WorldWideScience

Sample records for hanford atomic energy

  1. International Atomic Energy Agency/Hanford Site shared use of calorimeters

    International Nuclear Information System (INIS)

    Welsh, T.L.

    1997-01-01

    Hanford Site operators combine gamma ray isotopic and calorimetry measurements for nondestructive plutonium assay. Such measurements offer lower variability (particularly for heterogeneous materials) and decreased radiation exposure, cost, waste, intrusiveness, and material handling compared to destructive analysis. Until now, the International Atomic Energy Agency (IAEA) has relied on destructive analysis to perform the most accurate verification requirements for plutonium stored under safeguards at the Hanford Site. It was recognized that using calorimetry could significantly reduce the need for the IAEA to perform destructive analysis. To authorize the operator's calorimeters for routine IAEA use, however, it was necessary to develop authentication features and perform independent 1558 testing. Authentication features include IAEA control of the hardware and calorimeter operating system software, measurement of certified IAEA standards, sealing of calorimeter chambers, and limited destructive analysis of IAEA selected items. A field test of these authentication features was performed at the Hanford Site in June 1997. The field test also was meant to enhance the credibility the IAEA imputes to calorimetry prior to its implementation. Progress in shared use of the Hanford Site calorimeters is reported

  2. Proposal for the International Atomic Energy Agency Training Course

    International Nuclear Information System (INIS)

    McCarthy, T.L.

    1994-06-01

    The Hanford Site has hosted similar activities, including both Hanford Summits I and II. The Hanford Summits were two-day televised events to discuss the commitment of the current Presidential administration to the environmental restoration of the Hanford Site. Public involvement and strategic issues established from Hanford Summit I include: Regulatory issues, training and education, economic development and partnership, and technology transfer. Hanford Summit II provided a summary of how Secretary of Energy O'Leary is proceeding on the above strategic issues. The DOE and Westinghouse School for Environmental Excellence frequently offers a six-week course for environmental professionals and workers. Approximately thirty to forty individuals attend the training course, which provides training in environmental regulation compliance. The Hanford Site has hosted two previous International Atomic Energy Agency training courses. The courses lasted two weeks and had approximately eight to ten participants. Nuclear Material Management and Neutron Monitoring were the courses hosted by the Hanford Site

  3. Hanford Atomic Products Operation monthly report, January 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-02-24

    This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  4. Hanford Atomic Products Operation monthly report for June 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-07-28

    This is the monthly report for the Hanford Atomic Products Operation, June, 1955. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  5. Annual Hanford seismic report - fiscal year 1996

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1996-12-01

    Seismic monitoring (SM) at the Hanford Site was established in 1969 by the US Geological Survey (USGS) under a contract with the US Atomic Energy Commission. Since 1980, the program has been managed by several contractors under the US Department of Energy (USDOE). Effective October 1, 1996, the Seismic Monitoring workscope, personnel, and associated contracts were transferred to the USDOE Pacific Northwest National Laboratory (PNNL). SM is tasked to provide an uninterrupted collection and archives of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) located on and encircling the Hanford Site. SM is also tasked to locate and identify sources of seismic activity and monitor changes in the historical pattern of seismic activity at the Hanford Site. The data compiled are used by SM, Waste Management, and engineering activities at the Hanford Site to evaluate seismic hazards and seismic design for the Site

  6. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  7. International Atomic Energy Agency use of facility calorimeters for safeguards purposes

    International Nuclear Information System (INIS)

    McRae, L.P.; Delegard, C.H.; Hamilton, R.A.; Westsik, G.A.; Moriarty, T.F.; Lemaire, R.J.

    1996-01-01

    The International Atomic Energy Agency is performing nuclear materials safeguards on an inventory of pure and scrap plutonium oxide powder materials held in Vault 3 of the Plutonium Finishing Plant, operated by the Westinghouse Hanford Company for the US Department of Energy at the Hanford Site in Washington State. The International Atomic Energy Agency uses qualitative and quantitative techniques to verify the presence and quantity of the nuclear materials under safeguards. The Agency uses weighing, sampling, and destructive analyses to obtain the most accurate verification measurements of containers of plutonium powders. In contrast, the plant operator generally uses non-destructive plutonium assay based on gamma spectrometry and calorimetry for its most accurate plutonium powder container measurements. Recent results have shown that the operator''s calorimeter system achieves measurement variabilities comparable with, or better than, the destructive analyses, particularly for scrap. The results are achieved more quickly and economically, with less waste and lower radiation exposure and contamination hazard, by calorimetry than by classical destructive analyses. Techniques, including authentication methods, are being jointly developed to permit use of the operator''s calorimeter system for international safeguards purposes. The authentication is to ensure the independence of, and to substantiate the validity of, calorimeter measurements for international safeguards. The authentication methods considered and being developed are discussed

  8. Hanford Site Groundwater Monitoring for Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2003-02-28

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2002 on the U.S. Department of Energy's Hanford Site in Washington State. This report is written to meet the requirements in CERCLA, RCRA, the Atomic Energy Act of 1954, and Washington State Administrative Code.

  9. Remedial Investigation of Hanford Site Releases to the Columbia River

    International Nuclear Information System (INIS)

    Lerch, J.A.

    2009-01-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts of Hanford Site hazardous substance releases to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The impacts are now being assessed under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 via a remedial investigation. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River has been developed and issued to initiate the remedial investigation. The work plan establishes a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities began in October 2008 and are anticipated to continue into Fall 2009 over a 120 mile stretch of the Columbia River. Information gained from performing this remedial investigation will ultimately be used to help make final regulatory decisions for cleaning up Hanford Site contamination that exists in and along the Columbia River. (authors)

  10. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  11. Fluor Hanford Project Focused Progress at Hanford

    International Nuclear Information System (INIS)

    HANSON, R.D.

    2000-01-01

    Fluor Hanford is making significant progress in accelerating cleanup at the Hanford site. This progress consistently aligns with a new strategic vision established by the U.S. Department of Energy's Richland Operations Office (RL)

  12. Hanford land disposal restrictions plan for mixed wastes

    International Nuclear Information System (INIS)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs

  13. Hanford land disposal restrictions plan for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  14. Researchers take up environmental challenge at Hanford

    International Nuclear Information System (INIS)

    Illman, D.L.

    1993-01-01

    The Hanford nuclear site, built to produce plutonium for the nation's first atomic weapons, occupies 560 square miles of desert in southeastern Washington State. Only 29 months after ground was broken at the site in March 1943, the Hanford project delivered the plutonium used in the bomb that was dropped on Nagasaki, Japan, at the end of World War II. Secrecy surrounding the nuclear weapons program continued through the Cold War years, concealing the fact that for decades, hazardous and radioactive wastes were discharged to the ground, water, and air at Hanford. Only in 1986 were documents finally declassified--tens of thousands of them--describing the construction, operation, and maintenance of the Hanford facilities, allowing a picture to be pieced together of the environmental cost there of the nuclear weapons buildup. That cost may never be completely tallied. But Westinghouse Hanford, Co., the principal operations contractor on the site, and Pacific Northwest Laboratories (PNL), operated by Battelle Memorial Institute for the Department of Energy (DOE), have now begun working together to develop new technologies that are needed to address the short-term and long-term challenges of environmental restoration at Hanford. The paper discusses the problems and possible solutions that are being investigated

  15. Study of Hanford as a nuclear energy center

    International Nuclear Information System (INIS)

    Harty, H.

    1975-01-01

    A study was made of the possible construction of a large nuclear park involving several reactors at Hanford. Savings resulted from continuity of construction, standardization, modularization, fuel cycle treatment, etc. The planning involved consideration of energy transmission cost (0.3 to 0.4 mills/KW-hr) but with present transmission systems upgraded to 500 or 1100 KV. Water resources were adequate, but there was some question of how close the reactors could be to each other in view of the large waste heat effluents from each. Earthquake and other common mode failure possibilities were considered. Due to further questions about safeguards of plutonium materials and nuclear waste transportation, more work is being done on the Hanford nuclear park concept. (U.S.)

  16. The Wahluke (North) Slope of the Hanford Site: History and present challenges

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1996-01-01

    The Hanford Site was founded in early 1943 for the top secret government mission of producing plutonium for the world's first atomic weapons. A great deal of land was needed, both to separate various Site facilities from each other, and to provide buffer zones for safety and security purposes. In total, 640 square miles were occupied by the original Hanford Site and its buffer zones. Much of this land had been earmarked for inclusion in the Columbia Basin Irrigation Project (CBP). After World War II ended, a series of national decisions led to a long-term mission for the Hanford Site, and area residents learned that the Site lands they had hoped to farm would be withheld from agricultural production for the foreseeable future. A long set of negotiations commenced between the federal management agency responsible for Hanford (the Atomic Energy Commission -- AEC), and the Bureau of Reclamation (BOR), Department of the Interior that managed the CBP. Some lands were turned back to agriculture, and other compromises made, in the Site's far northern buffer lands known as the Wahluke Slope, during the 1950s. In the mid-1960s, further negotiations were about to allow farming on lands just north of the Columbia River, opposite Hanford's reactors, when studies conducted by the BOR found drainage barriers to irrigation. As a result of these findings, two wildlife refuges were created on that land in 1971. Today, after the Hanford Site plutonium production mission has ended and as Site cleanup goes forward, the possibility of total release of Wahluke Slope lands from the control of the Department of Energy (DOE -- a successor agency to the AEC) is under discussion. Such discussion encompasses not just objective and clearly visible criteria, but it resurrects historical debates about the roles of farming and government presence in the Columbia Basin

  17. Meteorological evaluation of multiple reactor contamination probabilities for a Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Diebel, D.I.

    1978-03-01

    The conceptual Hanford energy center is composed of nuclear power plants, hence the name Hanford Nuclear Energy Center (HNEC). Previous topical reports have covered a variety of subjects related to the HNEC including: electric power transmission, fuel cycle, and heat disposal. This report discusses the probability that a radiation release from a single reactor in the HNEC would contaminate other facilities in the center. The risks, in terms of reliability of generation, of this potential contamination are examined by Clark and Dowis

  18. Strategy for Meeting the Secretary of Energy and Hanford Site FY 2001 Pollution Prevention Goals

    International Nuclear Information System (INIS)

    CLARK, D.E.

    2000-01-01

    The purpose of this strategy is to identify the Fiscal Year (FY) 2001 Hanford Site waste reduction, sanitary recycling and affirmative procurement goals and identify the action required to ensure that the Secretary of Energy's FY 2005 pollution prevention and the FY 2001 Hanford Site goals are met. The strategy and plan to ensure that the Secretary of Energy's routine waste reduction, recycling, cleanup/stabilization waste and affirmative procurement goals are met consists of four phases. The first phase is to ensure that the infrastructure is in place to support planning and organization. This phase involves ensuring that roles and responsibilities are identified; requirement documents are current; goals and successes are communicated; and accurate and current waste information is available. Roles and responsibilities are identified and the RL requirement documents (i.e., the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan and Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation) will specify the Secretary of Energy's goals. Goals will be communicated formally and informally via the Hanford Reach, training sessions, meetings and correspondence. Sharing of pollution prevention successes and goal progress are encouraged at the Pollution Prevention/Waste Minimization (PZ/WMin) quarterly meetings. Existing site waste generation databases will be utilized to provide current waste generation data. The second phase of the strategy and plan is to establish and allocate goals by prime contractor (i.e. Fluor Hanford, Inc. (FH), Pacific Northwest National Laboratory (PNNL), Bechtel Hanford Inc. (BHI), and CH2MHill Hanford Group (CHG)). This requires determining current status toward meeting the Secretary of Energy's goals; establishing the Hanford Site FY goals, and allocating waste reduction goals by prime contractor. The third phase of the strategy and plan is goal implementation. This

  19. An overview of the Hanford controversy

    International Nuclear Information System (INIS)

    Stewart, A.M.; Kneale, G.W.

    1991-01-01

    In 1964, the Atomic Energy Commission agreed to sponsor 'a study of the lifetime health and mortality experiences of all employees of AEC contractors.' The commission put in charge of this study a physician (Thomas Mancuso) who had recently shown how the U.S. Social Security system could be used to identify the dates and causes of death of all insured workers. As director of the AEC project, Mancuso was at liberty to include any or all the postwar offshoots of the Manhattan Project. His master plan included workers from Oak Ridge, Los Alamos, and Hanford, but it soon became apparent that his attempts to link radiation exposures to subsequent events were proving more successful at Hanford than elsewhere. The authors of this paper, who participated in the study, review the controversy surrounding its eventual publication.22 references

  20. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  1. Hanford Nuclear Energy Center study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H.

    1976-03-16

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants.

  2. Hanford Nuclear Energy Center study

    International Nuclear Information System (INIS)

    Harty, H.

    1976-01-01

    Studies of a Nuclear Energy Center (NEC) at Hanford have not revealed any insurmountable technical problems, but problems have been identified that appear to be more difficult to resolve than for dispersed siting. Major technical developments in meteorology, and probably in seismology, are needed before an environmental report or safety analysis report could be prepared for an NEC. It would be helpful in further NEC studies if licensing requirements (and related criteria) were defined for them. An NEC will likely cause a step change in the amount of planning and involvement of regional groups in the energy picture compared to dispersed siting. The tools that must be developed for analysis of NECs will probably be used for evaluating dispersed siting in greater detail. NECs will probably bring about the use of dry or wet/dry cooling before it is required in equivalent amount for dispersed plants

  3. MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2009-04-28

    The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

  4. 1995 Report on Hanford site land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report

  5. 1995 Report on Hanford site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  6. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Hartman, Mary J.; Dresel, P. Evan; Lindberg, Jon W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  7. Waste management (Truck and rail shipments to Hanford)

    International Nuclear Information System (INIS)

    O'Donnell, J.P.; Culbertson, R.C.

    1988-01-01

    As part of the physical decommissioning of the Shippingport Atomic Power Station, Shippingport, PA, a large volume of Low Specific Activity (LSA) radioactive waste was accumulated. The waste, which consisted primarily of radioactive reactor plant components, piping, contaminated asbestos, tanks, building rubble, sludge and ion exchange resins was packaged and prepared for shipment. The waste was transported by truck and rail from Shippingport, PA, to the Department of Energy burial ground at Hanford, Washington, a journey of 2,329 miles. This presentation will discuss the successful management of over 2,600 packages weighing in excess of 3,600 tons of radioactive waste from the cradle-to-the-grave, that is from the time it was generated during the decommissioning process until its final burial at the Hanford, Washington burial site. 1 tab

  8. Remedial Investigation of Hanford Site Releases to the Columbia River - 13603

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

    2013-07-01

    In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation

  9. Personal recollections of radiation biology research at Hanford

    International Nuclear Information System (INIS)

    Thompson, R.C.

    1995-01-01

    This paper traces the evolution of the Hanford biology programme over a period of nearly five decades. The programme began in the 1940s with a focus on understanding the potential health effects of radionuclides such as 131 I associated with fallout from the atomic bomb. These studies were extended in the 1950s to experiments on the toxicity and metabolism of plutonium and fission products such as 90 Sr and 137 Cs. In the 1960s, a major long term project was initiated on the inhalation toxicology and carcinogenic effects of plutonium oxide and plutonium nitrate in dogs and rodents. The project remained a major effort within the overall Hanford biology programme throughout the 1970s and 1980s, during which time a broad range of new projects on energy-related pollutants, radon health effects, and basic radiation biology were initiated. Despite the many evolutionary changes that have occurred in the Hanford biology programme, the fundamental mission of understanding the effects of radiation on human health has endured for nearly five decades. (author)

  10. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1993-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides an existing and future land use plan for the Hanford Site. The HSDP is updated annually in accordance with DOE Order 4320.1B, Site Development Planning, to reflect the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  11. Hanford site: A guide to record series supporting epidemiologic studies conducted for the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-06

    The primary purpose of this guide is to describe each series of records which pertains to studies of worker health and mortality funded by the U.S. Department of Energy (DOE) at the Hanford site. Additionally, the guide provides information on the location and classification of the records and how they may be accessed. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project, HAI`s role in the project, the history of the DOE and the Hanford site, and Hanford`s organizational structure. It provides information on the methodology used to inventory and describe pertinent records stored in various onsite offices, in Hanford`s Records Holding Area (RHA), and at the Seattle Federal Records Center (SFRC). Other topics include the methodology used to produce the guide, the arrangement of the record Series descrimations, and information on accessing records repositories.

  12. Reengineering Hanford

    International Nuclear Information System (INIS)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success

  13. Reengineering Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Badalamente, R.V.; Carson, M.L.; Rhoads, R.E.

    1995-03-01

    The Department of Energy Richland Operations Office is in the process of reengineering its Hanford Site operations. There is a need to fundamentally rethink and redesign environmental restoration and waste management processes to achieve dramatic improvements in the quality, cost-effectiveness, and timeliness of the environmental services and products that make cleanup possible. Hanford is facing the challenge of reengineering in a complex environment in which major processes cuts across multiple government and contractor organizations and a variety of stakeholders and regulators have a great influence on cleanup activities. By doing the upfront work necessary to allow effective reengineering, Hanford is increasing the probability of its success.

  14. NHC's contribution to cleanup of the Hanford Site

    International Nuclear Information System (INIS)

    Chauve, H.D.

    1998-01-01

    The one billion dollars per year Project Hanford Management Contract (PHMC), managed by Fluor Daniel Hanford, calls for cleanup of the Hanford Site for the Department of Energy. Project Hanford comprises four major subprojects, each managed by a different major contractor. Numatec Hanford Corporation (NHC) is a fifth major subcontractor which provides energy and technology to each of the Hanford projects. NHC draws on the experience and capabilities of its parent companies, COGEMA and SGN, and relies on local support from its sister Company in Richland, COGEMA Engineering Corporation, to bring the best commercial practices and new technology to the Project

  15. Hanford External Dosimetry Program

    International Nuclear Information System (INIS)

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs

  16. Hanford Site Development Plan

    International Nuclear Information System (INIS)

    Hathaway, H.B.; Daly, K.S.; Rinne, C.A.; Seiler, S.W.

    1992-05-01

    The Hanford Site Development Plan (HSDP) provides an overview of land use, infrastructure, and facility requirements to support US Department of Energy (DOE) programs at the Hanford Site. The HSDP's primary purpose is to inform senior managers and interested parties of development activities and issues that require a commitment of resources to support the Hanford Site. The HSDP provides a land use plan for the Hanford Site and presents a picture of what is currently known and anticipated in accordance with DOE Order 4320.1B. Site Development Planning. The HSDP wig be updated annually as future decisions further shape the mission and overall site development process. Further details about Hanford Site development are defined in individual area development plans

  17. Status report: conceptual fuel cycle studies for the Hanford Nuclear Energy Center

    International Nuclear Information System (INIS)

    Merrill, E.T.; Fleischman, R.M.

    1975-07-01

    A summary is presented of the current status of studies to determine the logistics of onsite plutonium recycle and the timing involved in introducing the associated reprocessing and fabrication fuel cycle facilities at the Hanford Nuclear Energy Center

  18. The Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Doern, G.B.

    1976-01-01

    This study describes and assesses the regulatory and administrative processes and procedures of the Atomic Energy Control Board, the AECB. The Atomic Energy Control Act authorized the AECB to control atomic energy materials and equipment in the national interest and to participate in measures for the international control of atomic energy. The AECB is authorized to make regulations to control atomic energy materials and equipment and to make grants in support of atomic energy research. (author)

  19. OSCAAR calculations for the Hanford dose reconstruction scenario of BIOMASS Theme 2

    International Nuclear Information System (INIS)

    Homma, Toshimitsu; Tomita, Kenichi

    2000-10-01

    This report presents the results obtained from the application of the accident consequence assessment code, called OSCAAR, developed in Japan Atomic Energy Research Institute to the Hanford dose reconstruction scenario of BIOMASS Theme 2 organized by International Atomic Energy Agency. The scenario relates to an inadvertent release of 131 I to atmosphere from the Hanford Purex Chemical Separations Plant on 2-5 September 1963. This exercise was used to test the atmospheric dispersion and deposition models and food chain transport models for 131 I in OSCAAR with actual measurements and to identify the most important sources of uncertainty with respect both to the part of the assessment and to the overall assessment. The OSCAAR food chain model performed relatively well, while the atmospheric dispersion and deposition calculations made using wind data at the release height and wind fields by simple interpolation of the surrounding surface wind data indicated limited capabilities. The Monte Carlo based uncertainty and sensitivity method linked with OSCAAR successfully demonstrated its usefulness in the scenario. The method presented here also allowed the determination of the parameters that have the most important impact in accident consequence assessments. (author)

  20. OSCAAR calculations for the Hanford dose reconstruction scenario of BIOMASS Theme 2

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Toshimitsu; Tomita, Kenichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Inoue, Yoshihisa [Visible Information Center Inc., Tokai, Ibaraki (Japan)

    2000-10-01

    This report presents the results obtained from the application of the accident consequence assessment code, called OSCAAR, developed in Japan Atomic Energy Research Institute to the Hanford dose reconstruction scenario of BIOMASS Theme 2 organized by International Atomic Energy Agency. The scenario relates to an inadvertent release of {sup 131}I to atmosphere from the Hanford Purex Chemical Separations Plant on 2-5 September 1963. This exercise was used to test the atmospheric dispersion and deposition models and food chain transport models for {sup 131}I in OSCAAR with actual measurements and to identify the most important sources of uncertainty with respect both to the part of the assessment and to the overall assessment. The OSCAAR food chain model performed relatively well, while the atmospheric dispersion and deposition calculations made using wind data at the release height and wind fields by simple interpolation of the surrounding surface wind data indicated limited capabilities. The Monte Carlo based uncertainty and sensitivity method linked with OSCAAR successfully demonstrated its usefulness in the scenario. The method presented here also allowed the determination of the parameters that have the most important impact in accident consequence assessments. (author)

  1. The Atomic energy basic law

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to secure future energy resources, push forward progress of science and advancement of industry for welfare of the mankind and higher standard of national life by helping research, development and utilization of atomic power. Research, development and utilization of atomic power shall be limited to the peaceful purpose with emphasis laid on safety and carried on independently under democratic administration. Basic concepts and terms are defined, such as: atomic power; nuclear fuel material; nuclear raw material; reactor and radiation. The Atomic Energy Commission and the Atomic Energy Safety Commission shall be set up at the Prime Minister's Office deliberately to realize national policy of research, development and utilization of atomic power and manage democratic administration for atomic energy. The Atomic Energy Commission shall plan, consider and decide matters concerning research, development and utilization of atomic energy. The Atomic Energy Safety Commission shall plan, consider and decide issues particularly concerning safety securing among such matters. The Atomic Energy Research Institute shall be founded under the governmental supervision to perform research, experiment and other necessary affairs for development of atomic energy. The Power Reactor and Nuclear Fuel Development Corporation shall be established likewise to develop fast breeding reactor, advanced thermal reactor and nuclear fuel materials. Development of radioactive minerals, control of nuclear fuel materials and reactors and measures for patent and invention concerning atomic energy, etc. are stipulated respectively. (Okada, K.)

  2. HANFORD TANK FARM RESOURCE CONSERVATION and RECOVERY ACT (RCRA) CORRECTIVE ACTION PROGRAM

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2007-01-01

    As a consequence of producing special nuclear material for the nation's defense, large amounts of extremely hazardous radioactive waste was created at the US Department of Energy's (DOE) Hanford Site in south central Washington State. A little over 50 million gallons of this waste is now stored in 177 large, underground tanks on Hanford's Central Plateau in tank farms regulated under the Atomic Energy Act and the Resource, Conservation, and Recovery Act (RCRA). Over 60 tanks and associated infrastructure have released or are presumed to have released waste in the vadose zone. In 1998, DOE's Office of River Protection established the Hanford Tank Farm RCRA Corrective Action Program (RCAP) to: (1) characterize the distribution and extent of the existing vadose zone contamination; (2) determine how the contamination will move in the future; (3) estimate the impacts of this contamination on groundwater and other media; (4) develop and implement mitigative measures; and (5) develop corrective measures to be implemented as part of the final closure of the tank farm facilities. Since its creation, RCAP has made major advances in each of these areas, which will be discussed in this paper

  3. Hanford Patrol Academy demolition sites closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    The Hanford Site is owned by the U.S. Government and operated by the U.S. Department of Energy, Richland Operations Office. Westinghouse Hanford Company is a major contractor to the U.S. Department of Energy, Richland Operations Office and serves as co-operator of the Hanford Patrol Academy Demolition Sites, the unit addressed in this paper. This document consists of a Hanford Facility Dangerous Waste Part A Permit Application, Form 3 (Revision 4), and a closure plan for the site. An explanation of the Part A Form 3 submitted with this closure plan is provided at the beginning of the Part A section. This Hanford Patrol Academy Demolition Sites Closure Plan submittal contains information current as of December 15, 1994.

  4. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  5. 1993 report on Hanford Site land disposal restrictions for mixed wastes

    International Nuclear Information System (INIS)

    Black, D.

    1993-04-01

    Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 2 (RCRA) and Atomic Energy Act 3 . This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order 1 (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress

  6. High-Energy Beam Transport in the Hanford FMIT Linear Accelerator

    International Nuclear Information System (INIS)

    Melson, K.E.; Potter, R.C.; Liska, D.J.; Giles, P.M.; Wilson, M.T.; Cole, T.R.; Caldwell, C.J. Jr.

    1979-01-01

    The High-Energy Beam Transport (HEBT) for the Hanford Fusion Materials Irradiation Test (FMIT) Facility's Linear Accelerator must transport a large emittance, high-current, high-power continuous duty deuteron beam with a large energy spread. Both periodic and nonperiodic systems have been designed to transport and shape the beam as required by the liquid lithium target. An energy spreader system distributes the Bragg Peak within the lithium. A beam spreader and a beam stop have been provided for tune-up purposes. Characterizing the beam will require extensions of beam diagnostics techniques and non-interceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports

  7. Hanford Site solid waste acceptance criteria

    International Nuclear Information System (INIS)

    Willis, N.P.; Triner, G.C.

    1991-09-01

    Westinghouse Hanford Company manages the Hanford Site solid waste treatment, storage, and disposal facilities for the US Department of Energy Field Office, Richland under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites, radioactive solid waste storage areas and hazardous waste treatment, storage, and/or disposal facilities. This manual defines the criteria that must be met by waste generators for solid waste to be accepted by Westinghouse Hanford Company for treatment, storage and/or disposal facilities. It is to be used by all waste generators preparing radioactive solid waste for storage or disposal at the Hanford Site facilities and for all Hanford Site generators of hazardous waste. This manual is also intended for use by Westinghouse Hanford Company solid waste technical staff involved with approval and acceptance of solid waste. The criteria in this manual represent a compilation of state and federal regulations; US Department of Energy orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to management of solid waste. Where appropriate, these requirements are included in the manual by reference. It is the intent of this manual to provide guidance to the waste generator in meeting the applicable requirements

  8. HANFORD SITE SUSTAINABILITY PROGRAM RICHLAND WASHINGTON - 12464

    Energy Technology Data Exchange (ETDEWEB)

    FRITZ LL

    2012-01-12

    In support of implementation of Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance, the Hanford Site Sustainability Plan was developed to implement strategies and activities required to achieve the prescribed goals in the EO as well as demonstrate measurable progress in environmental stewardship at the Hanford Site. The Hanford Site Sustainability Program was developed to demonstrate progress towards sustainability goals as defined and established in Executive Order (EO) 13514, Federal Leadership in Environmental, Energy and Economic Performance; EO 13423, Strengthening Federal Environmental, Energy and Transportation Management, and several applicable Energy Acts. Multiple initiatives were undertaken in Fiscal Year (FY) 2011 to implement the Program and poise the Hanford Site as a leader in environmental stewardship. In order to implement the Hanford Site Sustainability Program, a Sustainability Plan was developed in conjunction with prime contractors, two U.S. Department of Energy (DOE) Offices, and key stakeholders to serve as the framework for measuring progress towards sustainability goals. Based on the review of these metrics and future plans, several activities were initiated to proactively improve performance or provide alternatives for future consideration contingent on available funding. A review of the key metric associated with energy consumption for the Hanford Site in FY 2010 and 2011 indicated an increase over the target reduction of 3 percent annually from a baseline established in FY 2003 as illustrated in Figure 1. This slight increase was attributed primarily from the increased energy demand from the cleanup projects funded by the American Recovery and Reinvestment Act (ARRA) in FY 2010 and 2011. Although it is forecasted that the energy demand will decrease commensurate with the completion of ARRA projects, several major initiatives were launched to improve energy efficiency.

  9. Application of Systems Engineering to U.S. Department of Energy Privatization Project Selection at the Hanford Nuclear Reservation

    International Nuclear Information System (INIS)

    Layman, John Scott

    1999-01-01

    The privatization efforts at the U.S. Department of Energy's Hanford Nuclear Reservation have been very successful primarily due to a disciplined process for project selection and execution. Early in the development of Privatization at Hanford, the Department of Energy determined that a disciplined alternatives generation and analysis (AGA) process would furnish the candidate projects with the best probability for success. Many factors had to be considered in the selection of projects. Westinghouse Hanford Company was assigned to develop this process and facilitate the selection of the first round of candidate privatization projects. Team members for the AGA process were assembled from all concerned organizations and skill groups. Among the selection criteria were legal, financial and technical considerations which had to be weighed

  10. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  11. Hanford Emergency Response Plan

    International Nuclear Information System (INIS)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures

  12. Hanford Emergency Response Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, J.D.

    1994-04-01

    The Hanford Emergency Response Plan for the US Department of Energy (DOE), Richland Operations Office (RL), incorporates into one document an overview of the emergency management program for the Hanford Site. The program has been developed in accordance with DOE orders, and state and federal regulations to protect worker and public health and safety and the environment in the event of an emergency at or affecting the Hanford Site. This plan provides a description of how the Hanford Site will implement the provisions of DOE 5500 series and other applicable Orders in terms of overall policies and concept of operations. It should be used as the basis, along with DOE Orders, for the development of specific contractor and RL implementing procedures.

  13. Hanford Atomic Products Operation monthly report, January 1954

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1954-02-25

    This is a progress report of the production reactors on the Hanford Reservation for the month of January 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes the accomplishments and employee relations for that month.

  14. Hanford Atomic Products Operation monthly report, April 1953

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1953-05-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  15. Hanford Atomic Products Operation monthly report, March 1953

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1953-04-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of March 1953. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  16. Hanford Atomic Products Operation monthly report, February 1954

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1954-03-23

    This is a progress report of the production reactors on the Hanford Reservation for the month of February 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  17. Hanford Atomic Products Operation monthly report, April 1954

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1954-05-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  18. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  19. Hanford Atomic Products Operation monthly report for February 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-02-21

    This is the monthly report for the Hanford Laboratories Operation, February, 1956. Metallurgy, reactors fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations are discussed.

  20. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

    2006-01-01

    The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the

  1. Final Hanford Comprehensive Land-Use Plan Environmental Impact Statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-10-01

    This Final ''Hanford Comprehensive Land-Use Plan Environmental Impact Statement'' (HCP EIS) is being used by the Department of Energy (DOE) and its nine cooperating and consulting agencies to develop a comprehensive land-use plan (CLUP) for the Hanford Site. The DOE will use the Final HCP EIS as a basis for a Record of Decision (ROD) on a CLUP for the Hanford Site. While development of the CLUP will be complete with release of the HCP EIS ROD, full implementation of the CLUP is expected to take at least 50 years. Implementation of the CLUP would begin a more detailed planning process for land-use and facility-use decisions at the Hanford Site. The DOE would use the CLUP to screen proposals. Eventually, management of Hanford Site areas would move toward the CLUP land-use goals. This CLUP process could take more than 50 years to fully achieve the land-use goals.

  2. 1998 report on Hanford Site land disposal restrictions for mixed waste

    International Nuclear Information System (INIS)

    Black, D.G.

    1998-01-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  3. 1998 report on Hanford Site land disposal restrictions for mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  4. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  5. Hanford Waste Mineralogy Reference Report

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2010-01-01

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  6. HANFORD WASTE MINERALOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-29

    This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.

  7. HANFORD WASTE MINEROLOGY REFERENCE REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2010-06-18

    This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.

  8. Mixed waste management at the Hanford Site

    International Nuclear Information System (INIS)

    Roberts, R.J.; Jasen, W.G.

    1991-01-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, special projects have been initiated for the management of RMW. This paper addresses the management of solid RMW. The management of bulk liquid RMW will not be described. 7 refs., 4 figs

  9. Reinventing government: Reinventing Hanford

    International Nuclear Information System (INIS)

    Mayeda, J.T.

    1994-05-01

    The Hanford Site was established in 1943 as one of the three original Manhattan Project locations involved in the development of atomic weapons. It continued as a defense production center until 1988, when its mission changed to environmental restoration and remediation. The Hanford Site is changing its business strategy and in doing so, is reinventing government. This new development has been significantly influenced by a number of external sources. These include: the change in mission, reduced security requirements, new found partnerships, fiscal budgets, the Tri-Party agreement and stakeholder involvement. Tight budgets and the high cost of cleanup require that the site develop and implement innovative cost saving approaches to its mission. Costeffective progress is necessary to help assure continued funding by Congress

  10. Hanford Surplus Facilities Program plan

    International Nuclear Information System (INIS)

    Hughes, M.C.; Wahlen, R.K.; Winship, R.A.

    1989-09-01

    The Hanford Surplus Facilities Program is responsible for the safe and cost-effective surveillance, maintenance, and decommissioning of surplus facilities at the Hanford Site. The management of these facilities requires a surveillance and maintenance program to keep them in a safe condition and development of a plan for ultimate disposition. Criteria used to evaluate each factor relative to decommissioning are based on the guidelines presented by the US Department of Energy-Richland Operations Office, Defense Facilities Decommissioning Program Office, and are consistent with the Westinghouse Hanford Company commitment to decommission the Hanford Site retired facilities in the safest and most cost-effective way achievable. This document outlines the plan for managing these facilities to the end of disposition

  11. Atomic Energy Act 1953-1966

    International Nuclear Information System (INIS)

    1970-01-01

    The Atomic Energy Act 1953-1966 establishes the Australian Atomic Energy Commission and lays down its powers, duties, rules of procedure and financing. The members of the Commission are appointed by the Governor-General. It is responsible, inter alia, for all activities covering uranium research, mining and trading as well as for atomic energy development and nuclear plant construction and operation. Its duties also include training of scientific research workers and collection and dissemination of information on atomic energy. For purposes of security, the Act further-more prescribes sanctions in relation to unauthorised acquisition or communication of information on this subject. Finally, the Act repeals the Atomic Energy (Control of Materials) Act 1946 and 1952. (NEA) [fr

  12. The atomic energy basic law

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes clearly the principles that Japan makes R and D, and utilizations of atomic energy only for the peaceful purposes. All the other laws and regulations concerning atomic energy are based on the law. The first chapter lays down the above mentioned objective of the law, and gives definitions of basic concepts and terms, such as atomic energy, nuclear fuel material, nuclear source material, nuclear reactor and radiation. The second chapter provides for the establishment of Atomic Energy Commission which conducts plannings and investigations, and also makes decisions concerning R and D, and utilizations of atomic energy. The third chapter stipulates for establishment of two government organizations which perform R and D of atomic energy developments including experiments and demonstrations of new types of reactors, namely, Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. Chapters from 4th through 8th provide for the regulations on development and acquisition of the minerals containing nuclear source materials, controls on nuclear fuel materials and nuclear reactors, administrations of the patents and inventions concerning atomic energy, and also prevention of injuries due to radiations. The last 9th chapter requires the government and its appointee to compensate the interested third party for damages in relation to the exploitation of nuclear source materials. (Matsushima, A.)

  13. Hanford Atomic Products Operation monthly report for March 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-04-20

    This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.

  14. SAFETY AT FLUOR HANFORD (A) CASE STUDY - PREPARED BY THUNDERBIRD SCHOOL OF GLOBAL MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    ARNOLD LD

    2009-09-25

    By November of 1997, Fluor Hanford (Fluor) had been the site manager of the Hanford nuclear reservation for a year. The Hanford site had been established as part of the Manhattan Project in the 1940s that gave birth to the atomic bomb. Hanford produced two thirds of U.S. plutonium during the Cold War period. The Hanford site was half the size of Rhode Island and occupied 586 square miles in southeastern Washington State. The production of plutonium for more than 40 years left a huge legacy of chemical and radiological contamination: 80 square miles of contaminated groundwater; 2,300 tons of spent nuclear fuel stored in underwater basins; 20 tons of plutonium-laced contaminated materials; and 500 contaminated facilities. The cleanup involved a challenging combination of radioactive material handling within an infrastructure constructed in the 1940s and 1950s. The cleanup that began in 1988 was expected to take 30 years or more. Improving safety at Hanford had already proven to be a significant challenge. As the new site manager at Hanford, Fluor Hanford inherited lower- and mid-level managers and thousands of unionized employees, many of whom were second or third generation Hanford employees. These employees had seen many contractors come and go over the years. Some of the managers who had worked with the previous contractor saw Fluor's emphasis on safety as getting in the way of operations. Union-management relations were fractious. Hanford's culture was described as 'production driven-management told everyone what to do, and, if you didn't do it, there were consequences'. Worker involvement in designing and implementing safety programs was negligible. Fluor Hanford also was having trouble satisfying its client, the Department of Energy (DOE). The DOE did not see a clear path forward for performance improvements at Hanford. Clearly, major change was necessary, but how and where should it be implemented?

  15. SAFETY AT FLUOR HANFORD (A) CASE STUDY - PREPARED BY THUNDERBIRD SCHOOL OF GLOBAL MANAGEMENT

    International Nuclear Information System (INIS)

    Arnold, L.D.

    2009-01-01

    By November of 1997, Fluor Hanford (Fluor) had been the site manager of the Hanford nuclear reservation for a year. The Hanford site had been established as part of the Manhattan Project in the 1940s that gave birth to the atomic bomb. Hanford produced two thirds of U.S. plutonium during the Cold War period. The Hanford site was half the size of Rhode Island and occupied 586 square miles in southeastern Washington State. The production of plutonium for more than 40 years left a huge legacy of chemical and radiological contamination: 80 square miles of contaminated groundwater; 2,300 tons of spent nuclear fuel stored in underwater basins; 20 tons of plutonium-laced contaminated materials; and 500 contaminated facilities. The cleanup involved a challenging combination of radioactive material handling within an infrastructure constructed in the 1940s and 1950s. The cleanup that began in 1988 was expected to take 30 years or more. Improving safety at Hanford had already proven to be a significant challenge. As the new site manager at Hanford, Fluor Hanford inherited lower- and mid-level managers and thousands of unionized employees, many of whom were second or third generation Hanford employees. These employees had seen many contractors come and go over the years. Some of the managers who had worked with the previous contractor saw Fluor's emphasis on safety as getting in the way of operations. Union-management relations were fractious. Hanford's culture was described as 'production driven-management told everyone what to do, and, if you didn't do it, there were consequences'. Worker involvement in designing and implementing safety programs was negligible. Fluor Hanford also was having trouble satisfying its client, the Department of Energy (DOE). The DOE did not see a clear path forward for performance improvements at Hanford. Clearly, major change was necessary, but how and where should it be implemented?

