.; Hail, J.C.

    1991-09-01

    The purpose of the Hanford 300 Area Development Plan (Development Plan) is to guide the physical development of the 300 Area in accordance with US Department of Energy (DOE) Order 4320.1B (DOE 1991b) by performing the following: (1) Establishing a land use plan, setting land use categories that meet the needs of existing and proposed activities; (2) Coordinating existing, 5-yr, and long-range development plans and guiding growth in accordance with those plans; (3) Establishing development guidelines to encourage cost-effective development and minimize conflicts between adjacent activities; (4) Identifying site development issues that need further analysis; Integrating program plans with development plans to ensure a logical progression of development; and, (6) Integrating DOE plans with local agency plans (i.e., city, country, state, and Tri-Cities Science and Technology Park plans)

  12. Aluminum precipitation from Hanford DSSF

    International Nuclear Information System (INIS)

    Borgen, D.; Frazier, P.; Staton, G.

    1994-01-01

    A series of pilot scale tests using simulated Double Shell Slurry Feed (DSSF) showed that well-settled aluminum precipitate can be produced in Hanford double shell tank (DST) high level waste by slow neutralization with carbon dioxide. This pretreatment could provide an early grout feed and free tank space, as well as facilitate downstream processes such as ion exchange by providing a less caustic feed. A total of eight test runs were completed using a 10-ft tall 3-in i.d. glass column. The 10-ft height corresponds to about one third of the vertical height of a DST, hence providing a reasonable basis for extrapolating the observed precipitate settling and compaction to the actual waste tank environment. Four runs (three with a simplified simulant and one with a chemically complete simulant) produced well settled precipitates averaging 1.5 to 2 feet high. Aluminum gel rather than settled precipitate resulted from one test where neutralization was too rapid

  13. Hanford Environmental Information System (HEIS)

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the Tank Characterization Data subject area of the Hanford Environmental Information System (HEIS) is to manage data acquired from waste tank characterization efforts. Tank samples provide the data stored in this subject area. Also included are data from tank inventories. These data are analyzed to determine disposal requirements, such as suitability for grout or vitrification. The data provide the basis for developing safety analyses and closure plans, and for establishing and verifying compliance with waste acceptance specifications. Two major sources of data make up the tank characterization data subject area: Data from single-shell and double-shell tank core samples -- core sampling analytical results include physical properties, radionuclides, major chemicals, and hazardous components; and data from waste tank supernatant samples. Four types of data are stored in the TCD subject area. Qualifiers for TCD analytical result data are listed in Appendix A. Data loading and verification procedures are described in Appendix B

  14. Hanford Nuclear Energy Center study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1976-03-16

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants.

  15. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1991-10-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doeses that individuals and populations could have received from nuclear operations at Hanford since 1944. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): Source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; environmental pathways and dose estimates

  16. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  17. Hanford Site Waste management units report

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes the operable units in several areas of the Hanford Site Waste Facility. Each operable unit has several waste units (crib, ditch, pond, etc.). The operable units are summarized by describing each was unit. Some of the descriptions are unit name, unit type, waste category start data, site description, etc. The descriptions will vary for each waste unit in each operable unit and area of the Hanford Site

  18. Environmental surveillance at Hanford for CY 1977

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1978-04-01

    Environmental data collected during 1977 show continued compliance by Hanford with all applicable state and federal regulations. Data were collected for most environmental media including air, Columbia River water, external radiation, foodstuffs (milk, beef, eggs, poultry, and produce) and wildlife (deer, fish, game birds, and oysters from Willapa Bay), as well as soil and vegetation samples. In general, offsite levels of radionuclides attributable to Hanford operations during 1977 were indistinguishable from background levels

  19. Evaluation of existing Hanford buildings for the storage of solid wastes

    International Nuclear Information System (INIS)

    Carlson, M.C.; Hodgson, R.D.; Sabin, J.C.

    1993-05-01

    Existing storage space at the Hanford Site for solid low-level mixed waste (LLMW) will be filled up by 1997. Westinghouse Hanford Company (WHC) has initiated the project funding cycle for additional storage space to assure that new facilities are available when needed. In the course of considering the funding request, the US Department of Energy (DOE) has asked WHC to identify and review any existing Hanford Site facilities that could be modified and used as an alternative to constructing the proposed W-112 Project. This report documents the results of that review. In summary, no buildings exist at the Hanford Site that can be utilized for storage of solid LLMW on a cost-effective basis when compared to new construction. The nearest approach to an economically sensible conversion would involve upgrade of 100,000 ft 2 of space in the 2101-M Building in the 200 East Area. Here, modified storage space is estimated to cost about $106 per ft 2 while new construction will cost about $50 per ft 2 . Construction costs for the waste storage portion of the W-112 Project are comparable with W-016 Project actual costs, with escalation considered. Details of the cost evaluation for this building and for other selected candidate facilities are presented in this report. All comparisons presented address the potential decontamination and decommissioning (D ampersand D) cost avoidances realized by using existing facilities

  20. Hanford ferrocyanide waste chemistry and reactivity preliminary catalyst and initiator screening studies

    International Nuclear Information System (INIS)

    Scheele, R.D.; Bryan, S.A.; Johnston, J.W.; Tingey, J.M.; Burger, L.L.; Hallen, R.T.

    1992-05-01

    During the 1950s, ferrocyanide was used to scavenge radiocesium from aqueous nitrate-containing Hanford wastes. During the production of defense materials and while these wastes were stored in high-level waste tanks at the Hanford Site, some of these wastes were likely mixed with other waste constituents and materials. Recently, Pacific Northwest Laboratory (PNL) was commissioned by Westinghouse Hanford Company (WHC) to investigate the chemical reactivity of these ferrocyanide-bearing wastes. Because of known or potential thermal reactivity hazards associated with ferrocyanide- and nitrate-bearing wastes, and because of the potential for different materials to act as catalysts or initiators of the reactions about which there is concern, we at PNL have begun investigating the effects of the other potential waste constituents. This report presents the results of a preliminary screening study to identify classes of materials that might be in the Hanford high-level waste tanks and that could accelerate or reduce the starting temperature of the reaction(s) of concern. We plan to use the resulted of this study to determine which materials or class of materials merit additional research

  1. History of Hanford Site Defense Production (Brief)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  2. Researchers take up environmental challenge at Hanford

    International Nuclear Information System (INIS)

    Illman, D.L.

    1993-01-01

    The Hanford nuclear site, built to produce plutonium for the nation's first atomic weapons, occupies 560 square miles of desert in southeastern Washington State. Only 29 months after ground was broken at the site in March 1943, the Hanford project delivered the plutonium used in the bomb that was dropped on Nagasaki, Japan, at the end of World War II. Secrecy surrounding the nuclear weapons program continued through the Cold War years, concealing the fact that for decades, hazardous and radioactive wastes were discharged to the ground, water, and air at Hanford. Only in 1986 were documents finally declassified--tens of thousands of them--describing the construction, operation, and maintenance of the Hanford facilities, allowing a picture to be pieced together of the environmental cost there of the nuclear weapons buildup. That cost may never be completely tallied. But Westinghouse Hanford, Co., the principal operations contractor on the site, and Pacific Northwest Laboratories (PNL), operated by Battelle Memorial Institute for the Department of Energy (DOE), have now begun working together to develop new technologies that are needed to address the short-term and long-term challenges of environmental restoration at Hanford. The paper discusses the problems and possible solutions that are being investigated

  3. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  4. Expediting Groundwater Sampling at Hanford and Making It Safer

    International Nuclear Information System (INIS)

    Connell, Carl W. Jr.; Carr, Jennifer S.; Hildebrand, R. Douglas; Schatz, Aaron L.; Conley, S. F.; Brown, W. L.

    2013-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons

  5. Radionuclide releases to the atmosphere from Hanford Operations, 1944--1972. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Heeb, C.M.

    1994-05-01

    The purpose of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of radionuclide emissions since 1944 from the Hanford Site. The first step in determining dose is to estimate the amount and timing of radionuclide releases to air and water. This report provides the air release information.

  6. Hanford Waste Vitrification Plant Quality Assurance Program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1992-01-01

    This document describes the quality assurance (QA) program of the Hanford Waste Vitrification Plant (HWVP) Project. The purpose of the QA program is to control project activities in such a manner as to achieve the mission of the HWVP Project in a safe and reliable manner. A major aspect of the HWVP Project QA program is the control of activities that relate to high-level waste (HLW) form development and qualification. This document describes the program and planned actions the Westinghouse Hanford Company (Westinghouse Hanford) will implement to demonstrate and ensure that the HWVP Project meets the US Department of Energy (DOE) and ASME regulations. The actions for meeting the requirements of the Waste Acceptance Preliminary Specifications (WAPS) will be implemented under the HWVP product qualification program with the objective of ensuring that the HWVP and its processes comply with the WAPS established by the federal repository

  7. Preliminary recommendations on the design of the characterization program for the Hanford Site single-shell tanks: A system analysis

    International Nuclear Information System (INIS)

    Buck, J.W.; Peffers, M.S.; Hwang, S.T.

    1991-11-01

    The work described in this volume was conducted by Pacific Northwest Laboratory to provide preliminary recommendations on data quality objectives (DQOs) to support the Waste Characterization Plan (WCP) and closure decisions for the Hanford Site single-shell tanks (SSTs). The WCP describes the first of a two-phase characterization program that will obtain information to assess and implement disposal options for SSTs. This work was performed for the Westinghouse Hanford Company (WHC), the current operating contractor on the Hanford Site. The preliminary DQOs contained in this volume deal with the analysis of SST wastes in support of the WCP and final closure decisions. These DQOs include information on significant contributors and detection limit goals (DLGs) for SST analytes based on public health risk

  8. Application of Systems Engineering to U.S. Department of Energy Privatization Project Selection at the Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    Layman, John Scott

    1999-01-01

    The privatization efforts at the U.S. Department of Energy's Hanford Nuclear Reservation have been very successful primarily due to a disciplined process for project selection and execution. Early in the development of Privatization at Hanford, the Department of Energy determined that a disciplined alternatives generation and analysis (AGA) process would furnish the candidate projects with the best probability for success. Many factors had to be considered in the selection of projects. Westinghouse Hanford Company was assigned to develop this process and facilitate the selection of the first round of candidate privatization projects. Team members for the AGA process were assembled from all concerned organizations and skill groups. Among the selection criteria were legal, financial and technical considerations which had to be weighed

  9. The Successful Utilization Of Commercial Treatment Capabilities To Disposition Hanford's No-Path-Forward Suspect Transuranic Wastes

    International Nuclear Information System (INIS)

    Blackford, L.T.; Catlow, R.L.; West, L.D.; Collins, M.S.; Romine, L.D.; Moak, D.J.

    2012-01-01

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W and FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m 3 ) of legacy waste was defined as ''no-path-forward waste.'' A significant portion of this waste (7,650 m 3 ) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from Hanford's Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed and are currently being implemented.

  10. Hanford science and technology needs statements document

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.L.

    1997-12-31

    This document is a compilation of the Hanford science and technology needs statements for FY 1998. The needs were developed by the Hanford Site Technology Coordination Group (STCG) with full participation and endorsement of site user organizations, stakeholders, and regulators. The purpose of this document is to: (a) provide a comprehensive listing of Hanford science and technology needs, and (b) identify partnering and commercialization opportunities with industry, other federal and state agencies, and the academic community. The Hanford STCG reviews and updates the needs annually. Once completed, the needs are communicated to DOE for use in the development and prioritization of their science and technology programs, including the Focus Areas, Cross-Cutting Programs, and the Environmental Management Science Program. The needs are also transmitted to DOE through the Accelerating Cleanup: 2006 Plan. The public may access the need statements on the Internet on: the Hanford Home Page (www.hanford.gov), the Pacific Rim Enterprise Center`s web site (www2.pacific-rim.org/pacific rim), or the STCG web site at DOE headquarters (em-52.em.doegov/ifd/stcg/stcg.htm). This page includes links to science and technology needs for many DOE sites. Private industry is encouraged to review the need statements and contact the Hanford STCG if they can provide technologies that meet these needs. On-site points of contact are included at the ends of each need statement. The Pacific Rim Enterprise Center (206-224-9934) can also provide assistance to businesses interested in marketing technologies to the DOE.

  11. Hanford Site Performance Report - March 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  12. Hanford Site Performance Report - May 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  13. Hydrogeologic model for the old Hanford townsite

    International Nuclear Information System (INIS)

    MacDonald, Q.; Csun, C.

    1994-01-01

    The Hanford Site in southeastern Washington state produced the country's first plutonium during WW II, and production continued through the end of the cold war. This plutonium production generated significant volumes of chemical and radioactive wastes, some of which were discharged directly to the local sediments as wastewater. Artifical recharge is still the dominating influence on the uppermost and unconfined aquifer over much of the Hanford site. Groundwater from a portion of this aquifer, which is in excess of drinking water standards for tritium, discharges to the Columbia River in the vicinity of the old Hanford townsite. The Hanford site lies within the Pasco basin, which is a structural basin in the Columbia Plateau. Columbia River basalt is overlain by the fluvial and lacustrian Ringold formation. The Ringold is unconformably overlain by the informal Hanford formation. Relatively impermeable basalt outcrops and subcrops along a northwest-southeast-trending anticline across the study area. Hanford sediments include both fluvial and glacial flood deposits lying on an irregular surface of basalt and sedimentary rocks. The coarser flood deposits have very high hydraulic conductivity and probably are the most important conduit for contaminant transport within the aquifer. A finite element model (CFEST-SC) is being used to study the effect of changing river stage on baseflow to the Columbia River near the old Hanford townsite. A steady-state version of the model produces calculated head within 1 m of observed values. Transient flow and solute transport results are expected to help further define the relationship between the contaminated aquifer and the Columbia River

  14. Hanford Site Performance Report - April 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  15. Environmental monitoring at Hanford for 1984

    International Nuclear Information System (INIS)

    Price, K.R.; Carlile, J.M.V.; Dirkes, R.L.; Jaquish, R.E.; Trevathan, M.S.; Woodruff, R.K.

    1985-05-01

    Environmental surveillance activities performed by the Pacific Northwest Laboratory for the Department of Energy's Hanford Site for 1984 are discussed in this report. Samples of environmental media were collected in support of the Hanford Environmental Monitoring Program to determine radionuclide concentrations in the Hanford environs. Radiological impacts in terms of radiation dose equivalents as a result of Hanford operations are also discussed. Gross beta radioactivity concentrations in airborne particulates at all sampling locations were lower in 1984 than during 1983 as a result of declining levels of worldwide fallout. Slightly higher levels of 85 Kr and 129 I were noted at several onsite and offsite locations. The sampling location in close proximity to the PUREX plant also detected increased 3 H. Very low levels of radionuclides were detected in samples of Columbia River water during 1984. An extensive groundwater monitoring program was performed for the Hanford Site during 1984. The 3 H and nitrate plumes continued to move slowly toward the Columbia River. All 3 H results were within applicable concentration guides. Samples of deer, rabbits, game birds, waterfowl and fish were collected onsite or in the Columbia River at locations where the potential for radionuclide uptake was most likely, or at the nearest locations where wildlife samples were available. Radioisotope levels were measured. Dose rates from external penetrating radiation measured in the vicinity of residential areas were similar to those observed in the previous years, and no contribution from Hanford activities could be identified. An assessment of the 1984 potential radiological impacts attributable to the Hanford operations indicated that measured and calculated radiation doses to the public continued to be low, and well below applicable regulatory limits. 21 refs., 48 figs., 83 tabs

  16. Compilation of data to estimate groundwater migration potential for constituents in active liquid discharges at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Ames, L.L.; Serne, R.J.

