WorldWideScience

Sample records for handle special nuclear

  1. On-site transportation and handling of uranium-233 special nuclear material: Preliminary hazards and accident analysis. Final

    International Nuclear Information System (INIS)

    Solack, T.; West, D.; Ullman, D.; Coppock, G.; Cox, C.

    1995-01-01

    U-233 Special Nuclear Material (SNM) currently stored at the T-Building Storage Areas A and B must be transported to the SW/R Tritium Complex for repackaging. This SNM is in the form of oxide powder contained in glass jars which in turn are contained in heat sealed double polyethylene bags. These doubled-bagged glass jars have been primarily stored in structural steel casks and birdcages for approximately 20 years. The three casks, eight birdcages, and one pail/pressure vessel will be loaded onto a transport truck and moved over an eight day period. The Preliminary Hazards and Accident Analysis for the on-site transportation and handling of Uranium-233 Special Nuclear Material, documented herein, was performed in accordance with the format and content guidance of DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, dated July 1994, specifically Chapter Three, Hazard and Accident Analysis. The Preliminary Hazards Analysis involved detailed walkdowns of all areas of the U-233 SNM movement route, including the T-Building Storage Area A and B, T-Building truck tunnel, and the roadway route. Extensive discussions were held with operations personnel from the Nuclear Material Control Group, Nuclear Materials Accountability Group, EG and G Mound Security and the Material Handling Systems Transportation Group. Existing documentation related to the on-site transportation of hazardous materials, T-Building and SW/R Tritium Complex SARs, and emergency preparedness/response documentation were also reviewed and analyzed to identify and develop the complete spectrum of energy source hazards

  2. State fund of decommissioning of nuclear installations and handling of spent nuclear fuels and nuclear wastes (Slovak Republic)

    International Nuclear Information System (INIS)

    Kozma, Milos

    2006-01-01

    State Fund for Decommissioning of Nuclear Installations and Handling of Spent Nuclear Fuels and Nuclear Wastes was established by the Act 254/1994 of the National Council of the Slovak Republic as a special-purpose fund which concentrates financial resources intended for decommissioning of nuclear installations and for handling of spent nuclear fuels and radioactive wastes. The Act was amended in 2000, 2001 and 2002. The Fund is legal entity and independent from operator of nuclear installations Slovak Power Facilities Inc. The Fund is headed by Director, who is appointed and recalled by Minister of Economy of the Slovak Republic. Sources of the Fund are generated from: a) contributions by nuclear installation operators; b) penalties imposed by Nuclear Regulatory Authority of the Slovak Republic upon natural persons and legal entities pursuant to separate regulation; c) bank credits; d) interest on Fund deposits in banks; e) grants from State Budget; f) other sources as provided by special regulation. Fund resources may be used for the following purposes: a) decommissioning of nuclear installations; b) handling of spent nuclear fuels and radioactive wastes after the termination of nuclear installation operation; c) handling of radioactive wastes whose originator is not known, including occasionally seized radioactive wastes and radioactive materials stemming from criminal activities whose originator is not known, as confirmed by Police Corps investigator or Ministry of Health of the Slovak Republic; d) purchase of land for the establishment of nuclear fuel and nuclear waste repositories; e) research and development in the areas of decommissioning of nuclear installations and handling of nuclear fuels and radioactive wastes after the termination of the operation of nuclear installations; f) selection of localities, geological survey, preparation, design, construction, commissioning, operation and closure of repositories of spent nuclear fuels and radioactive wastes

  3. Do nuclear engineering educators have a special responsibility

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Each 1000 MW(e) reactor in equilibrium contains 15 x 10 9 Ci of radioactivity. To handle this material safety requires an extremely high level of expertise and commitment - in many respects, an expertise that goes beyond what is demanded of any other technology. If one grants that nuclear engineering is more demanding than other engineering because the price of failure is greater, one must ask how can we inculcate into the coming generations of nuclear engineers a full sense of the responsibility they bear in practising their profession. Clearly a first requirement is that all elements of the nuclear community -utility executives, equipment engineers, operating engineers, nuclear engineers, administrators - must recognize and accept the idea that nuclear energy is something special, and that therefore its practitioners must be special. This sense must be instilled into young nuclear engineers during their education. A special responsibility therefore devolves upon nuclear engineering educators: first, to recognize the special character of their profession, and second, to convey this sense to their students. The possibility of institutionalizing this sense of responsibility by establishing a nuclear Hippocratic Oath or special canon of ethics for nuclear engineers ought to be discussed within the nuclear community. (author)

  4. Specialization and Flexibility in Port Cargo Handling

    Directory of Open Access Journals (Sweden)

    Hakkı KİŞİ

    2016-11-01

    Full Text Available Cargo handling appears to be the fundamental function of ports. In this context, the question of type of equipment and capacity rate need to be tackled with respect to cargo handling principles. The purpose of this study is to discuss the types of equipment to be used in ports, relating the matter to costs and capacity. The question is studied with a basic economic theoretical approach. Various conditions like port location, size, resources, cargo traffic, ships, etc. are given parameters to dictate the type and specification of the cargo handling equipment. Besides, a simple approach in the context of cost capacity relation can be useful in deciding whether to use specialized or flexible equipment. Port equipment is sometimes expected to be flexible to handle various types of cargo as many as possible and sometimes to be specialized to handle one specific type of cargo. The cases that might be suitable for those alternatives are discussed from an economic point of view in this article. Consequently, effectiveness and efficiency criteria play important roles in determining the handling equipment in ports.

  5. The remote handling of canisters containing nuclear waste in glass at the Savannah River Plant

    International Nuclear Information System (INIS)

    Callan, J.E.

    1986-01-01

    The Defense Waste Processing Facility (DWPF) is a complete production area being constructed at the Savannah River Plant for the immobilization of nuclear waste in glass. The remote handling of canisters filled with nuclear waste in glass is an essential part of the process of the DWPF at the Savannah River Plant. The canisters are filled with nuclear waste containing up to 235,000 curies of radioactivity. Handling and movement of these canisters must be accomplished remotely since they radiate up to 5000 R/h. Within the Vitrification Building during filling, cleaning, and sealing, canisters are moved using standard cranes and trolleys and a specially designed grapple. During transportation to the Glass Waste Storage Building, a one-of-a-kind, specially designed Shielded Canister Transporter (SCT) is used. 8 figs

  6. Autonomous underwater handling system for service, measurement and cutting tasks for the decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Hahn, M.; Haferkamp, H.; Bach, W.; Rose, N.

    1992-01-01

    For about 10 years the Institute for Material Science at the Hanover University has worked on projects of underwater cutting and welding. Increasing tasks to be done in nuclear facilities led to the development of special handling systems to support and handle the cutting tools. Also sensors and computers for extensive and complex tasks were integrated. A small sized freediving handling system, equipped with 2 video cameras, ultrasonic and radiation sensors and a plasma cutting torch for inspection and decommissioning tasks in nuclear facilities is described in this paper. (Author)

  7. Nuclear fuel handling apparatus

    International Nuclear Information System (INIS)

    Andrea, C.; Dupen, C.F.G.; Noyes, R.C.

    1977-01-01

    A fuel handling machine for a liquid metal cooled nuclear reactor in which a retractable handling tube and gripper are lowered into the reactor to withdraw a spent fuel assembly into the handling tube. The handling tube containing the fuel assembly immersed in liquid sodium is then withdrawn completely from the reactor into the outer barrel of the handling machine. The machine is then used to transport the spent fuel assembly directly to a remotely located decay tank. The fuel handling machine includes a decay heat removal system which continuously removes heat from the interior of the handling tube and which is capable of operating at its full cooling capacity at all times. The handling tube is supported in the machine from an articulated joint which enables it to readily align itself with the correct position in the core. An emergency sodium supply is carried directly by the machine to provide make up in the event of a loss of sodium from the handling tube during transport to the decay tank. 5 claims, 32 drawing figures

  8. 7 CFR 1900.156 - Special handling-processing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Special handling-processing. 1900.156 Section 1900... BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE... Assistance to Employees, Relatives, and Associates § 1900.156 Special handling—processing. (a) [Reserved] (b...

  9. Remote handling technology for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Sakai, Akira; Maekawa, Hiromichi; Ohmura, Yutaka

    1997-01-01

    Design and R and D on nuclear fuel cycle facilities has intended development of remote handling and maintenance technology since 1977. IHI has completed the design and construction of several facilities with remote handling systems for Power Reactor and Nuclear Fuel Development Corporation (PNC), Japan Atomic Energy Research Institute (JAERI), and Japan Nuclear Fuel Ltd. (JNFL). Based on the above experiences, IHI is now undertaking integration of specific technology and remote handling technology for application to new fields such as fusion reactor facilities, decommissioning of nuclear reactors, accelerator testing facilities, and robot simulator-aided remote operation systems in the future. (author)

  10. Hoisting appliances and fuel handling equipment at nuclear facilities

    International Nuclear Information System (INIS)

    1987-01-01

    The guide is followed by the Finnish Centre for Radiation and Nuclear Safety (STUK) in regulating hoisting and handling equipment Class 3 at nuclear facilities. The guide is applied e.g. to the following equipment: reactor building overhead cranes, hoisting appliances at nuclear fuel storages, fuel handling machines, other hoisting appliances, which because of nuclear safety aspects are classified in Safety Class 3, and load-bearing devices connected with the above equipment, such as replaceable hoisting tools and auxiliary lifting devices. The regulating of hoisting and handling equipment comprises the following stages: handling of preliminary and final safety analysis reports, inspection of the construction plan, supervision of fabrication and construction inspection, and supervision of initial start-up and commissioning inspection

  11. Hoisting appliances and fuel handling equipment at nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-12-31

    The guide is followed by the Finnish Centre for Radiation and Nuclear Safety (STUK) in regulating hoisting and handling equipment Class 3 at nuclear facilities. The guide is applied e.g. to the following equipment: reactor building overhead cranes, hoisting appliances at nuclear fuel storages, fuel handling machines, other hoisting appliances, which because of nuclear safety aspects are classified in Safety Class 3, and load-bearing devices connected with the above equipment, such as replaceable hoisting tools and auxiliary lifting devices. The regulating of hoisting and handling equipment comprises the following stages: handling of preliminary and final safety analysis reports, inspection of the construction plan, supervision of fabrication and construction inspection, and supervision of initial start-up and commissioning inspection. 36 refs. Translation. The original text is published under the same guide number. The guide is valid from 5 January 1987 and will be in force until further notice.

  12. Robotics and remote handling in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This book presents the papers given at a conference on the use of remote handling equipment in nuclear facilities. Topics considered at the conference included dose reduction, artificial intelligence in nuclear plant maintenance, robotic welding, uncertainty covariances, reactor operation and inspection, reactor maintenance and repair, uranium mining, fuel fabrication, reactor component manufacture, irradiated fuel and radioactive waste management, and radioisotope handling.

  13. 78 FR 24132 - New Mailing Standards for Live Animals and Special Handling

    Science.gov (United States)

    2013-04-24

    ... POSTAL SERVICE 39 CFR Part 111 New Mailing Standards for Live Animals and Special Handling AGENCY... require special handling service for shipments containing certain types of live animals, to limit the mail classes available for use when shipping certain types of live animals, and to expand the mailability of...

  14. Handling and transfer operations for partially-spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, J K [PUSPATI, Kuala Lumpur (Malaysia)

    1983-12-01

    This project involved the handling and transfer of partially-spent reactor fuel from the Oregon State University TRIGA Reactor in Corvallis, Oregon to Hanford Engineering Development Laboratory in Richland, Washington. The method of handling is dependent upon the burn-up history of the fuel elements. Legal constraints imposed by standing U.S. nuclear regulations determine the selection of transport containers, transportation procedures, physical security arrangements in transit and nuclear material accountability documentation. Results of in-house safety evaluations of the project determine the extent of involvement of pertinent nuclear regulatory authorities. The actual handling activities and actual radiation dose rates are also presented.

  15. Handling and transfer operations for partially-spent nuclear fuel

    International Nuclear Information System (INIS)

    Ibrahim, J.K.

    1983-01-01

    This project involved the handling and transfer of partially-spent reactor fuel from the Oregon State University TRIGA Reactor in Corvallis, Oregon to Hanford Engineering Development Laboratory in Richland, Washington. The method of handling is dependent upon the burn-up history of the fuel elements. Legal constraints imposed by standing U.S. nuclear regulations determine the selection of transport containers, transportation procedures, physical security arrangements in transit and nuclear material accountability documentation. Results of in-house safety evaluations of the project determine the extent of involvement of pertinent nuclear regulatory authorities. The actual handling activities and actual radiation dose rates are also presented (author)

  16. Control panel handling of a nuclear simulator

    International Nuclear Information System (INIS)

    Martin Polo, F.; Jimenez Fraustro, L.A.; Banuelos Galindo, A.; Diamant Rubinstein, A.

    1985-01-01

    The handling of the control panels for a Nuclear Simulator for operating training is described. The control panels are handled by a set of intelligent controllers, each with at least two processors (8035 - Communications Controller and a 8085 - Master processor). The Controllers are connected to the main computers (Two dual processor Gould concept 32/6780 and a single processor Gould concept 32/6705) via serial asynchronous channels in a multidrop, star-like architecture. The controllers transmit to the main computers only the changes detected and receive the whole set of output variables as computed by the mathematical models of the Nuclear Plant

  17. Fuel handling and storage systems in nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The scope of this Guide includes the design of handling and storage facilities for fuel assemblies from the receipt of fuel into the nuclear power plant until the fuel departs from that plant. The unirradiated fuel considered in this Guide is assumed not to exhibit any significant level of radiation so that it can be handled without shielding or cooling. This Guide also gives limited consideration to the handling and storage of certain core components. While the general design and safety principles are discussed in Section 2 of this Guide, more specific design requirements for the handling and storage of fuel are given in detailed sections which follow the general design and safety principles. Further useful information is to be found in the IAEA Technical Reports Series No. 189 ''Storage, Handling and Movement of Fuel and Related Components at Nuclear Power Plants'' and No. 198 ''Guide to the Safe Handling of Radioactive Wastes at Nuclear Power Plants''. However, the scope of the Guide does not include consideration of the following: (1) The various reactor physics questions associated with fuel and absorber loading and unloading into the core; (2) The design aspects of preparation of the reactor for fuel loading (such as the removal of the pressure vessel head for a light water reactor) and restoration after loading; (3) The design of shipping casks; (4) Fuel storage of a long-term nature exceeding the design lifetime of the nuclear power plant; (5) Unirradiated fuel containing plutonium

  18. PND fuel handling decontamination program: specialized techniques and results

    International Nuclear Information System (INIS)

    Pan, R.; Hobbs, K.; Minnis, M.; Graham, K.

    1995-01-01

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at the Pickering Nuclear Station, an eight unit CANDU station located about 30 km east of Toronto. This paper presents an overview of the set up and techniques used for cleaning in the PND Fuel Handling Maintenance Facility, and the results achieved. (author)

  19. Spent fuel cask handling at an operating nuclear power plant

    International Nuclear Information System (INIS)

    Pal, A.C.

    1988-01-01

    The importance of spent fuel handling at operating nuclear power plants cannot be overstated. Because of its highly radioactive nature, however, spent fuel must be handled in thick, lead-lined containers or casks. Thus, all casks for spent fuel handling are heavy loads by the US Nuclear Regulatory Commission's definition, and any load-drop must be evaluated for its potential to damage safety-related equipment. Nuclear Regulatory Guide NUREG-0612 prescribes the regulatory requirements of alternative heavy-load-handling methodologies such as (a) by providing cranes that meet the requirements of NUREG-0554, which shall be called the soft path, or (b) by providing protective devices at all postulated load-drop areas to prevent any damage to safety-related equipment, which shall be called the hard path. The work reported in this paper relates to cask handling at New York Power Authority's James A. FitzPatrick (JAF) plant

  20. MHSS: a material handling system simulator

    Energy Technology Data Exchange (ETDEWEB)

    Pomernacki, L.; Hollstien, R.B.

    1976-04-07

    A Material Handling System Simulator (MHSS) program is described that provides specialized functional blocks for modeling and simulation of nuclear material handling systems. Models of nuclear fuel fabrication plants may be built using functional blocks that simulate material receiving, storage, transport, inventory, processing, and shipping operations as well as the control and reporting tasks of operators or on-line computers. Blocks are also provided that allow the user to observe and gather statistical information on the dynamic behavior of simulated plants over single or replicated runs. Although it is currently being developed for the nuclear materials handling application, MHSS can be adapted to other industries in which material accountability is important. In this paper, emphasis is on the simulation methodology of the MHSS program with application to the nuclear material safeguards problem. (auth)

  1. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  2. The training for nuclear fuel handling at EDF

    International Nuclear Information System (INIS)

    Marion, J.P.

    1999-01-01

    The handling of fuel assemblies in a nuclear power plant presents 3 types of work: the taking delivery of fresh fuel, the refueling and the disposal of spent fuel. These operations are realized by teams made up of 3 handling operators and a supervisor. The refueling is made by 3*8-hour teams. These handling operations are important for the nuclear safety, a mishandling can damage the fuel cladding which is the first containment barrier, so a training center (CETIC) has been created. This center was founded in 1986 by EDF and Framatome, the purpose was to validate maintenance procedures, to test handling equipment and to train the teams which work on site. Various training programmes have been set up and a system of qualification degrees has been organized. The CETIC is fitted up with equipment that are full-sized mockups of real installations. Fuel assemblies don't react in a similar way to the different mechanical and neutronic stresses they undergo while they are in the core, they get deformed and the handling operations become more delicate. The mockup fuel assemblies are quite deformed to train the teams and prepare them to face any real situation. (A.C.)

  3. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    International Nuclear Information System (INIS)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems' Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment

  4. Fuel handling grapple for nuclear reactor plants

    International Nuclear Information System (INIS)

    Rousar, D.L.

    1992-01-01

    This patent describes a fuel handling system for nuclear reactor plants. It comprises: a reactor vessel having an openable top and removable cover and containing therein, submerged in water substantially filling the reactor vessel, a fuel core including a multiplicity of fuel bundles formed of groups of sealed tube elements enclosing fissionable fuel assembled into units, the fuel handling system consisting essentially of the combination of: a fuel bundle handling platform movable over the open top of the reactor vessel; a fuel bundle handling mast extendable downward from the platform with a lower end projecting into the open top reactor vessel to the fuel core submerged in water; a grapple head mounted on the lower end of the mast provided with grapple means comprising complementary hooks which pivot inward toward each other to securely grasp a bail handle of a nuclear reactor fuel bundle and pivot backward away from each other to release a bail handle; the grapple means having a hollow cylindrical support shaft fixed within the grapple head with hollow cylindrical sleeves rotatably mounted and fixed in longitudinal axial position on the support shaft and each sleeve having complementary hooks secured thereto whereby each hook pivots with the rotation of the sleeve secured thereto; and the hollow cylindrical support shaft being provided with complementary orifices on opposite sides of its hollow cylindrical and intermediate to the sleeves mounted thereon whereby the orifices on both sides of the hollow cylindrical support shaft are vertically aligned providing a direct in-line optical viewing path downward there-through and a remote operator positioned above the grapple means can observe from overhead the area immediately below the grapple hooks

  5. Control of Nuclear Materials and Special Equipment (Nuclear Safety Regulations)

    International Nuclear Information System (INIS)

    Cizmek, A.; Prah, M.; Medakovic, S.; Ilijas, B.

    2008-01-01

    Based on Nuclear Safety Act (OG 173/03) the State Office for Nuclear Safety (SONS) in 2008 adopted beside Ordinance on performing nuclear activities (OG 74/06) and Ordinance on special conditions for individual activities to be performed by expert organizations which perform activities in the area of nuclear safety (OG 74/06) the new Ordinance on the control of nuclear material and special equipment (OG 15/08). Ordinance on the control of nuclear material and special equipment lays down the list of nuclear materials and special equipment as well as of nuclear activities covered by the system of control of production of special equipment and non-nuclear material, the procedure for notifying the intention to and filing the application for a license to carry out nuclear activities, and the format and contents of the forms for doing so. This Ordinance also lays down the manner in which nuclear material records have to be kept, the procedure for notifying the State administration organization (regulatory body) responsible for nuclear safety by the nuclear material user, and the keeping of registers of nuclear activities, nuclear material and special equipment by the State administration organization (regulatory body) responsible for nuclear safety, as well as the form and content of official nuclear safety inspector identification card and badge.(author)

  6. 37 CFR 201.15 - Special handling of pending claims requiring expedited processing for purposes of litigation.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Special handling of pending... PROVISIONS § 201.15 Special handling of pending claims requiring expedited processing for purposes of... compelling need for the service exists due to pending or prospective litigation, customs matters, or contract...

  7. 7 CFR 1900.154 - Determining the need for special handling.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Determining the need for special handling. 1900.154 Section 1900.154 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT...

  8. Potential application of nuclear remote-handling technology to underwater inspection and maintenance

    International Nuclear Information System (INIS)

    Eccleston, M.J.

    1990-01-01

    Examples are given of remote handling equipment developed within the nuclear industry and employing telemanipulative or telerobotic principles. In telerobotics the nuclear industry has been following a trend towards increased levels of autonomy, delegating operator control to a computer, for example, in resolved rate manipulator tip control, teach-and-repeat control and collision avoidance. Illustrations are presented of remote-handling techniques from the nuclear industry which may be carried over into undersea remote inspection, maintenance and repair systems. (author)

  9. Cable handling system for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Crosgrove, R.O.; Larson, E.M.; Moody, E.

    1982-01-01

    A cable handling system for use in an installation such as a nuclear reactor is disclosed herein along with relevant portions of the reactor which, in a preferred embodiment, is a liquid metal fast breeder reactor. The cable handling system provides a specific way of interconnecting certain internal reactor components with certain external components, through an assembly of rotatable plugs. Moreover, this is done without having to disconnect these components from one another during rotation of the plugs and yet without interfering with other reactor components in the vicinity of the rotating plugs and cable handling system

  10. Material handling for the Los Alamos National Laboratory Nuclear Storage Facility

    International Nuclear Information System (INIS)

    Pittman, P.; Roybal, J.; Durrer, R.; Gordon, D.

    1999-01-01

    This paper will present the design and application of material handling and automation systems currently being developed for the Los Alamos National Laboratory (LANL) Nuclear Material Storage Facility (NMSF) renovation project. The NMSF is a long-term storage facility for nuclear material in various forms. The material is stored within tubes in a rack called a basket. The material handling equipment range from simple lift assist devices to more sophisticated fully automated robots, and are split into three basic systems: a Vault Automation System, an NDA automation System, and a Drum handling System. The Vault Automation system provides a mechanism to handle a basket of material cans and to load/unload storage tubes within the material vault. In addition, another robot is provided to load/unload material cans within the baskets. The NDA Automation System provides a mechanism to move material within the small canister NDA laboratory and to load/unload the NDA instruments. The Drum Handling System consists of a series of off the shelf components used to assist in lifting heavy objects such as pallets of material or drums and barrels

  11. Nuclear assay of coal. Volume 6. Mass flow devices for coal handling

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The mass of coal entering the boiler per unit time is an essential parameter for determinig the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system

  12. Dry cask handling system for shipping nuclear fuel

    International Nuclear Information System (INIS)

    Jones, C.R.

    1975-01-01

    A nuclear facility is described for improved handling of a shipping cask for nuclear fuel. After being brought into the building, the cask is lowered into a tank mounted on a transporter, which then carries the tank into a position under an auxiliary well to which it is sealed. Fuel can then be loaded into or unloaded from the cask via the auxiliary well which is flooded. Throughout the procedure, the cask surface remains dry. (U.S.)

  13. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  14. Core management and fuel handling for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    This Safety Guide supplements and elaborates upon the safety requirements for core management and fuel handling that are presented in Section 5 of the Safety Requirements publication on the operation of nuclear power plants. The present publication supersedes the IAEA Safety Guide on Safety Aspects of Core Management and Fuel Handling, issued in 1985 as Safety Series No. 50-SG-010. It is also related to the Safety Guide on the Operating Organization for Nuclear Power Plants, which identifies fuel management as one of the various functions to be performed by the operating organization. The purpose of this Safety Guide is to provide recommendations for core management and fuel handling at nuclear power plants on the basis of current international good practice. The present Safety Guide addresses those aspects of fuel management activities that are necessary in order to allow optimum reactor core operation without compromising the limits imposed by the design safety considerations relating to the nuclear fuel and the plant as a whole. In this publication, 'core management' refers to those activities that are associated with fuel management in the core and reactivity control, and 'fuel handling' refers to the movement, storage and control of fresh and irradiated fuel. Fuel management comprises both core management and fuel handling. This Safety Guide deals with fuel management for all types of land based stationary thermal neutron power plants. It describes the safety objectives of core management, the tasks that have to be accomplished to meet these objectives and the activities undertaken to perform those tasks. It also deals with the receipt of fresh fuel, storage and handling of fuel and other core components, the loading and unloading of fuel and core components, and the insertion and removal of other reactor materials. In addition, it deals with loading a transport container with irradiated fuel and its preparation for transport off the site. Transport

  15. Analysis of operational possibilities and conditions of remote handling systems in nuclear facilities

    International Nuclear Information System (INIS)

    Hourfar, D.

    1989-01-01

    Accepting the development of the occupational radiation exposure in nuclear facilities, it will be showing possibilities of cost effective reduction of the dose rate through the application of robots and manipulators for the maintenance of nuclear power plants, fuel reprocessing plants, decommissioning and dismantling of the mentioned plants. Based on the experiences about industrial robot applications by manufacturing and manipulator applications by the handling of radioactive materials as well as analysis of the handling procedures and estimation of the dose intensity, it will be defining task-orientated requirements for the conceptual design of the remote handling systems. Furthermore the manifold applications of stationary and mobil arranged handling systems in temporary or permanent operation are described. (orig.) [de

  16. Evaluating safeguards effectiveness against protracted theft of special nuclear material by insiders

    International Nuclear Information System (INIS)

    Al-Ayat, R.A.; Sicherman, A.

    1991-01-01

    The new draft DOE Material Control and Accountability Order 5633.3 requires that facilities handling special nuclear material (SNM) evaluate their effectiveness against protracted theft of SNM. Protracted theft means repeated thefts of small quantities of material to accumulate a goal quantity. In this paper the authors discuss issues regarding the evaluation of safeguards and describe how we are augmenting the Analytic System and Software for Evaluating Safeguards and Security (ASSESS) to provide the user with a tool for evaluating effectiveness against protracted theft. Currently, the Insider module of ASSESS focuses on evaluating the timely detection of abrupt theft attempts by various types of single nonviolent insiders. In this paper we describe the approach we're implementing to augment ASSESS to handle various cases of protracted theft attempts

  17. Interim report spent nuclear fuel retrieval system fuel handling development testing

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  18. Safety for fuel assembly handling in the nuclear ship Mutsu

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1978-01-01

    The safety for fuel assembly handling in the nuclear ship Mutsu is deliberated by the committee of general inspection and repair technique examination for Mutsu. The result of deliberation for both cases of removing fuel assemblies and keeping them in the reactor is outlined. The specification of fuel assemblies, and the nuclides and designed radioactivity of fission products of fuel are described. The possibility of shielding repair work and general safety inspection keeping the fuel assemblies in the reactor, the safety consideration when the fuel assemblies are removed at a quay, in a dry dock and on the ocean, the safety of fuel transport in special casks and fuel storage are explained. It is concluded finally that the safety of shielding repair work and general inspection work is secured when the fuel assemblies are kept in the reactor and also when the fuel assemblies are removed from the reactor by cautious working. (Nakai, Y.)

  19. Robotics and remote handling concepts for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    McAffee, Douglas; Raczka, Norman; Schwartztrauber, Keith

    1997-01-01

    This paper summarizes preliminary remote handling and robotic concepts being developed as part of the US Department of Energy's (DOE) Yucca Mountain Project. The DOE is currently evaluating the Yucca Mountain Nevada site for suitability as a possible underground geologic repository for the disposal of high level nuclear waste. The current advanced conceptual design calls for the disposal of more than 12,000 high level nuclear waste packages within a 225 km underground network of tunnels and emplacement drifts. Many of the waste packages may weigh as much as 66 tonnes and measure 1.8 m in diameter and 5.6 m long. The waste packages will emit significant levels of radiation and heat. Therefore, remote handling is a cornerstone of the repository design and operating concepts. This paper discusses potential applications areas for robotics and remote handling technologies within the subsurface repository. It also summarizes the findings of a preliminary technology survey which reviewed available robotic and remote handling technologies developed within the nuclear, mining, rail and industrial robotics and automation industries, and at national laboratories, universities, and related research institutions and government agencies

  20. 10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...

  1. Storage, handling and movement of fuel and related components at nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    The report describes in general terms the various operations involved in the handling of fresh fuel, irradiated fuel, and core components such as control rods, neutron sources, burnable poisons and removable instruments. It outlines the principal safety problems in these operations and provides the broad safety criteria which must be observed in the design, operation and maintenance of equipment and facilities for handling, transferring, and storing nuclear fuel and core components at nuclear power reactor sites

  2. Handling and carrying head for nuclear fuel assemblies and installation including this head

    International Nuclear Information System (INIS)

    Artaud, R.; Cransac, J.P.; Jogand, P.

    1986-01-01

    The present invention proposes a handling and carrying head ensuring efficiently the cooling of the nuclear fuel asemblies it transports so that any storage in liquid metal in a drum within or adjacent the reactor vessel is suppressed. The invention claims also a nuclear fuel handling installation including the head; it allows a longer time between loading and unloading campaigns and the space surrounding the reactor vessel keeps free without occupying a storage zone within the vessel [fr

  3. Survey of technology for decommissioning of nuclear fuel cycle facilities. 8. Remote handling and cutting techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Ishijima, Noboru [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1999-03-01

    In nuclear fuel cycle facility decommissioning and refurbishment, the remote handling techniques such as dismantling, waste handling and decontamination are needed to reduce personnel radiation exposure. The survey research for the status of R and D activities on remote handling tools suitable for nuclear facilities in the world and domestic existing commercial cutting tools applicable to decommissioning of the facilities was conducted. In addition, the drive mechanism, sensing element and control system applicable to the remote handling devices were also surveyed. This report presents brief surveyed summaries. (H. Itami)

  4. The handling of nuclear emergencies in Argentina

    International Nuclear Information System (INIS)

    Hernandez, Daniel; Jordan, Osvaldo; Kunst, Juan; Bruno, Hector

    2008-01-01

    Full text: In 1998, the Executive signed the decree 1390, which defined the scope and the procedures corresponding to the Nuclear Activity Law. In this decree, the new functions of the Nuclear Regulatory Authority (ARN) are described, being the most important related to preparation and response for a nuclear emergency the following ones: 1) ARN must provide protection from harmful effects of ionizing radiations under normal conditions and emergency situations; 2) ARN must advise the Executive in case of radiological and nuclear emergencies; 3) ARN shall establish the criteria for the emergency plans of the facilities and train the members of neighbor public to the facilities in case of nuclear emergencies; 4) The emergency plans developed by local, provincial and national authorities must be approved by the ARN; 5) ARN shall lead the actions within the area covered by the emergency plans of the facilities. Security Forces and the Representatives of Civil Institutions shall report the designated ARN officer. The ARN recognized immediately the responsibility imposed by this law and, at the same time, the opportunity of improving the handling of emergencies through a centralized direction of the operations. Under this frame, ARN created the Radiological Emergencies Intervention System (SIER) with the goal of taking charge of the preparation and the handling of emergency situations. From the beginning, the purpose of the SIER was to improve the preparation and response to nuclear emergencies in a regular form, bearing in mind the cultural and socioeconomic situation of the country, as well as the local peculiarities. The first steep to achieve such a target was to gain the confidence of other organizations included in the response on the ARN technical and operational aptitude to lead the actions inside the emergency area and, later, to establish the pertinent arrangements. The strategy chosen by ARN to respond to nuclear emergencies consists in establishing an expert

  5. Nuclear assay of coal. Volume 6. Mass flow devices for coal handling. Final report

    International Nuclear Information System (INIS)

    Gozani, T.; Elias, E.; Bevan, R.

    1980-04-01

    The mass of coal entering the boiler per unit time is an essential parameter for determining the total rate of heat input. The mass flow rate of coal on a conveyor belt is generally determined as a product of the instantaneous mass of material on a short section of the belt and the belt velocity. Belt loading could be measured by conventional transducers incorporating mechanical or electromechanical weighers or by gamma-ray attenuation gauge. This report reviews the state of the art in mass flow devices for coal handling. The various methods are compared and commented upon. Special design issues are discussed relative to incorporating a mass flow measuring device in a Continuous On-Line Nuclear Analysis of Coal (CONAC) system

  6. TMI-2 [Three Mile Island Nuclear Power Station] fuel canister and core sample handling equipment used in INEL hot cells

    International Nuclear Information System (INIS)

    McConnell, J.W. Jr.; Shurtliff, W.T.; Lynch, R.J.; Croft, K.M.; Whitmill, L.J.; Allen, S.M.

    1987-01-01

    This paper describes the specialized remote handling equipment developed and used at the Idaho National Engineering Laboratory (INEL) to handle samples obtained from the core of the damaged Unit 2 reactor at Three Mile Island Nuclear Power Station (TM-2). Samples of the core were removed, placed in TMI-2 fuel canisters, and transported to the INEL. Those samples will be examined as part of the analysis of the TMI-2 accident. The equipment described herein was designed for removing sample materials from the fuel canisters, assisting with initial examination, and processing samples in preparation for detailed examinations. The more complex equipment used microprocessor remote controls with electric motor drives providing the required force and motion capabilities. The remaining components were unpowered and manipulator assisted

  7. Handling final storage of unreprocessed spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-01-01

    The present second report from KBS describes how the safe final storage of spent unreprocessed nuclear fuel can be implemented. According to the Swedish Stipulation Law, the owner must specify in which form the waste is to be stored, how final storage is to be effected, how the waste is to be transported and all other aspects of fuel handling and storage which must be taken into consideration in judging whether the proposed final storage method can be considered to be absolutely safe and feasible. Thus, the description must go beyond general plans and sketches. The description is therefore relatively detailed, even concerning those parts which are less essential for evaluating the safety of the waste storage method. For those parts of the handling chain which are the same for both alternatives of the Stipulation Law, the reader is referred in some cases to the first report. Both of the alternatives of the Stipulation Law may be used in the future. Handling equipment and facilities for the two storage methods are so designed that a combination in the desired proportions is practically feasible. In this first part of the report are presented: premises and data, a description of the various steps of the handling procedure, a summary of dispersal processes and a safety analysis. (author)

  8. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    Energy Technology Data Exchange (ETDEWEB)

    Fujinaga, H.; Yamazaki, N.; Takebe, N. [Japan Nucelar Fuel Conversion Co., Ltd., Ibaraki (Japan)

    1991-12-31

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  9. Nuclear robotics and remote handling at Harwell Laboratory

    International Nuclear Information System (INIS)

    Abel, E.; Brown, M.H.; Fischer, P.J.; Garlick, D.R.; Hanna, T.T.; Siva, K.V.

    1988-01-01

    After reviewing robotics technology and its possible application in nuclear remote handling systems of the future, six main research topics were identified where particular effort should be made. The Harwell Nuclear Robotics Programme is currently establishing sets of demonstration hardware which will allow generic research to be carried out on telerobotics, systems integration, the man machine interface, communications, servo systems and radiation tolerance. The objectives of the demonstrators are to allow validation of the techniques required for successful active facility applications such as decommissioning, decontamination, refurbishment, maintenance and repair, and to act as training aids to encourage plant designers and operators to adopt developments in new technology. (author)

  10. Development of nuclear fuel microsphere handling techniques and equipment

    International Nuclear Information System (INIS)

    Mack, J.E.; Suchomel, R.R.; Angelini, P.