  16. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  17. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  18. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  19. FAO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  20. FAO and atomic energy

    International Nuclear Information System (INIS)

    1960-01-01

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  1. Atomic Energy Commission Act, 1963

    International Nuclear Information System (INIS)

    1963-01-01

    Promulgated in 1963, the Atomic Energy Commission Act (204) established and vested in the Ghana Atomic Energy Commission the sole responsibility for all matters relating to the peaceful uses of atomic energy in the country. Embodied in the Act are provisions relating to the powers, duties, rights and liabilities of the Commission. (EAA)

  2. Atomic energy indemnification system in Japan

    International Nuclear Information System (INIS)

    Hoshino, Eiichi

    1980-01-01

    The Japanese legislation on the indemnification by atomic energy enterprisers for atomic energy damages, published in 1961 and enforced in 1962, includes the law concerning indemnification for atomic energy damages and the law concerning atomic energy damage indemnification contracts (hereafter referred to as ''the law concerning indemnification contracts''). While the Japanese laws are same as the foreign legislation in the provisions of the responsibility of atomic energy damages without the error of atomic energy enterprisers, exemption reasons are more important in this respect. When damages are due to exceptionally grave natural disasters or social disturbances, atomic energy enterprisers are exempted from the responsibility. Indemnification amounts are determined, but the Japanese laws do not limit then, different from the foreign regulations. The periods for demanding indemnification are not defined particularly in the law concerning indemnification contracts, and the general basic rules of the civil law are applied. As a result, the demand right terminates in 3 years after the injured persons find damage and offenders, and in 20 years since the unlawful act (Article 724, Civil law). The indemnification liability for atomic energy damages is focused on atomic energy enterprisers concerned in the same way as the foreign laws. The measures for assuring the execution of indemnification responsibility consist in principle of the firm conbination of the liability insurance contracts with private insurance companies and the indemnification contracts for atomic energy damages with the state. The damages of employes suffered in works are excluded from indemnification, which has been the main issue of discussion since the enactment of atomic energy laws. (Okada, K.)

  3. Intergovernmental organisation activities: European Atomic Energy Community, International Atomic Energy Agency, OECD Nuclear Energy Agency

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    European Atomic Energy Community: Proposed legislative instruments, Adopted legislative instruments, Non-legislative instruments, Other activities (meetings). International Atomic Energy Agency: IAEA Action Plan on Nuclear Safety. OECD Nuclear Energy Agency: The Russian Federation to join the OECD Nuclear Energy Agency; Participation by the regulatory authorities of India and the United Arab Emirates in the Multinational Design Evaluation Programme (MDEP); NEA International Workshop on Crisis Communication, 9-10 May 2012; International School of Nuclear Law: 2013; Next NEA International Nuclear Law Essentials Course

  4. Historical genesis of Hanford Site wastes

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1991-01-01

    This paper acquaints the audience with historical waste practices and policies as they changed over the years at the Hanford Site, and with the generation of the major waste streams of concern in Hanford Site clean-up today. The paper also describes the founding and basic operating history of the Hanford Site, including World War 11 construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), and some past suggestions and efforts to chemically treat, open-quotes fractionate,close quotes and/or immobilize Hanford's wastes. Recent events, including the designation of the Hanford Site as the open-quotes flagshipclose quotes of Department of Energy (DOE) waste remediation efforts and the signing of the landmark Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), have generated new interest in Hanford's history. Clean-up milestones dictated in this agreement demand information about how, when, in what quantities and mixtures, and under what conditions, Hanford Site wastes were generated and released. This paper presents original, primary-source research into the waste history of the Hanford Site. The earliest, 1940s knowledge base, assumptions and calculations about radioactive and chemical discharges, as discussed in the memos, correspondence and reports of the original Hanford Site (then Hanford Engineer Works) builders and operators, are reviewed. The growth of knowledge, research efforts, and subsequent changes in Site waste disposal policies and practices are traced. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  5. Low energy atom-atom collisions

    International Nuclear Information System (INIS)

    Child, M.S.

    1980-01-01

    The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering

  6. National Environmental Policy Act source guide for the Hanford Site

    International Nuclear Information System (INIS)

    Jansky, M.T.

    1998-01-01

    This Source Guide will assist those working with the National Environmental Policy Act (NEPA) of 1969 to become more familiar with the environmental assessments (EA) and environmental impact statements (EIS) that apply to specific activities and facilities on the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each document and the decision made by the US Department of Energy (DOE) or its predecessor agencies, the US Atomic Energy Commission (AEC) and the US Energy Research and Development Administration (ERDA). The summary includes the proposed action alternatives and current status of the proposed action. If a decision officially was stated by the DOE, as in a finding of no significant impact (FONSI) or a record of decision (ROD), and the decision was located, a summary is provided. Not all federal decisions, such as FONSIs and RODS, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs might have been published elsewhere (i.e., local newspapers)

  7. Atomic energy for progress

    International Nuclear Information System (INIS)

    1974-01-01

    The film discusses the functions and activities of the Philippine Atomic Energy Commission. Shown are the applications of atomic energy in research, agriculture, engineering, industry and medicine, as well as the construction of the research reactor and its inauguration by President Marcos

  8. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  9. Atomic Energy Commission (Amendment) Law, 1993

    International Nuclear Information System (INIS)

    1993-02-01

    The Atomic Energy Commission (Amendment) Law, 1993 (P.N.D.C.L. 308) seeks to amend the Atomic Energy Commission Act of 1963 (Act 204) so as to provide for the establishment of a Radiation Protection Board and other institutes under the Ghana Atomic Energy Commission. The Law further repeats the Atomic Energy Commission (Amendment) Law of 1982 (P.N.D.C.L. 37). (EAA)

  10. Hanford Site 1998 Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    RL Dirkes; RW Hanf; TM Poston

    1999-09-21

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: describe the Hanford Site and its mission; summarize the status of compliance with environmental regulations; describe the environmental programs at the Hanford Site; discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; and discuss the activities to ensure quality.

  11. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  12. Waste minimization -- Hanford`s strategy for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Merry, D.S.

    1998-01-30

    The Hanford Site cleanup activity is an immense and challenging undertaking, which includes characterization and decommissioning of 149 single-shell storage tanks, treating waste stored in 28 double-shell tanks, safely disposing of over 2,100 metric tons of spent nuclear fuel stored onsite, removing thousands of structures, and dealing with significant solid waste, groundwater, and land restoration issues. The Pollution Prevention/Waste Minimization (P2/WMin) Program supports the Hanford Site mission to safely clean up and manage legacy waste and to develop and deploy science and technology in many ways. Once such way is through implementing and documenting over 231 waste reduction projects during the past five years, resulting in over $93 million in cost savings/avoidances. These savings/avoidances allowed other high priority cleanup work to be performed. Another way is by exceeding the Secretary of Energy`s waste reduction goals over two years ahead of schedule, thus reducing the amount of waste to be stored, treated and disposed. Six key elements are the foundation for these sustained P2/WMin results.

  13. Report of Atomic Energy Group of Advisory Committee for Energy

    International Nuclear Information System (INIS)

    1990-01-01

    The report consists of two chapters. Chapter 1 addresses the present status and future trends in the field of atomic energy. The present conditions of atomic energy development and social background behind them are described first. Features of atomic energy is discussed in relation to its technique-intensive aspect, stability of supply, stability of price, environmental load, and handling of radioactive materials. The relations of these features with energy policies are then discussed, focusing on basic political principles, optimum combination of various energy sources, and the role to be played by atomic energy. This chapter then deals with future trends in atomic energy development efforts and major problems remaining to be solved. Future supply and demand of energy and electric power are discussed. Problems related with atomic energy development are described focusing on some severe conditions depressing the development activities, and measures to be taken immediately. Chapter 2 describes important issues and measures to be taken in the future towards atomic energy development. Discussion is made on safety measures, back-end measures, promotion of location activities, and publicity. (N.K.)

  14. Hanford's Radioactive Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    McKenney, D.E.

    1995-01-01

    The Radioactive Mixed Waste Disposal Facility, is located in the Hanford Site Low-Level Burial Grounds and is designated as Trench 31 in the 218-W-5 Burial Ground. Trench 31 is a Resource Conservation and Recovery Act compliant landfill and will receive wastes generated from both remediation and waste management activities. On December 30, 1994, Westinghouse Hanford Company declared readiness to operate Trench 31, which is the Hanford Site's (and the Department of Energy complex's) first facility for disposal of low-level radioactive mixed wastes

  15. Expediting Groundwater Sampling at Hanford and Making It Safer

    International Nuclear Information System (INIS)

    Connell, Carl W. Jr.; Carr, Jennifer S.; Hildebrand, R. Douglas; Schatz, Aaron L.; Conley, S. F.; Brown, W. L.

    2013-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) manages the groundwater monitoring programs at the Department of Energy's 586-square-mile Hanford site in southeastern Washington state. These programs are regulated by the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), and the Atomic Energy Act (AEA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. Each year, more than 1,500 wells are accessed for a variety of reasons

  16. 75 FR 6018 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford (known locally as the Hanford Advisory... and site management in the areas of environmental restoration, waste management, and related...

  17. Hanford Nuclear Energy Center: a conceptual study

    Energy Technology Data Exchange (ETDEWEB)

    Harty, H. (comp.)

    1978-09-30

    The objective of the study is to develop an improved understanding of the nuclear energy center (NEC) concept and to identify research and development needed to evaluate the concept fully. A specific context was selected for the study--the Hanford site. Thus, the study primarily addresses the HNEC concept, but the findings are extrapolated to generic NECs where possible. The major emphasis in the HNEC study was to explore potential technical and environmental problems in a specific context and in sufficient detail to evaluate potential problems and propose practical solutions. The areas of concern are typical of those considered in preparing environmental and safety analysis reports, including: topics dealing with engineering choices (e.g., site selection, heat sink management, electrical transmission, and reliability of generation); environmental matters (e.g., terrestrial and radiological effects); socioeconomic factors (e.g., community impacts); and licensing considerations.

  18. Hanford Site Environmental Report 1999

    International Nuclear Information System (INIS)

    Poston, TM; Hanf, RW; Dirkes, RL

    2000-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality

  19. Hanford Site Environmental Report 1999

    Energy Technology Data Exchange (ETDEWEB)

    TM Poston; RW Hanf; RL Dirkes

    2000-09-28

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1999 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, groundwater protection and monitoring information; and (6) discuss the activities to ensure quality.

  20. Managing Hanford Site solid waste through strict acceptance criteria

    International Nuclear Information System (INIS)

    Jasen, W.G.; Pierce, R.D.; Willis, N.P.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA) and the Resource Conservation and Recovery Act of 1976 (RCRA) have led to the definition of a group of wastes called radioactive mixed wastes (RMW). As a result of the radioactive and hazardous properties of these wastes, strict management programs have been implemented for the management of these wastes. Solid waste management is accomplished through a systems performance approach to waste management that used best-demonstrated available technology (BDAT) and best management practices. The solid waste program at the Hanford Site strives to integrate all aspects of management relative to the treatment, storage and disposal (TSD) of solid waste. Often there are many competing and important needs. It is a difficult task to balance these needs in a manner that is both equitable and productive. Management science is used to help the process of making decisions. Tools used to support the decision making process include five-year planning, cost estimating, resource allocation, performance assessment, waste volume forecasts, input/output models, and waste acceptance criteria. The purpose of this document is to describe how one of these tools, waste acceptance criteria, has helped the Hanford Site manage solid wastes

  1. Laboratory testing of ozone oxidation of Hanford site waste

    International Nuclear Information System (INIS)

    Delegard, C.H.; Stubbs, A.M.; Bolling, S.D.; Colby, S.A.

    1994-01-01

    Organic constituents in radioactive waste stored in underground tanks at the U.S. Department of Energy's Hanford Site provoke safety concerns arising from their low-temperature reactions with nitrate and nitrite oxidants. Destruction of the organics would eliminate both safety problems. Oxone oxidation was investigated to destroy organic species present in simulated and genuine waste from Hanford Site Tank 241-SY-101. Bench-scale tests showed high-shear mixing apparatus achieved efficient gas-to-solution mass transfer and utilization of the ozone reagent. Oxidations of nitrite (to form nitrate) and organic species were observed. The organics formed carbonate and oxalate as well as nitrate and nitrogen gas from organic nitrogen. Formate, acetate and oxalate were present both in source waste and as reaction intermediates. Metal species oxidations also were observed directly or inferred by solubilities. Chemical precipitations of metal ions such as strontium and americium occurred as the organic species were destroyed by ozone. Reaction stoichiometries were consistent with the reduction of one oxygen atom per ozone molecule

  2. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  3. National Environmental Policy Act (NEPA) Source Guide for the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    JANSKY, M.T.

    2000-09-01

    This Source Guide will assist those working with the National Environmental Policy Act (NEPA) of 1969 to become more familiar with the environmental assessments (EA) and environmental impact statements (EIS) that apply to specific activities and facilities on the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each document and the decision made by the U.S. Department of Energy (DOE) or its predecessor agencies, the U.S. Atomic Energy Commission (AEC) and the U.S. Energy Research and Development Administration (ERDA). The summary includes the proposed action alternatives and current status of the proposed action. If a decision officially was stated by the DOE, as in a finding of no significant impact (FONSI) or a record of decision (ROD), and the decision was located, a summary is provided. Not all federal decisions, such as FONSIs and RODs, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs might have been published elsewhere (i.e., local newspapers).

  4. UNESCO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    Atomic energy has been of particular concern to UNESCO virtually since the founding of this United Nations agency with the mission of promoting the advancement of science along with education and culture. UNESCO has been involved in the scientific aspects of nuclear physics - notably prior to the creation of the International Atomic Energy Agency - but it has also focussed its attention upon the educational and cultural problems of the atomic age. UNESCO's sphere of action was laid down by its 1954 General Conference which authorized its Director-General to extend full co-operation to the United Nations in atomic energy matters, with special reference to 'the urgent study of technical questions such as those involved in the effects of radioactivity on life in general, and to the dissemination of objective information concerning all aspects of the peaceful utilization of atomic energy; to study, and if necessary, to propose measures of international scope to facilitate the use of radioisotopes in research and industry'. UNESCO's first action under this resolution was to call a meeting of a committee of experts from twelve nations to study the establishment of a system of standards and regulations for the preparation, distribution, transport and utilization of radioactive isotopes and tracer molecules

  5. Hanford Site radioactive mixed waste thermal treatment initiative

    International Nuclear Information System (INIS)

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites

  6. US Atomic Energy Law

    International Nuclear Information System (INIS)

    1981-01-01

    This is a new volume follows in the series supplementing the volumes 11 and 12 published in 1965 and 1966, updating the collection of Federal Acts and Executive Orders of the President of the United States of America relating to atomic energy legislation. Since the publication of volumes 11 and 12, the US Atomic Energy Act of 1954 alone has been amended 25 times, mainly as a consequence of by the Nuclear Non-Proliferation Act and the Uranium Mill Tailings Radiation Control Act, both of 1978. The Atomic Energy Act of 1954 is supplemented by a selection of the most important Federal Acts, Executive Orders of the President and Resolutions of the Congress. (orig./HSCH) [de

  7. Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Blackman, N.S.; Gummer, W.K.

    1982-02-01

    This paper has been prepared to provide an overview of the responsibilities and activities of the Atomic Energy Control Board. It is designed to address questions that are often asked concerning the establishment of the Atomic Energy Control Board, its enabling legislation, licensing and compliance activities, federal-provincial relationships, international obligations, and communications with the public

  8. Field trip guide to the Hanford Site

    International Nuclear Information System (INIS)

    Reidel, S.P.; Lindsey, K.A.; Fecht, K.R.

    1992-11-01

    This report is designed to provide a guide to the key geologic and hydrologic features of the US Department of Energy's Hanford Site located in south-central Washington. The guide is divided into two parts. The first part is a general introduction to the geology of the Hanford Site and its relation to the regional framework of south-central Washington. The second part is a road log that provides directions to important geologic features on the Hanford Site and descriptions of the locality. The exposures described were chosen for their accessibility and importance to the geologic history of the Hanford Site and to understanding the geohydrology of the Site

  9. Hanford Area 2000 Population

    International Nuclear Information System (INIS)

    Elliott, Douglas B.; Scott, Michael J.; Antonio, Ernest J.; Rhoads, Kathleen

    2004-01-01

    This report was prepared for the U.S. Department of Energy (DOE) Richland Operations Office, Surface Environmental Surveillance Project, to provide demographic data required for ongoing environmental assessments and safety analyses at the DOE Hanford Site near Richland, Washington. This document includes 2000 Census estimates for the resident population within an 80-kilometer (50-mile) radius of the Hanford Site. Population distributions are reported relative to five reference points centered on meteorological stations within major operating areas of the Hanford Site - the 100 F, 100 K, 200, 300, and 400 Areas. These data are presented in both graphical and tabular format, and are provided for total populations residing within 80 km (50 mi) of the reference points, as well as for Native American, Hispanic and Latino, total minority, and low-income populations

  10. Vascular Plants of the Hanford Site

    International Nuclear Information System (INIS)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-01-01

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Brigham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations

  11. Hanford Site Performance Report - March 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  12. Hanford Site Performance Report - May 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  13. Hanford Site Performance Report - April 1999

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U.S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology (S and T) Mission and support to the Environmental Management (EM). This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. On a quarterly basis, the report also addresses performance and progress related to the Science and Technology Mission's Critical Outcomes as derived from the Hanford Strategic Plan. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a performance profile with associated analyses, Critical Issues, Key Integration Activities, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators, and Science and Technology data in the context of the Critical Outcomes. The Site Summary demonstrates the various missions' overall progress against these strategic objectives. The information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or

  14. FLUOR HANFORD (FH) MAKES CLEANUP A REALITY IN NEARLY 11 YEARS AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2007-05-24

    For nearly 11 years, Fluor Hanford has been busy cleaning up the legacy of nuclear weapons production at one of the Department of Energy's (DOE'S) major sites in the United States. As prime nuclear waste cleanup contractor at the vast Hanford Site in southeastern Washington state, Fluor Hanford has changed the face of cleanup. Fluor beginning on October 1, 1996, Hanford Site cleanup was primarily a ''paper exercise.'' The Tri-Party Agreement, officially called the Hanford Federal Facility Agreement and Consent Order - the edict governing cleanup among the DOE, U.S. Environmental Protection Agency (EPA) and Washington state - was just seven years old. Milestones mandated in the agreement up until then had required mainly waste characterization, reporting, and planning, with actual waste remediation activities off in the future. Real work, accessing waste ''in the field'' - or more literally in huge underground tanks, decaying spent fuel POO{approx}{approx}S, groundwater, hundreds of contaminated facilities, solid waste burial grounds, and liquid waste disposal sites -began in earnest under Fluor Hanford. The fruits of labors initiated, completed and/or underway by Fluor Hanford can today be seen across the site. Spent nuclear fuel is buttoned up in secure, dry containers stored away from regional water resources, reactive plutonium scraps are packaged in approved containers, transuranic (TRU) solid waste is being retrieved from burial trenches and shipped offsite for permanent disposal, contaminated facilities are being demolished, contaminated groundwater is being pumped out of aquifers at record rates, and many other inventive solutions are being applied to Hanford's most intransigent nuclear wastes. (TRU) waste contains more than 100 nanocuries per gram, and contains isotopes higher than uranium on the Periodic Table of the Elements. (A nanocurie is one-billionth of a curie.) At the same time, Fluor Hanford

  15. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.

    1999-10-08

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site.

  16. Hanford Site sustainable development initiatives

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the economic vitality of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is completed, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project

  17. Conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation, 1945--1947. Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    Mart, E.I.; Denham, D.H.; Thiede, M.E.

    1993-12-01

    This report is a result of the Hanford Environmental Dose Reconstruction (HEDR) Project whose goal is to estimate the radiation dose that individuals could have received from emissions since 1944 at the U.S. Department of Energy`s (DOE) Hanford Site near Richland, Washington. The HEDR Project is conducted by Battelle, Pacific Northwest Laboratories (BNW). One of the radionuclides emitted that would affect the radiation dose was iodine-131. This report describes in detail the reconstructed conversion and correction factors for historical measurements of iodine-131 in Hanford-area vegetation which was collected from the beginning of October 1945 through the end of December 1947.

  18. U.S. Radioecology Research Programs of the Atomic Energy Commission in the 1950s

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, D.E.

    2004-01-12

    This report contains two companion papers about radiological and environmental research that developed out of efforts of the Atomic Energy Commission in the late 1940s and the 1950s. Both papers were written for the Joint U.S.-Russian International Symposium entitled ''History of Atomic Energy Projects in the 1950s--Sociopolitical, Environmental, and Engineering Lessons Learned,'' which was hosted by the International Institute for Applied Systems Analysis in Laxemberg, Austria, in October 1999. Because the proceedings of this symposium were not published, these valuable historic reviews and their references are being documented as a single ORNL report. The first paper, ''U.S. Radioecology Research Programs Initiated in the 1950s,'' written by David Reichle and Stanley Auerbach, deals with the formation of the early radioecological research programs at the U.S. Atomic Energy Commission's nuclear production facilities at the Clinton Engineering Works in Oak Ridge, Tennessee; at the Hanford Plant in Richland, Washington; and at the Savannah River Plant in Georgia. These early radioecology programs were outgrowths of the environmental monitoring programs at each site and eventually developed into the world renowned National Laboratory environmental program sponsored by the Office of Biological and Environmental Research of the U.S. Department of Energy. The original version of the first paper was presented by David Reichle at the symposium. The second paper, ''U.S. Atomic Energy Commission's Environmental Research Programs Established in the 1950s,'' summarizes all the environmental research programs supported by the U.S. Atomic Energy Commission in the 1950s and discusses their present-day legacies. This paper is a modified, expanded version of a paper that was published in September 1997 in a volume commemorating the 50th anniversary symposium of the U.S. Department of Energy's Office of

  19. Design of atomic energy information network system

    International Nuclear Information System (INIS)

    Kim, Y. T.; Lee, E. J.; Han, K. W.; Lee, H. C.; Chang, J. H.

    2004-01-01

    As the 21 st century is expected to induce a Knowledge based society, responding to this kind of change on our own initiative could be achieved by establishing networks among atomic energy agencies with the Atomic Energy Portal Site in a pivotal role. Thus, enabling the knowledge information from each agency to be easily shared and utilized. Furthermore, it can contribute to further researches by providing accumulated knowledge in the atomic energy, such as research output and past achievements, and by avoiding the repetition of researches on the same subjects. It could also provide remote educational data to researchers and industrial experts in atomic energy, as well as atomic energy information for general public consistently, so that we can promote our confidence in atomic energy

  20. Atomic energy law in Indonesia Perundang-undangan tenaga atom di Indonesia/

    International Nuclear Information System (INIS)

    Poernomo, Moendi.

    1980-01-01

    Levels of the development of the National Atomic Energy Agency of Indonesia covering the reorganization and the president's decree concerning the agency since 1958 are presented. The National Atomic Energy Agency BATAN is responsible for application of radioactive materials over the country and the protection of the general public against radioactive hazards. BATAN's missions are embodied with the atomic energy law. (SMN)

  1. Close-out report Fitzner-Eberhardt Arid Lands Ecology Reserve remedial action, Hanford, Washington

    International Nuclear Information System (INIS)

    1996-04-01

    The Fitzner-Eberhardt Arid Lands Ecology (ALE) Reserve consists of 312 km 2 (120 mi 2 ) of shrub-steppe land on the western edge of the Hanford Site. It is located south of Highway 240 and east of the point where the Yakima River borders the site. The land was set aside as a natural research area in 1967 by the Atomic Energy Commission. Historically tribal land, the area was homesteaded by pioneers before it was taken by the federal government in 1943 as a security buffer to protect the Hanford Site defense production facilities. One antiaircraft artillery battery (latter converted to a Nike missile site) was located on this land; plutonium production plants or storage facilities were never built there. A more complete account can be found in the Preliminary Assessment Screening (PAS) Report for the Arid Lands Ecology Reserve, Hanford. With the recent change in mission at the Hanford Site from plutonium production to environmental cleanup, much attention has been given to releasing clean tracts of land for other uses. The ALE Reserve is one such tract of land. The existing areas of contamination in the ALE Reserve were considered to be small. In March 1993, the U.S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed and Agreement in Principle in which they agreed to expedite cleanup of the ALE Reserve. Cleanup activities and a draft close-out report were to be completed by October 1994. Additionally, DOE proposed to mitigate hazards that may pose a physical threat to wildlife or humans

  2. Hanford Site Environmental Report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K. [eds.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references.

  3. Hanford Site Environmental Report 1993

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Hanf, R.W.; Woodruff, R.K.

    1994-06-01

    The Hanford Site Environmental Report is prepared annually to summarize environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts. The report is written to meet reporting requirements and Guidelines of the U.S. Department of Energy (DOE) an to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to (a) describe the Hanford Site and its mission, (b) summarize the status in 1993 of compliance with environmental regulations, (c) describe the environmental programs at the Hanford Site, (d) discuss estimated radionuclide exposure to the public from 1993 Hanford activities, (e) present information on effluent monitoring and environmental surveillance, including ground-water protection and monitoring, (f) discuss activities to ensure quality. More detailed information can be found in the body of the report, the appendixes, and the cited references

  4. Hanford study: a review of its limitations and controversial conclusions

    International Nuclear Information System (INIS)

    Gilbert, E.S.

    1984-10-01

    The Hanford data set has attracted attention primarily because of analyses conducted by Mancuso, Stewart, and Kneale (MSK). These investigators claim that the Hanford data provide evidence that our current estimates of cancer mortality resulting from radiation exposure are too low, and advocate replacing estimates based on populations exposed at relatively high doses (such as the Japanese atom bomb survivors) with estimates based on the Hanford data. In this paper, it is shown that the only evidence of association of radiation exposure and mortality provided by the Hanford data is a small excess of multiple myeloma, and that this data set is not adequate for reliable risk estimation. It is demonstrated that confidence limits for risk estimates are very wide, and that the data are not adequate to differentiate among models. The more recent MSK analyses, which claim to provide adequate models and risk estimates, are critiqued. 18 references, 1 table

  5. Impact of a Hanford Nuclear Energy Center on ground level fog and humidity

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1977-03-01

    This document presents the details of a study of the atmospheric impacts of an Hanford Nuclear Energy Center (HNEC) that might result from the use of evaporative cooling alternatives. Specific cooling systems considered include once-through river cooling, cooling ponds, cooling towers, helper cooling ponds and towers and hybrid wet/dry cooling towers. The specific impacts evaluated are increases in fog and relative humidity

  6. On promotion of base technologies of atomic energy. Aiming at breakthrough in atomic energy technologies in 21st century

    Energy Technology Data Exchange (ETDEWEB)

    1988-09-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.).

  7. Atomic Energy Commission Act, 2000 (Act 588)

    International Nuclear Information System (INIS)

    2000-01-01

    Act 588 of the Republic of Ghana entitled, Atomic Energy Commission Act, 2000, amends and consolidates the Atomic Energy Commission Act, 204 of 1963 relating to the establishment of the Atomic Energy Commission. Act 588 makes provision for the Ghana Atomic Energy Commission to establish more institutes for the purpose of research in furtherance of its functions and also promote the commercialization of its research and development results. (E.A.A.)

  8. History of the Atomic Energy Commission

    International Nuclear Information System (INIS)

    Buck, A.L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations

  9. History of the Atomic Energy Commission

    International Nuclear Information System (INIS)

    Buck, A.L.

    1982-08-01

    This pamphlet traces the history of the Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946, to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations

  10. Atomic Energy Act 1946

    International Nuclear Information System (INIS)

    1946-01-01

    This Act provides for the development of atomic energy in the United Kingdom and for its control. It details the duties and powers of the competent Minister, in particular his powers to obtain information on and to inspect materials, plant and processes, to control production and use of atomic energy and publication of information thereon. Also specified is the power to search for and work minerals and to acquire property. (NEA) [fr

  11. Hanford site transuranic waste sampling plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    This sampling plan (SP) describes the selection of containers for sampling of homogeneous solids and soil/gravel and for visual examination of transuranic and mixed transuranic (collectively referred to as TRU) waste generated at the U.S. Department of Energy (DOE) Hanford Site. The activities described in this SP will be conducted under the Hanford Site TRU Waste Certification Program. This SP is designed to meet the requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) (DOE 1996a) (QAPP), site-specific implementation of which is described in the Hanford Site Transuranic Waste Characterization Program Quality Assurance Project Plan (HNF-2599) (Hanford 1998b) (QAPP). The QAPP defines the quality assurance (QA) requirements and protocols for TRU waste characterization activities at the Hanford Site. In addition, the QAPP identifies responsible organizations, describes required program activities, outlines sampling and analysis strategies, and identifies procedures for characterization activities. The QAPP identifies specific requirements for TRU waste sampling plans. Table 1-1 presents these requirements and indicates sections in this SP where these requirements are addressed

  12. Criticality codes migration to workstations at the Hanford site

    International Nuclear Information System (INIS)

    Miller, E.M.

    1993-01-01

    Westinghouse Hanford Company, Hanford Site Operations contractor, Richland, Washington, currently runs criticality codes on the Cray X-MP EA/232 computer but has recommended that US Department of Energy DOE-Richland replace the Cray with more economical workstations

  13. Atomic Energy Law with ordinances. 9. ed.

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The revised edition of the text is due to a variety of major changes in, and amendments to, the German Atomic Energy Law. This book includes the current version of the Atomic Energy Law which has been changed several times, the 1982-version of the ordinace concerning procedures laid down in the Atomic Energy Law, the 1976 radiation protection ordinance together with recent amendments, the 1973 X-ray ordinance, the 1977 financial security ordinance laid down in the Atomic Energy Law, the 1981 ordinance concerning costs, the ordinance concerning performance in anticipation of ultimate disposal. The book is a compilation of the basic Atomic Energy Law which is needed mostly for imminent practical requirements. (orig./HSCH) [de

  14. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, D.A. [ed.; Fosmire, C.J.; Fowler, R.A. [and others

    1998-09-01

    This document describes the US Department of Energy`s (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site.

  15. Hanford Site waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Place, B.G.

    1998-01-01

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site's pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office's (RL's) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program

  16. Public involvement in environmental surveillance at Hanford

    International Nuclear Information System (INIS)

    Hanf, R.W. Jr.; Patton, G.W.; Woodruff, R.K.; Poston, T.M.

    1994-08-01

    Environmental surveillance at the Hanford Site began during the mid-1940s following the construction and start-up of the nation's first plutonium production reactor. Over the past approximately 45 years, surveillance operations on and off the Site have continued, with virtually all sampling being conducted by Hanford Site workers. Recently, the US Department of Energy Richland Operations Office directed that public involvement in Hanford environmental surveillance operations be initiated. Accordingly, three special radiological air monitoring stations were constructed offsite, near hanford's perimeter. Each station is managed and operated by two local school teaches. These three stations are the beginning of a community-operated environmental surveillance program that will ultimately involve the public in most surveillance operations around the Site. The program was designed to stimulate interest in Hanford environmental surveillance operations, and to help the public better understand surveillance results. The program has also been used to enhance educational opportunities at local schools

  17. The Hanford Site focus, 1994

    International Nuclear Information System (INIS)

    Peterson, J.M.

    1994-03-01

    This report describes what the Hanford Site will look like in the next two years. We offer thumbnail sketches of Hanford Site programs and the needs we are meeting through our efforts. We describe our goals, some recent accomplishments, the work we will do in fiscal year (FY) 1994, the major activities the FY 1995 budget request covers, and the economic picture in the next few years. The Hanford Site budget shows the type of work being planned. US Department of Energy (DOE) sites like the Hanford Site use documents called Activity Data Sheets to meet this need. These are building blocks that are included in the budget. Each Activity Data Sheet is a concise (usually 4 or 5 pages) summary of a piece of work funded by the DOE's Environmental Restoration and Waste Management budget. Each sheet describes a waste management or environmental restoration need over a 5-year period; related regulatory requirements and agreements; and the cost, milestones, and steps proposed to meet the need. The Hanford Site is complex and has a huge budget, and its Activity Data Sheets run to literally thousands of pages. This report summarizes the Activity Data Sheets in a less detailed and much more reader-friendly fashion

  18. Hanford Site performance report - December 1998

    International Nuclear Information System (INIS)

    EDER, D.M.

    2001-01-01

    The purpose of the Hanford Site Performance Report is to provide the Department of Energy Richland Operations Office's (DOE-RL's) report of Hanford's performance by: U. S. Department of Energy, Richland Operations Office, Project Hanford Management Contract (PHMC) through Fluor Daniel Hanford, Inc. (FDH) and its subcontractors, Environmental Restoration Contract through Bechtel Hanford, Inc. (BHI), and its subcontractors, and Pacific Northwest National Laboratories (PNNL) for Science and Technology support to the Environmental Management (EM) mission. This report is published monthly with the intent of relating work performance and progress in the context of the Success Indicators and Critical Success Factors as outlined in the Hanford Strategic Plan. Currently, the report focuses on the EM mission, and will be expanded in the future to include non-EM activities. Section A of this report is the Executive Summary, encapsulating high-level data in this report into an overall brief. Summary information provided includes Notable Accomplishments, a tabular performance profile with associated analyses, Critical Issues, Key Integration Activities, a look at Significant Trends, and a ''quick list'' of Upcoming Key Events. Section B of this report, the Site Summary section, provides Environmental Management performance data specifically organized to the pertinent Critical Success Factors and Success Indicators. The Site Summary is a compilation of performance data from all of the Mission Areas and the Projects that comprise these Mission Areas; the information is presented in both narrative and graphical formats. The remaining sections provide performance data relative to each individual mission area (e.g., Waste Management, Spent Nuclear Fuels, etc.). The information provided in the Mission Area sections is at a level of greater detail than is presented in either the Executive Summary or the Site Summary sections. At the end of this report, a glossary of terms is provided

  19. Atomic energy control board. History backgrounder

    International Nuclear Information System (INIS)

    1986-10-01

    The Atomic Energy Control Board (AECB) is a regulatory agency set up by the Government of Canada under the Atomic Energy Control Act of 1946 to assist the Government in its efforts to make provision for the control and supervision of the development, application and use of atomic energy and to enable Canada to participate effectively in measures of international control of atomic energy. It is also responsible for the administration of the Nuclear Liability Act, including the designation of nuclear installations and the prescription of basic insurance to be carried by the operators of such nuclear installations. An overview is presented of the AECB's evolution in chronological form, its major current activities, and some of the challenges expected in the next decade

  20. Hanford Internal Dosimetry Program Manual, PNL-MA-552

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-24

    This manual is a guide to the services provided by the Hanford Internal Dosimetry Program (IDP), which is operated by the Pacific Northwest National Laboratory.( ) for the U.S. Department of Energy Richland Operations Office, Office of River Protection and their Hanford Site contractors. The manual describes the roles of and relationships between the IDP and the radiation protection programs of the Hanford Site contractors. Recommendations and guidance are also provided for consideration in implementing bioassay monitoring and internal dosimetry elements of radiation protection programs.

  1. Hanford Site Anuran Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, Justin W. [Mission Support Alliance LLC, Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance LLC, Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance LLC, Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  2. Effect of inelastic energy losses on development of atom-atom collision cascades

    International Nuclear Information System (INIS)

    Marinyuk, V.V.; Remizovich, V.S.

    2001-01-01

    The problem of influence of inelastic energy losses (ionization braking) of particles on the development of atom-atom collision cascades in infinite medium was studied theoretically. Main attention was paid to study of angular and energy distributions of primary ions and cascade atoms in the presence of braking. Analytical calculations were made in the assumption that single scattering of particles occurs by solid balls law, while the value of electron braking ability of a medium is determined by the Lindhard formula. It is shown that account of braking (directly when solving the Boltzmann transport equation) changes in principle the previously obtained angular and energy spectra of ions and cascade atoms. Moreover, it is the braking that is the determining factor responsible for anisotropy of angular distributions of low-energy primary ions and cascade atoms [ru

  3. Amendment of Atomic Energy Basic Law and the development of Atomic Energy Administration

    International Nuclear Information System (INIS)

    Ochi, Kenji

    1978-01-01

    This article explains the key points of the major development of Atomic Energy Administration recently made by amendments of Atomic Energy Basic Law and other two relating laws. These amendments passed through the Diet and were enacted on 7th, June, 1978. The aim of them is focussed on reinforcement and rearrangement of safety controls on nuclear reactors. Previously, although the approval of the installation plan with basic designs of a nuclear reactor has been done by Prime Minister, further approvals of detailed designs and process of construction works, as well as inspections before and after operation have been conducted by each responsible minister, respectively. That is, those controls for power reactors have been within jurisdiction of minister of Trade and Industry, and for nuclear ships' reactors minister of Transportation has been responsible. Under the new system, above mentioned ministers continue to exercise almost same controls over reactors within their jurisdiction respectively, however the new laws have established so-called ''double check'' principle in that: when each responsible minister approves the installation, detailed designs and further stages of construction and operation of the reactor, he should hear and pay a great regard for opinions of Atomic Energy Commission and Atomic Energy Safety Commission. The latter is newly established organization which has similar status and authority to the former. (J.P.N.)

  4. Hanford Site environmental management specification

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.

    1998-06-10

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL`s application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents.

  5. Hanford Site environmental management specification

    International Nuclear Information System (INIS)

    Grygiel, M.L.

    1998-01-01

    The US Department of Energy, Richland Operations Office (RL) uses this Hanford Site Environmental Management Specification (Specification) to document top-level mission requirements and planning assumptions for the prime contractors involved in Hanford Site cleanup and infrastructure activities under the responsibility of the US Department of Energy, Office of Environmental Management. This Specification describes at a top level the activities, facilities, and infrastructure necessary to accomplish the cleanup of the Hanford Site and assigns this scope to Site contractors and their respective projects. This Specification also references the key National Environmental Policy Act of 1969 (NEPA), Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), and safety documentation necessary to accurately describe the cleanup at a summary level. The information contained in this document reflects RL's application of values, priorities, and critical success factors expressed by those involved with and affected by the Hanford Site project. The prime contractors and their projects develop complete baselines and work plans to implement this Specification. These lower-level documents and the data that support them, together with this Specification, represent the full set of requirements applicable to the contractors and their projects. Figure 1-1 shows the relationship of this Specification to the other basic Site documents. Similarly, the documents, orders, and laws referenced in this specification represent only the most salient sources of requirements. Current and contractual reference data contain a complete set of source documents

  6. List of currently classified documents relative to Hanford Production Facilities Operations originated on the Hanford Site between 1961 and 1972

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The United States Department of Energy (DOE) has declared that all Hanford plutonium production- and operations-related information generated between 1944 and 1972 is declassified. Any documents found and deemed useful for meeting Hanford Environmental Dose Reconstruction (HEDR) objectives may be declassified with or without deletions in accordance with DOE guidance by Authorized Derivative Declassifiers. The September 1992, letter report, Declassifications Requested by the Technical Steering Panel of Hanford Documents Produced 1944--1960, (PNWD-2024 HEDR UC-707), provides an important milestone toward achieving a complete listing of documents that may be useful to the HEDR Project. The attached listing of approximately 7,000 currently classified Hanford-originated documents relative to Hanford Production Facilities Operations between 1961 and 1972 fulfills TSP Directive 89-3. This list does not include such titles as the Irradiation Processing Department, Chemical Processing Department, and Hanford Laboratory Operations monthly reports generated after 1960 which have been previously declassified with minor deletions and made publicly available. Also Kaiser Engineers Hanford (KEH) Document Control determined that no KEH documents generated between January 1, 1961 and December 31, 1972 are currently classified. Titles which address work for others have not been included because Hanford Site contractors currently having custodial responsibility for these documents do not have the authority to determine whether other than their own staff have on file an appropriate need-to-know. Furthermore, these documents do not normally contain information relative to Hanford Site operations.