    1991-03-01

    A preliminary characterization of the constituents present in the 33 liquid waste streams at the US Department of Energy's Hanford Site has been completed by Westinghouse Hanford Company. In addition, Westinghouse Hanford has summarized the soil characteristics based on drill logs collected at each site that receives these liquid wastes. Literature searches were conducted and available Hanford-specific data were tabulated and reviewed. General literature on organic chemicals present in the liquid waste streams was also reviewed. Using all of this information, Pacific Northwest Laboratory has developed a best estimate of the transport characteristics (water solubility and soil adsorption properties) for those radionuclides and inorganic and organic chemicals identified in the various waste streams. We assume that the potential for transport is qualified through the four geochemical parameters: solubility, distribution coefficient, persistence (radiogenic or biochemical half-life), and volatility. Summary tables of these parameters are presented for more than 50 inorganic and radioactive species and more than 50 organic compounds identified in the liquid waste streams. Brief descriptions of the chemical characteristics of Hanford sediments, solubility, and adsorption processes, and of how geochemical parameters are used to estimate migration in groundwater-sediment environments are also presented. Groundwater monitoring data are tabulated for wells neighboring the facilities that receive the liquid wastes. 91 refs., 16 figs., 23 tabs.

  17. Compilation of data to estimate groundwater migration potential for constituents in active liquid discharges at the Hanford Site

    International Nuclear Information System (INIS)

    Ames, L.L.; Serne, R.J.

    1991-03-01

    A preliminary characterization of the constituents present in the 33 liquid waste streams at the US Department of Energy's Hanford Site has been completed by Westinghouse Hanford Company. In addition, Westinghouse Hanford has summarized the soil characteristics based on drill logs collected at each site that receives these liquid wastes. Literature searches were conducted and available Hanford-specific data were tabulated and reviewed. General literature on organic chemicals present in the liquid waste streams was also reviewed. Using all of this information, Pacific Northwest Laboratory has developed a best estimate of the transport characteristics (water solubility and soil adsorption properties) for those radionuclides and inorganic and organic chemicals identified in the various waste streams. We assume that the potential for transport is qualified through the four geochemical parameters: solubility, distribution coefficient, persistence (radiogenic or biochemical half-life), and volatility. Summary tables of these parameters are presented for more than 50 inorganic and radioactive species and more than 50 organic compounds identified in the liquid waste streams. Brief descriptions of the chemical characteristics of Hanford sediments, solubility, and adsorption processes, and of how geochemical parameters are used to estimate migration in groundwater-sediment environments are also presented. Groundwater monitoring data are tabulated for wells neighboring the facilities that receive the liquid wastes. 91 refs., 16 figs., 23 tabs

  18. The Hanford Site: An anthology of early histories

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford`s early reactors were crucial to the sites`s history; T-Plant made chemical engineering history; the UO{sub 3} plant has a long history of service. PUREX Plant: the Hanford Site`s Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon.

  19. Company analysis

    DEFF Research Database (Denmark)

    Jenster, Per V.; Hussey, David

    This volume looks at the company appraisal as a whole, examining the continuing need to appraise companies as part of the continuing strategy process. Building from a sound basis of theory, the text aims to be practical and to give guidance to senior managers and others involved in the strategy...... process. It is thus a book primarily aimed at managers, but should also be useful for MBA students undertaking strategy assignments It provides helpful, practical guidance and identifies weaknesses of traditional methods. It also presents a variety of tools which may be used in the appraisal process...

  20. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION and PLANNING FOR REVRIEVAL TREATMENT and EVENTUAL DISPOSAL AT WIPP

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-01

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP)

  1. Natural phenomena analyses, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1989-01-01

    Probabilistic seismic hazard studies completed for the Washington Public Power Supply System's Nuclear Plant 2 and for the US Department of Energy's N Reactor sites, both on the Hanford Site, suggested that the Lawrence Livermore National Laboratory seismic exposure estimates were lower than appropriate, especially for sites near potential seismic sources. A probabilistic seismic hazard assessment was completed for those areas that contain process and/or waste management facilities. the lower bound magnitude of 5.0 is used in the hazard analysis and the characteristics of small-magnitude earthquakes relatively common to the Hanford Site are addressed. The recommended ground motion for high-hazard facilities is somewhat higher than the Lawrence Livermore National Laboratory model and the ground motion from small-magnitude earthquakes is addressed separately from the moderate- to large-magnitude earthquake ground motion. The severe wind and tornado hazards determined for the Hanford Siste are in agreement with work completed independently using 43 years of site data. The low-probability, high-hazard, design-basis flood at the Hanford Site is dominated by dam failure on the Columbia River. Further evaluation of the mechanisms and probabilities of such flooding is in progress. The Hanford Site is downwind from several active Cascade volcanoes. Geologic and historical data are used to estimate the ashfall hazard

  2. Hanford Waste Vitrification Plant Technology Plan

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1988-06-01

    The reference Hanford plan for disposal of defense high-level waste is based on waste immobilization in glass by the vitrification process and temporary vitrified waste storage at the Hanford Site until final disposal in a geologic repository. A companion document to the Hanford Waste Management Plan (HWMP) is the Draft, Interim Hanford Waste Management Technology Plan (HWMTP), which provides a description of the technology that must be developed to meet the reference waste management plan. One of the issues in the HWMTP is DST-6, Immobilization (Glass). The HWMTP includes all expense funding needed to complete the Hanford Waste Vitrification Plant (HWVP) project. A preliminary HWVP Technology Plan was prepared in 1985 as a supporting document to the HWMTP to provide a more detailed description of the technology needed to construct and operate a vitrification facility. The plan was updated and issued in 1986, and revised in 1987. This document is an annual update of the plan. The HWVP Technology Plan is limited in scope to technology that requires development or confirmation testing. Other expense-funded activities are not included. The relationship between the HWVP Technology Plan and other waste management issues addressed in the HWMTP is described in section 1.6 of this plan. 6 refs., 4 figs., 34 tabs

  3. Hanford site transuranic waste sampling plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed

  4. Hanford Site Environmental Management Specification

    International Nuclear Information System (INIS)

    DAILY, J.L.

    2001-01-01

    The US Department of Energy, Richland Operations Office (RL) has established a document hierarchy as part of its integrated management system. The Strategic Plan defines the vision, values, missions, strategic goals, high-level outcomes, and the basic strategies in achieving those outcomes. As shown in Figure 1-1, the Site Specification derives requirements from the Strategic Plan and documents the top-level mission technical requirements for the work involved in the RL Hanford Site cleanup and infrastructure activities under the responsibility of the U.S. Department of Energy, Office of Environmental Management (EM). It also provides the basis for all contract technical requirements. Since this is limited to the EM work, neither the Fast Flux Test Facility (FFTF) nor the Pacific Northwest National Laboratory (PNNL) non-EM science activities are included. Figure 1-1 also shows the relationship between this Site Specification and the other Site management and planning documents. Similarly, the documents, orders, and laws referenced in this document represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  5. Hanford Tank Waste Particle Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Herting, D. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Cooke, G. A. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Page, J S [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States); Valerio, J. L. [Washington River Protection Solutions LLC (WRPS), Richland, WA (United States)

    2015-08-01

    Several methods have been utilized to perform solid phase characterization. Polarized light microscopy (PLM) is used to identify individual particles based on size, shape, color, and optical properties (e.g., refractive index1, birefringence, extinction positions, and interference figures). Scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS) is used to detect which elements are present in individual particles and to infer chemical phase identification based on the metals present in combination with the size and shape of the particles. Powder X-ray diffraction (XRD) is used to identify crystalline phases present in bulk samples by matching the X-ray patterns with a library of known patterns for pure phases. Transmission electron microscopy (TEM) is used to identify individual particles by their X-ray diffraction patterns. RAMAN analysis is used to identify bulk sample compositions by matching RAMAN spectra with a library of known patterns. Other specialized techniques have not been employed routinely for Hanford tank waste samples.

  6. Waste Tank Organic Safety Project: Analysis of liquid samples from Hanford waste tank 241-C-103

    International Nuclear Information System (INIS)

    Pool, K.H.; Bean, R.M.

    1994-03-01

    A suite of physical and chemical analyses has been performed in support of activities directed toward the resolution of an Unreviewed Safety Question concerning the potential for a floating organic layer in Hanford waste tank 241-C-103 to sustain a pool fire. The analysis program was the result of a Data Quality Objectives exercise conducted jointly with staff from Westinghouse Hanford Company and Pacific Northwest Laboratory (PNL). The organic layer has been analyzed for flash point, organic composition including volatile organics, inorganic anions and cations, radionuclides, and other physical and chemical parameters needed for a safety assessment leading to the resolution of the Unreviewed Safety Question. The aqueous layer underlying the floating organic material was also analyzed for inorganic, organic, and radionuclide composition, as well as other physical and chemical properties. This work was conducted to PNL Quality Assurance impact level III standards (Good Laboratory Practices)

  7. Value-based performance measures for Hanford Tank Waste Remedition System (TWRS) Program

    International Nuclear Information System (INIS)

    Keeney, R.L.; von Winterfeldt, D.

    1996-01-01

    The Tank Waste Remediation Systems (TWRS) Program is responsible for the safe storage, retrieval, treatment, and preparation for disposal of high-level waste currently stored in underground storage tanks at the Hanford site in Richland. The TWRS program has adopted a logical approach to decision making that is based on systems engineering and decision analysis (Westinghouse Hanford Company, 1995). This approach involves the explicit consideration of stakeholder values and an evaluation of the TWRS alternatives in terms of these values. Such evaluations need to be consistent across decisions. Thus, an effort was undertaken to develop a consistent, quantifiable set of measures that can be used by TVVRS to assess alternatives against the stakeholder values. The measures developed also met two additional requirements: 1) the number of measure should be relatively small; and 2) performance with respect to the measures should be relatively easy to estimate

  8. Graphics-based site information management at Hanford TRU burial grounds

    International Nuclear Information System (INIS)

    Rod, S.R.

    1992-01-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and data base techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three-dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualizations of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations

  9. Graphics-based site information management at Hanford TRU burial grounds

    International Nuclear Information System (INIS)

    Rod, S.R.

    1992-04-01

    The objective of the project described in this paper is to demonstrate the use of integrated computer graphics and database techniques in managing nuclear waste facilities. The graphics-based site information management system (SIMS) combines a three- dimensional graphic model of the facility with databases which describe the facility's components and waste inventory. The SIMS can create graphic visualization of any site data. The SIMS described here is being used by Westinghouse Hanford Company (WHC) as part of its transuranic (TRU) waste retrieval program at the Hanford Reservation. It is being used to manage an inventory of over 38,000 containers, to validate records, and to help visualize conceptual designs of waste retrieval operations

  10. Treatment option evaluation for liquid effluent secondary streams on the Hanford Site

    International Nuclear Information System (INIS)

    Holter, G.M.; Triplett, M.B.; Fow, C.L.; White, M.K.

    1988-08-01

    This study, conducted by the Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC), examines the range of secondary waste types and volumes likely to result from treatment of contaminated liquid effluents. Alternatives for treatment of these effluents were considered, taking into account the implementation of the ''best-available technology'' as assumed in current and ongoing engineering studies for treating the various liquid effluent waste streams. These treatment alternatives, and potential variations in the operating schedules for Hanford Site facilities generating contaminated liquid effluents, were evaluated to project an estimated range for the volume of each of the various secondary waste streams that are likely to be generated. The conclusions and recommendations were developed, based on these estimates. 23 refs., 34 figs., 16 tabs

  11. FY 1997 Hanford telecommunication and informations system user profile, milestone IRM-097-003

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, T.T.

    1997-09-22

    This document reports survey data collected from the U.S. Department of Energy, Richland Operations Office (DOE-RL), Project Hanford Management Contract (PHMC) companies, and the PHMC enterprise companies for purposes of characterizing the Hanford Local Area Network (HLAN) user profile. Telephone, radio, and pager data are also provided. The data reveal that job tasks of the 8,500 Hanford Site workers who use the HLAN are highly, if not completely, computer dependent. Employees use their computers as their pens and paper, calculators, drafting tables and communication devices. Fifty eight percent of the survey respondents predict 90 to 100% loss in productivity if they had no access to a computer. Additionally, 30% of the users felt they would have a 50 to 80% loss in productivity without computers; and more than 68 % use their computers between 4 and 8 hours per day. The profile also shows th at the software packages used most heavily are cc:Mail` the Windows version, Hanford Information, WordPerfece, Site Forms and Look-up. Use of Windows-based products is very high. Regarding the productivity tools that are seldom used, 49 % of the respondents say they ``never use`` the Hanford Help and Hints (HUH). The use of the external intemet by Hanford has shown a large increase. The survey indicates that users rate the intranet and the ability to access other sources of information as the fourth most important computer application. The Microsoft System Management Server (SMS 4) data show that more than 60% of the computers on the HLAN need replacement or upgrades to run the Windows 95 Operating System, which has been selected as the PHMC standard. Although data also show that 77% of the PHMC machines are running the current standard Windows for Workgroup version 3. 1 1, they do not have the memory and/or the hard disk space to upgrade to Windows 95. The survey results indicate that telephone system use is also high and regarded as a useful tool. Pager use is very high and

  12. The Hanford summit and sustainable development

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the well being of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is compiled, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project -- a project with regional, national, and international application

  13. Hanford Waste Vitrification Project overview and status

    International Nuclear Information System (INIS)

    Swenson, L.D.; Smets, J.L.

    1993-01-01

    The Hanford Waste Vitrification Project (HWVP) is being constructed at the US DOE's Hanford Site in Richland, WA. Engineering and design are being accomplished by Fluor Daniel Inc. in Irvine, CA. Technical input is furnished by Westinghouse Hanford Co. and construction management services by UE ampersand C-Catalytic Inc. The HWVP will immobilize high level nuclear waste in a glass matrix for eventual disposal in the federal repository. The HWVP consists of several structures, the major ones being the Vitrification Building, the Canister Storage Building, fan house, sand filter, waste hold tank, pump house, and administration and construction facilities. Construction started in April 1992 with the clearing and grubbing activities that prepared the site for fencing and construction preparation. Several design packages have been released for procurement activities. The most significant package release is for the Canister Storage Building, which will be the first major structure to be constructed

  14. Environmental monitoring at Hanford for 1987

    International Nuclear Information System (INIS)

    Jacquish, R.E.; Mitchell, P.J.