    1979-01-01

    Considerable progress has been made in the development of microsphere handling techniques and equipment for nuclear applications. Work at Oak Ridge National Laboratory with microspherical fuel forms dates back to the early sixties with the development of the sol-gel process. Since that time a number of equipment items and systems specifically related to microsphere handling and characterization have been identified and developed for eventual application in a remote recycle facility. These include positive and negative pressure transfer systems, samplers, weighers, a blender-dispenser, and automated devices for particle size distribution and crushing strength analysis. The current status of these and other components and systems is discussed

  11. Concerning major items in government ordinance requiring modification of part of enforcement regulation for law relating to control of nuclear material, nuclear fuel and nuclear reactor

    International Nuclear Information System (INIS)

    1989-01-01

    The report describes major items planned to be incorporated into the enforcement regulations for laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The modifications have become necessary for the nation to conclude a nuclear material protection treaty with other countries. The modification include the definitions of 'special nuclear fuel substances' and 'special nuclear fuel substances' and 'special nuclear fuel substances subject to protection'. The modifications require that protective measures be taken when handling and transporting special nuclear fuel substances subject to protection. Transport of special nuclear fuel substances requires approval from the Prime Minister or Transport Minister. Transport of special nuclear fuel substances subject to protection should be conducted after notifying the prefectural Public Safety Commission. Transport of special nuclear fuel substances subject to protection requires the conclusion of arrangements among responsible persons and approval of them from the Prime Minister. (N.K.)

  12. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    International Nuclear Information System (INIS)

    Mattoon, C.M.; Beck, B.R.; Patel, N.R.; Summers, N.C.; Hedstrom, G.W.; Brown, D.A.

    2012-01-01

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it

  13. Generalized Nuclear Data: A New Structure (with Supporting Infrastructure) for Handling Nuclear Data

    Energy Technology Data Exchange (ETDEWEB)

    Mattoon, C.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA (United States); Beck, B.R.; Patel, N.R.; Summers, N.C.; Hedstrom, G.W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA (United States); Brown, D.A. [National Nuclear Data Center, Upton NY (United States)

    2012-12-15

    The Evaluated Nuclear Data File (ENDF) format was designed in the 1960s to accommodate neutron reaction data to support nuclear engineering applications in power, national security and criticality safety. Over the years, the scope of the format has been extended to handle many other kinds of data including charged particle, decay, atomic, photo-nuclear and thermal neutron scattering. Although ENDF has wide acceptance and support for many data types, its limited support for correlated particle emission, limited numeric precision, and general lack of extensibility mean that the nuclear data community cannot take advantage of many emerging opportunities. More generally, the ENDF format provides an unfriendly environment that makes it difficult for new data evaluators and users to create and access nuclear data. The Cross Section Evaluation Working Group (CSEWG) has begun the design of a new Generalized Nuclear Data (or 'GND') structure, meant to replace older formats with a hierarchy that mirrors the underlying physics, and is aligned with modern coding and database practices. In support of this new structure, Lawrence Livermore National Laboratory (LLNL) has updated its nuclear data/reactions management package Fudge to handle GND structured nuclear data. Fudge provides tools for converting both the latest ENDF format (ENDF-6) and the LLNL Evaluated Nuclear Data Library (ENDL) format to and from GND, as well as for visualizing, modifying and processing (i.e., converting evaluated nuclear data into a form more suitable to transport codes) GND structured nuclear data. GND defines the structure needed for storing nuclear data evaluations and the type of data that needs to be stored. But unlike ENDF and ENDL, GND does not define how the data are to be stored in a file. Currently, Fudge writes the structured GND data to a file using the eXtensible Markup Language (XML), as it is ASCII based and can be viewed with any text editor. XML is a meta-language, meaning that it

  14. 10 CFR 74.41 - Nuclear material control and accounting for special nuclear material of moderate strategic...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...

  15. The design of in-cell crane handling systems for nuclear plants

    International Nuclear Information System (INIS)

    Hansford, S.M.; Scott, R.

    1992-01-01

    The reprocessing and waste management facilities at (BNFL's) British Nuclear Fuels Limited's Sellafield site make extensive use of crane handling systems. These range from conventional mechanical handling operations as used generally in industry to high integrity applications through to remote robotic handling operations in radiation environments. This paper describes the design methodologies developed for the design of crane systems for remote handling operations - in-cell crane systems. In most applications the in-cell crane systems are an integral part of the plant process equipment and reliable and safe operations are a key design parameter. Outlined are the techniques developed to achieve high levels of crane system availability for operations in hazardous radiation environments. These techniques are now well established and proven through many years of successful plant operation. A recent application of in-cell crane handling systems design for process duty application is described. The benefits of a systematic design approach and a functionally-based engineering organization are also highlighted. (author)

  16. Gamma spectrometric discrimination of special nuclear materials

    International Nuclear Information System (INIS)

    Dowdall, M.; Mattila, A.; Ramebaeck, H.; Aage, H.K.; Palsson, S.E.

    2012-12-01

    This report presents details pertaining to an exercise conducted as part of the NKS-B programme using synthetic gamma ray spectra to simulate the type of data that may be encountered in the interception of material potentially containing special nuclear materials. A range of scenarios were developed involving sources that may or may not contain special nuclear materials. Gamma spectral data was provided to participants as well as ancillary data and participants were asked, under time constraint, to determine whether or not the data was indicative of circumstances involving special nuclear materials. The situations varied such that different approaches were required in order to obtain the correct result in each context. In the majority of cases participants were able to correctly ascertain whether or not the situations involved special nuclear material. Although fulfilling the primary goal of the exercise, some participants were not in a position to correctly identify with certainty the material involved, Situations in which the smuggled material was being masked by another source proved to be the most challenging for participants. (Author)

  17. Gamma spectrometric discrimination of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Dowdall, M. [Norwegian Radiation Protection Authority (Norway); Mattila, A. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Ramebaeck, H. [Swedish Defence Research Agency, Stockholm (Sweden); Aage, H.K. [Danish Emergency Management Agency, Birkeroed (Denmark); Palsson, S.E. [Icelandic Radiation Safety Authority, Reykjavik (Iceland)

    2012-12-15

    This report presents details pertaining to an exercise conducted as part of the NKS-B programme using synthetic gamma ray spectra to simulate the type of data that may be encountered in the interception of material potentially containing special nuclear materials. A range of scenarios were developed involving sources that may or may not contain special nuclear materials. Gamma spectral data was provided to participants as well as ancillary data and participants were asked, under time constraint, to determine whether or not the data was indicative of circumstances involving special nuclear materials. The situations varied such that different approaches were required in order to obtain the correct result in each context. In the majority of cases participants were able to correctly ascertain whether or not the situations involved special nuclear material. Although fulfilling the primary goal of the exercise, some participants were not in a position to correctly identify with certainty the material involved, Situations in which the smuggled material was being masked by another source proved to be the most challenging for participants. (Author)

  18. Special issue: the nuclear industry in Europe

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    This special issue contains papers on the following topics: French nuclear policy; nuclear energy development in Europe; nuclear diversification; Alsthom-Atlantique in the nuclear field; 1981 nuclear electricity generation; EDF siting policy; the N4 model of the 1300 MW series; Creys-Malville; the nuclear industry in Europe; pumps in the nuclear industry [fr

  19. Revision and partial analysis of the information of Forestall Reserves, Districts of Integrated Handling of renewable natural resources and special handling areas, declared in Colombia

    International Nuclear Information System (INIS)

    Cortes Martinez, Ingrid Vanesa

    2002-01-01

    A revision and a partial analysis is made of the information of Forestall Reserves, Districts of Integrated Handling of renewable natural resources and Areas of Special Handling in Colombia whose main purpose is the conservation and the sustainable handling of the natural resources for the maintenance of the goods and services, derived of the forest, however, these areas are under constant intervention that which has caused the subtraction of considerable regions of the forestall reserves. With this revision and analysis it is looked for to support to the General Address of Ecosystems of the Environment Ministry, with the purpose of impelling the process of consolidation of an upgraded of information system that it guides the classification, handling and administration of these Areas

  20. IAEA to hold special session on nuclear terrorism

    International Nuclear Information System (INIS)

    2001-01-01

    Experts from around the world are meeting at the IAEA this week for an international symposium on nuclear safeguards, verification, and security. A special session on 2 November focuses on the issue of combating nuclear terrorism. The Special Session, which will bring together experts on nuclear terrorism from around the world, will deal with the following issues: The Psychology of terrorism; Intelligence, police and border protection; Guarding nuclear reactors and material from terrorists and thieves; The threat of nuclear terrorism: Nuclear weapons or other nuclear explosive devices; The threat of nuclear terrorism: Intentional dispersal of radioactive material - Sabotage of fixed installations or transport systems; The Legal Framework: Treaties and Conventions, Laws; Regulations and Codes of Practice; IAEA Nuclear Security and Safety Programmes

  1. Decree of the State Office for Nuclear Safety No. 146/1997 of 18 June 1997 specifying activities which have an immediate impact on nuclear safety, and activities which are particularly important with respect to radiation protection, requirements for qualification and professional training, procedures for examining special professional competence and for granting certificates to selected personnel, and the scope and structure of documentation to be approved for permitting the training of selected personnel

    International Nuclear Information System (INIS)

    1997-01-01

    The Decree specifies requirements in the following fields: (a) activities which have an immediate impact on nuclear safety and activities which are particularly important with respect to radiation protection; (b) requirements for the qualification of selected personnel; (c) requirements for professional training of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources who are to gain special professional competence; (d) examination commission; (e) examination of special professional competence of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources; (f) granting permission to perform activities of selected personnel; and (g) scope and structure of documentation required to permit professional training of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources. (P.A.)

  2. Handling nuclear waste over long periods

    International Nuclear Information System (INIS)

    Ancelin, B.; Chenevier, E.

    1983-01-01

    The handling of nuclear waste over long periods throws up new problems, such as the safety for a very long term and the employment of economic logic in order to justify choices involving extended time scales. The result is a very great difficulty of apprehension of the problem by the specialists as well as by the public. A clear policy decision, associated with a coherent administrative organization, will therefore have to make up for an impossible technical-economical optimization of the various possible options. The difficulty of simple technical choices is only going to reinforce this wish; the absence of a global and comparative measuring system is responsible for the fact that in this field the passions often override many of the scientific truths [fr

  3. Online Decision Support System (IRODOS) - an emergency preparedness tool for handling offsite nuclear emergency

    International Nuclear Information System (INIS)

    Vinod Kumar, A.; Oza, R.B.; Chaudhury, P.; Suri, M.; Saindane, S.; Singh, K.D.; Bhargava, P.; Sharma, V.K.

    2009-01-01

    A real time online decision support system as a nuclear emergency response system for handling offsite nuclear emergency at the Nuclear Power Plants (NPPs) has been developed by Health, Safety and Environment Group, Bhabha Atomic Research Centre (BARC), Department of Atomic Energy (DAE) under the frame work of 'Indian Real time Online Decision Support System 'IRODOS'. (author)

  4. Nuclear fuel handling grapple carriage with self-lubricating bearing

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    Disclosed is a nuclear fuel handling grapple carriage having a bearing with a lubricant reservoir that is capable of being refilled when the bearing and reservoir are submerged in a lubricant pool. The lubricant reservoir supplies lubricant to the bearing while the bearing allows a small amount of lubricant to leak passed appropriately placed seals creating a positive out flow of lubricant thereby preventing foreign material from entering the bearing

  5. Estimation methods for special nuclear materials holdup

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Picard, R.R.

    1984-01-01

    The potential value of statistical models for the estimation of residual inventories of special nuclear materials was examined using holdup data from processing facilities and through controlled experiments. Although the measurement of hidden inventories of special nuclear materials in large facilities is a challenging task, reliable estimates of these inventories can be developed through a combination of good measurements and the use of statistical models. 7 references, 5 figures

  6. Considerations about the licensing process of special nuclear industrial facilities

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, M.A., E-mail: talaricomarco@hotmail.com [Marinha do Brasil, Rio de Janeiro, RJ (Brazil). Coordenacao do Porgrama de Submarino com Propulsao Nuclear; Melo, P.F. Frutuoso e [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  7. Considerations about the licensing process of special nuclear industrial facilities

    International Nuclear Information System (INIS)

    Talarico, M.A.; Melo, P.F. Frutuoso e

    2015-01-01

    This paper brings a discussion about the challenges involved in the development of a new kind of nuclear facility in Brazil, a naval base for nuclear submarines, with attention to the licensing process and considerations about the risk-informed decision making application to the licensing process. Initially, a model of such a naval base, called in this work, special industrial facility, is proposed, with its systems and respective sets of basic requirements, in order to make it possible the accomplishment of the special industrial facility support function to the nuclear submarine. A discussion about current challenges to overcome in this project is presented: the challenges due to the new characteristics of this type of nuclear facility; existence of several interfaces between the special industrial facilities systems and nuclear submarine systems in design activities; lack of specific regulation in Brazil to allow the licensing process of special industrial facilities by the nuclear safety authority; and comments about the lack of information from reference nuclear facilities, as is the case with nuclear power reactors (for example, the German Grafenrheinfeld nuclear plant is the reference plant for the Brazilian Angra 2 nuclear plant). Finally, in view of these challenges, an analysis method of special industrial facility operational scenarios to assist the licensing process is proposed. Also, considerations about the application of risk-informed decision making to the special industrial facility activity and licensing process in Brazil are presented. (author)

  8. Special nuclear material simulation device

    Science.gov (United States)

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  9. Towards a better mastery of risks in the handling of nuclear fuel: the contributions of ergonomics

    International Nuclear Information System (INIS)

    Samson, L.

    1999-01-01

    Nuclear fuel is handled under water in the reactor pool using procedures that have yet to be automated. The knowledge and skill of the operators is therefore of prime importance. Ergonomic consultants have prepared a report on the problems facing the operators when handling nuclear fuel? These problems have been addressed by the installation of a new system to detect and prevent incorrect operator commands and to provide software assistance in planning movements together with diagnostic functions. The new system has resulted in considerable time savings and a reduction in the risk of error. However, it has been necessary to modify the control software in the light of the handling strategies traditionally used by the operators. (author)

  10. Man/machine interface for a nuclear cask remote handling control station: system design requirements

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.; Draper, J.V.

    1984-01-01

    Design requirements are presented for a control station of a proposed semi-automated facility for remote handling of nuclear waste casks. Functional and operational man/machine interface: controls, displays, software format, station architecture, and work environment. In addition, some input is given to the design of remote sensing systems in the cask handling areas. 18 references, 9 figures, 12 tables

  11. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2000-01-01

    As a result of decommissioning of water-cooled graphite-moderated reactors, a large amount of rad-waste in the form of graphite stack fragments is generated (on average 1500-2000 tons per reactor). That is why it is essentially important, although complex from the technical point of view, to develop advanced technologies based on up-to-date remotely-controlled systems for unmanned dismantling of the graphite stack containing highly-active long-lived radionuclides and for conditioning of irradiated graphite (IG) for the purposes of transportation and subsequent long term and ecologically safe storage either on NPP sites or in special-purpose geological repositories. The main characteristics critical for radiation and nuclear hazards of the graphite stack are as follows: the graphite stack is contaminated with nuclear fuel that has gotten there as a result of the accidents; the graphite mass is 992 tons, total activity -6?104 Ci (at the time of unit shutdown); the fuel mass in the reactor stack amounts to 100-140 kg, as estimated by IPPE and RDIPE, respectively; γ-radiation dose rate in the stack cells varies from 4 to 4300 R/h, with the prevailing values being in the range from 50 to 100 R/h. In this paper the traditional methods of rad-waste handling as bituminization technology, cementing technology are discussed. In terms of IG handling technology two lines were identified: long-term storage of conditioned IG and IG disposal by means of incineration. The specific cost of graphite immobilization in a radiation-resistant polymeric matrix amounts to -2600 USD per 1 t of graphite, whereas the specific cost of immobilization in slag-stone containers with an inorganic binder (cement) is -1400 USD per 1 t of graphite. On the other hand, volume of conditioned IG rad-waste subject for disposal, if obtained by means of the first technology, is 2-2.5 times less than the volume of rad-waste generated by means of the second technology. It can be concluded from the above that

  12. Specialized equipment needs for the transportation of radioactive material

    International Nuclear Information System (INIS)

    Condrey, D.; Lambert, M.

    1998-01-01

    To ensure the safe and reliable transportation of radioactive materials and components, from both the front and back-end of the nuclear fuel cycle, a transport management company needs three key elements: specialized knowledge, training and specialized equipment. These three elements result, in part, from national and international regulations which require specialized handling of all radioactive shipments. While the reasons behind the first two elements are readily apparent, the role of specialized equipment is often not considered until too late shipment process even though it plays an integral part of any radioactive material transport. This paper will describe the specialized equipment needed to transport three of the major commodities comprising the bulk of international nuclear transports: natural uranium (UF6), low enriched uranium (UF6) and fresh nuclear fuel. (authors)

  13. Transport, acceptance, storage and handling of the itens of nuclear power plants

    International Nuclear Information System (INIS)

    1989-01-01

    The norm aiming to establish the requirements applied to workers or organizations which participate of the activities of transport, acceptance, storage and handling of important itens for safety of nuclear power plants, is presented. The established requirements treat of protection and control necessary to assure that the quality of important itens for safety be it preserved from the end of fabrication until their incorporation to nuclear power plant. (M.C.K.) [pt

  14. 10 CFR 70.11 - Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...

  15. Special requirements for bolting material for nuclear and other special applications

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A specification that provides special requirements for bolting material for use in nuclear and other special applications is presented. The requirements of the specification are supplemental to the requirements of the basic material specifications and they include tempering, welding, elimination of surface defects, certification and identification, quality assurance and various examination methods

  16. Handling and disposal of radioactive scrap

    International Nuclear Information System (INIS)

    Witte, K.

    1975-01-01

    The 9th special course for journalists was in this year on the highly topical subject 'handling and disposal of radioactive scrap'. It was held on the 26th and 27th May 1975 at the Nuclear Research Centre at Karlsruhe. These courses have been held for several years by the Nuclear Research Association (GfK) in the School for Nuclear Engineering and are intended mainly to contribute to journalists of the daily papers, radio and television who are 'not previously technically trained' an introduction into the difficult subject matter of nuclear engineering with its ancillary areas. In view of the many discussions carried on in public the course is further intended to achieve that the problems discussed are treated by means of publicity which is free from emotion. In the journalists' course this year specially selected experts gave technical information prepared for general information as to how radioactive waste can be safely worked up and then finally stored without adverse effects on the environment. Since the interesting collection of questions was put forward in a compressed form and at the same time clearly presented, the author reports on the different separate subjects on which lectures were given. (orig.) [de

  17. Robotic control architecture development for automated nuclear material handling systems

    International Nuclear Information System (INIS)

    Merrill, R.D.; Hurd, R.; Couture, S.; Wilhelmsen, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) is engaged in developing automated systems for handling materials for mixed waste treatment, nuclear pyrochemical processing, and weapon components disassembly. In support of these application areas there is an extensive robotic development program. This paper will describe the portion of this effort at LLNL devoted to control system architecture development, and review two applications currently being implemented which incorporate these technologies

  18. Some political issues related to future special nuclear materials production

    International Nuclear Information System (INIS)

    Peaslee, A.T. Jr.

    1981-08-01

    The Federal Government must take action to assure the future adequate supply of special nuclear materials for nuclear weapons. Existing statutes permit the construction of advanced defense production reactors and the reprocessing of commercial spent fuel for the production of special materials. Such actions would not only benefit the US nuclear reactor manufacturers, but also the US electric utilities that use nuclear reactors

  19. Nuclear Materials Management. Proceedings of the Symposium on Nuclear Materials Management

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-02-15

    An increasing number of countries are using nuclear materials which, because of their high value and the potential hazards involved, require special methods of handling. To discuss these and to provide a forum at which different systems for achieving the necessary economy and safety could be compared, the International Atomic Energy Agency held a Symposium at Vienna on Nuclear Materials Management from 30 August to 3 September, 1965. It was attended by 115 participants from 19 Member States and two international organizations. Nuclear materials are already being used on an industrial scale and their high cost demands close and continuous control to ensure that they are delivered precisely on time and that they are used to the fullest possible extent before they are withdrawn from service. Routine industrial methods of material control and verification are widely used to ensure safe and economical operation and handling in nuclear power stations, in fuel-element fabrication and reprocessing plants, and in storage facilities. In addition special refinements are needed to take account of the value and the degree of purity required of nuclear materials. Quality as well as quantity has to be checked thoroughly and the utmost economy in processing is necessary. The radioactivity of the material poses special problems of handling and storage and creates a potential hazard to health. A further problem is that of criticality. These dangers and the means of averting them are well understood, as is evidenced by the outstandingly good safety record of the atomic energy industry. But besides accommodating all these special problems, day-to-day procedures must be simple enough to fit in with industrial conditions. Many of the 58 papers presented at the Symposium emphasized that records, checks, measurements and handling precautions, if suitably devised, provide the control vital to efficient operation, serve as checks against loss or waste of valuable materials and help meet the

  20. General principles of the nuclear criticality safety for handling, processing and transportation fissile materials in the USSR

    International Nuclear Information System (INIS)

    Vnukov, V.S.; Rjazanov, B.G.; Sviridov, V.I.; Frolov, V.V.; Zubkov, Y.N.

    1991-01-01

    The paper describes the general principles of nuclear criticality safety for handling, processing, transportation and fissile materials storing. Measures to limit the consequences of critical accidents are discussed for the fuel processing plants and fissile materials storage. The system of scientific and technical measures on nuclear criticality safety as well as the system of control and state supervision based on the rules, limits and requirements are described. The criticality safety aspects for various stages of handling nuclear materials are considered. The paper gives descriptions of the methods and approaches for critical risk assessments for the processing facilities, plants and storages. (Author)

  1. Evolution of a test article handling system for the SP-100 GES test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Davies, S.M.

    1987-01-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the nuclear assembly test article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operation. The test site operator, working in conjunction with the test article supplier, developed and evaluated several handling concepts resulting in the selection of a reference test article handling system. The development of the reference concept for the handling system is presented

  2. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  3. Classification and handling of non-conformance item of nuclear class equipment during manufacture phase

    International Nuclear Information System (INIS)

    Wang Ruiping

    2001-01-01

    Based on inspection experiences in years on nuclear class equipment manufacturing, the author discusses the classification and handling of non-conformance items occurred during equipment manufacturing, and certain technical considerations are presented

  4. Fuel handling, reprocessing, and waste and related nuclear data aspects

    International Nuclear Information System (INIS)

    Kuesters, H.; Lalovic, M.; Wiese, H.W.

    1979-06-01

    The essential processes in the out-of-pile nuclear fuel cycle are described, i.e. mining and milling of uranium ores, enrichment, fuel fabrication, storage, transportation, reprocessing of irradiated fuel, waste treatment and waste disposal. The aspects of radiation (mainly gammas and neutrons) and of heat production, as well as special safety considerations are outlined with respect to their potential operational impacts and long-term hazards. In this context the importance of nuclear data for the out-of-pile fuel cycle is discussed. Special weight is given to the LWR fuel cycle including recycling; the differences of LMFBR high burn-up fuel with large PuO 2 content are described. The HTR fuel cycle is discussed briefly as well as some alternative fuel cycle concepts. (orig.) [de

  5. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    Qu Guopu; Guo Lanying

    1999-01-01

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  6. Spent nuclear fuel shipping cask handling capabilities of commercial light water reactors

    International Nuclear Information System (INIS)

    Daling, P.M.; Konzek, G.J.; Lezberg, A.J.; Votaw, E.F.; Collingham, M.I.

    1985-04-01

    This report describes an evaluation of the cask handling capabilities of those reactors which are operating or under construction. A computerized data base that includes cask handling information was developed with information from the literature and utility-supplied data. The capability of each plant to receive and handle existing spent fuel shipping casks was then evaluated. Modal fractions were then calculated based on the results of these evaluations and the quantities of spent fuel projected to be generated by commercial nuclear power plants through 1998. The results indicated that all plants are capable of receiving and handling truck casks. Up to 118 out of 130 reactors (91%) could potentially handle the larger and heavier rail casks if the maximum capability of each facility is utilized. Design and analysis efforts and physical modifications to some plants would be needed to achieve this high rail percentage. These modifications would be needed to satisfy regulatory requirements, increase lifting capabilities, develop rail access, or improve other deficiencies. The remaining 12 reactors were determined to be capable of handling only the smaller truck casks. The percentage of plants that could receive and handle rail casks in the near-term would be reduced to 64%. The primary reason for a plant to be judged incapable of handling rail casks in the near-term was a lack of rail access. The remaining 36% of the plants would be limited to truck shipments. The modal fraction calculations indicated that up to 93% of the spent fuel accumulated by 1998 could be received at federal storage or disposal facilities via rail (based on each plant's maximum capabilities). If the near-term cask handling capabilities are considered, the rail percentage is reduced to 62%

  7. Nuclear liability claims handling and costs - Germany and some comparative solutions

    International Nuclear Information System (INIS)

    Harbruecker, D.

    2000-01-01

    Comparison of legal status in Central Europe: coverage by insurance and State intervention, coverage of legal expenses and interests on awards technical problems of claims handing after a nuclear incident: guidelines to be prepared by insurer before and not after an incident occurred, demands on provider of financial security claims handling for part guaranteed by State to be transferred to insurer, necessary regulations of such arrangements (author)

  8. Annual report on strategic special nuclear material inventory differences

    International Nuclear Information System (INIS)

    1991-01-01

    This report of unclassified Inventory Difference (ID's) covers the twelve months from April 1, 1989 through March 31, 1990 for all key Department of Energy (DOE) and DOE contractor operated facilities possessing strategic special nuclear material. Classified information is not included in this report. This classified information includes data for the Rocky Flats and Y-12 nuclear weapons production facilities or facilities under ID investigation. However, classified ID data from such facilities receive the same scrutiny and analyses was the included data. The data in this report have been prepared and reviewed by DOE contractors, field offices, and Headquarters. When necessary, special investigations have been performed in addition to these reviews: This ID data, explanations, reviews, and any additional special investigations, together with the absence of physical indications of any theft attempt, support a finding that no theft or diversion of significant quantities of strategic special nuclear material has occurred in DOE facilities during the twelve-month period covered by this report

  9. Regulation on control of nuclear fuel materials

    International Nuclear Information System (INIS)

    Ikeda, Kaname

    1976-01-01

    Some comment is made on the present laws and the future course of consolidating the regulation of nuclear fuel materials. The first part gives the definitions of the nuclear fuel materials in the laws. The second part deals with the classification and regulation in material handling. Refinement undertaking, fabrication undertaking, reprocessing undertaking, the permission of the government to use the materials, the permission of the government to use the materials under international control, the restriction of transfer and receipt, the reporting, and the safeguard measures are commented. The third part deals with the strengthening of regulation. The nuclear fuel safety deliberation special committee will be established at some opportunity of revising the ordinance. The nuclear material safeguard special committee has been established in the Atomic Energy Commission. The last part deals with the future course of legal consolidation. The safety control will be strengthened. The early investigation of waste handling is necessary, because low level solid wastes are accumulating at each establishment. The law for transporting nuclear materials must be consolidated as early as possible to correspond to foreign transportation laws. Physical protection is awaiting the conclusions of the nuclear fuel safeguard special committee. The control and information systems for the safeguard measures must be consolidated in the laws. (Iwakiri, K.)

  10. Evolution of a test article handling system for the SP-100 ground engineering system test

    International Nuclear Information System (INIS)

    Shen, E.J.; Schweiger, L.J.; Miller, W.C.; Gluck, R.; Devies, S.M.

    1987-04-01

    A simulated space environment test of a flight prototypic SP-100 reactor, control system, and flight shield will be conducted at the Hanford Engineering Development Laboratory (HEDL). The flight prototypic components and the supporting primary heat removal system are collectively known as the Nuclear Assembly Test Article (TA). The unique configuration and materials of fabrication for the Test Article require a specialized handling facility to support installation, maintenance, and final disposal operations. Westinghouse Hanford Company, the Test Site Operator, working in conjunction with General Electric Company, the Test Article supplier, developed and evaluated several handling concepts resulting in the selection of a reference Test Article Handling System. The development of the reference concept for the handling system is presented

  11. Nuclear hydrogen production and its safe handling

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Kim, Kwang-Rag; Ahn, Do-Hee; Lee, Minsoo; Chang, Jong Hwa

    2003-01-01

    An overview of the hydrogen related research presently undertaken at the Korea Atomic Energy Research Institute are presented. These encompass nuclear hydrogen production, hydrogen storage, and the safe handling of hydrogen, High temperature gas-cooled reactors can play a significant role, with respect to large-scale hydrogen production, if used as the provider of high temperature heat in fossil fuel conversion or thermochemical cycles. A variety of potential hydrogen production methods for high temperature gas-cooled reactors were analyzed. They are steam reforming of natural gas, thermochemical cycles, etc. The produced hydrogen should be stored safely. Titanium metal was tested primarily because its hydride has very low dissociation pressures at normal storage temperatures and a high capacity for hydrogen, it is easy to prepare and is non-reactive with air in the expected storage conditions. There could be a number of potential sources of hydrogen evolution risk in a nuclear hydrogen production facility. In order to reduce the deflagration detonation it is necessary to develop hydrogen control methods that are capable of dealing with the hydrogen release rate. A series of experiments were conducted to assess the catalytic recombination characteristics of hydrogen in an air stream using palladium catalysts. (author)

  12. A fiber optic link for the remote handling in nuclear environment

    International Nuclear Information System (INIS)

    Breuze, G.; Carnet, B.; Friant, A.; Blanc, F.; Lordet, J.; Boisde, G.

    1988-01-01

    At CEA a R/D program is running to improve performances of servomanipulators used in nuclear fuel reprocessing plants. Present work gives the main environmental parameters (gamma rays exposition, temperature) and shows the basis of the digital link designed to remote-handle such a manipulator. Up to 10 5 Gy behavior of optical fibers and electronic components was studied. Two different optical cables were built, one for the long link (100 m), the second to set in an especially designed winding unwinding wheel. Six way permanent or remote-handle connectors were developed to connect optical interfaces and a leaktight penetration. Measured budget of the link taking into account efficient photoblesching of the pure silica core fiber and influence of gamma rays on the slave interface is presented [fr

  13. Federal Republic of Germany R and D programme: A special issue of the journal radioactive waste management and the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Merz, E.R.

    1986-01-01

    This book examines the issues of radioactive waste management and the nuclear fuel cycle in the Federal Republic of Germany. Topics considered include the challenges of waste handling and disposal, the borosilicate glass for Pamela, the treatment and conditioning of transuranelement bearing wastes in the Federal Republic of Germany, conditioning of low and intermediate level wastes, volume reduction of low level solid radioactive waste by incineration and compaction in the Federal Republic of Germany, MAW test emplacement in boreholes, treatment and disposal of special radioactive wastes comprising tritium, carbon 14, krypton 85 and iodine 129, and the German Project: ''Safety Studies for Nuclear Waste Management: Development of Safety Assessment Methodology for Final Disposal of Nuclear Waste in a Salt Dome

  14. Off-line programming and simulation in handling nuclear components

    International Nuclear Information System (INIS)

    Baker, C.P.

    1993-10-01

    IGRIP was used to create a simulation of the robotic workcell design for handling components at the PANTEX nuclear arms facility. This initial simulation identified problems with the customer's proposed worker layout, and allowed a correction to be proposed. Refinement of the IGRIP simulation allowed the design and construction of a workcell mock-up and accurate off-line programming of the system. IGRIP's off-line programming capabilities are being used to develop the motion control code for the workcell. PNLs success in this area suggests that simulation and off-line programming may be valuable tools for developing robotics in some automation resistant industries

  15. Development of remote handling technology for nuclear fuel cycle facilities in Japan

    International Nuclear Information System (INIS)

    Maekawa, Hiromichi; Sakai, Akira; Miura, Noriaki; Kozaka, Tetsuo; Hamada, Takashi

    2015-01-01

    Remote handling technology has been systematically developed for nuclear fuel cycle facilities in Japan since 1970s, primarily in parallel with the development of reprocessing and HLLW (High Level Liquid Waste) vitrification process. In case of reprocessing and vitrification process to handle highly radioactive and hazardous materials, the most of components are installed in the radiation shielded hot cells and operators are not allowed to enter the work area in the cells for operation and maintenance. Therefore, a completely remote handling system is adopted for the cells to reduce radiation doses of operators and increase the availability of the facility. The hot cells are generally designed considering the scale of components (laboratory, demonstration, or full-scale), the function of the systems (chemical process, material handling, dismantling, decontamination, or chemical analysis), and the environmental conditions (radiation dose rate, airborne concentration, surface contamination, or fume/mist/dust). Throughout our domestic development work for remote handling technology, the concept of the large scale integrated cell has been adopted rather than a number of small scale separated cells, for the reasons to reduce the total installation space and the number of remote handling equipment required for the each cell as much as possible. In our domestic remote maintenance design, several new concepts have been developed, tested, and demonstrated in the Tokai Virtrification Facility (TVF) and the Rokkasho HLLW Vitrification and Storage Facility (K-facility). Layout in the hot cells, the performance of remote handling equipment, and the structure of the in-cell components are important factors for remote maintenance design. In case of TVF (hot tests started in 1995), piping and vessels are prefabricated in the rack modules and installed in two lines on both sides of the cell. These modules are designed to be remotely replaced in the whole rack. Two overhead cranes

  16. How problems of storing waste nuclear fuel are handled in some countries

    International Nuclear Information System (INIS)

    Langhe, R.

    1983-01-01

    This report is a survey of the situation in a number of European countries, in the United States and the Soviet Union as well. In all democratic countries, the nuclear power issue is controversial. Everywhere it has met with opposition and criticism, even in countries where nuclear power is officially promoted. Which of the elements comprised in the nuclear power issue is regarded as most controversial varies from country to country. In some countries, final storage and handling of waste nuclear fuel are referred to this category, in others nuclear power plant safety is claimed to be of greater importance. In the last few months, some public opinion has been coupling the peaceful use of nuclear power with nuclear weapons, thereby deeming the greatest danger to be the risk of unwanted distribution of nuclear weapons. Technical difficulties as well as public opinion have indefinitely adjourned the final solution of the disposal of waste nuclear fuel. This problem is of such magnitude that a final solution is urgently needed. Apart from opinions, the existence of waste nuclear power fuel emitting dangerous radiation for over 40 generations to come, makes it a moral obligation to find a way to spare future generations that heritage. (author)

  17. Special nuclear material information, security classification guidance. Instruction

    International Nuclear Information System (INIS)

    Flickinger, A.

    1982-01-01

    The Instruction reissues DoD Instruction 5210.67, July 5, 1979, and provides security classification guidance for information concerning significant quantities of special nuclear material, other than that contained in nuclear weapons and that used in the production of energy in the reactor plant of nuclear-powered ships. Security classification guidance for these data in the latter two applications is contained in Joint DoE/DoD Nuclear Weapons Classification Guide and Joint DoE/DoD Classification Guide for the Naval Nuclear Propulsion Program

  18. Preparation for commissioning of nuclear plant with reference to British Nuclear Fuels Plc fuel handling plant project

    International Nuclear Information System (INIS)

    Bamber, D.R.

    1987-01-01

    The new Fuel Handling Plant at British Nuclear Fuels Sellafield is part of a Pound 550M complex which provides facilities for the receipt, storage and mechanical preparation of both Magnox and A.G.R. fuel. The plant is very large and complex with considerable use of computer based process control systems, providing for physical and nuclear safety. The preparation of such plant for active commissioning necessitates a great many physical checks and technical evaluations in support of its safety case. This paper describes arrangements for plant commissioning checks, against the regulatory framework and explains the physical preparations necessary for their timely accomplishment. (author)

  19. Plutonium stabilization and handling quality assurance program plan

    International Nuclear Information System (INIS)

    Weiss, E.V.

    1998-01-01

    This Quality Assurance Program Plan (QAPP) identifies project quality assurance requirements for all contractors involved in the planning and execution of Hanford Site activities for design, procurement, construction, testing and inspection for Project W-460, Plutonium Stabilization and Handling. The project encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM

  20. Evaluating safeguards effectiveness against protracted theft of special nuclear material by insiders

    International Nuclear Information System (INIS)

    Al-Ayat, R.; Sicherman, A.