  7. TECHNICAL EVALUATION OF ELECTRICAL RESISTIVITY METHODS AT THE DEPARTMENT OF ENERGY HANFORD SITE

    International Nuclear Information System (INIS)

    PETERSEN SW

    2008-01-01

    There is a continuing need for cost-effective subsurface characterization within the vadose zone and groundwater at the U.S. Department of Energy (DOE) Hanford Site, Richland, Washington. With more than 1600 liquid and solid waste sites and 200 burial sites, contaminants have migrated to and through the vadose zone. In addition, future groundwater plumes may be generated from contaminants presently in the vadose zone. Relatively low-cost geophysical techniques can provide spatially extensive data that may provide information about the presence and extent of some contaminants. Recent electrical resistivity surveys at Hanford have provided encouraging results for mapping of some contaminants, such as nitrate, in the vadose zone. Because mobile radionuclides and trace elements may have been transported with nitrate through the vadose zone, the method may be used to map some mobile contaminants of concern, such as technetium-99 (99Tc). Validation of these recent electrical resistivity survey results remains to be completed. Electrical resistivity surveys have been conducted at various waste sites in the 200 Area of the Hanford Site: BC Cribs and Trenches (BCCT), T, S, U, C, B Tank Farms and the Purex Plant. Surveys have been completed using surface and well-to-well (WTW) array configurations. The goals of the surveys, as described by Fluor Hanford and CH2MHill Hanford staff, were to test the applicability of resistivity methods in identifying the presence of and mapping approximate extent of contaminant plumes within the vadose zone. The overall goal of the project was to evaluate the utility of electrical resistivity methods for characterizing contaminants of potential concern in the vadose zone in the 200 Area of the Hanford Site. The panel was asked to perform the following activities: (1) Evaluate recently completed and ongoing electrical resistivity projects at Hanford in terms of methodology used, results obtained, and lessons learned, with specific focus on (a

  8. Hanford process review

    International Nuclear Information System (INIS)

    1991-12-01

    This report is a summary of past incidents at the US Department of Energy's (DOE) Hanford Site. The purpose of the report is to provide the major, significant, nuclear-safety-related incidents which incurred at the Hanford Site in a single document for ease of historical research. It should be noted that the last major accident occurred in 1980. This document is a summary of reports released and available to the public in the DOE Headquarters and Richland public reading rooms. This document provides no new information that has not previously been reported. This report is not intended to cover all instances of radioactivity release or contamination, which are already the subject of other major reviews, several of which are referenced in Section 1.3

  9. Hanford Site Environmental Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2009-09-15

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  10. Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2010-09-01

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  11. Hanford Site Environmental Report for Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2011-07-12

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the Hanford Site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2011 information is included where appropriate.

  12. Hanford Site Raptor Nest Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA. The Hanford Site supports a large and diverse community of raptorial birds (Fitzner et al. 1981), with 26 species of raptors observed on the Hanford Site.

  13. The energy crisis and Bonn's atomic energy programme

    International Nuclear Information System (INIS)

    Steinhaus, K.; Heimbrecht, J.

    1979-01-01

    What are the background and causes of the energy crisis. In whose interest and on whose back is energy policy made in our country. Will the lights go out without nuclear power. Which are the real goals and dangers of Bonn's atomic energy programme. Is coal a real alternative to nuclear power in the Federal Republic of Germany. What possibilities and requirements are there for a national and democratic energy policy in the Federal Republic of Germany. Which are the central problems of the protest movement against the government's atomic energy programme. These questions, which are still in the centre of political discussion, are investigated by the authors. (orig.) [de

  14. On promotion of base technologies of atomic energy

    International Nuclear Information System (INIS)

    1988-01-01

    In the long term plan of atomic energy development and utilization decided in June, 1987 by the Atomic Energy Commission, it was recognized that hereafter, the opening-up of the new potential that atomic energy possesses should be aimed at, and the policy was shown so that the research and development hereafter place emphasis on the creative and innovative region which causes large technical innovation, by which the spreading effect to general science and technology can be expected, and the development of the base technologies that connect the basic research and project development is promoted. The trend of atomic energy development so far, the change of the situation surrounding atomic energy, the direction of technical development of atomic energy hereafter and the base technologies are discussed. The concept of the technical development of materilas, artificial intelligence, lasers, and the evaluation and reduction of radiation risks used for atomic energy is described. As the development plan of atomic energy base technologies, the subjects of technical development, the future image of technical development, the efficient promotion of the development and so on are shown. (Kato, I.)

  15. Radioactive waste management at the Hanford Reservation

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    During some 30 years of plutonium production, the Hanford Reservation has accumulated large quantities of low- and high-level radioactive wastes. The high-level wastes have been stored in underground tanks, and the low-level wastes have been percolated into the soil. In recent years some programs for solidification and separation of the high-level wastes have been initiated. The Hanford waste-management system was studied by a panel of the Committee on Radioactive Waste Management of the National Academy of Sciences. The panel concluded that Hanford waste-management practices were adequate at present and for the immediate future but recommended increased research and development programs related to long-term isolation of the wastes. The panel also considered some alternatives for on-site disposal of the wastes. The Hanford Reservation was originally established for the production of plutonium for military purposes. During more than 30 years of operation, large volumes of high- and low-level radioactive wastes have been accumulated and contained at the site. The Management of these wastes has been the subject of controversy and criticism. To obtain a true technical evaluation of the Hanford waste situation, the Energy Research and Development Administration (now part of the Department of Energy) issued a contract to the National Academy of Sciences and the National Research Councilto conduct an independent review and evaluation of the Hanford waste-management practices and plans. A panel of the Committee on Radioactive Waste Management (CRWM) of the National Academy of Sciences conducted this study between the summer of 1976 and the summer of 1977. This article is a summary of the final report of that panel

  16. Atomic Energy Authority Act 1954

    International Nuclear Information System (INIS)

    1954-01-01

    This Act provides for the setting up of an Atomic Energy Authority for the United Kingdom. It also makes provision for the Authority's composition, powers, duties, rights and liabilities, and may amend, as a consequence of the establishment of the Authority and in connection therewith, the Atomic Energy Act, 1946, the Radioactive Substances Act 1948 and other relevant enactments. (NEA) [fr

  17. Atomic Energy Authority Bill

    International Nuclear Information System (INIS)

    Gray, J.H.N.; Stoddart, D.L.; Sinclair, R.M.; Ezra, D.

    1985-01-01

    The House, in Committee, discussed the following matters in relation to the Atomic Energy Authority Bill; financing; trading; personnel conditions of employment; public relations; organization; research programmes; fuels; energy sources; information dissemination. (U.K.)

  18. HANFORD SITE RIVER CORRIDOR CLEANUP

    International Nuclear Information System (INIS)

    BAZZELL, K.D.

    2006-01-01

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km 2 Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal

  19. ENERGY RELAXATION OF HELIUM ATOMS IN ASTROPHYSICAL GASES

    International Nuclear Information System (INIS)

    Lewkow, N. R.; Kharchenko, V.; Zhang, P.

    2012-01-01

    We report accurate parameters describing energy relaxation of He atoms in atomic gases, important for astrophysics and atmospheric science. Collisional energy exchange between helium atoms and atomic constituents of the interstellar gas, heliosphere, and upper planetary atmosphere has been investigated. Energy transfer rates, number of collisions required for thermalization, energy distributions of recoil atoms, and other major parameters of energy relaxation for fast He atoms in thermal H, He, and O gases have been computed in a broad interval of energies from 10 meV to 10 keV. This energy interval is important for astrophysical applications involving the energy deposition of energetic atoms and ions into atmospheres of planets and exoplanets, atmospheric evolution, and analysis of non-equilibrium processes in the interstellar gas and heliosphere. Angular- and energy-dependent cross sections, required for an accurate description of the momentum-energy transfer, are obtained using ab initio interaction potentials and quantum mechanical calculations for scattering processes. Calculation methods used include partial wave analysis for collisional energies below 2 keV and the eikonal approximation at energies higher than 100 eV, keeping a significant energy region of overlap, 0.1-2 keV, between these two methods for their mutual verification. The partial wave method and the eikonal approximation excellently match results obtained with each other as well as experimental data, providing reliable cross sections in the astrophysically important interval of energies from 10 meV to 10 keV. Analytical formulae, interpolating obtained energy- and angular-dependent cross sections, are presented to simplify potential applications of the reported database. Thermalization of fast He atoms in the interstellar gas and energy relaxation of hot He and O atoms in the upper atmosphere of Mars are considered as illustrative examples of potential applications of the new database.

  20. Atomic Energy (Miscellaneous Provisions) Act 1981

    International Nuclear Information System (INIS)

    1981-01-01

    This Act extends the power of the United Kingdom Atomic Energy Authority to dispose of shares held by it in any company, and the power of the Secretary of State for Energy to dispose of shares held by him in companies engaged in activities in the field of atomic energy or radioactive substances. (NEA) [fr

  1. Overview of the Hanford risk management plan

    International Nuclear Information System (INIS)

    Halverson, T.G.

    1998-01-01

    The Project Hanford Management Contract called for the enhancement of site-wide decision processes, and development of a Hanford Risk Management Plan to adopt or develop a risk management system for the Hanford Site. This Plan provides a consistent foundation for Site issues and addresses site-wide management of risks of all types. It supports the Department of Energy planning and sitewide decision making policy. Added to this requirement is a risk performance report to characterize the risk management accomplishments. This paper presents the development of risk management within the context of work planning and performance. Also discussed are four risk elements which add value to the context

  2. The Hanford summit and sustainable development

    International Nuclear Information System (INIS)

    Sullivan, C.T.

    1994-05-01

    Since the days of the Manhattan Project of World War II, the economic well being of the Tri-Cities (Pasco, Kennewick, and Richland) of Washington State has been tied to the US Department of Energy missions at the nearby Hanford Site. As missions at the Site changed, so did the well being of the region. The Hanford Site is now poised to complete its final mission, that of environmental restoration. When restoration is compiled, the Site may be closed and the effect on the local economy will be devastating if action is not taken now. To that end, economic diversification and transition are being planned. To facilitate the process, the Hanford Site will become a sustainable development demonstration project -- a project with regional, national, and international application

  3. The RPA Atomization Energy Puzzle.

    Science.gov (United States)

    Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I

    2010-01-12

    There is current interest in the random phase approximation (RPA), a "fifth-rung" density functional for the exchange-correlation energy. RPA has full exact exchange and constructs the correlation with the help of the unoccupied Kohn-Sham orbitals. In many cases (uniform electron gas, jellium surface, and free atom), the correction to RPA is a short-ranged effect that is captured by a local spin density approximation (LSDA) or a generalized gradient approximation (GGA). Nonempirical density functionals for the correction to RPA were constructed earlier at the LSDA and GGA levels (RPA+), but they are constructed here at the fully nonlocal level (RPA++), using the van der Waals density functional (vdW-DF) of Langreth, Lundqvist, and collaborators. While they make important and helpful corrections to RPA total and ionization energies of free atoms, they correct the RPA atomization energies of molecules by only about 1 kcal/mol. Thus, it is puzzling that RPA atomization energies are, on average, about 10 kcal/mol lower than those of accurate values from experiment. We find here that a hybrid of 50% Perdew-Burke-Ernzerhof GGA with 50% RPA+ yields atomization energies much more accurate than either one does alone. This suggests a solution to the puzzle: While the proper correction to RPA is short-ranged in some systems, its contribution to the correlation hole can spread out in a molecule with multiple atomic centers, canceling part of the spread of the exact exchange hole (more so than in RPA or RPA+), making the true exchange-correlation hole more localized than in RPA or RPA+. This effect is not captured even by the vdW-DF nonlocality, but it requires the different kind of full nonlocality present in a hybrid functional.

  4. Third Quarter Hanford Seismic Report for Fiscal Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Reidel, Steve P.; Rohay, Alan C.; Hartshorn, Donald C.; Clayton, Ray E.; Sweeney, Mark D.

    2005-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the Hanford Seismic Network, there were 337 triggers during the third quarter of fiscal year 2005. Of these triggers, 20 were earthquakes within the Hanford Seismic Network. The largest earthquake within the Hanford Seismic Network was a magnitude 1.3 event May 25 near Vantage, Washington. During the third quarter, stratigraphically 17 (85%) events occurred in the Columbia River basalt (approximately 0-5 km), no events in the pre-basalt sediments (approximately 5-10 km), and three (15%) in the crystalline basement (approximately 10-25 km). During the first quarter, geographically five (20%) earthquakes occurred in swarm areas, 10 (50%) earthquakes were associated with a major geologic structure, and 5 (25%) were classified as random events.

  5. Externalities of energy and atomic power

    International Nuclear Information System (INIS)

    2006-09-01

    Energy technology ensures not only energy supply but also has great impacts on society and environments. Economical value and effect evaluation alone doesn't mean appropriate so the evaluation of 'externalities' should be appreciated. In order to assess atomic power in this context, the Atomic Energy Society of Japan set up a research committee on 'externalities of energy and atomic power' from April 2002 to March 2006, whose activities were described in this report. In addition to environmental effects and environmental externalities, four areas were newly studied as follows: (1) biological effects of low dose rate exposure and externalities, (2) externalities as social/economical effects including stable supply and security, (3) energy technologies evaluation and (4) social choice and decision-making. (T. Tanaka)

  6. 75 FR 13269 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  7. 75 FR 8050 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2010-02-23

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... is to make recommendations to DOE-EM and site management in the areas of environmental restoration...

  8. 76 FR 4645 - Environmental Management Site-Specific Advisory Board, Hanford

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF ENERGY Environmental Management Site-Specific Advisory Board, Hanford AGENCY... Environmental Management Site-Specific Advisory Board (EM SSAB), Hanford. The Federal Advisory Committee Act... recommendations to DOE-EM and site management in the areas of environmental restoration, waste management, and...

  9. Hanford general employee training - A million dollar cost beneficial program

    International Nuclear Information System (INIS)

    Gardner, P.R.

    1991-02-01

    In January 1990, Westinghouse Hanford Company implemented an interactive videodisc training program entitled Hanford General Employee Training. Covering all Institute of Nuclear Power Operations general employee training objectives, training mandated by US Department of Energy orders, and training prescribed by internal Westinghouse Hanford Company policies, Hanford General Employee Training presents and manages engaging training programs individually tailored to each of the 9,000 employees. Development costs for a sophisticated program such as Hanford General Employee Training were high compared to similar costs for developing ''equivalent'' traditional training. Hardware ($500,000) and labor costs ($400,000) totaled $900,000. Annual maintenance costs, equipment plus labor, are totalling about $200,000. On the benefit side, by consolidating some 17 previous Westinghouse Hanford Company courses and more effectively managing the instructional process, Hanford General Employee Training reduced the average student training time from over 11 hours to just under 4 hours. For 9,000 employees, the computed net annual savings exceeds $1.3 million. 2 refs

  10. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    MCCALL, D L

    2002-06-01

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  11. A History of the Atomic Energy Commission

    Science.gov (United States)

    Buck, Alice L.

    1983-07-01

    This pamphlet traces the history of the US Atomic Energy Commission's twenty-eight year stewardship of the Nation's nuclear energy program, from the signing of the Atomic Energy Act on August 1, 1946 to the signing of the Energy Reorganization Act on October 11, 1974. The Commission's early concentration on the military atom produced sophisticated nuclear weapons for the Nation's defense and made possible the creation of a fleet of nuclear submarines and surface ships. Extensive research in the nuclear sciences resulted in the widespread application of nuclear technology for scientific, medical and industrial purposes, while the passage of the Atomic Energy Act of 1954 made possible the development of a nuclear industry, and enabled the United States to share the new technology with other nations.

  12. Packaging and transportation of radioactive liquid at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Smith, R.J.

    1995-02-01

    Beginning in the 1940's, radioactive liquid waste has been generated at the US Department of Energy (DOE) Hanford Site as a result of defense material production. The liquid waste is currently stored in 177 underground storage tanks. As part of the tank remediation efforts, Type B quantity packagings for the transport of large volumes of radioactive liquids are required. There are very few Type B liquid packagings in existence because of the rarity of large-volume radioactive liquid payloads in the commercial nuclear industry. Development of aboveground transport systems for large volumes of radioactive liquids involves institutional, economic, and technical issues. Although liquid shipments have taken place under DOE-approved controlled conditions within the boundaries of the Hanford Site for many years, offsite shipment requires compliance with DOE, US Nuclear Regulatory Commission (NRC), and US Department of Transportation (DOT) directives and regulations. At the present time, no domestic DOE nor NRC-certified Type B packagings with the appropriate level of shielding are available for DOT-compliant transport of radioactive liquids in bulk volumes. This paper will provide technical details regarding current methods used to transport such liquids on and off the Hanford Site, and will provide a status of packaging development programs for future liquid shipments

  13. The way that Ibaraki Prefecture has tackled atomic energy

    International Nuclear Information System (INIS)

    Nakata, Hirokatsu; Hirai, Yasuo; Tsuji, Tadashi.

    1996-01-01

    First, the development of the district centering around Tokai Village is mentioned, where at present Japan Atomic Energy Research Institute, Power Reactor and Nuclear Fuel Development Corporation, Japan Atomic Power Co. and others are located. Ibaraki Prefecture investigated the effects that atomic energy facilities exerted economically and socially to the district. As to the social environment investigation related to atomic energy facilities, its purpose, the objects of investigation, the contents and the method of investigation are reported. As to the progress of the development and utilization of atomic energy in Ibaraki Prefecture, 23 establishments are located in the district. Also there are 16 power reactors and research reactors, one fuel reprocessing plant, 4 nuclear fuel fabrication facilities, 86 nuclear fuel using facilities and 28 radioisotope using facilities. Their situations are reported. As to the atomic energy administration of Ibaraki Prefecture, the safety administration and the countermeasures for surrounding areas are explained. The effects exerted to the society and the economy of the district are reported. The results of the investigation of the conscience concerning atomic energy of residents are shown about energy and atomic energy, atomic energy administration, and the relation of atomic energy facilities with the district. (K.I.)

  14. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    Energy Technology Data Exchange (ETDEWEB)

    GARVIN, L. J.; JENSEN, M. A.

    2004-04-13

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  15. Analysis of Hanford-based Options for Sustainable DOE Facilities on the West Coast

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, William M.

    2012-06-30

    Large-scale conventional energy projects result in lower costs of energy (COE). This is true for most renewable energy projects as well. The Office of Science is interested in its facilities meeting the renewable energy mandates set by Congress and the Administration. Those facilities on the west coast include a cluster in the Bay Area of California and at Hanford in central Washington State. Land constraints at the California facilities do not permit large scale projects. The Hanford Reservation has land and solar insolation available for a large scale solar project as well as access to a regional transmission system that can provide power to facilities in California. The premise of this study is that a large-scale solar project at Hanford may be able to provide renewable energy sufficient to meet the needs of select Office of Science facilities on the west coast at a COE that is competitive with costs in California despite the lower solar insolation values at Hanford. The study concludes that although the cost of solar projects continues to decline, estimated costs for a large-scale project at Hanford are still not competitive with avoided power costs for Office of Science facilities on the west coast. Further, although it is possible to transmit power from a solar project at Hanford to California facilities, the costs of doing so add additional costs. Consequently, development of a large- scale solar project at Hanford to meet the renewable goals of Office of Science facilities on the west coast is currently uneconomic. This may change as solar costs decrease and California-based facilities face increasing costs for conventional and renewable energy produced in the state. PNNL should monitor those cost trends.

  16. Natural phenomena analyses, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1989-01-01

    Probabilistic seismic hazard studies completed for the Washington Public Power Supply System's Nuclear Plant 2 and for the US Department of Energy's N Reactor sites, both on the Hanford Site, suggested that the Lawrence Livermore National Laboratory seismic exposure estimates were lower than appropriate, especially for sites near potential seismic sources. A probabilistic seismic hazard assessment was completed for those areas that contain process and/or waste management facilities. the lower bound magnitude of 5.0 is used in the hazard analysis and the characteristics of small-magnitude earthquakes relatively common to the Hanford Site are addressed. The recommended ground motion for high-hazard facilities is somewhat higher than the Lawrence Livermore National Laboratory model and the ground motion from small-magnitude earthquakes is addressed separately from the moderate- to large-magnitude earthquake ground motion. The severe wind and tornado hazards determined for the Hanford Siste are in agreement with work completed independently using 43 years of site data. The low-probability, high-hazard, design-basis flood at the Hanford Site is dominated by dam failure on the Columbia River. Further evaluation of the mechanisms and probabilities of such flooding is in progress. The Hanford Site is downwind from several active Cascade volcanoes. Geologic and historical data are used to estimate the ashfall hazard

  17. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1985-01-01

    The Act for Japan Atomic Energy Research Institute has been promulgated anew. Contents are the following : general rules, officials, advisors and personnel, duties, financial affairs and accounts, supervision, miscellaneous rules, penal provisions, and additional rules. (In the additional rules, the merger into JAERI of Japan Nuclear Ship Research and Development Agency is treated.) Japan Atomic Energy Research Institute conducts research etc. for the development of atomic energy comprehensively and efficiently, thereby contributing to the promotion of atomic energy research, development and utilization, according to the Atomic Energy Fundamental Act. Duties are atomic energy basic and application research, reactor relation, training of the personnel, RIs relation, etc. (Mori, K.)

  18. Hanford Atomic Products Operation monthly report, March 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-04-23

    This document presents a summary of work and progress at the Hanford Engineer Works for March 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.

  19. Hanford Atomic Products Operation monthly report, December 1954

    Energy Technology Data Exchange (ETDEWEB)

    1955-01-25

    This document presents a summary of work and progress at the Hanford Engineer Works for December 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  20. Hanford Atomic Products Operation monthly report, April 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-05-21

    This document presents a summary of work and progress at the Hanford Engineer Works for April 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the technical, design and project sections. Costs for the various departments are presented in the financial department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.

  1. Hanford Atomic Products Operation monthly report, August 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-09-28

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Sciences, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  2. Hanford Atomic Products Operation monthly report, June 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-07-26

    This document presents a summary of work and progress at the Hanford Engineer Works for June 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  3. Hanford Atomic Products Operation monthly report, August 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-09-17

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department report plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities, and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  4. Hanford Atomic Products Operation monthly report, January 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-02-21

    This document presents a summary of work and progress at the Hanford Engineer Works for January 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical Design, and Project Sections. Costs for the various departments are presented in the Financial department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  5. Hanford Atomic Products Operation monthly report, July 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-08-26

    This document presents a summary of work and progress at the Hanford Engineer Works for July 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and services departments have sections presenting their monthly statistics, work, progress, and summaries.

  6. Hanford Atomic Products Operation monthly report, October 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-11-30

    This document presents a summary of work and progress at the Hanford Engineer works for October, 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  7. Hanford Atomic Products Operation monthly report, May 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-06-23

    This document presents a summary of work and progress at the Hanford Engineer Works for May 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  8. Hanford Atomic Products Operation monthly report, May 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-06-22

    This document presents a summary of work and progress at the Hanford Engineer Works for May 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Science, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  9. Hanford Atomic Products Operation monthly report, September 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-10-27

    This document presents a summary of work and progress at the Hanford Engineer Works for September 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  10. Hanford Atomic Products Operation monthly report, October 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-11-24

    This document presents a summary of work and progress at the Hanford Engineer Works for October 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  11. Hanford Atomic Products Operation monthly report, June 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-07-22

    This document presents a summary of work and progress at the Hanford Engineer Works for June 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  12. Hanford Atomic Products Operation monthly report, August 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-09-18

    This document presents a summary of work and progress at the Hanford Engineer Works for August, 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  13. Monthly report Hanford Atomic Products Operation, July 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-08-20

    This document presents a summary of work and progress at the Hanford Engineer Works for July 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services Departments have sections presenting their monthly statistics, work, progress, and summaries.

  14. Hanford Atomic Products Operation monthly report, August 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-09-27

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Sciences, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  15. Hanford Atomic Products Operation monthly report, May 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-06-19

    This document presents a summary of work and progress at the Hanford Engineer Works for May 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  16. Hanford Atomic Products Operation monthly report, March 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-04-20

    This document presents a summary of work and progress at the Hanford Engineer Works for March 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  17. Hanford Atomic Products Operation monthly report, November 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-12-30

    This document presents a summary of work and progress at the Hanford Engineer Works for November 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  18. Hanford Atomic Products Operation, monthly report, July 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-08-23

    This document presents a summary of work and progress at the Hanford Engineer Works for July, 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  19. Hanford Atomic Products Operation monthly report, July 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-08-20

    This document presents a summary of work and progress at the Hanford Engineer Works for July 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  20. Hanford Atomic Products Operation monthly report, October 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-11-20

    This document presents a summary of work and progress at the Hanford Engineer Works for October 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services. Employee and Public Relations, and Community Real Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.

  1. Hanford Atomic Products Operation monthly report, December 1953

    Energy Technology Data Exchange (ETDEWEB)

    1954-01-22

    This document presents a summary of work and progress at the Hanford Engineer Works for December 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  2. Advanced technologies and atomic energy

    International Nuclear Information System (INIS)

    1995-01-01

    The expert committee on the research 'Application of advanced technologies to nuclear power' started the activities in fiscal year 1994 as one of the expert research committees of Atomic Energy Society of Japan. The objective of its foundation is to investigate the information on the advanced technologies related to atomic energy and to promote their practice. In this fiscal year, the advanced technologies in the fields of system and safety, materials and measurement were taken up. The second committee meeting was held in March, 1995. In this report, the contents of the lectures at the committee meeting and the symposium are compiled. The topics in the symposium were the meaning of advanced technologies, the advanced technologies and atomic energy, human factors and control and safety systems, robot technology and microtechnology, and functionally gradient materials. Lectures were given at two committee meetings on the development of atomic energy that has come to the turning point, the development of advanced technologies centering around ULSI, the present problems of structural fine ceramics and countermeasures of JFCC, the material analysis using laser plasma soft X-ray, and the fullerene research of advanced technology development in Power Reactor and Nuclear Fuel Development Corporation. (K.I.)

  3. Atomic energy levels and Grotrian diagrams

    CERN Document Server

    Bashkin, Stanley

    1975-01-01

    Atomic Energy Levels and Grotrian Diagrams, Volume I: Hydrogen I - Phosphorus XV presents diagrams of various elements that show their energy level and electronic transitions. The book covers the first 15 elements according to their atomic number. The text will be of great use to researchers and practitioners of fields such as astrophysics that requires pictorial representation of the energy levels and electronic transitions of elements.

  4. From rags to riches in the world of NEPA: The Hanford Site experience in applying the Department of Energy's NEPA program

    International Nuclear Information System (INIS)

    Guzzetta, D.J.

    1995-01-01

    The Department of Energy's procedures for implementing the requirements of the National Environmental Policy Act (NEPA) have undergone significant changes since February 5, 1990 when the then Secretary of Energy, Admiral James Watkins, issued Secretary of Energy Notice 15 (SEN-15). This notice directed all DOE elements to integrate NEPA into their decision making processes and temporarily centralized NEPA decision making for all level of NEPA documents (categorical exclusions, environmental assessments (EA), and environmental impact statements) at DOE Headquarters. Since 1990 most of the responsibilities for NEPA have been returned to DOE field elements. However, in the intervening five years, there have been significant changes at all levels of DOE regarding the role NEPA will play in DOE decision making. DOE's new NEPA regulations were published on April 24, 1992 and required greater state and Native American involvement in the preparation of EAs. Delegation of EA authority to the DOE field offices followed the current Secretary of Energy's letter of June 13, 1994. In order for delegation to take place each DOE field element provided a plan that included internal scoping and public participation in the EA process. Since the Manhattan Project the Hanford Site has been a crucial component of the nation's nuclear weapons program. Since the late 1980s Hanford's mission has changed from the production of defense nuclear materials to environmental clean-up. This paper will provide an overview of NEPA at the Hanford Site since 1990 and how the application of NEPA has changed in the five years since SEN-15. Of particular interest will be the EA process at Hanford. This EA process strongly parallels the procedural requirements for an EIS. It includes notification of states, Native Americans, and the public, internal scoping, preparation and circulation of a draft EA, and creation of a panel for making recommendations regarding the significance of the proposed action

  5. Vitrification technology for Hanford Site tank waste

    International Nuclear Information System (INIS)

    Weber, E.T.; Calmus, R.B.; Wilson, C.N.

    1995-04-01

    The US Department of Energy's (DOE) Hanford Site has an inventory of 217,000 m 3 of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing

  6. Westinghouse Hanford Company package testing capabilities

    International Nuclear Information System (INIS)

    Hummer, J.H.; Mercado, M.S.

    1993-07-01

    The Department of Energy's Hanford Site is a 1,450-km 2 (560-mi 2 ) installation located in southeastern Washington State. Established in 1943 as a plutonium production facility, Hanford's role has evolved into one of environmental restoration and remediation. Many of these environmental restoration and remediation activities involve transportation of radioactive/hazardous materials. Packagings used for the transportation of radioactive/hazardous materials must be capable of meeting certain normal transport and hypothetical accident performance criteria. Evaluations of performance to these criteria typically involve a combination of analysis and testing. Required tests may include the free drop, puncture, penetration, compression, thermal, heat, cold, vibration, water spray, water immersion, reduced pressure, and increased pressure tests. The purpose of this paper is to outline the Hanford capabilities for performing each of these tests

  7. DEEP VADOSE ZONE CONTAMINATION DUE TO RELEASES FROM HANFORD SITE TANKS

    International Nuclear Information System (INIS)

    JARAYSI MN

    2008-01-01

    CH2M HILL Hanford Group, Inc. (the Hanford Tank Farm Operations contractor) and the Department of Energy's Office of River Protection have just completed the first phase of the Hanford Single-Shell Tank RCRA Corrective Action Program. The focus of this first phase was to characterize the nature and extent of past Hanford single-shell tank releases and to characterize the resulting fate and transport of the released contaminants. Most of these plumes are below 20 meters, with some reaching groundwater (at 60 to 120 meters below ground surface [bgs])

  8. Hanford Site River Protection Project (RPP) High-Level Waste Storage

    International Nuclear Information System (INIS)

    KRISTOFZSKI, J.G.

    2000-01-01

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc

  9. HEIS: An integrated information system for environmental restoration and monitoring at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Tzemos, S.; Kissinger, B.

    1991-11-01

    The US Department of Energy`s Hanford Site has about 1500 waste sites that contain a complex mixture of chemical and radioactive contaminants. After many years of environmental monitoring to assess the impact of Hanford operations to the environment, the Site`s mission is shifting to environmental restoration. The Hanford Environmental Information System (HEIS) is being developed to provide advanced tools to (1) support environmental restoration and routine site-wide monitoring, and (2) aid the scientists in understanding and conducting the restoration efforts. This paper describes some of the highlights and distinctive features of HEIS.

  10. Software recycling at the Hanford Site

    International Nuclear Information System (INIS)

    HINKELMAN, K.C.

    1999-01-01

    The Hanford Site was the first Department of Energy (DOE) complex to recycle excess software rather than dispose of it in the landfill. This plan, which took over a year to complete, was reviewed for potential legal conflicts, which could arise from recycling rather than disposal of software. It was determined that recycling was an approved method of destruction and therefore did not conflict with any of the licensing agreements that Hanford had with the software manufacturers. The Hanford Recycling Program Coordinator combined efforts with Pacific Northwest National Laboratory (PNNL) to recycle all Hanford software through a single contract, which went out for bid in January 1995. It was awarded to GreenDisk, Inc. located in Woodinville Washington and implemented in March 1995. The contract was later re-bid and awarded to EcoDisWGreenDisk in December 1998. The new contract included materials such as; software manuals, diskettes, tyvek wrapping, cardboard and paperboard packaging, compact disks (CDs), videotapes, reel-to-reel tapes, magnetic tapes, audio tapes, and many other types of media

  11. Proposed general amendments to the atomic energy control regulations

    International Nuclear Information System (INIS)

    1986-01-01

    Canada's Atomic Energy Control Act defines the powers and responsibilities of the Atomic Energy Control Board (AECB). Among these is to make regulations to control the development, application and use of atomic energy. In these proposed general amendments to the Atomic Energy Control Regulations substantial changes are proposed in the designation of the authority of AECB staff, exemptions from licensing, international safeguards, duties of licensees and atomic radiation workers, security of information, and provision for hearings. The scope of the control of atomic energy has been redefined as relating to matters of health, safety, security, international safeguards, and the protection of the environment

  12. Electric power transmission for a Hanford Nuclear Energy Center (HNEC)

    International Nuclear Information System (INIS)

    Harty, H.; Dowis, W.J.

    1983-06-01

    The original study of transmission for a Hanford Nuclear Energy Center (HNEC), which was completed in September 1975, was updated in June 1978. The present 1983 revision takes cognizance of recent changes in the electric power situation of the PNW with respect to: (1) forecasts of load growth, (2) the feasibility of early use of 1100 kV transmission, and (3) the narrowing opportunities for siting nuclear plants in the region. The purpose of this update is to explore and describe additions to the existing transmission system that would be necessary to accommodate three levels of generation at HNEC. Comparisons with a PNW system having new thermal generating capacity distributed throughout the marketing region are not made as was done in earlier versions

  13. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  14. NEPA source guide for the Hanford Site. Revision 2

    International Nuclear Information System (INIS)

    Tifft, S.R.

    1995-01-01

    This Source Guide will assist those working with the National Environmental Policy Act of 1969 (NEPA) to become more familiar with the Environmental Assessments (EA) and Environmental Impact Statements (EIS) that apply to specific activities and facilities at the Hanford Site. This document should help answer questions concerning NEPA coverage, history, processes, and the status of many of the buildings and units on and related to the Hanford Site. This document summarizes relevant EAs and EISs by briefly outlining the proposed action of each and the decision made by the US Department of Energy (DOE) or its predecessor agencies, the US Atomic Energy Commission (AEC), and the US Energy Research and Development Administration (ERDA), concerning the proposed action and current status of the buildings and units discussed in the proposed action. If a decision was officially stated by the DOE, as in a Finding Of No Significant Impact (FONSI) or a Record of Decision (ROD), and was located, a summary is provided in the text. Not all federal decisions, such as FONSIs and RODS, can be found in the Federal Register (FR). For example, although significant large-action FONSIs can be found in the FR, some low-interest FONSIs may have been published elsewhere (i.e., local newspapers). The EA and EIS summaries are arranged in numerical order. To assist in locating a particular EA or EIS, the upper right comer of each page lists the number of the summary or summaries discussed on that page. Any draft EA or EIS is followed by a ''D.'' The EAs with nonstandard numbering schemes are located in Chapter 3

  15. Summary of the Hanford Site Environmental Report for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2010-09-30

    This summary booklet summarizes the "Hanford Site Environmental Report for Calendar Year 2009." The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2010 information is included where appropriate.

  16. Summary of the Hanford Site Environmental Report for Calendar Year 2008

    International Nuclear Information System (INIS)

    Duncan, Joanne P.; Poston, Ted M.; Dirkes, Roger L.

    2009-01-01

    This summary booklet summarizes the 'Hanford Site Environmental Report for Calendar Year 2008'. The Hanford Site environmental report, published annually since 1958, includes information and summary data that provide an overview of activities at the U.S. Department of Energy's (DOE) Hanford Site. The Hanford Site environmental report provides an overview of activities at the site; demonstrates the status of the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights significant environmental and public protection programs and efforts. Some historical and early 2009 information is included where appropriate.

  17. Atom-surface interaction: Zero-point energy formalism

    International Nuclear Information System (INIS)

    Paranjape, V.V.

    1985-01-01

    The interaction energy between an atom and a surface formed by a polar medium is derived with use of a new approach based on the zero-point energy formalism. It is shown that the energy depends on the separation Z between the atom and the surface. With increasing Z, the energy decreases according to 1/Z 3 , while with decreasing Z the energy saturates to a finite value. It is also shown that the energy is affected by the velocity of the atom, but this correction is small. Our result for large Z is consistent with the work of Manson and Ritchie [Phys. Rev. B 29, 1084 (1984)], who follow a more traditional approach to the problem

  18. Establishment of the Japan Atomic Energy Agency

    International Nuclear Information System (INIS)

    Okazaki, Toshio

    2006-01-01

    A goal of the 21. century is for society to pursue 'sustainable economic development and prosperous life by recycling resources', thus rejecting 'development based on the waste of resources'. For Japan, which has limited energy resources, it is important to secure safe, inexpensive, environmentally friendly energy resources having long-term availability. To contribute to long-term energy security and solve global environmental issues, and to create advanced competitive science and technology, the Japan Atomic Energy Agency (JAEA) was established by integrating the Japan Atomic Energy Research Institute (JAERI) and the Japan Nuclear Cycle Development Institute (JNC) in October 2005. JAEA is endeavoring to establish nuclear fuel cycles, to contribute to social improvement through hydrogen production initiated by atomic energy, and to pursue research and development of thermonuclear fusion and quantum beam technology. This paper reviews the main R and D activities of JAEA. The structure of the paper is the following: 1. Introduction; 2. Japan Atomic Energy Agency; 3. Efforts to Commercialize the Fast Reactor Cycle; 4. Monju Progress; 5. Geological Disposal of High-Level Radioactive Waste R and D; 6. High Temperature Gas-Cooled Reactor System R and D; 7. Fusion Research and Development; 8. LWR Spent Fuel Reprocessing Technology; 9. Quantum Beam Technologies; 10. Nuclear Safety Research and Regulatory Applications; 11. Basic Science and Engineering Research; 12. Contribution to the Enhanced International Nonproliferation Regimes; 13. Conclusions. To summarize, JAEA will promote the above R and D activities, addressing the following commitments: - On problems that atomic energy faces, we shall extend technical assistance in response to the government and the industrial sectors. - We shall produce technical options to attain political goals to secure medium to long-term stable energy supplies and to solve global environmental issues. - With the high potentials of atomic

  19. Comments on Hanford 2012 Accelerating Clean Up and Shrinking the Site

    International Nuclear Information System (INIS)

    SHERMAN, Y.T.

    2001-01-01

    In the late summer of 2000, the Department of Energy Richland Operations Office (RL) Manager, Keith Klein, announced his approach to cleanup of the Hanford Site in a document called ''Done in a Decade.'' He asked for comments and suggestions to improve the plan from employees and stakeholders. We received over 300 individual comments. Several of the comments and the Hanford Advisory Board objected to the title of the plan, leading us to change it to ''Hanford 2012 Accelerating Cleanup and Shrinking the Site.'' We addressed virtually all substantive comments, i.e. those that recommended a change in the text, better understanding of an Issue, or consideration of a new Mea, and incorporated editorial comments where appropriate. We thank all those who took time to comment. The new plan, ''Hanford 2012'', is a much better document because you did so. You will notice some things about the table: Comments are not quoted verbatim--most were paraphrased to conserve space; Comments were separated into one of four sections: general, the River, the Plateau, the Future; Commenters are not identified by name or organization; Comments are generally listed in the order in which they were received, several comments were repetitive, but differed slightly so we made an effort to respond to each one, despite apparent repetition; There are many acronyms used at the Hanford Site, most of which can be found on the Web at http:/Ewww.hanford.gov/acronyml. We have attempted to spell out each acronym the first time it's used in a comment/response with the following exceptions: DOE--Department of Energy; RL--Department of Energy, Richland Operations Office; and ORP--Department of Energy, Office of River Protection

  20. Temporal variations in atmospheric dispersion at Hanford

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Burk, K.W.

    1990-01-01

    Climatological data are frequently used to estimate atmospheric dispersion factors for historical periods and for future releases for which adequate meteorological data are unavailable. This practice routinely leads to questions concerning the representativeness of data used. The work described here was performed to provide a basis for answering these questions at the U.S. Department of Energy's Hanford Site in eastern Washington. Atmospheric transport and diffusion near Hanford have been examined using a Lagrangian puff dispersion model and hourly meteorological data from the Hanford Meteorological Station and a network of 24 surface wind stations for a 5-yr period. Average normalized monthly concentrations were computed at 2.5-km intervals on a 31 by 31 grid from January 1983 through 1987, assuming an elevated release in the 200-East Area. Monthly average concentrations were used to determine 5-yr mean pattern and monthly mean patterns and the interannual variability about each pattern. Intra-annual and diurnal variations in dispersion factors are examined for six locations near Hanford

  1. Hanford annual second quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-06-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (ENN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the second quarter of FY98 for stations in the HSN was 99.92%. The operational rate for the second quarter of FY98 for stations of the EWRN was 99.46%. For the second quarter of FY98, the acquisition computer triggered 159 times. Of these triggers 14 were local earthquakes: 7 (50%) in the Columbia River Basalt Group, 3 (21%) in the pre-basalt sediments, and 4 (29%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant seismic event for the second quarter was on March 23, 1998 when a 1.9 Mc occurred near Eltopia, WA and was felt by local residents. Although this was a small event, it was felt at the surface and is an indication of the potential impact on Hanford of seismic events that are common to the Site.