    1988-05-01

    Envoronmental monitoring activities performed on the Hanford Site for 1987 are discussed in this report. Samples of environmental media were collected to determine radionuclide and chemical concentrations at locations in the geographical area. Results are discussed in detail in subsequent sections of this report. Surveillance of radioactivity in the Hanford vicinity during 1987 indicated concentrations well below applicable DOE and US Environmental Protection Agency (EPA) standards. Radioactive materials released from Hanford operations were generally indistinguishable above background in the offsite environment. Continued influence from the 1986 reactor accident at the Chernobyl Nuclear Power Station in the USSR was not apparent this year. Chemical concentrations in air were below applicable standards established by the EPA and the State of Washington. Chemicals detected in the ground water beneath the Site can be attributed to both Site operations and natural background levels. Several chemicals regulated by the EPA and the State of Washington exceeded EPA drinking water standards (DWS). 106 refs., 71 figs., 110 tabs

  15. Hanford facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-01-01

    This document, Set 2, the Hanford Facility Dangerous Waste Part B Permit Application, consists of 15 chapters that address the content of the Part B checklists prepared by the Washington State Department of Ecology (Ecology 1987) and the US Environmental Protection Agency (40 CFR 270), with additional information requirements mandated by the Hazardous and Solid Waste Amendments of 1984 and revisions of WAC 173-303. For ease of reference, the Washington State Department of Ecology checklist section numbers, in brackets, follow the chapter headings and subheadings. This permit application contains ''umbrella- type'' documentation with overall application to the Hanford Facility. This documentation is broad in nature and applies to all TSD units that have final status under the Hanford Facility Permit

  16. Environmental surveillance at Hanford for CY-1979

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1980-04-01

    Environmental data were collected for most environmental media including air, Columbia River water, external radiation, foodstuffs (milk, beef, eggs, poultry, and produce) and wildlife (deer, fish, and game birds), as well as soil and vegetation samples. In general, offsite levels of radionuclides attributable to Hanford operations during 1979 were indistinguishable from background levels. The data are summarized in the following highlights. Air quality measurements of NO 2 in the vicinity of the Hanford Site and releases of SO 2 onsite were well within the applicable federal and state standards. Particulate air concentrations exceed the standards primarily because of agricultural activities in the area. Discharges of waste water from Hanford facilities in the Columbia River under the National Pollution Discharge Elimination System (NPDES) permit were all within the parameter limits on the permit

  17. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  18. Hanford Tanks Initiative quality assurance implementation plan

    International Nuclear Information System (INIS)

    Huston, J.J.

    1998-01-01

    Hanford Tanks Initiative (HTI) Quality Assurance Implementation Plan for Nuclear Facilities defines the controls for the products and activities developed by HTI. Project Hanford Management Contract (PHMC) Quality Assurance Program Description (QAPD)(HNF-PRO599) is the document that defines the quality requirements for Nuclear Facilities. The QAPD provides direction for compliance to 10 CFR 830.120 Nuclear Safety Management, Quality Assurance Requirements. Hanford Tanks Initiative (HTI) is a five-year activity resulting from the technical and financial partnership of the US Department of Energy's Office of Waste Management (EM-30), and Office of Science and Technology Development (EM-50). HTI will develop and demonstrate technologies and processes for characterization and retrieval of single shell tank waste. Activities and products associated with HTI consist of engineering, construction, procurement, closure, retrieval, characterization, and safety and licensing

  19. Annual Hanford Site Environmental Permitting Status Report

    International Nuclear Information System (INIS)

    HOMAN, N.A.

    2000-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. This status report also addresses Permit Condition I.E.22, as interpreted in Section 12.1.25 of the Hanford Facility Dangerous Waste Permit Application, General Information Portion (DOE/RL-91-28, Rev. 4), that states this report will be prepared annually and a copy of this report will be placed in the Facility Operating Record, General Information file by October 1 of each year

  20. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  1. Hanford Environmental Information System (HEIS) user's manual

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Environmental Information System (HEIS) is a consolidated set of automated resources that effectively manage the data gathered during environmental monitoring and restoration of the Hanford Site. The HEIS includes an integrated database that provides consistent and current data to all users and promotes sharing of data by the entire user community. Data stored in the HEIS are collected under several regulatory programs. Currently these include the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the Resource Conservation and Recovery Act of 1976 (RCRA); and the Ground-Water Environmental Surveillance Project, managed by the Pacific Northwest Laboratory. The HEIS is an information system with an inclusive database. The manual, the HEIS User's Manual, describes the facilities available to the scientist, engineer, or manager who uses the system for environmental monitoring, assessment, and restoration planning; and to the regulator who is responsible for reviewing Hanford Site operations against regulatory requirements and guidelines

  2. Assessment of groundwater management at Hanford

    International Nuclear Information System (INIS)

    Deju, R.A.

    1975-01-01

    A comprehensive review of the groundwater management and environmental monitoring programs at the Hanford reservation was initiated in 1973. A large number of recommendations made as a result of this review are summarized. The purpose of the Hanford Hydrology Program is to maintain a groundwater surveillance network to assess contamination of the natural water system. Potential groundwater contamination is primarily a function of waste management decisions. The review revealed that although the hydrology program would greatly benefit from additional improvements, it is adequate to predict levels of contaminants present in the groundwater system. Studies are presently underway to refine advanced mathematical models to use results of the hydrologic investigation in forecasting the response of the system to different long-term management decisions. No information was found which indicates that a hazard through the groundwater pathway presently exists as a result of waste operations at Hanford. (CH)

  3. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    International Nuclear Information System (INIS)

    Bergman, T.B.

    2011-01-01

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the ∼200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the

  4. Vascular Plants of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  5. Environmental surveillance at Hanford for CY-1974

    International Nuclear Information System (INIS)

    Fix, J.J.

    1975-04-01

    During 1974, the work at Hanford included N Reactor operation, nuclear fuel fabrication, liquid waste solidification, continued construction of the Fast Flux Test Facility, continued construction of Washington Public Power Supply System (WPPSS) No. 2 power reactor, Arid Lands Ecology studies, as well as continued use of a variety of research and laboratory facilities. Environmental data collected during 1974 showed continued compliance of Hanford operations with all applicable state and federal regulations. Levels of radioactivity in the atmosphere from Hanford operations at all offsite sampling locations were indistinguishable from levels due to natural causes and fallout from nuclear detonations in the atmosphere. Air quality measurements of NO 2 in the Hanford environs recorded a maximum yearly average concentration of 0.006 ppM or 12 percent of the ambient air standard. There was no indication that Hanford operations contributed significantly to these levels. All SO 2 results were less than the detection limit of 0.005 ppM or 25 percent of the ambient air quality standard. Routine radiological, chemical, biological, and physical analyses of Columbia River water upstream and downstream of the Hanford Reservation operations with the possible exception of water temperature. Levels of radioactivity were similar at both locations and were due to natural and fallout radioactivity. Estimates are included of the radiation dose to the human population within an 80-kilometer (50-mile) radius of the site during 1974. Methods used in calculations of the annual dose and 50-year dose commitment from radioactive effluents are discussed. (U.S.)

  6. HANFORD SITE SUSTAINABILITY PROGRAM RICHLAND WASHINGTON - 12464

    Energy Technology Data Exchange (ETDEWEB)

    FRITZ LL

    2012-01-12

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site Sustainability Program was developed to demonstrate progress towards sustainability goals as defined and established in Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance; EO 13423, Strengthening Federal Environmental, Energy and Transportation Management, and several applicable Energy Acts. Multiple initiatives were undertaken in Fiscal Year (FY) 2011 to implement the Program and poise the Hanford Site as a leader in environmental stewardship. In order to implement the Hanford Site Sustainability Program, a Sustainability Plan was developed in conjunction with prime contractors, two U.S. Department of Energy (DOE) Offices, and key stakeholders to serve as the framework for measuring progress towards sustainability goals. Based on the review of these metrics and future plans, several activities were initiated to proactively improve performance or provide alternatives for future consideration contingent on available funding. A review of the key metric associated with energy consumption for the Hanford Site in FY 2010 and 2011 indicated an increase over the target reduction of 3 percent annually from a baseline established in FY 2003 as illustrated in Figure 1. This slight increase was attributed primarily from the increased energy demand from the cleanup projects funded by the American Recovery and Reinvestment Act (ARRA) in FY 2010 and 2011. Although it is forecasted that the energy demand will decrease commensurate with the completion of ARRA projects, several major initiatives were launched to improve energy efficiency.

  7. Hanford Site performance report - December 1998

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the Environmental Management (EM) mission. This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. Currently, the report focuses on the EM mission, and will be expanded in the future to include non-EM activities. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a tabular performance profile with associated analyses, Critical Issues, Key Integration Activities, a look at Significant Trends, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators. The Site Summary is a compilation of performance data from all of the Mission Areas and the Projects that comprise these Mission Areas; the information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or the Site Summary sections. At the end of this report, a glossary of terms is provided

  8. Radioactive waste management at the Hanford Reservation

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    During some 30 years of plutonium production, the Hanford Reservation has accumulated large quantities of low- and high-level radioactive wastes. The high-level wastes have been stored in underground tanks, and the low-level wastes have been percolated into the soil. In recent years some programs for solidification and separation of the high-level wastes have been initiated. The Hanford waste-management system was studied by a panel of the Committee on Radioactive Waste Management of the National Academy of Sciences. The panel concluded that Hanford waste-management practices were adequate at present and for the immediate future but recommended increased research and development programs related to long-term isolation of the wastes. The panel also considered some alternatives for on-site disposal of the wastes. The Hanford Reservation was originally established for the production of plutonium for military purposes. During more than 30 years of operation, large volumes of high- and low-level radioactive wastes have been accumulated and contained at the site. The Management of these wastes has been the subject of controversy and criticism. To obtain a true technical evaluation of the Hanford waste situation, the Energy Research and Development Administration (now part of the Department of Energy) issued a contract to the National Academy of Sciences and the National Research Councilto conduct an independent review and evaluation of the Hanford waste-management practices and plans. A panel of the Committee on Radioactive Waste Management (CRWM) of the National Academy of Sciences conducted this study between the summer of 1976 and the summer of 1977. This article is a summary of the final report of that panel

  9. The River Corridor Closure Contract How Washington Closure Hanford is Closing A Unique Department of Energy Project - 12425

    Energy Technology Data Exchange (ETDEWEB)

    Feist, E.T. [Washington Closure Hanford, 2620 Fermi Avenue, Richland, WA 99354 (United States)

    2012-07-01

    Cleanup of the Hanford River Corridor has been one of Hanford Site's top priorities since the early 1990's. This urgency is due to the proximity of hundreds of waste sites to the Columbia River and the groundwater that continues to threaten the Columbia River. In April 2005, the U.S. Department of Energy, Richland Operations Office (DOE-RL) awarded the Hanford River Corridor Closure Contract (RCCC), a cost-plus incentive-fee closure contract with a 2015 end date and first of its kind at Hanford Site, to Washington Closure Hanford (WCH), a limited-liability company owned by URS, Bechtel National, and CH2M HILL. WCH is a single-purpose company whose goal is to safely, compliantly, and efficiently accelerate cleanup in the Hanford River Corridor and reduce or eliminate future obligations to DOE-RL for maintaining long-term stewardship over the site. Accelerated performance of the work-scope while keeping a perspective on contract completion presents challenges that require proactive strategies to support the remaining work-scope through the end of the RCCC. This paper outlines the processes to address the challenges of completing work-scope while planning for contract termination. WCH is responsible for cleanup of the River Corridor 569.8 km{sup 2} (220 mi{sup 2}) of the 1,517.7 km{sup 2} (586 mi{sup 2}) Hanford Site's footprint reduction. At the end of calendar year 2011, WCH's closure implementation is well underway. Fieldwork is complete in three of the largest areas within the RCCC scope (Segments 1, 2, and 3), approximately 44.5% of the River Corridor (Figure 3). Working together, DOE-RL and WCH are in the process of completing the 'paper work' that will document the completion of the work-scope and allow DOE-RL to relieve WCH of contractual responsibilities and transition the completed areas to the Long-Term Stewardship Program, pending final action RODs. Within the next 4 years, WCH will continue to complete cleanup of the River

  10. Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Bredt, P.R.; Sell, R.L.

    1996-09-01

    Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

  11. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  12. Software configuration management plan for the Hanford site technical database

    International Nuclear Information System (INIS)

    GRAVES, N.J.

    1999-01-01

    The Hanford Site Technical Database (HSTD) is used as the repository/source for the technical requirements baseline and programmatic data input via the Hanford Site and major Hanford Project Systems Engineering (SE) activities. The Hanford Site SE effort has created an integrated technical baseline for the Hanford Site that supports SE processes at the Site and project levels which is captured in the HSTD. The HSTD has been implemented in Ascent Logic Corporation (ALC) Commercial Off-The-Shelf (COTS) package referred to as the Requirements Driven Design (RDD) software. This Software Configuration Management Plan (SCMP) provides a process and means to control and manage software upgrades to the HSTD system

  13. Hanford year 2000 Business Continuity Plan

    Energy Technology Data Exchange (ETDEWEB)

    ROGGENKAMP, S.L.

    1999-11-01

    The goal of Department of Energy Richland Operations (DOE-RL) Year 2000 (Y2K) effort is to ensure that the Hanford site successfully continues its mission as we approach and enter the 21th century. The Y2K Business Continuity Planning process provides a structured approach to identify Y2K risks to the site and to mitigate these risks through Y2K Contingency Planning, ''Zero-Day'' Transition Planning and Emergency Preparedness. This document defines the responsibilities, processes and plans for Hanford's Y2K Business Continuity. It identifies proposed business continuity drills, tentative schedule and milestones.

  14. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ( 58 Co, 60 Co, 54 Mn, and 59 Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs

  15. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  16. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  17. Executive summary, Hanford Site Pollution Prevention Plan

    International Nuclear Information System (INIS)

    1992-08-01

    A pollution prevention plan is an organized, comprehensive, and continual effort to systematically reduce waste generation. The Hanford Site Pollution Prevention Plan is designed to eliminate or minimize pollutant releases to all environmental media from all aspects of Site operations. These efforts offer increased protection of public health and the environment. This plan reflects the goals and policies for pollution prevention at the Hanford Site and represents an ongoing effort to make pollution prevention part of the Site operating philosophy. The plan encompasses hazardous waste only and excludes radioactive waste and radioactive mixed waste

  18. Hanford year 2000 Business Continuity Plan

    International Nuclear Information System (INIS)

    VORNEY, S.V.

    1999-01-01

    The goal of Department of Energy Richland Operations (DOE-RL) Year 2000 (Y2K) effort is to ensure that the Hanford site successfully continues its mission as we approach and enter the 21th century. The Y2K Business Continuity Planning process provides a structured approach to identify Y2K risks to the site and to mitigate these risks through Y2K Contingency Planning, ''Zero-Day'' Transition Planning and Emergency Preparedness. This document defines the responsibilities, processes and plans for Hanford's Y2K Business Continuity. It identifies proposed business continuity drills, tentative schedule and milestones

  19. Hanford Waste Vitrification Plant technology progress

    International Nuclear Information System (INIS)

    Wolfe, B.A.; Scott, J.L.; Allen, C.R.

    1989-10-01

    The Hanford Waste Vitrification Plant (HWVP) is currently being designed to safely process and temporarily store immobilized defense liquid high-level wastes from the Hanford Site. These wastes will be immobilized in a borosilicate glass waste form in the HWVP and stored onsite until a qualified geologic waste repository is ready for permanent disposal. Because of the diversity of wastes to be disposed of, specific technical issues are being addressed so that the plant can be designed and operated to produce a waste form that meets the requirements for permanent disposal in a geologic repository. This paper reports the progress to date in addressing these issues. 2 figs., 3 tabs

  20. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    Finch, S.M.

    1990-12-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation doses that populations could have been have received from nuclear operations at Hanford since 1944. The project is being managed and conducted by the Pacific Northwest Laboratory (PNL) under the direction of an independent Technical Steering Panel (TSP). The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed, from release to impact on humans (dose estimates): source terms; environmental transport; environmental monitoring data; demographics, agriculture, food habits; and environmental pathways and dose estimates. 3 figs., 3 tabs

  1. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ( 58 Co, 60 Co, 54 Mn, and 59 Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs

  2. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA. The Hanford Site supports a large and diverse community of raptorial birds (Fitzner et al. 1981), with 26 species of raptors observed on the Hanford Site.

  3. Hanford Spent Nuclear Fuel Project recommended path forward

    International Nuclear Information System (INIS)

    Fulton, J.C.