    1991-01-01

    The new draft DOE Material Control and Accountability Order 5633.3 requires that facilities handling special nuclear material (SNM) evaluate their effectiveness against provided theft of SNMProtracted theft means repeated thefts of small quantities of material to accumulate a goal quanfity. To evaluate the safeguards effectiveness against pro thefts, one must addresses several issues: (1) defining relevant time frames for various threat scenarios and delayed detection safeguards: (2) identifying which safeguards come into play more than once because of repeated adversary actions or because of periodic occurrence during the theft time frame (e.g., daily administrative check on presence of material): (3) considering whether the second and subsequent applications of safeguards are different in effectiveness from the first; (4)synthesizing how physical security, material control, and material accountability safeguards combine to provide protection against protracted theft scenarios. In this paper we discuss these issues and describe how we are augmenting the Analytic System and Software for Evaluating Safeguards and Security (ASSESS) to provide the user with a tool for evaluating effectiveness against protracted theft. Currently, the Insider module of ASSESS focuses on evaluating the ''timely'' detection of abrupt theft attempts by various types of single nonviolent insiders. In this paper we describe the approach we're implementing to augment ASSESS to handle various cases of protracted theft attempts

  1. Safe handling and monitoring of tritium in research on nuclear fusion

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu; Naruse, Yuji

    1978-01-01

    An actual condition of technique of safety handling and monitoring of tritium in the laboratory which treated a great quantity of tritium in relation to nuclear fusion, was described. With respect to the technique of safety handling of tritium, an actual condition of the technique in the U.S.A. which had wide experience in treating a great quantity of 3 H was mainly introduced, and it was helpful to a safety measure and a reduction of tritium effluence. Glovebox, hood, and other component machinery and tools for treating 3 H were also introduced briefly. As a monitoring technique, monitoring of indoor air and air exhaust by ionization chamber-type monitor for continuous monitoring of a great quantity of gaseous tritium was mentioned. Next, monitoring of a room, the surfaces of equipments, and draining, internal exposure of the individual, and monitoring of the environment were introduced. (Kanao, N.)

  2. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  3. Illegal handling of radioactive and nuclear materials. Threats and suggestions for measures

    International Nuclear Information System (INIS)

    Oliver, Lena; Melin, Lena; Prawitz, Jan; Ringbom, Anders; Sandstroem, Bjoern; Wigg, Lars; Wirstam, Jens

    2004-01-01

    This project deals with threats from smuggling or other illegal transportation of radioactive or nuclear materials across the borders to Sweden, and with the security of handling such materials in Sweden. The project has included studies of relevant documentation; visits and interviews at industries, hospitals, research institutes and military institutions in Sweden that handle radioactive materials; a pilot study at the Stockholm freeport, where equipment for detection of radioactive materials has been tested for six months; an analysis of incidents reported to the IAEA database; and an analysis of Swedish incidents. The following conclusions are drawn: Stricter rules regarding the physical protection of radiation sources and radioactive materials should be implemented in Sweden. The recommendations recently issued by IAEA should serve as a point of departure for working out such rules

  4. Handling of spent nuclear fuel and final storage of nitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    The following stages of handling and transport of the fuel on its way to final storage are dealt with in the report. 1) The spent nuclear fuel is stored at the power station or in the central fuel storage facility awaiting reprocessing. 2) The fuel is reprocessed, i.e. uranium, plutonium and waste are separated from each other. Reprocessing does not take place in Sweden. The highlevel waste is vitrified and can be sent back to Sweden in the 1990s. 3) Vitrified waste is stored for about 30 years awaiting deposition in the final repository. 4) The waste is encapsulated in highly durable materials to prevent groundwater from coming into contact with the waste glass while the radioactivity of the waste is still high. 5) The canisters are emplaced in a final repository which is built at a depth of 500 m in rock of low permeability. 6) All tunnels and shafts are filled with a mixture of clay and sand of low permeability. A detailed analysis of possible harmful effects resulting from normal acitivties and from conceivable accidents is presented in a special section. (author)

  5. Claims Handling Co-operation between Nuclear Insurance Pools in a Case of Transboundary Damage - Multilateral and Bilateral Agreements in Progress

    International Nuclear Information System (INIS)

    Zaruba, P.

    2008-01-01

    The paper is a short progress report on matters concerning the core reason for insurance of nuclear third party liability - registration, handling, organizing and settling of claims in case of a major nuclear incident, underlining claims handling co-operation between national nuclear insurance pools when damage to health or property becomes international. The contents of this paper is in close relation to information provided on this subject during the 6th International Conference in 2006. Commercial insurance companies have gained extensive experience with handling large scale claims (e.g. after floods and other natural disasters) and are capable in gathering and organizing a high number of professional loss surveyors and adjusters in a very short period of time. In case of nuclear insurance pools co-operation between members (commercial insurance companies) is an added value and can be used practically all over the country bringing into action the network of branches and offices of all the pool members. This advantage is also used in case of cross border claims when it is necessary to gather information and claims advises from a large number of subjects and from many countries, sometimes very far apart. The international network of nuclear insurance pools is an ideal tool for this task and can be mobilized practically at once. Operators of nuclear installations, especially nuclear power plants, do not have the possibility to put aside hundreds of workers to handle claims and are also usually not sufficiently equipped with the necessary know-how. The same goes for governments and government agencies which in many countries guarantee the payments of claims to victims. National nuclear insurance pools are on the other hand well equipped for this task which usually has to be in place for many years after a nuclear incident. Multilateral and bilateral agreements between national nuclear insurance pools and other institutions should be prepared and signed before any

  6. Preference Handling for Artificial Intelligence

    OpenAIRE

    Goldsmith, Judy; University of Kentucky; Junker, Ulrich; ILOG

    2009-01-01

    This article explains the benefits of preferences for AI systems and draws a picture of current AI research on preference handling. It thus provides an introduction to the topics covered by this special issue on preference handling.

  7. Asthma, guides for diagnostic and handling

    International Nuclear Information System (INIS)

    Salgado, Carlos E; Caballero A, Andres S; Garcia G, Elizabeth

    1999-01-01

    The paper defines the asthma, includes topics as diagnostic, handling of the asthma, special situations as asthma and pregnancy, handling of the asthmatic patient's perioperatory and occupational asthma

  8. Semi-annual report on strategic special nuclear material inventory differences

    International Nuclear Information System (INIS)

    1981-08-01

    This eighth periodic semiannual report of inventory differences covers the second six months of fiscal year 1980 (April 1, 1980, through September 30, 1980), for the Department of Energy (DOE) and DOE contractor facilities possessing significant quantities of strategic special nuclear material. Strategic special nuclear material is plutonium or uranium-233 or uranium-235 in material whose uranium-235 content is 20 percent or greater (known as highly enriched uranium). A significant quantity is either 2 kilograms of plutonium or uranium-233 or 5 kilograms of uranium-235 in highly enriched uranium or the appropriate weighted combination. All Inventory Differences reported here have been analyzed, investigated when necessary, and resolved. These data and explanations, together with the absences of physical indications of any theft attempt, support a finding that during this period no theft or diversion of strategic special nuclear material has occurred

  9. The trials and tribulations of purchasing robots for nuclear applications

    International Nuclear Information System (INIS)

    Moore, F.W.; Bowen, W.W.

    1986-01-01

    The adaptation of commercial robots using current robotic technology to handle and manufacture nuclear materials has had its problems. The robots available today were developed primarily to support the automotive or electronics industries. Nuclear material is very heavy, abrasive material with stringent accountability and nuclear safety requirements. The operational space and maintenance constraints have special consideration where the robotic system must operate and be maintained in an environmentally controlled area. The robotic systems of today tend to have limited payload capability for nuclear applications or, if the payload is sufficient, the system is very large and has several operating and maintenance accessibility requirements. The process of specifying, purchasing, and modifying a robotic system is an expensive and time-consuming process at best. The process of product evaluation, operation envelop, design maintenance concepts, and special nuclear materials handling requirements are essential in the development of a procurement specification. The procurement specification is critical to getting an economical robotic system and successfully enticing robotic vendors to quote for nuclear applications

  10. Ocular organ dose assessment of nuclear medicine workers handling diagnostic radionuclides

    International Nuclear Information System (INIS)

    Cho, Yong In; Kim, Ja Mee; Kim, Jung Hoon

    2017-01-01

    The dose distribution in the ocular organs of nuclear medicine workers during the handling of diagnostic radionuclides was assessed via simulation in virtual space. The cornea and lenses received the highest dose, and the dose distribution tended to be proportional to the gamma-ray energy emitted from the radiation source being handled. Moreover, calculations on the dose-reduction effects of eye-wear protectors for the eyes of the workers showed that the effects were inversely proportional to the emitted gamma-ray energy, with the dose-reduction effect decreasing in the order of "2"0"1Tl, "1"2"3I, "9"9mTc, "6"7Ga, "1"1"1In and "1"8F. Among the considered sources, the dose-reduction effect was significant for sources that emit relatively less energy, namely "1"2"3I, "2"0"1Tl and "9"9mTc, while it was lower for the remaining sources, namely "1"8F, "1"1"1In and "6"7Ga. (authors)

  11. System design for safe robotic handling of nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.; Kimberly, H.; Kuhlmann, J.

    1996-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive nuclear materials. These systems will reduce the occupational radiation exposure to workers by automating operations which are currently performed manually. Because the robotic systems will handle material that is both hazardous and valuable, the safety of the operations is of utmost importance; assurance must be given that personnel will not be harmed and that the materials and environment will be protected. These safety requirements are met by designing safety features into the system using a layered approach. Several levels of mechanical, electrical and software safety prevent unsafe conditions from generating a hazard, and bring the system to a safe state should an unexpected situation arise. The system safety features include the use of industrial robot standards, commercial robot systems, commercial and custom tooling, mechanical safety interlocks, advanced sensor systems, control and configuration checks, and redundant control schemes. The effectiveness of the safety features in satisfying the safety requirements is verified using a Failure Modes and Effects Analysis. This technique can point out areas of weakness in the safety design as well as areas where unnecessary redundancy may reduce the system reliability

  12. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1990-05-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radioactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  13. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1991-01-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radiactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  14. Considerations for sampling nuclear materials for SNM accounting measurements. Special nuclear material accountability report

    International Nuclear Information System (INIS)

    Brouns, R.J.; Roberts, F.P.; Upson, U.L.

    1978-05-01

    This report presents principles and guidelines for sampling nuclear materials to measure chemical and isotopic content of the material. Development of sampling plans and procedures that maintain the random and systematic errors of sampling within acceptable limits for SNM(Special Nuclear Materials) accounting purposes are emphasized

  15. Annual meeting on nuclear technology '92. Technical session 'Nuclear energy discussion'

    International Nuclear Information System (INIS)

    1992-05-01

    The report contains the six special papers red at the 1992 annual conference on nuclear engineering at Karlsruhe, all of which are individually retrievable from the database. They deal with the following subjects: historical development of the basic trends of technology criticism; communication problems in connection with the conveying of technical facts; psycho-sociological patterns of technology anxiety-mental infection or risk consciousness; field of tension between technology and journalism; handling of insecurities; ethical justifiability of nuclear energy use. (HSCH) [de

  16. Full scale tests on remote handled FFTF fuel assembly waste handling and packaging

    International Nuclear Information System (INIS)

    Allen, C.R.; Cash, R.J.; Dawson, S.A.; Strode, J.N.

    1986-01-01

    Handling and packaging of remote handled, high activity solid waste fuel assembly hardware components from spent FFTF reactor fuel assemblies have been evaluated using full scale components. The demonstration was performed using FFTF fuel assembly components and simulated components which were handled remotely using electromechanical manipulators, shielding walls, master slave manipulators, specially designed grapples, and remote TV viewing. The testing and evaluation included handling, packaging for current and conceptual shipping containers, and the effects of volume reduction on packing efficiency and shielding requirements. Effects of waste segregation into transuranic (TRU) and non-transuranic fractions also are discussed

  17. Incorporation of safety interlocks in commercial robotics for handling of nuclear materials

    International Nuclear Information System (INIS)

    Moore, F.W.

    1986-01-01

    Current robotic systems have been developed primarily for the automotive and electronic industry. The adaptation of these commercial robotic systems to applications in the manufacturing of nuclear fuel requires the addition of safety interlocks as to the handling and accountability of nuclear materials. Also, additional safety interlocks are required when the robots are operated in containment enclosures that are environmentally sealed. Interlocks have been incorporated into a commercial robot. The robotic system has been installed in the containment enclosure as part of the pellet storage subsystem into the Secure Automated Fabrication (SAF) facility currently being built by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE). The system has been installed in the Fuel Cycle Plant and is scheduled for initial operational testing in 1986

  18. Incorporation of safety interlocks in commercial robotics for handling of nuclear materials

    International Nuclear Information System (INIS)

    Moore, F.W.

    1986-01-01

    The adaptation of commercial robotic systems to applications in the manufacturing of nuclear fuel has required the addition of safety interlocks as to the handling and accountability of nuclear materials. Also, additional safety interlocks are required when the robots are operated in containment enclosures that are environmentally sealed. Interlocks have been incorporated in a commercial robot which was modified and with additional interlocks into the existing robotic control system. The robotic system has been installed in the containment enclosure as part of the pellet storage subsystem in the Secure Automated Fabrication facility currently being built by Westinghouse Hanford Company for the US Department of Energy. The system has been installed in the Fuel Cycle Plant and is scheduled for initial operational testing in 1986

  19. Reference nuclear data for space technology

    International Nuclear Information System (INIS)

    Burrows, T.W.; Holden, N.E.; Pearlstein, S.

    1977-01-01

    Specialized bibliographic searches, data compilations, and data evaluations help the basic and applied research scientist in his work. The National Nuclear Data Center (NNDC) collates and analyzes nuclear physics information, and is concerned with the timely production and revision of reference nuclear data. A frequently revised reference data base in computerized form has the advantage of large quantities of data available without publication delays. The information normally handled by coordinated efforts of NNDC consists of neutron, charged-particle, nuclear structure, radioactive decay, and photonuclear data. 2 figures

  20. Assessment of specialized educational programs for licensed nuclear reactor operators

    International Nuclear Information System (INIS)

    Melber, B.D.; Saari, L.M.; White, A.S.; Geisendorfer, C.L.; Huenefeld, J.C.

    1986-02-01

    This report assesses the job-relatedness of specialized educational programs for licensed nuclear reactor operators. The approach used involved systematically comparing the curriculum of specialized educational programs for college credit, to academic knowledge identified as necessary for carrying out the jobs of licenses reactor operators. A sample of eight programs, including A.S. degree, B.S. degree, and coursework programs were studied. Subject matter experts in the field of nuclear operations curriculum and training determined the extent to which individual program curricula covered the identified job-related academic knowledge. The major conclusions of the report are: There is a great deal of variation among individual programs, ranging from coverage of 15% to 65% of the job-related academic knowledge. Four schools cover at least half, and four schools cover less than one-third of this knowledge content; There is no systematic difference in the job-relatedness of the different types of specialized educational programs, A.S. degree, B.S. degree, and coursework; and Traditional B.S. degree programs in nuclear engineering cover as much job-related knowledge (about one-half of this knowledge content) as most of the specialized educational programs

  1. Construction of special structures for nuclear power projects

    International Nuclear Information System (INIS)

    Raghavan, N.

    2003-01-01

    Construction is a very important stage in the course of realization of Nuclear Power Projects and as much care has be devoted to this stage as to the planning and engineering stages. While the setting up of nuclear power projects used to take over seven years in the past, the time period has now been considerably reduced to about five years with advancements in construction engineering, project management and design techniques, on the basis of new initiatives from the owner agency, Nuclear Power Corporation of India. In this article, the constructional aspects of the specialized structures for nuclear power generation are looked into. (author)

  2. Special course for global nuclear human resource development in cooperation with Hitachi-GE nuclear energy in Tokyo institute of technology

    International Nuclear Information System (INIS)

    Ujita, H.; Futami, T.; Saito, M.; Murata, F.; Shimizu, M.

    2012-01-01

    Many Asian countries are willing to learn Japanese nuclear power plants experiences, and are interested in introducing nuclear power generation to meet their future energy demand. Special course for Global Nuclear Human Resource Development was established in April, 2011 in the Department of Nuclear Engineering at Graduate School of Tokyo Institute of Technology in cooperation with Hitachi-GE Nuclear Energy. Purpose of the special course is to develop global nuclear engineers and researchers not only in the Tokyo Institute of Technology but also in the educational institutes of Southeast Asian countries

  3. Problems relating to international transport of nuclear fuels

    International Nuclear Information System (INIS)

    Timm, U.E.

    1985-01-01

    Owing to the tremendous geographic distances between uranium deposits of interest, to the various degrees of sophistication of nuclear industry in industrialized countries and to the close international cooperation in the field of nuclear energy, safe international transports, physical protection and transport handling play an important role. It is suggested to better coordinate the activities of nuclear power plant operators, the nuclear industry and specialized transport companies with respect to all national and international issues of nuclear fuel transports. (DG) [de

  4. Getting to grips with remote handling and robotics

    Energy Technology Data Exchange (ETDEWEB)

    Mosey, D [Ontario Hydro, Toronto (Canada)

    1984-12-01

    A report on the Canadian Nuclear Society Conference on robotics and remote handling in the nuclear industry, September 1984. Remote handling in reactor operations, particularly in the Candu reactors is discussed, and the costs and benefits of use of remote handling equipment are considered. Steam generator inspection and repair is an area in which practical application of robotic technology has made a major advance.

  5. Neutron interrogation system using high gamma ray signature to detect contraband special nuclear materials in cargo

    Science.gov (United States)

    Slaughter, Dennis R [Oakland, CA; Pohl, Bertram A [Berkeley, CA; Dougan, Arden D [San Ramon, CA; Bernstein, Adam [Palo Alto, CA; Prussin, Stanley G [Kensington, CA; Norman, Eric B [Oakland, CA

    2008-04-15

    A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.

  6. Report from the Special Committee on Fukushima Nuclear Accident

    International Nuclear Information System (INIS)

    Ozawa, Mamoru

    2012-01-01

    The Special Committee on Fukushima Nuclear Accident was established in April 2011 under the Heat Transfer Society of Japan (HTSJ) and discussed (1) how had evolved heat transfer research in progress of nuclear technology, (2) role of expert group in the area of heat transfer academy and technology and (3) energy prospect in Japan after the Fukushima nuclear accident. This report was described by the chairman of the special committee summarizing one year discussions as (1) background of heat transfer research progress, (2) progression of Fukushima Daiichi Nuclear Power Plant accident, (3) energy problem in Japan after the Fukushima accident and (4) social role of the HTSJ. This HTSJ was a unique, nonprofit association in Japan of the people engaged in heat transfers research or in various engineering aspects related to heat transfer, which meant interdisciplinary or common platform of heat transfer as elementary technologies. Such actual complex problems could be discussed in the HTSJ from an overlooking viewpoint in order for the HTSJ to play a social role. (T. Tanaka)

  7. Handling Pyrophoric Reagents

    Energy Technology Data Exchange (ETDEWEB)

    Alnajjar, Mikhail S.; Haynie, Todd O.

    2009-08-14

    Pyrophoric reagents are extremely hazardous. Special handling techniques are required to prevent contact with air and the resulting fire. This document provides several methods for working with pyrophoric reagents outside of an inert atmosphere.

  8. Activities of the ANS special committee on nuclear nonproliferation

    International Nuclear Information System (INIS)

    Buckner, M.R.; Sanders, T.L.

    2001-01-01

    The American Nuclear Society (ANS) Special Committee on Nuclear Nonproliferation (SCNN) believes that to reverse current trends, U.S. policy must revisit the fundamental premise of Atoms for Peace: A collaborative nuclear enterprise enhances rather than diminishes national security. To accomplish this, the U.S. Government must develop an integrated policy on energy, nuclear technology, and national security. The policy must recognize that these are interrelated and that an integrated policy will require substantial investments in nuclear research and development and in nuclear education. This paper describes the current activities of the SCNN to heighten awareness of nonproliferation issues for decision makers and ANS members, and alert them to the need for action to resolve these concerns. (author)

  9. Activities of the ANS special committee on nuclear nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, M.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Sanders, T.L. [Sandia National Labs., Albuquerque, NM (United States)

    2001-07-01

    The American Nuclear Society (ANS) Special Committee on Nuclear Nonproliferation (SCNN) believes that to reverse current trends, U.S. policy must revisit the fundamental premise of Atoms for Peace: A collaborative nuclear enterprise enhances rather than diminishes national security. To accomplish this, the U.S. Government must develop an integrated policy on energy, nuclear technology, and national security. The policy must recognize that these are interrelated and that an integrated policy will require substantial investments in nuclear research and development and in nuclear education. This paper describes the current activities of the SCNN to heighten awareness of nonproliferation issues for decision makers and ANS members, and alert them to the need for action to resolve these concerns. (author)

  10. Special feature article-very urgent nuclear energy personnel training

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tsujikura, Yonezo; Kawahara, Akira

    2007-01-01

    Securing human resources is important for the sustainable development of research, development and utilization of nuclear energy. However, concerns have been raised over the maintenance of human resources due to the decline of public and private investment in research and development of nuclear energy in recent years. To that end, it is essential for the workplace in the field of nuclear energy to be engaging. This special feature article introduced the Government's fund program supporting universities and vocational colleges to develop human resources in the area of nuclear energy. Electric utilities, nuclear industries, nuclear safety regulators and related academia presented respective present status and issues of nuclear energy personnel training with some expectations to the program to secure human resources with professional qualifications. (T. Tanaka)

  11. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Libby, R.A.; Segal, J.E.; Stanbro, W.D.; Davis, C.

    1995-08-01

    This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.

  12. Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3

    International Nuclear Information System (INIS)

    Libby, R.A.; Segal, J.E.; Stanbro, W.D.; Davis, C.

    1995-08-01

    This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials

  13. Plans of reorganization of USA nuclear military complex and provision of military program by special nuclear materials

    International Nuclear Information System (INIS)

    Semenovskaya, I.V.

    1996-01-01

    Consideration is given to plans and implementation of the program of reorganization of USA nuclear military complex, related with conducted reduction of nuclear arsenal after concluding the Strategic Nuclear Armament Reduction Treaty. Particular attention is paid to problems of satisfying short-term and long-term requirements in special nuclear materials and in tritium in particular

  14. Domestic round robin exercise on analysis of uranium for nuclear material handling facilities in Japan

    International Nuclear Information System (INIS)

    Kato, Yoshiyasu; Nagai, Kohta; Handa, Takamitsu; Inoue, Shin-ichi; Sato, Yoshihiro

    2016-01-01

    Interlaboratory comparison programme as well as internal quality control system is an effective tool for an analytical laboratory responsible to nuclear material accountancy of a nuclear facility to maintain and enhance its capability for analysis. However, it is a burden on nuclear material handling facilities in Japan to attend interlaboratory comparison programme run by overseas institutions because of high costs and complicated procedure for importing nuclear materials, and therefore facilities which can participate in such international programme would be limited. Nuclear Material Control Center has hence started and organised an annual domestic round robin exercise on analysis of uranium standard materials, funded by the Japan Safeguards Office of the Nuclear Regulation Authority, since 2008 to enhance analytical capability of Japanese Facilities. The outline of the round robin exercise will be given and the results of uranium isotopic and concentration analysis reported by participant facilities from 2008 to 2015 will be summarised in the presentation. (author)

  15. Report on strategic special nuclear material inventory differences

    International Nuclear Information System (INIS)

    1977-08-01

    Information concerning accounting for significant quantities of strategic special nuclear material (SSNM) in ERDA facilities is reported. Inventory difference data are provided for fiscal year 1976 for ERDA and ERDA contractor facilities that possessed significant quantities of SSNM

  16. Microcomputer based shelf system to monitor special nuclear materials in storage

    International Nuclear Information System (INIS)

    Nicholson, N.; Kuckertz, T.H.; Ethridge, C.D.

    1980-01-01

    Diversion of special nuclear material has become a matter of grave concern in recent years. Large quantities of this material are kept in long-term storage and must be inventoried periodically, resulting in a time-consuming activity that exposes personnel to additional radiation. A system that provides continuous surveillance of stored special nuclear materials has been developed. A shelf monitor has been designed using a single component microcomputer to collect data from a Geiger Muller tube that monitors gamma emissions and a scale that monitors the total weight of the special nuclear material and its container. A network of these shelf monitors reports their acquired data to a minicomputer for analysis and storage. Because a large number of these monitors is likely to be needed in most storage facilities, one objective of this program has been to develop a low cost but reliable monitor

  17. Conditioning and handling of tritiated wastes at Canadian nuclear power facilities

    International Nuclear Information System (INIS)

    Krochmalnek, L.S.; Krasznai, J.P.; Carney, M.

    1987-04-01

    Ontario Hydro operates a 10,000 MW capacity nuclear power system utilizing the CANDU pressurized heavy water reactor design. The use of D 2 O as moderator and coolant results in the production of about 2400 Ci of tritium per MWe-yr. As a result, there is significant Canadian experience in the treatment, handling, transport and storage of tritiated wastes. Ontario Hydro operates its own reactor waste storage site which includes systems for volume reduction, immobilization and packaging of wastes. In addition, a facility to remove tritium from heavy water is presently being commissioned at the Darlington nuclear site. This facility will generate tritiated liquid and solid waste that will have to be properly conditioned prior to storage or disposal. The nature of these various wastes and the processes/packaging required to meet storage/disposal criteria are judged to have relevance to investigations in fusion facility waste arisings. Experience to date, planned operational procedures and ongoing R and D in this area are described

  18. Civil engineering challenge with nuclear waste

    International Nuclear Information System (INIS)

    Day, D.

    1985-01-01

    The civil engineer can help to solve the problems in disposing of nuclear waste in a deep geologic formation. The site for a nuclear waste repository must be carefully selected so that the geology provides the natural barrier between the waste and the accessible environment specified by the NRC and the EPA. This engineer is familiar with the needed structure and conditions of the host and surrounding rocks, and also the hydraulic mechanisms for limiting the migration of water in the rocks. To dispose of the nuclear waste underground requires stable and long-lasting shafts and tunnels such as civil engineers have designed and constructed for many other uses. The planning, design and construction of the ground surface facilities for a nuclear waste repository involves civil engineering in many ways. The transporation of heavy, metal shielded casks requires special attention to the system of highways and railroads accessing the repository. Structures for handling the shipping casks and transferring the waste onsite and into the deep geologic formation need special considerations. The structures must provide the NRC required containment, including hot cells for remote handling. Therefore, structural design strives for buildings, ventilation structures, shaft headframes, etc., to be earthquake and tornado-proof. These important design bases and considerations for the civil engineer working on a nuclear waste repository are discussed in this paper

  19. Build of virtual instrument laboratory related to nuclear species specialized

    International Nuclear Information System (INIS)

    Shan Jian; Zhao Guizhi; Zhao Xiuliang; Tang Lingzhi

    2009-01-01

    As rapid development of specialized related to nuclear science,the requirement of laboratory construct is analyzed in this article at first, One total conceive, One scheme deploy soft and hardware,three concrete characteristics targets and five different phases of put in practice of virtual instrument laboratory of specialized related to nuclear science are suggest in the paper,the concrete hardware structure and the headway of build of virtual instrument laboratory are described,and the first step effect is introduced.Lastly,the forward target and the further deliberateness that the virtual instrument laboratory construct are set forth in the thesis. (authors)

  20. Remotely controlled inspection and handling systems for decommissioning tasks in nuclear facilities

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, W.; Haferkamp, H.

    1993-01-01

    The Institut fur Werkstoffkunde at the University of Hanover has recently developed three remotely controlled systems for different underwater inspection and dismantling tasks. ODIN I is a tool guiding device, particularly being designed for the dismantling of the steam dryer housing of the KRB A power plant at Gundremmingen, Germany. After being approved by the licencing organization TUEV Bayern, hot operation started in November 1992. The seven axes remotely controlled handling system ZEUS, consisting of a three translatory axes guiding machine and a tool handling device with four rotatory axes, has been developed for the demonstration of underwater plasma arc cutting of spherical metallic components with great wall thicknesses. A specially designed twin sensor system and a modular torch, exchanged by means of a remote controlled tool changing device, will be used for different complex cutting tasks. FAUST, an autonomous, freediving underwater vehicle, was designed for complex inspection, maintenance and dismantling tasks. It is equipped with two video cameras, an ultrasonic and a radiologic sensor and a small plasma torch. A gripper and a subsidiary vehicle for inspection may be attached. (author)

  1. NDMA guidelines on handling of nuclear and radiological emergencies

    Energy Technology Data Exchange (ETDEWEB)

    Abani, M C [National Disaster Management Authority, New Delhi (India)

    2010-07-01

    The vulnerability to the disasters is high in India due to the large population density, fast growing urbanization, industrialization and also because of poor economic conditions of people. Natural disasters have been recurring phenomena in India, leading to extensive loss of life, livelihood and property. The primary reason for such heavy losses can be attributed to the reactive and response-centric approach adopted in the past in handling of the disasters. Based on the Guidelines a holistic approach is to be adopted for Nuclear Emergency Management Framework that assigns the highest priority to prevention, mitigation and compliance to regulatory requirements, while strengthening preparedness, capacity development, response etc. It will be implemented through strengthening of the existing action plans or by preparing new action plans at national, state and district levels by the stakeholders at all levels of administration

  2. NDMA guidelines on handling of nuclear and radiological emergencies

    International Nuclear Information System (INIS)

    Abani, M.C.

    2010-01-01

    The vulnerability to the disasters is high in India due to the large population density, fast growing urbanization, industrialization and also because of poor economic conditions of people. Natural disasters have been recurring phenomena in India, leading to extensive loss of life, livelihood and property. The primary reason for such heavy losses can be attributed to the reactive and response-centric approach adopted in the past in handling of the disasters. Based on the Guidelines a holistic approach is to be adopted for Nuclear Emergency Management Framework that assigns the highest priority to prevention, mitigation and compliance to regulatory requirements, while strengthening preparedness, capacity development, response etc. It will be implemented through strengthening of the existing action plans or by preparing new action plans at national, state and district levels by the stakeholders at all levels of administration

  3. Special nuclear material inventory sampling plans

    International Nuclear Information System (INIS)

    Vaccaro, H.; Goldman, A.

    1987-01-01

    Since their introduction in 1942, sampling inspection procedures have been common quality assurance practice. The U.S. Department of Energy (DOE) supports such sampling of special nuclear materials inventories. The DOE Order 5630.7 states, Operations Offices may develop and use statistically valid sampling plans appropriate for their site-specific needs. The benefits for nuclear facilities operations include reduced worker exposure and reduced work load. Improved procedures have been developed for obtaining statistically valid sampling plans that maximize these benefits. The double sampling concept is described and the resulting sample sizes for double sample plans are compared with other plans. An algorithm is given for finding optimal double sampling plans that assist in choosing the appropriate detection and false alarm probabilities for various sampling plans

  4. Semiannual report on strategic special nuclear material inventory differences

    International Nuclear Information System (INIS)

    1987-07-01

    This twentieth periodic semiannual report of unclassified Inventory Differences (ID's) covers the second six months of fiscal year 1986 (April 1, 1986, through September 30, 1986) for all key Department of Energy (DOE) and DOE contractor operated facilities possessing strategic special nuclear materials. Data for the Rocky Flats and Y-12 nuclear weapons production facilities are not included in the report in order to protect classified nuclear weapons information; however, classified ID data from these facilities receive the same scrutiny and analyses as the unclassified data

  5. Automation of 3D micro object handling process

    DEFF Research Database (Denmark)

    Gegeckaite, Asta; Hansen, Hans Nørgaard

    2007-01-01

    Most of the micro objects in industrial production are handled with manual labour or in semiautomatic stations. Manual labour usually makes handling and assembly operations highly flexible, but slow, relatively imprecise and expensive. Handling of 3D micro objects poses special challenges due to ...

  6. WALS: A sensor-based robotic system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system to enhance system safety, flexibility, and robustness and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and too release mechanisms were designed to prevent payload mishandling. An extensive failure modes and effects analysis (FMEA) of the automation system was developed as a safety design analysis tool

  7. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  8. Improving Industry-Relevant Nuclear-Knowledge Development through Special Partnerships

    International Nuclear Information System (INIS)

    Cilliers, A.

    2016-01-01

    Full text: South African Network for Nuclear Education Science and Technology (SAN NEST) has the objective to develop the nuclear education system in South Africa to a point where suitably qualified and experienced nuclear personnel employed by nuclear science and technology programmes in South Africa are predominantly produced by the South African education system. This is done to strengthen the nuclear science and technology education programmes to better meet future demands in terms of quality, capacity and relevance. To ensure sustainable relevance, it is important to develop special partnerships with industry. This paper describes unique partnerships that were developed with nuclear industry partners. The success of these partnerships has ensured more industry partners to embrace the model which has proven to develop relevant knowledge, support research and provide innovative solutions for industry. (author

  9. On evaluated nuclear data for beta-delayed gamma rays following of special nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Mencarini, Leonardo de H.; Caldeira, Alexandre D., E-mail: mencarini@ieav.cta.b, E-mail: alexdc@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil)

    2011-07-01

    In this paper, a new type of information available in ENDF is discussed. During a consistency check of the evaluated nuclear data library ENDF/B-VII.0 performed at the Nuclear Data Subdivision of the Institute for Advanced Studies, the size of the files for some materials drew the attention of one of the authors. Almost 94 % of all available information for these special nuclear materials is used to represent the beta-delayed gamma rays following fission. This is the first time this information is included in an ENDF version. (author)

  10. On evaluated nuclear data for beta-delayed gamma rays following of special nuclear materials

    International Nuclear Information System (INIS)

    Mencarini, Leonardo de H.; Caldeira, Alexandre D.

    2011-01-01

    In this paper, a new type of information available in ENDF is discussed. During a consistency check of the evaluated nuclear data library ENDF/B-VII.0 performed at the Nuclear Data Subdivision of the Institute for Advanced Studies, the size of the files for some materials drew the attention of one of the authors. Almost 94 % of all available information for these special nuclear materials is used to represent the beta-delayed gamma rays following fission. This is the first time this information is included in an ENDF version. (author)

  11. Impact of hazardous waste handling legislation on nuclear installations and radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Trosten, L.M.

    1988-01-01

    The United States has enacted complex legislation to help assure proper handling of hazardous waste and the availability of funds to cover the expenditures. There are a number of uncertainties concerning the impact of this legislation, and regulations promulgated by the Environmental Protection Agency and the states, upon nuclear installations and radioactive waste management. This report provides an overview of the U.S. hazardous waste legislation and examines the outlook for its application to the nuclear industry (NEA) [fr

  12. Human factors issues in fuel handling

    International Nuclear Information System (INIS)

    Beattie, J.D.; Iwasa-Madge, K.M.; Tucker, D.A.

    1994-01-01

    The staff of the Atomic Energy Control Board wish to further their understanding of human factors issues of potential concern associated with fuel handling in CANDU nuclear power stations. This study contributes to that objective by analysing the role of human performance in the overall fuel handling process at Ontario Hydro's Darlington Nuclear Generating Station, and reporting findings in several areas. A number of issues are identified in the areas of design, operating and maintenance practices, and the organizational and management environment

  13. A sensor-based automation system for handling nuclear materials

    International Nuclear Information System (INIS)

    Drotning, W.; Kimberly, H.; Wapman, W.; Darras, D.

    1997-01-01

    An automated system is being developed for handling large payloads of radioactive nuclear materials in an analytical laboratory. The automation system performs unpacking and repacking of payloads from shipping and storage containers, and delivery of the payloads to the stations in the laboratory. The system uses machine vision and force/torque sensing to provide sensor-based control of the automation system in order to enhance system safety, flexibility, and robustness, and achieve easy remote operation. The automation system also controls the operation of the laboratory measurement systems and the coordination of them with the robotic system. Particular attention has been given to system design features and analytical methods that provide an enhanced level of operational safety. Independent mechanical gripper interlock and tool release mechanisms were designed to prevent payload mishandling. An extensive Failure Modes and Effects Analysis of the automation system was developed as a safety design analysis tool

  14. Operative experience in handling enriched uranium compounds in an U3O8 production plant

    International Nuclear Information System (INIS)

    Friedenthal, M.; Cardenas Yucra, H.R.; Cinat, E.; Pino, H.F.; Surin, C.

    1987-01-01

    The design of a nuclear installation associated with chemical processes depends fundamentally on the risks derived from the materials and process used. The operative experience brings useful data mainly related to the ventilation and equipment design that allow to improve the handling of operational incidents and maintenance work. The paper presents the results extracted from a production campaign; ambient and personal monitoring results from monitorings performed routinely and during special interventions are commented. (Author)

  15. 75 FR 2163 - Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment...

    Science.gov (United States)

    2010-01-14

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 72-8; NRC-2010-0011] Constellation Energy; Notice of Docketing of Special Nuclear Material License SNM-2505 Amendment Application for the Calvert Cliffs... Constellation Energy (Constellation) to amend its Special Nuclear Material License No. SNM-2505, under the...

  16. Standard specification for nuclear-grade beryllium oxide powder

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This specification defines the physical and chemical requirements of nuclear-grade beryllium oxide (BeO) powder to be used in fabricating nuclear components. This specification does not include requirements for health and safety. It recognizes the material as a Class B poison and suggests that producers and users become thoroughly familiar with and comply to applicable federal, state and local regulations and handling guidelines. Special tests and procedures are given

  17. Cask system design guidance for robotic handling

    International Nuclear Information System (INIS)

    Griesmeyer, J.M.; Drotning, W.D.; Morimoto, A.K.; Bennett, P.C.