  2. Course of atomic energy safety during ten years

    International Nuclear Information System (INIS)

    1988-10-01

    The Nuclear Safety Commission started in the autumn of 1978 as the result of reexamining the system of atomic energy safety regulation in order to deal with the national criticism against the promotion of atomic energy that arose after the radiation leak accident on the nuclear ship 'Mutsu' 1974. For the development of atomic energy, it is indispensable to obtain the understanding and trust of nation on the safety of atomic energy as clearly shown in the Atomic Energy Act and in the background of founding and the policy of hte Nuclear Safety Commission. The Nuclear Safety Commission has carried out the safety examination for the permission of installing nuclear facilities, the decision of guidelines for the examination, the holding of public hearing, the promotion of safety research and so on. In this book, the reform of the system of atomic energy safety regulation, the countermeasures after TMI accident, the public hearing and others taking root, the further heightening of reliability of LMRs, efforts for operation managment and environment safety, the substantiating of the research on atomic energy safety, the diversification of the objects of safety regulation, the treatment and disposal of radioactive waste, the countermeasures after the chernobyl-4 accident and the positive promotion of international cooperation are described. (Kako, I.)

  3. Independent technical review of the Hanford Tank Farm Operations

    International Nuclear Information System (INIS)

    1992-07-01

    The Independent Technical Assessment of the Hanford Tank Farm Operations was commissioned by the Assistant Secretary for Environmental Restoration and Waste Management on November 1, 1991. The Independent Technical Assessment team conducted on-site interviews and inspections during the following periods: November 18 to 22,1991; April 13 to 17; and April 27 to May 1, 1992. Westinghouse Hanford Company is the management and operating contractor for the Department of Energy at the Hanford site. The Hanford Tank Farm Operations consists of 177 underground storage tanks containing 61 million gallons of high-level radioactive mixed wastes from the chemical reprocessing of nuclear fuel. The Tank Farm Operations also includes associated transfer lines, ancillary equipment, and instrumentation. The Independent Technical Assessment of the Hanford Tank Farm Operations builds upon the prior assessments of the Hanford Waste Vitrification System and the Hanford Site Tank Waste Disposal Strategy.The objective of this technical assessment was to determine whether an integrated and sound program exists to manage the tank-waste storage and tankfarm operations consistent with the Assistant Secretary for Environmental Restoration and Waste Management's guidance of overall risk minimization. The scope of this review includes the organization, management, operation, planning, facilities, and mitigation of the safety-concerns of the Hanford Tank Waste Remediation System. The assessments presented in the body of this report are based on the detailed observations discussed in the appendices. When the assessments use the term ''Hanford'' as an organizational body it means DOE-RL and Westinghouse Hanford Company as a minimum, and in many instances all of the stake holders for the Hanford site

  4. Second Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-06-26

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, seven local earthquakes were recorded during the second quarter of fiscal year 2008. The largest event recorded by the network during the second quarter (February 3, 2008 - magnitude 2.3 Mc) was located northeast of Richland in Franklin County at a depth of 22.5 km. With regard to the depth distribution, two earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), three earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and two earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, five earthquakes occurred in swarm areas and two earthquakes were classified as random events.

  5. First Quarter Hanford Seismic Report for Fiscal Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Clayton, Ray E.; Devary, Joseph L.

    2011-03-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 16 local earthquakes during the first quarter of FY 2011. Six earthquakes were located at shallow depths (less than 4 km), seven earthquakes at intermediate depths (between 4 and 9 km), most likely in the pre-basalt sediments, and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, thirteen earthquakes were located in known swarm areas and three earthquakes were classified as random events. The highest magnitude event (1.8 Mc) was recorded on October 19, 2010 at depth 17.5 km with epicenter located near the Yakima River between the Rattlesnake Mountain and Horse Heaven Hills swarm areas.

  6. Atomic energy wants new personality. An essay of education and personality in atomic energy

    International Nuclear Information System (INIS)

    Takuma, Masao

    2004-01-01

    New personality in atomic energy consists of personification of independence, democracy and publication. They are able to create new technologies and new plants with safety and maintenance. The technical experts and all the parties concerned have to explain the situation and the conditions of atomic energy in order to justify the people's trust in them. Only good personality with morals can obtain the confidence of the nation. It is important for new technical experts and all the parties concerned to receive an education related to sociality. (S.Y.)

  7. The River Corridor Closure Contract How Washington Closure Hanford is Closing A Unique Department of Energy Project - 12425

    Energy Technology Data Exchange (ETDEWEB)

    Feist, E.T. [Washington Closure Hanford, 2620 Fermi Avenue, Richland, WA 99354 (United States)

    2012-07-01

    Cleanup of the Hanford River Corridor has been one of Hanford Site's top priorities since the early 1990's. This urgency is due to the proximity of hundreds of waste sites to the Columbia River and the groundwater that continues to threaten the Columbia River. In April 2005, the U.S. Department of Energy, Richland Operations Office (DOE-RL) awarded the Hanford River Corridor Closure Contract (RCCC), a cost-plus incentive-fee closure contract with a 2015 end date and first of its kind at Hanford Site, to Washington Closure Hanford (WCH), a limited-liability company owned by URS, Bechtel National, and CH2M HILL. WCH is a single-purpose company whose goal is to safely, compliantly, and efficiently accelerate cleanup in the Hanford River Corridor and reduce or eliminate future obligations to DOE-RL for maintaining long-term stewardship over the site. Accelerated performance of the work-scope while keeping a perspective on contract completion presents challenges that require proactive strategies to support the remaining work-scope through the end of the RCCC. This paper outlines the processes to address the challenges of completing work-scope while planning for contract termination. WCH is responsible for cleanup of the River Corridor 569.8 km{sup 2} (220 mi{sup 2}) of the 1,517.7 km{sup 2} (586 mi{sup 2}) Hanford Site's footprint reduction. At the end of calendar year 2011, WCH's closure implementation is well underway. Fieldwork is complete in three of the largest areas within the RCCC scope (Segments 1, 2, and 3), approximately 44.5% of the River Corridor (Figure 3). Working together, DOE-RL and WCH are in the process of completing the 'paper work' that will document the completion of the work-scope and allow DOE-RL to relieve WCH of contractual responsibilities and transition the completed areas to the Long-Term Stewardship Program, pending final action RODs. Within the next 4 years, WCH will continue to complete cleanup of the River

  8. Atomic energy law after the opt-out. Alive and fascinating. Report about the 14th German atomic energy law symposium 2012

    International Nuclear Information System (INIS)

    Leidinger, Tobias

    2013-01-01

    Atomic energy law remains a living, fascinating subject matter. Nearly 200 participants were convinced of this impression at the 14 th German Atomic Energy Law Symposium held in Berlin on November 19-20, 2012. Under the scientific chairmanship of Professor Dr. Martin Burgi, Ludwig Maximilian University of Munich, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU), after an interruption of 5 years, again organized a scientific conference about practice-related topics of atomic energy and radiation protection law. Atomic energy law once again proved to be a reference area for sophisticated issues of constitutional law and administrative law above and beyond its technical confines. The agenda of the 14 th German Atomic Energy Law Symposium featured a broad spectrum of topics ranging from backfitting of nuclear power plants to European atomic energy and radiation protection law, to challenges facing national legal systems in the execution of atomic energy law, to legal issues connected with decommissioning and waste management, and on to the topical subject of finding a repository site. The 14 th German Atomic Energy Law Symposium, on the whole, again demonstrated that an open discourse between science and practice is able to furnish important contributions to the implementation of laws in a balanced way rooted in practice. Especially the contributions dealing with the independence of public authorities and their organization, the doctrine of the reservation of functions of the executive branch, and planning by laws contain additional provisions able to influence the continued development of administrative law also above and beyond atomic energy law. The BMU also referred to a decision just heard from Brussels to the effect that a new European Safety Directive would be published as early as in 2013. As a consequence of the nuclear stress tests conducted EU-wide, the Directive is to lay down provisions about transparency

  9. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  10. Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

    2010-09-22

    The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

  11. In situ bioremediation of Hanford groundwater

    International Nuclear Information System (INIS)

    Skeen, R.S.; Roberson, K.R.; Workman, D.J.; Petersen, J.N.; Shouche, M.

    1992-04-01

    Liquid wastes containing radioactive, hazardous, and regulated chemicals have been generated throughout the 40+ years of operations at the US Department of Energy's (DOE) Hanford Site. Some of these wastes were discharged to the soil column and many of the waste components, including nitrate, carbon tetrachloride (CCl 4 ), and several radionuclides, have been detected in the Hanford groundwater. Current DOE policy prohibits the disposal of contaminated liquids directly to the environment, and remediation of existing contaminated groundwaters may be required. In situ bioremediation is one technology currently being developed at Hanford to meet the need for cost effective technologies to clean groundwater contaminated with CCl 4 , nitrate, and other organic and inorganic contaminants. This paper focuses on the latest results of an on going effort to develop effective in situ remediation strategies through the use of predictive simulations

  12. Environmental monitoring at Hanford for 1984

    International Nuclear Information System (INIS)

    Price, K.R.; Carlile, J.M.V.; Dirkes, R.L.; Jaquish, R.E.; Trevathan, M.S.; Woodruff, R.K.

    1985-05-01

    Environmental surveillance activities performed by the Pacific Northwest Laboratory for the Department of Energy's Hanford Site for 1984 are discussed in this report. Samples of environmental media were collected in support of the Hanford Environmental Monitoring Program to determine radionuclide concentrations in the Hanford environs. Radiological impacts in terms of radiation dose equivalents as a result of Hanford operations are also discussed. Gross beta radioactivity concentrations in airborne particulates at all sampling locations were lower in 1984 than during 1983 as a result of declining levels of worldwide fallout. Slightly higher levels of 85 Kr and 129 I were noted at several onsite and offsite locations. The sampling location in close proximity to the PUREX plant also detected increased 3 H. Very low levels of radionuclides were detected in samples of Columbia River water during 1984. An extensive groundwater monitoring program was performed for the Hanford Site during 1984. The 3 H and nitrate plumes continued to move slowly toward the Columbia River. All 3 H results were within applicable concentration guides. Samples of deer, rabbits, game birds, waterfowl and fish were collected onsite or in the Columbia River at locations where the potential for radionuclide uptake was most likely, or at the nearest locations where wildlife samples were available. Radioisotope levels were measured. Dose rates from external penetrating radiation measured in the vicinity of residential areas were similar to those observed in the previous years, and no contribution from Hanford activities could be identified. An assessment of the 1984 potential radiological impacts attributable to the Hanford operations indicated that measured and calculated radiation doses to the public continued to be low, and well below applicable regulatory limits. 21 refs., 48 figs., 83 tabs

  13. Vascular Plants of the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Sackschewsky, Michael R.; Downs, Janelle L.

    2001-09-28

    This report provides an updated listing of the vascular plants present on and near the U.S. Department of Energy Hanford Site. This document is an update of a listing of plants prepared by Sackschewdky et al. in 1992. Since that time there has been a significant increase in the botanical knowledge of the Hanford Site. The present listing is based on an examination of herbarium collections held at PNNL, at WSU-Tri Cities, WSU-Pullman, Bringham Young University, and The University of Washington, and on examination of ecological literature derived from the Hanford and Benton county areas over the last 100 years. Based on the most recent analysis, there are approximately 725 different plant species that have been documented on or around the Hanford Site. This represents an approximate 20% increase in the number of species reported within Sackschewsky et al. (1992). This listing directly supports DOE and contractor efforts to assess the potential impacts of Hanford Site operations on the biological environment, including impacts to rare habitats and to species listed as endangered or\\ threatened. This document includes a listing of plants currently listed as endangered, threatened, or otherwise of concern to the Washington Natural Heritage Program or the U.S. Fish and Wildlife Service, as well as those that are currently listed as noxious weeds by the State of Washington. Also provided is an overview of how plants on the Hanford Site can be used by people. This information may be useful in developing risk assessment models, and as supporting information for clean-up level and remediation decisions.

  14. Hanford Facility Annual Dangerous Waste Report Calendar Year 2002

    International Nuclear Information System (INIS)

    FR-EEMAN, D.A.

    2003-01-01

    Hanford CY 2002 dangerous waste generation and management forms. The Hanford Facility Annual Dangerous Waste Report (ADWR) is prepared to meet the requirements of Washington Administrative Code Sections 173-303-220, Generator Reporting, and 173-303-390, Facility Reporting. In addition, the ADWR is required to meet Hanford Facility RCRA Permit Condition I.E.22, Annual Reporting. The ADWR provides summary information on dangerous waste generation and management activities for the Calendar Year for the Hanford Facility EPA ID number assigned to the Department of Energy for RCRA regulated waste, as well as Washington State only designated waste and radioactive mixed waste. The Solid Waste Information and Tracking System (SWITS) database is utilized to collect and compile the large array of data needed for preparation of this report. Information includes details of waste generated on the Hanford Facility, waste generated offsite and sent to Hanford for management, and other waste management activities conducted at Hanford, including treatment, storage, and disposal. Report details consist of waste descriptions and weights, waste codes and designations, and waste handling codes. In addition, for waste shipped to Hanford for treatment and/or disposal, information on manifest numbers, the waste transporter, the waste receiving facility, and the original waste generators are included. In addition to paper copies, electronic copies of the report are also transmitted to the regulatory agency

  15. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  16. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy`s Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

  17. Nuclear isotope measurement in the Hanford environment

    International Nuclear Information System (INIS)

    Wacker, J.F.; Stoffel, J.J.; Kelley, J.M.

    1995-01-01

    The Pacific Northwest Laboratory (PNL) is located at the federal government's Hanford Site in southeastern Washington State, which was built during World War II as part of the secret Manhattan Project to develop the atomic bomb. Monitoring of the Site itself and surrounding environs for Hanford-related radionuclides has been a routine part of the operations since 1944. One of the most sensitive analytical methods used is thermal ionization mass spectrometry (TIMS) with triple-sector mass spectrometers. Normal geometry instruments have an abundance sensitivity of 10 -9 for uranium while the authors' newest Triple-Sector Isotope Mass Spectrometer (TRISM), utilizing a new ion-optical design developed at PNL, has an abundance sensitivity of 10 -11 . In favorable cases, sensitivity is such that complete isotopic analyses are obtained on total samples in the femtogram range; and minor isotopes in the attogram range are measured

  18. Nuclear energy and the responsibilities of the Atomic Energy Board

    International Nuclear Information System (INIS)

    De Villiers, J.W.L.

    1980-01-01

    The paper discusses nuclear energy and the responsibilities of the previous Atomic Energy Board, (now the Atomic Energy Corporation) of South Africa in this respect. The paper starts by giving a brief introduction to the Atomic Energy Board, its organization and its functions. Research is undertaken in various fields such as the exploitation of nuclear fuels, radiobiology, radioisotopes, etc. Certain activities of the Board was also more directly related to Koeberg. The paper covers four of these areas, namely the early studies of the feasibility of introducing nuclear power in South Africa; the services involving the Board's special expertise in certain areas which Escom makes use of; the regulatory function and the preparation for handling and disposal of radioactive waste

  19. Hanford Site Environmental Report for Calendar Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.

    2005-09-29

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2003; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  20. Hanford Site Environmental Report for Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Hanf, Robert W.; Dirkes, Roger L.; Morasch, Launa F.

    2006-09-28

    This report, published annually since 1958, includes information and summary analytical data that (1) provide an overview of activities at the Hanford Site during calendar year 2005; (2) demonstrate the site's compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and U.S. Department of Energy (DOE) policies and directives; (3) characterize Hanford Site environmental management performance; and (4) highlight significant environmental programs.

  1. Atomic energy laws in Germany

    International Nuclear Information System (INIS)

    Lukes, R.H.P.

    1980-01-01

    The regulations of German atomic energy laws are based in large on the fundamental law of the Federal Republic of Germany-the constitution. Atomgesetz of 1959, as amended on October 31, 1976, constitutes the core of atomic energy laws (Atomrecht), and is supplemented by orders (Verordnungen). The Federal Republic has the right to legislate Atomrecht, and the enforcement of such laws and orders is entrusted to each province. The peaceful uses of radioactive materials are stipulated by Atomgesetz and orders. Atomgesetz seeks two objects, first it is to enable the handling of radioactive substances for the acquisition of energy, medical treatment, food treatment and the harmless examination of things by radioactive materials, and secondly to ensure the protection from danger in the handling of such materials. The control of radioactive materials by the state including imports and exports, storage and possession, disposal and processing, etc., is established by the law to secure the protection from danger of atomic energy. The particular indemnification responsibility for the harm due to radiation is defined in Atomgesetz, and only the owners (Inhaber) of atomic energy facilities are liable for damage. The violation of the regulations on the transaction of radioactive materials is punished by fines up to 100,000 German marks of imprisonment of less than five years. Orders are established on roentgen ray, the protection from radiation, the treatment of foods by electron beam, gamma ray, roentgen ray or ultraviolet ray and the permission of medicines. The regulations of the EURATOM treaty have legality as Atomrecht. (Okada, K.)

  2. Hanford Reach Fall Chinook Redd Monitoring Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Cole T. [Mission Support Alliance, Richland, WA (United States); Nugent, John J. [Mission Support Alliance, Richland, WA (United States)

    2014-02-10

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  3. Hanford Site Black-Tailed Jackrabbit Monitoring Report for Fiscal Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Cole T. [Mission Support Alliance (MSA), Richland, WA (United States); Nugent, John J. [Mission Support Alliance (MSA), Richland, WA (United States); Wilde, Justin W. [Mission Support Alliance (MSA), Richland, WA (United States); Johnson, Scott J. [Mission Support Alliance (MSA), Richland, WA (United States)

    2014-02-13

    The U.S. Department of Energy, Richland Operations Office (DOE-RL) conducts ecological monitoring on the Hanford Site to collect and track data needed to ensure compliance with an array of environmental laws, regulations, and policies governing DOE activities. Ecological monitoring data provide baseline information about the plants, animals, and habitat under DOE-RL stewardship at Hanford required for decision-making under the National Environmental Policy Act (NEPA) and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The Hanford Site Comprehensive Land Use Plan (CLUP, DOE/EIS-0222-F) which is the Environmental Impact Statement for Hanford Site activities, helps ensure that DOE-RL, its contractors, and other entities conducting activities on the Hanford Site are in compliance with NEPA.

  4. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Antonio, Ernest J.; Eschbach, Tara O.; Fowler, Richard A.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast, Ellen L.; Rohay, Alan C.; Thorne, Paul D.

    2001-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  5. Hanford Site National Environmental Policy Act (NEPA) Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Duncan, Joanne P.; Eschbach, Tara O.; Fowler, Richard A.; Fritz, Brad G.; Goodwin, Shannon M.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2002-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  6. Atomic Energy Amendment Act 1978, No. 31

    International Nuclear Information System (INIS)

    1978-01-01

    This Act amends certain Sections of the Atomic Energy Act 1953. The principal modifications concern the definitions of atomic energy, prescribed substances, the provision and supply of uranium in relation to the functions of the Atomic Energy Commission, compliance with the agreement with the IAEA on the application of safeguards under the Non-Proliferation Treaty as well as with any agreement with any other international organization or another country. The Act also amends the 1953 Act in respect of the control of prescribed substances and repeals the section concerning jurisdiction of courts. (NEA) [fr

  7. Scenarios for the Hanford Immobilized Low-Activity Waste (ILAW) performance assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    1999-01-01

    Scenarios describing representative exposure cases associated with the disposal of low activity waste from the Hanford Waste Tanks have been defined. These scenarios are based on guidance from the Department of Energy, the U.S. Nuclear Regulatory Commission, and previous Hanford waste disposal performance assessments

  8. Transfer of energy in an atom

    International Nuclear Information System (INIS)

    Chemin, J.F.

    2001-01-01

    In most cases the nucleus does not interact with the electron cloud because its energy range is far higher, but in some rare cases electrons from the electron cloud and the nucleus may exchange energy: an electron may de-excite by transferring a part of its energy to the nucleus that becomes itself excited (nuclear excitation by electronic transfer or NEET), conversely electrons can receive energy from the nucleus (bound internal conversion or BIC). For the first time both energy transfers have been observed: a BIC process on a tellurium-125 atom by a French team and a NEET process on a gold-197 atom by a Japanese team. (A.C.)

  9. First Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-03-15

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. This includes three recently acquired Transportable Array stations located at Cold Creek, Didier Farms, and Phinney Hill. For the Hanford Seismic Network, ten local earthquakes were recorded during the first quarter of fiscal year 2009. All earthquakes were considered as “minor” with magnitudes (Mc) less than 1.0. Two earthquakes were located at shallow depths (less than 4 km), most likely in the Columbia River basalts; five earthquakes at intermediate depths (between 4 and 9 km), most likely in the sub-basalt sediments); and three earthquakes were located at depths greater than 9 km, within the basement. Geographically, four earthquakes occurred in known swarm areas and six earthquakes were classified as random events.

  10. Hanford Site air operating permit application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ``regulated`` pollutants. Regulated pollutants include ``criteria`` pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ``Hazardous`` Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995.

  11. Hanford Site air operating permit application

    International Nuclear Information System (INIS)

    1995-05-01

    The Clean Air Act Amendments of 1990, which amended the Federal Clean Air Act of 1977, required that the US Environmental Protection Agency develop a national Air Operating Permit Program, which in turn would require each state to develop an Air Operating Permit Program to identify all sources of ''regulated'' pollutants. Regulated pollutants include ''criteria'' pollutants (oxides of nitrogen, sulfur oxides, total suspended particulates, carbon monoxide, particulate matter greater than 10 micron, lead) plus 189 other ''Hazardous'' Air Pollutants. The Hanford Site, owned by the US Government and operated by the US Department of Energy, Richland Operations Office, is located in southcentral Washington State and covers 560 square miles of semi-arid shrub and grasslands located just north of the confluence of the Snake and Yakima Rivers with the Columbia River. This land, with restricted public access, provides a buffer for the smaller areas historically used for the production of nuclear materials, waste storage, and waste disposal. About 6 percent of the land area has been disturbed and is actively used. The Hanford Site Air Operating Permit Application consists of more than 1,100 sources and in excess of 300 emission points. Before January 1995, the maintenance and operations contractor and the environmental restoration contractor for the US Department of Energy completed an air emission inventory on the Hanford Site. The inventory has been entered into a database so that the sources and emission points can be tracked and updated information readily can be retrieved. The Hanford Site Air Operating Permit Application contains information current as of April 19, 1995

  12. Hanford Waste Vitrification Plant applied technology plan

    International Nuclear Information System (INIS)

    Kruger, O.L.

    1990-09-01

    This Applied Technology Plan describes the process development, verification testing, equipment adaptation, and waste form qualification technical issues and plans for resolution to support the design, permitting, and operation of the Hanford Waste Vitrification Plant. The scope of this Plan includes work to be performed by the research and development contractor, Pacific Northwest Laboratory, other organizations within Westinghouse Hanford Company, universities and companies with glass technology expertise, and other US Department of Energy sites. All work described in this Plan is funded by the Hanford Waste Vitrification Plant Project and the relationship of this Plan to other waste management documents and issues is provided for background information. Work to performed under this Plan is divided into major areas that establish a reference process, develop an acceptable glass composition envelope, and demonstrate feed processing and glass production for the range of Hanford Waste Vitrification Plant feeds. Included in this work is the evaluation and verification testing of equipment and technology obtained from the Defense Waste Processing Facility, the West Valley Demonstration Project, foreign countries, and the Hanford Site. Development and verification of product and process models and other data needed for waste form qualification documentation are also included in this Plan. 21 refs., 4 figs., 33 tabs

  13. Hanford Tanks Initiative quality assurance implementation plan

    International Nuclear Information System (INIS)

    Huston, J.J.

    1998-01-01

    Hanford Tanks Initiative (HTI) Quality Assurance Implementation Plan for Nuclear Facilities defines the controls for the products and activities developed by HTI. Project Hanford Management Contract (PHMC) Quality Assurance Program Description (QAPD)(HNF-PRO599) is the document that defines the quality requirements for Nuclear Facilities. The QAPD provides direction for compliance to 10 CFR 830.120 Nuclear Safety Management, Quality Assurance Requirements. Hanford Tanks Initiative (HTI) is a five-year activity resulting from the technical and financial partnership of the US Department of Energy's Office of Waste Management (EM-30), and Office of Science and Technology Development (EM-50). HTI will develop and demonstrate technologies and processes for characterization and retrieval of single shell tank waste. Activities and products associated with HTI consist of engineering, construction, procurement, closure, retrieval, characterization, and safety and licensing

  14. Hanford year 2000 Business Continuity Plan

    International Nuclear Information System (INIS)

    VORNEY, S.V.

    1999-01-01

    The goal of Department of Energy Richland Operations (DOE-RL) Year 2000 (Y2K) effort is to ensure that the Hanford site successfully continues its mission as we approach and enter the 21th century. The Y2K Business Continuity Planning process provides a structured approach to identify Y2K risks to the site and to mitigate these risks through Y2K Contingency Planning, ''Zero-Day'' Transition Planning and Emergency Preparedness. This document defines the responsibilities, processes and plans for Hanford's Y2K Business Continuity. It identifies proposed business continuity drills, tentative schedule and milestones

  15. First Quarter Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-05-26

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. They also locate and identify sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consists of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY99 for stations in the HSN was 99.8%. There were 121 triggers during the first quarter of fiscal year 1999. Fourteen triggers were local earthquakes; seven (50%) were in the Columbia River Basalt Group, no earthquakes occurred in the pre-basalt sediments, and seven (50%) were in the crystalline basement. One earthquake (7%) occurred near or along the Horn Rapids anticline, seven earthquakes (50%) occurred in a known swarm area, and six earthquakes (43%) were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometer during the first quarter of FY99.

  16. Environmental Solutions, A Summary of Contributions for FY04: PNNL Contributions to Fluor Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, Linda L.

    2005-03-08

    Pacific Northwest National Laboratory managed a variety of technical and scientific efforts to support Fluor Hanford's work in cleaning up the Hanford Site. Work done for other Hanford contractors, the Waste Treatment Plant, and directly for the U.S. Department of Energy is summarized in the other booklets in this series.

  17. Prioritization of environmental cleanup problems at Hanford

    International Nuclear Information System (INIS)

    Fassbender, L.L.

    1994-01-01

    New technologies and scientific research are needed to clean up the Hanford Site. However, there is insufficient funding to develop every technology that is identified or to undertake every scientific research project that is proposed. Thus, the Department of Energy (DOE) must focus its resources on science and technology (S ampersand T) that will have the most significant impacts on the overall cleanup effort. Hanford has recognized the importance of identifying and prioritizing its most critical problems and the most promising solutions to them. Hanford cleanup will require numerous decisions about technology development and implementation, which will be complicated because there are substantial uncertainties about the risks and the costs of new technologies. Further, the choice of a specific technology for a specific application must be evaluated with respect to multiple (and often conflicting) objectives (e.g., risk reduction, increasing effectiveness, cost reduction, increasing public acceptability, regulatory compliance). This paper provides an overview of the decision analysis methodology that was used to prioritize S ampersand T needs for Hanford cleanup

  18. Hanford Site Environmental Surveillance Data Report for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2009-08-11

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2008" (PNNL-18427), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  19. Hanford Site Environmental Surveillance Data Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-10-13

    Environmental surveillance on and around the Hanford Site, located in southeastern Washington State, is conducted by the Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy. The environmental surveillance data collected for this report provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford Site operations. Data were also collected to monitor several chemicals and metals in Columbia River water, sediment, and wildlife. These data are included in this appendix. This report is the first of two appendices that support "Hanford Site Environmental Report for Calendar Year 2007" (PNNL-17603), which describes the Hanford Site mission and activities, general environmental features, radiological and chemical releases from operations, status of compliance with environmental regulations, status of programs to accomplish compliance, Hanford Site cleanup and remediation efforts, and environmental monitoring activities and results.

  20. The Atomic Energy Commission's Annual Report to Congress for 1959. Major Activities in the Atomic Energy Programs, January - December 1959

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1960-01-31

    The document represents the first annual reporting versus semiannual reporting of the Atomic Energy Commission (AEC) to Congress. The report consists of three parts: Part One, The Atomic Energy Industry in 1959 and Related Activities; Part Two, Major Activities in Atomic Energy Programs; and Part Three, Management of Radioactive Wastes. Nineteen appendices are also included.

  1. Long term plan of atomic energy development and utilization

    International Nuclear Information System (INIS)

    1982-01-01

    The atomic energy utilization and development in Japan have progressed remarkably, and already nuclear power generation has borne an important part in electric power supply, while radiation has been utilized in the fields of industry, agriculture, medicine and so on. Now, atomic energy is indispensable for national life and industrial activity. The former long term plan was decided in September, 1978, and the new long term plan should be established since the situation has changed largely. The energy substituting for petroleum has been demanded, and the expectation to nuclear power generation has heightened because it enables stable and economical power supply. The independently developed technology related to atomic energy must be put in practical use. The peaceful utilization of atomic energy must be promoted, while contributing to the nuclear non-proliferation policy. The Atomic Energy Commission of Japan decided the new long term plan to clearly show the outline of the important measures related to atomic energy development and utilization in 10 years hereafter, and the method of its promotion. The basic concept of atomic energy development and utilization, the long term prospect and the concept on the promotion, the method of promoting the development and utilization, and the problems of funds, engineers and location are described. (kako, I.)

  2. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS/ PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    International Nuclear Information System (INIS)

    SCHAUS, P.S.

    2006-01-01

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns

  3. TECHNICAL ASSESSMENT OF BULK VITRIFICATION PROCESS & PRODUCT FOR TANK WASTE TREATMENT AT THE DEPARTMENT OF ENERGY HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    SCHAUS, P.S.

    2006-07-21

    At the U.S. Department of Energy (DOE) Hanford Site, the Waste Treatment Plant (WTP) is being constructed to immobilize both high-level waste (IUW) for disposal in a national repository and low-activity waste (LAW) for onsite, near-surface disposal. The schedule-controlling step for the WTP Project is vitrification of the large volume of LAW, current capacity of the WTP (as planned) would require 50 years to treat the Hanford tank waste, if the entire LAW volume were to be processed through the WTP. To reduce the time and cost for treatment of Hanford Tank Waste, and as required by the Tank Waste Remediation System Environmental Impact Statement Record of Decision and the Hanford Federal Facility Consent Agreement (Tn-Party Agreement), DOE plans to supplement the LAW treatment capacity of the WTP. Since 2002, DOE, in cooperation with the Environmental Protection Agency and State of Washington Department of Ecology has been evaluating technologies that could provide safe and effective supplemental treatment of LAW. Current efforts at Hanford are intended to provide additional information to aid a joint agency decision on which technology will be used to supplement the WTP. A Research, Development and Demonstration permit has been issued by the State of Washington to build and (for a limited time) operate a Demonstration Bulk Vitrification System (DBVS) facility to provide information for the decision on a supplemental treatment technology for up to 50% of the LAW. In the Bulk Vitrification (BV) process, LAW, soil, and glass-forming chemicals are mixed, dried, and placed in a refractory-lined box, Electric current, supplied through two graphite electrodes in the box, melts the waste feed, producing a durable glass waste-form. Although recent modifications to the process have resulted in significant improvements, there are continuing technical concerns.

  4. Hanford whole body counting manual

    International Nuclear Information System (INIS)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs

  5. Hanford Site Environmental Report for Calendar Year 1998

    International Nuclear Information System (INIS)

    Dirkes, Roger L.; Hanf, Robert W.; Poston, Ted M.

    1999-01-01

    This Hanford Site environmental report is prepared annually to summarize environmental data and information, to describe environmental management performance, to demonstrate the status of compliance with environmental regulations, and to highlight major environmental programs and efforts. The report is written to meet requirements and guidelines of the U.S. Department of Energy (DOE) and to meet the needs of the public. This summary has been written with a minimum of technical terminology. Individual sections of the report are designed to: (1) describe the Hanford Site and its mission; (2) summarize the status of compliance with environmental regulations; (3) describe the environmental programs at the Hanford Site; (4) discuss the estimated radionuclide exposure to the public from 1998 Hanford Site activities; (5) present the effluent monitoring, environmental surveillance, and groundwater protection and monitoring information; (6) discuss the activities to ensure quality. More detailed information can be found in the body of the report, the cited references, and the appendixes.

  6. Drilling history core hole DC-6 Hanford, Washington

    International Nuclear Information System (INIS)

    1978-06-01

    Core hole DC-6 was completed in May 1978 by Boyles Brothers Drilling Company, Spokane, Washington, under subcontract to Fenix and Scisson, Inc. The hole was cored for the US Department of Energy and the Rockwell Hanford Operations' Basalt Waste Isolation Program. Fenix and Scisson, Inc. furnished the engineering, daily supervision of the core drilling activities, and geologic core logging for hole DC-6. Core hole DC-6 is located within the boundary of the Hanford Site at the old Hanford town site. The Hanford Site coordinates for DC-6 are North 54,127.17 feet and West 17,721.00 feet. The surface elevation is approximately 402 feet above sea level. The purpose of core hole DC-6 was to core drill vertically through the basalt and interbed units for stratigraphic depth determination and core collection and to provide a borehole for hydrologic testing. The total depth of core hole DC-6 was 4336 feet. Core recovery was 98.4% of the total footage cored

  7. Third Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-09-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its con-tractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (E WRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 818 triggers on two parallel detection and recording systems during the third quarter of fiscal year (FY) 2000. Thirteen seismic events were located by the Hanford Seismic Network within the reporting region of 46-47{degree} N latitude and 119-120{degree} W longitude; 7 were earthquakes in the Columbia River Basalt Group, 1 was an earthquake in the pre-basalt sediments, and 5 were earthquakes in the crystalline basement. Three earthquakes occurred in known swarm areas, and 10 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the third quarter of FY 2000.

  8. First Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-03-21

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, forty-four local earthquakes were recorded during the first quarter of fiscal year 2008. A total of thirty-one micro earthquakes were recorded within the Rattlesnake Mountain swarm area at depths in the 5-8 km range, most likely within the pre-basalt sediments. The largest event recorded by the network during the first quarter (November 25, 2007 - magnitude 1.5 Mc) was located within this swarm area at a depth of 4.3 km. With regard to the depth distribution, three earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), thirty-six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and five earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, thirty-eight earthquakes occurred in swarm areas and six earth¬quakes were classified as random events.

  9. DOE wants Hanford change

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Nine months ago, Energy Secretary Hazel O'Leary promised local officials running the agency's huge Hanford, Washington, weapon complex more control in directing its projected $57-billion waste cleanup. Earlier this month, she returned to the site for a follow-on open-quotes summit,close quotes this time ordering teamwork with contractors, regulators and local activities

  10. Trends in radionuclide concentrations in Hanford Reach fish, 1982 through 1992

    International Nuclear Information System (INIS)

    Poston, T.M.

    1994-06-01

    Environmental monitoring has been conducted at the US Department of Energy's Hanford Site in southeast Washington State since 1945. Fish from the Hanford Reach of the Columbia River, which borders the Site, are monitored annually. The two objectives of this report were (1) to evaluate trends in the concentrations of radionuclides [e.g., 90 Sr and 137 Cs] in two species of Columbia River fish [smallmouth bass and mountain whitefish] sampled from the Hanford Reach from 1982 through 1992; and (2) to determine the impact of Hanford Site releases on these two species and carp and fall chinook salmon collected during this time frame. The evaluation found gradual reductions of 137 Cs in bass muscle and 90 Sr in bass and whitefish carcass from 1982 through 1992. Concentrations of 90 Sr in bass and whitefish followed the pattern established by reported Hanford Site releases from 1982 through 1992 and was supported by significant regression analyses comparing annual releases to sample concentration. Because data for carp have been collected only since 1990, the data base was inadequate for determining trends. Moreover, fall chinook salmon were only sampled once in this 11-year period. Concentrations of 90 Sr and 137 Cs in fish samples collected from distant background locations exceeded concentrations in Hanford Reach fish. Estimates of the dose from consumption of Hanford Reach fish were less than 0.001 times the National Council on Radiation Protection and Measurements and the US Department of Energy guideline of 100 mrem/yr

  11. Master schedule for CY-1979 Hanford environmental surveillance routine program

    International Nuclear Information System (INIS)

    Blumer, P.J.; Houston, J.R.; Eddy, P.A.

    1978-12-01

    The current schedule of data collection for the routine environmental surveillance program at the Hanford Site, as conducted by the Environmental Evaluation Section of Battelle, Pacific Northwest Laboratory for the Department of Energy (DOE), is given. Modifications to the schedule are made during the year and special areas of study, usually of short duration, are not scheduled. The environmental surveillance program objectives are to evaluate the levels of radioactive and nonradioactive pollutants in the Hanford environs, and to monitor Hanford operations for compliance with applicable environmental criteria and Washington State Water Quality Standards. Air quality data are obtained in a separate program administered by the Hanford Environmental Health Foundation. The collection schedule for potable water is shown but it is not part of the routine environmental surveillance program. Water quality data for Hanford Site potable water systems are published each year by the Hanford Environmental Health Foundation. The data collected are available in routine reports issued by the Environmental Evaluations staff. Groundwater data and evaluation are reported in the series, ''Radiological Status of the Groundwater Beneath the Hanford Project for...,'' the latest issue being PNL-2624 for CY-1977. Data from locations within the plant boundaries are presented in the annual ''Environmental Status of the Hanford Site for...'' report series, the most recent report being PNL-2677 for 1977. Data from offsite locations are presented in the annual ''Environmental Surveillance at Hanford for...'' series of reports, the latest being PNL-2614 for 1977

  12. Positronium-alkali atom scattering at medium energies

    International Nuclear Information System (INIS)

    Chakraborty, Ajoy; Basu, Arindam; Sarkar, Nirmal K; Sinha, Prabal K

    2004-01-01

    We investigate the scattering of orthopositronium (o-Ps) atom off different atomic alkali targets (Na to Cs) at low and medium energies (up to 120 eV). Projectile-elastic and target-elastic close-coupling models have been employed to investigate the systems in addition to the static-exchange model. Elastic, excitation and total cross sections have been reported for all four systems. The magnitude of the alkali excitation cross section increases with increasing atomic number of the target atom while the position of the peak value shifts towards lower incident energies. The magnitudes of the Ps excitation and ionization cross sections increase steadily with atomic number with no change in the peak position. The reported results show regular behaviour with increasing atomic number of the target atom. Scattering parameters for the Ps-Rb and Ps-Cs systems are being reported for the first time

  13. Environmental assessment overview, Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization. 3 figs

  14. Atomic Energy Control Act, c A.19, s.1

    International Nuclear Information System (INIS)

    1985-01-01

    The Revised Statutes of Canada 1985 entered into force on 12 December 1988, revoking the previous Atomic Energy Control Act and replacing it with a new version. The new Act (Chapter A-16 of the Revised Statutes) updates the previous text and makes some linguistic corrections. The Atomic Energy Control Act establishes the Atomic Energy Control Board and sets out its duties and powers which include, in particular, the making of regulations for developing, controlling and licensing the production, application and use of atomic energy [fr

  15. First Quarter Hanford Seismic Report for Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, Donald C.; Reidel, Stephen P.; Rohay, Alan C.; Valenta, Michelle M.

    2001-02-27

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 477 triggers during the first quarter of fiscal year (FY) 2001 on the data acquisition system. Of these triggers, 176 were earthquakes. Forty-five earthquakes were located in the HSN area; 1 earthquake occurred in the Columbia River Basalt Group, 43 were earthquakes in the pre-basalt sediments, and 1 was earthquakes in the crystalline basement. Geographically, 44 earthquakes occurred in swarm areas, 1 earthquake was on a major structure, and no earthquakes were classified as random occurrences. The Horse Heaven Hills earthquake swarm area recorded all but one event during the first quarter of FY 2001. The peak of the activity occurred over December 12th, 13th, and 14th when 35 events occurred. No earthquakes triggered the Hanford Strong Motion Accelerometers during the first quarter of FY 2001.