    1994-10-01

    The Spent Nuclear Fuel Project (the Project), in conjunction with the U.S. Department of Energy-commissioned Independent Technical Assessment (ITA) team, has developed engineered alternatives for expedited removal of spent nuclear fuel, including sludge, from the K Basins at Hanford. These alternatives, along with a foreign processing alternative offered by British Nuclear Fuels Limited (BNFL), were extensively reviewed and evaluated. Based on these evaluations, a Westinghouse Hanford Company (WHC) Recommended Path Forward for K Basins spent nuclear fuel has been developed and is presented in Volume I of this document. The recommendation constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. The overall processing and storage scheme is based on the ITA team's proposed passivation and vault storage process. A dual purpose staging and vault storage facility provides an innovative feature which allows accelerated removal of fuel and sludge from the basins and minimizes programmatic risks beyond any of the originally proposed alternatives. The projects fit within a regulatory and National Environmental Policy Act (NEPA) overlay which mandates a two-phased approach to construction and operation of the needed facilities. The two-phase strategy packages and moves K Basins fuel and sludge to a newly constructed Staging and Storage Facility by the year 2000 where it is staged for processing. When an adjoining facility is constructed, the fuel is cycled through a stabilization process and returned to the Staging and Storage Facility for dry interim (40-year) storage. The estimated total expenditure for this Recommended Path Forward, including necessary new construction, operations, and deactivation of Project facilities through 2012, is approximately $1,150 million (unescalated)

  4. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    International Nuclear Information System (INIS)

    SHOOP, D.S.

    1999-01-01

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment

  5. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  6. Hanford Works monthly report, October 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-11-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of October 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  7. Hanford defined waste model limitations and improvements

    International Nuclear Information System (INIS)

    HARMSEN, R.W.

    1999-01-01

    Recommendation 93-5 Implementation Plan, Milestone 5,6.3.1.i requires issuance of this report which addresses ''updates to the tank contents model''. This report summarizes the review of the Hanford Defined Waste, Revision 4, model limitations and provides conclusions and recommendations for potential updates to the model

  8. Hanford Works monthly report, December 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-01-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of December 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  9. Hanford Works monthly report, May 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-06-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of May 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  10. Hanford Works monthly report, July 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-08-18

    This is a progress report of the production reactors on the Hanford Reservation for the month of July 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  11. Hanford Works monthly report, March 1952

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-04-18

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  12. Environmental surveillance at Hanford for CY-1976

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.; Hoenes, G.R.; Bramson, P.E.

    1977-04-01

    Environmental data collected during 1976 show continued compliance by Hanford with all applicable state and federal regulations. Data were collected for most environmental media including air, Columbia River water, external radiation, foodstuffs (milk, meat, eggs, poultry, and produce), and wildlife (deer, fish, game birds, and oysters from Willapa Bay), as well as a few soil and vegetation samples. The data are summarized

  13. Hanford emergency management plan - release 15

    International Nuclear Information System (INIS)

    CARPENTER, G.A.

    1999-01-01

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety

  14. Hanford surplus facilities hazards identification document

    International Nuclear Information System (INIS)

    Egge, R.G.

    1997-01-01

    This document provides general safety information needed by personnel who enter and work in surplus facilities managed by Bechtel Hanford, Inc. The purpose of the document is to enhance access control of surplus facilities, educate personnel on the potential hazards associated with these facilities prior to entry, and ensure that safety precautions are taken while in the facility

  15. Hanford Works monthly report, April 1952

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-05-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  16. Hanford Works monthly report, July 1952

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-08-15

    This is a progress report of the production reactors on the Hanford Reservation for the month of July 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  17. Hanford emergency management plan - release 15

    Energy Technology Data Exchange (ETDEWEB)

    CARPENTER, G.A.

    1999-07-19

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety.

  18. Hanford spent nuclear fuel project update

    Energy Technology Data Exchange (ETDEWEB)

    Williams, N.H.

    1997-08-19

    Twenty one hundred metric tons of spent nuclear fuel (SNF) are currently stored in the Hanford Site K Basins near the Columbia River. The deteriorating conditions of the fuel and the basins provide engineering and management challenges to assure safe current and future storage. DE and S Hanford, Inc., part of the Fluor Daniel Hanford, Inc. lead team on the Project Hanford Management Contract, is constructing facilities and systems to move the fuel from current pool storage to a dry interim storage facility away from the Columbia River, and to treat and dispose of K Basins sludge, debris and water. The process starts in K Basins where fuel elements will be removed from existing canisters, washed, and separated from sludge and scrap fuel pieces. Fuel elements will be placed in baskets and loaded into Multi-Canister Overpacks (MCOs) and into transportation casks. The MCO and cask will be transported to the Cold Vacuum Drying Facility, where free water within the MCO will be removed under vacuum at slightly elevated temperatures. The MCOs will be sealed and transported via the transport cask to the Canister Storage Building.

  19. Hanford science and technology needs statements, 2000

    International Nuclear Information System (INIS)

    BERLIN, G.T.

    1999-01-01

    This document: (a) provides a comprehensive listing of the Hanford sites science and technology needs for fiscal year (FY) 2000; and (b) identifies partnering and commercialization opportunities within industry, other federal and state agencies, and the academic community. These needs were prepared by the Hanford projects (within the Project Hanford Management Contract and the Environmental Restoration Contract) and subsequently reviewed and endorsed by the Hanford Site Technology Coordination Group (STCG). The STCG reviews included participation of DOE-RL Management, site stakeholders, state and federal regulators, and Tribal Nations. The Science and Technology Needs Document is organized by major problem areas and coincides with the STCG subgroups which are as follows: Deactivation and Decommissioning, Mixed Waste, Subsurface Contaminants, High Level Waste Tanks, and Spent Nuclear Fuel. Each problem area begins with a technology needs index table. This table is followed by detailed descriptions of each technology need, including a problem statement and current baseline information associated with that need. Following the technology need description for each problem area is a table listing the science needs, followed by detailed descriptions of the functional need and the problem to be solved as currently understood. Finally, a crosswalk table is provided at the end of each problem area which ties together last years needs and this years needs, provides brief justification for elimination of any needs, and identifies any other significant changes which took place during the revision process

  20. Physical Properties of Hanford Transuranic Waste Sludge

    International Nuclear Information System (INIS)

    Poloski, A. P.

    2004-01-01

    This project has two primary objectives. The first is to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at WIPP. The second primary objective is to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale in the various liquid media. The results of this research effort will enhance the existing understanding of agglomeration phenomena and the properties of complex colloidal suspensions. In addition, the knowledge gained and capabilities developed during this effort will aid in the development and optimization of techniques to process the wastes at various DOE sites. These objectives will be accomplished by: (1) characterizing the TRU sludges contained in the Hanford tanks that are intended for shipment to WIPP; (2) determining the physical behavior of the Hanford TRU tank sludges under conditions that might exist during treatment and packaging; (3) and modeling the retrieval, treatment, and packaging operations that will be performed at Hanford to dispose of TRU tank sludges

  1. Hanford Works monthly report, January 1952

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-02-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of January 1952. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  2. Hanford Works monthly report, September 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-10-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of September 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  3. Hanford Works monthly report, July 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-08-24

    This is a progress report of the production reactors on the Hanford Reservation for the month of July 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  4. Hanford Works monthly report, March 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-04-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of March 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  5. Hanford Works monthly report, June 1951

    Energy Technology Data Exchange (ETDEWEB)

    1951-07-20

    This is a progress report of the production on the Hanford Reservation for the month of June 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  6. Hanford works monthly report, September 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-10-19

    This is a progress report of the production reactors on the Hanford Reservation for the month of September 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  7. Hanford Works monthly report, May 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-06-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of May 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  8. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1991-07-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities have been built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Area to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic (TRU) and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemical as well as radioactive constituents. This paper will focus on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  9. Hazardous chemical and radioactive wastes at Hanford

    International Nuclear Information System (INIS)

    Keller, J.F.; Stewart, T.L.

    1993-01-01

    The Hanford Site was established in 1944 to produce plutonium for defense. During the past four decades, a number of reactors, processing facilities, and waste management facilities were built at Hanford for plutonium production. Generally, Hanford's 100 Area was dedicated to reactor operation; the 200 Areas to fuel reprocessing, plutonium recovery, and waste management; and the 300 Area to fuel fabrication and research and development. Wastes generated from these operations included highly radioactive liquid wastes, which were discharged to single- and double-shell tanks; solid wastes, including both transuranic and low-level wastes, which were buried or discharged to caissons; and waste water containing low- to intermediate-level radioactivity, which was discharged to the soil column via near-surface liquid disposal units such as cribs, ponds, and retention basins. Virtually all of the wastes contained hazardous chemicals as well as radioactive constituents. This paper focuses on the hazardous chemical components of the radioactive mixed waste generated by plutonium production at Hanford. The processes, chemicals used, methods of disposition, fate in the environment, and actions being taken to clean up this legacy are described by location

  10. Hanford Works monthly report, June 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-07-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of June 1950. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  11. Axial Dispersion during Hanford Saltcake Washing

    International Nuclear Information System (INIS)

    Josephson, Gary B.; Geeting, John GH; Lessor, Delbert L.; Barton, William B.

    2006-01-01

    Clean up of Hanford salt cake wastes begins with dissolution retrieval of the sodium rich salts that make up the dominant majority of mass in the tanks. Water moving through the porous salt cake dissolves the soluble components and also displaces the soluble radionuclides (e.g. 137Cs and 99TcO4- ). The separation that occurs from this displacement, known as Selective dissolution, is an important component in Hanford?s pretreatment of low activity wastes for subsequent Supplemental treatment. This paper describes lab scale testing conducted to evaluate Selective dissolution of cesium from non-radioactive Hanford tank 241-S-112 salt cake simulant containing the primary chemicals found the actual tank. An modified axial dispersion model with increasing axial dispersion was developed to predict cesium removal. The model recognizes that water dissolves the salt cake during washing, which causes an increase in the axial dispersion during the wash. This model was subsequently compared with on-line cesium measurements from the retrieval of tank 241-S-112. The model had remarkably good agreement with both the lab scale and full scale data

  12. Hanford Works monthly report, November 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-12-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of November 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  13. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structure, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and addition additional information. 6 refs

  14. Hanford Site Waste Management Units Report

    International Nuclear Information System (INIS)

    1991-01-01

    This Hanford Site Waste Management Units Report (HSWMUR) was originated to provide information responsive to Section 3004(u) of the Hazardous and Solid Waste Amendments (HSWA) of the 1984 United States Code (USC). The report provides a comprehensive inventory of all types of waste management units at the Hanford Site and consists of waste disposal units, including (1) Resource Conservation and Recovery Act of 1976 (RCRA) disposal units, (2) Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) disposal units, (3) unplanned releases, (4) inactive contaminated structures, (5) RCRA treatment and storage units, and (6) other storage areas. Because of the comprehensive nature of this report, the listing of sites is more extensive than required by Section 3004(u) of HSWA. In support of the Hanford RCRA permit, a field was added to designate whether the waste management unit is a solid waste management unit (SWMU). As SWMUs are identified, they will added to the Hanford Waste Information Data System (WIDS), which is the database supporting this report, and added to the report at its next annual update. A quality review of the WIDS was conducted this past year. The review included checking all data against their reference and making appropriate changes, updating the data elements using the most recent references, marking duplicate units for deletion, and adding additional information. 6 refs

  15. Hanford Works monthly report, August 1951

    Energy Technology Data Exchange (ETDEWEB)

    1951-09-24

    This is a progress report of the production reactors on the Hanford Reservation for the month of August 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  16. Environmental monitoring at Hanford for 1984. Supplement

    International Nuclear Information System (INIS)

    Price, K.R.; Carlile, J.M.V.; Dirkes, R.L.; Jaquish, R.E.; Trevathan, M.S.; Woodruff, R.K.

    1986-01-01

    A range fire started on private land on August 10, 1984, and burned northward onto the Department of Energy's Hanford Site. Environmental monitoring results from air samples collected during and after the fire indicated that no radioactive materials different from normal levels were present in the air

  17. Hanford Works monthly report, August 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-09-18

    This is a progress report of the production reactors on the Hanford Reservation for the month of August 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  18. Hanford Works monthly report, November 1950

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1950-12-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of November 1950. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  19. Software recycling at the Hanford Site

    International Nuclear Information System (INIS)

    HINKELMAN, K.C.

    1999-01-01

    The Hanford Site was the first Department of Energy (DOE) complex to recycle excess software rather than dispose of it in the landfill. This plan, which took over a year to complete, was reviewed for potential legal conflicts, which could arise from recycling rather than disposal of software. It was determined that recycling was an approved method of destruction and therefore did not conflict with any of the licensing agreements that Hanford had with the software manufacturers. The Hanford Recycling Program Coordinator combined efforts with Pacific Northwest National Laboratory (PNNL) to recycle all Hanford software through a single contract, which went out for bid in January 1995. It was awarded to GreenDisk, Inc. located in Woodinville Washington and implemented in March 1995. The contract was later re-bid and awarded to EcoDisWGreenDisk in December 1998. The new contract included materials such as; software manuals, diskettes, tyvek wrapping, cardboard and paperboard packaging, compact disks (CDs), videotapes, reel-to-reel tapes, magnetic tapes, audio tapes, and many other types of media

  20. Prioritization of environmental cleanup problems at Hanford

    International Nuclear Information System (INIS)

    Fassbender, L.L.

    1994-01-01

    New technologies and scientific research are needed to clean up the Hanford Site. However, there is insufficient funding to develop every technology that is identified or to undertake every scientific research project that is proposed. Thus, the Department of Energy (DOE) must focus its resources on science and technology (S ampersand T) that will have the most significant impacts on the overall cleanup effort. Hanford has recognized the importance of identifying and prioritizing its most critical problems and the most promising solutions to them. Hanford cleanup will require numerous decisions about technology development and implementation, which will be complicated because there are substantial uncertainties about the risks and the costs of new technologies. Further, the choice of a specific technology for a specific application must be evaluated with respect to multiple (and often conflicting) objectives (e.g., risk reduction, increasing effectiveness, cost reduction, increasing public acceptability, regulatory compliance). This paper provides an overview of the decision analysis methodology that was used to prioritize S ampersand T needs for Hanford cleanup

  1. Hanford environmental dose reconstruction project - an overview

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.; Farris, W.T.