    1990-10-01

    Remote automated cask handling has the potential to reduce both the occupational exposure and the time required to process a nuclear waste transport cask at a handling facility. The ongoing Advanced Handling Technologies Project (AHTP) at Sandia National Laboratories is described. AHTP was initiated to explore the use of advanced robotic systems to perform cask handling operations at handling facilities for radioactive waste, and to provide guidance to cask designers regarding the impact of robotic handling on cask design. The proof-of-concept robotic systems developed in AHTP are intended to extrapolate from currently available commercial systems to the systems that will be available by the time that a repository would be open for operation. The project investigates those cask handling operations that would be performed at a nuclear waste repository facility during cask receiving and handling. The ongoing AHTP indicates that design guidance, rather than design specification, is appropriate, since the requirements for robotic handling do not place severe restrictions on cask design but rather focus on attention to detail and design for limited dexterity. The cask system design features that facilitate robotic handling operations are discussed, and results obtained from AHTP design and operation experience are summarized. The application of these design considerations is illustrated by discussion of the robot systems and their operation on cask feature mock-ups used in the AHTP project. 11 refs., 11 figs

  18. 10 CFR 70.20a - General license to possess special nuclear material for transport.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF... transport. (a) A general license is issued to any person to possess formula quantities of strategic special...

  19. Storage, handling and internal transport of radioactive materials (fuel elements excepted) in nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    The rule applies to storage and handling as well as to transport within the plant and to the exchange of - solid radioactive wastes, - liquid radioactive wastes, except for those covered by the rule KTA 3603, - radioactive components and parts which are planned to be mounted and dismounted until shutdown of the plant, - radioactive-contaminated tools and appliances, - radioactive preparations. The rule is to be applied within the fenced-in sites of stationary nuclear power plants with LWR or HTR including their transport load halls, as fas as these are situated so as to be approachable from the nuclear power station by local transport systems. (orig./HP) [de

  20. Hot Laboratories and Remote Handling

    International Nuclear Information System (INIS)

    Bart, G.; Blanc, J.Y.; Duwe, R.

    2003-01-01

    The European Working Group on ' Hot Laboratories and Remote Handling' is firmly established as the major contact forum for the nuclear R and D facilities at the European scale. The yearly plenary meetings intend to: - Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research; - Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling; - Promote normalization and co-operation, e.g., by looking at mutual complementarities; - Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The 41. plenary meeting was held in CEA Saclay from September 22 to 24, 2003 in the premises and with the technical support of the INSTN (National Institute for Nuclear Science and Technology). The Nuclear Energy Division of CEA sponsored it. The Saclay meeting was divided in three topical oral sessions covering: - Post irradiation examination: new analysis methods and methodologies, small specimen technology, programmes and results; - Hot laboratory infrastructure: decommissioning, refurbishment, waste, safety, nuclear transports; - Prospective research on materials for future applications: innovative fuels (Generation IV, HTR, transmutation, ADS), spallation source materials, and candidate materials for fusion reactor. A poster session was opened to transport companies and laboratory suppliers. The meeting addressed in three sessions the following items: Session 1 - Post Irradiation Examinations. Out of 12 papers (including 1 poster) 7 dealt with surface and solid state micro analysis, another one with an equally complex wet chemical instrumental analytical technique, while the other four papers (including the poster) presented new concepts for digital x-ray image analysis; Session 2 - Hot laboratory infrastructure (including waste theme) which was

  1. Legislation for the countermeasures on special issues of nuclear safety regulations

    International Nuclear Information System (INIS)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Heon Jin; Oh, Ho Chul

    2004-02-01

    Since the present nuclear safety regulation has some legal problems that refer to special issues and contents of regulatory provisions, this report has preformed research on the legal basic theory of nuclear safety regulation to solve the problems. In addition, this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation

  2. Legislation for the countermeasures on special issues of nuclear safety regulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Byung Sun; Lee, Mo Sung; Chung, Gum Chun; Kim, Heon Jin; Oh, Ho Chul [Chongju Univ., Cheongju (Korea, Republic of)

    2004-02-15

    Since the present nuclear safety regulation has some legal problems that refer to special issues and contents of regulatory provisions, this report has preformed research on the legal basic theory of nuclear safety regulation to solve the problems. In addition, this report analyzed the problems of each provisions and suggested the revision drafts on the basis of analyzing problems and the undergoing theory of nuclear safety regulation.

  3. 10 CFR 73.25 - Performance capabilities for physical protection of strategic special nuclear material in transit.

    Science.gov (United States)

    2010-01-01

    ... strategic special nuclear material in transit. 73.25 Section 73.25 Energy NUCLEAR REGULATORY COMMISSION... Transit § 73.25 Performance capabilities for physical protection of strategic special nuclear material in transit. (a) To meet the general performance objective and requirements of § 73.20 an in-transit physical...

  4. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  5. The Nuclear Emergency Assistance Team, a mobile intervention facility for nuclear accidents

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    A nuclear emergency assistance team consisting of a vehicle pool and a stock of technical equipment was set up for operation in case of major reactor accidents. The equipment is kept in 6 containers which can be shipped on trucks, by rail or by helicopter or plane. Technical equipment and tasks of each container are briefly explained. Special transport vehicles for remote handling of contaminated material are described. (ORU) [de

  6. Active neutron technique for detecting attempted special nuclear material diversion

    International Nuclear Information System (INIS)

    Smith, G.W.; Rice, L.G. III.

    1979-01-01

    The identification of special nuclear material (SNM) diversion is necessary if SNM inventory control is to be maintained at nuclear facilities. (Special nuclear materials are defined for this purpose as either 235 U of 239 Pu.) Direct SNM identification by the detection of natural decay or fission radiation is inadequate if the SNM is concealed by appropriate shielding. The active neutron interrogation technique described combines direct SNM identification by delayed fission neutron (DFN) detection with implied SNM detection by the identification of materials capable of shielding SNM from direct detection. This technique is being developed for application in an unattended material/equipment portal through which items such as electronic instruments, packages, tool boxes, etc., will pass. The volume of this portal will be 41-cm wide, 53-cm high and 76-cm deep. The objective of this technique is to identify an attempted diversion of at least 20 grams of SNM with a measurement time of 30 seconds

  7. Human factors issues in fuel handling

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, J D; Iwasa-Madge, K M; Tucker, D A [Humansystems Inc., Milton, ON (Canada)

    1994-12-31

    The staff of the Atomic Energy Control Board wish to further their understanding of human factors issues of potential concern associated with fuel handling in CANDU nuclear power stations. This study contributes to that objective by analysing the role of human performance in the overall fuel handling process at Ontario Hydro`s Darlington Nuclear Generating Station, and reporting findings in several areas. A number of issues are identified in the areas of design, operating and maintenance practices, and the organizational and management environment. 1 fig., 4 tabs., 19 refs.

  8. Active and Passive Diagnostic Signatures of Special Nuclear Materials

    Energy Technology Data Exchange (ETDEWEB)

    Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-26

    An overview will be given discussing signatures associated with special nuclear materials acquired using both active and passive diagnostic techniques. Examples of how technology advancements have helped improve diagnostic capabilities to meet the challenges of today’s applications will be discussed.

  9. Nukem Nuclear GmbH activity in CIS countries in the sphere of radioactive wastes and nuclear fuel handling

    International Nuclear Information System (INIS)

    Vaihard, A.

    1997-01-01

    NUKEM was founded in 1960 as one of the first nuclear companies in the German Federal Republic. With this work, Nukem developed not only processes for producing fuels and fuel elements, but also the plant and equipment necessary for this production. NUKEM engineers further planned and built the total infrastructure for operation of these manufacturing plants, including the supply and waste plants, the nuclear ventilation technology, the laboratory and the remote handling manipulators. The scope of activities extends from the design to the manufacture and construction of turnkey plants. The points of emphasis are plants and processes for the Treatment of radioactive wastes, storage and container technology, the decommissioning of nuclear plants, the planning and building of nuclear laboratories, the design of fuel elements and safety and monitoring technology. NUKEM Nuclear Technology is an independent division within the plant construction of the NUKEM Group. Additionally, five further subsidiary and partner companies have a spectrum of nuclear technology activities. Altogether, Nukem Nuclear Technology counts around 300 highly qualified engineers, scientists and technicians. Numerous Designs and patents underline the strength of innovative output in this area. The engineering service offered by NUKEM includes the whole spectrum of process and technology as well as construction and start-up as general engineer or general contractor: Basic engineering; Detail engineering; Procurement; Personnel Training; Start-up. Engineering and safety for nuclear technology: Process and plant planing; Media supply and disposal; Building and architecture; Electrical, measurement and control technology; Safety and accident analysis; Licensing procedures. Treatment of Radioactive Wastes: - Volume reduction of soil and liquid wastes: vaporizer plants; evaporator plants; incineration plants; pyrolysis plants; compactors. - Chemical/physical processes for residue treatment: boric acid

  10. Conceptual design report, plutonium stabilization and handling,project W-460

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, E.V.

    1997-03-06

    Project W-460, Plutonium Stabilization and Handling, encompasses procurement and installation of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. This Conceptual Design Report (CDR) provides conceptual design details for the vault modification, site preparation and site interface with the purchased SPS. Two concepts are described for vault configuration; acceleration of this phase of the project did not allow completion of analysis which would clearly identify a preferred approach.

  11. The FMEA Analysis for Fuel Handling System at Cernavoda Unit 2

    International Nuclear Information System (INIS)

    Park, Jin Hee; Kim, Tae Woon; Rhee, Bo Wook; Yoon, Chul; Kim, Hyeong Tae; Cho, In Gil; Kim, Seong Ho

    2006-01-01

    A Nuclear Safety Evaluation was performed by an independent assessor at the request of the regulatory authority CNCAN (Comisia Nationala pentru Controlul Activitatilor Nucleare. National Committee for Nuclear Activities Control in Romania) to provide an independent overview of all the nuclear safety aspects of Cernavoda Unit 2 under construction and an expert opinion whether the completed Cernavoda Unit-2 Nuclear Power Plant would satisfy current Western European nuclear safety objectives and practices. A report was produced (Cernavoda 2 Nuclear Safety Expert Project, 'Task 10 . Safety Evaluation Report', A.F.Parsons, NNC Limited, December 2001) and contains recommendations either mandatory or advisory. The FMEA study, one of the mandatory recommendations, is performing now for fuel handling system and radioactive waste handling system for Cernavoda unit 2 in Romania sponsored by KHNP. In this paper, only the FMEA study for fuel handling system is presented

  12. Operational analysis and improvement of a spent nuclear fuel handling and treatment facility using discrete event simulation

    International Nuclear Information System (INIS)

    Garcia, H.E.

    2000-01-01

    Spent nuclear fuel handling and treatment often require facilities with a high level of operational complexity. Simulation models can reveal undesirable characteristics and production problems before they become readily apparent during system operations. The value of this approach is illustrated here through an operational study, using discrete event modeling techniques, to analyze the Fuel Conditioning Facility at Argonne National Laboratory and to identify enhanced nuclear waste treatment configurations. The modeling approach and results of what-if studies are discussed. An example on how to improve productivity is presented.

  13. Remote handling machines

    International Nuclear Information System (INIS)

    Sato, Shinri

    1985-01-01

    In nuclear power facilities, the management of radioactive wastes is made with its technology plus the automatic techniques. Under the radiation field, the maintenance or aid of such systems is important. To cope with this situation, MF-2 system, MF-3 system and a manipulator system as remote handling machines are described. MF-2 system consists of an MF-2 carrier truck, a control unit and a command trailer. It is capable of handling heavy-weight objects. The system is not by hydraulic but by electrical means. MF-3 system consists of a four-crawler truck and a manipulator. The truck is versatile in its posture by means of the four independent crawlers. The manipulator system is bilateral in operation, so that the delicate handling is made possible. (Mori, K.)

  14. Highlights of the American Nuclear Society topical meeting on the treatment and handling of radioactive wastes

    International Nuclear Information System (INIS)

    Blasewitz, A.G.; Lerch, R.E.; Richardson, G.L.

    1983-01-01

    The American Nuclear Society Topical Meeting on the Treatment and Handling of Radioactive Wastes was held in Richland, Washington, from 19-22 April 1982. The object of the meeting was to provide a thorough assessment of the status of technology. The response to the meeting was excellent: 123 papers were presented. There were 505 registrations; 83 were from outside the USA, representing 13 countries. The large and diverse attendance provided a broad technological view and perspective. The following major points emerged from the conference: (1) In an extensive world-wide effort, techniques are being developed to cover all phases of radioactive waste management. (2) A broad and deep technological base has been developed. (3) Many adequate processes are ready for actual application while others are ready for demonstration of applicability. These demonstrations are important to further public acceptance of nuclear energy. (4) At the present level of maturity, systematic analyses should be performed to determine actual requirements for the treatment and handling of radioactive wastes. These analyses can be used to focus our research and development, and demonstration activities to achieve treatment and conditioning systems which are both appropriate and cost-effective. (author)

  15. SRTC criticality technical review: Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility

    International Nuclear Information System (INIS)

    Rathbun, R.

    1993-01-01

    Separate review of NMP-NCS-930058, open-quotes Nuclear Criticality Safety Evaluation 93-18 Uranium Solidification Facility's Waste Handling Facility (U), August 17, 1993,close quotes was requested of SRTC Applied Physics Group. The NCSE is a criticality assessment to determine waste container uranium limits in the Uranium Solidification Facility's Waste Handling Facility. The NCSE under review concludes that the NDA room remains in a critically safe configuration for all normal and single credible abnormal conditions. The ability to make this conclusion is highly dependent on array limitation and inclusion of physical barriers between 2x2x1 arrays of boxes containing materials contaminated with uranium. After a thorough review of the NCSE and independent calculations, this reviewer agrees with that conclusion

  16. Uncovering Special Nuclear Materials by Low-energy Nuclear Reaction Imaging.

    Science.gov (United States)

    Rose, P B; Erickson, A S; Mayer, M; Nattress, J; Jovanovic, I

    2016-04-18

    Weapons-grade uranium and plutonium could be used as nuclear explosives with extreme destructive potential. The problem of their detection, especially in standard cargo containers during transit, has been described as "searching for a needle in a haystack" because of the inherently low rate of spontaneous emission of characteristic penetrating radiation and the ease of its shielding. Currently, the only practical approach for uncovering well-shielded special nuclear materials is by use of active interrogation using an external radiation source. However, the similarity of these materials to shielding and the required radiation doses that may exceed regulatory limits prevent this method from being widely used in practice. We introduce a low-dose active detection technique, referred to as low-energy nuclear reaction imaging, which exploits the physics of interactions of multi-MeV monoenergetic photons and neutrons to simultaneously measure the material's areal density and effective atomic number, while confirming the presence of fissionable materials by observing the beta-delayed neutron emission. For the first time, we demonstrate identification and imaging of uranium with this novel technique using a simple yet robust source, setting the stage for its wide adoption in security applications.

  17. Nuclear Safety Regulations

    International Nuclear Information System (INIS)

    Novosel, N.; Prah, M.

    2008-01-01

    Beside new Ordinance on the control of nuclear material and special equipment ('Official Gazette' No. 15/08), from 2006 State Office for Nuclear Safety (SONS) adopted Ordinance on performing nuclear activities ('Official Gazette' No. 74/06) and Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety ('Official Gazette' No. 74/06), based on Nuclear Safety Act ('Official Gazette' No. 173/03). The Ordinance on performing nuclear activities regulates the procedure of notification of the intent to perform nuclear activities, submitting the application for the issue of a licence to perform nuclear activities, and the procedure for issuing decisions on granting a licence to perform a nuclear activity. The Ordinance also regulates the content of the forms for notification of the intent to perform nuclear activities, as well as of the application for the issue of a licence to perform the nuclear activity and the method of keeping the register of nuclear activities. According to the Nuclear Safety Act, nuclear activities are the production, processing, use, storage, disposal, transport, import, export, possession or other handling of nuclear material or specified equipment. The Ordinance on special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety regulates these mentioned conditions, whereas compliance is established by a decision passed by the SONS. Special requirements which expert organizations must fulfil in order to perform certain activities in the field of nuclear safety are organizational, technical, technological conditions and established system of quality assurance. In 2007, State Office for Nuclear Safety finalized the text of new Ordinance on conditions for nuclear safety and protection with regard to the siting, design, construction, use and decommissioning of a facility in which a nuclear activity is

  18. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    Science.gov (United States)

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  19. A method for assay of special nuclear material in high level liquid waste streams

    International Nuclear Information System (INIS)

    Venkata Subramani, C.R.; Swaminathan, K.; Asuvathraman, R.; Kutty, K.V.G.

    2003-01-01

    The assay of special nuclear material in the high level liquid waste streams assumes importance as this is the first stage in the extraction cycle and considerable losses of plutonium could occur here. This stream contains all the fission products as also the minor actinides and hence normal nuclear techniques cannot be used without prior separation of the special nuclear material. This paper presents the preliminary results carried out using wavelength dispersive x-ray fluorescence as part of the developmental efforts to assay SNM in these streams by instrumental techniques. (author)

  20. A versatile data handling system for nuclear physics experiments based on PDP 11/03 micro-computers

    International Nuclear Information System (INIS)

    Raaf, A.J. de

    1979-01-01

    A reliable and low cost data handling system for nuclear physics experiments is described. It is based on two PDP 11/03 micro-computers together with Gec-Elliott CAMAC equipment. For the acquisition of the experimental data a fast system has been designed. It consists of a controller for four ADCs together with an intelligent 38k MOS memory with a word size of 24 bits. (Auth.)

  1. 9 CFR 381.125 - Special handling label requirements.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY.... The safe handling information shall be set off by a border and shall be one color type printed on a single color contrasting background whenever practical. (2) (i) The labels of the poultry products...

  2. Nuclear safety philosophy and its general application to fuel management and handling - a regulator's viewpoint

    International Nuclear Information System (INIS)

    Petty, I.C.

    1995-01-01

    The Nuclear Safety Division (NSD) of the Health and Safety Executive (HSE) informs the UK Nuclear Industry of the principles that it applies in assessing whether licensees have demonstrated that their nuclear plants are as safe as is reasonably practicable. The paper commences with a discussion of the non-prescriptive approach to health and safety regulation which is the basis of the regulatory activities of NSD's operating arm -the Nuclear Installations Inspectorate (NII). It then describes in broad terms the overall approach used by NII for analysing the safety of nuclear plant, including fuel, which will cover both deterministic and probabilistic methodologies. The paper then introduces the sections of the Safety Assessment Principles which apply to nuclear fuel safety (both fuel handling and management). Most of these principles are of a general nature and do not just apply to fuel. The paper explains how safety cases might relate to the SAPs and offers some views on how a licensee might interpret them in developing his safety case. Particular emphasis is placed on the importance of submitting a high quality safety case and the type of information that should be in it. The advantages of the approach proposed, to the licensee as well as to the regulator, are identified. (author)

  3. Retrieval system of nuclear data for transmutation of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Utsumi, Misako; Noda, Tetsuji [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1997-03-01

    A database storing the data on nuclear reaction was built to calculate for simulating transmutation behaviours of materials /1/-/3/. In order to retrieve and maintain the database, the user interface for the data retrieval was developed where special knowledge on handling of the database or the machine structure is not required for end-user. It is indicated that using the database, the possibility of He formation and radioactivity in a material can be easily retrieved though the evaluation is qualitatively. (author)

  4. Physical protection of facilities and special nuclear materials in france

    International Nuclear Information System (INIS)

    Jeanpierre, G.

    1980-01-01

    Physical protection of nuclear facilities and special nuclear materials is subject in France to a national governmental regulation which provides for the basic principles to be taken into account and the minimal level of protection deemed necessary. But the responsibility of implementation is left to the facility management and the resulting decentralization allows for maximum efficiency. All safeguards measures comply with the commitments taken at the international level by the French government

  5. Safety issues in robotic handling of nuclear weapon parts

    International Nuclear Information System (INIS)

    Drotning, W.; Wapman, W.; Fahrenholtz, J.

    1993-01-01

    Robotic systems are being developed by the Intelligent Systems and Robotics Center at Sandia National Laboratories to perform automated handling tasks with radioactive weapon parts. These systems will reduce the occupational radiation exposure to workers by automating operations that are currently performed manually. The robotic systems at Sandia incorporate several levels of mechanical, electrical, and software safety for handling hazardous materials. For example, tooling used by the robot to handle radioactive parts has been designed with mechanical features that allow the robot to release its payload only at designated locations in the robotic workspace. In addition, software processes check for expected and unexpected situations throughout the operations. Incorporation of features such as these provides multiple levels of safety for handling hazardous or valuable payloads with automated intelligent systems

  6. Handling missing data in transmission disequilibrium test in nuclear families with one affected offspring.

    Directory of Open Access Journals (Sweden)

    Gulhan Bourget

    Full Text Available The Transmission Disequilibrium Test (TDT compares frequencies of transmission of two alleles from heterozygote parents to an affected offspring. This test requires all genotypes to be known from all members of the nuclear families. However, obtaining all genotypes in a study might not be possible for some families, in which case, a data set results in missing genotypes. There are many techniques of handling missing genotypes in parents but only a few in offspring. The robust TDT (rTDT is one of the methods that handles missing genotypes for all members of nuclear families [with one affected offspring]. Even though all family members can be imputed, the rTDT is a conservative test with low power. We propose a new method, Mendelian Inheritance TDT (MITDT-ONE, that controls type I error and has high power. The MITDT-ONE uses Mendelian Inheritance properties, and takes population frequencies of the disease allele and marker allele into account in the rTDT method. One of the advantages of using the MITDT-ONE is that the MITDT-ONE can identify additional significant genes that are not found by the rTDT. We demonstrate the performances of both tests along with Sib-TDT (S-TDT in Monte Carlo simulation studies. Moreover, we apply our method to the type 1 diabetes data from the Warren families in the United Kingdom to identify significant genes that are related to type 1 diabetes.

  7. Development of commercial robots for radwaste handling

    International Nuclear Information System (INIS)

    Colborn, K.A.

    1988-01-01

    The cost and dose burden associated with low level radwaste handling activities is a matter of increasing concern to the commercial nuclear power industry. This concern is evidenced by the fact that many utilities have begun to revaluate waste generation, handling, and disposal activities at their plants in an effort to improve their overall radwaste handling operations. This paper reports on the project Robots for Radwaste Handling, to identify the potential of robots to improve radwaste handling operations. The project has focussed on the potential of remote or automated technology to improve well defined, recognizable radwaste operations. The project focussed on repetitive, low skill level radwaste handling and decontamination tasks which involve significant radiation exposure

  8. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    International Nuclear Information System (INIS)

    C.E. Sanders

    2005-01-01

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility

  9. Handling and Transport Problems

    Energy Technology Data Exchange (ETDEWEB)

    Pomarola, J. [Head of Technical Section, Atomic Energy Commission, Saclay (France); Savouyaud, J. [Head of Electro-Mechanical Sub-Division, Atomic Energy Commission, Saclay (France)

    1960-07-01

    Arrangements for special or dangerous transport operations by road arising out of the activities of the Atomic Energy Commission are made by the Works and Installations Division which acts in concert with the Monitoring and Protection Division (MPD) whenever radioactive substances or appliances are involved. In view of the risk of irradiation and contamination entailed in handling and transporting radioactive substances, including waste, a specialized transport and storage team has been formed as a complement to the emergency and decontamination teams.

  10. Losses in German nuclear power plants

    International Nuclear Information System (INIS)

    Abinger, R.

    1982-01-01

    The author illustrates the special features of engineering insurance for nuclear power plants. The shares of the Allianz Versicherungs-AG in the insurance of construction and erection work and in machinery insurance are dealt with. Risk estimation is usually based on statistical analysis of losses. Loss analysis in the conventional sector of nuclear power plants shows typical characteristics of traditional erection and machinery losses. In the nuclear field, however, costs are greatly increased by added safety measures. For this reason, additional cover is allocated and incorporated in premium assessment. Examples from erection and machinery reveal the greater costs involved in handling losses. (orig.) [de

  11. Remote handling at LAMPF

    International Nuclear Information System (INIS)

    Grisham, D.L.; Lambert, J.E.

    1983-01-01

    Experimental area A at the Clinton P. Anderson Meson Physics Facility (LAMPF) encompasses a large area. Presently there are four experimental target cells along the main proton beam line that have become highly radioactive, thus dictating that all maintenance be performed remotely. The Monitor remote handling system was developed to perform in situ maintenance at any location within area A. Due to the complexity of experimental systems and confined space, conventional remote handling methods based upon hot cell and/or hot bay concepts are not workable. Contrary to conventional remote handling which require special tooling for each specifically planned operation, the Monitor concept is aimed at providing a totally flexible system capable of remotely performing general mechanical and electrical maintenance operations using standard tools. The Monitor system is described

  12. Uranium hexafluoride handling

    International Nuclear Information System (INIS)

    1991-01-01

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF 6 from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride

  13. Historical summary of the fuel and waste handling and disposition activities of the TMI-2 Information and Examination Program (1980-1988)

    International Nuclear Information System (INIS)

    Reno, H.W.; Schmitt, R.C.

    1988-10-01

    This report is a historical summary of the major activities conducted by the TMI-2 Information and Examination Program in managing fuel and special radioactive wastes resulting from the accident at the Unit 2 reactor of the Three Mile Island Nuclear Power Station (TMI-2). The activities often required the development and use of advanced handling, processing, and/or disposal technologies for those wastes

  14. Advance of Hazardous Operation Robot and its Application in Special Equipment Accident Rescue

    Science.gov (United States)

    Zeng, Qin-Da; Zhou, Wei; Zheng, Geng-Feng

    A survey of hazardous operation robot is given out in this article. Firstly, the latest researches such as nuclear industry robot, fire-fighting robot and explosive-handling robot are shown. Secondly, existing key technologies and their shortcomings are summarized, including moving mechanism, control system, perceptive technology and power technology. Thirdly, the trend of hazardous operation robot is predicted according to current situation. Finally, characteristics and hazards of special equipment accident, as well as feasibility of hazardous operation robot in the area of special equipment accident rescue are analyzed.

  15. As-Built Verification Plan Spent Nuclear Fuel Canister Storage Building MCO Handling Machine

    International Nuclear Information System (INIS)

    SWENSON, C.E.

    2000-01-01

    This as-built verification plan outlines the methodology and responsibilities that will be implemented during the as-built field verification activity for the Canister Storage Building (CSB) MCO HANDLING MACHINE (MHM). This as-built verification plan covers THE ELECTRICAL PORTION of the CONSTRUCTION PERFORMED BY POWER CITY UNDER CONTRACT TO MOWAT. The as-built verifications will be performed in accordance Administrative Procedure AP 6-012-00, Spent Nuclear Fuel Project As-Built Verification Plan Development Process, revision I. The results of the verification walkdown will be documented in a verification walkdown completion package, approved by the Design Authority (DA), and maintained in the CSB project files

  16. Handling apparatus for a nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Hornak, L.P.; Desmarchais, W.E.

    1978-01-01

    An apparatus is disclosed for handling radioactive fuel assembly during transfer operations. The radioactive fuel assembly is drawn up into a shielding sleeve which substantially reduces the level of radioactivity immediately surrounding the sleeve thereby permitting direct access by operating personnel. The lifting assembly which draws the fuel assembly up within the shielding sleeve is mounted to and forms an integral part of the handling apparatus. The shielding sleeve accompanies the fuel assembly during all of the transfer operations

  17. 48 CFR 908.7112 - Materials handling equipment replacement standards.

    Science.gov (United States)

    2010-10-01

    ... equipment replacement standards. 908.7112 Section 908.7112 Federal Acquisition Regulations System DEPARTMENT... Special Items 908.7112 Materials handling equipment replacement standards. Materials handling equipment shall be purchased for replacement purposes in accordance with the standards in FPMR 41 CFR 101-25.405...

  18. Equipment for the handling of thorium materials

    International Nuclear Information System (INIS)

    Heisler, S.W. Jr.; Mihalovich, G.S.

    1988-01-01

    The Feed Materials Production Center (FMPC) is the United States Department of Energy's storage facility for thorium. FMPC thorium handling and overpacking projects ensure the continued safe handling and storage of the thorium inventory until final disposition of the materials is determined and implemented. The handling and overpacking of the thorium materials requires the design of a system that utilizes remote handling and overpacking equipment not currently utilized at the FMPC in the handling of uranium materials. The use of remote equipment significantly reduces radiation exposure to personnel during the handling and overpacking efforts. The design system combines existing technologies from the nuclear industry, the materials processing and handling industry and the mining industry. The designed system consists of a modified fork lift truck for the transport of thorium containers, automated equipment for material identification and inventory control, and remote handling and overpacking equipment for material identification and inventory control, and remote handling and overpacking equipment for repackaging of the thorium materials

  19. Radiological safety aspects of handling plutonium

    International Nuclear Information System (INIS)

    Sundararajan, A.R.

    2016-01-01

    Department of Atomic Energy in its scheme of harnessing the nuclear energy for electrical power generation and strategic applications has given a huge role to utilization of plutonium. In the power production programme, fast reactors with plutonium as fuel are expected to play a major role. This would require establishing fuel reprocessing plants to handle both thermal and fast reactor fuels. So in the nuclear fuel cycle facilities variety of chemical, metallurgical, mechanical operations have to be carried out involving significant inventories of "2"3"9 Pu and associated radionuclides. Plutonium is the most radiotoxic radionuclide and therefore any facility handling it has to be designed and operated with utmost care. Two problems of major concern in the protection of persons working in plutonium handling facilities are the internal exposure to the operating personnel from uptake of plutonium and transplutonic nuclides as they are highly radiotoxic and the radiation exposure of hands and eye lens during fuel fabrication operations especially while handling recycled high burn up plutonium. In view of the fact that annual limit for intake is very small for "2"3"9Pu and its radiation emission characteristics are such that it is a huge challenge for the health physicists to detect Pu in air and in workers. This paper discusses the principles and practices followed in providing radiological surveillance to workers in plutonium handling areas. The challenges in protecting the workers from receiving exposures to hands and eye lens in handling high burn up plutonium are also discussed. The sites having Pu fuel cycle facilities should have trained medical staff to handle cases involving excessive intake of plutonium. (author)

  20. PND fuel handling decontamination: facilities and techniques

    International Nuclear Information System (INIS)

    Pan, R.Y.

    1996-01-01

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at Ontario Hydro's Pickering Nuclear Division. This paper presents an overview of the set up and techniques used for decontamination in the PND Fuel Handling Maintenance Facility and the effectiveness of each. (author). 1 tab., 9 figs

  1. International handling of fissionable material

    International Nuclear Information System (INIS)

    1975-01-01

    The opinion of the ministry for foreign affairs on international handling of fissionable materials is given. As an introduction a survey is given of the possibilities to produce nuclear weapons from materials used in or produced by power reactors. Principles for international control of fissionable materials are given. International agreements against proliferation of nuclear weapons are surveyed and methods to improve them are proposed. (K.K.)

  2. Effect of special features of nuclear power plants

    International Nuclear Information System (INIS)

    Scharf, H.

    1986-01-01

    Special features of nuclear power plants are reported with the Muelheim-Kaerlich pressurized water reactor as the reference plant. This nuclear reactor uses 'Once Through Steam Generators (OTSG)' with 'Integrated Economizer' to provide the turbine with superheated steam. The implementation of OTSG allows to operate the plant with constant steam pressure over the entire power range, and with constant main coolant temperature over a power range from 15% power to 100% power. Control of the plant during power operation is provided by the 'Integrated Control System', which simultaneously sends signals to the plant's subsystems reactor, OTSG, and turbine to get optimum response of the plant during power transients. The characteristics of this 'Integrated Control System' and its different modes of operation are presented. (orig./GL)

  3. Handling and final disposal of nuclear waste. Programme for research development and other measures

    International Nuclear Information System (INIS)

    1989-09-01

    The report is divided into two parts. Part 1 presents the premises for waste management in Sweden and the waste types that are produced in Sweden. A brief description is then provided of the measures required for the handling and disposal of the various waste forms. An account of measures for decommissioning of nuclear power plants is also included. Part 2 describes the research program for 1990-1995, which includes plans for siting, repository design; studies of rock properties and chemistry, biosphere, technological barriers. Activities within two large projects, the Stripa laboratory and Natural analogues are also described. 240 refs. 40 figs

  4. Survey of tritiated oil sources and handling practices

    International Nuclear Information System (INIS)

    Miller, J.M.

    1994-08-01

    Tritium interactions with oil sources (primarily associated with pumps) in tritium-handling facilities can lead to the incorporation of tritium in the oil and the production of tritiated hydrocarbons. This results in a source of radiological hazard and the need for special handling considerations during maintenance, decontamination, decommissioning and waste packaging and storage. The results of a general survey of tritiated-oil sources and their associated characteristics, handling practices, analysis techniques and waste treatment/storage methods are summarized here. Information was obtained from various tritium-handling laboratories, fusion devices, and CANDU plants. 38 refs., 1 fig

  5. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Sanders

    2005-04-07

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for

  6. PND fuel handling decontamination: facilities and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pan, R Y [Ontario Hydro, Toronto, ON (Canada)

    1997-12-31

    The use of various decontamination techniques and equipment has become a critical part of Fuel Handling maintenance work at Ontario Hydro`s Pickering Nuclear Division. This paper presents an overview of the set up and techniques used for decontamination in the PND Fuel Handling Maintenance Facility and the effectiveness of each. (author). 1 tab., 9 figs.

  7. Nuclear plants near borders: environmental, legal, economic and political aspects

    International Nuclear Information System (INIS)

    Carle, R.

    1990-01-01

    Over the last few years, the legal framework of the development of nuclear energy within Europe has focussed on the special problems posed by nuclear plants located near national boundaries. The problems which may be caused by such plants must clearly be handled in the same way as for any other installations and the governments concerned need to define mutually acceptable conditions. Joint committees have already been formed between some countries, most notably to deal with nuclear plant safety issues. Special agreements have been reached covering the use of river water, public information and mutual assistance in case of accident. The key to the whole process is a progressive standardization of regulations concerning the environment, safety, radiological protection, non-proliferation, public information and emergency plans in case of accidents. (UK)

  8. Principles of preparation of traumatological plans for nuclear facilities and workplaces handling ionizing radiation sources. Recommendations

    International Nuclear Information System (INIS)

    1999-01-01

    The publication encompasses the following topics: (i) Czech legislative framework of emergency preparedness; (ii) Medical care during accidents associated with immediate health consequences (Accidents during ionizing radiation source handling; Physician's action during the treatment of excessively exposed persons; Equipment of emergency site providing first aid during contamination with radioactive substances; Guidelines for the collection of stool and urine); (iii) Licensee's procedures during events at workplaces and principles of organization of medical help; and (iv) Provisions to protect the public in the event of accidents associated with radioactivity leaks into the environment. It is envisaged that this document ('Recommendations') will form a basis for the final Safety Guides to be issued by the State Office for Nuclear Safety, the Czech nuclear regulatory authority. (P.A.)

  9. Developing glovebox robotics to meet the national robot safety standard and nuclear safety criteria

    International Nuclear Information System (INIS)

    McMahon, T.T.; Sievers, R.H.