  16. Hanford Quarter Seismic Report - 98C Seismicity On and Near the Hanford Site, Pasco Basin, Washington: April 1, 1998 Through June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn, SP Reidel, AC Rohay

    1998-10-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. The staff also locates aud identifies sources of seismic activity and monitors changes in the hi~orical pattern of seismic activity at the Hanford Site. The data are. compiled archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of zin earthquake on the Hanford Site. The HSN and Ihe Eastern Washington Regional Network (EN/RN) consist-of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the third quarter of FY 1998 for stations in the HSN was 99.99%. The operational rate for the third quarter of FY 1998 for stations of the EWRN was 99.95%. For the third quarter of FY 1998, the acquisition computer triggered 133 times. Of these triggers 11 were local earthquakes: 5 (45Yo) in the Columbia River Basalt Group, 2(1 8%) in the pre-basalt sediments, and 4 (36%) in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report.

  17. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes the Japan Atomic Energy Research Institute in accordance with the Basic Act on Atomic Energy as a government corporation for the purpose of promoting R and D and utilizations of atomic energy (first chapter). The second chapter concerns the directors, advisers and personnel of the institute, namely a chairman of the board of directors, a vice-chairman, directors not more than seven persons, and auditors not more than two persons. The chairman represents and supervises the intitute, whom the prime minister appoints with the agreement of Atomic Energy Commission. The vice-chairman and other directors are nominated by the chairman with the approval of the prime minister, while the auditors are appointed by the prime minister with the advice of the Atomic Energy Commission. Their terms of office are 4 years for directors and 2 years for auditors. The third chapter defines the scope of activities of the institute as follows: basic and applied researches on atomic energy; design, construction and operation of nuclear reactors; training of researchers and technicians; and import, production and distribution of radioisotopes. Those activities should be done in accordance with the basic development and utilization plans of atomic energy established by the prime minister with the determination of Atomic Energy Commission. The fourth chapter provides for the finance and accounting of the institute, and the fifth chapter requires the supervision of the institute by the prime minister. (Matsushima, A.)

  18. Annual Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-12-29

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. During fiscal year 2008, the Hanford Seismic Network recorded 1431 triggers on the seismometer system, which included 112 seismic events in the southeast Washington area and an additional 422 regional and teleseismic events. There were 74 events determined to be local earthquakes relevant to the Hanford Site. The highest-magnitude event (3.7 Mc) occurred on May 18, 2008, and was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, 13 earthquakes were located at shallow depths (less than 4 km, most likely in the Columbia River basalts), 45 earthquakes were located at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and 16 earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, 54 earthquakes were located in swarm areas and 20 earthquakes were classified as random events. The May 18 earthquake was the highest magnitude event recorded since 1975 in the vicinity of the Hanford Site (between 46 degrees and 47 degrees north latitude and

  19. Recommended environmental dose calculation methods and Hanford-specific parameters

    International Nuclear Information System (INIS)

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V.; Davis, J.S.

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document

  20. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Wodrich, D.; Ellingson, D.; Scott, M.; Schade, A.

    1991-01-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy orders and guidance. In particular, the Hanford Site approach to designating a suitable facility open-quotes Usage Category,close quotes is presented. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on the consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components

  1. Recommended environmental dose calculation methods and Hanford-specific parameters

    Energy Technology Data Exchange (ETDEWEB)

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V. (Pacific Northwest Lab., Richland, WA (United States)); Davis, J.S. (Westinghouse Hanford Co., Richland, WA (United States))

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  2. The Atomic Energy Commission's Annual Report to Congress for 1961. Major Activities in the Atomic Energy Programs, January - December 1961

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1962-01-31

    The document represents the 1961 Annual Report of the Atomic Energy Commission (AEC) to Congress. This year's report consists of four parts: Part One, The Atomic Energy Industry for 1961 and Related Activities; Part Two, Nuclear Power Programs for 1961; Part Three, Major Activities in Atomic Energy Programs; and Part Four, Regulatory Activities. Sixteen appendices are also included.

  3. Hanford Site National Environmental Policy Act (NEPA) characterization. Revision 10

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Fosmire, C.J.; Fowler, R.A.

    1998-09-01

    This document describes the US Department of Energy's (DOE) Hanford Site environment and is numbered to correspond to the chapters where such information is presented in Hanford Site NEPA related documents. The document is intended to provide a consistent description of the Hanford Site environment for the many NEPA documents that are being prepared by contractors. The two chapters in this document (Chapters 4 and 6) are numbered this way to correspond to the chapters where such information is presented in environmental impact statements (EISs) and other Site-related NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes the Hanford Site environment, and includes information on climate and meteorology, geology, hydrology, ecology, cultural, archaeological and historical resources, socioeconomics, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes applicable federal and state laws and regulations, DOE directives and permits, and environmental standards directly applicable to the NEPA documents on the Hanford Site

  4. Use of decision analysis techniques to determine Hanford cleanup priorities

    International Nuclear Information System (INIS)

    Fassbender, L.; Gregory, R.; Winterfeldt, D. von; John, R.

    1992-01-01

    In January 1991, the U.S. Department of Energy (DOE) Richland Field Office, Westinghouse Hanford Company, and the Pacific Northwest Laboratory initiated the Hanford Integrated Planning Process (HIPP) to ensure that technically sound and publicly acceptable decisions are made that support the environmental cleanup mission at Hanford. One of the HIPP's key roles is to develop an understanding of the science and technology (S and T) requirements to support the cleanup mission. This includes conducting an annual systematic assessment of the S and T needs at Hanford to support a comprehensive technology development program and a complementary scientific research program. Basic to success is a planning and assessment methodology that is defensible from a technical perspective and acceptable to the various Hanford stakeholders. Decision analysis techniques were used to help identify and prioritize problems and S and T needs at Hanford. The approach used structured elicitations to bring many Hanford stakeholders into the process. Decision analysis, which is based on the axioms and methods of utility and probability theory, is especially useful in problems characterized by uncertainties and multiple objectives. Decision analysis addresses uncertainties by laying out a logical sequence of decisions, events, and consequences and by quantifying event and consequence probabilities on the basis of expert judgments

  5. Hanford Atomic Products for Operation monthly report, February 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-03-18

    This document presents a summary of work and progress at the Hanford Engineer Works for February 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  6. Hanford Atomic Products Operation monthly report for April 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-05-23

    This document presents a summary of work and progress at the Hanford Engineer Works for April 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  7. Hanford Atomic Products Operation monthly report for May 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-06-21

    This document presents a summary of work and progress at the Hanford Engineer Works for May, 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  8. Hanford Atomic Products Operation monthly report for September 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-10-25

    This document presents a summary of work and progress at the Hanford Engineer Works for September 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  9. Hanford Atomic Products Operation monthly report for December 1955

    Energy Technology Data Exchange (ETDEWEB)

    1956-01-30

    This document presents a summary of work and progress at the Hanford Engineer Works for December 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  10. Locations of criticality alarms and nuclear accident dosimeters at Hanford

    International Nuclear Information System (INIS)

    1992-08-01

    Hanford facilities that contain fissionable materials capable of achieving critical mass are monitored with nuclear accident dosimeters (NADS) in compliance with the requirements of DOE Order 5480.11, Chapter XI, Section 4.c. (DOE 1988). The US Department of Energy (DOE) Richland Field Office (RL) has assigned the responsibility for maintaining and evaluating the Hanford NAD system to the Instrumentation and External Dosimetry (I ampersand ED) Section of Pacific Northwest Laboratory's (PNL's) Health Physics Department. This manual provides a description of the Hanford NAD, criteria and instructions for proper NAD placement, and the locations of these dosimeters onsite

  11. Hanford Site National Environmental Policy Act (NEPA) Characterization Report

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Hoitink, Dana J.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Rohay, Alan C.; Scott, Michael J.; Thorne, Paul D.

    2004-09-22

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the sixteenth revision of the original document published in 1988 and is (until replaced by the seventeenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety and health, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  12. Hanford prototype-barrier status report: FY 1995

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Gilmore, B.G.; Ligotke, M.W.; Link, S.O.

    1995-11-01

    Surface barriers (or covers) have been proposed for use at the Hanford Site as a means to isolate certain waste sites that, for reasons of cost or worker safety or both, may not be exhumed. Surface barriers are intende to isolated the wastes from the accessible environment and to provide long-term protection to future populations that might use the Hanford Site. Currently, no ''proven'' long-term barrier system is available. For this reason, the Hanford Site Permanent Isolation Surface-Barrier Development Program (BDP) was organized to develop the technology needed to provide long-term surface barrier capability for the Hanford Site for the US Department of Energy (DOE). Designs have been proposed to meet the most stringent needs for long-term waste disposal. The objective of the current barrier design is to use natural materials to develop a protective barrier system that isolates wastes for at least 1000 years by limiting water, plant, animal, and human intrusion; and minimizing erosion. The design criteria for water drainage has been set at 0.5 mm/yr. While other design criteria are more qualitative, it is clear that waste isolation for an extended time is the prime objective of the design. Constructibility and performance. are issues that can be tested and dealt with by evaluating prototype designs prior to extensive construction and deployment of covers for waste sites at Hanford

  13. Hanford: A Conversation About Nuclear Waste and Cleanup

    International Nuclear Information System (INIS)

    Gephart, Roy E.

    2003-01-01

    The author takes us on a journey through a world of facts, values, conflicts, and choices facing the most complex environmental cleanup project in the United States, the U.S. Department of Energy's Hanford Site. Starting with the top-secret Manhattan Project, Hanford was used to create tons of plutonium for nuclear weapons. Hundreds of tons of waste remain. In an easy-to-read, illustrated text, Gephart crafts the story of Hanford becoming the world's first nuclear weapons site to release large amounts of contaminants into the environment. This was at a time when radiation biology was in its infancy, industry practiced unbridled waste dumping, and the public trusted what it was told. The plutonium market stalled with the end of the Cold War. Public accountability and environmental compliance ushered in a new cleanup mission. Today, Hanford is driven by remediation choices whose outcomes remain uncertain. It's a story whose epilogue will be written by future generations. This book is an information resource, written for the general reader as well as the technically trained person wanting an overview of Hanford and cleanup issues facing the nuclear weapons complex. Each chapter is a topical mini-series. It's an idea guide that encourages readers to be informed consumers of Hanford news, to recognize that knowledge, high ethical standards, and social values are at the heart of coping with Hanford's past and charting its future. Hanford history is a window into many environmental conflicts facing our nation; it's about building upon success and learning from failure. And therein lies a key lesson, when powerful interests are involved, no generation is above pretense. Roy E. Gephart is a geohydrologist and senior program manager at the Pacific Northwest National Laboratory, Richland, Washington. He has 30 years experience in environmental studies and the nuclear waste industry

  14. Hanford wells

    International Nuclear Information System (INIS)

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details

  15. The data collection component of the Hanford Meteorology Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Islam, M.M.

    1988-09-01

    An intensive program of meteorological monitoring is in place at the US Department of Energy's Hanford Site. The Hanford Meteorology Monitoring Program involves the measurement, observation, and storage of various meteorological data; continuous monitoring of regional weather conditions by a staff of professional meteorologists; and around-the-clock forecasting of weather conditions for the Hanford Site. The objective of this report is to document the data collection component of the program. In this report, each meteorological monitoring site is discussed in detail. Each site's location and instrumentation are described and photographs are presented. The methods for processing and communicating data to the Hanford Meteorology Station are also discussed. Finally, the procedures followed to maintain and calibrate these instruments are presented. 2 refs., 83 figs., 15 tabs.

  16. Hanford year 2000 Business Continuity Plan

    Energy Technology Data Exchange (ETDEWEB)

    ROGGENKAMP, S.L.

    1999-11-01

    The goal of Department of Energy Richland Operations (DOE-RL) Year 2000 (Y2K) effort is to ensure that the Hanford site successfully continues its mission as we approach and enter the 21th century. The Y2K Business Continuity Planning process provides a structured approach to identify Y2K risks to the site and to mitigate these risks through Y2K Contingency Planning, ''Zero-Day'' Transition Planning and Emergency Preparedness. This document defines the responsibilities, processes and plans for Hanford's Y2K Business Continuity. It identifies proposed business continuity drills, tentative schedule and milestones.

  17. Basic law of atomic energy for pacific uses

    International Nuclear Information System (INIS)

    1969-01-01

    This law comprehend information about the pacific uses of atomic energy. Likewise it creates the Commission of Atomic Energy and stipulates: it s organization and functions, regulations and licensures, responsibilities, income and patrimony. (SGB)

  18. Kinetic-energy density functional: Atoms and shell structure

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society

  19. On the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, S [International Atomic Energy Agency, Vienna (Austria)

    1963-07-15

    The main concepts motivating the decision to establish an international agency for peaceful uses of atomic energy are presented in the paper. They consists of: 1) co-ordination in the fields of safety field, legal liability and safeguards; 2) ensuring that scientific and technical data are made freely accessible on a worldwide scale and 3) assisting the developing countries in benefiting from this new science and technology and use the atomic energy for economic and social development

  20. Atomic Energy Act with ordinances. 16. ed.

    International Nuclear Information System (INIS)

    Ziegler, E.

    1992-01-01

    The convenient edition contains the entire body of German atomic energy and radiation protection laws in their updated version as of June 1992. Thus it also takes the amendments of the Atomic Energy Act (Article 22 Paragraph 1 Sentence 1 and Paragraph 3 as well as Article 46 Paragraph 3 Atomic Energy Act) into account on the basis of the Law on the Establishment of a Federal Export Office from February 28, 1992 (Code of Federal Laws I, pp. 376 ff). As a result of this law, which became effective as of April 1, 1992, within the scope of business of the Federal Ministry for Economic Affairs, a federal export office was established which was endowed with the status of a federal agency. This office is in charge of administrative and supervisory tasks on the federal level. Within the framework of the atomic energy law this agency is in charge of export and import permits as well as the supervision of the export and import of nuclear fuel and other radioactive materials. (orig./HP) [de

  1. Legend and legacy: Fifty years of defense production at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ``flagship`` of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program.

  2. Legend and legacy: Fifty years of defense production at the Hanford Site

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1992-09-01

    Today, the Hanford Site is engaged in the largest waste cleanup effort ever undertaken in human history. That in itself makes the endeavor historic and unique. The Hanford Site has been designated the ''flagship'' of Department of Energy (DOE) waste remediation endeavors. And, just as the wartime Hanford Project remains unmatched in history, no counterpart exists for the current waste cleanup enterprise. This report provides a summary of the extensive historical record, however, which does give a partial road map. The science of environmental monitoring pioneered at the Hanford Site, and records of this type are the most complete of any in the world, from private companies or public agencies, for the early years of Site operations. The Hanford Site was unique for establishing a detailed, scientific, and multi-faceted environmental monitoring program

  3. Hanford emergency management plan - release 15

    Energy Technology Data Exchange (ETDEWEB)

    CARPENTER, G.A.

    1999-07-19

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety.

  4. Hanford emergency management plan - release 15

    International Nuclear Information System (INIS)

    CARPENTER, G.A.

    1999-01-01

    The Hanford emergency management plan for the US Department of Energy Richland, WA and Office of River Protection. The program was developed in accordance with DOE Orders as well as Federal and State regulations to protect workers and public health and safety

  5. Atomic Energy Authority (Weapons Group) Act 1973

    International Nuclear Information System (INIS)

    1973-01-01

    This Act, which came into force on 6th March 1973 and modified Section 2 of the Atomic Energy Authority Act 1954 in respect of the Authority's power to do work on explosive nuclear devices, made provision for the transfer to the Secretary of State for Defence of the Weapons Group of the Atomic Energy Authority. (NEA) [fr

  6. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

    1995-11-01

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  7. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997--March 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  8. Hanford quarterly seismic report - 97B seismicity on and near the Hanford Site, Pasco Basin, Washington, January 1, 1997 - March 31, 1997

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.

    1997-05-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organizations works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 97.23% and for stations of the EWRN was 99.93%. For fiscal year (FY) 1997 second quarter (97B), the acquisition computer triggered two hundred and forth-eight times. Of these triggers three were local earthquakes: one in the pre-basalt sediments, and two in the crystalline basement. The geologic and tectonic environments are discussed in the report

  9. Atomic Energy Control Regulations

    International Nuclear Information System (INIS)

    1992-01-01

    This is the consolidated text of the Atomic Energy Control Regulations of 17 March 1960, with amendments to 27 August 1992. The Regulations cover the licensing of nuclear facilities, radiation sources, including uranium mining, radiation protection questions, etc. (NEA)

  10. Neck of public acceptance of atomic energy in Japan

    International Nuclear Information System (INIS)

    Tawara, Soichiro.

    1978-01-01

    Discussion is lacking concerning the public acceptance of atomic energy in Japan. In case of the atomic powered ship Mutsu, an opponent says that the ship carries an atomic bomb, but a member of a support group says that the ship emits soft radiation like a hot spring. This is an example of discussion, and most of discussions are made under the political interest, instead of on the scientific base. In Japan, preparatory negotiations are required in advance to the decision making meeting in most cases. Therefore, most of substantial discussions are not public. Engineers in the nuclear industry can hardly express their opinion concerning the development of atomic energy. Most of the data for discussions are not original, but foreign data. Reasons for the development of atomic energy change case by case. It is necessary to consider that people will decide their opinion according to whether the responsible person is reliable or not. Some people oppose to atomic energy to find a new sense of value. Now, all people are requested to think and discuss the problem of atomic energy calmly. (Kato, T.)

  11. Stakeholder involvement in redefining Hanford's Double-Shell Tank Waste Disposal Program

    International Nuclear Information System (INIS)

    Triplett, M.B.; Hunter, V.L.

    1992-01-01

    Hanford's Double-Shell Tank (DST) waste disposal strategy, outlined in the Final Environmental Impact Statement, Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland, Washington calls for using B-Plant to separate the low-level and high-level portions of the DST waste. This separations step would provide feed to the Hanford Waste Vitrification Plant (HWVP), viewed by many as the cornerstone to Site cleanup. The State of Washington strongly opposed using the 47-year old B-Plant because it was not built to comply with current environmental regulations. Because of this and other challenges to Hanford's tank waste disposal strategy, the Department of Energy (DOE) Richland Field Office (RL) initiated efforts to redefine the strategy. To support this effort, Pacific Northwest Laboratory, (PNL) and Westinghouse Hanford Company, (WHC) and sought input from outside stakeholder (stakeholders are those interest groups that are affected by the outcome of the decision and have a strong desire to ensure that their concerns are addressed) groups through a formal stakeholder involvement and multiattribute utility (MAU) analysis process

  12. Quality Assurance Program Plan Waste Management Federal Services of Hanford, Inc

    International Nuclear Information System (INIS)

    VOLKMAN, D.D.

    1999-01-01

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program

  13. Westinghouse Hanford Company waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    Craig, P.A.; Nichols, D.H.; Lindsey, D.W.

    1991-08-01

    The purpose of this plan is to establish the Westinghouse Hanford Company's Waste Minimization Program. The plan specifies activities and methods that will be employed to reduce the quantity and toxicity of waste generated at Westinghouse Hanford Company (Westinghouse Hanford). It is designed to satisfy the US Department of Energy (DOE) and other legal requirements that are discussed in Subsection C of the section. The Pollution Prevention Awareness Program is included with the Waste Minimization Program as permitted by DOE Order 5400.1 (DOE 1988a). This plan is based on the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, which directs DOE Field Office, Richland contractors to develop and maintain a waste minimization program. This waste minimization program is an organized, comprehensive, and continual effort to systematically reduce waste generation. The Westinghouse Hanford Waste Minimization Program is designed to prevent or minimize pollutant releases to all environmental media from all aspects of Westinghouse Hanford operations and offers increased protection of public health and the environment. 14 refs., 2 figs., 1 tab

  14. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E. [Pacific Northwest Lab., Richland, WA (United States); Weiss, S.G.; Stegen, J.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  15. Ozone destruction of Hanford Site tank waste organics

    International Nuclear Information System (INIS)

    Colby, S.A.

    1993-04-01

    Ozone processing is one of several technologies being developed to meet the intent of the Secretary of the US Department of Energy, Decision on the Programmatic Approach and Near-Term Actions for Management and Disposal of Hanford Tank Waste Decision Statement, dated December 20, 1991, which emphasizes the need to resolve tank safety issues by destroying or modifying the constituents (e.g., organics) that cause safety concerns. As a result, the major tank treatment objectives on the Hanford Site are to resolve the tank safety issues regarding organic compounds (and accompanying flammable gas generation), which all potentially can react to evolve heat and gases. This report contains scoping test results of an alkaline ozone oxidation process to destroy organic compounds found in the Hanford Site's radioactive waste storage tanks

  16. Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1997-03-01

    The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site's non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small

  17. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams

  18. HANFORD GROUNDWATER REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, B; THOMPSON, M; WILDE, R.; FORD, B.; GERBER, M.S.

    2006-02-01

    By 1990 nearly 50 years of producing plutonium put approximately 1.70E + 12 liters (450 billion gallons) of liquid wastes into the soil of the 1,518-square kilometer (586-square mile) Hanford Site in southeast Washington State. The liquid releases consisted of chemicals used in laboratory experiments, manufacturing and rinsing uranium fuel, dissolving that fuel after irradiation in Hanford's nuclear reactors, and in liquefying plutonium scraps needed to feed other plutonium-processing operations. Chemicals were also added to the water used to cool Hanford's reactors to prevent corrosion in the reactor tubes. In addition, water and acid rinses were used to clean plutonium deposits from piping in Hanford's large radiochemical facilities. All of these chemicals became contaminated with radionuclides. As Hanford raced to help win World War II, and then raced to produce materials for the Cold War, these radioactive liquid wastes were released to the Site's sandy soils. Early scientific experiments seemed to show that the most highly radioactive components of these liquids would bind to the soil just below the surface of the land, thus posing no threat to groundwater. Other experiments predicted that the water containing most radionuclides would take hundreds of years to seep into groundwater, decaying (or losing) most of its radioactivity before reaching the groundwater or subsequently flowing into the Columbia River, although it was known that some contaminants like tritium would move quickly. Evidence today, however, shows that many contaminants have reached the Site's groundwater and the Columbia River, with more on its way. Over 259 square kilometers (100 square miles) of groundwater at Hanford have contaminant levels above drinking-water standards. Also key to successfully cleaning up the Site is providing information resources and public-involvement opportunities to Hanford's stakeholders. This large, passionate, diverse, and

  19. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    International Nuclear Information System (INIS)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    2000-01-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47degree N latitude and 119--120degree W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  20. Second Quarter Hanford Seismic Report for Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-07-17

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EWRN uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 506 triggers on two parallel detection and recording systems during the second quarter of fiscal year (FY) 2000. Twenty-seven seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree} N latitude and 119--120{degree} W longitude; 12 were earthquakes in the Columbia River Basalt Group, 2 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 5 were quarry blasts. Three earthquakes appear to be related to geologic structures, eleven earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion

  1. First quarter Hanford seismic report for fiscal year 2000

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    2000-02-23

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The HSN uses 21 sites and the EW uses 36 sites; both networks share 16 sites. The networks have 46 combined data channels because Gable Butte and Frenchman Hills East are three-component sites. The reconfiguration of the telemetry and recording systems was completed during the first quarter. All leased telephone lines have been eliminated and radio telemetry is now used exclusively. For the HSN, there were 311 triggers on two parallel detection and recording systems during the first quarter of fiscal year (FY) 2000. Twelve seismic events were located by the Hanford Seismic Network within the reporting region of 46--47{degree}N latitude and 119--120{degree}W longitude; 2 were earthquakes in the Columbia River Basalt Group, 3 were earthquakes in the pre-basalt sediments, 9 were earthquakes in the crystalline basement, and 1 was a quarry blast. Two earthquakes appear to be related to a major geologic structure, no earthquakes occurred in known swarm areas, and 9 earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers

  2. Books on Atomic Energy for Adults and Children

    Energy Technology Data Exchange (ETDEWEB)

    None

    1969-01-01

    This booklet contains two lists of atomic energy books, one for students and one for adults. The student list has grade annotations. The lists are not all-inclusive but comprise selected basic books on atomic energy and closely related subjects.

  3. The association betweeen cancers and low level radiation: An evaluation of the epidemiological evidence at the Hanford Nuclear Weapons Facility

    International Nuclear Information System (INIS)

    Britton, J.

    1993-05-01

    Cancer has traditionally been linked to exposure to high doses of radiation, but there is considerable controversy regarding the carcinogenicity of low doses of ionizing radiation in humans. Over the past 30 years there have been 14 studies conducted on employees at the Hanford nuclear weapons facility to investigate the relationship between exposure to low doses of radiation and mortality due to cancer (1-14). Interest in this issue was originally stimulated by the Atomic Energy Commission (AEC) which was trying to determine whether the linear extrapolation of health effects from high to low dose exposure was accurate. If the risk has been underestimated, then the maximum permissible occupational radiation exposure in the United States had been set too high. Because the health risk associated with low level radiation are unclear and controversial it seems appropriate to review the studies relating to Hanford at this time

  4. The situation of Chinese atomic energy and cooperation

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2003-01-01

    China will have 8.7 million kW atomic energy in 2005. Japan will complete with China in a sale war of international atomic energy and domestic power source. The position, development and situation of Chinese atomic energy and the future nuclear fuel cycle are reported. 5.4 million kW of 7 atomic power plants in China and 45.9 million kW of 53 plants in Japan are running. 3.3 million kW of 4 plants in China and 4 million kW of 4 plants in Japan are building. New type reactor, the fast breeder and high temperature gas-cooled reactor are developing. Radiation exposure to food, radiation therapy, Radio-pharmaceuticals, polymerization and treatment of sewage and smoke are carried out. The situation of atomic energy co-operation between China and Japan and other countries are stated. Japan has to change to advance mutual interests type co-operation with China. Construction of the nuclear community in Asia area and development of the international long big project are proposed. (S.Y.)

  5. Nuclear energy: fusion and fission - From the atomic nucleus to energy

    International Nuclear Information System (INIS)

    2002-09-01

    Matter is made up of atoms. In 1912, the English physicist Ernest Rutherford (who had shown that the atom had a nucleus), and the Danish physicist Niels Bohr developed a model in which the atom was made up of a positively charged nucleus surrounded by a cloud of electrons. In 1913, Rutherford discovered the proton, and in 1932, the English physicist Chadwick discovered the neutron. In 1938, Hahn and Strassmann discovered spontaneous fission and the French physicist Frederic Joliot-Curie, assisted by Lew Kowarski and Hans Von Halban, showed in 1939 that splitting uranium nuclei caused an intense release of heat. The discovery of the chain reaction would enable the exploitation of nuclear energy. 'It was the Second World War leaders who, by encouraging research for military purposes, contributed to the development of nuclear energy'. During the Second World War, from 1939 to 1945, studies of fission continued in the United States, with the participation of emigre physicists. The Manhattan project was launched, the aim of which was to provide the country with a nuclear weapon (used at Hiroshima and Nagasaki in 1945). After the war ended, research into energy production by the nuclear fission reaction continued for civil purposes. CEA (the French Atomic Energy Commission) was set up in France in 1945 under the impetus of General de Gaulle. This public research body is responsible for giving France mastery of the atom in the research, health, energy, industrial, safety and defense sectors. (authors)

  6. Designation of facility usage categories for Hanford Site facilities

    International Nuclear Information System (INIS)

    Woodrich, D.D.; Ellingson, D.R.; Scott, M.A.; Schade, A.R.

    1991-10-01

    This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy Orders and guidance. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on teh consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components. 4 refs., 9 figs., 1 tab

  7. An evaluation of the management system verification pilot at Hanford

    International Nuclear Information System (INIS)

    Briggs, C.R.; Ramonas, L.; Westendorf, W.

    1998-01-01

    The Chemical Management System (CMS), currently under development at Hanford, was used as the ''test program'' for pilot testing the value added aspects of the Chemical Manufacturers Association's (CMA) Management Systems Verification (MSV) process. The MSV process, which was developed by CMA's member chemical companies specifically as a tool to assist in the continuous improvement of environment, safety and health (ESH) performance, represents a commercial sector ''best practice'' for evaluating ESH management systems. The primary purpose of Hanford's MSV Pilot was to evaluate the applicability and utility of the MSV process in the Department of Energy (DOE) environment. However, because the Integrated Safety Management System (ISMS) is the framework for ESH management at Hanford and at all DOE sites, the pilot specifically considered the MSV process in the context of a possible future adjunct to Integrated Safety Management System Verification (ISMSV) efforts at Hanford and elsewhere within the DOE complex. The pilot involved the conduct of two-hour interviews with four separate panels of individuals with functional responsibilities related to the CMS including the Department of Energy Richland Operations (DOE-RL), Fluor Daniel Hanford (FDH) and FDH's major subcontractors (MSCS). A semi-structured interview process was employed by the team of three ''verifiers'' who directed open-ended questions to the panels regarding the development, integration and effectiveness of management systems necessary to ensure the sustainability of the CMS effort. An ''MSV Pilot Effectiveness Survey'' also was completed by each panel participant immediately following the interview

  8. Managing public perceptions about atomic energy in India

    International Nuclear Information System (INIS)

    Shankar, Ravi; Malhotra, S.K.

    2009-01-01

    Dr. Homi Jehangir Bhabha, in his presidential address at the first International Conference on the Peaceful Uses of Atomic Energy in Geneva in August 1955 had said 'Acquisition by man of the knowledge of how to release and use atomic energy must be recognized as the third epoch of human history'. Indeed during the last six decades, Atomic Energy has touched practically all aspects of human life and has registered its presence in almost every part of the globe. In India too, the Department of Atomic Energy set up in 1954, has been successfully pursuing a programme with a mandate to generate electricity, produce radioisotopes and develop radiation technologies with application in the areas of healthcare, food security, industry, water management, environment, R and D etc. Besides, DAE is also engaged in developing advanced technologies such as lasers, accelerator, robotics, fast computing and biosciences

  9. Hanford Cultural Resources Laboratory annual report for fiscal year 1989

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Cadoret, N.A.; Minthorn, P.E.

    1990-06-01

    This report summarizes activities of the Hanford Cultural Resources Laboratory (HCRL) during fiscal year 1989. The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, in a manner consistent with the National Historic Preservation Act of 1966, the Archaeological Resources Protection Act of 1979, and the American Indian Religious Freedom Act of 1978. A major task in FY 1989 was completion and publication of the Hanford Cultural Resources Management Plan, which prioritizes tasks to be undertaken to bring the US Department of Energy -- Richland Operations into compliance with federal statutes, relations, and guidelines. During FY 1989, six tasks were performed. In order of priority, these were conducting 107 cultural resource reviews, monitoring the condition of 40 known prehistoric archaeological sites, assessing the condition of artifact collections from the Hanford Site, evaluating three sites and nominating two of those to the National Register of Historic Places, developing an education program and presenting 11 lectures to public organizations, and surveying approximately 1 mi{sup 2} of the Hanford Site for cultural resources. 7 refs., 4 figs., 4 tabs.

  10. U.S. Army Corps of Engineers and U.S. Department of Energy partnering for cleanup of the 1100 Area, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Johansen, M.; Liias, R.; Chong, R.

    1994-01-01

    The US Department of Energy's Hanford Site was listed on the National Priorities List (NPL) in July 1989 and was divided and listed as four Sites: the 1100 Area, the 100 Area, the 200 Area, and the 300 Area. Each Area was further divided into sub-units called Operable Units. This paper describes Remedial Investigation and Feasibility Study activities for the 1100 Area leading to the first Record of Decision at the Hanford Site. Key issues included: (1) Definition of future land use; risk assessments and resulting remedial actions depended heavily upon future land use definition because no significant exposure pathways currently exist for the Site, (2) Potential impacts of groundwater contamination to a nearby groundwater well field supplying potable water to Richland, (3) Coordination with an offsite potentially responsible party (PRP) from whose property the groundwater contamination emanated, and (4) The development and determination of precedent setting cleanup requirements and approaches for the entire Hanford Site. The US Army Corps of Engineers, Walla Walla District, performed work leading to the signing of the Record of Decision in September, 1993. The Corps continues to perform investigative, design, and remedial action work at areas of the Site including activities supporting the cleanup and ultimate release of two large portions of the Hanford Site known as the Arid Lands Ecology Reserve (ALE) and the North Slope. These two areas comprise more than half of the total area of the entire Hanford reservation

  11. Tolerancing requirements for remote handling at the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    Van Katwijk, C.; Keenan, R.M.; Bullis, R.E.

    1993-01-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed by Fluor Daniel, Inc. with Waste Chem Corporation as Fluor Daniel, Inc.'s major subcontractor specializing in vitrification and remote system technologies. United Engineers and Constructors (UE ampersand C)/Catalytic (UCAT) will construct the plant. Westinghouse Hanford Company is the Project Integration manager and Business manager, and as the plant operator it provides technical direction to the Architect/ Engineer team (A/E) and constructor on behalf of the US Department of Energy - Richland Field Office. The A/E has developed, in cooperation with UE ampersand C, Westinghouse Hanford Company, and the US Department of Energy, a new and innovative approach to installations of the many remote nozzles and electrical connectors that must be installed to demanding tolerances. This paper summarizes the key elements of the HWVP approach

  12. Hanford tank clean up: A guide to understanding the technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Gephart, R.E.; Lundgren, R.E.

    1995-12-31

    One of the most difficult technical challenges in cleaning up the US Department of Energy`s (DOE) Hanford Site in southeast Washington State will be to process the radioactive and chemically complex waste found in the Site`s 177 underground storage tanks. Solid, liquid, and sludge-like wastes are contained in 149 single- and 28 double-shelled steel tanks. These wastes contain about one half of the curies of radioactivity and mass of hazardous chemicals found on the Hanford Site. Therefore, Hanford cleanup means tank cleanup. Safely removing the waste from the tanks, separating radioactive elements from inert chemicals, and creating a final waste form for disposal will require the use of our nation`s best available technology coupled with scientific advances, and an extraordinary commitment by all involved. The purpose of this guide is to inform the reader about critical issues facing tank cleanup. It is written as an information resource for the general reader as well as the technically trained person wanting to gain a basic understanding about the waste in Hanford`s tanks -- how the waste was created, what is in the waste, how it is stored, and what are the key technical issues facing tank cleanup. Access to information is key to better understanding the issues and more knowledgeably participating in cleanup decisions. This guide provides such information without promoting a given cleanup approach or technology use.

  13. Hanford well remediation and decommissioning plan

    International Nuclear Information System (INIS)

    Ledgerwood, R.K.

    1993-01-01

    Protection of Hanford Site groundwater resources and assessment of the effects of their use or contamination upon public safety are required by federal and state regulations and U.S. Department of Energy (DOE) policy, (DOE, 1989). Compliance with constraints applicable to the use of existing wells requires assessment as to the suitability for use and needs for rehabilitation, remediation or decommissioning of existing groundwater wells and other boreholes potentially affecting aquifers beneath the Hanford Site. Approximately 3,500 groundwater wells and vadose zone boreholes had been drilled on the Hanford Site prior to 1989, over 2,900 still exist. Most of these boreholes were drilled prior to 1987 and do not conform to presently accepted construction standards intended to protect groundwater resources. Approximately 260 wells have been installed since 1987. These wells were constructed to current standards for well construction which mandate seals between the permanent casing and the formation to prevent potential migration of contaminated liquid. Several programs presently construct and/or utilize existing and newly drilled wells to provide characterization and groundwater monitoring data. The programs are summarized

  14. International Atomic Energy Agency and Malaysia

    International Nuclear Information System (INIS)

    Abd Rahim Mohd Nor

    1985-01-01

    A review on IAEA (International Atomic Energy Agency) and its relation with Malaysia is given. This article also discusses the background history of IAEA, its organization and functions in the field of nuclear energy

  15. Overview of the spent nuclear fuel project at Hanford

    International Nuclear Information System (INIS)

    Daily, J.L.

    1995-02-01

    The Spent Nuclear Fuel Project's mission at Hanford is to open-quotes Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.close quotes The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program

  16. Atomic energy and you

    International Nuclear Information System (INIS)

    1975-01-01

    The film discusses the peaceful applications of atomic energy in agriculture, engineering, industry and medicine. Shows exploration, prospecting and mining of uraninum ores at Larap, Camarines Norte and the study of geographical conditions of the site for the proposed Nuclear Power Plant in Bataan

  17. Hanford Site Environmental Report for Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Poston, Ted M.; Duncan, Joanne P.; Dirkes, Roger L.

    2008-06-05

    The Hanford Site environmental report is prepared annually for the U.S. Department of Energy (DOE) in accordance with regulatory requirements. The report provides an overview of activities at the site; demonstrates the status of the site’s compliance with applicable federal, state, and local environmental laws and regulations, executive orders, and DOE policies and directives; and summarizes environmental data that characterize Hanford Site environmental management performance. The report also highlights signifi cant environmental and public protection programs and efforts. Some historical and early 2008 information is included where appropriate.

  18. Summary of the Hanford Site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Hanf, R.W.; Schrempf, R.E.; Dirkes, R.L.

    1996-01-01

    This report summarizes the 390-page Hanford Site Environmental Report for Calendar Year 1994. The Hanford Site Environmental Report is prepared annually to review and document environmental data and information, describe environmental management performance, and demonstrate the status of compliance with environmental regulations. The report also highlights major environmental programs and efforts and is written to meet both the reporting requirements and guidelines of the US Department of energy (DOE) and the needs of the public. This report includes information on important Hanford Site compliance issues, environmental monitoring programs and results, and general information on the Site and the surrounding area

  19. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  20. German Atomic Energy Act turns fifty

    International Nuclear Information System (INIS)

    Schneider, Horst

    2009-01-01

    The German Atomic Energy Act entered into force on January 1, 1960. It turns fifty at the beginning of 2010. Is this a reason to celebrate or rather the opposite? Lawyers, in principle, can view old pieces of legislation from 2 perspectives: On the one hand, aged laws are treated in a spirit of veneration and are celebrated as proven. On the other hand, an anniversary of this kind can be a welcome reason for demands to abolish or, at least, fundamentally renew that law. Over the past half century, the German Atomic Energy Act went through stormy and varied phases both of a legal and a political character. Its 50 th anniversary is likely to spark off very conflicting evaluations as well. A review of legal history shows that the German or, rather, the Federal German Atomic Energy Act (AtG) was not a first-of-its-kind piece of legislation but stemmed from the 1957 EURATOM Treaty, in a way representing a latecomer of that treaty. The Atomic Energy Act experienced a number of important developments throughout its history: - In 1975, compulsory licensing of fuel element factories was introduced. - The back end of the fuel cycle, especially final storage, were incorporated in the Atomic Energy Act comprehensively first in 1976. - In 1985, legislators decided in favor of unlimited nuclear liability. - In 1994 and 1998, only some innovations in special items were introduced under the headings of environmental impact assessment and suitability for repository storage because the controversy about nuclear power did not permit a fundamental alignment towards a more comprehensive modern safety law. - The decision to opt out of the peaceful uses of nuclear power in 2002 drew the final line so far of decisions about directions of nuclear law in a major amendment. In parallel, the decisions by the Federal Constitutional Court and the Federal Administrative Court in the late 1970s and, above all, the 1980s provided important assistance which has remained valid to this day. What is

  1. The four decades of Korea Atomic Energy Research Institute through pictures

    International Nuclear Information System (INIS)

    2000-04-01

    This reports the process and development of Korea Atomic Energy Research Institute with a lot of photos. It is divided five parts, which includes the introduction of the purpose of publication, the quickening period of nuclear Atomic Energy during 1960s the period of building foundation on nuclear power during 1970s the period for technical independence for nuclear atomic energy during 1980s and maturity on technical independence for nuclear atomic energy during 1990s. It deals with the history of Korea Atomic Energy Research Institute from 1959 to 1990.

  2. Hanford wells

    International Nuclear Information System (INIS)

    McGhan, V.L.; Myers, D.A.; Damschen, D.W.