    1996-01-01

    The Hanford Environmental Dose Reconstruction Project was initiated because of public interest in the historical releases of radioactive materials from the Hanford Site, located in southcentral Washington State. By 1986, over 38,000 pages of environmental monitoring documentation from the early years of Hanford operations had been released. Special committees reviewing the documents recommended initiation of the Hanford Environmental Dose Reconstruction Project, which began in October 1987, and is conducted by Battelle, Pacific Northwest Laboratories. The technical approach taken was to reconstruct releases of radioactive materials based on facility operating information; develop and/or adapt transport, pathway, and dose models and computer codes; reconstruct environmental, meterological, and hydrological monitoring information; reconstruct demographic, agricultural, and lifestyle characteristics; apply statistical methods to all forms of uncertainty in the information, parameters, and models; and perform scientific investigation that were technically defensible. The geographic area for the study includes ∼2 x 10 5 km 2 (75,000 mi 2 ) in eastern Washington, western Idaho, and northeastern Oregon (essentially the Mid-columbia Basin of the Pacific Northwest). Three exposure pathways were considered: the atmosphere, the Columbia River, and ground water

  2. Update on worker mortality data at Hanford

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1979-01-01

    The subject of this paper is a study of the effects on mortality of occupational exposure to ionizing radiation at the Hanford plant. The Hanford plant, which is located in southeastern Washington State, was established in the early forties as an installation for plutonium production. Many workers employed by the various contractors hold jobs involving some exposure to radiation. Yearly records of this exposure, obtained from dosimeter readings, as well as occupational data, are maintained for all employees. Mortality data are obtained by having the Social Security Administration periodically search their records for deaths of persons identified in the personnel rosters of Hanford contractors. Published analyses of worker mortality at Hanford have included workers initially employed before 1965 and mortality up to April 1, 1974. In this paper, the mortality data are updated to include deaths up to May 1, 1977, workers employed 1965 and later, and the most recent exposure data. In addition to updating results of earlier analyses, this paper provides a discussion of the problems involved in analyzing and interpreting occupational exposure and mortality data. For a more detailed discussion of these problems the reader is referred to the papers noted above

  3. 1988 Hanford riverbank springs characterization report

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1990-12-01

    This reports presents the results of a special study undertaken to characterize the riverbank springs (i.e., ground-water seepage) entering the Columbia River along the Hanford Site. Radiological and nonradiological analyses were performed. River water samples were also analyzed from upstream and downstream of the Site as well as from the immediate vicinity of the springs. In addition, irrigation return water and spring water entering the river along the shoreline opposite Hanford were analyzed. Hanford-origin contaminants were detected in spring water entering the Columbia River along the Hanford Site. The type and concentrations of contaminants in the spring water were similar to those known to exist in the ground water near the river. The location and extent of the contaminated discharges compared favorably with recent ground-water reports and predictions. Spring discharge volumes remain very small relative to the flow of the Columbia. Downstream river sampling demonstrates the impact of ground-water discharges to be minimal, and negligible in most cases. Radionuclide concentrations were below US Department of Energy Derived Concentration Guides (DCGs) with the exception 90 Sr near the 100-N Area. Tritium, while below the DCG, was detected at concentrations above the US Environmental Protection Agency drinking water standards in several springs. All other radionuclide concentrations were below drinking water standards. Nonradiological contaminants were generally undetectable in the spring water. River water contaminant concentrations, outside of the immediate discharge zones, were below drinking water standards in all cases. 19 refs., 5 figs., 12 tabs

  4. Temporal variations in atmospheric dispersion at Hanford

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Burk, K.W.

    1990-01-01

    Climatological data are frequently used to estimate atmospheric dispersion factors for historical periods and for future releases for which adequate meteorological data are unavailable. This practice routinely leads to questions concerning the representativeness of data used. The work described here was performed to provide a basis for answering these questions at the U.S. Department of Energy's Hanford Site in eastern Washington. Atmospheric transport and diffusion near Hanford have been examined using a Lagrangian puff dispersion model and hourly meteorological data from the Hanford Meteorological Station and a network of 24 surface wind stations for a 5-yr period. Average normalized monthly concentrations were computed at 2.5-km intervals on a 31 by 31 grid from January 1983 through 1987, assuming an elevated release in the 200-East Area. Monthly average concentrations were used to determine 5-yr mean pattern and monthly mean patterns and the interannual variability about each pattern. Intra-annual and diurnal variations in dispersion factors are examined for six locations near Hanford

  5. Hanford sitewide grounwater remediation - supporting technical information

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-05-01

    The Hanford Sitewide Groundwater Remediation Strategy was issued in 1995 to establish overall goals for groundwater remediation on the Hanford Site. This strategy is being refined to provide more detailed justification for remediation of specific plumes and to provide a decision process for long-range planning of remediation activities. Supporting this work is a comprehensive modeling study to predict movement of the major site plumes over the next 200 years to help plan the remediation efforts. The information resulting from these studies will be documented in a revision to the Strategy and the Hanford Site Groundwater Protection Management Plan. To support the modeling work and other studies being performed to refine the strategy, this supporting technical information report has been produced to compile all of the relevant technical information collected to date on the Hanford Site groundwater contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, and description of the contaminant plumes. The primary information in the report relates to conceptualization of the source terms and available history of groundwater transport, description of the contaminant plumes, rate of movement based on the conceptual model and monitoring data, risk assessment, treatability study information, and current approach for plume remediation

  6. Hanford Works monthly report, February 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-03-20

    This is a progress report of the production on the Hanford Reservation for the month of February 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  7. Hanford Works monthly report, December 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1952-01-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of December 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  8. Hanford Works monthly report, January 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-02-16

    This is a progress report of the production reactors on the Hanford Reservation for the month of January 1951. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  9. Hanford Works monthly report, April 1951

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1951-05-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  10. Hanford Works monthly report, March 1949

    Energy Technology Data Exchange (ETDEWEB)

    Prout, G.R.

    1949-04-19

    This is a progress report of the production reactors on the Hanford Reservation for the month of March 1949. This report takes each division (e.g. manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month. (MB)

  11. Decision process for Hanford sitewide groundwater remediation

    International Nuclear Information System (INIS)

    Chiaramonte, G.R.

    1996-06-01

    This document describes a decision process for planning future investigations and remediating contaminated groundwater at the Hanford Site in Richland, Washington. This decision process details the following: identifies key decisions and activities; defines the criteria used in making each decision; and defines the logic that links the decisions and the activities in a stepwise manner

  12. Progress and challenges in cleaning up Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D. [Dept. of Energy, Richland, WA (United States)

    1997-08-01

    This paper presents captioned viewgraphs which briefly summarize cleanup efforts at the Hanford Site. Underground waste tank and spent nuclear fuel issues are described. Progress is reported for the Plutonium Finishing Plant, PUREX plant, B-Plant/Waste Encapsulation Storage Facility, and Fast Flux Test Facility. A very brief overview of costs and number of sites remediated and/or decommissioned is given.

  13. Annual Hanford Site environmental permitting status report

    International Nuclear Information System (INIS)

    Sonnichsen, J.C.

    1998-01-01

    The information contained and/or referenced in this Annual Hanford Site Environmental Permitting Status Report (Status Report) addresses the State Environmental Policy Act (SEPA) of 1971 and Condition II.W. of the Resource Conservation and Recovery Act (RCRA) of 1976 Permit, Dangerous Waste Portion (DW Portion). Condition II.W. of the RCRA Permit specifies the Permittees are responsible for all other applicable federal, state, and local permits for the development and operation of the Hanford Facility. Condition II.W. of the RCRA Permit specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of permit condition, 'best efforts' means submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies. This Status Report includes information on all existing and anticipated environmental permitting. Environmental permitting required by RCRA, the Hazardous and Solid Waste Amendments (HSWA) of 1984, and non-RCRA permitting (solid waste handling, Clean Air Act Amendments of 1990, Clean Water Act Amendments of 1987, Washington State waste discharge, and onsite sewage system) is addressed. Information on RCRA and non-RCRA is current as of July 31, 1998. For the purposes of RCRA and the State of Washington Hazardous Waste Management Act of 1976 [as administered through the Dangerous Waste Regulations, Washington Active Code (WAC) 173-303], the Hanford Facility is considered a single facility. As such, the Hanford Facility has been issued one US Environmental Protection Agency (EPA)/State Identification Number (WA7890008967). This EPA/State identification number encompasses over 60 treatment, storage, and/or disposal (TSD) units. The Washington State Department of Ecology (Ecology) has been delegated authority by the EPA to administer the RCRA, including mixed waste authority. The RCRA permitting approach for

  14. Strontium-90 migration in Hanford sediments, USA

    International Nuclear Information System (INIS)

    Steefel, C.I.; Yang, L.; Carroll, S.A.; Roberts, S.; Zachara, J.M.; Yabusaki, S.B.

    2005-01-01

    Full text of publication follows: Strontium-90 is an important risk-driving contaminant at the Hanford site in eastern Washington, USA. Disposal operations at the Hanford 100-N area released millions of liters of reactor cooling water containing high concentrations of strontium-90 into the vadose zone immediately adjacent to the Columbia River. The effectiveness of pump-and-treat methods for remediation have been questioned, largely because the strontium is strongly sorbed on subsurface sediments via ion exchange reactions and co-precipitation in carbonates. In addition, groundwater monitoring wells show a fluctuating seasonal behavior in which high strontium-90 concentrations correlate with high Columbia River stage, even while average concentrations remain approximately constant. A series of fully saturated reactive transport column experiments have been conducted to investigate the important controls on strontium migration in Hanford groundwater [1]. The experiments were designed to investigate the multicomponent cation exchange behavior of strontium in competition with the cations Na + , Ca +2 , and Mg +2 , the concentration of which differs between river water and groundwater. Reactive transport modeling of the experiments indicates that the Sr +2 selectivity coefficient becomes larger with increasing NaNO 3 concentration, a behavior also shown by the divalent cations Ca +2 and Mg +2 . A new set of column experiments investigates the effect of wetting and drying cycles on strontium- 90 sorption and migration by considering episodic flow in Hanford sediments. In addition, the effect of fluctuating aquifer chemistry as a result of changes in the Columbia River stage on Sr +2 sorption is addressed. Modeling of multicomponent reactive transport under variably saturated conditions is used to interpret the results of the episodic flow/chemistry experiments. [1] Experimental and modeling studies of the migration behavior of strontium in Hanford sediments, USA. C

  15. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford

  16. SAFER - Company Snapshot - SAFER - Company Snapshot

    Data.gov (United States)

    Department of Transportation — The Company Snapshot is a concise electronic record of company identification, size, commodity information, and safety record, including the safety rating (if any),...

  17. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    International Nuclear Information System (INIS)

    Rathbone, Bruce A.

    2006-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL's Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL's Electronic Records & Information Capture Architecture (ERICA) database

  18. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  19. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns

  20. Mechanisms of gas bubble retention and release: results for Hanford Waste Tanks 241-S-102 and 241-SY-103 and single-shell tank simulants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Rassat, S.D.; Bredt, P.R.; Konynenbelt, J.H.; Tingey, S.M.; Mendoza, D.P.

    1996-09-01

    Research at Pacific Northwest National Laboratory (PNNL) has probed the physical mechanisms and waste properties that contribute to the retention and release of flammable gases from radioactive waste stored in underground tanks at Hanford. This study was conducted for Westinghouse Hanford Company as part of the PNNL Flammable Gas Project. The wastes contained in the tanks are mixes of radioactive and chemical products, and some of these wastes are known to generate mixtures of flammable gases, including hydrogen, nitrous oxide, and ammonia. Because these gases are flammable, their retention and episodic release pose a number of safety concerns.

  1. Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Gard, H.A.; Poet, R.M.

    1992-09-01

    In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory's Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

  2. Archaeological survey of the McGee Ranch vicinity, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Gard, H.A.; Poet, R.M.

    1992-09-01

    In response to a request for a cultural resources review from Westinghouse Hanford Company for the Action Plan for Characterization of McGee Ranch Soil, Pacific Northwest Laboratory`s Hanford Cultural Resources Laboratory (HCRL) conducted an archaeological survey of the McGee Ranch vicinity, located in the northwest portion of the Hanford Site. Staff members covered 8.4 km{sup 2} and recorded 42 cultural resources; 22 sites, and 20 isolated artifacts. Only 2 sites and 3 isolates were attributed to a prehistoric Native American occupation. The historic sites date from the turn of the century to the 1940s and are representative of the settlement patterns that occurred throughout the Columbia Basin. In addition to an archaeological pedestrian survey of the project area, we conducted literature and records searches and examined available aerial photographs. Records kept at HCRL were reviewed to determine if any archaeological survey had been conducted previously within the project area. Although no survey had been conducted, portions of the area adjacent to project boundaries were surveyed in 1988 and 1990. During those surveys, historic and prehistoric cultural resources were observed, increasing the possibility that similar land usage had taken place within the current project boundaries. Literature searches established a general historical sequence for this area. Aerial photographs alerted researchers to homesteads and linear features, such as roads and irrigation ditches, that might not be apparent from ground level.

  3. The influence of small-mammal burrowing activity on water storage at the Hanford Site

    International Nuclear Information System (INIS)

    Landeen, D.S.

    1994-01-01

    This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator). Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil

  4. Characterization program management plan for Hanford K Basin Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lawrence, L.A.

    1995-01-01

    A management plan was developed for Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratories (PNL) to work together on a program to provide characterization data to support removal, conditioning and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. The Program initially supports gathering data to establish the current state of the fuel in the two basins. Data Collected during this initial effort will apply to all SNF Project objectives. N Reactor fuel has been degrading with extended storage resulting in release of material to the basin water in K East and to the closed conisters in K West. Characterization of the condition of these materials and their responses to various conditioning processes and dry storage environments are necessary to support disposition decisions. Characterization will utilize the expertise and capabilities of WHC and PNL organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for WHC and PNL to support the Spent Nuclear Fuels Project at Hanford

  5. A proposed new mission for producing 238Pu at the Hanford site

    International Nuclear Information System (INIS)

    Cash, R.J.

    1989-01-01

    A new mission for producing 238 Pu has been proposed at the Hanford site. If approved, the program would produce 238 Pu for National Aeronautics and Space Administration (NASA) space missions and possibly other speciality isotopes for medical and industrial applications. The 238 Pu isotope is an excellent heat source and is currently used in generating electricity for deep-space applications. To produce 238 Pu, special neptunium target assemblies would be irradiated for ∼2 yr in the Fast Flux Test Facility (FFTF) operated by Westinghouse Handford Company. After ∼1 yr of cooling, the neptunium pins would be reprocessed in special hot cells in the Fuel and Materials Examination Facility (FMEF) at the Hanford site to recover the 238 Pu and convert it into the oxide form. The oxide could then be encapsulated in the FMEF using special materials and procedures to meet rigid NASA requirements. The plutonium oxide capsules would later become part of the radioisotope thermoelectric generators used by NASA to power equipment launched into space. To meet projected NASA mission requirements, the program would provide the capability to recover up to 30 kg/yr of 238 Pu from 237 Np targets by late 1993. The conceptual design for the program was completed by Westinghouse Hanford in September 1989 for validation and approval by the U.S. Department of Energy

  6. Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    International Nuclear Information System (INIS)

    PD Meyer; RJ Serne

    1999-01-01

    Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package

  7. The Use of the Hanford Onsite Packaging and Transportation Safety Program to Meet Cleanup Milestones Under the Hanford Site Cleanup 2015 Vision and the American Recovery and Reinvestment Act of 2009 - 12403

    Energy Technology Data Exchange (ETDEWEB)

    Lavender, John C. [CH2M HILL Plateau Remediation Company, Richland, WA 99354 (United States); Edwards, W. Scott [Areva Federal Services, Richland, WA 99354 (United States); Macbeth, Paul J.; Self, Richard J. [U.S. Department of Energy Richland Operations Office, Richland, WA 99352 (United States); West, Lori D. [Materials and Energy Corporation, Richland, WA 99354 (United States)

    2012-07-01

    The Hanford Site presents unique challenges in meeting the U.S. Department of Energy Richland Operations Office (DOE-RL) 2015 Cleanup Vision. CH2M Hill Plateau Remediation Company (CHPRC), its subcontractors, and DOE-RL were challenged to retrieve, transport and remediate a wide range of waste materials. Through a collaborative effort by all Hanford Onsite Central Plateau Cleanup Team Members, disposition pathways for diverse and seemingly impossible to ship wastes were developed under a DOE Order 460.1C-compliant Hanford Onsite Transportation Safety Program. The team determined an effective method for transporting oversized compliant waste payloads to processing and disposition facilities. The use of the onsite TSD packaging authorizations proved to be vital to safely transporting these materials for processing and eventual final disposition. The American Recovery and Reinvestment Act of 2009 (ARRA) provided additional resources to expedite planning and execution of these important cleanup milestones. Through the innovative and creative use of the TSD, the Hanford Onsite Central Plateau Cleanup Team Members have developed and are executing an integrated project plan that enables the safe and compliant transport of a wide variety of difficult-to-transport waste items, accelerating previous cleanup schedules to meet cleanup milestones. (authors)