    1991-09-01

    Development of a glove box based robotic system by the Lawrence Livermore National Laboratory (LLNL) is reported. Safety issues addressed include planning to meet the special constraints of operations within a hazardous material glove box and with hostile environments, compliance with the current and draft national robotic system safety standards, and eventual satisfaction of nuclear material handling requirements. Special attention has been required for the revision to the robot and control system models which antedate adoption of the present national safety standard. A robotic test bed, using non-radioactive surrogates is being activated at the Lawrence Livermore National Laboratory to develop the material handling system and the process interfaces for future special nuclear material processing applications. Part of this effort is to define, test, and revise adequate safety controls to ensure success when the system is eventually deployed at a DOE site. The current system is primarily for demonstration and testing, but will evolve into the baseline configuration from which the production system is to be derived. This results in special hazards associated with research activities which may not be present on a production line. Nuclear safety is of paramount importance and has been successfully addressed for 50 years in the DOE weapons production complex. It carries its particular requirements for robot systems and manual operations, as summarized below: Criticality must be avoided (materials cannot consolidate or accumulate to approach a critical mass). Radioactive materials must be confined. The public and workers must be protected from accountable radiation exposure. Nuclear material must be readily retrievable. Nuclear safety must be conclusively demonstrated through hazards analysis. 7 refs

  10. Environmental management at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Choudhary, S.; Kalidas, R.

    2005-01-01

    Nuclear Fuel Complex (NFC) a unit of Department of Atomic Energy (DAE) is manufacturing and supplying fuel assemblies and structurals for Atomic Power Reactors, Seamless Stainless Steel/ Special Alloy Tubes and high purity/special materials for various industries including Atomic Energy, Space and Electronics. NFC is spread over about 200 acres area. It consists of various chemical, metallurgical, fabrication and assembly plants engaged in processing uranium from concentrate to final fuel assembly, processing zirconium from ore to metallic products and processing various special high purity materials from ore or intermediate level to the final product. The plants were commissioned in the early seventies and capacities of these plants have been periodically enhanced to cater to the growing demands of the Indian Nuclear Industry. In the two streams of plants processing Uranium and zirconium, various types and categories including low level radioactive wastes are generated. These require proper handling and disposal. The overall management of radioactive and other waste aims at minimizing the generation and release to the environment. In this presentation, the environment management methodologies as practiced in Nuclear Fuel Complex are discussed. (author)

  11. Intelligent data-acquisition instrumentation for special nuclear material assay data analysis

    International Nuclear Information System (INIS)

    Ethridge, C.D.

    1980-01-01

    The Detection, Surveillance, Verification, and Recovery Group of the Los Alamos Scientific Laboratory Energy Division/Nuclear Safeguards Programs is now utilizing intelligent data-acquisition instrumentation for assay data analysis of special nuclear material. The data acquisition and analysis are enabled by the incorporation of a number-crunching microprocessor sequenced by a single component microcomputer. Microcomputer firmware establishes the capability for processing the computation of several selected functions and also the ability of instrumentation self-diagnostics

  12. Differing professional opinions: 1987 special review panel

    International Nuclear Information System (INIS)

    1988-01-01

    In November 1987, the five-member Differing Professional Opinions Special Review Panel established by the Executive Director for Operations of the US Nuclear Regulatory Commission to review agency policies and procedures for handling differing professional opinions (DPOs) presented its findings and recommendations in NUREG-1290. The issuance of that report completed the first task of the panel's charter. In accordance with Manual chapter 4125, Section L, and the charter of the Special Review Panel, the panel's second task was to ''...review...the DPOs submitted subsequent to the previous Panel's review, in order to identify any employee whose DPO made a significant contribution to the Agency or to the public safety but who has not yet been recognized for such contribution.'' This Addendum provides the findings of that review

  13. Semi-annual report on strategic special nuclear material inventory differences

    International Nuclear Information System (INIS)

    1979-01-01

    This report provides and explains the generally small differences between the amounts of nuclear materials charged to DOE facilities and the amounts that could be physically inventoried. This report covers data for the period from October 1, 1977, through March 31, 1978, and includes accounting corrections for data from earlier periods. The data and explanations, together with the absence of physical indications of any theft attempt, support a finding that during this period no theft or diversion of a significant amount of strategic special nuclear material has occurred

  14. Necessity of Internal Monitoring for Nuclear Medicine Staff in a Large Specialized Chinese Hospital.

    Science.gov (United States)

    Wang, Hong-Bo; Zhang, Qing-Zhao; Zhang, Zhen; Hou, Chang-Song; Li, Wen-Liang; Yang, Hui; Sun, Quan-Fu

    2016-04-12

    This work intends to quantify the risk of internal contaminations in the nuclear medicine staff of one hospital in Henan province, China. For this purpose, the criteria proposed by the International Atomic Energy Agency (IAEA) to determine whether it is necessary to conduct internal individual monitoring was applied to all of the 18 nuclear medicine staff members who handled radionuclides. The activity of different radionuclides used during a whole calendar year and the protection measures adopted were collected for each staff member, and the decision as to whether nuclear medicine staff in the hospital should be subjected to internal monitoring was made on the basis of the criteria proposed by IAEA. It is concluded that for all 18 members of the nuclear medicine staff in the hospital, internal monitoring is required. Internal exposure received by nuclear medicine staff should not be ignored, and it is necessary to implement internal monitoring for nuclear medicine staff routinely.

  15. Improved design for vibration-proof platinum RTD in special position of nuclear power plant

    International Nuclear Information System (INIS)

    Liu Zhuo; Ma Jinna; Wu Bin

    2014-01-01

    In accordance with the actual situation for the vibration of violence in a special position of nuclear power plant, an improved design for platinum RTD was proposed. The structure design is verified to meet the measure requirement in the special position. (authors)

  16. Annual meeting on nuclear technology '92. Technical session 'Nuclear energy discussion'. Proceedings. Jahrestagung Kerntechnik '92. Fachsitzung 'Kernenergie-Diskussion'. Berichtsheft

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The report contains the six special papers red at the 1992 annual conference on nuclear engineering at Karlsruhe, all of which are individually retrievable from the database. They deal with the following subjects: historical development of the basic trends of technology criticism; communication problems in connection with the conveying of technical facts; psycho-sociological patterns of technology anxiety-mental infection or risk consciousness; field of tension between technology and journalism; handling of insecurities; ethical justifiability of nuclear energy use. (HSCH).

  17. Uranium hexafluoride: A manual of good handling practices. Revision 7

    International Nuclear Information System (INIS)

    1995-01-01

    The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF 6 ) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF 6 handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF 6 handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF 6 are also described. The procedures and systems described for safe handling of UF 6 presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF 6 . With proper consideration for its nuclear properties, UF 6 may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical

  18. Encapsulation and handling of spent nuclear fuel for final disposal

    International Nuclear Information System (INIS)

    Loennerberg, B.; Larker, H.; Ageskog, L.

    1983-05-01

    The handling and embedding of those metal parts which arrive to the encapsulation station with the fuel is described. For the encapsulation of fuel two alternatives are presented, both with copper canisters but with filling of lead and copper powder respectively. The sealing method in the first case is electron beam welding, in the second case hot isostatic pressing. This has given the headline of the two chapters describing the methods: Welded copper canister and Pressed copper canister. Chapter 1, Welded copper canister, presents the handling of the fuel when it arrives to the encapsulation station, where it is first placed in a buffer pool. From this pool the fuel is transferred to the encapsulation process and thereby separated from fuel boxes and boron glass rod bundles, which are transported together with the fuel. The encapsulation process comprises charging into a copper canister, filling with molten lead, electron beam welding of the lid and final inspection. The transport to and handling in the final repository are described up to the deposition and sealing in the deposition hole. Handling of fuel residues is treated in one of the sections. In chapter 2, Pressed copper canister, only those parts of the handling, which differ from chapter 1 are described. The hot isostatic pressing process is given in the first sections. The handling includes drying, charging into the canister, filling with copper powder, seal lid application and hot isostatic pressing before the final inspection and deposition. In the third chapter, BWR boxes in concrete moulds, the handling of the metal parts, separated from the fuel, are dealt with. After being lifted from the buffer pool they are inserted in a concrete mould, the mould is filled with concrete, covered with a lid and after hardening transferred to its own repository. The deposition in this repository is described. (author)

  19. Rattling nucleons: New developments in active interrogation of special nuclear material

    International Nuclear Information System (INIS)

    Runkle, Robert C.; Chichester, David L.; Thompson, Scott J.

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.

  20. Preface: Special Topic on Nuclear Quantum Effects.

    Science.gov (United States)

    Tuckerman, Mark; Ceperley, David

    2018-03-14

    Although the observable universe strictly obeys the laws of quantum mechanics, in many instances, a classical description that either ignores quantum effects entirely or accounts for them at a very crude level is sufficient to describe a wide variety of phenomena. However, when this approximation breaks down, as is often the case for processes involving light nuclei, a full quantum treatment becomes indispensable. This Special Topic in The Journal of Chemical Physics showcases recent advances in our understanding of nuclear quantum effects in condensed phases as well as novel algorithmic developments and applications that have enhanced the capability to study these effects.

  1. Preface: Special Topic on Nuclear Quantum Effects

    Science.gov (United States)

    Tuckerman, Mark; Ceperley, David

    2018-03-01

    Although the observable universe strictly obeys the laws of quantum mechanics, in many instances, a classical description that either ignores quantum effects entirely or accounts for them at a very crude level is sufficient to describe a wide variety of phenomena. However, when this approximation breaks down, as is often the case for processes involving light nuclei, a full quantum treatment becomes indispensable. This Special Topic in The Journal of Chemical Physics showcases recent advances in our understanding of nuclear quantum effects in condensed phases as well as novel algorithmic developments and applications that have enhanced the capability to study these effects.

  2. A MGy radiation-hardened sensor instrumentation link for nuclear reactor monitoring and remote handling

    Energy Technology Data Exchange (ETDEWEB)

    Verbeeck, Jens; Cao, Ying [KU Leuven - KUL, Div. LRD-MAGyICS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Van Uffelen, Marco; Mont Casellas, Laura; Damiani, Carlo; Morales, Emilio Ruiz; Santana, Roberto Ranz [Fusion for Energy - F4E, c/Josep,n deg. 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Meek, Richard; Haist, Bernhard [Oxford Technologies Ltd. OTL, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); De Cock, Wouter; Vermeeren, Ludo [SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Steyaert, Michiel [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, ESAT-MICAS, KasteelparkArenberg 10, 3001 Heverlee (Belgium)

    2015-07-01

    Decommissioning, dismantling and remote handling applications in nuclear facilities all require robotic solutions that are able to survive in radiation environments. Recently raised safety, radiation hardness and cost efficiency demands from both the nuclear regulatory and the society impose severe challenges in traditional methods. For example, in case of the dismantling of the Fukushima sites, solutions that survive accumulated doses higher than 1 MGy are mandatory. To allow remote operation of these tools in nuclear environments, electronics were used to be shielded with several centimeters of lead or even completely banned in these solutions. However, shielding electronics always leads to bulky and heavy solutions, which reduces the flexibility of robotic tools. It also requires longer repair time and produces extra waste further in a dismantling or decommissioning cycle. In addition, often in current reactor designs, due to size restrictions and the need to inspect very tight areas there are limitations to the use of shielding. A MGy radiation-hardened sensor instrumentation link developed by MAGyICS provides a solution to build a flexible, easy removable and small I and C module with MGy radiation tolerance without any shielding. Hereby it removes all these pains to implement electronics in robotic tools. The demonstrated solution in this poster is developed for ITER Remote Handling equipments operating in high radiation environments (>1 MGy) in and around the Tokamak. In order to obtain adequately accurate instrumentation and control information, as well as to ease the umbilical management, there is a need of front-end electronics that will have to be located close to those actuators and sensors on the remote handling tool. In particular, for diverter remote handling, it is estimated that these components will face gamma radiation up to 300 Gy/h (in-vessel) and a total dose of 1 MGy. The radiation-hardened sensor instrumentation link presented here, consists

  3. Defense Special Weapons Agency Advisory Panel on the Nuclear Weapon Effects Program

    National Research Council Canada - National Science Library

    1998-01-01

    We performed the audit in response to allegations made to the Defense Hotline concerning conflicts of interest among members of the Defense Special Weapons Agency Advisory Panel on the Nuclear Weapon Effects Program...

  4. Special monitoring in nuclear medicine

    International Nuclear Information System (INIS)

    Beltran, C.C.; Puerta, J.A.; Morales, J.

    2006-01-01

    Colombia counts with around 56 centers of Nuclear Medicine, 70 Nuclear Doctors and more of 100 Technologists in this area. The radioisotopes more used are the 131 I and the 99m Tc. The radiological surveillance singular in the country is carried out for external dosimetry, being the surveillance by incorporation of radioactive materials very sporadic in our media. Given the necessity to implement monitoring programs in the incorporation of radionuclides of the occupationally exposed personnel, in the routine practice them routine of Nuclear Medicine, it was implemented a pilot program of Special Monitoring with two centers of importance in the city of Medellin. This program it was carried out with the purpose of educating, to stimulate and to establish a program of reference monitoring with base in the National Program of Monitoring in the radionuclides Incorporation that serves like base for its application at level of all the services of Nuclear Medicine in the country. This monitoring type was carried out with the purpose of obtaining information on the work routine in these centers, form of manipulation and dosage of the radionuclides, as well as the administration to the patient. The application of the program was carried out to define the frequency of Monitoring and analysis technique for the implementation of a program of routine monitoring, following the recommendations of the International Commission of Radiological Protection. For their application methods of activity evaluation were used in urine and in 7 workers thyroid, of those which only two deserve an analysis because they presented important activities. The measures were carried out during one month, every day by means in urine samples and to the most critic case is practiced two thyroid measures, one in the middle of the period and another when concluding the monitoring. To the other guy is practiced an activity count in thyroid when concluding the monitoring period. The obtained result of the

  5. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  6. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Science.gov (United States)

    2012-09-20

    ... for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins From Commercial Nuclear Power... Radioactive Waste Spent Ion Exchange Resins from Commercial Nuclear Power Reactors. DATES: Please submit... Evaluation of Alternatives for Handling Low-Level Radioactive Waste Spent Ion Exchange Resins from Commercial...

  7. Semi-annual report on strategic special nuclear material inventory differences

    International Nuclear Information System (INIS)

    1983-07-01

    This report covers data for the period from April 1, 1982, through September 30, 1982, and includes accounting corrections for data from earlier periods. These data and explanations, together with the absences of physical indications of any theft attempt, support a finding that during this period no theft or diversion of strategic special nuclear material has occurred

  8. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Harvego, Lisa

    2009-01-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory's recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy's ability to meet obligations with the State of Idaho

  9. 10 CFR 74.31 - Nuclear material control and accounting for special nuclear material of low strategic significance.

    Science.gov (United States)

    2010-01-01

    ... and maintain a measurement system which assures that all quantities in the material accounting records...) In each inventory period, control total material control and accounting measurement uncertainty so... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special...

  10. Decree 2805 by means of which the National Accounting and Control of Basic Nuclear Materials and Special Fusionable Materials System, is established

    International Nuclear Information System (INIS)

    1979-01-01

    This Decree has for object to establish a National Accounting and Control of Basic Nuclear Materials and Special Fusionable Materials System, under the supervision of the National Council for the Nuclear Industry Development. Its aims are to account nuclear materials, to control nuclear activities, to preserve and control nuclear information, to keep technical relationship with specialized organizations, and to garant nuclear safeguards [es

  11. Uranium hexafluoride: A manual of good handling practices. Revision 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    The United States Enrichment Corporation (USEC) is continuing the policy of the US Department of Energy (DOE) and its predecessor agencies in sharing with the nuclear industry their experience in the area of uranium hexafluoride (UF{sub 6}) shipping containers and handling procedures. The USEC has reviewed Revision 6 or ORO-651 and is issuing this new edition to assure that the document includes the most recent information on UF{sub 6} handling procedures and reflects the policies of the USEC. This manual updates the material contained in earlier issues. It covers the essential aspects of UF{sub 6} handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF{sub 6} are also described. The procedures and systems described for safe handling of UF{sub 6} presented in this document have been developed and evaluated during more than 40 years of handling vast quantities of UF{sub 6}. With proper consideration for its nuclear properties, UF{sub 6} may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical.

  12. Safe Handling of Radioisotopes. Medical Addendum

    International Nuclear Information System (INIS)

    Hercik, F.; Jammet, H.

    1960-01-01

    The International Atomic Energy Agency published in 1958 a Manual entitled ''Safe Handling of Radioisotopes'' (Safety Series No. 1 - STI/PUB/1), based on the work of an international panel convened by the Agency. As recommended by that panel and approved by the Agency's Board of Governors, this Addendum has now been prepared, primarily as a supplement to the Manual. It contains information necessary to medical officers concerned with the implementation of the controls given in the Manual. In addition, it is intended to serve as a brief introduction to the medical problems encountered in radiological protection work and to the methods of resolving them. As in the case of the Manual itself, the information given in this Addendum is particularly relevant to the problems encountered by the small user of radioisotopes. Although the basic principles set forth in it apply to all work with radiation sources, the Addendum is not intended to serve as a radiological protection manual for use in reactor installations or large-scale nuclear industry, where more specialized techniques and information are required.

  13. Uranium hexafluoride: A manual of good handling practices

    International Nuclear Information System (INIS)

    1991-10-01

    For many years, the US Department of Energy (DOE) and its predecessor agencies have shared with the nuclear industry their experience in the area of uranium hexafluoride (UF 6 ) shipping containers and handling procedures. The information contained in this manual updates information contained in earlier issues. It covers the essential aspects of UF 6 handling, cylinder filling and emptying, general principles of weighing and sampling, shipping, and the use of protective overpacks. The physical and chemical properties of UF 6 are also described and tabulated. The nuclear industry is responsible for furnishing its own shipping cylinders and suitable protective overpacks. A substantial effort has been made by the industry to standardize UF 6 cylinders, samples, and overpacks. The quality of feed materials is important to the safe and efficient operation of the enriching facilities, and the UF 6 product purity from the enriching facilities is equally important to the fuel fabricator, the utilities, the operators of research reactors, and other users. The requirements have been the impetus for an aggressive effort by DOE and its contractors to develop accurate techniques for sampling and for chemical and isotopic analysis. A quality control program is maintained within the DOE enriching facilities to ensure that the proper degree of accuracy and precision are obtained for all the required measurements. The procedures and systems described for safe handling of UF 6 presented in this document have been developed and evaluated in DOE facilities during more than 40 years of handling vast quantities of UF 6 . With proper consideration for its nuclear properties, UF 6 may be safely handled in essentially the same manner as any other corrosive and/or toxic chemical

  14. Uranium hexafluoride handling. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  15. Artificial intelligence: the future in nuclear plant maintenance

    International Nuclear Information System (INIS)

    Norgate, G.

    1984-01-01

    The role of robotics and remote handling equipment in future nuclear power plant maintenance activities is discussed in the context of artificial intelligence applications. Special requirements manipulators, control systems, and man-machine interfaces for nuclear applications are noted. Tasks might include inspection with cameras, eddy current probes, and leak detectors; the collection of material samples; radiation monitoring; and the disassembly, repair and reassembly of a variety of system components. A robot with vision and force sensing and an intelligent control system that can access a knowledge base is schematically described. Recent advances in image interpretation systems are also discussed

  16. Development of the production of special steels for nuclear industries

    International Nuclear Information System (INIS)

    Vieillard-Baron, B.

    1977-01-01

    The development of electro-nuclear industries has a powerful impact on the production of special steels, although the quantity of material applied to the non-conventional parts of nuclear power plants is quite small as compared to the total production requirements in this industrial field. Evolution bears on the product research, development and testing methods, on the technical and marketing services - in particular the establishment of quality control teams and assurance manuals - and the implementation of high performance production equipments. Manufacturing must however take place under normal work load and productivity conditions of production tools, and thus ensure a satisfactory profitability on investments entailed [fr

  17. Chemical characterization of nuclear materials: recent trends

    International Nuclear Information System (INIS)

    Prakash, Amrit; Nandi, C.; Patil, A.B.; Khan, K.B.

    2013-01-01

    Analytical chemistry plays a very important role for nuclear fuel activities be it fuel fabrication, waste management or reprocessing. Nuclear fuels are selected based on the type of reactor. The nuclear fuel has to conform to stringent chemical specifications like boron, cadmium, rare earths, hydrogen, oxygen to metal ratio, total gas, heavy metal content, chlorine and fluorine etc. Selection of technique is very important to evaluate the true specification. This is important particularly when the analyses have to perform inside leak tight enclosure. The present paper describes the details of advanced analytical techniques being developed and used in chemical characterization of nuclear materials specially fuels during their fabrication. Nuclear fuels comprise of fuels based on UO 2 , PUO 2 , ThO 2 and combination of (U+Pu)O 2 , (Th+U)O 2 , (Th+Pu)O 2 , (U+Pu)C, (U+Pu)N etc depending on the type of reactors chosen Viz. Pressurized Heavy water Reactor (PHWR), Boiling Water Reactor (BWR), Fast Breeder Test Reactor and Prototype Fast Breeder Reactor (PFBR). Chemical characterization of these fuels is very important for performance of fuel in the reactor. It provides means to ascertain that the quality of the fabricated fuel conforms to the chemical specifications for the fuel laid down by the designer. The batches of sintered/degassed pellets are subjected to comprehensive chemical quality control for trace constituents, stoichiometry and isotopic composition. Chemical Quality Control of fuel is carried out at different stages of manufacture namely feed materials, sintering, vacuum degassing and fuel element welding. Advanced analytical technique based on titrimetry, spectroscopy, thermogravimetry, XRF and XRD have largely been used for this purpose. Since they have to be handled inside special enclosures, extreme care are being taken during handling. Instruments are being developed/modified for ease of handling and maintenance. The method should be fast to reduce

  18. Establishment of a clean laboratory for ultra trace analysis of nuclear materials in safeguards environmental samples

    International Nuclear Information System (INIS)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo

    2003-01-01

    The Japan Atomic Energy Research Institute has established a cleanroom facility with cleanliness of ISO Class 5: the Clean Laboratory for Environmental Analysis and Research (CLEAR). It was designed to be used for the analysis of nuclear materials in environmental samples mainly for the safeguards, in addition to the Comprehensive Nuclear-Test-Ban Treaty verification and research on environmental sciences. The CLEAR facility was designed to meet conflicting requirements of a cleanroom and for handling of nuclear materials according to Japanese regulations, i.e., to avoid contamination from outside and to contain nuclear materials inside the facility. This facility has been intended to be used for wet chemical treatment, instrumental analysis and particle handling. A fume-hood to provide a clean work surface for handling of nuclear materials was specially designed. Much attention was paid to the selection of construction materials for use to corrosive acids. The performance of the cleanroom and analytical background in the laboratory are discussed. This facility has satisfactory specification required for joining the International Atomic Energy Agency Network of Analytical Laboratories. It can be concluded that the CLEAR facility enables analysis of ultra trace amounts of nuclear materials at sub-pictogram level in environmental samples. (author)

  19. Handling system for nuclear fuel pellet inspection

    International Nuclear Information System (INIS)

    Nyman, D.H.; McLemore, D.R.; Sturges, R.H.

    1978-11-01

    HEDL is developing automated fabrication equipment for fast reactor fuel. A major inspection operation in the process is the gaging of fuel pellets. A key element in the system has been the development of a handling system that reliably moves pellets at the rate of three per second without product damage or excessive equipment wear

  20. Report on {open_quotes}audit of internal controls over special nuclear materials{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The Department of Energy (Department) is responsible for safeguarding a significant amount of plutonium, uranium-233 and enriched uranium - collectively referred to as special nuclear materials - stored in the United States. The Department`s office of Nonproliferation and National Security has overall management cognizance for developing policies for safeguarding these materials, while other Headquarters program offices have {open_quotes}landlord{close_quotes} responsibilities for the sites where the materials are stored, and the Department`s operations and field offices provide onsite management of contractor operations. The Department`s management and operating contractors, under the direction of the Department, safeguard and account for the special nuclear material stored at Department sites.

  1. An analysis of repository waste-handling operations

    International Nuclear Information System (INIS)

    Dennis, A.W.

    1990-09-01

    This report has been prepared to document the operational analysis of waste-handling facilities at a geologic repository for high-level nuclear waste. The site currently under investigation for the geologic repository is located at Yucca Mountain, Nye County, Nevada. The repository waste-handling operations have been identified and analyzed for the year 2011, a steady-state year during which the repository receives spent nuclear fuel containing the equivalent of 3000 metric tons of uranium (MTU) and defense high-level waste containing the equivalent of 400 MTU. As a result of this analysis, it has been determined that the waste-handling facilities are adequate to receive, prepare, store, and emplace the projected quantity of waste on an annual basis. In addition, several areas have been identified where additional work is required. The recommendations for future work have been divided into three categories: items that affect the total waste management system, operations within the repository boundary, and the methodology used to perform operational analyses for repository designs. 7 refs., 48 figs., 11 tabs

  2. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  3. Remote handling equipment for laboratory research of fuel reprocessing in Nuclear Research Institute at Rez

    International Nuclear Information System (INIS)

    Fidler, J.; Novy, P.; Kyrs, M.

    1985-04-01

    Laboratory installations were developed for two nuclear fuel reprocessing methods, viz., the solvent extraction process and the fluoride volatility process. The apparatus for solvent extraction reprocessing consists of a pneumatically driven rod-chopper, a dissolver, mixer-settler extractors, an automatic fire extinguishing device and other components and it was tested using irradiated uranium. The technological line for the fluoride volatility process consists of a fluorimater, condensers, sorption columns with NaF pellets and a distillation column for the separation of volatile fluorides from UF 6 . The line has not yet been tested using irradiated fuel. Some features of the remote handling equipment of both installations are briefly described. (author)

  4. Specification for nuclear-grade beryllium oxide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification defines the physical and chemical requirements of nuclear-grade beryllium oxide (BeO) powder to be used in fabricating nuclear components. 1.2 This specification does not include requirements for health and safety. , , It recognizes the material as a Class B poison and suggests that producers and users become thoroughly familiar with and comply to applicable federal, state, and local regulations and handling guidelines. 1.3 Special tests and procedures are given in Annex A1 and Annex A2. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  5. Nuclear materials management for safety and efficiency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-15

    The use of nuclear materials in industrial processes presents management with some special problems which are peculiar to the atomic energy industry. If reactor fuel costs are to be kept low, too, each fuel element must yield the maximum economic 'bum-up' before it is withdrawn from service, and this calls for reliable non-destructive methods of measurement of 'burn-up' and appropriate records and fuel-changing schedules. The special hazards of radioactive materials call for special precautions and appropriate systems of handling and storage. A further danger unique to atomic energy is that of criticality - the possibility that an excessive concentration of fissile material may result in a chain reaction. Every part of the processing plant must be surveyed and checked to ensure that there is no build-up of fissile residues; in storage or transit there must be no aggregation of small lots. In the nuclear energy industry, too, the standards of purity required are much higher than in most other large-scale operation, so that stringent quality checks are needed

  6. Automation and remote handling activities in BARC: an overview

    International Nuclear Information System (INIS)

    Badodkar, D.N.

    2016-01-01

    Division of Remote Handling and Robotics, BARC has been working on design and development of various application specific remote handling and automation systems for nuclear front-end and back-end fuel cycle technologies. Division is also engaged in preservice and in-service inspection of coolant channels for Pressurized Heavy Water Reactors in India. Design and development of Reactor Control Mechanisms for Nuclear Research and Power Reactors (PHWRs and Compact LWRs) is another important activity carried out in this division. Robotic systems for Indoor and Outdoor surveillance in and around nuclear installations have also been developed. A line scan camera based system has been developed for measuring individual PHWR fuel pellet lengths as well as stack length. An industrial robot is used for autonomous exchange of pellets to achieve desired stack length. The system can be extended for active fuel pellets also. An automation system has been conceptualized for remote handling and transfer of spent fuel bundles from storage pool directly to the chopper unit of reprocessing plant. In case of Advanced Heavy Water Reactor which uses mixed oxides of (Th-Pu) and (Th-"2"3"3U ) as fuel, automation system for front-end fuel cycle has been designed, which includes Powder processing and pressing; Pellet handling and inspection; Pin handling and inspection; and Cluster assembly and dis-assembly in shielded facilities. System demonstration through fullscale mock-up facility is nearing completion. Above talk is presented on behalf of all the officers and staff of DRHR. The talk is mainly focused on development of an automated fuel fabrication facility for mixed oxides of (Th- Pu)/(Th-"2"3"3U ) fuel pins. An overview of divisional ongoing activities in the field of remote handling and automation are also covered. (author)

  7. How the NWC handles software as product

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    1997-11-01

    This tutorial provides a hands-on view of how the Nuclear Weapons Complex project should be handling (or planning to handle) software as a product in response to Engineering Procedure 401099. The SQAS has published the document SQAS96-002, Guidelines for NWC Processes for Handling Software Product, that will be the basis for the tutorial. The primary scope of the tutorial is on software products that result from weapons and weapons-related projects, although the information presented is applicable to many software projects. Processes that involve the exchange, review, or evaluation of software product between or among NWC sites, DOE, and external customers will be described.

  8. 2008 Special NSREC Issue of the IEEE Transactions on Nuclear Science Comments by the Editors

    Science.gov (United States)

    Schwank, Jim; Buchner, Steve; Marshall, Paul; Duzellier, Sophie; Brown, Dennis; Poivey, Christian; Pease, Ron

    2008-12-01

    The December 2008 special issue of the IEEE Transactions on Nuclear Science contains selected papers from the 45th annual IEEE International Nuclear and Space Radiation Effects Conference (NSREC) held in Tucson, Arizona, July 14 - 18, 2008. Over 115 papers presented at the 2008 NSREC were submitted for consideration for this year's special issue. Those papers that appear in this special issue were able to successfully complete the review process before the deadline for the December issue. A few additional papers may appear in subsequent issues of the TRANSACTIONS. This publication is the premier archival journal for research on space and nuclear radiation effects in materials, devices, circuits, and systems. This distinction is the direct result of the conscientious efforts of both the authors, who present and document their work, and the reviewers, who selflessly volunteer their time and talent to help review the manuscripts. Each paper in this journal has been reviewed by experts selected by the editors for their expertise and knowledge of the particular subject areas.

  9. Nuclear liability act and nuclear insurance

    International Nuclear Information System (INIS)

    Clarke, Roy G.; Goyette, R.; Mathers, C.W.; Germani, T.R.

    1976-01-01

    The Nuclear Liability Act, enacted in June 1970 and proclaimed effective October 11, 1976, is a federal law governing civil liability for nuclear damage in Canada incorporating many of the basic principles of the international conventions. Exceptions to operator liability for breach of duty imposed by the Act and duty of the operator as well as right of recourse, time limit on bringing actions, special measures for compensation and extent of territory over which the operator is liable are of particular interest. An operator must maintain $75,000,000. of insurance for each nuclear installation for which he is the operator. The Nuclear Insurance Association of Canada (NIAC) administers two ΣPoolsΣ or groups of insurance companies where each member participates for the percentage of the total limit on a net basis, one pool being for Physical Damage Insurance and the other for Liability Insurance. The Atomic Energy Control Board recommends to the Treasury Board the amount of insurance (basic) for each installation. Basic insurance required depends on the exposure and can range from $4 million for a fuel fabricator to $75 million for a power reactor. Coverage under the Operator's Policy provides for bodily injury, property damage and various other claims such as damage from certain transportation incidents as well as nuclear excursions. Workmen's Compensation will continue to be handled by the usual channels. (L.L.)

  10. Technology development for special nuclear components

    International Nuclear Information System (INIS)

    Sanatkumar, A.

    1994-01-01

    One of the attractive features of Candu Pressurised Heavy Water Reactor design which influenced the decision to make it the foundation of our nuclear power programme, is that its main components (calandria, end shields, coolant channel components) are relatively simple - in comparison with reactor pressure vessel and associated components of Boiling Water Reactors or Pressurised Water Reactors - and considered to be within the scope of manufacture of developing countries. Over the last two decades, India has been very successful in technology development in many important and critical areas. We are now about to launch the construction of the first 500 MWe PHWR project at Tarapur. In this context, this paper focuses attention on some of the aspects relating to self-reliance in design, engineering and manufacture of these special components as currently perceived. (author). 3 refs

  11. Technical description of candidate fluorescence compounds and radioisotopes for a nuclear smuggling deterrence tag (IL500E)

    International Nuclear Information System (INIS)

    Hartenstein, S.D.; Aryaeinejad, R.

    1996-03-01

    This report summarizes the efforts completed in identifying candidate fluorescence compounds and radioisotopes for a developing tagging system. The tagging system is being developed as a deterrent to nuclear smuggling, by providing a means of: (1) tracing materials and pilferers to the facility of origin for any recovered special nuclear materials; (2) inventory control of long-term stored items containing special nuclear materials; and (3) tracking materials transferred between facilities. The tagging system uses four types of tagging materials to cover a range of applications intended to prevent the pilfering of special nuclear materials. One material, fluorescent compounds which are invisible without ultraviolet or near-infrared detection systems, is marked on controlled items with a tracking pattern that corresponds to a specified item in a specified location in the data control system. The tagging system uses an invisible, fluorescent dusting powder to mark equipment and personnel who inappropriately handle the tagged material. The tagging system also uses unique combinations of radionuclides to identify the facility of origin for any special nuclear material. Currently, 18 long-lived radioisotopes, 38 short-live radioisotopes and 10 fluorescent compounds have been selected as candidate materials for the tagging system

  12. Technical description of candidate fluorescence compounds and radioisotopes for a nuclear smuggling deterrence tag (IL500E)

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, S.D.; Aryaeinejad, R.

    1996-03-01

    This report summarizes the efforts completed in identifying candidate fluorescence compounds and radioisotopes for a developing tagging system. The tagging system is being developed as a deterrent to nuclear smuggling, by providing a means of: (1) tracing materials and pilferers to the facility of origin for any recovered special nuclear materials; (2) inventory control of long-term stored items containing special nuclear materials; and (3) tracking materials transferred between facilities. The tagging system uses four types of tagging materials to cover a range of applications intended to prevent the pilfering of special nuclear materials. One material, fluorescent compounds which are invisible without ultraviolet or near-infrared detection systems, is marked on controlled items with a tracking pattern that corresponds to a specified item in a specified location in the data control system. The tagging system uses an invisible, fluorescent dusting powder to mark equipment and personnel who inappropriately handle the tagged material. The tagging system also uses unique combinations of radionuclides to identify the facility of origin for any special nuclear material. Currently, 18 long-lived radioisotopes, 38 short-live radioisotopes and 10 fluorescent compounds have been selected as candidate materials for the tagging system.

  13. Installation and method for handling fuel assemblies of fast nuclear reactors

    International Nuclear Information System (INIS)

    Aubert, Michel; Renaux, Charley.

    1982-01-01

    This invention concerns an installation and a method for handling the assemblies which makes it possible to have a large revolving plug smaller in diameter than that of the presently known solutions. This large, coaxial to the core, revolving plug has a handling arm enabling a fraction of the assemblies to be reached and deposited in a handling well. Through a small offset revolving plug the remainder of the assemblies can be reached and deposited in a pick-up well accessible to the arm of the large revolving plug [fr

  14. A special purpose simulation language for nuclear power plants

    International Nuclear Information System (INIS)

    Saphier, D.

    1980-01-01

    A special purpose block-oriented simulation language, 'The Dynamic Simulator for Nuclear Power Plants' (DSNP), was developed at Argonne National Laboratory. The dominant feature of DSNP is the ability to transform a power plant flowchart or block diagram directly into a simulation program. The user is required to recognize the symbolic DSNP statements for the appropriate physical component, and list these statements in a logical sequence according to the flow of physical properties in the simulated power plant. At present most of the component models in DSNP are of the lumped parameter type. Although DSNP is a special purpose simulation language, it also has all the features of a general purpose simulation language, and in particular a powerful macro processor. The use of DSNP is demonstrated by a sample problem simulating a reactor startup accident. (Auth.)

  15. Experience of safety and performance improvement for fuel handling equipment

    International Nuclear Information System (INIS)

    Gyoon Chang, Sang; Hee Lee, Dae

    2014-01-01

    The purpose of this study is to provide experience of safety and performance improvement of fuel handling equipment for nuclear power plants in Korea. The fuel handling equipment, which is used as an important part of critical processes during the refueling outage, has been improved to enhance safety and to optimize fuel handling procedures. Results of data measured during the fuel reloading are incorporated into design changes. The safety and performance improvement for fuel handling equipment could be achieved by simply modifying the components and improving the interlock system. The experience provided in this study can be useful lessons for further improvement of the fuel handling equipment. (authors)

  16. Safety Analysis of 'Older/Aged' Handling and Transportation Equipment for Heavy Loads, Radioactive Waste and Materials in Accordance with German Nuclear Standards KTA 3902, 3903 and 3905

    International Nuclear Information System (INIS)

    Macias, P.; Prucker, E.; Stang, W.