    1976-03-01

    The Hanford Reservation contains about 2100 wells constructed from pre-Hanford Works to the present. As of Jan. 1976, about 1800 wells still exist, 850 of which were drilled to the groundwater table; 700 still contain water. This report provides the most complete documentation of these wells and supersedes all previous compilations, including BNWL-1739

  3. Hanford Site National Environmental Policy Act (NEPA) Characterization, Revision 15

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Bunn, Amoret L.; Burk, Kenneth W.; Cannon, Sandra D.; Duncan, Joanne P.; Fowler, Richard A.; Fritz, Brad G.; Harvey, David W.; Hendrickson, Paul L.; Horton, Duane G.; Last, George V.; Poston, Ted M.; Prendergast-Kennedy, Ellen L.; Reidel, Steve P.; Scott, Michael J.; Thorne, Paul D.; Woody, Dave M.

    2003-09-01

    This document describes the U.S. Department of Energy's (DOE) Hanford Site environment. It is updated each year and is intended to provide a consistent description of the Hanford Site environment for the many National Environmental Policy Act (NEPA) documents being prepared by DOE contractors. No statements of significance or environmental consequences are provided. This year's report is the thirteenth revision of the original document published in 1988 and is (until replaced by the fourteenth revision) the only version that is relevant for use in the preparation of Hanford NEPA, State Environmental Policy Act (SEPA), and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) documents. The two chapters included in this document (Chapters 4 and 6) are numbered to correspond to the chapters where such information is typically presented in environmental impact statements (Weiss) and other Hanford Site NEPA or CERCLA documentation. Chapter 4.0 (Affected Environment) describes Hanford Site climate and meteorology, geology, hydrology, ecology, cultural, archaeological, and historical resources, socioeconomics, occupational safety, and noise. Chapter 6.0 (Statutory and Regulatory Requirements) describes federal and state laws and regulations, DOE directives and permits, and presidential executive orders that are applicable to the NEPA documents prepared for Hanford Site activities.

  4. 78 FR 9902 - DOE Response to Recommendation 2012-2 of the Defense Nuclear Facilities Safety Board, Hanford...

    Science.gov (United States)

    2013-02-12

    ... Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy; Correction AGENCY: Department of Energy. ACTION: Notice; Correction SUMMARY: The Department of Energy (DOE) published a document in the Federal... Facilities Safety Board, Hanford Tank Farms Flammable Gas Safety Strategy. This document corrects an error in...

  5. Present status and future perspective of development of atomic energy

    International Nuclear Information System (INIS)

    Takuma, Masao

    1990-01-01

    The last year was the 50th year from the discovery of the nuclear fission of uranium in 1939. The utilization of atomic energy made the unfortunate start as atomic bombs, but after the 'Atoms for Peace' declaration of President Eisenhauer, it has become to contribute to the development of mankind as nuclear power generation and radiation utilization. In Japan, the Atomic Energy Act was instituted in 1955, and the utilization of atomic energy has been eagerly promoted. As to nuclear power generation, as of the end of June, 1989, 423 power plants were in operation in the world, which generated 333 million kW, equivalent to 17 % of the total generated electric power. The nuclear power plants under construction and at planning stage were 199 with 190 million kW capacity, in this way, the development is advanced actively. At present in Japan, 38 nuclear power plants are in operation, generating 29.46 million kW, which has reached 30 % of the total generated electric power. The social environment surrounding atomic energy and the basic way of thinking on atomic energy development are discussed. The demand and supply of electric power in 21st century and atomic energy, and the policy of electric power companies to cope with it are explained. (K.I.)

  6. DEPARTMENT OF ENERGY (DOE) MANAGEMENT OF THE HANFORD WASTE TREATMENT and IMMOBILIZATION PLANT

    International Nuclear Information System (INIS)

    SHRADER, T.A.

    2005-01-01

    The US Department of Energy Office of River Protection is currently overseeing the construction of the new Hanford Site Waste Treatment and Immobilization Plant (more commonly referred to as the Waste Treatment Plant). In December 2000, a contract was awarded to Bechtel National, Inc. for the design, construction, and commissioning of the $5.8 billion facility to treat and vitrify a significant portion of the waste currently stored in large underground tanks on the Hanford Site. As the owner, the Office of River Protection has developed an organization to oversee the design, construction, and commissioning of the facility. A Federal Project Director is responsible for all aspects of the project, including safety, design, construction, commissioning; and the baseline (scope, cost, and schedule). The Project Director reports to the Manager of the Office of River Protection and recommends changes to the contract requirements, safety basis documents, or the baseline. Approximately 30 engineers, scientists, and other support personnel have been assigned to a unique organization that supports the Federal Project Director in providing oversight of each phase of the project (i.e., design, construction, and commissioning). The organization includes an Engineering Division, a Programs and Projects Division, a Safety Authorization Basis Team, and an Operations and Commissioning Team. This organization is unique within the Department of Energy and provides a focused team to resolve issues of safety, cost, schedule, technical design changes, and construction. This paper will describe this team and show how the Office of River Protection utilizes this oversight team to manage this complex, accelerated project. The size and technical complexity of the facility poses unique challenges for safety, permitting, commissioning, engineering, and baseline control. A robust training and qualification program has been developed that will insure the Departmental personnel working closely

  7. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    Energy Technology Data Exchange (ETDEWEB)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

  8. Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California

    International Nuclear Information System (INIS)

    Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I.; Duncan, D.R.

    1993-10-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations

  9. Nuclear energy policy and atomic energy law. Issues and developmental aspects

    International Nuclear Information System (INIS)

    Schmidt-Preuss, M.

    1998-01-01

    Nuclear energy policy and the atomic energy law recurrently have been a focal point of interest and an issue of political debate in Germany. However, this time the political debate is gaining a new dimension in the wake of the general elections held in September 1998 and the resulting change of government. The contribution compares aspects of the history of atomic energy research and nuclear technology with the current political situation and assesses the impacts of announced changes in government policy and legislation. (orig./CB) [de

  10. White paper on atomic energy in 2005

    International Nuclear Information System (INIS)

    2006-03-01

    Since the publication of its last White Paper on Atomic Energy in 2004, the Atomic Energy Commission of Japan (AEC) summarized trends covering all aspects of nuclear energy over the period up to December 2005. This paper is comprised of a main document and supplementary materials. In the first chapter of the main document, the first section summarized the changes on research, development and utilization of nuclear energy in 50 years from establishment of the Atomic Energy Basic Law. The second section summarized that nuclear energy utilization (energy utilization and radiation utilization) for contributing to the welfare of humanity and the improvement of the standard of living of the people, and the appropriate direction in the future and the recognitions to become its background of nuclear policies that indicated in 'Framework for Nuclear Energy Policy' (AEC decided at October 2005), concerning fundamental activities, R and D activities and international activities that essential for the realization of nuclear energy utilization. The second chapter summarized recent trends of national and private activities on research, development and utilization of nuclear energy, covering the topics 'Nuclear Energy Policy in Japan', 'Strengthening Fundamental Activities on Research, Development and Utilization of Nuclear Energy', 'Steady Promotion of Nuclear Energy Utilization', Promotion of Nuclear Energy Research and Development', Promotion of International Activity', 'Various Evaluation on Research, Development and Utilization of Nuclear Energy'. The supplementary materials include lists of AEC decisions, nuclear energy budgets, year-by-year data tables, and other such similar materials. (J.P.N.)

  11. Fuel-element failures in Hanford single-pass reactors 1944--1971

    Energy Technology Data Exchange (ETDEWEB)

    Gydesen, S.P.

    1993-07-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. To estimate the doses, the staff of the Source Terms Task use operating information from historical documents to approximate the radioactive emissions. One source of radioactive emissions to the Columbia River came from leaks in the aluminum cladding of the uranium metal fuel elements in single-pass reactors. The purpose of this letter report is to provide photocopies of the documents that recorded these failures. The data from these documents will be used by the Source Terms Task to determine the contribution of single-pass reactor fuel-element failures to the radioactivity of the reactor effluent from 1944 through 1971. Each referenced fuel-element failure occurring in the Hanford single-pass reactors is addressed. The first recorded failure was in 1948, the last in 1970. No records of fuel-element failures were found in documents prior to 1948. Data on the approximately 2000 failures which occurred during the 28 years (1944--1971) of Hanford single-pass reactor operations are provided in this report.

  12. Environment, Safety and Health Progress Assessment of the Hanford Site

    International Nuclear Information System (INIS)

    1992-05-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety and Health (ES ampersand H) Progress Assessment of the Hanford Site, in Richland, Washington. The assessment, which was conducted from May 11 through May 22, 1992, included a selective-review of the ES ampersand H management systems and programs of the responsible DOE Headquarters Program Offices the DOE Richland Field Office, and the site contractors. The ES ampersand H Progress Assessments are part of the Secretary of Energy's continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. The purpose of the Hanford Site ES ampersand H Progress Assessment is to provide the Secretary with an independent assessment of the adequacy and effectiveness of the DOE and contractor management structures, resources, and systems to address ES ampersand H problems and requirements. They are not intended to be comprehensive compliance assessments of ES ampersand H activities. The point of reference for assessing programs at the Hanford Site was, for the most part, the Tiger Team Assessment of the Hanford Site, which was conducted from May 21 through July 18, 1990. A summary of issues and progress in the areas of environment, safety and health, and management is included

  13. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  14. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs

  15. Environmental Survey preliminary report, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Hanford Site, conducted August 18 through September 5, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Hanford Site. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Hanford Site, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the Hanford Site. The Interim Report will reflect the final determinations of the Hanford Site Survey. 44 refs., 88 figs., 74 tabs.

  16. Atomic Energy Amendment Act 1987 - No 5 of 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This Act modifies substantially the Atomic Energy Act 1953 as already amended. It repeals almost all of the existing Atomic Energy Act, including the provisions establishing the Australian Atomic Energy Commission and the security provisions. A new authority is created under separate legislation to replace the Commission: the Australian Nuclear Science and Technology Organization. The only parts of the Act which remain are the sections covering the authorization of the Ranger Project and the Commonwealth title to uranium in the Northern Territory; and the requirement for reporting of discoveries of prescribed substances (uranium, thorium, i.e. any substance which may be used for production of atomic energy) and information on their production. Certain definitions have also been kept. (NEA) [fr

  17. Hanford annual first quarter seismic report, fiscal year 1998: Seismicity on and near the Hanford Site, Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1998-02-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the US Department of Energy and its contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. The operational rate for the first quarter of FY98 for stations in the HSN was 98.5%. The operational rate for the first quarter of FY98 for stations of the EWRN was 99.1%. For the first quarter of FY98, the acquisition computer triggered 184 times. Of these triggers 23 were local earthquakes: 7 in the Columbia River Basalt Group, and 16 in the crystalline basement. The geologic and tectonic environments where these earthquakes occurred are discussed in this report. The most significant earthquakes in this quarter were a series of six events which occurred in the Cold Creek depression (approximately 4 km SW of the 200 West Area), between November 6 and November 11, 1997. All events were deep (> 15 km) and were located in the crystalline basement. The first event was the largest, having a magnitude of 3.49 M{sub c}. Two events on November 9, 1997 had magnitudes of 2.81 and 2.95 M{sub c}, respectively. The other events had magnitudes between 0.7 and 1.2 M{sub c}.

  18. Radiological survey of shoreline vegetation from the Hanford Reach of the Columbia River, 1990--1992

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.; Poston, T.M.; Rickard, W.H. Jr.

    1993-09-01

    A great deal of interest exists concerning the seepage of radiologically contaminated groundwater into the Columbia River where it borders the US Department of Energy`s Hanford Site (Hanford Reach). Areas of particular interest include the 100-N Area, the Old Hanford Townsite, and the 300 Area springs. While the radiological character of the seeps and springs along the Hanford Site shoreline has been studied, less attention has been given to characterizing the radionuclides that may be present in shoreline vegetation. The objective of this study was to characterize radionuclide concentrations in shoreline plants along the Hanford Reach of the Columbia River that were usable by humans for food or other purposes. Vegetation in two areas was found to have elevated levels of radionuclides. Those areas were the 100-N Area and the Old Hanford Townsite. There was also some indication of uranium accumulation in milfoil and onions collected from the 300 Area. Tritium was elevated above background in all areas; {sup 60}Co and {sup 9O}Sr were found in highest concentrations in vegetation from the 100-N Area. Technetium-99 was found in 2 of 12 plants collected from the Old Hanford Townsite and 1 of 10 samples collected upstream from the Vernita Bridge. The concentrations of {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, and isotopes of uranium were just above background in all three areas (100-N Area, Old Hanford Townsite, and 300 Area).

  19. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy's Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan

  20. Eleventh Arab Conference on the Peaceful Uses of Atomic Energy

    International Nuclear Information System (INIS)

    Nasr, N.

    2012-01-01

    The Arab conference on the peaceful uses of atomic energy is an important station where Arab researchers and scientists meet to present the results of their scientific and applied research activities, to exchange views, experiences and knowledge and to strengthen the bonds of cooperation among them. Under this framework, the Arab Atomic Energy Agency organized the eleventh Arab conference on the peaceful uses of atomic energy in cooperation with the Ministry of Science and Communications of the Republic of Sudan and the Sudan Atomic Energy Commission in Khartoum city during the period of 23-27 December 2012. The sessions of the conference included scientific papers, in addition to specialized lectures on topics of particular importance in the field of peaceful applications of atomic energy followed by panel discussions.

  1. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  2. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    Energy Technology Data Exchange (ETDEWEB)

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  3. Third Quarter Hanford Seismic Report for Fiscal Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2008-09-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The Hanford Seismic Assessment Team locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. For the Hanford Seismic Network, fourteen local earthquakes were recorded during the third quarter of fiscal year 2008. The largest event recorded by the network during the third quarter (May 18, 2008 - magnitude 3.7 Mc) was located approximately 17 km east of Prosser at a depth of 20.5 km. With regard to the depth distribution, five earthquakes occurred at shallow depths (less than 4 km, most likely in the Columbia River basalts), six earthquakes at intermediate depths (between 4 and 9 km, most likely in the pre-basalt sediments), and three earthquakes were located at depths greater than 9 km, within the crystalline basement. Geographically, eight earthquakes occurred in swarm areas and six earthquakes were classified as random events. The largest event recorded by the network during the third quarter occurred on May 18 (magnitude 3.7 Mc) and was located approximately 17 km east of Prosser at a depth of 20.5 km. This earthquake was the highest magnitude event recorded in the 46-47 N. latitude / 119-120 W. longitude sector since 1975

  4. Status of birds at the Hanford Site in southeastern Washington

    International Nuclear Information System (INIS)

    Landeen, D.S.; Johnson, A.R.; Mitchell, R.M.

    1992-06-01

    The US Department of Energy has entered into agreements with the Washington State Department of Ecology, the US Environmental Protection Agency, and Hanford Site contractors to focus work activities on cleanup and stabilization of radioactive and hazardous waste sites located at the Hanford Site in southeastern Washington. Ecological characterization is an essential part of the remediation process, and the identification of biotic components such as bird species that could be impacted by cleanup activities is an important part of the initial environmental characterizations. Site characterization work has resulted in this list of 238 birds that have been observed at the Hanford Site. This list is presented with a status rating for abundance and seasonal occurrence

  5. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  6. Technical basis for internal dosimetry at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products (/sup 58/Co, /sup 60/Co, /sup 54/Mn, and /sup 59/Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs.

  7. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ( 58 Co, 60 Co, 54 Mn, and 59 Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs

  8. Technical basis for internal dosimetry at Hanford

    International Nuclear Information System (INIS)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1989-04-01

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ( 58 Co, 60 Co, 54 Mn, and 59 Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation; and bioassay follow-up treatment. 64 refs., 42 figs., 118 tabs

  9. TRACKING CLEAN UP AT HANFORD

    International Nuclear Information System (INIS)

    CONNELL, C.W.

    2005-01-01

    The Hanford Federal Facility Agreement and Consent Order, known as the ''Tri-Party Agreement'' (TPA), is a legally binding agreement among the US Department of Energy (DOE), The Washington State Department of Ecology, and the US Environmental Protection Agency (EPA) for cleaning up the Hanford Site. Established in the 1940s to produce material for nuclear weapons as part of the Manhattan Project, Hanford is often referred to as the world's large environmental cleanup project. The Site covers more than 580 square miles in a relatively remote region of southeastern Washington state in the US. The production of nuclear materials at Hanford has left a legacy of tremendous proportions in terms of hazardous and radioactive waste. From a waste-management point of view, the task is enormous: 1700 waste sites; 450 billion gallons of liquid waste; 70 billion gallons of contaminated groundwater; 53 million gallons of tank waste; 9 reactors; 5 million cubic yards of contaminated soil; 22 thousand drums of mixed waste; 2.3 tons of spent nuclear fuel; and 17.8 metric tons of plutonium-bearing material and this is just a partial listing. The agreement requires that DOE provide the results of analytical laboratory and non-laboratory tests/readings to the lead regulatory agency to help guide then in making decisions. The agreement also calls for each signatory to preserve--for at least ten years after the Agreement has ended--all of the records in it, or its contractors, possession related to sampling, analysis, investigations, and monitoring conducted. The Action Plan that supports the TPA requires that Ecology and EPA have access to all data that is relevant to work performed, or to be performed, under the Agreement. Further, the Action Plan specifies two additional requirements: (1) that EPA, Ecology and their respective contractor staffs have access to all the information electronically, and (2) that the databases are accessible to, and used by, all personnel doing TPA

  10. Hanford quarterly seismic report - 97C seismicity on and near the Hanford Site, Pasco Basin, Washington. Quarterly report, April 1, 1997--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hartshorn, D.C.; Reidel, S.P.; Rohay, A.C.

    1997-08-01

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and contractors. The staff also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for activities ranging from waste management, Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of an earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 41 individual sensor sites and 15 radio relay sites maintained by the Seismic Monitoring staff. Most stations and five relay sites are solar powered. The operational rate for the second quarter of FY97 for stations in the HSN was 100% and for stations of the EWRN was 99.99%. For fiscal year (FY) 1997 third quarter (97C), the acquisition computer triggered 183. Of these triggers twenty one were local earthquakes: sixteen in the Columbus River Basalt Group, one in the pre-basalt sediments, and four in the crystalline basement. The geologic and tectonic environments are discussed in the report.

  11. Shipment of gas generating spent fuel on the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Edwards, W.S.

    1998-01-01

    Approximately 2,100 metric tons of unprocessed, irradiated nuclear fuel elements are stored in the two K Basins at the US Department of Energy (DOE) Hanford Site near Richland, Washington. The basin water contains significant quantities of dissolved nuclear isotopes and radioactive fuel corrosion particles. The condition of the spent fuel elements varies from intact to severely damaged, where the cladding is badly split or has peeled, with substantial fuel missing. The K Basins are located within a few hundred meters of the Columbia River and have leaked twice in the past. One of the highest priorities of the DOE is to remove the spent fuel from the K Basins, stabilize it, and move it to a Canister Storage Building (CSB), built well away from the Columbia River, for long-term storage prior to final disposition at a repository. Transportation of the K Basin spent fuel will occur entirely within the confines of the Hanford Site, which does not have routine public access. Consequently, the transport is onsite, and does not fall under the Federal Hazardous Materials Regulations (DOT 1997). DOE Order 460.1 (DOE 1995) enables DOE facilities to develop onsite transportation programs that provide equivalent safety to the Federal Hazardous Materials Regulations (DOT 1997). The basis for the Hanford Site onsite transportation program is detailed in HNF-PRO-1 54 (FDH 1998). The Hanford Site onsite transportation program was developed to meet the equivalent safety requirement, be consistent with analogous commercial operations, interface appropriately with facility safety analysis requirements, and utilize a risk-based management approach to ensure effort is applied consistent with the risk. The program focus is on the establishment of defendable safety bases. Authorization to use an onsite transportation system is granted by the approval of the applicable Safety Analysis Report for Packaging (Onsite). The K Basin spent fuel transportation activity is similar, in some respects

  12. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  13. Washing and caustic leaching of Hanford tank sludges

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Rapko, B.M.; Colton, N.G.

    1994-01-01

    Methods are being developed to treat and dispose of large volumes of radioactive wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site. The wastes will be partitioned into high-level waste (HLW) and low-level waste (LLW) fractions. The HLW will be vitrified into borosilicate glass and disposed of in a geologic repository, while the LLW will be immobilized in a glass matrix and will likely be disposed of by shallow burial at the Hanford Site. The wastes must be pretreated to reduce the volume of the HLW fraction, so that vitrification and disposal costs can be minimized. The current baseline process for pretreating Hanford tank sludges is to leach the sludge under caustic conditions, then remove the solubilized components of the sludge by water washing. Tests of this method have been performed with samples taken from several different tanks at Hanford. The results of these tests are presented in terms of the composition of the sludge before and after leaching. X-ray diffraction and scanning electron microscopy coupled with electron dispersive x-ray techniques have been used to identify the phases in the untreated and treated sludges

  14. Plutonium-related work and cause-specific mortality at the United States Department of Energy Hanford Site.

    Science.gov (United States)

    Wing, Steve; Richardson, David; Wolf, Susanne; Mihlan, Gary

    2004-02-01

    Health effects of working with plutonium remain unclear. Plutonium workers at the United States Department of Energy (US-DOE) Hanford Site in Washington State, USA were evaluated for increased risks of cancer and non-cancer mortality. Periods of employment in jobs with routine or non-routine potential for plutonium exposure were identified for 26,389 workers hired between 1944 and 1978. Life table regression was used to examine associations of length of employment in plutonium jobs with confirmed plutonium deposition and with cause specific mortality through 1994. Incidence of confirmed internal plutonium deposition in all plutonium workers was 15.4 times greater than in other Hanford jobs. Plutonium workers had low death rates compared to other workers, particularly for cancer causes. Mortality for several causes was positively associated with length of employment in routine plutonium jobs, especially for employment at older ages. At ages 50 and above, death rates for non-external causes of death, all cancers, cancers of tissues where plutonium deposits, and lung cancer, increased 2.0 +/- 1.1%, 2.6 +/- 2.0%, 4.9 +/- 3.3%, and 7.1 +/- 3.4% (+/-SE) per year of employment in routine plutonium jobs, respectively. Workers employed in jobs with routine potential for plutonium exposure have low mortality rates compared to other Hanford workers even with adjustment for demographic, socioeconomic, and employment factors. This may be due, in part, to medical screening. Associations between duration of employment in jobs with routine potential for plutonium exposure and mortality may indicate occupational exposure effects. Copyright 2004 Wiley-Liss, Inc.

  15. Innovative human health and ecological risk assessment techniques at Hanford

    International Nuclear Information System (INIS)

    Clarke, S.; Jones, K.; Goller, E.

    1993-01-01

    The open-quotes Hanford Site Baseline Risk Assessment Methodologyclose quotes (HSBRAM) was developed to enhance the preparation of risk assessments supporting the Hanford site cleanup mission. This methodology satisfies a Hanford federal facility agreement and consent order (tri-party agreement) milestone and is used to evaluate the risk to human health and the environment under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA). The methodology was prepared by the Hanford Risk Assessment Committee (RAC) consisting of tri-party representatives: the U.S. Department of Energy, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency (EPA), with associated contractors. The risk assessment guidance provided by EPA is sufficiently general to permit tailoring of specific parameters to meet the risk assessment needs of individual sites. The RAC utilized EPA's Risk Assessment Guidance for Superfund, (RAGS) as the cornerstone of the HSBRAM. The RAC added necessary Hanford-specific elements to construct a complete risk assessment guidance for utilization as an independent document. The HSBRAM is a living document because the RAC charter emphasizes the importance of continued methodology reevaluation. The HSBRAM also provides guidelines for the application of EPA's open-quotes Framework for Ecological Risk Assessmentclose quotes to Hanford-specific environmental baseline risk assessments by including endangered and threatened species in addition to sensitive habitats potentially associated with the Hanford site and guidance for selection of ecotoxicological data. Separate negotiations for the selection of risk parameters for each operable unit were avoided by defining parameters in the HSBRAM. There are 78 past-practice operable units at Hanford requiring risk assessments

  16. Hanford Site Groundwater Monitoring for Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2005-03-01

    This document presents the results of groundwater and vadose zone monitoring for fiscal year 2004 (October 2003 through September 2004)on the U.S. Department of Energy's Hanford Site in southeast Washington State.

  17. Hanford Site surface environmental surveillance

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1998-01-01

    Environmental surveillance of the Hanford Site and the surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to US Department of Energy (DOE) environmental protection policies, support DOE environmental management decisions, and provide information to the public. The Surface Environmental Surveillance Project (SESP) is a multimedia environmental monitoring program conducted to measure the concentrations of radionuclides and chemical contaminants in the environment and assess the integrated effects of these contaminants on the environment and the public. The monitoring program includes sampling air, surface water, sediments, soil, natural vegetation, agricultural products, fish, and wildlife. Functional elements inherent in the operation of the SESP include project management, quality assurance/control, training, records management, environmental sampling network design and implementation, sample collection, sample analysis, data management, data review and evaluation, exposure assessment, and reporting. The SESP focuses on those contaminant/media combinations calculated to have the highest potential for contributing to off-site exposure. Results of the SESP indicate that contaminant concentrations in the Hanford environs are very low, generally below environmental standards, at or below analytical detection levels, and indicative of environmental levels. However, areas of elevated contaminant concentrations have been identified at Hanford. The extent of these areas is generally limited to past operating areas and waste disposal sites

  18. Hanford site environment

    International Nuclear Information System (INIS)

    Isaacson, R.E.

    1976-01-01

    A synopsis is given of the detailed characterization of the existing environment at Hanford. The following aspects are covered: demography, land use, meteorology, geology, hydrology, and seismology. It is concluded that Hanford is one of the most extensively characterized nuclear sites

  19. Managing risk at Hanford

    International Nuclear Information System (INIS)

    Hesser, W.A.; Stillwell, W.G.; Rutherford, W.A.

    1994-01-01

    Clearly, there is sufficient motivation from Washington for the Hanford community to pay particular attention to the risks associated with the substantial volumes of radiological, hazardous, and mixed waste at Hanford. But there is also another reason for emphasizing risk: Hanford leaders have come to realize that their decisions must consider risk and risk reduction if those decisions are to be technically sound, financially affordable, and publicly acceptable. The 560-square miles of desert land is worth only a few thousand dollars an acre (if that) -- hardly enough to justify the almost two billion dollars that will be spent at Hanford this year. The benefit of cleaning up the Hanford Site is not the land but the reduction of potential risk to the public and the environment for future generations. If risk reduction is our ultimate goal, decisions about priority of effort and resource allocation must consider those risks, now and in the future. The purpose of this paper is to describe how Hanford is addressing the issues of risk assessment, risk management, and risk-based decision making and to share some of our experiences in these areas

  20. PROTECTING GROUNDWATER & THE COLUMBIA RIVER AT THE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M.S.

    2006-06-29

    Along the remote shores of the Columbia River in southeast Washington state, a race is on. Fluor Hanford, a prime cleanup contractor to the U.S. Department of Energy (DOE) at the Hanford Site, is managing a massive, multi-faceted project to remove contaminants from the groundwater before they can reach the Columbia. Despite the daunting nature and size of the problem--about 80 square miles of aquifer under the site contains long-lived radionuclides and hazardous chemicals--significant progress is being made. Many groups are watching, speaking out, and helping. A large. passionate, diverse, and geographically dispersed community is united in its desire to protect the Columbia River--the eighth largest in the world--and have a voice in Hanford's future. Fluor Hanford and the DOE, along with the US. Environmental Protection Agency (EPA) and the Washington Department of Ecology (Ecology) interact with all the stakeholders to make the best decisions. Together, they have made some remarkable strides in the battle against groundwater contamination under the site.

  1. The Atomic Energy Commission's Annual Report to Congress for 1960. Major Activities in the Atomic Energy Programs, January - December 1960

    Energy Technology Data Exchange (ETDEWEB)

    McCone, John A.

    1961-01-31

    The document covers activities for the period January - December 1960. The report consists of two parts: Part One, The Atomic Energy Industry in 1960 and Related Activities; and Part Two, Major Activities in Atomic Energy Programs. Twenty-one appendices are also included.

  2. Hanford Cultural Resources Laboratory annual report for fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Wright, M.K.; Crist, M.E.; Cadoret, N.A.; Dawson, M.V.; Simmons, K.A.; Harvey, D.W.; Longenecker, J.G.

    1994-09-01

    The Hanford Cultural Resources Laboratory (HCRL) was established by the US Department of Energy, Richland Operations Office (DOE-RL) in 1987 as part of Pacific Northwest Laboratory (PNL). The HCRL provides support for managing the archaeological, historical, and cultural resources of the Hanford Site, Washington, consistent with the National Historic Preservation Act of 1966 (NHPA), the Archaeological Resources Protection Agency of 1979, the Native American Grave Protection and Repatriation Act of 1990, and the American Indian Religious Freedom Act of 1978. The HCRL responsibilities have been set forth in the Hanford Cultural Resources Management Plan as a prioritized list of tasks to be undertaken to keep the DOE-RL in compliance with federal statutes, regulations, and guidelines. For FY 1993, these tasks were to: conduct cultural resource reviews pursuant to Section 106 of the NHPA; monitor the condition of known historic properties; identify, recover, and inventory artifacts collected from the Hanford Site; educate the public about cultural resources values and the laws written to protect them; conduct surveys of the Hanford Site in accordance with Section 110 of the NHPA. Research also was conducted as a spin-off of these tasks and is reported here.

  3. Unit environmental transport assessment of contaminants from Hanford's past-practice waste sites. Hanford Remedial Action Environmental Impact Statement

    International Nuclear Information System (INIS)

    Whelan, G.; Buck, J.W.; Castleton, K.J.

    1995-06-01

    The US Department of Energy, Richland Operations Office (DOE-RL) contracted Pacific Northwest Laboratory (PNL) to provide support to Advanced Sciences, Incorporated (ASI) in implementing tile regional no-action risk assessment in the Hanford Remedial Action Environmental Impact Statement. Researchers at PNL were charged with developing unit concentrations for soil, groundwater, surface water, and air at multiple locations within an 80-km radius from the center of tile Hanford installation. Using the Multimedia Environmental Pollutant Assessment System (MEPAS), PNL simulated (1) a unit release of one ci for each radionuclide and one kg for each chemical from contaminated soils and ponded sites, (2) transport of the contaminants in and through various environmental media and (3) exposure/risk of four exposure scenarios, outlined by the Hanford Site Baseline Remedial Action Methodology. These four scenarios include residential, recreational, industrial, and agricultural exposures. Spacially and temporally distributed environmental concentrations based on unit releases of radionuclides and chemicals were supported to ASI in support of the HRA-EIS. Risk for the four exposure scenarios, based on unit environment concentrations in air, water, and soil. were also supplied to ASI. This report outlines the procedure that was used to implement the unit transport portion of the HRA-EIS baseline risk assessment. Deliverables include unit groundwater, surface water, air, and soil concentrations at multiple locations within an 80-km radius from the center of the Hanford installation

  4. Estimate of Hanford Waste Rheology and Settling Behavior

    International Nuclear Information System (INIS)

    Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.; Mahoney, Lenna A.; Hall, Mark N.; Thomson, Scott L.; Smith, Gary Lynn; Johnson, Michael E.; Meacham, Joseph E.; Knight, Mark A.; Thien, Michael G.; Davis, Jim J.; Onishi, Yasuo

    2007-01-01

    The U.S. Department of Energy (DOE) Office of River Protection's Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory PNNL, Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford waste analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted

  5. Why? The nuclear and atomic energy

    International Nuclear Information System (INIS)

    Lee, Kwangwoong

    2009-01-01

    This book is a science comic book for students in elementary school, which contains energy and life such as our body and energy, animal and energy, plant and energy, kinetic energy, potential energy and the principle of the conservation of energy in the first part. The second part explains fossil fuel like coal, petroleum and natural gas. Next it deals with electric power, nuclear energy such as atom and molecule, nuclear fusion and energy for future like solar cell and black hole power plant.

  6. Why? The nuclear and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwangwoong

    2009-01-15

    This book is a science comic book for students in elementary school, which contains energy and life such as our body and energy, animal and energy, plant and energy, kinetic energy, potential energy and the principle of the conservation of energy in the first part. The second part explains fossil fuel like coal, petroleum and natural gas. Next it deals with electric power, nuclear energy such as atom and molecule, nuclear fusion and energy for future like solar cell and black hole power plant.

  7. Hanford Site Environmental Surveillance Master Sampling Schedule

    International Nuclear Information System (INIS)

    Bisping, L.E.

    2000-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, General Environmental Protection Program: and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The sampling design is described in the Operations Office, Environmental Monitoring Plan, United States Department of Energy, Richland DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY 2000 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes sampling locations, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis and may not be collected in 2000 in which case the anticipated year for collection is provided. In addition, a map showing approximate sampling locations is included for each media scheduled for collection

  8. Hanford Site Environmental Surveillance Master Sampling Schedule

    International Nuclear Information System (INIS)

    Bisping, L.E.

    1999-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5400.1, ''General Environmental protection Program,'' and DOE Order 5400.5, ''Radiation Protection of the Public and the Environment.'' The sampling methods are described in the Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office, DOE/RL-91-50, Rev.2, U.S. Department of Energy, Richland, Washington. This document contains the CY1999 schedules for the routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project. Each section includes the sampling location, sample type, and analyses to be performed on the sample. In some cases, samples are scheduled on a rotating basis and may not be collected in 1999 in which case the anticipated year for collection is provided. In addition, a map is included for each media showing approximate sampling locations

  9. Best Available Technology (economically achievable) guidance document for the Hanford Site

    International Nuclear Information System (INIS)

    1988-07-01

    This document provides Westinghouse Hanford Company (Westinghouse Hanford) and the US Department of Energy (DOE) with a step-by-step procedure for the identification and documentation of the Best Available Technology (BAT) economically achievable for treating liquid effluents on the Hanford Site. The BAT determination is a key element in the DOE strategy to eliminate use of the soil column for contaminated effluents disposal. Following application of BAT, a liquid effluent is considered suitable for discharge to the environment, including the soil column. Liquid effluents on the Hanford Site are currently disposed of in accordance with DOE orders that require protection of public health and safety, and to the extent possible, minimize adverse impacts on the environment. The determination of BAT on a liquid effluent will only occur after the effluent meets all applicable release limits. As a result, the application of BAT may involve an additional level of control, as well as contribute to the overall Hanford Site as low as reasonably achievable (ALARA) program. 27 refs., 7 figs., 1 tab

  10. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    International Nuclear Information System (INIS)

    GERBER MS

    2007-01-01

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site

  11. Recommended environmental dose calculation methods and Hanford-specific parameters. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Schreckhise, R.G.; Rhoads, K.; Napier, B.A.; Ramsdell, J.V. [Pacific Northwest Lab., Richland, WA (United States); Davis, J.S. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-03-01

    This document was developed to support the Hanford Environmental Dose overview Panel (HEDOP). The Panel is responsible for reviewing all assessments of potential doses received by humans and other biota resulting from the actual or possible environmental releases of radioactive and other hazardous materials from facilities and/or operations belonging to the US Department of Energy on the Hanford Site in south-central Washington. This document serves as a guide to be used for developing estimates of potential radiation doses, or other measures of risk or health impacts, to people and other biota in the environs on and around the Hanford Site. It provides information to develop technically sound estimates of exposure (i.e., potential or actual) to humans or other biotic receptors that could result from the environmental transport of potentially harmful materials that have been, or could be, released from Hanford operations or facilities. Parameter values and information that are specific to the Hanford environs as well as other supporting material are included in this document.

  12. Hanford radiological protection support services annual report 1996

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Schulze, S.A.

    1997-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1996. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  13. THE HANFORD WASTE FEED DELIVERY OPERATIONS RESEARCH MODEL

    International Nuclear Information System (INIS)

    Berry, J.; Gallaher, B.N.

    2011-01-01

    Washington River Protection Solutions (WRPS), the Hanford tank farm contractor, is tasked with the long term planning of the cleanup mission. Cleanup plans do not explicitly reflect the mission effects associated with tank farm operating equipment failures. EnergySolutions, a subcontractor to WRPS has developed, in conjunction with WRPS tank farms staff, an Operations Research (OR) model to assess and identify areas to improve the performance of the Waste Feed Delivery Systems. This paper provides an example of how OR modeling can be used to help identify and mitigate operational risks at the Hanford tank farms.

  14. New approaches to glove box design at Hanford

    International Nuclear Information System (INIS)

    Lini, D.C.; Fisher, F.D.; Walters, F.F.

    1986-01-01

    Glove boxes provide the primary environmental containment system for plutonium processing operations at US Dept. of Energy (DOE)-owned facilities such as Rockwell Hanford. As noted in previous presentations, glove box designs and operations have evolved through stages that are a result of advances in processing techniques, new regulatory requirements, and cost escalation. These factors will continue to influence the current glove box designs and operations. The purpose of this presentation is to discuss required upgrades and changes that are being incorporated into glove boxes being installed at Rockwell Hanford and other DOE installations or are being evaluated for future upgrades

  15. WMO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-09-15

    The growing interest of WMO in atomic energy was reflected in the decision of the Executive Committee in 1956 to establish a panel of experts to study the meteorological aspects of the nuclear energy. One of the major achievements of the panel, which has held two meetings since its inception, has been the preparation of a technical note treating fully the various meteorological problems resulting from the applications of the peaceful uses of atomic energy. Over the past four years, steady progress has also been made both in adapting nuclear techniques to meteorological uses and in providing advice and assistance. Much time and thought are now being devoted to the study of large-scale air mass movements, turbulent diffusion and the other meteorological processes on which the transport and gradual fall-out of radioactive debris depend. The safe location of nuclear plants and the disposal of radioactive waste are related problems in which WMO has also taken a very active interest. Another aspect of the help which WMO as an organization can provide is to help for the collection and analysis of radioactive material in the biosphere. Advances in nuclear physics have also opened up great possibilities for the use of radioactive isotopes in making meteorological and hydrometeorological measurements

  16. Hanford performance evaluation program for Hanford site analytical services

    International Nuclear Information System (INIS)

    Markel, L.P.

    1995-09-01

    The U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance, and Title 10 of the Code of Federal Regulations, Part 830.120, Quality Assurance Requirements, states that it is the responsibility of DOE contractors to ensure that ''quality is achieved and maintained by those who have been assigned the responsibility for performing the work.'' Hanford Analytical Services Quality Assurance Plan (HASQAP) is designed to meet the needs of the Richland Operations Office (RL) for maintaining a consistent level of quality for the analytical chemistry services provided by contractor and commmercial analytical laboratory operations. Therefore, services supporting Hanford environmental monitoring, environmental restoration, and waste management analytical services shall meet appropriate quality standards. This performance evaluation program will monitor the quality standards of all analytical laboratories supporting the Hanforad Site including on-site and off-site laboratories. The monitoring and evaluation of laboratory performance can be completed by the use of several tools. This program will discuss the tools that will be utilized for laboratory performance evaluations. Revision 0 will primarily focus on presently available programs using readily available performance evaluation materials provided by DOE, EPA or commercial sources. Discussion of project specific PE materials and evaluations will be described in section 9.0 and Appendix A

  17. Present status and perspective of Japanese atomic energy industry

    International Nuclear Information System (INIS)

    Miura, Kenzo

    1990-01-01

    Already 35 years are going to elapse since atomic energy industry was founded in Japan, and the positive development has been carried out in the nuclear power generation mainly with light water reactors as the base energy, as the result, now both the result of electric power generation and the technology have reached the highest level in the world. These are due to the accumulation of efforts, the preponderant assignment of able men and the positive investment for the research and development of the atomic energy industry. However, since 1985, the slowdown of power reactor development, the practical use of new type power reactors such as fast breeder reactors and the establishment of nuclear fuel cycle such as uranium enrichment and fuel reprocessing have been the new situation to be dealt with. In order to properly and flexibly cope with such change of situation, the healthy development of the atomic energy industry so as to secure the market on a certain scale and develop the business with responsibility is indispensable. The outlay of electric power industry related to atomic energy, the development of atomic energy market and the sales of mining and manufacturing industries, the trend of research and development and personnel, and the perspective and subjects of hereafter are reported. (K.I.)