  8. Fluor Daniel Hanford implementation plan for DOE Order 5480.28. Natural phenomena hazards mitigation

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1997-01-01

    Natural phenomena hazards (NPH) are unexpected acts of nature that pose a threat or danger to workers, the public, or the environment. Earthquakes, extreme winds (hurricane and tornado), snow, flooding, volcanic ashfall, and lightning strikes are examples of NPH that could occur at the Hanford Site. U.S. Department of Energy (DOE) policy requires facilities to be designed, constructed, and operated in a manner that protects workers, the public, and the environment from hazards caused by natural phenomena. DOE Order 5480.28, Natural Phenomena Hazards Mitigation, includes rigorous new natural phenomena criteria for the design of new DOE facilities, as well as for the evaluation and, if necessary, upgrade of existing DOE facilities. The Order was transmitted to Westinghouse Hanford Company in 1993 for compliance and is also identified in the Project Hanford Management Contract, Section J, Appendix C. Criteria and requirements of DOE Order 5480.28 are included in five standards, the last of which, DOE-STD-1023, was released in fiscal year 1996. Because the Order was released before all of its required standards were released, enforcement of the Order was waived pending release of the last standard and determination of an in-force date by DOE Richland Operations Office (DOE-RL). Agreement also was reached between the Management and Operations Contractor and DOE-RL that the Order would become enforceable for new structures, systems, and components (SSCS) 60 days following issue of a new order-based design criteria in HNF-PRO-97, Engineering Design and Evaluation. The order also requires that commitments addressing existing SSCs be included in an implementation plan that is to be issued 1 year following the release of the last standard. Subsequently, WHC-SP-1175, Westinghouse Hanford Company Implementation Plan for DOE Order 5480.28, Natural Phenomena Hazards Mitigation, Rev. 0, was issued in November 1996, and this document, HNF-SP-1175, Fluor Daniel Hanford

  9. Dose assessment from potential radionuclide emissions from stacks on the Hanford Site

    International Nuclear Information System (INIS)

    Davis, W.E.; Barnett, J.M.

    1995-04-01

    On February 3, 1993, the US Department of Energy, Richland Operations Office (RL), received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency (EPA), Region 10. The Compliance Order required RL to (1) evaluate all radionuclide emission points at the Hanford Site to determine which points are subject to the continuous emission sampling requirements of Title 40, Code of Federal Regulations, Part 61 (40 CFR 61), Subpart H, and (2) continuously sample radionuclide emissions in accordance with requirements in 40 CFR 61.93. The Information Request required RL to provide a written Compliance Plan to meet the requirements of the Compliance Order. A Compliance Plan was submitted to EPA, Region 10, on April 30, 1993. The Compliance Plan specified that a dose assessment would be performed for 84 Westinghouse Hanford Company (WHC) stacks registered with the Washington State Department of Health on the Hanford Site. Any stack identified in the assessment as having potential emissions to cause an effective dose equivalent (EDE) to a maximum exposed individual (MEI) greater than 0.1 mrem y -1 must have a compliant sampling system. In addition, a Federal Facility Compliance Agreement (FFCA) was signed on. February 7, 1994. The FFCA required that all unregistered stacks on the Hanford Site be assessed. This requirement increased the number of stacks to be assessed to 123 stacks. Six methods for performing the assessments are described. An initial assessment using only the HEPA filtration factor for back calculations identified 32 stacks that would have emissions which would cause an EDE to the MEI greater than 0.1 mrem y -1 . When the other methods were applied the number was reduced to 20 stacks. The paper discusses reasons for these overestimates

  10. Survey package: Technical and contracting strategies for single-shell tank waste retrieval on the Hanford Site

    International Nuclear Information System (INIS)

    Ramsower, D.C.

    1995-01-01

    Westinghouse Hanford Company is interested in innovative, commercially available or adaptable retrieval system equipment, concepts, and contracting strategies that will ad to existing Hanford Site technology and significantly reduce cost and/or risk from the baseline retrieval approach of sluicing (hydraulically mining) the waste from the SSTs onsite. The objective of this request is to gather information from industry to identify and summarize a suite of retrieval-related components, systems, and contracting approaches. This information will be used to ensure that WHC understands the various waste retrieval alternative approaches, their risks, and their application on the Hanford Site tanks for those occasions when sluicing is not sufficiently effective, appropriate, or cost-effective. An additional objective is to facilitate industry's understanding of the tank and site interface requirements for SST waste retrieval and the complex statutory, legal, regulatory, labor, and other institutional standards being applied to the Hanford Site. This effort will identify and summarize retrieval solutions by the end of September 1996 so that a clear basis for future retrieval program decisions can be established

  11. Hanford Waste Vitrification Plant quality assurance program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-12-01

    The US Department of Energy-Office of Civilian Radioactive Waste Management has been designated the national high-level waste repository licensee and the recipient for the canistered waste forms. The Office of Waste Operations executes overall responsibility for producing the canistered waste form. The Hanford Waste Vitrification Plant Project, as part of the waste form producer organization, consists of a vertical relationship. Overall control is provided by the US Department of Energy-Environmental Restoration and Waste Management Headquarters; with the US Department of Energy-Office of Waste Operations; the US Department of Energy- Headquarters/Vitrification Project Branch; the US Department of Energy-Richland Operations Office/Vitrification Project Office; and the Westinghouse Hanford Company, operations and engineering contractor. This document has been prepared in response to direction from the US Department of Energy-Office of Civilian Radioactive Waste Management through the US Department of Energy-Richland Operations Office for a quality assurance program that meets the requirements of the US Department of Energy. This document provides guidance and direction for implementing a quality assurance program that applies to the Hanford Waste Vitrification Plant Project. The Hanford Waste Vitrification Plant Project management commits to implementing the quality assurance program activities; reviewing the program periodically, and revising it as necessary to keep it current and effective. 12 refs., 6 figs., 1 tab

  12. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-10-01

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

  13. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  14. Hanford tank initiative test facility site selection study

    International Nuclear Information System (INIS)

    Staehr, T.W.

    1997-01-01

    The Hanford Tanks Initiative (HTI) project is developing equipment for the removal of hard heel waste from the Hanford Site underground single-shell waste storage tanks. The HTI equipment will initially be installed in the 241-C-106 tank where its operation will be demonstrated. This study evaluates existing Hanford Site facilities and other sites for functional testing of the HTI equipment before it is installed into the 241-C-106 tank

  15. Hanford Site Environmental Report for Calendar Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2003-09-01

    This report is prepared annually to satisfy the requirements of DOE Orders. The report provides an overview of activities at the Hanford Site during 2002 and demonstrates the site's compliance with applicable federal, state, and local environmental laws, regulations, executive orders, and DOE policies; and to summarize environmental data that characterize Hanford Site environmental management performance. The purpose of the report is to provide useful summary information to members of the public, public officials, regulators, Hanford contractors, and elected representatives.

  16. Hanford Waste Vitrification Plant dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    This report presents engineering drawings of the vitrification plant at Hanford Reservation. Individual sections in the report cover piping and instrumentation, process flow schemes, and material balance tables

  17. Hanford Site Environmental Report for calendar year 1992

    International Nuclear Information System (INIS)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality

  18. Master schedule for CY-1979 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Houston, J.R.; Eddy, P.A.

    1978-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site, as conducted by the Environmental Evaluation Section of Battelle, Pacific Northwest Laboratory for the Department of Energy (DOE), is given. Modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, and to monitor Hanford operations for compliance with applicable environmental criteria and Washington State Water Quality Standards. Air quality data are obtained in a separate program administered by the Hanford Environmental Health Foundation. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Water quality data for Hanford Site potable water systems are published each year by the Hanford Environmental Health Foundation. The data collected are available in routine reports issued by the Environmental Evaluations staff. Groundwater data and evaluation are reported in the series, ''Radiological Status of the Groundwater Beneath the Hanford Project for...,'' the latest issue being PNL-2624 for CY-1977. Data from locations within the plant boundaries are presented in the annual ''Environmental Status of the Hanford Site for...'' report series, the most recent report being PNL-2677 for 1977. Data from offsite locations are presented in the annual ''Environmental Surveillance at Hanford for...'' series of reports, the latest being PNL-2614 for 1977

  19. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  20. Hanford Site Environmental Report for calendar year 1992

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, R.K.; Hanf, R.W.; Lundgren, R.E. [eds.

    1993-06-01

    This report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations at the Hanford Site. The following sections: describe the Hanford Site and its mission; summarize the status in 1992 of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss public dose estimates from 1992 Hanford activities; present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, and discuss activities to ensure quality.

  1. Overview of the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.; Ikenberry, T.A.

    1992-04-01

    The objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that specific and representative individuals and populations may have received as a result of releases of radioactive materials from historical operations at the Hanford Site. These dose estimates would account for the uncertainties of information regarding facilities operations, environmental monitoring, demography, food consumption and lifestyles, and the variability of natural phenomena. Other objectives of the HEDR Project include: supporting the Hanford Thyroid Disease Study (HTDS), declassifying Hanford-generated information and making it available to the public, performing high-quality, credible science, and conducting the project in an open, public forum. The project is briefly described

  2. Characterization plan for Hanford spent nuclear fuel

    International Nuclear Information System (INIS)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF

  3. Hanford phosphate precipitation filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. A proposed Hanford waste pre-treatment process uses sodium hydroxide at high temperature to remove aluminum from sludge. This process also dissolves phosphates. Upon cooling to 40 degrees centigrade the phosphates form a Na7(PO4)2F9H2O precipitate which must be removed prior to further treatment. Filter studies were conducted with a phosphate slurry simulant to evaluate whether 0.5 micron cross-flow sintered metal Mott filters can separate the phosphate precipitate from the wash solutions. The simulant was recirculated through the filters at room temperature and filtration performance data was collected

  4. Preliminary assessment of blending Hanford tank wastes

    International Nuclear Information System (INIS)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications

  5. Preliminary assessment of blending Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Geeting, J.G.H.; Kurath, D.E.

    1993-03-01

    A parametric study of blending Hanford tank wastes identified possible benefits from blending wastes prior to immobilization as a high level or low level waste form. Track Radioactive Components data were used as the basis for the single-shell tank (SST) waste composition, while analytical data were used for the double-shell tank (DST) composition. Limiting components were determined using the existing feed criteria for the Hanford Waste Vitrification Plant (HWVP) and the Grout Treatment Facility (GTF). Results have shown that blending can significantly increase waste loading and that the baseline quantities of immobilized waste projected for the sludge-wash pretreatment case may have been drastically underestimated, because critical components were not considered. Alternatively, the results suggest further review of the grout feed specifications and the solubility of minor components in HWVP borosilicate glass. Future immobilized waste estimates might be decreased substantially upon a thorough review of the appropriate feed specifications.

  6. Hanford Environmental Dose Reconstruction Project monthly report

    International Nuclear Information System (INIS)

    McMakin, A.H., Cannon, S.D.; Finch, S.M.

    1992-09-01

    The objective of the Hanford Environmental Dose Reconstruction MDR) Project is to estimate the radiation doses that individuals and populations could have received from nuclear operations at Hanford since 1944. The TSP consists of experts in envirorunental pathways. epidemiology, surface-water transport, ground-water transport, statistics, demography, agriculture, meteorology, nuclear engineering. radiation dosimetry. and cultural anthropology. Included are appointed members representing the states of Oregon, Washington, and Idaho, a representative of Native American tribes, and an individual representing the public. The project is divided into the following technical tasks. These tasks correspond to the path radionuclides followed from release to impact on humans (dose estimates): Source Terms; Environmental Transport; Environmental Monitoring Data Demography, Food Consumption, and Agriculture; and Environmental Pathways and Dose Estimates

  7. Nuclear isotope measurement in the Hanford environment

    International Nuclear Information System (INIS)

    Wacker, J.F.; Stoffel, J.J.; Kelley, J.M.

    1995-01-01

    The Pacific Northwest Laboratory (PNL) is located at the federal government's Hanford Site in southeastern Washington State, which was built during World War II as part of the secret Manhattan Project to develop the atomic bomb. Monitoring of the Site itself and surrounding environs for Hanford-related radionuclides has been a routine part of the operations since 1944. One of the most sensitive analytical methods used is thermal ionization mass spectrometry (TIMS) with triple-sector mass spectrometers. Normal geometry instruments have an abundance sensitivity of 10 -9 for uranium while the authors' newest Triple-Sector Isotope Mass Spectrometer (TRISM), utilizing a new ion-optical design developed at PNL, has an abundance sensitivity of 10 -11 . In favorable cases, sensitivity is such that complete isotopic analyses are obtained on total samples in the femtogram range; and minor isotopes in the attogram range are measured

  8. Inventory Data Package for Hanford Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Kincaid, Charles T.; Eslinger, Paul W.; Aaberg, Rosanne L.; Miley, Terri B.; Nelson, Iral C.; Strenge, Dennis L.; Evans, John C.

    2006-06-01

    This document presents the basis for a compilation of inventory for radioactive contaminants of interest by year for all potentially impactive waste sites on the Hanford Site for which inventory data exist in records or could be reasonably estimated. This document also includes discussions of the historical, current, and reasonably foreseeable (1944 to 2070) future radioactive waste and waste sites; the inventories of radionuclides that may have a potential for environmental impacts; a description of the method(s) for estimating inventories where records are inadequate; a description of the screening method(s) used to select those sites and contaminants that might make a substantial contribution to impacts; a listing of the remedial actions and their completion dates for waste sites; and tables showing the best estimate inventories available for Hanford assessments.

  9. Prototype Hanford Surface Barrier: Design basis document

    International Nuclear Information System (INIS)

    Myers, D.R.; Duranceau, D.A.

    1994-11-01

    The Hanford Site Surface Barrier Development Program (BDP) was organized in 1985 to develop the technology needed to provide a long-term surface barrier capability for the Hanford Site and other arid sites. This document provides the basis of the prototype barrier. Engineers and scientists have momentarily frozen evolving barrier designs and incorporated the latest findings from BDP tasks. The design and construction of the prototype barrier has required that all of the various components of the barrier be brought together into an integrated system. This integration is particularly important because some of the components of the protective barreir have been developed independently of other barreir components. This document serves as the baseline by which future modifications or other barrier designs can be compared. Also, this document contains the minutes of meeting convened during the definitive design process in which critical decisions affecting the prototype barrier's design were made and the construction drawings

  10. Environmental monitoring at Hanford for 1986

    International Nuclear Information System (INIS)

    1987-05-01

    Environmental monitoring at the Hanford Site is conducted by the Battelle Memorial Institute, Pacific Northwest Division, as part of its contract to operate the Pacific Northwest Laboratory (PNL) for the US Department of Energy. The data collected provide a historical record of the levels of radionuclides and radiation attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor the status of chemical materials on the Site and in the Columbia River. This report represents a single, comprehensive source of environmental monitoring data collected during 1986 by PNL's Environmental monitoring Group in the offsite and onsite environments. Appendix A contains data and data summaries for results obtained during 1986 that include statistical estimates of variation. Information in Appendix A is intended for readers with a scientific interest or for those who wish to evaluate results in a manner not included here. 71 refs., 66 figs., 17 tabs

  11. Hanford Site performance summary: EM funded programs

    International Nuclear Information System (INIS)

    Edwards, C.