    2006-01-01

    The purpose of this paper is to present a general safety analysis of important handling and transportation processes and their related equipment ('load chains' consisting of cranes, load-bearing equipment and load-attaching points). This project was arranged by the responsible Bavarian ministry for environment, health and consumer protection (StMUGV) in agreement with the power plant operators of all Bavarian nuclear power plants to work out potential safety improvements. The range of the equipment (e.g. reactor building, crane, refuelling machine, load-bearing equipment and load-attaching points) covers the handling and transportation of fuel elements (e. g. with fuel flasks), heavy loads (e.g. reactor pressure vessel closure head, shielding slabs) and radioactive materials and waste (e.g. waste flasks, control elements, fuel channels, structure elements). The handling equipment was subjected to a general safety analysis taking into account the ageing of the equipment and the progress of standards. Compliance with the current valid requirements of the state of science and technology as required by German Atomic Act and particularly of the nuclear safety KTA-standards (3902, 3903 and 3905) was examined. The higher protection aims 'safe handling and transportation of heavy loads and safe handling of radioactive materials and waste' of the whole analysis are to avoid a criticality accident, the release of radioactivity and inadmissible effects on important technical equipment and buildings. The scope of the analysis was to check whether these protection aims were fulfilled for all important technical handling and transportation processes. In particularly the design and manufacturing of the components and the regulations of the handling itself were examined. (authors)

  17. Preliminary Safety Design Report for Remote Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Solack; Carol Mason

    2012-03-01

    A new onsite, remote-handled low-level waste disposal facility has been identified as the highest ranked alternative for providing continued, uninterrupted remote-handled low-level waste disposal for remote-handled low-level waste from the Idaho National Laboratory and for nuclear fuel processing activities at the Naval Reactors Facility. Historically, this type of waste has been disposed of at the Radioactive Waste Management Complex. Disposal of remote-handled low-level waste in concrete disposal vaults at the Radioactive Waste Management Complex will continue until the facility is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). This preliminary safety design report supports the design of a proposed onsite remote-handled low-level waste disposal facility by providing an initial nuclear facility hazard categorization, by discussing site characteristics that impact accident analysis, by providing the facility and process information necessary to support the hazard analysis, by identifying and evaluating potential hazards for processes associated with onsite handling and disposal of remote-handled low-level waste, and by discussing the need for safety features that will become part of the facility design.

  18. Data handling systems and methods of wiring

    International Nuclear Information System (INIS)

    Grant, J.

    1981-01-01

    An improved data handling system, for monitoring and control of nuclear reactor operations, is described in which time delays associated with scanning are reduced and noise and fault signals in the system are resolved. (U.K.)

  19. Introduction to Special Edition (of the Journal of Nuclear Materials Management) on Reducing the Threat from Radioactive Materials

    International Nuclear Information System (INIS)

    Mladineo, Stephen V.

    2007-01-01

    Introductory article for special edition of the JOURNAL OF NUCLEAR MATERIALS MANAGEMENT outlining the Institute of Nuclear Materials Management Nonproliferation and Arms Control Technical Division. In particular the International Nuclear and Radiological Security Standing Committee and its initial focus covering four topical areas--Radiological Threat Reduction, Nuclear Smuggling and Illicit Trafficking, Countering Nuclear Terrorism, and Radiological Terrorism Consequence Management

  20. A view from the nuclear fuel reprocessing industry

    International Nuclear Information System (INIS)

    Smith, R.; Hartley, G.

    1982-01-01

    Radiological protection in UK nuclear industry is discussed, with special reference to British Nuclear Fuels Ltd. The following aspects are covered: historical introduction, relevant legislation and general principles; radioactive decay processes (fission, fission products, radio-isotopes, ionising radiations, neutrons); risk assessment (historical, biological radiation effects; ICRP recommendations, dose limits); cost effectiveness of protection; plant design principles; examples of containment (shielding, ventilation and contamination control required for various types of radioactive materials, e.g. fission products, plutonium, depleted uranium; fuel rod storage ponds and decanning caves; fission products at dissolution stage; glovebox handling of Pu operations; critical assembly of fissile materials; surface contamination control; monitoring radiation levels). (U.K.)

  1. Special feature article. Nuclear new age. Towards reform of laws and regulations

    International Nuclear Information System (INIS)

    Madarame, Haruki; Morokuzu, Muneo; Shiroyama, Hideaki; Nishiwaki, Yoshihiro; Marumo, Syunji; Suzuki, Takahiro; Hariyama, Hideo

    2007-01-01

    Since about half a century passes after the peaceful use of nuclear energy began in Japan, the safety laws and regulations of the nuclear energy becomes difficult to cope enough with the current situation without regulation structure changing. In March 2007, Tokyo University set up nuclear energy legislation study meeting' consisting of members from regulatory bodies, electric utilities, nuclear industries and others. The special feature introduces five opinions obtained through the argument in the meeting. As an example, Law for the Regulations of Nuclear Sources Material, Nuclear Fuel Material and Reactors is applied to basic design about the commercial reactors, but Electric Utilities Industry Law is applied to a detailed design, and different licensing standard is applied in each. Taking the adjustment of licensing standard with unifying these is necessary for efficiency. In addition, current law for the Regulations of Nuclear Sources Material, Nuclear Fuel Material and Reactors regulates according to the businesses such as reactor facilities, fuel fabrication plants and radioactive waste disposal. As for plural businesses, a low procedure and safety measures are demanded every each business. It is also necessary to include structure of the comprehensive licensing that assumed an enterprise running plural businesses. (T. Tanaka)

  2. 2012 Special NSREC Issue of the IEEE Transactions on Nuclear Science Comments by the Editors

    Science.gov (United States)

    Schwank, Jim; Brown, Dennis; Girard, Sylvain; Gouker, Pascale; Gerardin, Simone; Quinn, Heather; Barnaby, Hugh

    2012-12-01

    The December 2012 special issue of the IEEE Transactions on Nuclear Science contains selected papers from the 49th annual IEEE International Nuclear and Space Radiation Effects Conference (NSREC) held July 16-20, 2012, in Miami, Florida USA. 95 papers presented at the 2012 NSREC were submitted for consideration for this year’s special issue. Those papers that appear in this special issue were able to successfully complete the review process before the deadline for the December issue. A few additional papers may appear in subsequent issues of the TRANSACTIONS. This publication is the premier archival journal for research on space and nuclear radiation effects in materials, devices, circuits, and systems. This distinction is the direct result of the conscientious efforts of both the authors, who present and document their work, and the reviewers, who selflessly volunteer their time and talent to help review the manuscripts. Each paper in this journal has been reviewed by experts selected by the editors for their expertise and knowledge of the particular subject areas. The peer review process for a typical technical journal generally takes six months to one year to complete. To publish this special issue of the IEEE Transactions on Nuclear Science (in December), the review process, from initial submission to final form, must be completed in about 10 weeks. Because of the short schedule, both the authors and reviewers are required to respond very quickly. The reviewers listed on the following pages contributed vitally to this quick-turn review process.We would like to express our sincere appreciation to each of them for accepting this difficult, but critical role in the process. To provide consistent reviews of papers throughout the year, the IEEE Transactions on Nuclear Science relies on a year-round editorial board that manages reviews for submissions throughout the year to the TRANSACTIONS in the area of radiation effects. The review process is managed by a Senior

  3. Safe Handling of Radioisotopes. Health Physics Addendum

    Energy Technology Data Exchange (ETDEWEB)

    Appleton, G J; Krishnamoorthy, P N

    1960-07-15

    The International Atomic Energy Agency published in 1958 a Manual entitled ''Safe Handling of Radioisotopes'' (Safety Series No. 1 - STI/PUB/1), based on the work of an international panel convened by the Agency. As recommended by that panel and approved by the Agency's Board of Governors, this Addendum has now been prepared, primarily as a supplement to the Manual. It contains technical information necessary for the implementation of the controls given in the Manual. In addition, it is intended to serve as a brief introduction to the technical problems encountered in radiological protection work and to the methods of resolving them. As in the case of the Manual itself, the information given in this Addendum is particularly relevant to the problems encountered by the small user of radioisotopes. Although the basic principles set forth in it apply to all work with radiation sources, the Addendum is not intended to serve as a radiological protection manual for use in reactor installations or large-scale nuclear industry, where more specialized techniques and information are required.

  4. Safe Handling of Radioisotopes. Health Physics Addendum

    International Nuclear Information System (INIS)

    Appleton, G.J.; Krishnamoorthy, P.N.

    1960-01-01

    The International Atomic Energy Agency published in 1958 a Manual entitled ''Safe Handling of Radioisotopes'' (Safety Series No. 1 - STI/PUB/1), based on the work of an international panel convened by the Agency. As recommended by that panel and approved by the Agency's Board of Governors, this Addendum has now been prepared, primarily as a supplement to the Manual. It contains technical information necessary for the implementation of the controls given in the Manual. In addition, it is intended to serve as a brief introduction to the technical problems encountered in radiological protection work and to the methods of resolving them. As in the case of the Manual itself, the information given in this Addendum is particularly relevant to the problems encountered by the small user of radioisotopes. Although the basic principles set forth in it apply to all work with radiation sources, the Addendum is not intended to serve as a radiological protection manual for use in reactor installations or large-scale nuclear industry, where more specialized techniques and information are required.

  5. Westinghouse Hanford Company special nuclear material vault storage study

    International Nuclear Information System (INIS)

    Borisch, R.R.

    1996-01-01

    Category 1 and 2 Special Nuclear Materials (SNM) require storage in vault or vault type rooms as specified in DOE orders 5633.3A and 6430.1A. All category 1 and 2 SNM in dry storage on the Hanford site that is managed by Westinghouse Hanford Co (WHC) is located in the 200 West Area at Plutonium Finishing Plant (PFP) facilities. This document provides current and projected SNM vault inventories in terms of storage space filled and forecasts available space for possible future storage needs

  6. Potential information requirements for spent nuclear fuel

    International Nuclear Information System (INIS)

    Disbrow, J.A.

    1991-01-01

    This paper reports that the Energy Information Administration (EIA) has performed analyses of the requirements for data and information for the management of commercial spent nuclear fuel (SNF) designated for disposal under the Nuclear Waste Policy Act (NWPA). Subsequently, the EIA collected data on the amounts and characteristics of SNF stored at commercial nuclear facilities. Most recently, the EIA performed an analysis of the international and domestic laws and regulations which have been established to ensure the safeguarding, accountability, and safe management of special nuclear materials (SNM). The SNM of interest are those designated for permanent disposal by the NWPA. This analysis was performed to determine what data and information may be needed to fulfill the specific accountability responsibilities of the Department of Energy (DOE) related to SNF handling, transportation, storage and disposal; to work toward achieving a consistency between nuclear fuel assembly identifiers and material weights as reported by the various responsible parties; and to assist in the revision of the Nuclear Fuel Data Form RW-859 used to obtain spent nuclear fuel characteristics data from the nuclear utilities

  7. Semi-annual report on strategic special nuclear material inventory differences

    International Nuclear Information System (INIS)

    1984-07-01

    This fourteenth periodic semiannual report of Inventory Differences (ID) covers the last six months of fiscal year 1983 (April 1, 1983 through September 30, 1983), for the Department of Energy (DOE) and DOE contractor facilities possessing significant quantities of strategic special nuclear material (SSNM). Inventory Differences are expected in nuclear material processing and are not, in and of themselves, evidence of lost or stolen material. On the other hand, ID analysis provides valuable information on the effectiveness of the safeguards system's physical protection and material control measures as well as a check on the process controls and material management procedures. ID's outside safeguards control limits or involving a missing SSNM discrete item are investigated. If necessary, an operation may be shut down until an ID is resolved

  8. Application of advanced handling techniques to transportation cask design

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1992-01-01

    Sandia National Laboratories supports the US Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM) applying technology to the safe transport of nuclear waste. Part of that development effort includes investigation of advanced handling technologies for automation of cask operations at nuclear waste receiving facilities. Although low radiation levels are expected near transport cask surfaces, cumulative occupational exposure at a receiving facility can be significant. Remote automated cask handling has the potential to reduce both the occupational exposure and the time necessary to process a cask. Thus, automated handling is consistent with DOE efforts to reduce the lifecycle costs of the waste disposal system and to maintain public and occupational radiological risks as low as reasonably achievable. This paper describes the development of advanced handling laboratory mock-ups and demonstrations for spent fuel casks. Utilizing the control enhancements described below, demonstrations have been carried out including cask location and identification, contact and non-contact surveys, impact limiter removal, tiedown release, uprighting, swing-free movement, gas sampling, and lid removal operations. Manually controlled movement around a cask under off-normal conditions has also been demonstrated

  9. Methods of Verification, Accountability and Control of Special Nuclear Material

    International Nuclear Information System (INIS)

    Stewart, J.E.

    1999-01-01

    This session demonstrates nondestructive assay (NDA) measurement, surveillance and analysis technology required to protect, control and account (MPC and A) for special nuclear materials (SNM) in sealed containers. These measurements, observations and analyses comprise state-of-the art, strengthened, SNM safeguards systems. Staff member specialists, actively involved in research, development, training and implementation worldwide, will present six NDA verification systems and two software tools for integration and analysis of facility MPC and A data

  10. Kazakhstan center of nuclear technology safety. Approach of work, possibilities and plans

    International Nuclear Information System (INIS)

    Tazhibaeva, I.L; Romanenko, O.G.; Cherepnin, Yu. S.; Planchon, H.P; Imel, G; Newton, D.

    2000-01-01

    NTSC was created in November, 1997 as an association of experts in all the areas of nuclear and radiation safety and radioactive materials handling The main goal of creation is investigation of safety aspects of nuclear power in the Republic of Kazakhstan, taking into account the interests of environment and human health protection in the regions of nuclear industry units allocation. The Center was created with support and special cooperation with the US, has grown and developed cooperative ties with several other countries.In the report are enumerate the main directions of NTSC activity, general directions of cooperation, current and completed activity, planing activity

  11. Microcomputer simulation model for facility performance assessment: a case study of nuclear spent fuel handling facility operations

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.; Otis, P.T.

    1985-10-01

    A microcomputer based simulation model was recently developed at the Pacific Northwest Laboratory (PNL) to assist in the evaluation of design alternatives for a proposed facility to receive, consolidate and store nuclear spent fuel from US commercial power plants. Previous performance assessments were limited to deterministic calculations and Gantt chart representations of the facility operations. To insure that the design of the facility will be adequate to meet the specified throughput requirements, the simulation model was used to analyze such factors as material flow, equipment capability and the interface between the MRS facility and the nuclear waste transportation system. The simulation analysis model was based on commercially available software and application programs designed to represent the MRS waste handling facility operations. The results of the evaluation were used by the design review team at PNL to identify areas where design modifications should be considered. 4 figs

  12. Other Special Waste

    DEFF Research Database (Denmark)

    Brogaard, Line Kai-Sørensen; Christensen, Thomas Højlund

    2011-01-01

    In addition to the main types of special waste related to municipal solid waste (MSW) mentioned in the previous chapters (health care risk waste, WEEE, impregnated wood, hazardous waste) a range of other fractions of waste have in some countries been defined as special waste that must be handled...... separately from MSW. Some of these other special wastes are briefly described in this chapter with respect to their definition, quantity and composition, and management options. The special wastes mentioned here are batteries, tires, polyvinylchloride (PVC) and food waste....

  13. Preliminary evaluation of a fluorescence and radioisotope nuclear smuggling deterrence tag - final report (IL500E)

    International Nuclear Information System (INIS)

    Hartenstein, S.D.; Aryaeinejad, R.; Delmastro, J.R.

    1997-04-01

    This report summarizes the efforts completed in identifying candidate fluorescence compounds and radioisotopes for a developing tagging system. The tagging system is being developed as a deterrent to nuclear smuggling, by providing a means of: (1) tracing materials and pilferers to the facility of origin for any recovered special nuclear materials, (2) inventory control of long-term stored items containing special nuclear materials, and (3) tracking materials transferred between facilities. The system uses three types of materials to cover a range of applications intended to prevent the pilfering of special nuclear materials. One material, fluorescent compounds which are invisible without ultraviolet or near-infrared detection systems, is marked on controlled items with a tracking pattern that corresponds to a specified item in a specified location in the data control system. The tagging system uses an invisible, fluorescent dusting powder to mark equipment and personnel who inappropriately handle the tagged material. The tagging system also uses unique combinations of radionuclides to identify the facility of origin for any special nuclear material. This report also summarizes the efforts completed in identifying hardware that will be used for the tagging system. This hardware includes the devices for applying the tagging materials, the commercially available fluorescence detection systems, and gamma ray detection systems assembled from existing, commercially available technologies

  14. Preliminary evaluation of a fluorescence and radioisotope nuclear smuggling deterrence tag - final report (IL500E)

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, S.D.; Aryaeinejad, R.; Delmastro, J.R. [and others

    1997-04-01

    This report summarizes the efforts completed in identifying candidate fluorescence compounds and radioisotopes for a developing tagging system. The tagging system is being developed as a deterrent to nuclear smuggling, by providing a means of: (1) tracing materials and pilferers to the facility of origin for any recovered special nuclear materials, (2) inventory control of long-term stored items containing special nuclear materials, and (3) tracking materials transferred between facilities. The system uses three types of materials to cover a range of applications intended to prevent the pilfering of special nuclear materials. One material, fluorescent compounds which are invisible without ultraviolet or near-infrared detection systems, is marked on controlled items with a tracking pattern that corresponds to a specified item in a specified location in the data control system. The tagging system uses an invisible, fluorescent dusting powder to mark equipment and personnel who inappropriately handle the tagged material. The tagging system also uses unique combinations of radionuclides to identify the facility of origin for any special nuclear material. This report also summarizes the efforts completed in identifying hardware that will be used for the tagging system. This hardware includes the devices for applying the tagging materials, the commercially available fluorescence detection systems, and gamma ray detection systems assembled from existing, commercially available technologies.

  15. JENDL special purpose data files and related nuclear data

    International Nuclear Information System (INIS)

    Iijima, Shungo

    1989-01-01

    The objectives of JENDL Special Purpose Data Files under development are the applications of nuclear data to the evaluation of the fuel cycle, nuclear activation, and radiation damage. The files in plan consist of 9 types of data, viz., the actinide cross sections, the decay data, the activation cross sections, the (α,n) cross sections, the photo-reaction cross sections, the dosimetry cross sections, the gas production cross sections, the primary knock-on atom spectra and KERMA factors, and the data for standard. The status of the compilation and the evaluation of these data are briefly reviewed. In particular, the features of the data required for the evaluation of the activation cross sections, (α,n) cross sections, photo-reaction cross sections, and PKA data are discussed in some detail. The need for the realistic definition of the scope of the work is emphasized. (author)

  16. Regulations on handling dangerous objects in Japan (with particular reference to sodium)

    International Nuclear Information System (INIS)

    Nagai, M.

    1971-01-01

    Sodium is designated as a kind of dangerous object, so that special care has to be taken in handling or storing large amounts of sodium. Formal regulations on sodium handling in Japan are prescribed in Fire Service Law, which is supplemented by Rules on Handling Dangerous Objects. Since these regulations are not intended to be applied to large sodium circuits, some defects and inappropriate expressions might be found in them. An attempt is made here to pick up these problems and important points from Japanese regulations on handling dangerous objects with particular reference to sodium

  17. Special monitoring in nuclear medicine; Monitoreo especial en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, C.C.; Puerta, J.A.; Morales, J. [Asociacion Colombiana de Proteccion Radiologica (Colombia)]. e-mail: ccbeltra@gmail.com

    2006-07-01

    Colombia counts with around 56 centers of Nuclear Medicine, 70 Nuclear Doctors and more of 100 Technologists in this area. The radioisotopes more used are the {sup 131} I and the {sup 99m} Tc. The radiological surveillance singular in the country is carried out for external dosimetry, being the surveillance by incorporation of radioactive materials very sporadic in our media. Given the necessity to implement monitoring programs in the incorporation of radionuclides of the occupationally exposed personnel, in the routine practice them routine of Nuclear Medicine, it was implemented a pilot program of Special Monitoring with two centers of importance in the city of Medellin. This program it was carried out with the purpose of educating, to stimulate and to establish a program of reference monitoring with base in the National Program of Monitoring in the radionuclides Incorporation that serves like base for its application at level of all the services of Nuclear Medicine in the country. This monitoring type was carried out with the purpose of obtaining information on the work routine in these centers, form of manipulation and dosage of the radionuclides, as well as the administration to the patient. The application of the program was carried out to define the frequency of Monitoring and analysis technique for the implementation of a program of routine monitoring, following the recommendations of the International Commission of Radiological Protection. For their application methods of activity evaluation were used in urine and in 7 workers thyroid, of those which only two deserve an analysis because they presented important activities. The measures were carried out during one month, every day by means in urine samples and to the most critic case is practiced two thyroid measures, one in the middle of the period and another when concluding the monitoring. To the other guy is practiced an activity count in thyroid when concluding the monitoring period. The obtained

  18. Studies and research concerning BNFP: cask handling equipment standardization

    International Nuclear Information System (INIS)

    McCreery, P.N.

    1980-10-01

    This report covers the activities of one of the sub-tasks within the Spent LWR Fuel Transportation Receiving, Handling, and Storage program. The sub-task is identified as Cask Handling Equipment Standardization. The objective of the sub-task specifies: investigate and identify opportunities for standardization of cask interface equipment. This study will examine the potential benefits of standardized yokes, decontamination barriers and special tools, and, to the extent feasible, standardized methods and software for handling the variety of casks presently available in the US fleet. The result of the investigations is a compilation of reports that are related by their common goal of reducing cask turnaround time

  19. The chemical industry - a danger to nuclear power plants

    International Nuclear Information System (INIS)

    Voigtsberger, P.

    1976-01-01

    Nuclear power stations could contaminate large areas with radioactivity when destroyed by strong external influences. In Germany, authorities try to cope with this danger firstly by making certain demands on the strength of the reactor shell and secondly by imposing strict safety regulations on dangerous industrial plants in the surroundings of the reactor. In the case of chemical industry, this means: If a chemical plant and a nuclear reactor lie closely together, special stress is given to explosion pretection measures in the form of primary explosion protection, e.g. strong sealing of inflammable gases and liquids handled in the immediate neighbourhood of the reactor. (orig.) [de

  20. Handling of sodium for the FFTF

    International Nuclear Information System (INIS)

    Ballif, J.L.; Meadows, G.E.

    1978-06-01

    Based on the High Temperature Sodium Facility (HTSF) experience and the extensive design efforts for FFTF, procedures are in place for the unloading of the tank cars and for the fill of the FFTF reactor. Special precautions have been taken to provide safe handling and to accommodate contingencies in operation. These contingencies include special protective suits allowing personnel to enter and correct conditions arising from fill operations in the course of moving 7.71 x 10 5 kg (1.7 x 10 6 lbs) of sodium from the tank cars into the reactor vessel and its loop system

  1. An user-interface for retrieval of nuclear data

    International Nuclear Information System (INIS)

    Utsumi, Misako; Fujita, Mitsutane; Noda, Tetsuji

    1996-01-01

    A database storing the data on nuclear reaction was built to calculate for simulating transmutation behaviors of materials. In order to retrieve and maintain the database, the user interface for the data retrieval was developed where special knowledge on handling of the database or the machine structure is not required for end-user. It is indicated that using the database, the possibility of He formation and radioactivity in a material can be easily retrieved though the evaluation is qualitatively. (author)

  2. The difficulties of writing procurement specifications for robots in nuclear applications

    International Nuclear Information System (INIS)

    Moore, F.W.; Bowen, W.W.

    1986-01-01

    The commercial robots available today were developed to primarily support the automotive or electronics industries. The adaptation of these robots and the current robotic technology to handle and manufacture nuclear materials has had its problems. The operational space and maintenance constraints have special consideration. The robotic systems of today tend to not have the payload capability for nuclear applications or, if the payload is sufficient, the system is very large and has several operating and maintenance accessibility requirements. The process of specifying, purchasing, and modifying a robotic system is an expensive and time-consuming process. The procurement specification is critical to obtaining competitive quotations on robots for nuclear applications resulting in the most economical robotic system

  3. PREPD O and VE remote handling system

    International Nuclear Information System (INIS)

    Theil, T.N.

    1985-01-01

    The Process Experimental Pilot Plant (PREPP) at the Idaho National Engineering Laboratory is designed for volume reduction and packaging of transuranic (TRU) waste. The PREPP opening and verification enclosure (O and VE) remote handling system, within that facility, is designed to provide examination of the contents of various TRU waste storage containers. This remote handling system will provide the means of performing a hazardous operation that is currently performed manually. The TeleRobot to be used in this system is a concept that will incorporate and develop man in the loop operation (manual mode), standardized automatic sequencing of end effector tools, increased payload and reach over currently available computer-controlled robots, and remote handling of a hazardous waste operation. The system is designed within limited space constraints and an operation that was originally planned, and is currently being manually performed at other plants. The PREPP O and VE remote handling system design incorporates advancing technology to improve the working environment in the nuclear field

  4. Introductory physics of nuclear medicine

    International Nuclear Information System (INIS)

    Chandra, R.

    1976-01-01

    This presentation is primarily addressed to resident physicians in nuclear medicine, as well as residents in radiology, pathology, and internal medicine. Topics covered include: basic review; nuclides and radioactive processes; radioactivity-law of decay, half-life, and statistics; production of radionuclides; radiopharmaceuticals; interaction of high-energy radiation with matter; radiation dosimetry; detection of high-energy radiation; in-vitro radiation detection; in-vivo radiation detection using external detectors; detectability or final contrast in a scan; resolution and sensitivity of a scanner; special techniques and instruments; therapeutic uses of radionuclides; biological effects of radiation; and safe handling of radionuclides

  5. Development of nuclear fuel cycle remote handling technology

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, B. S.; Kim, S. H.

    2012-04-01

    This report presents the development of remote handling systems and remote equipment for use in the pyprocessing verification at the PRIDE (PyRoprocess Integrated inactive Demonstration facility). There are four areas conducted in this work. In first area, the prototypes of an engineering-scale high-throughput decladding voloxidizer which is capable of separating spent fuel rod-cuts into hulls and powder and collecting them separately, and an automatic equipment which is capable of collecting residual powder remaining on separated hulls were developed. In second area, a servo-manipulator system was developed to operate and maintain pyroprocess equipment located at the argon cell of the PRIDE in a remote manner. A servo-manipulator with dual arm that is mounted on the lower part of a bridge transporter will be installed on the ceiling of the in-cell and can travel the length of the ceiling. In third area, a digital mock-up and a remote handling evaluation mock-up were constructed to evaluate the pyroprocess equipments from the in-cell arrangements, remote operability and maintainability viewpoint before they are installed in the PRIDE. In last area, a base technology for remote automation of integrated pyroprocess was developed. The developed decladding voloxidizer and automatic equipment will be utilized in the development of a head-end process for pyroprocessing. In addition, the developed servo-manipulator will be used for remote operation and maintenance of the pyroprocess equipments in the PRIDE. The constructed digital mock-up and remote handling evaluation mock-up will be also used to verify and improve the pyroprocess equipments for the PRIDE application. Moreover, these remote technologies described above can be directly used in the PRIDE and applied for the KAPF (Korea Advanced Pyroprocess Facility) development

  6. Nuclear fuel handling grapple carriage with self-lubricating bearing

    International Nuclear Information System (INIS)

    1977-01-01

    This invention relates to the provision of a fuel handling grapple carriage for a sodium cooled fast breeder reactor with sodium coolant lubricated bearings in which contamination of the bearings is prevented. (UK)

  7. Physical protection of special nuclear materials in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1987-01-01

    Measures to protect special nuclear materials in West Germany are based on a relatively likely average threat and not on the less-likely but maximum credible threat. The reason is to avoid the costs of maintaining a very high level of security that is seldom needed. The concept of delayed action, which divides the responsibility for security between private protection forces and local police forces, would be insufficient in the event of the maximum credible threat. In principle, sufficient security is possible only when the facilities and transports are constantly protected by a police force large enough to deal with the maximum credible threat without assistance from outside. They must also be adequately armed to avert all possible attackers, and they must be paid by the licensees. The threat of an insider(s) diverting special nuclear material can be addressed only by strengthening the scope and depth of the checks on applicants and employees and the permanent work controls. It is recognized, however, that such security measures may not be compatible with constitutional civil liberties

  8. Automated system for handling tritiated mixed waste

    International Nuclear Information System (INIS)

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL's robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans

  9. How to handle station black outs

    Energy Technology Data Exchange (ETDEWEB)

    Reisch, Frigyes [Swedish Nuclear Power Inspectorate, S-10252 Stockholm (Sweden)

    1986-02-15

    Station black out is defined as the loss of ail high voltage alternating current at a nuclear power site. An international study was made to survey the practices in the different countries. The best way to handle station black out is to avoid it therefore briefly the normal off site and emergency on site power supplies are discussed. The ways in use to enhance nuclear power plants using Boiling Water Reactors or Pressurized Water Reactors to cope with a station black out are discussed in some detail. (author)

  10. How to handle station black outs

    International Nuclear Information System (INIS)

    Reisch, Frigyes

    1986-01-01

    Station black out is defined as the loss of ail high voltage alternating current at a nuclear power site. An international study was made to survey the practices in the different countries. The best way to handle station black out is to avoid it therefore briefly the normal off site and emergency on site power supplies are discussed. The ways in use to enhance nuclear power plants using Boiling Water Reactors or Pressurized Water Reactors to cope with a station black out are discussed in some detail. (author)

  11. Clinical Training of Medical Physicists Specializing in Nuclear Medicine

    International Nuclear Information System (INIS)

    2011-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  12. Nuclear energy and the responsibilities of the Atomic Energy Board

    International Nuclear Information System (INIS)

    De Villiers, J.W.L.

    1980-01-01

    The paper discusses nuclear energy and the responsibilities of the previous Atomic Energy Board, (now the Atomic Energy Corporation) of South Africa in this respect. The paper starts by giving a brief introduction to the Atomic Energy Board, its organization and its functions. Research is undertaken in various fields such as the exploitation of nuclear fuels, radiobiology, radioisotopes, etc. Certain activities of the Board was also more directly related to Koeberg. The paper covers four of these areas, namely the early studies of the feasibility of introducing nuclear power in South Africa; the services involving the Board's special expertise in certain areas which Escom makes use of; the regulatory function and the preparation for handling and disposal of radioactive waste

  13. Waste from nuclear power plants

    International Nuclear Information System (INIS)

    1980-01-01

    The report presents proposals for organizing and financing of the treatment and deposition of spent fuel and radioactive waste. Decommissioning of plants is taken into consideration. The proposals refer to a program of twelve reactors. A relatively complete model for the handling of radioactive waste in Sweden is at hand. The cost for the years 1980 to 2000 is estimated at approx 1040 million SKr. Also the expense to dispose of the rest of the waste is calculated up to the year 2060, when the waste is planned to be put into final deposit. The state must have substantial influence over the organization which should be closely connected to the nuclear industry. Three different types of organization are discussed, namely (i) a company along with a newly created authority, (ii) a company along with the existing Nuclear Power Inspectorate or (iii) a company along with a board of experts. The proposals for financing the cost of handling nuclear waste are given in chief outlines. The nuclear industry should reserve means to special funds. The allocations are calculated to 1.4 oere per delivered kWh up to and including the year 1980. The accumulated allocations for 1979 should thus amount to 1310 million SKr. The charge for supervision and for certain research and development is recommended to be 0.1 oere per kWh which corresponds to approx 23 million SKr for 1980. The funds should be assured by binding agreements which must be approved by the state. The amounts are given in the monetary value of the year 1979. (G.B.)

  14. The SNM Scanner: A Non-invasive Protocol for Effective Monitoring of Special Nuclear Material Inventories

    International Nuclear Information System (INIS)

    Lanier, R G; Dauffy, L S; Hodge, A M

    2004-01-01

    We suggest a system of monitoring special nuclear material inventories which uses simple mathematical techniques to compare the gross features of emitted gamma-ray spectra. In this report we develop the techniques necessary to make such spectral comparisons and describe their application. We also apply these ideas and develop inventory confirmation results using a room-temperature CdTe detector in a real nuclear-material inventory environment

  15. Improvements in or relating to handling of flue gas

    International Nuclear Information System (INIS)

    Ingham, R.V.

    1986-01-01

    The patent describes improvements in the method for handling flue gas from the burning of fossil fuels. The method relates to cleaning the flue gas, from which the sulphur compounds are removed. The gas in then heated by heat derived from a nuclear source, which may be nuclear waste. The heat treatment gives efficient atmospheric dispersion from the chimney. (U.K.)

  16. Safeguards for special nuclear materials

    International Nuclear Information System (INIS)

    Carlson, R.L.

    1979-12-01

    Safeguards, accountability, and nuclear materials are defined. The accuracy of measuring nuclear materials is discussed. The use of computers in nuclear materials accounting is described. Measures taken to physically protect nuclear materials are described

  17. Development of first full scope commercial CANDU-6 fuel handling simulator

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, W., E-mail: BCrawford@atlanticnuclear.ca [Atlantic Nuclear Services Inc., Fredericton, NB (Canada); McInerney, J. M., E-mail: JMcInerney@nbpower.com [Point Lepreau Generating Station, Maces Bay, NB (Canada); Moran, E.S.; Nice, J. W.; Sinclair, D.M.; Somerville, S.; Usalp, E.C.; Usalp, M., E-mail: EMoran@atlanticnuclear.ca, E-mail: JNice@atlanticnuclear.ca, E-mail: DSinclair@atlanticnuclear.ca, E-mail: SSomerville@atlanticnuclear.ca, E-mail: ECUsalp@atlanticnuclear.ca, E-mail: MUsalp@atlanticnuclear.ca [Atlantic Nuclear Services Inc., Fredericton, NB (Canada)

    2015-07-01

    Unique to CANDU reactors is continuous on-power refueling. In the CANDU-6 design, the fuel bundles are contained within 380 pressure tubes. Fuelling machines, one on either side of the reactor face move on a bridge and carriage system to the appointed channel and fuel under computer control. The fuelling machine is an immensely complicated mechanical device. None of the original Canadian full scope simulators incorporated the interaction of the fuel handling system. Traditionally, the final stages of Fuel Handling Operator qualification utilizes on the job training in a production environment carried out in the station main control room. For the purpose of supporting continual improvement in fuel handling training at the Third Qinshan Nuclear Plant Company (TQNPC), Atlantic Nuclear Services in a joint project with New Brunswick Power, developed the first commercial full scope CANDU-6 Fuel Handling simulator, integrated into the existing TQNPC Full Scope Simulator framework. The TQNPC Fuel Handling simulator is capable of supporting all normal on-power and off-power refuelling procedures as well as other abnormal operating conditions, which will allow training to be conducted, based on the plant specific operating procedures. This paper will discuss its development, the importance of this tool and its advantages over past training practices. (author)

  18. Development of first full scope commercial CANDU-6 fuel handling simulator

    International Nuclear Information System (INIS)

    Crawford, W.; McInerney, J. M.; Moran, E.S.; Nice, J. W.; Sinclair, D.M.; Somerville, S.; Usalp, E.C.; Usalp, M.

    2015-01-01

    Unique to CANDU reactors is continuous on-power refueling. In the CANDU-6 design, the fuel bundles are contained within 380 pressure tubes. Fuelling machines, one on either side of the reactor face move on a bridge and carriage system to the appointed channel and fuel under computer control. The fuelling machine is an immensely complicated mechanical device. None of the original Canadian full scope simulators incorporated the interaction of the fuel handling system. Traditionally, the final stages of Fuel Handling Operator qualification utilizes on the job training in a production environment carried out in the station main control room. For the purpose of supporting continual improvement in fuel handling training at the Third Qinshan Nuclear Plant Company (TQNPC), Atlantic Nuclear Services in a joint project with New Brunswick Power, developed the first commercial full scope CANDU-6 Fuel Handling simulator, integrated into the existing TQNPC Full Scope Simulator framework. The TQNPC Fuel Handling simulator is capable of supporting all normal on-power and off-power refuelling procedures as well as other abnormal operating conditions, which will allow training to be conducted, based on the plant specific operating procedures. This paper will discuss its development, the importance of this tool and its advantages over past training practices. (author)

  19. Radioactivity, shielding, radiation damage, and remote handling

    International Nuclear Information System (INIS)

    Wilson, M.T.

    1975-01-01

    Proton beams of a few hundred million electron volts of energy are capable of inducing hundreds of curies of activity per microampere of beam intensity into the materials they intercept. This adds a new dimension to the parameters that must be considered when designing and operating a high-intensity accelerator facility. Large investments must be made in shielding. The shielding itself may become activated and require special considerations as to its composition, location, and method of handling. Equipment must be designed to withstand large radiation dosages. Items such as vacuum seals, water tubing, and electrical insulation must be fabricated from radiation-resistant materials. Methods of maintaining and replacing equipment are required that limit the radiation dosages to workers.The high-intensity facilities of LAMPF, SIN, and TRIUMF and the high-energy facility of FERMILAB have each evolved a philosophy of radiation handling that matches their particular machine and physical plant layouts. Special tooling, commercial manipulator systems, remote viewing, and other techniques of the hot cell and fission reactor realms are finding application within accelerator facilities. (U.S.)