  18. Atomic energy today: An urgent dilemma

    International Nuclear Information System (INIS)

    Coronado, G.

    1997-01-01

    This article compiles the trajectory of the nuclear energy, in different countries of the world, since 1939. It also makes reference to the nuclear accidents that have happened in the past. It contains information of other applications of the nuclear energy, such as: the atomic industry of energetic production and alternatives to the nuclear energy [es

  19. Decommissioning project readiness reviews at the Department of Energy's Hanford, Washington, Site

    International Nuclear Information System (INIS)

    Speer, D.R.; Holmes, P.A.

    1987-01-01

    Two Hanford Site contractors independently formulated readiness review methods to prepare for decontamination and decommissioning (D and D) projects. One readiness review method provided an independent management review process. The other method provided a review by personnel directly involved in the project and concise documentation procedures. A unified system is now used at Hanford which combines the best aspects of both readiness review methods. The unified method assigns category levels based on certain job characteristics. The category assigned to the project then indicates the required level of management review prior to proceeding with the D and D project. In addition, the concise documentation procedures are now used for all category levels

  20. Fiscal year 1991 report on archaeological surveys of the 100 Areas, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Gard, H.A.; Minthorn, P.E.

    1992-09-01

    In compliance with Section 106 of the National Historic Preservation Act (NHPA), and at the request of Westinghouse Hanford Company, the Hanford Cultured Resources Laboratory (HCRL) conducted an archaeological survey during FY 1991 of the 100-Area reactor compounds on the US Department of Energy's Hanford Site. This survey was conducted as part of a comprehensive resources review of 100-Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) operable units in support of CERCLA characterization activities. The work included a lite and records review and pedestrian survey of the project area following procedures set forth in the Hanford Cultural Resources Management Plan.

  1. HEIS: An integrated information system for environmental restoration and monitoring at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Tzemos, S.; Kissinger, B.

    1991-11-01

    The US Department of Energy's Hanford Site has about 1500 waste sites that contain a complex mixture of chemical and radioactive contaminants. After many years of environmental monitoring to assess the impact of Hanford operations to the environment, the Site's mission is shifting to environmental restoration. The Hanford Environmental Information System (HEIS) is being developed to provide advanced tools to (1) support environmental restoration and routine site-wide monitoring, and (2) aid the scientists in understanding and conducting the restoration efforts. This paper describes some of the highlights and distinctive features of HEIS.

  2. QED effects on individual atomic orbital energies

    Science.gov (United States)

    Kozioł, Karol; Aucar, Gustavo A.

    2018-04-01

    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.

  3. Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2005-01-19

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs. This document contains the calendar year 2005 schedules for the routine and non-routine collection of samples for the Surface Environmental Surveillance Project (SESP) and Drinking Water Monitoring Project.

  4. Hanford Radiological Protection Support Services Annual Report for 1999

    Energy Technology Data Exchange (ETDEWEB)

    TP Lynch; DE Bihl; ML Johnson; MA MacLellan; RK Piper

    2000-05-19

    During calendar year (CY) 1999, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations Office (RL) and the Hanford contractors. These services included: (1) external dosimetry, (2) internal dosimetry, (3) in vivo measurements, (4) radiological records, (5) instrument calibration and evaluation, and (6) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST). The services were provided under a number of programs as summarized here. Along with providing site-wide nuclear accident and environmental dosimetry capabilities, the Hanford External Dosimetry Program (HEDP) supports Hanford radiation protection programs by providing external radiation monitoring capabilities for all Hanford workers and visitors to help ensure their health and safety. Processing volumes decreased in CY 1999 relative to prior years for all types of dosimeters, with an overall decrease of 19%. During 1999, the HEDP passed the National Voluntary Laboratory Accreditation Program (NVLAP) performance testing criteria in 15 different categories. HEDP computers and processors were tested and upgraded to become Year 2000 (Y2K) compliant. Several changes and improvements were made to enhance the interpretation of dosimeter results. The Hanford Internal Dosimetry Program (HIDP) provides for the assessment and documentation of occupational dose from intakes of radionuclides at the Hanford Site. Performance problems carried over from CY 1998 continued to plague the in vitro bioassay contractor. A new contract was awarded for the in vitro bioassay program. A new computer system was put into routine operation by the in vivo bioassay program. Several changes to HIDP protocols were made that were related to bioassay grace periods, using field data to characterize the amount of alpha activity present and using a new default particle

  5. Hanford Radiological Protection Support Services Annual Report for 1999

    International Nuclear Information System (INIS)

    TP Lynch; DE Bihl; ML Johnson; MA MacLellan; RK Piper

    2000-01-01

    During calendar year (CY) 1999, the Pacific Northwest National Laboratory (PNNL) performed its customary radiological protection support services in support of the U.S. Department of Energy (DOE) Richland Operations Office (RL) and the Hanford contractors. These services included: (1) external dosimetry, (2) internal dosimetry, (3) in vivo measurements, (4) radiological records, (5) instrument calibration and evaluation, and (6) calibration of radiation sources traceable to the National Institute of Standards and Technology (NIST). The services were provided under a number of programs as summarized here. Along with providing site-wide nuclear accident and environmental dosimetry capabilities, the Hanford External Dosimetry Program (HEDP) supports Hanford radiation protection programs by providing external radiation monitoring capabilities for all Hanford workers and visitors to help ensure their health and safety. Processing volumes decreased in CY 1999 relative to prior years for all types of dosimeters, with an overall decrease of 19%. During 1999, the HEDP passed the National Voluntary Laboratory Accreditation Program (NVLAP) performance testing criteria in 15 different categories. HEDP computers and processors were tested and upgraded to become Year 2000 (Y2K) compliant. Several changes and improvements were made to enhance the interpretation of dosimeter results. The Hanford Internal Dosimetry Program (HIDP) provides for the assessment and documentation of occupational dose from intakes of radionuclides at the Hanford Site. Performance problems carried over from CY 1998 continued to plague the in vitro bioassay contractor. A new contract was awarded for the in vitro bioassay program. A new computer system was put into routine operation by the in vivo bioassay program. Several changes to HIDP protocols were made that were related to bioassay grace periods, using field data to characterize the amount of alpha activity present and using a new default particle

  6. Retrospective assessment of personnel neutron dosimetry for workers at the Hanford Site

    International Nuclear Information System (INIS)

    Fix, J.J.; Wilson, R.H.; Baumgartner, W.B.

    1996-09-01

    This report was prepared to examine the specific issue of the potential for unrecorded neutron dose for Hanford workers, particularly in comparison with the recorded whole body (neutron plus photon) dose. During the past several years, historical personnel dosimetry practices at Hanford have been documented in several technical reports. This documentation provides a detailed history of the technology, radiation fields, and administrative practices used to measure and record dose for Hanford workers. Importantly, documentation has been prepared by personnel whose collective experience spans nearly the entire history of Hanford operations beginning in the mid-1940s. Evaluations of selected Hanford radiation dose records have been conducted along with statistical profiles of the recorded dose data. The history of Hanford personnel dosimetry is complex, spanning substantial evolution in radiation protection technology, concepts, and standards. Epidemiologic assessments of Hanford worker mortality and radiation dose data were initiated in the early 1960s. In recent years, Hanford data have been included in combined analyses of worker cohorts from several Department of Energy (DOE) sites and from several countries through the International Agency for Research on Cancer (IARC). Hanford data have also been included in the DOE Comprehensive Epidemiologic Data Resource (CEDR). In the analysis of Hanford, and other site data, the question of comparability of recorded dose through time and across the respective sites has arisen. DOE formed a dosimetry working group composed of dosimetrists and epidemiologists to evaluate data and documentation requirements of CEDR. This working group included in its recommendations the high priority for documentation of site-specific radiation dosimetry practices used to measure and record worker dose by the respective DOE sites

  7. Neutron Measurements At Hanford's Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Conrady, Matthew M.; Berg, Randal K.; Scherpelz, Robert I.; Rathbone, Bruce A.

    2009-01-01

    The Pacific Northwest National Laboratory (PNNL) conducted neutron measurements at Hanford's Plutonium Finishing Plant (PFP). The measurements were performed to evaluate the performance of the Hanford Standard Dosimeter (HSD) and the 8816 TLD component of the Hanford Combination Neutron Dosimeter (HCND) in the neutron fields responsible for worker neutron exposures. For this study, TEPC detectors and multisphere spectrometers were used to measure neutron dose equivalent rate, and multispheres were used to measure average neutron energy. Water-filled phantoms holding Hanford dosimeters were positioned at each measurement location. The phantoms were positioned in the same location where a multisphere measurement was taken and TEPCs were also positioned there. Plant survey meters were also used to measure neutron dose rates at all locations. Three measurement locations were chose near the HC-9B glovebox in room 228A of Building 234-5. The multisphere spectrometers measured average neutron energies in the range of 337 to 555 keV at these locations. Personal dose equivalent, Hp(10)n, as measured by the multisphere and TEPC, ranged from 2.7 to 9.7 mrem/h in the three locations. Effective dose assuming a rotational geometry (EROT) was substantially lower than Hp(10), ranging from 1.3 to 3.6 mrem/h. These values were lower than the reported values from dosimeters exposed on a rotating phantom. Effective dose assuming an AP geometry (EAP) was also substantially lower than Hp(10), ranging from 2.3 to 6.5 mrem/h. These values were lower than the reported values from the dosimeters on slab phantoms. Since the effective dose values were lower than reported values from dosimeters, the dosimeters were shown to be conservative estimates of the protection quantities.

  8. Hanford Site Solid Waste Landfill permit application

    International Nuclear Information System (INIS)

    1991-01-01

    Daily activities at the Hanford Site generate sanitary solid waste (nonhazardous and nonradioactive) that is transported to and permanently disposed of at the Hanford Site Solid Waste Landfill. This permit application describes the manner in which the solid Waste Landfill will be operated under Washington State Department of Ecology Minimum Functional Standards for Solid Waste Handling, Washington Administrative Code 173-304. The solid Waste Landfill is owned by the US Department of Energy -- Richland Operations Office and is used for disposal of solid waste generated at the US Department of Energy Hanford Site. The jurisdictional health department's permit application form for the Solid Waste Landfill is provided in Chapter 1.0. Chapter 2.0 provides a description of the Hanford Site and the Solid Waste Landfill and reviews applicable locational, general facility, and landfilling standards. Chapter 3.0 discusses the characteristics and quantity of the waste disposed of in the Solid Waste Landfill. Chapter 4.0 reviews the regional and site geology and hydrology and the groundwater and vadose zone quality beneath the landfill. Chapters 5.0, 6.0, and 7.0 contain the plan of operation, closure plan, and postclosure plan, respectively. The plan of operation describes the routine operation and maintenance of the Solid Waste Landfill, the environmental monitoring program, and the safety and emergency plans. Chapter 5.0 also addresses the operational cover, environmental controls, personnel requirements, inspections, recordkeeping, reporting, and site security. The postclosure plan describes requirements for final cover maintenance and environmental monitoring equipment following final closure. Chapter 8.0 discusses the integration of closure and postclosure activities between the Solid Waste Landfill and adjacent Nonradioactive Dangerous Waste Landfill. 76 refs., 48 figs, 15 tabs

  9. The international law and the pacific uses of the atomic energy

    International Nuclear Information System (INIS)

    Mora, A.; Gutierrez, I.; Vargas, N.M.

    1992-01-01

    Contains information about: fundamental aspects of atomic energy; International Atomic Energy Agency; pacific uses of nuclear energy at national and international level; regulation for some risky activities in the pacific uses of radioactive materials; United Nations system for the secure use of atomic energy with pacific purposes; nuclear accidents; responsibility as fundamental element of nuclear law. 207 refs

  10. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield

    International Nuclear Information System (INIS)

    Tizei, Luiz H.G.; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission.

  11. Hanford Site Environmental Surveillance Master Sampling Schedule for Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bisping, Lynn E.

    2008-01-01

    Environmental surveillance of the Hanford Site and surrounding areas is conducted by Pacific Northwest National Laboratory for the U.S. Department of Energy. Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, "Environmental Protection Program," and DOE Order 5400.5, "Radiation Protection of the Public and the Environment." The environmental surveillance sampling design is described in the "Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operations Office." This document contains the calendar year 2008 schedule for the routine collection of samples for the Surface Environmental Surveillance Project and Drinking Water Monitoring Project. Each section includes sampling locations, sampling frequencies, sample types, and analyses to be performed. In some cases, samples are scheduled on a rotating basis. If a sample will not be collected in 2008, the anticipated year for collection is provided. Maps showing approximate sampling locations are included for media scheduled for collection in 2008.

  12. 1989 basic plan for atomic energy development and utilization

    International Nuclear Information System (INIS)

    1989-01-01

    A Basic Plan for Atomic Energy Development and Utilization has been established each year based on the guidelines set up by the Atomic Energy Commission of Japan, with the aim of promoting the development and utilization of atomic energy schematically and efficiently. The Basic Plan shows specific projects to achieve the objectives specified in the Long-Range Plan for Atomic Energy Development and Utilization. The Basic Plan specifies efforts to be made for overall strengthening of safety measures (safety policies, safety research, disaster prevention, etc.), promotion of nuclear power generation, establishment of the nuclear fuel cycle (securing of uranium, technology for uranium enrichment, reprocessing, etc.), development of new types of power reactors (fast breeder reactor, new types of converter reactors, plutonium fuel processing technology), promotion of leading projects (nuclear fusion, utilization of radiations, atomic powered ships, high-temperature engineering tests), promotion of basic technology development (basic research, training of scientists and engineers), voluntary and active international activities (international cooperation), and acquisition of understanding and cooperation of the general public. (N,K.)

  13. Hanford Site Infrastructure Plan

    International Nuclear Information System (INIS)

    1990-01-01

    The Hanford Site Infrastructure Plan (HIP) has been prepared as an overview of the facilities, utilities, systems, and services that support all activities on the Hanford Site. Its purpose is three-fold: to examine in detail the existing condition of the Hanford Site's aging utility systems, transportation systems, Site services and general-purpose facilities; to evaluate the ability of these systems to meet present and forecasted Site missions; to identify maintenance and upgrade projects necessary to ensure continued safe and cost-effective support to Hanford Site programs well into the twenty-first century. The HIP is intended to be a dynamic document that will be updated accordingly as Site activities, conditions, and requirements change. 35 figs., 25 tabs

  14. Hanford radiological protection support services annual report for 1991

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Leonwich, J.A.; Lynch, T.P.

    1992-07-01

    Various Hanford sitewide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy, Richland Field Office and Hanford contractors are described In this annual report for calendar year 1991. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable

  15. Review of Hanford international activities

    International Nuclear Information System (INIS)

    Panther, D.G.

    1993-01-01

    Hanford initiated a review of international activities to collect, review, and summarize information on international environmental restoration and waste management initiatives considered for use at Hanford. This effort focused on Hanford activities and accomplishments, especially international technical exchanges and/or the implementation of foreign-developed technologies

  16. Implementation guide for Hanford Analytical Services Quality Assurance Plan

    International Nuclear Information System (INIS)

    1994-09-01

    This implementation guide for the Hanford Analytical Services Quality Assurance Plan (HASQAP) was developed by the US Department of Energy, Richland Operations Office (RL) Waste Management Division, Analytical Services Branch. This plan formally presents RL's direction for Hanford Sitewide implementation of the HASQAP. The HASQAP establishes a uniform standard for quality requirements to meet US Department of Energy Order 5700.6C, Quality Assurance (10 CFR 830.120, ''Quality Assurance Requirements''), and is intended to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) requirements for ''Guidance on Preparation of Laboratory Quality Assurance Plans''. The quality assurance criteria specified in the HASQAP shall serve as a baseline for implementing quality management systems for the laboratories that provide analytical services, for data requesters and users, and for oversight organizations that monitor the data-generation process. Affected organizations shall implement the HASQAP requirements that are applicable to their work scope. Full implementation of the HASQAP is scheduled to occur by August 1995. RL will work with the US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) to have the HASQAP document incorporated into Appendix F of the Tri-Party Agreement by early Fiscal Year 1996

  17. Environmental monitoring at Hanford for 1984. Supplement

    International Nuclear Information System (INIS)

    Price, K.R.; Carlile, J.M.V.; Dirkes, R.L.; Jaquish, R.E.; Trevathan, M.S.; Woodruff, R.K.

    1986-01-01

    A range fire started on private land on August 10, 1984, and burned northward onto the Department of Energy's Hanford Site. Environmental monitoring results from air samples collected during and after the fire indicated that no radioactive materials different from normal levels were present in the air

  18. Hanford Internal Dosimetry Project manual. Revision 1

    International Nuclear Information System (INIS)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program

  19. Hanford Internal Dosimetry Project manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carbaugh, E.H.; Bihl, D.E.; MacLellan, J.A.; Long, M.P.

    1994-07-01

    This document describes the Hanford Internal Dosimetry Project, as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy and its Hanford contractors. Project services include administrating the bioassay monitoring program, evaluating and documenting assessment of potential intakes and internal dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. Specific chapters deal with the following subjects: practices of the project, including interpretation of applicable DOE Orders, regulations, and guidance into criteria for assessment, documentation, and reporting of doses; assessment of internal dose, including summary explanations of when and how assessments are performed; recording and reporting practices for internal dose; selection of workers for bioassay monitoring and establishment of type and frequency of bioassay measurements; capability and scheduling of bioassay monitoring services; recommended dosimetry response to potential internal exposure incidents; quality control and quality assurance provisions of the program.

  20. Hanford high level waste: Sample Exchange/Evaluation (SEE) Program

    International Nuclear Information System (INIS)

    King, A.G.

    1994-08-01

    The Pacific Northwest Laboratory (PNL)/Analytical Chemistry Laboratory (ACL) and the Westinghouse Hanford Company (WHC)/Process Analytical Laboratory (PAL) provide analytical support services to various environmental restoration and waste management projects/programs at Hanford. In response to a US Department of Energy -- Richland Field Office (DOE-RL) audit, which questioned the comparability of analytical methods employed at each laboratory, the Sample Exchange/Exchange (SEE) program was initiated. The SEE Program is a selfassessment program designed to compare analytical methods of the PAL and ACL laboratories using sitespecific waste material. The SEE program is managed by a collaborative, the Quality Assurance Triad (Triad). Triad membership is made up of representatives from the WHC/PAL, PNL/ACL, and WHC Hanford Analytical Services Management (HASM) organizations. The Triad works together to design/evaluate/implement each phase of the SEE Program

  1. Long-Term Stewardship At DOE's Hanford Site - 12575

    International Nuclear Information System (INIS)

    Moren, R.J.; Grindstaff, K.D.

    2012-01-01

    The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)(1), which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S and M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation

  2. Plans for Managing Hanford Remote Handled Transuranic (TRU) Waste

    International Nuclear Information System (INIS)

    MCKENNEY, D.E.

    2001-01-01

    The current Hanford Site baseline and life-cycle waste forecast predicts that approximately 1,000 cubic meters of remote-handled transuranic (RH-TRU) waste will be generated by waste management and environmental restoration activities at Hanford. These 1,000 cubic meters, comprised of both transuranic and mixed transuranic (TRUM) waste, represent a significant portion of the total estimated inventory of RH-TRU to be disposed of at the Waste Isolation Pilot Plant (WIPP). A systems engineering approach is being followed to develop a disposition plan for each RH-TRU/TRUM waste stream at Hanford. A number of significant decision-making efforts are underway to develop and finalize these disposition plans, including: development and approval of a RH-TRU/TRUM Waste Project Management Plan, revision of the Hanford Waste Management Strategic Plan, the Hanford Site Options Study (''Vision 2012''), the Canyon Disposal Initiative Record-of-Decision, and the Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (SW-EIS). Disposition plans may include variations of several options, including (1) sending most RH-TRU/TRUM wastes to WIPP, (2) deferrals of waste disposal decisions in the interest of both efficiency and integration with other planned decision dates and (3) disposition of some materials in place consistent with Department of Energy Orders and the regulations in the interest of safety, risk minimization, and cost. Although finalization of disposition paths must await completion of the aforementioned decision documents, significant activities in support of RH-TRU/TRUM waste disposition are proceeding, including Hanford participation in development of the RH TRU WIPP waste acceptance criteria, preparation of T Plant for interim storage of spent nuclear fuel sludge, sharing of technology information and development activities in cooperation with the Mixed Waste Focus Area, RH-TRU technology demonstrations and deployments, and

  3. Integrated environmental monitoring program at the Hanford Site

    International Nuclear Information System (INIS)

    Jaquish, R.E.

    1990-08-01

    The US Department of Energy's Hanford Site, north of Richland, Washington, has a mission of defense production, waste management, environmental restoration, advanced reactor design, and research development. Environmental programs at Hanford are conducted by Pacific Northwest Laboratory (PNL) and the Westinghouse Hanford Company (WHC). The WHC environmental programs include the compliance and surveillance activities associated with site operations and waste management. The PNL environmental programs address the site-wide and the of-site areas. They include the environmental surveillance and the associated support activities, such as dose calculations, and also the monitoring of environmental conditions to comply with federal and state environmental regulations on wildlife and cultural resources. These are called ''independent environmental programs'' in that they are conducted completely separate from site operations. The Environmental Surveillance and Oversight Program consists of the following projects: surface environmental surveillance; ground-water surveillance; wildlife resources monitoring; cultural resources; dose overview; radiation standards and calibrations; meteorological and climatological services; emergency preparedness

  4. Second and Third Quarters Hanford Seismic Report for Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    DC Hartshorn; SP Reidel; AC Rohay

    1999-11-09

    Hanford Seismic Monitoring provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network (HSN) for the U.S. Department of Energy and its contractors. Hanford Seismic Monitoring also locates and identifies sources of seismic activity and monitors changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management Natural Phenomena Hazards assessments, and engineering design and construction. In addition, the seismic monitoring organization works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The HSN and the Eastern Washington Regional Network (EWRN) consist of 42 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Monitoring staff. For the HSN, there were 270 triggers during the second quarter of fiscal year (FY) 1999 and 229 triggers during the third quarter on the primary recording system. During the second quarter, 22 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 6 were earthquakes in the crystalline basement, and 5 were quarry blasts. Two earthquakes appear to be related to major geologic structures, eight earthquakes occurred in known swarm areas, and seven earthquakes were random occurrences. During the third quarter, 23 seismic events were located; 11 were earthquakes in the Columbia River Basalt Group, 4 were earthquakes in the pre-basalt sediments, 4 were earthquakes in the crystalline basement, and 4 were quarry blasts. Five earthquakes occurred in known swarm areas, six earthquakes formed a new swarm near the Horse Heavens Hills and Presser, Washington, and eight earthquakes were random occurrences. No earthquakes triggered the Hanford Strong Motion Accelerometers during the second or third quarters of FY 1999.

  5. Hanford Site annual waste reduction report

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1992-03-01

    The US Department of Energy (DOE), Richland Field Office (RL) has developed and implemented a Hanford Site Waste Minimization and Pollution Prevention Awareness Plan that provides overall guidance and direction on waste minimization and pollution prevention awareness to the four contractors who manage and operate the Hanford Site for the RL. Waste reduction at the RL will be accomplished by following a hierarchy of environmental protection practices. First, waste generation will be eliminated or minimized through source reduction. Second, potential waste materials that cannot be eliminated or minimized will be recycled (i.e., used, reused, or reclaimed). Third, all waste that is nevertheless generated will be treated to reduce volume, toxicity, or mobility before storage or disposal. The scope of this waste reduction program will include nonhazardous, hazardous, radioactive mixed, and radioactive wastes

  6. The promotion and control functions of atomic energy law

    International Nuclear Information System (INIS)

    Roser, T.

    1998-01-01

    The question about the purpose of atomic energy law may sound superfluous in Germany, a country where a highly differential legal framework for the peaceful utilization of nuclear power has existed for nearly 40 years in the Basic Law, the Atomic Energy Act, and its ordinances, and a comprehensive body of case laws. Yet, it is justified in view of the declared intention of the German federal government to establish an environmental code into which atomic energy law, hitherto an independent branch of the law, would be integrated, and it is justified also in view of persistent complaints that the present rules and regulations stifled investment activities. A look into some codes of law may help answer the question. Already in 1959, the authors of the Atomic Energy Act outlined the purposes of the legislation in relatively clear terms in Section 1. Besides the two foreign policy aspects of security and loyalty under treaties, which do not concern us in this connection, the key purposes of atomic energy law are stated there as promotion and protection. The protection purpose, which implies the need to protect life, health, and property from the hazards of nuclear energy and harmful effects of ionizing radiation, ranks second in the Act. In accordance with the ruling in 1972 of the Federal Administrative Court, however, it should rank at the top. (orig.) [de

  7. Inelastic collisions of medium energy atomic elements. Qualitative model of energy losses during collisions

    International Nuclear Information System (INIS)

    Pustovit, A.N.

    2006-01-01

    A new approach to the theoretical description of energy losses of atomic particle of medium energy during their interaction with the substance is proposed. The corner-stone of this approach is the supposition that all of the collision processes have inelastic nature during particle movement through the substance, while the calculation of the atomic particles braking is based on the law of their dispersion and the laws of energy and momentum conservation at the inelastic collisions. It is shown that inelastic atomic collision there are three dispersion zones for the only potential interaction with different laws, which characterize energy losses. The application conditions of this approach are determined [ru

  8. SUPPLEMENTAL COLUMBIA RIVER PROTECTION ACTIVITIES AT THE DEPARTMENT OF ENERGY HANFORD SITE: 2006 TECHNICAL PEER REVIEW

    International Nuclear Information System (INIS)

    Looney, B; Dawn Kaback; Gene Leboeuf; Jason Mulvihill-Kuntz; Lynn Lefkoff

    2006-01-01

    Prompted by a $10 million Congressional allocation to identify supplemental actions to protect the Columbia River from groundwater contamination beneath the Hanford Reservation, the U. S. Department of Energy (DOE) Environmental Management (EM) Office of Clean-up Technology identified twenty-three potential technical projects and then down-selected ten of these for further evaluation. An independent expert peer review was conducted for the ten down-selected proposals. The review panel consisted of twenty-three recognized subject matter experts that broadly represented academia, industry, and federal laboratories. Of the initial ten proposals reviewed, one was given unconditional support, six were given conditional support, and three were not supported as proposed. Three additional proposals were then submitted by DOE for review--these proposals were structured, in part, to respond to the initial round of technical peer review comments. Peer reviews of these additional proposals provided conditional support. For those proposals that received conditional support, DOE requested specific implementation and work plans and assessed whether the plans adequately addressed the technical conditions identified by the review panel. The final list of technology proposals receiving support, or conditional support, primarily focused on understanding and reducing the potential impacts of uranium, chromium, and strontium from facilities adjacent to the Columbia River, with a secondary focus on understanding and limiting the future Columbia River impacts from the large carbon tetrachloride groundwater plume underlying and downgradient of the Hanford Central Plateau facilities. The results and recommendations of the peer reviews informed the final DOE project selections and supported implementation of the selected projects to protect the Columbia River and address groundwater contamination at Hanford

  9. SUPPLEMENTAL COLUMBIA RIVER PROTECTION ACTIVITIES AT THE DEPARTMENT OF ENERGY HANFORD SITE: 2006 TECHNICAL PEER REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B; Dawn Kaback; Gene Leboeuf; Jason Mulvihill-Kuntz; Lynn Lefkoff

    2006-12-20

    Prompted by a $10 million Congressional allocation to identify supplemental actions to protect the Columbia River from groundwater contamination beneath the Hanford Reservation, the U. S. Department of Energy (DOE) Environmental Management (EM) Office of Clean-up Technology identified twenty-three potential technical projects and then down-selected ten of these for further evaluation. An independent expert peer review was conducted for the ten down-selected proposals. The review panel consisted of twenty-three recognized subject matter experts that broadly represented academia, industry, and federal laboratories. Of the initial ten proposals reviewed, one was given unconditional support, six were given conditional support, and three were not supported as proposed. Three additional proposals were then submitted by DOE for review--these proposals were structured, in part, to respond to the initial round of technical peer review comments. Peer reviews of these additional proposals provided conditional support. For those proposals that received conditional support, DOE requested specific implementation and work plans and assessed whether the plans adequately addressed the technical conditions identified by the review panel. The final list of technology proposals receiving support, or conditional support, primarily focused on understanding and reducing the potential impacts of uranium, chromium, and strontium from facilities adjacent to the Columbia River, with a secondary focus on understanding and limiting the future Columbia River impacts from the large carbon tetrachloride groundwater plume underlying and downgradient of the Hanford Central Plateau facilities. The results and recommendations of the peer reviews informed the final DOE project selections and supported implementation of the selected projects to protect the Columbia River and address groundwater contamination at Hanford.

  10. White paper on atomic energy in 1979

    International Nuclear Information System (INIS)

    1980-01-01

    In Japan, there are currently 21 nuclear power plants in operation with a total capacity of 15,000MW. Under the present situation of the so-called second energy crisis, the role of nuclear power is assuming increasingly more importance. The white paper is presented covering the one year period from October 1978; statistics, however, are for fiscal 1978. Contents are the following: part I general ''world nuclear power situation, advances in nuclear energy, the outlook for 1980s''; part II the status of nuclear power ''nuclear power generation, nuclear power safety, nuclear fuel cycle, international activities, safeguards, development of power reactors, nuclear fusion/nuclear powered ship/high-temperature gas cooled reactor, radiation utilization, basic research, nuclear power industry''; part III references (organization/plans of Atomic Energy Commission etc., atomic energy budgets, nuclear energy statistics, etc.). (J.P.N.)

  11. Hanford Site Groundwater Protection Management Program: Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    Groundwater protection is a national priority that is promulgated in a variety of environmental regulations at local, state, and federal levels. To effectively coordinate and ensure compliance with applicable regulations, the US Department of Energy has issued DOE Order 5400.1 (now under revision) that requires all US Department of Energy facilities to prepare separate groundwater protection program descriptions and plans. This document describes the Groundwater Protection Management Program for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the Groundwater Protection Management Program cover the following general topical areas: (1) documentation of the groundwater regime, (2) design and implementation of a groundwater monitoring program to support resource management and comply with applicable laws and regulations, (3) a management program for groundwater protection and remediation, (4) a summary and identification of areas that may be contaminated with hazardous waste, (5) strategies for controlling these sources, (6) a remedial action program, and (7) decontamination and decommissioning and related remedial action requirements. Many of the above elements are covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing groundwater protection activities. Additionally, it describes how information needs are identified and can be incorporated into existing or proposed new programs. The Groundwater Protection Management Program provides the general scope, philosophy, and strategies for groundwater protection/management at the Hanford Site. Subtier documents provide the detailed plans for implementing groundwater-related activities and programs. Related schedule and budget information are provided in the 5-year plan for environmental restoration and waste management at the Hanford Site

  12. FINAL FRONTIER AT HANFORD TACKLING THE CENTRAL PLATEAU

    International Nuclear Information System (INIS)

    GERBER MS

    2008-01-01

    The large land area in the center of the vast Department of Energy (DOE) Hanford Site in southeast Washington State is known as 'the plateau'--aptly named because its surface elevations are 250-300 feet above the groundwater table. By contrast, areas on the 585-square mile Site that border the Columbia River sit just 30-80 feet above the water table. The Central Plateau, which covers an ellipse of approximately 70 square miles, contains Hanford's radiochemical reprocessing areas--the 200 East and 200 West Areas--and includes the most highly radioactive waste and contaminated facilities on the Site. Five 'canyons' where chemical processes were used to separate out plutonium (Pu), 884 identified soil waste sites (including approximately 50 miles of solid waste burial trenches), more than 900 structures, and all of Hanford's liquid waste storage tanks reside in the Central Plateau. (Notes: Canyons is a nickname given by Hanford workers to the chemical reprocessing facilities. The 177, underground waste tanks at Hanford comprise a separate work scope and are not under Fluor's management). Fluor Hanford, a DOE prime cleanup contractor at the Site for the past 12 years, has moved aggressively to investigate Central Plateau waste sites in the last few years, digging more than 500 boreholes, test pits, direct soil 'pushes' or drive points; logging geophysical data sets; and performing electrical-resistivity scans (a non-intrusive technique that maps patterns of sub-surface soil conductivity). The goal is to identify areas of contamination areas in soil and solid waste sites, so that cost-effective and appropriate decisions on remediation can be made. In 2007, Fluor developed a new work plan for DOE that added 238 soil waste-site characterization activities in the Central Plateau during fiscal years (FYs) 2007-2010. This number represents a 50 percent increase over similar work previously done in central Hanford. Work Plans are among the required steps in the Comprehensive

  13. Mesonic atom production in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Wakai, M.; Bando, H.; Sano, M.

    1987-08-01

    The production probability of π-mesonic atom in high-energy nuclear collisions is estimated by a coalescence model. The production cross section is calculated for p + Ne and Ne + Ne systems at 2.1 GeV/A and 5.0 GeV/A beam energy. It is shown that nuclear fragments with larger charge numbers have the advantage in the formation of π-mesonic atoms. The cross section is proportional to Z 3 and of the order of magnitude of 1 ∼ 10 μb in all the above cases. The production cross sections of K-mesonic atoms are also estimated. (author)

  14. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization.

  15. Environmental assessment: Reference repository location, Hanford site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization.

  16. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford Site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that it is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites suitable for characterization

  17. Environmental assessment: Reference repository location, Hanford site, Washington

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified a reference repository location at the Hanford Site in Washington as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. The site is in the Columbia Plateau, which is one of five distinct geohydrologic settings considered for the first repository. To determine their suitability, the Hanford site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. On the basis of the evaluations reported in this EA, the DOE has found that the Hanford site is not disqualified under the guidelines. The DOE has also found that is is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Hanford site as one of five sites available for characterization

  18. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    International Nuclear Information System (INIS)

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S ampersand T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford's highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S ampersand T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ''problem owners'' (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S ampersand T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders

  19. Strontium-90 at the Hanford Site and its ecological implications

    International Nuclear Information System (INIS)

    RE Peterson; TM Poston

    2000-01-01

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reaching the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in Section 6

  20. Strontium-90 at the Hanford Site and its ecological implications

    Energy Technology Data Exchange (ETDEWEB)

    RE Peterson; TM Poston

    2000-05-22

    Strontium-90, a radioactive contaminant from historical operations at the U.S. Department of Energy (DOE) Hanford Site, enters the Columbia River at several locations associated with former plutonium production reactors at the Site. Strontium-90 is of concern to humans and the environment because of its moderately long half-life (29.1 years), its potential for concentrating in bone tissue, and its relatively high energy of beta decay. Although strontium-90 in the environment is not a new issue for the Hanford Site, recent studies of near-river vegetation along the shoreline near the 100 Areas raised public concern about the possibility of strontium-90-contaminated groundwater reaching the riverbed and fall chinook salmon redds. To address these concerns, DOE asked Pacific Northwest National Laboratory (PNNL) to prepare this report on strontium-90, its distribution in groundwater, how and where it enters the river, and its potential ecological impacts, particularly with respect to fall chinook salmon. The purpose of the report is to characterize groundwater contaminants in the near-shore environment and to assess the potential for ecological impact using salmon embryos, one of the most sensitive ecological indicators for aquatic organisms. Section 2.0 of the report provides background information on strontium-90 at the Hanford Site related to historical operations. Public access to information on strontium-90 also is described. Section 3.0 focuses on key issues associated with strontium-90 contamination in groundwater that discharges in the Hanford Reach. The occurrence and distribution of fall chinook salmon redds in the Hanford Reach and characteristics of salmon spawning are described in Section 4.0. Section 5.0 describes the regulatory standards and criteria used to set action levels for strontium-90. Recommendations for initiating additional monitoring and remedial action associated with strontium-90 contamination at the Hanford Site are presented in Section 6

  1. HANFORD SITE CENTRAL PLATEAU CLEANUP COMPLETION STRATEGY

    International Nuclear Information System (INIS)

    Bergman, T.B.

    2011-01-01

    Cleanup of the Hanford Site is a complex and challenging undertaking. The U.S. Department of Energy (DOE) has developed a comprehensive vision for completing Hanford's cleanup mission including transition to post-cleanup activities. This vision includes 3 principle components of cleanup: the ∼200 square miles ofland adjacent to the Columbia River, known as the River Corridor; the 75 square miles of land in the center of the Hanford Site, where the majority of the reprocessing and waste management activities have occurred, known as the Central Plateau; and the stored reprocessing wastes in the Central Plateau, the Tank Wastes. Cleanup of the River Corridor is well underway and is progressing towards completion of most cleanup actions by 2015. Tank waste cleanup is progressing on a longer schedule due to the complexity of the mission, with construction of the largest nuclear construction project in the United States, the Waste Treatment Plant, over 50% complete. With the progress on the River Corridor and Tank Waste, it is time to place increased emphasis on moving forward with cleanup of the Central Plateau. Cleanup of the Hanford Site has been proceeding under a framework defmed in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In early 2009, the DOE, the State of Washington Department of Ecology, and the U.S. Environmental Protection Agency signed an Agreement in Principle in which the parties recognized the need to develop a more comprehensive strategy for cleanup of the Central Plateau. DOE agreed to develop a Central Plateau Cleanup Completion Strategy as a starting point for discussions. This DOE Strategy was the basis for negotiations between the Parties, discussions with the State of Oregon, the Hanford Advisory Board, and other Stakeholder groups (including open public meetings), and consultation with the Tribal Nations. The change packages to incorporate the Central Plateau Cleanup Completion Strategy were signed by the

  2. 1988 Hanford riverbank springs characterization report

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1990-12-01

    This reports presents the results of a special study undertaken to characterize the riverbank springs (i.e., ground-water seepage) entering the Columbia River along the Hanford Site. Radiological and nonradiological analyses were performed. River water samples were also analyzed from upstream and downstream of the Site as well as from the immediate vicinity of the springs. In addition, irrigation return water and spring water entering the river along the shoreline opposite Hanford were analyzed. Hanford-origin contaminants were detected in spring water entering the Columbia River along the Hanford Site. The type and concentrations of contaminants in the spring water were similar to those known to exist in the ground water near the river. The location and extent of the contaminated discharges compared favorably with recent ground-water reports and predictions. Spring discharge volumes remain very small relative to the flow of the Columbia. Downstream river sampling demonstrates the impact of ground-water discharges to be minimal, and negligible in most cases. Radionuclide concentrations were below US Department of Energy Derived Concentration Guides (DCGs) with the exception 90 Sr near the 100-N Area. Tritium, while below the DCG, was detected at concentrations above the US Environmental Protection Agency drinking water standards in several springs. All other radionuclide concentrations were below drinking water standards. Nonradiological contaminants were generally undetectable in the spring water. River water contaminant concentrations, outside of the immediate discharge zones, were below drinking water standards in all cases. 19 refs., 5 figs., 12 tabs

  3. Hanford Waste Vitrification Plant quality assurance program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-12-01

    The US Department of Energy-Office of Civilian Radioactive Waste Management has been designated the national high-level waste repository licensee and the recipient for the canistered waste forms. The Office of Waste Operations executes overall responsibility for producing the canistered waste form. The Hanford Waste Vitrification Plant Project, as part of the waste form producer organization, consists of a vertical relationship. Overall control is provided by the US Department of Energy-Environmental Restoration and Waste Management Headquarters; with the US Department of Energy-Office of Waste Operations; the US Department of Energy- Headquarters/Vitrification Project Branch; the US Department of Energy-Richland Operations Office/Vitrification Project Office; and the Westinghouse Hanford Company, operations and engineering contractor. This document has been prepared in response to direction from the US Department of Energy-Office of Civilian Radioactive Waste Management through the US Department of Energy-Richland Operations Office for a quality assurance program that meets the requirements of the US Department of Energy. This document provides guidance and direction for implementing a quality assurance program that applies to the Hanford Waste Vitrification Plant Project. The Hanford Waste Vitrification Plant Project management commits to implementing the quality assurance program activities; reviewing the program periodically, and revising it as necessary to keep it current and effective. 12 refs., 6 figs., 1 tab

  4. Single atom spectroscopy: Decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield.

    Science.gov (United States)

    Tizei, Luiz H G; Iizumi, Yoko; Okazaki, Toshiya; Nakanishi, Ryo; Kitaura, Ryo; Shinohara, Hisanori; Suenaga, Kazu

    2016-01-01

    Single atom localization and identification is crucial in understanding effects which depend on the specific local environment of atoms. In advanced nanometer scale materials, the characteristics of individual atoms may play an important role. Here, we describe spectroscopic experiments (electron energy loss spectroscopy, EELS, and Energy Dispersed X-ray spectroscopy, EDX) using a low voltage transmission electron microscope designed towards single atom analysis. For EELS, we discuss the advantages of using lower primary electron energy (30 keV and 60 keV) and higher energy losses (above 800 eV). The effect of atomic movement is considered. Finally, we discuss the possibility of using atomically resolved EELS and EDX data to measure the fluorescence yield for X-ray emission. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Canada Geese at the Hanford Site - Trends in Reproductive Success, Migration Patterns, and Contaminant Concentrations

    International Nuclear Information System (INIS)

    Simmons, Mary Ann; Poston, Ted M.; Tiller, Brett L.; Stegen, Amanda; Hand, Kristine D.; Brandenberger, Jill M.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) has conducted several studies for the U.S. Department of Energy (DOE) to evaluate the status and condition of Canada geese on the Hanford Reach of the Columbia River. This report summarizes results of studies of Canada geese (Branta canadensis moffitti) at the Hanford Site dating back to the 1950s. Results include information on the nesting (reproductive) success of Canada geese using the Hanford Reach, review of the local and regional migration of this species using data from bird banding studies, and summary data describing monitoring and investigations of the accumulation of Hanford-derived and environmental contaminants by resident goose populations.