    1995-09-01

    Hanford performance at fiscal year end reflects a three percent unfavorable schedule variance ($46.3 million*) which was an improvement over August 1995 ($46.3 million for September versus $65.9 million for August) and is below established reporting thresholds (greater than 3 percent). The majority of the behind schedule condition (53 percent) is attributed to EM-40 (Office of Environmental Restoration [ER]) and is a result of late receipt of funds, procurement delays, and US Army Corps of Engineers (USACE) work planned but not accomplished. Other primary contributors to the behind schedule condition are associated with tank farm upgrades, high-level waste disposal and work for others (support to the US Department of Energy-Headquarters [DOE-HQ]). The remaining behind schedule condition is distributed throughout the remaining Hanford programs and do not share common causes. A breakdown of individuals listed on page 8

  12. Hanford waste vitrification systems risk assessment

    International Nuclear Information System (INIS)

    Miller, W.C.; Hamilton, D.W.; Holton, L.K.; Bailey, J.W.

    1991-09-01

    A systematic Risk Assessment was performed to identify the technical, regulatory, and programmatic uncertainties and to quantify the risks to the Hanford Site double-shell tank waste vitrification program baseline (as defined in December 1990). Mitigating strategies to reduce the overall program risk were proposed. All major program elements were evaluated, including double-shell tank waste characterization, Tank Farms, retrieval, pretreatment, vitrification, and grouting. Computer-based techniques were used to quantify risks to proceeding with construction of the Hanford Waste Vitrification Plant on the present baseline schedule. Risks to the potential vitrification of single-shell tank wastes and cesium and strontium capsules were also assessed. 62 refs., 38 figs., 26 tabs

  13. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of the 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  14. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  15. The embryogenesis of dose assessment at Hanford

    International Nuclear Information System (INIS)

    Foster, R.F.

    1990-01-01

    Several significant events occurred between 1955 and 1960 that resulted in major changes in environmental monitoring at Hanford and in the initiation of comprehensive dose assessments. These included: (1) specification of dose limits for nonoccupational exposure (including internal emitters); (2) a national and international awakening to the need for managing the disposal of radioactive wastes; (3) identification of the most important radionuclides and their sources of exposure; (4) data that quantified the transfer coefficients of nuclides along environmental pathways; and (5) development of greatly improved radiation detection instrumentation. In response to a growing need, the Hanford Laboratories formed the Environmental Studies and Evaluation component. This group revamped the monitoring and sampling programs so that analytical results contributed directly to dose estimation. Special studies were conducted to ascertain local dietary and recreational habits that affected dose calculations and to calibrate the models. These studies involved extensive contact with the public and governmental agencies, which elicited a positive reaction

  16. Annual Hanford Site Environmental Permitting status report

    International Nuclear Information System (INIS)

    SONNICHSEN, J.C.

    1999-01-01

    The information contained in, and/or referenced in, this Annual Hanford Site Environmental Permitting Status Report addresses Permit Condition II.W (Other Permits and/or Approvals) of the Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, issued by the Washington State Department of Ecology (WA7890008967). Condition II.W specifies that the Permittees are responsible for obtaining all other applicable federal, state, and local permits authorizing the development and operation of the Hanford Facility. Condition II.W further specifies that the Permittees are to use their best efforts to obtain such permits. For the purposes of this Permit Condition, ''best efforts'' mean submittal of documentation and/or approval(s) in accordance with schedules specified in applicable regulations, or as determined through negotiations with the applicable regulatory agencies

  17. Hanford grout: predicting long-term performance

    International Nuclear Information System (INIS)

    Sewart, G.H.; Mitchell, D.H.; Treat, R.L.; McMakin, A.H.

    1987-01-01

    Grouted disposal is being planned for the low-level portion of liquid radioactive wastes at the Hanford site in Washington state. The performance of the disposal system must be such that it will protect people and the environment for thousands of years after disposal. To predict whether a specific grout disposal system will comply with existing and foreseen regulations, a performance assessment (PA) is performed. Long-term PAs are conducted for a range of performance conditions. Performance assessment is an inexact science. Quantifying projected impacts is especially difficult when only scant data exist on the behavior of certain components of the disposal system over thousands of years. To develop defensible results, we are honing the models and obtaining experimental data. The combination of engineered features and PA refinements is being used to ensure that Hanford grout will meet its principal goal: to protect people and the environment in the future

  18. Hanford Site Waste Management Units Report

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, Jeffrey P. [Hanford Site (HNF), Richland, WA (United States)

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of the 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.

  19. An overview of the Hanford controversy

    International Nuclear Information System (INIS)

    Stewart, A.M.; Kneale, G.W.

    1991-01-01

    In 1964, the Atomic Energy Commission agreed to sponsor 'a study of the lifetime health and mortality experiences of all employees of AEC contractors.' The commission put in charge of this study a physician (Thomas Mancuso) who had recently shown how the U.S. Social Security system could be used to identify the dates and causes of death of all insured workers. As director of the AEC project, Mancuso was at liberty to include any or all the postwar offshoots of the Manhattan Project. His master plan included workers from Oak Ridge, Los Alamos, and Hanford, but it soon became apparent that his attempts to link radiation exposures to subsequent events were proving more successful at Hanford than elsewhere. The authors of this paper, who participated in the study, review the controversy surrounding its eventual publication.22 references

  20. Hanford Site Waste Storage Tank Information Notebook

    International Nuclear Information System (INIS)

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*

  1. Hanford Site annual waste reduction report

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1992-03-01

    The US Department of Energy (DOE), Richland Field Office (RL) has developed and implemented a Hanford Site Waste Minimization and Pollution Prevention Awareness Plan that provides overall guidance and direction on waste minimization and pollution prevention awareness to the four contractors who manage and operate the Hanford Site for the RL. Waste reduction at the RL will be accomplished by following a hierarchy of environmental protection practices. First, waste generation will be eliminated or minimized through source reduction. Second, potential waste materials that cannot be eliminated or minimized will be recycled (i.e., used, reused, or reclaimed). Third, all waste that is nevertheless generated will be treated to reduce volume, toxicity, or mobility before storage or disposal. The scope of this waste reduction program will include nonhazardous, hazardous, radioactive mixed, and radioactive wastes

  2. Neutron Measurements At Hanford's Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Conrady, Matthew M.; Berg, Randal K.; Scherpelz, Robert I.; Rathbone, Bruce A.

    2009-01-01

    The Pacific Northwest National Laboratory (PNNL) conducted neutron measurements at Hanford's Plutonium Finishing Plant (PFP). The measurements were performed to evaluate the performance of the Hanford Standard Dosimeter (HSD) and the 8816 TLD component of the Hanford Combination Neutron Dosimeter (HCND) in the neutron fields responsible for worker neutron exposures. For this study, TEPC detectors and multisphere spectrometers were used to measure neutron dose equivalent rate, and multispheres were used to measure average neutron energy. Water-filled phantoms holding Hanford dosimeters were positioned at each measurement location. The phantoms were positioned in the same location where a multisphere measurement was taken and TEPCs were also positioned there. Plant survey meters were also used to measure neutron dose rates at all locations. Three measurement locations were chose near the HC-9B glovebox in room 228A of Building 234-5. The multisphere spectrometers measured average neutron energies in the range of 337 to 555 keV at these locations. Personal dose equivalent, Hp(10)n, as measured by the multisphere and TEPC, ranged from 2.7 to 9.7 mrem/h in the three locations. Effective dose assuming a rotational geometry (EROT) was substantially lower than Hp(10), ranging from 1.3 to 3.6 mrem/h. These values were lower than the reported values from dosimeters exposed on a rotating phantom. Effective dose assuming an AP geometry (EAP) was also substantially lower than Hp(10), ranging from 2.3 to 6.5 mrem/h. These values were lower than the reported values from the dosimeters on slab phantoms. Since the effective dose values were lower than reported values from dosimeters, the dosimeters were shown to be conservative estimates of the protection quantities.

  3. Interim Hanford Waste Management Technology Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The Interim Hanford Waste Management Technology Plan (HWMTP) is a companion document to the Interim Hanford Waste Management Plan (HWMP). A reference plan for management and disposal of all existing and certain projected future radioactive Hanford Site Defense Wastes (HSDW) is described and discussed in the HWMP. Implementation of the reference plan requires that various open technical issues be satisfactorily resolved. The principal purpose of the HWMTP is to present detailed descriptions of the technology which must be developed to close each of the technical issues associated with the reference plan identified in the HWMP. If alternative plans are followed, however, technology development efforts including costs and schedules must be changed accordingly. Technical issues addressed in the HWMTP and HWMP are those which relate to disposal of single-shell tank wastes, contaminated soil sites, solid waste burial sites, double-shell tank wastes, encapsulated 137 CsCl and 90 SrF 2 , stored and new solid transuranic (TRU) wastes, and miscellaneous wastes such as contaminated sodium metal. Among the high priority issues to be resolved are characterization of various wastes including early determination of the TRU content of future cladding removal wastes; completion of development of vitrification (Hanford Waste Vitrification Plant) and grout technology; control of subsidence in buried waste sites; and development of criteria and standards including performance assessments of systems proposed for disposal of HSDW. Estimates of the technology costs shown in this report are made on the basis that all identified tasks for all issues associated with the reference disposal plan must be performed. Elimination of, consolidation of, or reduction in the scope of individual tasks will, of course, be reflected in corresponding reduction of overall technology costs

  4. Hanford Waste Vitrification Plant technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E. [ed.; Watrous, R.A.; Kruger, O.L. [and others

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.

  5. Groundwater remediation at the Hanford site

    International Nuclear Information System (INIS)

    Fries, W.

    1993-01-01

    Ion exchange resin and adsorption technology has been used successfully to treat diversified types of toxic waste water for many years. Even though the Hanford Site presents many unique problems, the author believes these technologies can remediate the groundwater at this site. However, treatment of the sludge in tanks generally is beyond the pale of these technologies except for the possibility of experimental studies being performed at the University of Idaho (Troescher)

  6. Insolation and turbidity measurements at Hanford

    International Nuclear Information System (INIS)

    Laulainen, N.S.; Kleckner, E.W.; Michalsky, J.J.; Thorp, J.M.

    1979-01-01

    From observations obtained at the Rattlesnake Observatory and the Hanford Meteorological Station, the redistribution of solar radiation as a result of aerosols in the lowest 1 km of the earth's atmosphere has been examined using several types of solar radiation measuring instruments. Large turbidity excursions are observed with high values associated with stagnant air masses and low values associated with frontal passage. Turbidities show variations in color dependence that arise because of changes in particle size distribution

  7. Riparian Vegetation Mapping Along the Hanford Reach

    International Nuclear Information System (INIS)

    FOGWELL, T.W.

    2003-01-01

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY2002

  8. Hanford personnel dosimeter supporting studies FY-1981

    International Nuclear Information System (INIS)

    1982-08-01

    This report examined specific functional components of the routine external personnel dosimeter program at Hanford. Components studied included: dosimeter readout; dosimeter calibration; dosimeter field response; dose calibration algorithm; dosimeter design; and TLD chip acceptance procedures. Additional information is also presented regarding the dosimeter response to light- and medium-filtered x-rays, high energy photons and neutrons. This study was conducted to clarify certain data obtained during the FY-1980 studies

  9. Hanford Waste Vitrification Plant technical manual

    International Nuclear Information System (INIS)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. The immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version

  10. Hanford Site air operating permit application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  11. Hanford Site air operating permit application

    International Nuclear Information System (INIS)

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ''regulated'' pollutants. Regulated pollutants include ''criteria'' pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ''Hazardous'' Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995

  12. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  13. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  14. Characterization of Hanford tank wastes containing ferrocyanides

    International Nuclear Information System (INIS)

    Tingey, J.M.; Matheson, J.D.; McKinley, S.G.; Jones, T.E.; Pool, K.H.

    1993-02-01

    Currently, 17 storage tanks on the Hanford site that are believed to contain > 1,000 gram moles (465 lbs) of ferrocyanide compounds have been identified. Seven other tanks are classified as ferrocyanide containing waste tanks, but contain less than 1,000 gram moles of ferrocyanide compounds. These seven tanks are still included as Hanford Watch List Tanks. These tanks have been declared an unreviewed safety question (USQ) because of potential thermal reactivity hazards associated with the ferrocyanide compounds and nitrate and nitrite. Hanford tanks with waste containing > 1,000 gram moles of ferrocyanide have been sampled. Extensive chemical, radiothermical, and physical characterization have been performed on these waste samples. The reactivity of these wastes were also studied using Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis. Actual tank waste samples were retrieved from tank 241-C-112 using a specially designed and equipped core-sampling truck. Only a small portion of the data obtained from this characterization effort will be reported in this paper. This report will deal primarily with the cyanide and carbon analyses, thermal analyses, and limited physical property measurements

  15. Trends in actinide processing at Hanford

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1993-09-01

    In 1989, the mission at the Hanford Site began a dramatic and sometimes painful transition. The days of production--as we used to know it--are over. Our mission officially has become waste management and environmental cleanup. This mission change didn't eliminate many jobs--in fact, budgets have grown dramatically to support the new mission. Most all of the same skilled crafts, engineers, and scientists are still required for the new mission. This change has not eliminated the need for actinide processing, but it has certainly changed the focus that our actinide chemists and process engineers have. The focus used to be on such things as increasing capacity, improving separations efficiency, and product purity. Minimizing waste had become a more important theme in recent years and it is still a very important concept in the waste management and environmental cleanup arena. However, at Hanford, a new set of words dominates the actinide process scene as we work to deal with actinides that still reside in a variety of forms at the Hanford Site. These words are repackage, stabilize, remove, store and dispose. Some key activities in each of these areas are described in this report

  16. Deactivation completed at historic Hanford Fuels Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site`s boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO{sub 2}) and enriched uranium oxide (UO{sub 2}) residues and powders in the facility`s equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America`s primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world`s supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D&D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process.

  17. Deactivation completed at historic Hanford Fuels Laboratory

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site's boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO 2 ) and enriched uranium oxide (UO 2 ) residues and powders in the facility's equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America's primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world's supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D ampersand D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process

  18. Hanford well remediation and decommissioning plan

    International Nuclear Information System (INIS)

    Ledgerwood, R.K.

    1993-01-01

    Protection of Hanford Site groundwater resources and assessment of the effects of their use or contamination upon public safety are required by federal and state regulations and U.S. Department of Energy (DOE) policy, (DOE, 1989). Compliance with constraints applicable to the use of existing wells requires assessment as to the suitability for use and needs for rehabilitation, remediation or decommissioning of existing groundwater wells and other boreholes potentially affecting aquifers beneath the Hanford Site. Approximately 3,500 groundwater wells and vadose zone boreholes had been drilled on the Hanford Site prior to 1989, over 2,900 still exist. Most of these boreholes were drilled prior to 1987 and do not conform to presently accepted construction standards intended to protect groundwater resources. Approximately 260 wells have been installed since 1987. These wells were constructed to current standards for well construction which mandate seals between the permanent casing and the formation to prevent potential migration of contaminated liquid. Several programs presently construct and/or utilize existing and newly drilled wells to provide characterization and groundwater monitoring data. The programs are summarized

  19. Glass forms for immobilization of Hanford wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Dressen, A.L.; Hobbick, C.W.; Babad, H.