  20. Research on crisis communication of nuclear and radiation safety

    International Nuclear Information System (INIS)

    Cao Yali; Zhang Ying

    2013-01-01

    Insufficient public cognition of nuclear and radiation safety and absence of effective method to handle crisis lead to common crisis events of nuclear and radiation safety, which brings about unfavorable impact on the sound development of nuclear energy exploring and application of nuclear technology. This paper, based on crisis communication theory, analyzed the effect of current situation on nuclear and radiation safety crisis, discussed how to handle crisis, and tried to explore the effective strategies for nuclear and radiation safety crisis handling. (authors)

  1. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  2. Special conditions for the application of coating materials in nuclear power plants

    International Nuclear Information System (INIS)

    Boetius, I.

    1980-01-01

    Proceeding from the special conditions for the application of coating materials in nuclear power plants the following factors influencing the decontamination of surface coatings are discussed from the point of view of radiation protection: abrasion resistance, waterproofness, mechanical and adhesion strength, and permeability. For practical use it is recommended to test the surface tightness of coatings with radiation-exposed specimens

  3. Experience in handling concentrated tritium

    International Nuclear Information System (INIS)

    Holtslander, W.J.

    1985-12-01

    The notes describe the experience in handling concentrated tritium in the hydrogen form accumulated in the Chalk River Nuclear Laboratories Tritium Laboratory. The techniques of box operation, pumping systems, hydriding and dehydriding operations, and analysis of tritium are discussed. Information on the Chalk River Tritium Extraction Plant is included as a collection of reprints of papers presented at the Dayton Meeting on Tritium Technology, 1985 April 30 - May 2

  4. Legal provisions concerning the handling and disposal of radioactive waste in international and national law

    International Nuclear Information System (INIS)

    Bischof, W.

    1980-01-01

    A short survey is given on the situation of international legislation concerning radioactive waste handling and disposal. There are special rules on the disposal of nuclear waste in a number of conventions (Geneva 1958, London 1972, Helsinki 1974, Paris 1974, Barcellone 1976) on the protection of the marine environment and of the high sea against pollutions. In 1974 and 1978, the International Atomic Energy Agency made further recommendations concerning radioactive wastes referred to in the London Convention. In 1977, the Organisation for Economic Cooperation and Development also set up within its Nuclear Energy Agency (NEA) a multilateral consultation and surveillance mechanism for the sea-dumping of radioactive waste. The NEA has since published recommendations on the sea-dumping of radioactive waste. In 1975, it was agreed to abide by the Antarctic Treaty of 1959 not to dispose any nuclear waste on the Antarctic Region. There is at present no absolute prohibition of radioactive waste disposal in outer space but the Member States of the United Nations are responsible for such activities. As regards national legislation, the legal provisions for 13 different countries on radioactive waste disposal are listed. (UK)

  5. Radioactive Waste Management In The Chernobyl Exclusion Zone - 25 Years Since The Chernobyl Nuclear Power Plant Accident

    International Nuclear Information System (INIS)

    Farfan, E.; Jannik, T.

    2011-01-01

    Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from a beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures

  6. Handling of final storage of unreprocessed spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-01-01

    In this report the various facilities incorporated in the proposed handling chain for spent fuel from the power stations to the final repository are discribed. Thus the geological conditions which are essential for a final repository is discussed as well as the buffer and canister materials and how they contribute towards a long-term isolation of the spent fuel. Furthermore one chapter deals with leaching of the deposited fuel in the event that the canister is penetrated as well as the transport mechanisms which determine the migration of the radioactive substances through the buffer material. The dispersal processes in the geosphere and the biosphere are also described together with the transfer mechanisms to the ecological systems as well as radiation doses. Finally a summary is given of the safety analysis of the proposed method for the handling and final storage of the spent fuel. (E.R.)

  7. Suppliers' activities within the controlled zones of licensees handling ionizing radiation sources. Recommendations

    International Nuclear Information System (INIS)

    1999-01-01

    The Recommendations are intended to lay down a unified procedure for preparing licence applications related to ionizing radiation source handling, including the required documentation. The guidelines were set up based on documents of the Dukovany nuclear power plant and adapted to serve the Temelin nuclear power plant and other workplaces handling ionizing radiation sources as well. Selected provisions of applicable legislation are reproduced, and responsibilities are described. The major part of the publication is constituted by model documents, particularly a model Quality Assurance Programme. (P.A.)

  8. Development of remote handling tools for glove box

    International Nuclear Information System (INIS)

    Tomita, Yutaka; Nemoto, Takeshi; Denuma, Akio; Todokoro, Akio

    1996-01-01

    For a part of advanced nuclear fuel recycling technology development, we will separate and recover Americium from the MOX fuel scrap by solvent extraction. When we carry this examination, reduction of exposure from Americium-241 is one of important problems. To solve this problem fundamentally, we studied many joints type of the remote handling tools for glove box and produced a trial production machine. Also, we carried out basic function examinations of it. As a result, we got the prospect of development of the remote handling tools which could treat Americium in glove box. (author)

  9. Fissile materials principles of criticality safety in handling and processing

    International Nuclear Information System (INIS)

    1976-01-01

    This Swedish Standard consists of the English version of the International Standard ISO 1709-1975-Nuclear energy. Fissile materials. Principles of criticality safety in handling and processing. (author)

  10. Conceptual design report for a remotely operated cask handling system

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to the problem of lowering operator cumulative dose and increasing throughput during cask handling operations in proposed nuclear waste container shipping and receiving facilities. The functional criteria for each subsystem are defined, and candidate systems are described. The report also contains a generic description of a waste receiving facility, to show possible deployment configurations for the equipment

  11. Computer techniques for experimental work in GDR nuclear power plants with WWER

    International Nuclear Information System (INIS)

    Stemmler, G.

    1985-01-01

    Nuclear power plant units with WWER are being increasingly equipped with high-performance, programmable process control computers. There are, however, essential reasons for further advancing the development of computer-aided measuring systems, in particular for experimental work. A special structure of such systems, which is based on the division into relatively rigid data registration and primary handling and into further processing by advanced programming language, has proved useful in the GDR. (author)

  12. Large-component handling equipment and its use

    International Nuclear Information System (INIS)

    Krieg, S.A.; Swannack, D.L.

    1983-01-01

    The Fast Flux Test Facility (FFTF) reactor systems have special requirements for component replacements during maintenance servicing. Replacement operations must address handling of equipment within shielded metal containers while maintaining an inert atmosphere to prevent reaction of sodium with air. Plant identification of a failed component results in selecting and assembling the maintenance cask and equipment transport system for transfer from the storage facility to the Reactor Containment Building (RCB). This includes a proper diameter and length cask, inert atmosphere control consoles, component lift fixture and support structure for interface with the facility area surrounding the component. This equipment is staged in modular groups in the Reactor Service Building for transfer through the equipment airlock to the containment interior. The failed component is generally prepared for replacement by installation of the special lifting fixture attachment. Assembly of the cask support structure is performed over the component position on the containment building operating floor. The cask and shroud from the reactor interface are inerted after all manual service connections and handling attachments are completed. The component is lifted from the reactor and into the cask interior through a floor valve which is then closed to isolate the component reactor port. The cask with sodium wetted component is transferred to a service/repair location, either within containment or outside, to the Maintenance Facility cleaning and repair area. The complete equipment and handling operations for replacement of a large reactor component are described

  13. Department of Energy (DOE) system for the transportation of strategic quantities of special nuclear material (SQ SNM)

    International Nuclear Information System (INIS)

    Dickason, D.P.

    1978-01-01

    Since 1947 DOE and its predecessor agencies, AEC and ERDA, have moved nuclear materials by a variety of commercial and government transportation modes. In the late 1960's world-wide terrorism and other dissident activities prompted the then-AEC to review its procedures for safeguarding SNM. These reviews resulted in immediate and long-range programs for improvement of overall safeguards. Domestic transportation of completed nuclear weapons and SNM used in the weapons program was selected for special consideration. In the early 1970's AEC started the development of a Safe Secure Trailer (SST) to transport nuclear weapons and nuclear components and the development and installation of a high frequency (HF) communications system to assure continuous radio contact between selected highway and rail shipments and Headquarters, Albuquerque Operations (ALO). Late 1974 AEC directed ALO to develop a transportation system to extend weapons-level protection to all AEC SQ SNM shipments and to consolidate, manage, and operate this system. As of September 1976 all SQ SNM was being transported in the Safe Secure DOE (then ERDA) transportation safeguards system, composed of the following principal elements: (1) Transport equipment consisting of Safe Secure Trailers and specially modified towing tractors; Safe Secure Railcars and specially modified escort coaches; and specially designed highway escort vehicles. (2) An automated high-frequency digital radio system that enables continuous communications between the transporting equipment and central control. (3) A courier force that operates all transport equipment (except aircraft and rail power units) and mobile communications equipment; provides armed protection for shipments; and assures proper safety en route. (4) A central Headquarters staff that plans, executes, and controls shipments and directs, manages, and operates the system

  14. Overview of the CANDU fuel handling system for advanced fuel cycles

    International Nuclear Information System (INIS)

    Koivisto, D.J.; Brown, D.R.

    1997-01-01

    Because of its neutron economies and on-power re-fuelling capabilities the CANDU system is ideally suited for implementing advanced fuel cycles because it can be adapted to burn these alternative fuels without major changes to the reactor. The fuel handling system is adaptable to implement advanced fuel cycles with some minor changes. Each individual advanced fuel cycle imposes some new set of special requirements on the fuel handling system that is different from the requirements usually encountered in handling the traditional natural uranium fuel. These changes are minor from an overall plant point of view but will require some interesting design and operating changes to the fuel handling system. Some preliminary conceptual design has been done on the fuel handling system in support of these fuel cycles. Some fuel handling details were studies in depth for some of the advanced fuel cycles. This paper provides an overview of the concepts and design challenges. (author)

  15. Team effort leads to versatile handling solution for pipe manufacturer

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-09-15

    This article discussed the development of a new pipe-handling system that resulted in increased efficiencies in plant-to-yard transport for a custom steel pipe manufacturer. In the previous system, loaders would move finished pipe to the yard for storage. However, for transport loading, the pipe would have to be brought back indoors because only the inside cranes could handle loading the pipe without damaging the special outer coating on the pipe. In the new pipe-handling system, the loader is replaced with a Sennebogen 850 M rubber-tired material handler, which was developed for the steel recycling industry. The generator that comes on the material handler is retrofitted to power a purpose-built pipe-handler attachment. The machine's higher lifting reach allows for higher stacking, effectively increasing the capacity of the yard. The new pipe-handling machine allows trucks to be loaded right in the yard, eliminating the need to double-handle the pipe. 1 fig.

  16. A database for transmutation of nuclear materials on internet

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutane; Utsumi, Misako; Noda, Tetsuji [National Research Inst. for Metals, Tsukuba, Ibaraki (Japan)

    1998-03-01

    A database system on Internet for nuclear material design and selection used in various reactors are developed in NRIM site of `Data-Free-Way`. In order to retrieve and maintain the database, the user interface for the data retrieval was developed where special knowledge on handling of the database or the machine structure is not required for end-user. It is indicated that using the database, the possibility of nuclides and radioactivity in a material can be easily retrieved though the evaluation is qualitatively. (author)

  17. Handling plan of the flora and fauna sanctuary Otun - Quimbaya. Pereira (Risaralda)

    International Nuclear Information System (INIS)

    Lopez Murcia, Samuel; Rodriguez Ramirez, Pablo

    1998-01-01

    The present document is about of the elaboration of the handling plan of the flora and fauna sanctuary Otun-Quimbaya, following a new scheme of planning that has been come adjusting to be adopted on the part of the special administrative unit of the system of natural national parks, of the Ministry of the environment; the plan is based on the detailed description of the protected area and its influence area, a zonification, position of handling programs and the establishment of basic norms that regulate the handling applied to the area

  18. Activities of special committee on 'quality assurance of accountancy analysis for safeguards'

    International Nuclear Information System (INIS)

    2010-01-01

    For the long-term stable operation of nuclear fuel cycle facilities, it is essential to satisfy the requirements of IAEA safeguards agreement. It could be attained by precise implementation of accountancy analysis of nuclear materials and application of Destructive Analysis (DA) which enables highly precise measurement is necessary. The requirements to maintain and improve the precision of DA are supposed to grow along with nuclear fuel cycle fully in progress and Pu handling amount increases. In order to maintain long-term stability of quality level of accountancy analysis for safeguards, a special committee on 'Quality Assurance (QA) for Accountancy /Safeguards analysis' was established at Atomic Energy Society Japan supported by INNM-Japan Chapter. Experts of safeguards analysis, reference materials, statistics and QA were gathered and drafted the committee standard document for isotope dilution mass spectrometry, the major accountancy analysis technique for Pu and U, supported Pu standard preparation at JAEA and summarized the items needed for QA of DA. (author)

  19. Experience of remote under water handling operations at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Agarwal, S.K.

    1990-01-01

    Each Refuelling outage of Tarapur Atomic Power Station Reactors involves a great deal of remote underwater handling operations using special remote handling tools, working deep down in the reactor vessel under about sixty feet of water and in the narrow confines of highly radioactive core. The remote underwater handling operations include incore and out of core sipping operations, fuel reloading or shuffling, uncoupling of control rod drives, replacement and shuffling of control blades, replacement of local power range monitors, spent fuel shipment in casks, retrieval of fallen or displaced fuel top guide spacers, orifices and their installation, underwater CCTV inspection of reactor internals, core verification, channelling and dechannelling of fuel bundles, inspection of fuel bundles and channels, unbolting and removal of old racks, installation of high density racks, removal and reinstallation of fuel support plugs and guide tubes, underwater cutting of irradiated hardware material and their disposal, fuel reconstitution, removal and reinstallation of system dryer separator etc.. The paper describes in brief the salient experience of remote underwater handling operations at TAPS especially the unusual problems faced and solved, by using special tools, employing specific techniques and by repeated efforts, patience, ingenuity and skills. (author). 10 figs

  20. Nuclear Technology Series. Course 25: Radioactive Material Handling Techniques.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  1. Commissioning of calorimeter in radiochemical laboratory for non-destructive assay of special nuclear materials

    International Nuclear Information System (INIS)

    Patra, S.; Mhatre, A.M.; Agarwal, C.; Chaudhury, S.; Pujari, P.K.

    2017-01-01

    Accounting of special nuclear materials (SNM) in every stages of nuclear fuel cycle is a necessity where one needs the quantitative estimation of SNM in variety of samples like sealed containers or finished products without altering its physical and chemical form. Non-destructive assay (NDA) techniques are capable of assaying such samples by the way of measuring passive/active neutrons/gamma rays or by the measurement of decay heat. Radiochemistry Division has been actively involved in the development and deployment of various NDA methodologies for meeting the demand of nuclear material accounting as and when required. Recently a radiometric calorimeter, developed by Reactor Control Division, E and I Group, BARC, has been installed in Lab C-33, Radiochemistry Division

  2. Special problems of setting up nuclear medicine in a developing country

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    There are some special problems in setting up nuclear medicine in a developing country. They can be briefly described in the form of the following general rules. 1) Impossible triangle. For the practice of nuclear medicine, three things are needed: Instrument, Radiopharmaceutical and a Patient. In a developing country, these three become three sides of an impossible triangle. When the radiopharmaceutical is available, the instrument may not be working; when the instrument is functioning, the radiopharmaceutical may not have been obtained from the foreign supplier; and when both are there, the patient might no longer be in the hospital. Three sides of this triangle never join to become a congruent whole. 2) Reverse square law. Further away one is from the source of supply of instruments and radiopharmaceuticals, the problems multiply by the square of this distance. 3) Future of nuclear medicine is tied to the electrical supply available in a developing country. These problems related to power supply are described in the Chapter on maintenance of instruments

  3. Special problems of setting up nuclear medicine in a developing country

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    There are some special problems in setting up nuclear medicine in a developing country. They can be briefly described in the form of the following general rules. 1) Impossible triangle. For the practice of nuclear medicine, three things are needed: Instrument, Radiopharmaceutical and a Patient. In a developing country, these three become three sides of an impossible triangle. When the radiopharmaceutical is available, the instrument may not be working; when the instrument is functioning, the radiopharmaceutical may not have been obtained from the foreign supplier; and when both are there, the patient might no longer be in the hospital. Three sides of this triangle never join to become a congruent whole. 2) Reverse square law. Further away one is from the source of supply of instruments and radiopharmaceuticals, the problems multiply by the square of this distance. 3) Future of nuclear medicine is tied to the electrical supply available in a developing country. These problems related to power supply are described in the Chapter on maintenance of instruments

  4. Environmental-impact appraisal related to special nuclear materials. License No. SNM-696; Docket No. 70-734

    International Nuclear Information System (INIS)

    1983-06-01

    This Environmental Impact Appraisal is issued by the US Nuclear Regulatory Commission in response to an application by GA Technologies, Inc., (GA) for renewal of Special Nuclear Material (SNM) License No. SNM-696 covering plant operations at San Diego, California. The proposed action provides for continuing research, development, and production activities involving SNM, uranium enriched in the U-235 and U-233 isotopes, and plutonium

  5. Handling radioactivity: a practical approach for scientists and engineers

    International Nuclear Information System (INIS)

    Stewart, D.C.

    1981-01-01

    The aim of this book is to present an overall view in a descriptive and essentially nonmathematical way of the practicalities of handling radioactivity. It is hoped that the material will be particularly helpful to those entering the nuclear field for the first time and to those working in related areas whose responsibilities require them to have a general knowledge of the subject of radioactivity handling and its vocabulary. The presentation is primarily for bench-scale operations. There is a considerable emphasis on facilities since these are fundamental to the safe handling of active materials. Facility design and detail is also unfortunately an area where the relevant information is largely scattered through literature sources that are not accessible to most readers. Some of the topics surveyed - such as dosimetry, shielding and nuclear criticality - are extremely complex and no pretense is made that the treatment here represents more than bare bone summaries of the fields. A considerable effort has been made to cite the key references in each area where more detailed information can be found. A few additional useful references not cited directly in the text appear in an abbreviated bibliography at the end of the book

  6. Reviewing reactor engineering and fuel handling

    International Nuclear Information System (INIS)

    1991-12-01

    Experience has shown that the better operating nuclear power plants have well defined and effectively administered policies and procedures for governing reactor engineering and fuel handling (RE and FH) activities. This document provides supplementary guidance to OSART experts for evaluating the RE and FH programmes and activities at a nuclear power plant and assessing their effectiveness and adequacy. It is in no way intended to conflict with existing regulations and rules, but rather to exemplify those characteristics and features that are desirable for an effective, well structured RE and FH programme. This supplementary guidance addresses those aspects of RE and FH activities that are required in order to ensure optimum core operation for a nuclear reactor without compromising the limits imposed by the design, safety considerations of the nuclear fuel. In the context of this document, reactor engineering refers to those activities associated with in-core fuel and reactivity management, whereas fuel handling refers to the movement, storage, control and accountability of unirradiated and irradiated fuel. The document comprises five main sections and several appendices. In Section 2 of this guide, the essential aspects of an effective RE and FH programme are discussed. In Section 3, the various types of documents and reference materials needed for the preparatory work and investigation are listed. In Section 4, specific guidelines for investigation of RE and FH programmes are presented. In Section 5, the essential attributes of an excellent RE and FH programme are listed. The supplementary guidance is concluded with a series of appendices exemplifying the various qualities and attributes of a sound, well defined RE and FH programme

  7. The main ecological principles of ensuring safety of man and biosphere in the handling of radioactive wastes

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1999-01-01

    This paper provides an assessment of ecological safety in the handling of radioactive wastes in the territory of Russia. The following problems are considered: the main sources of radioactive wastes and spent nuclear fuel; assessments of collective dose from the enterprises of the nuclear fuel cycle in Russia; and principles and criteria for ensuring ecological safety when handling radioactive wastes

  8. Countermeasures to earthquakes in nuclear plants

    International Nuclear Information System (INIS)

    Sato, Kazuhide

    1979-01-01

    The contribution of atomic energy to mankind is unmeasured, but the danger of radioactivity is a special thing. Therefore in the design of nuclear power plants, the safety has been regarded as important, and in Japan where earthquakes occur frequently, the countermeasures to earthquakes have been incorporated in the examination of safety naturally. The radioactive substances handled in nuclear power stations and spent fuel reprocessing plants are briefly explained. The occurrence of earthquakes cannot be predicted effectively, and the disaster due to earthquakes is apt to be remarkably large. In nuclear plants, the prevention of damage in the facilities and the maintenance of the functions are required at the time of earthquakes. Regarding the location of nuclear plants, the history of earthquakes, the possible magnitude of earthquakes, the properties of ground and the position of nuclear plants should be examined. After the place of installation has been decided, the earthquake used for design is selected, evaluating live faults and determining the standard earthquakes. As the fundamentals of aseismatic design, the classification according to importance, the earthquakes for design corresponding to the classes of importance, the combination of loads and allowable stress are explained. (Kako, I.)

  9. Survey of special nuclear material vehicle monitors for domestic and international safeguards

    International Nuclear Information System (INIS)

    Fehlau, P.E.; Atwater, H.F.; Caldwell, J.T.; Shunk, E.R.

    1979-01-01

    Special nuclear materials vehicle monitors, including gateside vehicle monitors, hand-held personnel-vehicle monitors, and a new tunnel monitor concept for very large vehicles, are discussed. The results of a comparison of effectiveness of monitors for domestic application are presented. The results of calculations and small scale prototype measurements are given for a tunnel-like neutron monitor for monitoring at the perimeter of an enrichment plant subjected to International Safeguards

  10. 10 CFR 73.73 - Requirement for advance notice and protection of export shipments of special nuclear material of...

    Science.gov (United States)

    2010-01-01

    ... shipments of special nuclear material of low strategic significance. 73.73 Section 73.73 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Records and Reports § 73.73... Incident Response, using any appropriate method listed in § 73.4; (2) Assure that the notification will be...

  11. Ways of solving the problems of radiation safety and environmental protection in handling radioactive waste at atomic power stations in the USSR

    International Nuclear Information System (INIS)

    Gusev, D.I.; Belitskij, A.S.; Turkin, A.D.; Kozlov, V.M.

    1977-01-01

    Requirements of the State Sanitary Supervision on radiation safety of the personnel and population and on protection of the environment in handling radioactive wastes from nuclear power stations in the USSR are regulated by the Standards of Radiation Safety, the Main Sanitary Rules for Handling Radioactive Materials and by the Sanitary Rules for Designing Nuclear Power Stations. The regulations contained in these documents are obligatory for all the establishments at the stages of design, building and operation of nuclear power stations. The main requirement for handling radioactive wastes from nuclear power stations in the USSR is to dispose of them near the place of their production. In nuclear power station siting and designing the special territory is provided for liquid and solid radioactive wastes storage taking into account the whole period of nuclear power station operation. These storage sites are located within the controlled area. They are built as required, usually for five years. The report contains hygienic and hydrological requirements to the radiation waste burial sites and data on the accepted system of controlling leak-proof qualities of the disposal cavities and radioactivity of the ground water in this region. The results of long-term studies on radionuclide leaching from the bituminic blocks are given and it is shown that the bituminizing method used for solidification of intermediate activity wastes is very promising. In the USSR much attention is given to the problem of sanitary protection of the cooling ponds at nuclear power stations. No limits to the national-economic use of these ponds outside the nuclear power station site are established. Therefore in determining the requirements to the discharge of effluents into the cooling ponds of nuclear power stations the possibility of radionuclide transfer to the population through the aquaeous and terrestrial biological chains is taken into account. The possibility of human diet contamination

  12. Waste Handling in SVAFO's Hot Cell

    International Nuclear Information System (INIS)

    Moeller, Jennifer; Ekenborg, Fredrik; Hellsten, Erik

    2016-01-01

    The decommissioning and dismantling of nuclear installations entails the generation of significant quantities of radioactive waste that must be accepted for disposal. In order to optimise the use of the final repositories for radioactive waste it is important that the waste be sent to the correct repository; that is, that waste containing short-lived radionuclides not be designated as long-lived due to conservative characterisation procedures. The disposal of short-lived waste in a future Swedish repository for long-lived waste will result in increased costs, due to the higher volumetric cost of the disposal as well as costs associated with decades of interim storage before disposal can occur. SVAFO is a non-profit entity that is responsible for the decommissioning of nuclear facilities from historical research and development projects in Sweden. They provide interim storage for radioactive waste arising from research activities until the final repository for long-lived waste is available. SVAFO's offices and facilities are located on the Studsvik site on the east coast of Sweden near the town of Nykoeping. Some of the retired facilities that SVAFO is in the process of decommissioning are located elsewhere in Sweden. The HM facility is a small waste treatment plant owned and operated by SVAFO. The plant processes both liquid and solid radioactive wastes. The facility includes a hot cell equipped with a compactor, a saw and other tools as well as manipulators for the handling and packaging of waste with high dose rates. The cell is fitted with special systems for transporting waste in and passing it out in drums. As with most hot cells there has been an accumulation of surface contamination on the walls, floor and other surfaces during decades of operation. Until recently there has been no attempt to quantify or characterize this contamination. Current practices dictate that after waste is handled in the hot cell it is conservatively designated as long

  13. A New Format for Handling Nuclear Data

    CERN Document Server

    Bak, S I; Tenreiro, C; Kadi, Y; Hong, S W; Manchanda, V; Gheata, M; Chai, J S; Carminati, F; Park, T S; Brun, R

    2011-01-01

    The ASCII ENDF format for nuclear data has been used for four decades. It is practical for human inspection and portability, but; it is not very effective for manipulating and displaying the data or for using them in Monte-Carlo applications. In this paper we present a prototype of a nuclear data manipulation package (TNudy) based on the ROOT system (http://root.cern.ch). The ROOT object-oriented C++ framework is the de-facto standard in high energy and nuclear physics since ten years. Starting from the ENDF format, the data. is stored in machine-portable binary format. Root files also offer a powerful direct access capability to their different sections and compressibility upon writing, minimising the disk occupancy. ROOT offers a complete library of visualisation and mathematical routines and the Virtual Monte-Carlo system, which allows running different transport Monte-Carlo (Geant 4, Geant 3) with common scoring and geometry modellers, which comes as part of ROOT. ROOT contains isotope decay data and the ...

  14. The potential risks from Russian nuclear ships. NKS-SBA-1 status report

    Energy Technology Data Exchange (ETDEWEB)

    Oelgaard, P.L. [Risoe National Lab., Roskilde (Denmark)

    2001-11-01

    A review is given of the information available on the Russian nuclear ships including submarines, cruisers and ice-breaking ships with special emphasis on the vessels of the Northern Fleet and the Russian icebreakers. A significant part of these ships has today been taken out of active service, and they are in various stages of decommissioning. Information on the decommissioned vessels, their storage sites and the procedures planned for the further decommissioning works is discussed. The handling of spent nuclear fuel is also considered. The various types of accidents, which might occur with these ships, operational as well as decommissioned, are considered, and examples of actual accidents with operational vessels are presented. The types of accidents considered include criticality accidents, loss-of-coolant accidents, fires/explosions and sinking. Some measures taken by the Russians to avoid such accidents are discussed. The special problems connected to the two decommissioned submarines of the Northern Fleet, which have damaged cores, are mentioned. In appendices data on the Russian nuclear vessels are presented. (au)

  15. Special Nuclear Material Gamma-Ray Signatures for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-29

    These are slides on special nuclear material gamma-ray signatures for reachback analysts for an LSS Spectroscopy course. The closing thoughts for this presentation are the following: SNM materials have definite spectral signatures that should be readily recognizable to analysts in both bare and shielded configurations. One can estimate burnup of plutonium using certain pairs of peaks that are a few keV apart. In most cases, one cannot reliably estimate uranium enrichment in an analogous way to the estimation of plutonium burnup. The origin of the most intense peaks from some SNM items may be indirect and from ‘associated nuclides.' Indirect SNM signatures sometimes have commonalities with the natural gamma-ray background.

  16. Detecting special nuclear material using muon-induced neutron emission

    Energy Technology Data Exchange (ETDEWEB)

    Guardincerri, Elena; Bacon, Jeffrey; Borozdin, Konstantin; Matthew Durham, J.; Fabritius II, Joseph [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hecht, Adam [University of New Mexico, Albuquerque, NM 87131 (United States); Milner, Edward C. [Southern Methodist University, Dallas, TX 75205 (United States); Miyadera, Haruo; Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Perry, John [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); University of New Mexico, Albuquerque, NM 87131 (United States); Poulson, Daniel [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-07-21

    The penetrating ability of cosmic ray muons makes them an attractive probe for imaging dense materials. Here, we describe experimental results from a new technique that uses neutrons generated by cosmic-ray muons to identify the presence of special nuclear material (SNM). Neutrons emitted from SNM are used to tag muon-induced fission events in actinides and laminography is used to form images of the stopping material. This technique allows the imaging of SNM-bearing objects tagged using muon tracking detectors located above or to the side of the objects, and may have potential applications in warhead verification scenarios. During the experiment described here we did not attempt to distinguish the type or grade of the SNM.

  17. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  18. Brokdorf nuclear power station: Construction scheduling and deadline control

    International Nuclear Information System (INIS)

    Lembcke, U.D.F.

    1986-01-01

    Scheduling, especially deadline control, for all installations of the Brokdorf nuclear power station was carried out centrally by the Project Management of Kraftwerk Union AG. 130 timetables encompassing some 13,000 activities were handled, which were interconnected and linked to 189 timetables (approx. 18,000 activities) from various specialized sections by means of data processing systems. Much space in time scheduling was taken by controls of software processing, especially of the preliminary inspection documents in the piping sector and of working documents for construction management in the control systems area. (orig.) [de

  19. Value-impact analysis of regulations for the nuclear industry

    International Nuclear Information System (INIS)

    Al-Ayat, R.; Judd, B.; Huntsman, J.

    1980-01-01

    This paper summarizes a quantitative tool developed at Lawrence Livermore National Laboratory to aid the NRC in establishing Material Control and Accounting (MC and A) regulations for safeguarding Special Nuclear Material (SNM). Illustrative Value-Impact results of demonstrating the methodology at a facility handling SNM to evaluate alternative safeguards rules is given. The methodology developed also offers a useful framework for facility designers to choose safeguards measures that meet the NRC's criteria in a cost-effective manner. Furthermore, the methodology requires very modest computing capability and is straightforward to apply

  20. 340 Waste Handling Facility interim safety basis

    International Nuclear Information System (INIS)

    Bendixsen, R.B.

    1995-01-01

    This document establishes the interim safety basis (ISB) for the 340 Waste Handling Facility (340 Facility). An ISB is a documented safety basis that provides a justification for the continued operation of the facility until an upgraded final safety analysis report is prepared that complies with US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports. The ISB for the 340 Facility documents the current design and operation of the facility. The 340 Facility ISB (ISB-003) is based on a facility walkdown and review of the design and operation of the facility, as described in the existing safety documentation. The safety documents reviewed, to develop ISB-003, include the following: OSD-SW-153-0001, Operating Specification Document for the 340 Waste Handling Facility (WHC 1990); OSR-SW-152-00003, Operating Limits for the 340 Waste Handling Facility (WHC 1989); SD-RE-SAP-013, Safety Analysis Report for Packaging, Railroad Liquid Waste Tank Cars (Mercado 1993); SD-WM-TM-001, Safety Assessment Document for the 340 Waste Handling Facility (Berneski 1994a); SD-WM-SEL-016, 340 Facility Safety Equipment List (Berneski 1992); and 340 Complex Fire Hazard Analysis, Draft (Hughes Assoc. Inc. 1994)

  1. Method for separation of uranium hexafluoride by specially activated carbons

    International Nuclear Information System (INIS)

    Bannasch, W.

    1976-01-01

    The present invention deals with the separation of urainium hexafluoride from gas streams on special activated carbon which can be released during an accident in nuclear plants. Those plants are concerned here in which as a rule uranium hexafluoride is handled in liquid aggregate state. The patent claims deal with the adsorption of UF 6 from gas mixtures in the temperature region of 70-200 0 C and the application of UF 6 adsorbing activated carbon of a certain grain based on petroleum and/or weight % and with a asch content of 4 to 6 weigt % and with a benzol yield of 50-60g benzene /100g activated carbon. (GG) [de

  2. Handling of tritium-bearing wastes

    International Nuclear Information System (INIS)

    1981-01-01

    The generation of nuclear power and reprocessing of nuclear fuel results in the production of tritium and the possible need to control the release of tritium-contaminated effluents. In assessing the need for controls, it is necessary to know the production rates of tritium at different nuclear facilities, the technologies available for separating tritium from different gaseous and liquid streams, and the methods that are satisfactory for storage and disposal of tritiated wastes. The intention in applying such control technologies and methods is to avoid undesirable effects on the environment, and to reduce the radiation burden on operational personnel and the general population. This technical report is a result of the IAEA Technical Committee Meeting on Handling of Tritium-bearing Effluents and Wastes, which was held in Vienna, 4 - 8 December 1978. It summarizes the main topics discussed at the meeting and appends the more detailed reports on particular aspects that were prepared for the meeting by individual participants

  3. Ontario Hydro Pickering Generating Station fuel handling system performance

    International Nuclear Information System (INIS)

    Underhill, H.J.

    1986-01-01

    The report briefly describes the Pickering Nuclear Generating Station (PNGS) on-power fuel handling system and refuelling cycle. Lifetime performance parameters of the fuelling system are presented, including station incapability charged to the fuel handling system, cost of operating and maintenance, dose expenditure, events causing system unavailability, maintenance and refuelling strategy. It is concluded that the 'CANDU' on-power fuelling system, by consistently contributing less than 1% to the PNGS incapability, has been credited with a 6 to 20% increase in reactor capacity factor, compared to off-power fuelling schemes. (author)

  4. Problems of the Spent Nuclear Fuel Storage

    International Nuclear Information System (INIS)

    Negrivoda, G.

    1997-01-01

    Approximately 99% of the radioactivity in waste, produced in the process of operating a nuclear power plant, is contained in spent nuclear fuel. Safe handling and storage of the spent nuclear fuel is an important factor of a nuclear plant safety. Today at Ignalina NPP the spent fuel is stored in special water pools, located in the same buildings as the reactors. The volume of the pools is limited, for unit one the pool will be fully loaded in 1998, for unit 2 - in 2000. The further operation of the plant will only be possible if new storage is constructed. In 1994 contract with German company GNB was signed for the supply of 20 containers of the CASTOR type. Containers were delivered in accordance with agreed schedule. In the end of 1995 a new tender for new storage options was announced in order to minimize the storage costs. A proposal from Canadian company AECL now is being considered as one of the most suitable and negotiations to sign the contract started. (author)

  5. Conceptual design report for a remotely operated cask handling system. Revision 1

    International Nuclear Information System (INIS)

    Yount, J.A.; Berger, J.D.

    1984-09-01

    Recent advances in remote handling utilizing commercial robotics are conceptually applied to lowering operator cumulative radiation exposure and increasing throughput during cask handling operations in nuclear shipping and receiving facilities. Revision 1 incorporates functional criteria for facility equipment, equipment technical outline specifications, and interface control drawings to assist Architect Engineers in the application of remote handling to waste shipping and receiving facilities. The document has also been updated to show some of the equipment used in proof-of-principle testing during fiscal year 1984. 10 references, 50 figures, 1 table

  6. Handling and transport problems (1960)

    International Nuclear Information System (INIS)

    Pomarola, J.; Savouyaud, J.