  6. SAFETY IMPROVES DRAMATICALLY IN FLUOR HANFORD SOIL AND GROUNDWATER REMEDIATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    GERBER MS

    2007-12-05

    This paper describes dramatic improvements in the safety record of the Soil and Groundwater Remediation Project (SGRP) at the Hanford Site in southeast Washington state over the past four years. During a period of enormous growth in project work and scope, contractor Fluor Hanford reduced injuries, accidents, and other safety-related incidents and enhanced a safety culture that earned the SGRP Star Status in the Department of Energy's (DOE's) Voluntary Protection Program (VPP) in 2007. This paper outlines the complex and multi-faceted work of Fluor Hanford's SGRP and details the steps taken by the project's Field Operations and Safety organizations to improve safety. Holding field safety meetings and walkdowns, broadening safety inspections, organizing employee safety councils, intensively flowing down safety requirements to subcontractors, and adopting other methods to achieve remarkable improvement in safety are discussed. The roles of management, labor and subcontractors are detailed. Finally, SGRP's safety improvements are discussed within the context of overall safety enhancements made by Fluor Hanford in the company's 11 years of managing nuclear waste cleanup at the Hanford Site.

  7. Hanford Waste Vitrification Plant quality assurance program description: Overview and applications

    International Nuclear Information System (INIS)

    Caplinger, W.H.

    1990-12-01

    This document describes the Hanford Waste Vitrification Plant Project Quality Assurance Program. This program is being implemented to ensure the acceptability of high-level radioactive canistered waste forms produced by the Hanford Waste Vitrification Plant for disposal in a licensed federal repository. The Hanford Waste Vitrification Plant Quality Assurance Program is comprised of this Quality Assurance Program Description as well as the associated contractors' quality assurance programs. The objective of this Quality Assurance Program Description is to provide the Hanford Waste Vitrification Plant Project participants with guidance and direction for program implementation while satisfying the US Department of Energy Office of Civilian Radioactive Waste Management needs in repository licensing activities with regard to canistered waste forms. To accomplish this objective, this description will be prepared in three parts: Part 1 - Overview and applications document; Part 2 - Development and qualification of the canistered waste form; Part 3 - Production of canistered waste forms. Part 1 describes the background, strategy, application, and content of the Hanford Waste Vitrification Plant Quality Assurance Program. This Quality Assurance Program Description, when complete, is designed to provide a level of confidence in the integrity of the canistered waste forms. 8 refs

  8. Review and prospects of Atomic Energy Law

    International Nuclear Information System (INIS)

    Hartkopf, G.

    1983-01-01

    At the 7th German Symposium on Atomic Energy Law which took place on March 16th, 1983 in Goettingen the Undersecretary of State of the Federal Ministery of the Interior, Dr. Guenter Hartkopf, delivered the opening speech. The speech deals with the conditions set by constitutional law and ethics, improvement of nuclear liability, guide line for incident response, participation of the public in licensing procedures under atomic energy law, necessary measures to prevent damage, the concept of waste management. Also in future the safety of the citizens has absolute priority. (orig./HSCH) [de

  9. Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation.

    Science.gov (United States)

    Irwin, Benedict W J; Huggins, David J

    2018-05-08

    We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.

  10. Modified source of a fast neutral atom beam with a controlled energy

    International Nuclear Information System (INIS)

    Gostev, V.A.; Elakhovskij, D.V.; Khakhaev, A.D.

    1980-01-01

    A source of a metastable helium atom beam with a controlled energy based on a phenomenon of resonant ion neutralization on the surface of a solid body is described. The neutral particle energy control is carried out by changing ion velocities before their transformation into metastable atoms. The results of experiments with a modified construction of atomic beam source are stated. These experiments were conducted to find the possibilities to control velocities of atoms in a flow as well as to elucidate the peculiarities of operation of a collimator-converter of this construction. Dependences of a halfwidth of the ion velocity distribution function on the ion source parameters have been investigated. The possibility for particle energy control in a collimated flow of fast neutral. atoms has been experimentally shown, it is also shown that a mean value of atom energy in a beam coincides with a value of mean energy of ions from which atoms are produced by the resonant neutralization method; the construction of the source provides the possibility to realize the method of ''overtaking beams'' for neutral atoms and as a result of this to give a possibility for studying atom-atom collisions in a wide energy range at relatively high densities of flows

  11. Hanford Site National Environmental Policy Act (NEPA) characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E. (ed.)

    1988-09-01

    This document describes the Hanford Site environment (Chapter 4) and contains data in Chapter 5 and 6 which will guide users in the preparation of National Environmental Policy Act (NEPA)-related documents. Many NEPA compliance documents have been prepared and are being prepared by site contractors for the US Department of Energy, and examination of these documents reveals inconsistencies in the amount of detail presented and the method of presentation. Thus, it seemed necessary to prepare a consistent description of the Hanford environment to be used in preparing Chapter 4 of environmental impact statements and other site-related NEPA documentation. The material in Chapter 5 is a guide to the models used, including critical assumptions incorporated in these models, in previous Hanford NEPA documents. The users will have to select those models appropriate for the proposed action. Chapter 6 is essentially a definitive NEPA Chapter 6, which describes the applicable laws, regulations, and DOE and state orders. In this document, a complete description of the environment is presented in Chapter 4 without excessive tabular data. For these data, sources are provided. Most subjects are divided into a general description of the characteristics of the Hanford Site, followed by site-specific information where it is available on the 100, 200, 300, and other Areas. This division will allow a person requiring information to go immediately to those sections of particular interest. However, site-specific information on each of these separate areas is not always complete or available. In this case, the general Hanford Site description should be used. 131 refs., 19 figs., 32 tabs.

  12. Third Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-09-30

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded 771 local earthquakes during the third quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. The Wooded Island events recorded this quarter is a continuation of the swarm events observed during the January – March 2009 time period and reported in the previous quarterly report (Rohay et al, 2009). The frequency of Wooded Island events has subsided with 16 events recorded during June 2009. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 25 events in the 2.0-3.0 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 2.2 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude of the Wooded Island events has made them undetectable to all but local area residents. However, some Hanford employees working within a few miles of the area of highest activity

  13. Hanford Site Composite Analysis Technical Approach Description: Radionuclide Inventory and Waste Site Selection Process.

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Will E.; Mehta, Sunil

    2017-09-13

    The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.

  14. Hanford Site technical baseline database. Revision 1

    International Nuclear Information System (INIS)

    Porter, P.E.

    1995-01-01

    This report lists the Hanford specific files (Table 1) that make up the Hanford Site Technical Baseline Database. Table 2 includes the delta files that delineate the differences between this revision and revision 0 of the Hanford Site Technical Baseline Database. This information is being managed and maintained on the Hanford RDD-100 System, which uses the capabilities of RDD-100, a systems engineering software system of Ascent Logic Corporation (ALC). This revision of the Hanford Site Technical Baseline Database uses RDD-100 version 3.0.2.2 (see Table 3). Directories reflect those controlled by the Hanford RDD-100 System Administrator. Table 4 provides information regarding the platform. A cassette tape containing the Hanford Site Technical Baseline Database is available

  15. Status Report on Phase Identification in Hanford Tank Sludges

    International Nuclear Information System (INIS)

    Rapko, B.M.; Lumetta, G.J.

    2000-01-01

    The US Department of Energy plans to vitrify Hanford's tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges

  16. Hanford Radiological Protection Support Services annual report for 1992

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Froelich, T.J.; Lynch, T.P.

    1993-07-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Field Office and Hanford contractors are described in this annual report of calendar year 1992. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  17. Hanford radiological protection support services. Annual report for 1995

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Carbaugh, E.H.

    1996-05-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the U.S. Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1995. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  18. Hanford Waste Vitrification Project Building limited scope risk assessment

    International Nuclear Information System (INIS)

    Braun, D.J.; Lindberg, S.E.; Reardon, M.F.; Wilson, G.P.

    1992-10-01

    A limited scope risk assessment was performed on the preliminary design of a high-level waste interim storage facility. The Canister Storage Building (CSB) facility will be built to support remediation at the US Department of Energy Hanford Site in Washington State. The CSB will be part of the support facilities for a high level Hanford Waste Vitrification Plant (HWVP). The limited scope risk assessment is based on a preliminary design which uses forced air circulation systems to move air through the building vault. The current building design calls for natural circulation to move air through the building vault

  19. Hanford radiological protection support services annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

    1998-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  20. Hanford radiological protection support services annual report for 1990

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Piper, R.K.; Freolich, T.J.; Leonowich, J.A.; Lynch, T.P.

    1991-07-01

    Various Hanford site-wide radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy-Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1990. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological records keeping. For each of these activities, the routine program, program changes and enhancements, associated tasks, investigations and studies, and related publications, presentations, and other staff professional activities are discussed as applicable. 22 refs., 10 figs., 19 tabs

  1. Hanford Radiological Protection Support Services annual report for 1993

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Olsen, P.C.

    1994-07-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1993. These activities include internal dosimetry measurements and evaluations, in vivo measurements, external dosimetry measurements and evaluations, instrument calibration and evaluation, radiation source calibration, and radiological record keeping. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  2. Hanford radiological protection support services annual report for 1997

    International Nuclear Information System (INIS)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Johnson, M.L.; Lynch, T.P.; Piper, R.K.

    1998-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1997. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described

  3. Hanford radiological protection support services annual report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, M.; Bihl, D.E.; Fix, J.J.; Froelich, T.J.; Piper, R.K.; Schulze, S.A.

    1997-06-01

    Various Hanford Site radiation protection services provided by the Pacific Northwest National Laboratory for the US Department of Energy Richland Operations Office and Hanford contractors are described in this annual report for calendar year 1996. These activities include external dosimetry measurements and evaluations, internal dosimetry measurements and evaluations, in vivo measurements, radiological exposure record keeping, radiation source calibration, and instrument calibration and evaluation. For each of these activities, the routine program and any program changes or enhancements are described, as well as associated tasks, investigations, and studies. Program-related publications, presentations, and other staff professional activities are also described.

  4. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    The institute is established under the atomic energy basic law to make effectively research of development of atomic energy in general and help to promote investigation, development and utilization of it. The institute is a legal person and has its main office in Tokyo. Its capital is the amount of yen 2,500 million plus contributions by persons other than the government. The government invests the said yen 2,500 million at the time of its establishment. The articles of the institute shall prescribe matters, such as: capital, contributions and assets; officer and meeting; business and its execution; accounting, etc. The officers are consisted of a chief director, a deputy chief director and less than 7 directors and less than 2 auditors. The chief director is appointed by the Prime Minister with the consent of the atomic energy commission. The term of the chief director, the deputy chief director and directors is 4 years and that of auditors is 2 years. Functions of the institute include basic and application research of atomic energy, planning, building and operation of reactors, training of researchers and engineers of atomic energy, etc. The budget, the business program and the financial project shall be prepared each business year and authorized by the Prime Minister. The institute is subject to the supervision of the Prime Minister. (Okada, K.)

  5. The Harnessed Atom: Nuclear Energy & Electricity.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  6. Tenth act amending the German atomic energy act

    International Nuclear Information System (INIS)

    Heller, W.

    2009-01-01

    On January 14, 2009, the German federal government introduced into parliament the 10th Act Amending the Atomic Energy Act. In the first reading in the federal parliament, Federal Minister for the Environment Gabriel emphasized 2 main points: Intensified protection of nuclear facilities and of transports of radioactive substances against unauthorized interventions; transfer by law to the Federal Office for Radiological Protection (BfS) of decommissioning of the Asse mine. Reliability review: The amendment to Sec.12 b of the Atomic Energy Act is to meet the different safety and security conditions after the terrorist attacks on September 11, 2001 in the United States and other terrorist activities afterwards (London, Madrid) also with respect to hazards arising to nuclear facilities and nuclear transports. The bill must be seen in conjunction with the Ordinance on Reliability Reviews under the Atomic Energy Act dated July 1, 1999 which covers reviews of reliability of persons holding special responsibilities. Asse II mine: The competence of the Federal Office for Radiological Protection is achieved by an amendment to Sec.23, Para.1, Number 2, Atomic Energy Act, in which the words ''and for the Asse II mine'' are added after the word ''waste.'' Further proceedings depend on the additional provision in a new Sec.57 b, Atomic Energy Act. Accordingly, the operation and decommissioning of the Asse II mine are subject to the regulations applicable to facilities of the federation pursuant to Sec.9a, Para.3. In this way, Asse II is given the same legal status as the federal waste management facilities. Moreover, it is stipulated that the mine is to be shut down immediately. (orig.)

  7. Hanford transuranic storage corrosion review

    International Nuclear Information System (INIS)

    Nelson, J.L.; Divine, J.R.

    1980-12-01

    The rate of atmospheric corrosion of the transuranic (TRU) waste drums at the US Department of Energy's Hanford Project, near Richland, Washington, was evaluated by Pacific Northwest Laboratory (PNL). The rate of corrosion is principally contingent upon the effects of humidity, airborne pollutants, and temperature. Results of the study indicate that actual penetration of barrels due to atmospheric corrosion will probably not occur within the 20-year specified recovery period. Several other US burial sites were surveyed, and it appears that there is sufficient uncertainty in the available data to prevent a clearcut statement of the corrosion rate at a specific site. Laboratory and site tests are recommended before any definite conclusions can be made. The corrosion potential at the Hanford TRU waste site could be reduced by a combination of changes in drum materials (for example, using galvanized barrels instead of the currently used mild steel barrels), environmental exposure conditions (for example, covering the barrels in one of numerous possible ways), and storage conditions

  8. The Hanford Site: An anthology of early histories

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S.

    1993-10-01

    This report discusses the following topics: Memories of War: Pearl Harbor and the Genesis of the Hanford Site; safety has always been promoted at the Hanford Site; women have an important place in Hanford Site history; the boom and bust cycle: A 50-year historical overview of the economic impacts of Hanford Site Operations on the Tri-Cities, Washington; Hanford`s early reactors were crucial to the sites`s history; T-Plant made chemical engineering history; the UO{sub 3} plant has a long history of service. PUREX Plant: the Hanford Site`s Historic Workhorse. PUREX Plant Waste Management was a complex challenge; and early Hanford Site codes and jargon.

  9. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.

    Science.gov (United States)

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-02-15

    Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance. Copyright © 2013 Wiley Periodicals, Inc.

  10. Radioactive air emissions notice of construction and application for approval to construct the Hanford Waste Vitrification Plant

    International Nuclear Information System (INIS)

    1992-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy, Richland Field Office. The Hanford Site manages and produces dangerous waste and mixed waste. (containing both radioactive and dangerous components). The US Department of Energy, Richland Field Office, currently stores mixed waste, resulting from various processing operations, in underground storage tanks. The Hanford Waste Vitrification Plant will be constructed and operated to process the high-activity fraction of mixed waste stored in these underground tanks. The Hanford Waste Vitrification Plant will solidify pretreated tank waste into a glass product that will be packaged for disposal in a national repository. Emissions from the Hanford Waste Vitrification Plant will be regulated by both the federal and state Clean Air Acts. The proposed Hanford Waste Vitrification Plant represents a new source of radioactive air emissions. Construction of the plant will require approval from both federal and state agencies. The Notice of Construction and Application for Approval to Construct the Hanford Waste Vitrification Plant contains information required under Title 40 of the Code of Federal Regulations, Chapter 61; and Chapter 246-247 of the Washington Administrative Code for a proposed new source of radioactive air emissions. The document contents are based on information contained in the Hanford Waste Vitrification Plant Reference Conceptual Design Report, the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report, Revision 0, and subsequent design changes made before August 1, 1992. The contents of this document may be modified to include more specific information generated during subsequent detailed design phases. Modifications will be submitted for regulatory review and approval, as appropriate

  11. The Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Shultz, R.J.

    1980-01-01

    Certain aspects of the Atomic Energy Control Board's relationships with Cabinet, the Minister, Government officials, The licensees and the public are analyzed. The way some of the relationships would have been modified by the Nuclear Control and Administration Act proposed in 1977 is examined. (L.L.)

  12. Abstracted publications related to the Hanford environment, 1980 to 1988

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.D.; Gray, R.H.

    1989-05-01

    This abstracted bibliography provides a reference to the diverse environmental activities conducted on the Hanford Site from 1980 through 1988. It includes 500 reports and articles that were prepared largely by onsite contractors and the Department of Energy. Documents contained here were separated into eight subject areas: air and atmosphere, aquatic ecology, effluents and wastes, geology and hydrology, Hanford Site, radioactivity, terrestrial ecology, and socioeconomics. These areas form the basis of a key word index, which is intended to help the reader locate subjects of interest. An author index is also included.

  13. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    Energy Technology Data Exchange (ETDEWEB)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  14. Plans and Progress on Hanford MLLW Treatment and Disposal

    International Nuclear Information System (INIS)

    McDonald, K. M.; Blackford, L. T.; Nester, D. E.; Connolly, R. R.; McKenney, D. E.; Moy, S. K.

    2003-01-01

    Mixed low-level waste (MLLW) contains both low-level radioactive materials and low-level hazardous chemicals. The hazardous component of mixed waste has characteristics identified by any or all of the following statutes: the Resource Conservation and Recovery Act of 1976 (RCRA), as amended; the Toxic Substances Control Act of 1976; and Washington State dangerous waste regulations. The Fluor Hanford Waste Management Project (WMP) is responsible for storing, treating, and disposing of solid MLLW, which includes organic and inorganic solids, organics and inorganic lab packs, debris, lead, mercury, long-length equipment, spent melters, and remote-handled (RH) and oversized MLLW. Hanford has 7,000 cubic meters, or about 25%, of the MLLW in storage at U.S. Department of Energy (DOE) sites. Hanford plans to receive 57,000 cubic meters from on-site generators, or about 50% of DOE's newly generated MLLW. In addition, the Hanford Environment Restoration Program and off-site generators having approved Federal Facility Consent Agreement site treatment plans will most likely send 200 cubic meters of waste to be treated and returned to the generators. Volumes of off-site waste receipts will be affected when the MLLW Record of Decision is issued as part of the process for the Hanford Site Solid Waste Environmental Impact Statement (EIS). The WMP objective relative to MLLW is to treat and dispose of ∼8000 cubic meters of existing inventory and newly-generated waste by September 30, 2006

  15. Annual report of the Department of Atomic Energy 1975-76

    International Nuclear Information System (INIS)

    1976-01-01

    The activities of the various constituent units of the Department of Atomic Energy such as the Bhabha Atomic Research Centre, Reactor Research Centre, Variable Energy Cyclotron, the power stations and a few others during the year 1975-76 are reported. The progress achieved in the field of atomic minerals, nuclear medicine, nuclear power, development of radioisotopes etc. are presented in detail. The responsibilities and achievements of the public sector undertakings under Department of Atomic Energy such as the Indian Rare Earth Ltd., Electronics Corporation of India Ltd., Uranium Corporation of India Ltd., are highlighted. Other activities such as planning and execution, economic and personnel health aspects, international relations etc. are also mentioned. (A.K.)

  16. Hanford well custodians. Revision 1

    International Nuclear Information System (INIS)

    Schatz, A.L.; Underwood, D.J.

    1995-01-01

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993

  17. White paper on atomic energy in 1980

    International Nuclear Information System (INIS)

    1981-01-01

    The nuclear power generation in Japan attained the scale of 21 plants with 15 million kW capacity, and its proportion in electric power supply exceeded 13%. Now it is indispensable for various economic activities and national life, and it is expected that its role as the substitute energy for petroleum will grow more and more in future. The Atomic Energy Commission took up preponderantly the promotion of nuclear power generation and the related measures in view of such situation when the trend in the development and utilization of atomic energy in Japan is reviewed in this white paper. When nuclear power generation is promoted, efforts are exerted on the improvement of safety, and it is necessary to tackle with all might the subjects such as the settlement of LWRs more firmly, the development of new reactors, the establishment of nuclear fuel cycle, and the countermove to complex international situation, while giving consideration to the development of independent technologies. It is most important to obtain national consensus when atomic energy is developed and utilized, as seen in the difficulty of locating nuclear power stations. In this annual report, the events for about one year from October, 1979, are described. Also the related data and documents are shown. (Kako, I.)

  18. Radial behavior of the average local ionization energies of atoms

    International Nuclear Information System (INIS)

    Politzer, P.; Murray, J.S.; Grice, M.E.; Brinck, T.; Ranganathan, S.

    1991-01-01

    The radial behavior of the average local ionization energy bar I(r) has been investigated for the atoms He--Kr, using ab initio Hartree--Fock atomic wave functions. bar I(r) is found to decrease in a stepwise manner with the inflection points serving effectively to define boundaries between electronic shells. There is a good inverse correlation between polarizability and the ionization energy in the outermost region of the atom, suggesting that bar I(r) may be a meaningful measure of local polarizabilities in atoms and molecules

  19. A survey in Latin America;Survey of atomic energy needs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    An eight-member mission of the International Atomic Energy Agency visited Brazil and Venezuela last summer to survey their atomic energy needs and the conditions that may have a bearing on the fulfilment of these needs. The head of the mission and two members also visited Argentina to make a study in a more restricted sphere. While the mission's work in Brazil and Venezuela covered all aspects of atomic energy development, the investigations in Argentina were concerned specifically with the exploration, mining and processing of nuclear raw materials. The members of the mission held extensive discussions with the national authorities in charge of atomic energy development who acquainted them with their plans and the progress of work already undertaken. The IAEA experts also visited different centres of work to gain a first-hand knowledge of conditions and needs. They were thus able to advise the national authorities on lines of further development and assist them in formulating requests for technical assistance from the Agency. The information contained in the mission's reports may serve as a broad guide to the present state and future needs of atomic energy development in the three countries

  20. Environmental Restoration Program quality system requirements for the Hanford Site

    International Nuclear Information System (INIS)

    Cote, R.F.

    1993-11-01

    This document defines the quality system requirements for the US Department of Energy, Richland Operations Office, Environmental Restoration Program at the Hanford Site. The Quality System Requirements (OSR) for the Hanford Site integrates quality assurance requirements from the US Department of Energy Orders, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement), and applicable industry standards into a single source document for the development of quality systems applicable to the Environmental Restoration Program activities. This document, based on fifteen criteria and divided intro three parts, provides user organizations with the flexibility to incorporate only those criteria and parts applicable to their specific scopes of work. The requirements of this document shall be applied to activities that affect quality based on a graded approach that takes into consideration the risk inherent in, as well as the importance of, specific items, services, and activities in terms of meeting ER Program objectives and customer expectations. The individual quality systems developed in accordance with this document are intended to provide an integrated management control system that assures the conduct of ER Program activities in a manner that protects human health and the environment

  1. Scientists speak of the peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Salas Murillo, Otto; Rodriguez Solis, Marisel

    2010-01-01

    Experts from Argentina, Cuba, Mexico, Peru and Costa Rica have met in that last country, to offer the forum 'Peaceful uses of atomic energy: prospects for Costa Rica'. Specialists were invited by the Centro de Investigacion en Biologia Celular y Molecular (CIBCM) of the Universidad de Costa Rica (UCR) and the Centro de Investigacion en Biotecnologia (CIB) of Instituto Tecnologico de Costa Rica. The forum has developed around the theme the usefulness of atomic energy for science, and importance for the development of the country. The peaceful use of atomic energy was explained by specialists in each country, specifically in the field of health, industry, agriculture, industrial equipment sterilization, medical products, body tissues and crops [es

  2. Hanford Site peak gust wind speeds

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1998-01-01

    Peak gust wind data collected at the Hanford Site since 1945 are analyzed to estimate maximum wind speeds for use in structural design. The results are compared with design wind speeds proposed for the Hanford Site. These comparisons indicate that design wind speeds contained in a January 1998 advisory changing DOE-STD-1020-94 are excessive for the Hanford Site and that the design wind speeds in effect prior to the changes are still appropriate for the Hanford Site

  3. Atomic Energy Commission reports. Volume 6. Opinions and decisions of the Atomic Energy Commission with selected orders, January 1, 1973 to December 31, 1973

    International Nuclear Information System (INIS)

    1974-01-01

    Issuances of the Atomic Energy Commission, the Atomic Safety and Licensing Appeal Boards, the Atomic Safety and Licensing Boards, and the Board of Contract Appeals including the Contract Adjustment Board are presented. (U.S.)

  4. Golden mean energy equals highest atomic electron orbital energy

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Leonard J. [Interdisciplinary Research Club, P.O. Box 371, Monroeville, PA 15146 (United States)], E-mail: LJMalinowski@gmail.com

    2009-12-15

    The golden mean numerical value {phi} = 0.5({radical}5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  5. Golden mean energy equals highest atomic electron orbital energy

    International Nuclear Information System (INIS)

    Malinowski, Leonard J.

    2009-01-01

    The golden mean numerical value φ = 0.5(√5 - 1) has been given a physical manifestation through E infinity theory. This short paper relates the golden mean energy 0.618034 MeV to atomic electron orbitals.

  6. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  7. Hanford tanks initiative plan

    International Nuclear Information System (INIS)

    McKinney, K.E.

    1997-01-01

    Abstract: The Hanford Tanks Initiative (HTI) is a five-year project resulting from the technical and financial partnership of the U.S. Department of Energy's Office of Waste Management (EM-30) and Office of Science and Technology Development (EM-50). The HTI project accelerates activities to gain key technical, cost performance, and regulatory information on two high-level waste tanks. The HTI will provide a basis for design and regulatory decisions affecting the remainder of the Tank Waste Remediation System's tank waste retrieval Program

  8. Canada Geese at the Hanford Site – Trends in Reproductive Success, Migration Patterns, and Contaminant Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Mary Ann; Poston, Ted M.; Tiller, Brett L.; Stegen, Amanda; Hand, Kristine D.; Brandenberger, Jill M.

    2010-05-25

    Pacific Northwest National Laboratory (PNNL) has conducted several studies for the U.S. Department of Energy (DOE) to evaluate the status and condition of Canada geese on the Hanford Reach of the Columbia River. This report summarizes results of studies of Canada geese (Branta canadensis moffitti) at the Hanford Site dating back to the 1950s. Results include information on the nesting (reproductive) success of Canada geese using the Hanford Reach, review of the local and regional migration of this species using data from bird banding studies, and summary data describing monitoring and investigations of the accumulation of Hanford-derived and environmental contaminants by resident goose populations.

  9. Summary of the law relating to atomic energy and radioactive substances

    International Nuclear Information System (INIS)

    Sim, D.F.; Ritchie, K.J.S.

    1982-04-01

    The law relating to atomic energy and radioactive substances in the United Kingdom is summarized under the following headings: the Common Law; legislation (Atomic Energy Act 1946; Radioactive Substances Acts 1948 and 1960; Electricity (Amendment) Act 1961; Nuclear Installations Act 1965 and 1969 (and subordinate legislation); Secretary of State for Trade and Industry Order 1970; Radiological Protection Act 1970 (as amended); Air Navigation (Restriction of Flying)(Atomic Energy Establishments) Regulations 1981; Nuclear Safeguards and Electricity (Finance) Act 1978; legislation relating to the UK Atomic Energy Authority); Regulations under the Factories Act 1961; Regulations relating to educational establishments; Regulations and Orders relating to food and medicines; Regulations, etc., affecting the transport of radioactive materials; Regulations under the Social Security Act 1975; control of import and export; the Euratom Treaty; important non-statutory Codes of Practice, etc.; international conventions, etc., relating to the peaceful use of atomic energy and radioactive substances, in which the United Kingdom is interested; foreign legislation. (U.K.)

  10. German atomic energy law in the international framework

    International Nuclear Information System (INIS)

    Pelzer, N.

    1992-01-01

    The regional conference was devoted to the legal problems that ensue from German reunification against the background of the integration of German atomic energy law within international law. The elements of national atomic energy legislation required by international law and recent developments in international nuclear liability law were discussed from different perspectives. The particular problems of the application of the German Atomic Energy Act in the 5 new Laender (the territories of the former GDR) were presented and discussed, namely: The continued validity of old licences issued by the GDR; practical legal problems connected with the construction of nuclear power plants in the 5 new Laender; the legal issues connected with the final repository for radioactive wastes at Morsleben; and the new developments in radiation protection law following from the Unification Treaty and the new ICRP recommendations. All 14 lectures have been abstracted and indexed individually. (orig.) [de

  11. Hanford double shell tank corrosion monitoring instrument trees

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1995-03-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks - (DSTs and SSTS). Westinghouse Hanford Company is considering installation of a prototype corrosion monitoring instrument tree in at least one DST in the summer of 1995. The instrument tree will have the ability to detect and discriminate between uniform corrosion, stress corrosion cracking (SCC), and pitting. Additional instrument trees will follow in later years. Proof-of-technology testing is currently underway for the use of commercially available electric field pattern (EFP) analysis and electrochemical noise (EN) corrosion monitoring equipment. Creative use and combinations of other existing technologies is also being considered. Successful demonstration of these technologies will be followed by the development of a Hanford specific instrument tree. The first instrument tree will incorporate one of these technologies. Subsequent trees may include both technologies, as well as a more standard assembly of corrosion coupons. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other U.S. Department of Energy (DOE) sites

  12. Energy dissipation unveils atomic displacement in the noncontact atomic force microscopy imaging of Si(111 )-(7 ×7 )

    Science.gov (United States)

    Arai, Toyoko; Inamura, Ryo; Kura, Daiki; Tomitori, Masahiko

    2018-03-01

    The kinetic energy of the oscillating cantilever of noncontact atomic force microscopy (nc-AFM) at room temperature was considerably dissipated over regions between a Si adatom and its neighboring rest atom for Si(111 )-(7 ×7 ) in close proximity to a Si tip on the cantilever. However, nc-AFM topographic images showed no atomic features over those regions, which were the hollow sites of the (7 ×7 ). This energy dissipation likely originated from displacement of Si adatoms with respect to the tip over the hollow sites, leading to a lateral shift of the adatoms toward the rest atom. This interaction led to hysteresis over each cantilever oscillation cycle; when the tip was retracted, the Si adatom likely returned to its original position. To confirm the atomic processes involved in the force interactions through Si dangling bonds, the Si(111 )-(7 ×7 ) surface was partly terminated with atomic hydrogen (H) and examined by nc-AFM. When the Si adatoms and/or the rest atoms were terminated with H, the hollow sites were not bright (less dissipation) in images of the energy dissipation channels by nc-AFM. The hollow sites acted as metastable sites for Si adatoms in surface diffusion and atom manipulation; thus, the dissipation energy which is saturated on the tip likely corresponds to the difference in the potential energy between the hollow site and the Si adatom site. In this study, we demonstrated the ability of dissipation channels of nc-AFM to enable visualization of the dynamics of atoms and molecules on surfaces, which cannot be revealed by nc-AFM topographic images alone.

  13. Hanford analytical services quality assurance plan. Revision 1

    International Nuclear Information System (INIS)

    1995-02-01

    This document, the Hanford Analytical Services Quality Assurance Plan (HASQAP), is issued by the U.S. Department of Energy, Richland Operations Office (RL). The HASQAP establishes quality requirements in response to U.S. Department of Energy (DOE) Order 5700.6C, Quality Assurance (10 CFR 830.120, open-quotes Quality Assurance Requirementsclose quotes). The HASQAP is designed to meet the needs of the RL for controlling the of analytical chemistry services provided by laboratory operations. The HASQAP is issued through the Analytical Services Branch of the Waste Management Division. The Analytical Services Branch is designated by the RL as having the responsibility for oversight management of laboratory operations under the Waste Management Division. The laboratories conduct sample analyses under several regulatory statutes, such as the Clean Air Act and the Clean Water Act. Sample analysis in support of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) is a major role of the laboratory operations

  14. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  15. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    International Nuclear Information System (INIS)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-01-01

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  16. Second Quarter Hanford Seismic Report for Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Sweeney, Mark D.; Hartshorn, Donald C.; Clayton, Ray E.; Devary, Joseph L.

    2009-07-31

    The Hanford Seismic Assessment Program (HSAP) provides an uninterrupted collection of high-quality raw and processed seismic data from the Hanford Seismic Network for the U.S. Department of Energy and its contractors. The HSAP is responsible for locating and identifying sources of seismic activity and monitoring changes in the historical pattern of seismic activity at the Hanford Site. The data are compiled, archived, and published for use by the Hanford Site for waste management, natural phenomena hazards assessments, and engineering design and construction. In addition, the HSAP works with the Hanford Site Emergency Services Organization to provide assistance in the event of a significant earthquake on the Hanford Site. The Hanford Seismic Network and the Eastern Washington Regional Network consist of 44 individual sensor sites and 15 radio relay sites maintained by the Hanford Seismic Assessment Team. The Hanford Seismic Network recorded over 800 local earthquakes during the second quarter of FY 2009. Nearly all of these earthquakes were detected in the vicinity of Wooded Island, located about eight miles north of Richland just west of the Columbia River. Most of the events were considered minor (magnitude (Mc) less than 1.0) with 19 events in the 2.0-2.9 range. The estimated depths of the Wooded Island events are shallow (averaging less than 1.0 km deep) with a maximum depth estimated at 1.9 km. This places the Wooded Island events within the Columbia River Basalt Group (CRBG). The low magnitude and the shallowness of the Wooded Island events have made them undetectable to most area residents. However, some Hanford employees working within a few miles of the area of highest activity, and individuals living in homes directly across the Columbia River from the swarm center, have reported feeling some movement. The Hanford SMA network was triggered numerous times by the Wooded Island swarm events. The maximum acceleration values recorded by the SMA network were

  17. Hydraulic Conductivity Distributions for Anisotropic Systems and Application to Tc Transport at the U.S. Department of Energy Hanford Site

    International Nuclear Information System (INIS)

    Hunt, A. G.

    2006-01-01

    At the United States Department of Energy Hanford Site a spill of radioactive Technetium has been migrating horizontally in the vadose zone rather than flowing vertically to the water table. This result has been interpreted as being due to horizontal anisotropy in the hydraulic conductivity, K, (a tendency for fluids to migrate more easily in the horizontal direction) due to high horizontal connectivity of sedimentary deposits with a tendency for larger values of K. Such layers have larger components of silt and clay than the predominantly sandy soils at the Hanford site. It is generally accepted that effects of such anisotropy tend to be greater at smaller length scales, probably because of the lack of perfect correlations at large length scales. It has also been suggested that this anisotropy in K is maximized under relatively dry conditions when finer soils (with smaller pores) trap moisture more effectively than sands and gravels. The random component of the distribution of the Hanford flood deposits requires a probabilistic framework for the calculation of K. The work on this project had two main components: (1) to use continuum percolation theory applied to random fractal models to produce a general framework for calculating distributions of K under anisotropic conditions and as a function of system scale, (2) to apply the scheme for calculation to the Hanford site. The results of the general calculation (submitted for publication in Philosophical Magazine) are that the mean horizontal and vertical K values become equal in the limit of large system size (in agreement with general perception above) while the distributions of K values cause significant overlap of expected experimental values of K in the vertical and horizontal directions already at intermediate length scales. In order to make these calculation specific to the Hanford site, however, values of the appropriate length scales to describe the Hanford subsurface as well as to describe the maximum

  18. Women and the Hanford Site

    Science.gov (United States)

    Gerber, Michele

    2014-03-01

    When we study the technical and scientific history of the Manhattan Project, women's history is sometimes left out. At Hanford, a Site whose past is rich with hard science and heavy construction, it is doubly easy to leave out women's history. After all, at the World War II Hanford Engineer Works - the earliest name for the Hanford Site - only nine percent of the employees were women. None of them were involved in construction, and only one woman was actually involved in the physics and operations of a major facility - Dr. Leona Woods Marshall. She was a physicist present at the startup of B-Reactor, the world's first full-scale nuclear reactor - now a National Historic Landmark. Because her presence was so unique, a special bathroom had to be built for her in B-Reactor. At World War II Hanford, only two women were listed among the nearly 200 members of the top supervisory staff of the prime contractor, and only one regularly attended the staff meetings of the Site commander, Colonel Franklin Matthias. Overall, women comprised less than one percent of the managerial and supervisory staff of the Hanford Engineer Works, most of them were in nursing or on the Recreation Office staff. Almost all of the professional women at Hanford were nurses, and most of the other women of the Hanford Engineer Works were secretaries, clerks, food-service workers, laboratory technicians, messengers, barracks workers, and other support service employees. The one World War II recruiting film made to attract women workers to the Site, that has survived in Site archives, is entitled ``A Day in the Life of a Typical Hanford Girl.'' These historical facts are not mentioned to criticize the past - for it is never wise to apply the standards of one era to another. The Hanford Engineer Works was a 1940s organization, and it functioned by the standards of the 1940s. Just as we cannot criticize the use of asbestos in constructing Hanford (although we may wish they hadn't used so much of it), we

  19. Atomic Energy Act and ordinances. 8. ed.

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The new issue of the text contains the Atomic Energy Act (AtG) in its new wording of the announcement of 31 Oct 76, the new wording of the ordinances put in effect in 1977: Atomic procedure ordinance (AtVfV), radiation protection ordinance (SSU), and atomic financial security ordinance (AtDeckV); furthermore the x-ray ordinance (RoeV) of 1978 in its wording which has been changed by the radiation protection ordinance. Also printed are the cost ordinance (AtKostV) of 1971, the food irradiation ordinance (LebensmBestrV) in the wording of 1975 and the medicine ordinance (ArzneimV) in the wording of 1971. An addition was made by adding to the liability laws the Paris agreement (PUE) on the liability towards third persons in the field of nuclear energy in the wording of the announcement of 5 Feb 76. (orig./HP) [de

  20. Introduction to the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report discusses the Site mission and provides general information about the site. The U.S. DOE has established a new mission for Hanford including: Management of stored wastes, environmental restoration, research and development, and development of new technologies. The Hanford Reservation is located in south central Washington State just north of the confluence of the Snake and Yakima Rivers with the Columbia River. The approximately 1,450 square kilometers which comprises the Hanford Site, with restricted public access, provides a buffer for the smaller areas within the site which have historically been used for the production of nuclear materials, radioactive waste storage, and radioactive waste disposal.