    1975-03-01

    Approximately 140 million liters of solid salt cake (mainly NaNO 3 ), produced by evaporation of aged alkaline high-level liquid wastes, will be stored in underground tanks when the present Hanford Waste Management Program is completed in the early 1980's. At this time also, large volumes of various other solid radioactive wastes (sludges, excavated Pu-contaminated soil, and doubly encapsulated 137 CsCl and 90 SrF 2 ) will be stored on the Hanford Reservation. All these solid wastes can be converted to immobile silicate and aluminosilicate glasses of low water leachability by melting them at 1100 0 to 1400 0 C with appropriate amounts of basalt (or sand) and other glass-formers such as B 2 O 3 or CaO. Reviewed in this paper are formulations and other melt conditions used successfully in batch tests to make glasses from actual and synthetic wastes; leachability and other properties of these glasses show them to be satisfactory vehicles for immobilization of the Hanford wastes. (U.S.)

  20. Hanford Task Force: Collaboration over litigation

    International Nuclear Information System (INIS)

    Shorett, A.; Ross, W.R.

    1994-01-01

    At a number of USDOE sites around the country, USDOE and the regulators who oversee its sites have negotiated agreements that govern the cleanup of hazardous and/or radioactive contamination. Historically, these agreements have been hammered out in protracted and difficult inter-agency negotiations, behind closed doors. When the agencies have finally emerged to announce their hard-won agreements, the response from interested parties and the public has all too often ranged from lukewarm acceptance to severe criticism. The negotiations that led to the 1989 signing of Hanford's Tri-Party Agreement, officially known as the Hanford Federal Facility Agreement and Consent Order, as well as subsequent negotiated modifications to that Agreement, followed this pattern of closed-door agency negotiation, followed by a strategy of ''announce and defend.'' However, Hanford's latest Tri-Party Agreement negotiations, concluded with a signing ceremony on January 25, 1994, are persuasive evidence that a different approach can yield much more satisfying results -- for the agencies, for affected and interested parties, and for the public. The purpose of this paper is to give a brief description of that approach which can be a useful model for other USDOE sites that face similar negotiations

  1. Hanford Internal Dosimetry Project manual. Revision 1

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program

  2. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  3. Hanford Internal Dosimetry Project manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  4. The Hanford Environmental Dose Reconstruction Project: Overview

    International Nuclear Information System (INIS)

    Haerer, H.A.; Freshley, M.D.; Gilbert, R.O.; Morgan, L.G.; Napier, B.A.; Rhoads, R.E.; Woodruff, R.K.

    1990-01-01

    In 1988, researchers began a multiyear effort to estimate radiation doses that people could have received since 1944 at the U.S. Department of Energy's Hanford Site. The study was prompted by increasing concern about potential health effects to the public from more than 40 yr of nuclear activities. We will provide an overview of the Hanford Environmental Dose Reconstruction Project and its technical approach. The work has required development of new methods and tools for dealing with unique technical and communication challenges. Scientists are using a probabilistic, rather than the more typical deterministic, approach to generate dose distributions rather than single-point estimates. Uncertainties in input parameters are reflected in dose results. Sensitivity analyses are used to optimize project resources and define the project's scope. An independent technical steering panel directs and approves the work in a public forum. Dose estimates are based on review and analysis of historical data related to operations, effluents, and monitoring; determination of important radionuclides; and reconstruction of source terms, environmental conditions that affected transport, concentrations in environmental media, and human elements, such as population distribution, agricultural practices, food consumption patterns, and lifestyles. A companion paper in this volume, The Hanford Environmental Dose Reconstruction Project: Technical Approach, describes the computational framework for the work

  5. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  6. Hanford Site Composite Analysis Technical Approach Description: Hanford Site Disposition Baseline.

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, M. A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Dockter, R. E. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2017-10-02

    The permeability of ground surfaces within the U.S. Department of Energy’s (DOE) Hanford Site strongly influences boundary conditions when simulating the movement of groundwater using the Subsurface Transport Over Multiple Phases model. To conduct site-wide modeling of cumulative impacts to groundwater from past, current, and future waste management activities, a site-wide assessment of the permeability of surface conditions is needed. The surface condition of the vast majority of the Hanford Site has been and continues to be native soils vegetated with dryland grasses and shrubs.

  7. Hanford Dose Overview Program. Comparison of AIRDOS-EPA and Hanford site dose codes

    International Nuclear Information System (INIS)

    Aaberg, R.L.; Napier, B.A.

    1985-11-01

    Radiation dose commitments for persons in the Hanford environs calculated using AIRDOS-EPA were compared with those calculated using a suite of Hanford codes: FOOD, PABLM, DACRIN, and KRONIC. Dose commitments to the population and to the maximally exposed individual (MI) based on annual releases of eight radionuclides from the N-Reactor, were calculated by these codes. Dose commitments from each pathway to the total body, lung, thyroid, and lower large intestine (LLI) are given for the population and MI, respectively. 11 refs., 25 tabs

  8. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report

    International Nuclear Information System (INIS)

    Herborn, D.I.

    1991-10-01

    The requirements for Westinghouse Hanford independent review of the Preliminary Safety Analysis Report (PSAR) are contained in Section 1.0, Subsection 4.3 of WCH-CM-4-46. Specifically, this manual requires the following: (1) Formal functional reviews of the HWVP PSAR by the future operating organization (HWVP Operations), and the independent review organizations (HWVP and Environmental Safety Assurance, Environmental Assurance, and Quality Assurance); and (2) Review and approval of the HWVP PSAR by the Tank Waste Disposal (TWD) Subcouncil of the Safety and Environmental Advisory Council (SEAC), which provides independent advice to the Westinghouse Hanford President and executives on matters of safety and environmental protection. 7 refs

  9. Expediting Groundwater Sampling at Hanford and Making It Safer - 13158

    International Nuclear Information System (INIS)

    Connell, Carl W. Jr.; Conley, S.F.; Carr, Jennifer S.; Schatz, Aaron L.; Brown, W.L.; Hildebrand, R. Douglas

    2013-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons. Historically, the monitoring activities have been very 'people intensive'. Field personnel or 'samplers' have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from two official electronic databases: the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers traditionally used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information. In Automating Groundwater Sampling at Hanford (HNF-38542-FP Revision 0, Presented at Waste Management 2009 Conference, March 1 - March 5, 2009, Phoenix, AZ), we described the methods, tools, and techniques that would be used in automating the activities associated with measuring water levels. The Field Logging and Electronic Data Gathering (FLEDG) application/database that automates collecting the water-level measurement data has now been implemented at Hanford. In addition to eliminating the need to print out

  10. Expediting Groundwater Sampling at Hanford and Making It Safer - 13158

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Carl W. Jr.; Conley, S.F.; Carr, Jennifer S.; Schatz, Aaron L. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, Richland, WA 99352 (United States); Brown, W.L. [Lockheed Martin Systems Information, P.O. Box 950, Richland, WA 99352 (United States); Hildebrand, R. Douglas [Department of Energy - Richland Operations Office, 825 Jadwin Ave., Richland, WA 99352 (United States)

    2013-07-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons. Historically, the monitoring activities have been very 'people intensive'. Field personnel or 'samplers' have been issued pre-printed forms showing information about the well(s) for a particular sampling evolution. This information is taken from two official electronic databases: the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS). The samplers traditionally used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and other personnel posted the collected information. In Automating Groundwater Sampling at Hanford (HNF-38542-FP Revision 0, Presented at Waste Management 2009 Conference, March 1 - March 5, 2009, Phoenix, AZ), we described the methods, tools, and techniques that would be used in automating the activities associated with measuring water levels. The Field Logging and Electronic Data Gathering (FLEDG) application/database that automates collecting the water-level measurement data has now been implemented at Hanford. In addition to

  11. Historical research in the Hanford site waste cleanup

    International Nuclear Information System (INIS)

    Gerber, Michele S.

    1992-01-01

    This paper will acquaint the audience with role of historical research in the Hanford Site waste cleanup - the largest waste cleanup endeavor ever undertaken in human history. There were no comparable predecessors to this massive waste remediation effort, but the Hanford historical record can provide a partial road map and guide. It can be, and is, a useful tool in meeting the goal of a successful, cost-effective, safe and technologically exemplary waste cleanup. The Hanford historical record is rich and complex. Yet, it poses difficult challenges, in that no central and complete repository or data base exists, records contain obscure code words and code numbers, and the measurement systems and terminology used in the records change many times over the years. Still, these records are useful to the current waste cleanup in technical ways, and in ways that extend beyond a strictly scientific aspect. Study and presentations of Hanford Site history contribute to the huge educational and outreach tasks of helping the Site's work force deal with 'culture change' and become motivated for the cleanup work that is ahead, and of helping the public and the regulators to place the events at Hanford in the context of WWII and the Cold War. This paper traces historical waste practices and policies as they changed over the years at the Hanford Site, and acquaints the audience with the generation of the major waste streams of concern in Hanford Site cleanup today. It presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Examples of the strengths and limitations of the

  12. Hanford Site radionuclide national emission standards for hazardous air pollutants unregistered stack (power exhaust) source assessment

    Energy Technology Data Exchange (ETDEWEB)

    Davis, W.E.

    1994-08-04

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission measurement requirements in 40 Code of Federal Regulations (CFR) 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. This evaluation provides an assessment of the 39 unregistered stacks, under Westinghouse Hanford Company`s management, and their potential radionuclide emissions, i.e., emissions with no control devices in place. The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified three stacks, 107-N, 296-P-26 and 296-P-28, as having potential emissions that would cause an effective dose equivalent greater than 0.1 mrem/yr. These stacks, as noted by 40 CFR 61.93, would require continuous monitoring.

  13. Headspace vapor characterization of Hanford waste tank 241-B-107: Results from samples collected on 7/23/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-B-107 (Tank B-107) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwestern National Laboratory (PNNL). A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in the same table. Detailed descriptions of the analytical results appear in the appendices

  14. Headspace vapor characterization of Hanford waste tank 241-S-106: Results from samples collected on 06/13/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-106 (Tank S-106) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in the same table. Detailed descriptions of the analytical results appear in the appendices

  15. Headspace vapor characterization of Hanford waste Tank 241-C-201: Results from samples collected on 06/19/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-201 (Tank C-201) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary, of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. Detailed descriptions of the analytical results appear in the appendices

  16. Resource Conservation and Recovery Act ground-water monitoring projects for Hanford Facilities: Progress report, July 1--September 30, 1989

    International Nuclear Information System (INIS)

    Smith, R.M.; Bates, D.J.; Lundgren, R.E.

    1989-12-01

    This is Volume 1 of a two-volume document that describes the progress of 14 Hanford Site ground-water monitoring projects for the period July 1 to September 30, 1989. This volume discusses the projects; Volume 2 provides as-built diagrams, completion/inspection reports, drilling logs, and geophysical logs for wells drilled, completed, or logged during this period. Volume 2 can be found on microfiche in the back pocket of Volume 1. The work described in this document is conducted by the Pacific Northwest Laboratory under the management of Westinghouse Hanford Company for the US Department of Energy. Concentrations of ground-water constituents are compared to federal drinking water standards throughout this document for reference purposes. All drinking water supplied from the sampled aquifer meets regulatory standards for drinking water quality

  17. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    International Nuclear Information System (INIS)

    Brown, G.N.; Bontha, J.R.; Carlson, C.D.

    1995-09-01

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal

  18. Disposal of Radioactive Waste at Hanford Creates Problems

    Science.gov (United States)

    Chemical and Engineering News, 1978

    1978-01-01

    Radioactive storage tanks at the Hanford facility have developed leaks. The situation is presently considered safe, but serious. A report from the National Academy of Science has recommended that the wastes be converted to stable solids and stored at another site on the Hanford Reservation. (Author/MA)

  19. Environmental status of the Hanford Reservation for CY-1974

    International Nuclear Information System (INIS)

    Fix, J.J.

    1975-09-01

    Environmental data collected at the Hanford Reservation during 1974 showed continued compliance of Hanford operations with all applicable State and Federal regulations. Data are presented on levels of radioactivity in samples of surface air, drinking water, Columbia River water and other surface waters, soil, and tissues of wild animals and water fowl collected at various locations

  20. Characterization plan for the Hanford Generating Plant (HGP)

    International Nuclear Information System (INIS)

    Marske, S.G.

    1996-09-01

    This characterization plan describes the sample collection and sample analysis activities to characterize the Hanford Generating Plant and associated solid waste management units (SWMUs). The analytical data will be used to identify the radiological contamination in the Hanford Generating Plant as well as the presence of radiological and hazardous materials in the SWMUs to support further estimates of decontamination interpretation for demolition

  1. First Quarter Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  2. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    International Nuclear Information System (INIS)

    FR-EEMAN, D.A.

    2003-01-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency

  3. Engineering report of plasma vitrification of Hanford tank wastes

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1995-01-01

    This document provides an analysis of vendor-derived testing and technology applicability to full scale glass production from Hanford tank wastes using plasma vitrification. The subject vendor testing and concept was applied in support of the Hanford LLW Vitrification Program, Tank Waste Remediation System

  4. Quality assurance in Hanford site defense waste operations

    International Nuclear Information System (INIS)

    Wojtasek, R.D.

    1989-01-01

    This paper discusses quality assurance as an integral part of conducting waste management operations. The storage, treatment, and disposal of radioactive and non- radioactive hazardous wastes at Hanford are described. The author reports that quality assurance programs provide confidence that storage, treatment, and disposal facilities and systems perform as intended. Examples of how quality assurance is applied to Hanford defense waste operations are presented

  5. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  6. Annual Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and

  7. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Fosmire, C.J.; Fowler, R.A.

    1998-09-01

    This document describes the US Department of Energy's (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site

  8. Hanford Site environmental surveillance data report for calendar year 1995

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1996-07-01

    Environmental surveillance at the Hanford Site collects data that provides a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor several chemicals and metals in Columbia River Water and Sediment. Pacific Northwest National Laboratory publishes an annual environmental report for the Hanford Site each calendar year. The Hanford Site Environmental Report for Calendar Year 1995 describes the Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, and environmental monitoring activities and results. The report includes a summary of offsite and onsite environmental monitoring data collected during 1995 by PNNL's Environmental Monitoring Program. Appendix A of that report contains data summaries created from raw surface, river monitoring data, and chemical air data. This volume contains the actual raw data used to create the summaries. The data volume also includes Hanford Site drinking water radiological data

  9. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2009-08-11

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  10. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Fosmire, C.J.; Fowler, R.A. [and others

    1998-09-01

    This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

  11. Hanford Site Environmental Surveillance Data Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-10-13

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  12. Hanford Site baseline risk assessment methodology. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This methodology has been developed to prepare human health and environmental evaluations of risk as part of the Comprehensive Environmental Response, Compensation, and Liability Act remedial investigations (RIs) and the Resource Conservation and Recovery Act facility investigations (FIs) performed at the Hanford Site pursuant to the Hanford Federal Facility Agreement and Consent Order referred to as the Tri-Party Agreement. Development of the methodology has been undertaken so that Hanford Site risk assessments are consistent with current regulations and guidance, while providing direction on flexible, ambiguous, or undefined aspects of the guidance. The methodology identifies Site-specific risk assessment considerations and integrates them with approaches for evaluating human and environmental risk that can be factored into the risk assessment program supporting the Hanford Site cleanup mission. Consequently, the methodology will enhance the preparation and review of individual risk assessments at the Hanford Site.

  13. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Justin W. [Mission Support Alliance LLC, Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance LLC, Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance LLC, Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  14. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Place, B.G.

    1998-01-01

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site's pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office's (RL's) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program

  15. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  16. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  17. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  18. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  19. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  20. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.