    1960-01-01

    I. The handling and transport of radioactive wastes involves the danger of irradiation and contamination. It is indispensable: - to lay down a special set of rules governing the removal and transport of wastes within centres or from one centre to another; - to give charge of this transportation to a group containing teams of specialists. The organisation, equipment and output of these teams is being examined. II. Certain materials are particularly dangerous to transport, and for these special vehicles and fixed installations are necessary. This is the case especially for the evacuation of very active liquids. A transport vehicle is described, consisting of a trailer tractor and a recipient holding 500 litres of liquid of which the activity can reach 1000 C/l; the decanting operation, the route to be followed by the vehicle, and the precautions taken are also described. (author) [fr

  7. Civil nuclear energy in North Africa and in the Middle East

    International Nuclear Information System (INIS)

    Battiss, Samir

    2009-01-01

    In an uncertain energy international context, the Arab States as of many emergent countries have to face human and economic development critical challenges with limited natural resources. Because of lacks of oil and gas resources, or-for others-demonstrating their will to put more oil on the market, these countries officially stated that they are interested in acquiring nuclear power plants and know-how to ensure a sufficient and quite cheap electricity production. Therefore, although progress as regards renewable energies was carried out, nuclear energy appears to be an interesting alternative in this relative instable energy market framework. To handle successfully their nuclear development project, these States must, however, carry on their current efforts regarding training, industrial co-operation with the major nuclear powers, and collaboration with the specialized international institutions. This cooperation gives to these major actors (the United States, France, Russia and China), a room for implementation of a 'nuclear diplomacy' as means to capture these emerging markets, and so beyond the traditional friendships

  8. Examples of remote handling of irradiated fuel assemblies in Germany

    International Nuclear Information System (INIS)

    Peehs, M.; Knecht, K.

    1999-01-01

    Examples for the remote handling of irradiated fuel in Germany are presented in the following areas: - fuel assembling pool service activities; - early encapsulation of spent fuel in the pool of a nuclear power plant (NPP) at the end of the wet storage period. All development in remote fuel assembly handling envisages minimization of the radioactive dose applied to the operating staff. In the service area a further key objective for applying advanced methods is to perform the work faster and at a higher quality standard. The early encapsulation is a new technology to provide the final packaging of spent fuel already in the pool of a NPP to ensure reliable handling for all further back end processes. (author)

  9. Nuclear powered ships. Findings from a feasibility study

    International Nuclear Information System (INIS)

    Namikawa, Shunichiro; Maerli, Morten Bremer; Hoffmann, Peter Nyegaard; Brodin, Erik

    2011-01-01

    Nuclear shipping is attractive for several reasons, one of which is its positive effect on emissions (CO 2 , NOx and SOx). The benefits, however, do not come without risks of possible harmful effects on humans and wildlife. Nuclear ships set themselves apart from conventional ships, as well as from on-shore nuclear power-plants, on several counts. 1) The reactor-unit are non-stationary, and the reactor is subject to the ship motions. 2) Ship reactors must be compact due to space constraints. 3) Special design considerations are required to ensure reactor safety and security, as well as to enable refuelling. 4) A naval nuclear fuel cycle infrastructure for fuel fabrication, handling, and disposal is needed. Technological feasibility of nuclear shipping is by itself inconclusive to a expansion into civilian applications and use. Civilian nuclear propulsion needs to be commercially viable and politically acceptable. Appropriate legislation must be in place, and nuclear shipping concepts with proven safety records and highest possible nuclear proliferation-resistance must be established. Possible 'showstoppers' to a viable nuclear civilian shipping industry are outlined in the paper in view of Political, Technical, Regulatory, Commercial, Safety and Security aspects. Further, different types of ships with different propulsion system are compared in lights of life cycle cost and air emission. (author)

  10. 2008 annual nuclear technology conference: opting out of the use of nuclear power. German special approach leads into a dead end of energy policy. Conference report

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    The President of the Deutsches Atomforum, Dr. Walter Hohlefelder, emphasized in his opening address at the 2008 Annual Nuclear Technology Conference in Hamburg that the German special approach to nuclear power utilization led straight into a dead end of energy policy. ''The outcome is foreseeable: The ambitious German goals of carbon dioxide reduction are missed, the competitiveness of the country is jeopardized, dependency on foreign energy imports rises,'' Dr. Hohlefelder stated. In view of the growing challenges in energy policy Germany had no alternative but to reassess nuclear power. The only outcome of this reappraisal could be extension of the life of nuclear power plants currently in operation. This was necessary also in order to avoid an impending gap in German electricity supply, Dr. Hohlefelder added. He invited all stakeholders to join in an open, unbiased dialog. Dr. Hohlefelder openly criticized the continued ban on research into the development of new reactors. ''A policy of this kind, a policy which bans thinking, is unacceptable in a technology-oriented, industrialized nation such as Germany.'' Nuclear power technology as a high-tech area was a unique achievement which had contributed to the prosperity of the country. The Annual Nuclear Technology Conference, which was held for the 39th time this year, is one of the biggest specialized conferences in the nuclear field with an attendance, this year, of approximately 1300 participants from more than twenty nations. (orig.)

  11. Design of startup neutron detector handling mechanism instrumentation

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Sivaramakrishna, M.; Nagaraj, C.P.; Madhusoodanan, K.

    2010-01-01

    In PFBR, to monitor the reactor during first fuel loading and low power operation, special provision is made in the central fuel subassembly to accommodate the neutron detectors. During fuel handling operations, these detectors need to be lifted up to facilitate plug rotation. These detectors are also need to be lifted from the core to save their life, during intermediate and high power operations. Towards this, a mobile assembly containing these detectors is made with lowering and retracting provision. To control this operation, constant speed motor, torque limiter, proximity switch, wire drawn potentiometer, magnetic reed switches are provided. To ensure a smooth and safe handling of this assembly, control logic with necessary interlocks is developed. (author)

  12. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: mueller@tunl.duke.edu [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Ahmed, M.W. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States); Department of Mathematics and Physics, North Carolina Central University, Durham, NC 27707 (United States); Weller, H.R. [Triangle Universities Nuclear Laboratory, Durham, NC 27710 (United States); Department of Physics, Duke University, Durham, NC 27708 (United States)

    2014-08-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of {sup 232}Th, {sup 233,235,238}U, {sup 237}Np, and {sup 239,240}Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed.

  13. A novel method to assay special nuclear materials by measuring prompt neutrons from polarized photofission

    International Nuclear Information System (INIS)

    Mueller, J.M.; Ahmed, M.W.; Weller, H.R.

    2014-01-01

    A novel method of measuring the enrichment of special nuclear material is presented. Recent photofission measurements using a linearly polarized γ-ray beam were performed on samples of 232 Th, 233,235,238 U, 237 Np, and 239,240 Pu. Prompt neutron polarization asymmetries, defined to be the difference in the prompt neutron yields parallel and perpendicular to the plane of beam polarization divided by their sum, were measured. It was discovered that the prompt neutron polarization asymmetries differed significantly depending on the sample. Prompt neutrons from photofission of even–even (non-fissile) targets had significant polarization asymmetries (∼0.2 to 0.5), while those from odd-A (generally fissile) targets had polarization asymmetries close to zero. This difference in the polarization asymmetries could be exploited to measure the fissile versus non-fissile content of special nuclear materials, and potentially to detect the presence of fissile material during active interrogation. The proposed technique, its expected performance, and its potential applicability are discussed

  14. Study of special challenges for NDT-methods on nuclear structures

    Energy Technology Data Exchange (ETDEWEB)

    Maack, Stefan; Wiggenhauser, Herbert [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Thunell, Bjoern [Scanscot Technology AB, Lund (Sweden)

    2015-07-01

    The special design of buildings, constructed for nuclear power plants is a particular challenge for the nondestructive testing in the building industry. In particular the major component thicknesses, the degree of reinforcement and surface coating systems make the application of NDT methods difficult. The studies first steps were undertaken to determine to which extent established applications of these techniques are useable in the field of infrastructure buildings. Methods have been evaluated that are already state of the art. So for example the ground penetrating radar was used for locating metallic mounting parts. Furthermore, the low-lying internal structure of the containment was investigated with the ultrasonic method.

  15. Equipment system for advanced nuclear fuel development

    International Nuclear Information System (INIS)

    Kwon, Hyuk Il; Ji, C. G.; Bae, S. O.

    2002-11-01

    The purpose of the settlement of equipment system for nuclear Fuel Technology Development Facility(FTDF) is to build a seismic designed facility that can accommodate handling of nuclear materials including <20% enriched Uranium and produce HANARO fuel commercially, and also to establish the advanced common research equipment essential for the research on advanced fuel development. For this purpose, this research works were performed for the settlement of radiation protection system and facility special equipment for the FTDF, and the advanced common research equipment for the fuel fabrication and research. As a result, 11 kinds of radiation protection systems such as criticality detection and alarm system, 5 kinds of facility special equipment such as environmental pollution protection system and 5 kinds of common research equipment such as electron-beam welding machine were established. By the settlement of exclusive domestic facility for the research of advanced fuel, the fabrication and supply of HANARO fuel is possible and also can export KAERI-invented centrifugal dispersion fuel materials and its technology to the nations having research reactors in operation. For the future, the utilization of the facility will be expanded to universities, industries and other research institutes

  16. Mathematical modelling of heat production in deep geological repository of high-level nuclear waste

    International Nuclear Information System (INIS)

    Kovanda, O.

    2017-01-01

    Waste produced by nuclear industry requires special handling. Currently, there is a research taking place, focused at possibilities of nuclear waste storage in deep geological repositories, hosted in stable geological environment. The high-level nuclear waste produces significant amount of heat for a long time, which can affect either environment outside of or within the repository in a negative way. Therefore to reduce risks, it is desirable to know the principles of such heat production, which can be achieved using mathematical modeling. This thesis comes up with a general model of heat production-time dependency, dependable on initial composition of the waste. To be able to model real situations, output of this thesis needs to be utilized in an IT solution. (authors)

  17. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  18. Remote techniques for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1997-01-01

    Unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MWe. It was shut down in 1977 after eleven years of operation. The actual decommissioning started in 1983. Since then more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, which uses a dual-cycle system for additional steam generation, the experience gained is transferable to pressurized water reactors. (Author)

  19. Remote control for the underwater dismantling of reactor internals at the nuclear power plant Gundremmingen unit A

    International Nuclear Information System (INIS)

    Eickelpasch, N.; Steiner, H.; Priesmeyer, U.

    1996-01-01

    The unit A of the nuclear power plant in Gundremmingen (KRB A) is a boiling water reactor with an electrical power of 250 MW e . It was shut down in 1977 after 11 years of operation. The actual decommissioning started in 1983. Meanwhile more than 5200 tons of contaminated components have been dismantled. Special cutting and handling tools were tested, developed and optimized for the purpose of working in radiation fields and under water. Due to the special design of KRB A, using an dual cycle system for additional steam generation, the experience gained is transferable to pressurised water reactors as well. (Author)

  20. The handling of radiation accidents

    International Nuclear Information System (INIS)

    Macdonald, H.F.; Orchard, H.C.; Walker, C.W.

    1977-04-01

    Some of the more interesting and important contributions to a recent International Symposium on the Handling of Radiation Accidents are discussed and personal comments on many of the papers presented are included. The principal conclusion of the Symposium was that although the nuclear industry has an excellent safety record, there is no room for complacency. Continuing attention to emergency planning and exercising are essential in order to maintain this position. A full list of the papers presented at the Symposium is included as an Appendix. (author)

  1. Evolution of the Darlington NGS fuel handling computer systems

    International Nuclear Information System (INIS)

    Leung, V.; Crouse, B.

    1996-01-01

    The ability to improve the capabilities and reliability of digital control systems in nuclear power stations to meet changing plant and personnel requirements is a formidable challenge. Many of these systems have high quality assurance standards that must be met to ensure adequate nuclear safety. Also many of these systems contain obsolete hardware along with software that is not easily transported to newer technology computer equipment. Combining modern technology upgrades into a system of obsolete hardware components is not an easy task. Lastly, as users become more accustomed to using modern technology computer systems in other areas of the station (e.g. information systems), their expectations of the capabilities of the plant systems increase. This paper will present three areas of the Darlington NGS fuel handling computer system that have been or are in the process of being upgraded to current technology components within the framework of an existing fuel handling control system. (author). 3 figs

  2. Evolution of the Darlington NGS fuel handling computer systems

    Energy Technology Data Exchange (ETDEWEB)

    Leung, V; Crouse, B [Ontario Hydro, Bowmanville (Canada). Darlington Nuclear Generating Station

    1997-12-31

    The ability to improve the capabilities and reliability of digital control systems in nuclear power stations to meet changing plant and personnel requirements is a formidable challenge. Many of these systems have high quality assurance standards that must be met to ensure adequate nuclear safety. Also many of these systems contain obsolete hardware along with software that is not easily transported to newer technology computer equipment. Combining modern technology upgrades into a system of obsolete hardware components is not an easy task. Lastly, as users become more accustomed to using modern technology computer systems in other areas of the station (e.g. information systems), their expectations of the capabilities of the plant systems increase. This paper will present three areas of the Darlington NGS fuel handling computer system that have been or are in the process of being upgraded to current technology components within the framework of an existing fuel handling control system. (author). 3 figs.

  3. Nuclear proliferation: motivations, capabilities, and strategies for control

    International Nuclear Information System (INIS)

    Greenwood, T.; Feiveson, H.A.; Taylor, T.B.

    1977-01-01

    Two possible patterns of proliferation appear to involve the greatest risks for nuclear use or war. The first is proliferation to particular categories of states and the second dangerous possibility is proliferation at a rapid rate. But rapid proliferation could cause instabilities that might be too great for political systems and institutions to handle, making nuclear use of nuclear war more likely. Thus, any strategy for nonproliferation should especially attempt to prevent a rapid spread of nuclear weapons and to avert acquisition by states in the high-risk categories. Nuclear proliferation will also have important effects on world and regional stability for reasons not directly related to nuclear use. The mere possession of nuclear weapons by certain states could radically alter international perceptions and threaten global arrangements. The main concern in this discussion is to analyze the various incentives and disincentives--involving both security and political considerations--that will affect states' decisions about whether or not to acquire nuclear weapons. The discussion then turns to the means by which individual states and the international community can influence nuclear incentives and disincentives. The particularly important subject of the management of the international nuclear industry is addressed separately, followed by an analysis of nuclear acquisition, use, and threat by non-state entities. Finally, a general strategy for decreasing incentives and increasing disincentives is proposed and applied to four special categories of states

  4. Criteria, standards and policies regarding decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Detilleux, E.; Lennemann, W.L.

    1977-01-01

    At the end of this century, there will probably be around 2500 operating nuclear power reactors, along with all the other nuclear fuel cycle facilities supporting their operation. Eventually these facilities, one by one, will be shut down and it will be necessary to dispose of them as with any redundant industrial facility or plant. Some parts of a nuclear fuel cycle facility can be dismantled by conventional methods, but those parts which have become contaminated with radioactive nuclear products or induced radioactivity must be subject to rigid controls and restrictions and handled by special dismantling and disposal procedures. In many cases, the resulting quantity of radioactive waste is likely to be relatively large and dismantling quite costly. Decommissioning nuclear facilities is a multifaceted problem involving planners, design engineers, operators, waste managers and regulatory authorities. Preparation for decommissioning should begin as early as site selection and plant design. The corner stone for the preparation of a decommissioning programme is the definition of its extent, meeting the requirements for public and environmental protection during the period that the radioactive material is of concern. The paper discusses the decontamination and decommissioning experience at the Eurochemic fuel reprocessing plant, the implications and the knowledge gained from this experience. It includes the results of technical reviews made by the Nuclear Energy Agency of OECD and the International Atomic Energy Agency regarding decommissioning nuclear facilities. The paper notes the special planning that should be arranged between those responsible for the nuclear facility and competent public authorities who should jointly make a realistic determination of the eventual disposition of the nuclear facility, even before it is built. Recommendations cover the responsibilities of nuclear plant entrepreneurs, designers, operators, and public and regulatory authorities

  5. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  6. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  7. Guide for the preparation of applications for special nuclear material licenses of less than critical mass quantities - July 1976

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This guide describes the type of information needed to evaluate an application for a specific license for receipt, possession, use, and transfer of special nuclear material. It is intended for applicants requesting authorization to possess and use up to 2000 grams of plutonium, total, in the form of sealed plutonium-beryllium neutron sources, and any special nuclear material in quantities and forms not sufficient to form a critical mass. The latter quantities are considered to be 350 grams of contained uranium-235, 200 grams of uranium-233, 200 grams of plutonium (in any form other than plutonium-beryllium neutron sources) or any combination of them

  8. The roles played by the Canadian General Electric Company's Atomic Power Department in Canada's nuclear power program: work, organization and success in APD, 1955-1995

    International Nuclear Information System (INIS)

    Cantello, G.W.

    2003-01-01

    This thesis explores the roles played by the Canadian General Electric Company's Atomic Power Department (APD) in Canada's distinctive nuclear power program. From the establishment of APD in 1955 until the completion of the KANUPP project in Pakistan in 1972, the company's strategy encompassed the design, manufacture, and commissioning of entire nuclear power projects in Canada and abroad. APD then developed a specialized role in the design and supply of complete nuclear fuel handling systems, nuclear fuel bundles, and service work, that sustained a thriving workplace. Five key factors are identified as the reasons behind the long and successful history of the department: (1) Strong, capable and efficient management from the start, (2) Flexible organizational structure, (3) Extremely competent design group, (4) Excellent manufacturing, test, commissioning and service capabilities, (5) Correctly identifying, at the right time, the best fields in which to specialize. (author)

  9. Nuclear power. Volume 2: nuclear power project management

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following topics are discussed: review of nuclear power plants; licensing procedures; safety analysis; project professional services; quality assurance and project organization; construction, scheduling and operation; construction, scheduling and operation; nuclear fuel handling and fuel management; and plant cost management. 116 references, 115 figures, 33 tables

  10. How nuclear liability practices have been implemented in US. US nuclear claims experience

    International Nuclear Information System (INIS)

    Bardes, C.R.

    2000-01-01

    Three Mile Island has been only major nuclear incident in US involving a power plant that resulted in payments to public. In addition to Three Mile Island, there have been only 3 lawsuits by members of the public against nuclear power plant operators; these alleged bodily injury and property damage resulting from normal operations. Of 202 claims handled by ANI, 161 involved individual nuclear facilities workers. Costs of the worker claims (through 1998) was US $1.5 million for indemnity (losses) and US$35.9 million for legal defense costs. By far, 1979 TMI accident produced largest number of third-party claims. ANI's emergency claims handling procedure for large nuclear accident tested and proved itself at Three Mile Island

  11. Determination of action zone in the nuclear / radiology handling process

    International Nuclear Information System (INIS)

    Ade Awalludin

    2013-01-01

    Assessment has been conducted on determination of action zone in nuclear or radiological emergency. The assessment is taken into account radiological risk level in nuclear or radiological emergency management process outside nuclear installation. Managing of nuclear emergency is same as that one of other emergency by adding the principles of radiation protection. This study aims to provide guidance in making of safety and security perimeter outside the nuclear installation for first responders during nuclear/radiological emergency based on dose rate, contamination level or distance from the scene. Separation of working zone is important for first responder safety that works in radiological environment in the event of nuclear or radiation emergency without violating their standard operating procedure. Value limit of safety and security perimeter has been made according to the conditions in Indonesia and considering the applicability in practical. (author)

  12. Smuggling special nuclear materials

    International Nuclear Information System (INIS)

    Lazaroiu, Gheorghe

    1999-01-01

    Ever since the collapse of the former Soviet Union reports have circulated with increasing frequency concerning attempts to smuggle materials from that country's civil and military nuclear programs. Such an increase obviously raises a number of concerns (outlined in the author's introduction), chief among which is the possibility that these materials might eventually fall into the hands of proliferant states or terrorist groups. The following issues are presented: significance of materials being smuggled; sources and smuggling routes; potential customers; international efforts to reduce nuclear smuggling; long-term disposition of fissile materials. (author)

  13. Management of remote-handled defense transuranic wastes

    International Nuclear Information System (INIS)

    Ebra, M.A.; Pierce, G.D.; Carson, P.H.

    1988-01-01

    Transuranic (TRU) wastes generated by defense-related activities are scheduled for emplacement at the Waste Isolation Pilot Plant (WIPP) in New Mexico beginning in October 1988. After five years of operation as a research and development facility, the WIPP may be designated as a permanent repository for these wastes, if it has been demonstrated that this deep, geologically stable formation is a safe disposal option. Defense TRU wastes are currently stored at various Department of Energy (DOE) sites across the nation. Approximately 2% by volume of currently stored TRU wastes are defined, on the basis of dose rates, as remote-handled (RH). RH wastes continue to be generated at various locations operated by DOE contractors. They require special handling and processing prior to and during emplacement in the WIPP. This paper describes the strategy for managing defense RH TRU wastes

  14. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future US nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  15. Potential applications of advanced remote handling and maintenance technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Herndon, J.N.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been advancing the technology in remote handling and remote maintenance of in-cell systems planned for future U.S. nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor are directly applicable to the in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The ORNL developments are based on the application of teleoperated force-reflecting servomanipulators controlled by an operator completely removed from the hazardous environment. These developments address the nonrepetitive nature of remote maintenance in the unstructured environments encountered in a waste handling facility. Employing technological advancements in dexterous manipulators, as well as basic design guidelines that have been developed for remotely maintained equipment and processes, can increase operation and maintenance system capabilities, thereby allowing the attainment of two Federal Waste Management System major objectives: decreasing plant personnel radiation exposure and increasing plant availability by decreasing the mean-time-to-repair in-cell maintenance and process equipment

  16. Assembly and handling apparatus for the EBFA Marx generator

    International Nuclear Information System (INIS)

    Staller, G.E.; Hiett, G.E.; Hamilton, I.D.; Aker, M.F.; Daniels, G.A.

    1979-05-01

    Marx generators, a major slow-pulsed power component in Sandia Laboratories' Electron Beam Fusion Accelerator (EBFA), were assembled at a remote facility modified to utilize an assembly-line technique. Due to the size and weight of the various components, as well as the final Marx generator assembly, special handling apparatus was designed. Time and manpower constraints required that this assembly be done in parallel with the construction of the Electron Beam Fusion Facility (EBFF). The completed Marx generators were temporarily stored and then moved from the assembly building to the EBFF using special transportation racks designed specifically for this purpose

  17. Detection of special nuclear materials with the associate particle technique

    International Nuclear Information System (INIS)

    Carasco, Cédric; Deyglun, Clément; Pérot, Bertrand; Eléon, Cyrille; Normand, Stéphane; Sannié, Guillaume; Boudergui, Karim; Corre, Gwenolé; Konzdrasovs, Vladimir; Pras, Philippe

    2013-01-01

    In the frame of the French trans-governmental R and D program against chemical, biological, radiological, nuclear and explosives (CBRN-E) threats, CEA is studying the detection of Special Nuclear Materials (SNM) by neutron interrogation with fast neutrons produced by an associated particle sealed tube neutron generator. The deuterium-tritium fusion reaction produces an alpha particle and a 14 MeV neutron almost back to back, allowing tagging neutron emission both in time and direction with an alpha particle position-sensitive sensor embedded in the generator. Fission prompt neutrons and gamma rays induced by tagged neutrons which are tagged by an alpha particle are detected in coincidence with plastic scintillators. This paper presents numerical simulations performed with the MCNP-PoliMi Monte Carlo computer code and with post processing software developed with the ROOT data analysis package. False coincidences due to neutron and photon scattering between adjacent detectors (cross talk) are filtered out to increase the selectivity between nuclear and benign materials. Accidental coincidences, which are not correlated to an alpha particle, are also taken into account in the numerical model, as well as counting statistics, and the time-energy resolution of the data acquisition system. Such realistic calculations show that relevant quantities of SNM (few kg) can be distinguished from cargo and shielding materials in 10 min acquisitions. First laboratory tests of the system under development in CEA laboratories are also presented.

  18. The role of nuclear energy in electric power generation

    International Nuclear Information System (INIS)

    Horvath, G.; Marothy, L.; Tallosy, J.

    1980-01-01

    The brief history of nuclear power production is given, with special regard to the energy demand in Hungary. The design and operation of the Paks Nuclear Power Station are described. The first four units will be WWER-440 type pressurized water reactors. The main components of the nuclear steam-producing apparatus and the process of fuel handling are presented. The secondary circuit and the main electric systems are shortly described. The safety of the plant is analysed. The safeguard engineering systems are discussed. The operation of the reactor control system, the emergency cooling and the pressure supression systems are analysed for the case of a design base accident (DBA). The DBA consists in an internal fracture of the main primary cooling pipeline. Based on the stations safety report and the Basmussen report the environmental risk of the station is estimated. It is concluded that even in the case of the DBA, the radiation burden of the population is under the permissable limits. (R.J.)

  19. Standard guide for drying behavior of spent nuclear fuel

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide is organized to discuss the three major components of significance in the drying behavior of spent nuclear fuel: evaluating the need for drying, drying spent nuclear fuel, and confirmation of adequate dryness. 1.1.1 The guide addresses drying methods and their limitations in drying spent nuclear fuels that have been in storage at water pools. The guide discusses sources and forms of water that remain in SNF, its container, or both, after the drying process and discusses the importance and potential effects they may have on fuel integrity, and container materials. The effects of residual water are discussed mechanistically as a function of the container thermal and radiological environment to provide guidance on situations that may require extraordinary drying methods, specialized handling, or other treatments. 1.1.2 The basic issue in drying is to determine how dry the SNF must be in order to prevent issues with fuel retrievability, container pressurization, or container corrosion. Adequate d...

  20. Resolving relative time expressions in Dutch text with Constraint Handling Rules

    DEFF Research Database (Denmark)

    van de Camp, Matje; Christiansen, Henning

    2012-01-01

    It is demonstrated how Constraint Handling Rules can be applied for resolution of indirect and relative time expressions in text as part of a shallow analysis, following a specialized tagging phase. A method is currently under development, optimized for a particular corpus of historical biographies...

  1. Fission reactor recycling pump handling device

    International Nuclear Information System (INIS)

    Togasawa, Hiroshi; Komita, Hideo; Susuki, Shoji; Endo, Takio; Yamamoto, Tetsuzo; Takahashi, Hideaki; Saito, Noboru.

    1991-01-01

    This invention provides a device for handling a recycling pump in a nuclear reactor upon periodical inspections in a BWR type power plant. That is, in a handling device comprising a support for supporting components of a recycling pump, and a lifter for vertically moving the support below a motor case disposed passing through a reactor pressure vessel, a weight is disposed below the support. Then, the center of gravity of the components, the support and the entire weight is substantially aligned with the position for the support. With such a constitution, the components can be moved vertically to the motor case extremely safely, to remarkably suppress vibrations. Further, the operation safety can remarkably be improved by preventing turning down upon occurrence of earthquakes. Further, since vibration-proof jigs as in a prior art can be saved, operation efficiency can be improved. (I.S.)

  2. Fission reactor recycling pump handling device

    Energy Technology Data Exchange (ETDEWEB)

    Togasawa, Hiroshi; Komita, Hideo; Susuki, Shoji; Endo, Takio; Yamamoto, Tetsuzo; Takahashi, Hideaki; Saito, Noboru

    1991-06-24

    This invention provides a device for handling a recycling pump in a nuclear reactor upon periodical inspections in a BWR type power plant. That is, in a handling device comprising a support for supporting components of a recycling pump, and a lifter for vertically moving the support below a motor case disposed passing through a reactor pressure vessel, a weight is disposed below the support. Then, the center of gravity of the components, the support and the entire weight is substantially aligned with the position for the support. With such a constitution, the components can be moved vertically to the motor case extremely safely, to remarkably suppress vibrations. Further, the operation safety can remarkably be improved by preventing turning down upon occurrence of earthquakes. Further, since vibration-proof jigs as in a prior art can be saved, operation efficiency can be improved. (I.S.).

  3. Role of the State Office for Nuclear Safety in testing special professional competence of selected personnel of nuclear facilities and selected personnel handling ionizing radiation sources

    International Nuclear Information System (INIS)

    Kovar, P.

    2003-01-01

    The laws and regulations governing the title topic are identified. The following terms are defined and their context highlighted: professional competence; special professional competence; selected personnel; requirements for selected personnel; requirements for selected personnel training; examination boards; and licensing procedure. (P.A.)

  4. The structure of nuclear safeguards systems

    International Nuclear Information System (INIS)

    Coulter, C.A.

    1989-01-01

    Safeguards systems for facilities that handle special nuclear material combine procedural, protective, and materials accounting elements to prevent and/or detect sabotage and diversion or theft of material. Because most of the discussion in this course is devoted to materials accounting topics only, this chapter provides a brief introduction to some of the procedural and protective elements of safeguards systems, placing the materials accounting system in its proper context. The chapter begins by reviewing certain pertinent DOE definitions and then surveys some protection requirements and technology - protective personnel, personnel identification systems, barriers, detectors, and communication systems. Considered next are the procedures of personnel selection and monitoring, definition and division of job functions, and operation. The chapter then describes the way the procedural, protective, and materials accounting elements can be combined, becoming a total safeguards system. Although such a system necessarily requires elements of procedure, protection, and materials accounting, only the materials accounting gives positive assurance that nuclear material is not diverted or stolen

  5. Dust prevention in bulk material transportation and handling

    Science.gov (United States)

    Kirichenko, A. V.; Kuznetsov, A. L.; Pogodin, V. A.

    2017-10-01

    The environmental problem of territory and atmosphere pollution caused by transportation and handling of dust-generating bulk cargo materials is quite common for the whole world. The reducing of weight of fine class coal caused by air blowing reaches the level of 0.5-0.6 t per railcar over the 500 km transportation distance, which is equal to the loss of 1 % of the total weight. The studies showed that all over the country in the process of the railroad transportation, the industry loses 3-5 metric tonnes of coal annually. There are several common tactical measurers to prevent dust formation: treating the dust-producing materials at dispatch point with special liquid solutions; watering the stacks and open handling points of materials; frequent dust removing and working area cleaning. Recently there appeared several new radical measures for pollution prevention in export of ore and coal materials via sea port terminals, specifically: wind-dust protection screens, the container cargo handling system of delivery materials to the hold of the vessels. The article focuses on the discussion of these measures.

  6. Sheathed electrical resistance heaters for nuclear or other specialized service - approved 1973

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This specification presents the requirements for cylindrical metal-sheathed, electrical resistance heaters with compacted mineral-oxide insulation for nuclear or other specialized service. The intended use of a sheathed heater in a specific nuclear or general application will require an evaluation by the purchaser of the compatibility of the heater assembly in the proposed application including the effects of the integrated proposed application including the effects of the integrated neutron flux, temperature, and atmosphere on the properties of the materials of construction. This specification does not include all possible specifications, standards, etc. for materials that may be used in sheathing, insulation, resistance wire, or conductors wire in nuclear environments. The requirements of this specification include only the austenitic stainless steels and nickel-based alloys for sheathing; magnesium oxide, aluminum oxide, beryllium oxide for insulation; and nickel-chromium or iron-chromium-aluminum heater elements with or without low-resistance connecting wires. The intent of this specification is to present the requirements for heaters capable of operating at sheath temperatures and heat fluxes that will limit the maximum internal heater-element temperature to 1050 0 C

  7. Special duties of paints in nuclear environment in India with examples of application

    International Nuclear Information System (INIS)

    Singha Roy, P.K.; Subbaratnam, T.

    1978-01-01

    Any process involving nuclear interactions gives rise to radioactivity and radiation in various degrees apart from conventional effects like heat, pressure, etc. Vessels and structures containing such processes are subject to various degrees of radioactivity and contamination by liquid, gaseous or particulate radioactive materials coming in contact with the substrate. Thus, in any nuclear environment surfaces require protection against both radioactive contamination and normal corrosion forces. The protective coating should be able to resist the radiation field in which it is placed and also withstand decontamination process for removal of radioactive contamination from the surface as and when required. Radioactive contamination due to any radiochemical operation is objectionable for two reasons: (i) it constitutes a potential radiation hazard to occupants of the facility, and (ii) cross contamination jeoparadizes the validity of the experimental data. The difficulty experienced in decontaminating many materials used in construction of such nuclear or radiochemical facilities has therefore given emphasis to the search for suitable coating matetials. This paper deals with the two special duties expected of paints in such environment, viz., radiation resistance and decontaminability tests in this regard in BARC and examples of actual selections and applications in an Indian nuclear power station. Some areas requiring investigations and serious attention for industrial painting in general and nuclear painting work in particular have been also identified. (author)

  8. Development of remote handling system based on 3-D shape recognition technique

    International Nuclear Information System (INIS)

    Tomizuka, Chiaki; Takeuchi, Yutaka

    2006-01-01

    In a nuclear facility, the maintenance and repair activities must be done remotely in a radioactive environment. Fuji Electric Systems Co., Ltd. has developed a remote handling system based on 3-D recognition technique. The system recognizes the pose and position of the target to manipulate, and visualizes the scene with the target in 3-D, enabling an operator to handle it easily. This paper introduces the concept and the key features of this system. (author)

  9. Automated nuclear materials accounting

    International Nuclear Information System (INIS)

    Pacak, P.; Moravec, J.

    1982-01-01

    An automated state system of accounting for nuclear materials data was established in Czechoslovakia in 1979. A file was compiled of 12 programs in the PL/1 language. The file is divided into four groups according to logical associations, namely programs for data input and checking, programs for handling the basic data file, programs for report outputs in the form of worksheets and magnetic tape records, and programs for book inventory listing, document inventory handling and materials balance listing. A similar automated system of nuclear fuel inventory for a light water reactor was introduced for internal purposes in the Institute of Nuclear Research (UJV). (H.S.)

  10. Overcoming the Frigidity of Special Librarians

    Science.gov (United States)

    Penland, Patrick R.

    1971-01-01

    A general theory and taxonomy of human communication is discussed within which the information handling propensities of the special librarian can be evaluated for relevance to the axioms of library and information science. (Author)

  11. Nuclear criticality safety guide

    International Nuclear Information System (INIS)

    Ro, Seong Ki; Shin, Hee Seong; Park, Seong Won; Shin, Young Joon.

    1997-06-01

    Nuclear criticality safety guide was described for handling, transportation and storage of nuclear fissile materials in this report. The major part of the report was excerpted frp, TID-7016(revision 2) and nuclear criticality safety written by Knief. (author). 16 tabs., 44 figs., 5 refs

  12. Simulation of beta radiator handling procedures in nuclear medicine by means of a movable hand phantom.

    Science.gov (United States)

    Blunck, Ch; Becker, F; Urban, M

    2011-03-01

    In nuclear medicine therapies, people working with beta radiators such as (90)Y may be exposed to non-negligible partial body doses. For radiation protection, it is important to know the characteristics of the radiation field and possible dose exposures at relevant positions in the working area. Besides extensive measurements, simulations can provide these data. For this purpose, a movable hand phantom for Monte Carlo simulations was developed. Specific beta radiator handling scenarios can be modelled interactively with forward kinematics or automatically with an inverse kinematics procedure. As a first investigation, the dose distribution on a medical doctor's hand injecting a (90)Y solution was measured and simulated with the phantom. Modelling was done with the interactive method based on five consecutive frames from a video recorded during the injection. Owing to the use of only one camera, not each detail of the radiation scenario is visible in the video. In spite of systematic uncertainties, the measured and simulated dose values are in good agreement.

  13. Role of non-destructive examinations in leak testing of glove boxes for industrial scale plutonium handling at nuclear fuel fabrication facility along with case study

    International Nuclear Information System (INIS)

    Aher, Sachin

    2015-01-01

    Non Destructive Examinations has the prominent role at Nuclear Fuel Fabrication Facilities. Specifically NDE has contributed at utmost stratum in Leak Testing of Glove Boxes and qualifying them as a Class-I confinement for safe Plutonium handling at industrial scale. Advanced Fuel Fabrication Facility, BARC, Tarapur is engaged in fabrication of Plutonium based MOX (PuO 2 , DDUO 2 ) fuel with different enrichments for first core of PFBR reactor. Alpha- Leak Tight Glove Boxes along with HEPA Filters and dynamic ventilation form the promising engineering system for safe and reliable handling of plutonium bearing materials considering the radiotoxicity and risk associated with handling of plutonium. Leak Testing of Glove Boxes which involves the leak detection, leak rectification and leak quantifications is major challenging task. To accomplish this challenge, various Non Destructive Testing methods have assisted in promising way to achieve the stringent leak rate criterion for commissioning of Glove Box facilities for plutonium handling. This paper highlights the Role of various NDE techniques like Soap Solution Test, Argon Sniffer Test, Pressure Drop/Rise Test etc. in Glove Box Leak Testing along with procedure and methodology for effective rectification of leakage points. A Flow Chart consisting of Glove Box leak testing procedure starting from preliminary stage up to qualification stage along with a case study and observations are discussed in this paper. (author)

  14. The Analysis of the System of special water purification of Beloyarskaya Nuclear Power Plant unit BN-800

    Science.gov (United States)

    Valtseva, A. I.; Bibik, I. S.

    2017-11-01

    This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.

  15. Potential Indoor Worker Exposure From Handling Area Leakage: Example Event Sequence Frequency Analysis

    International Nuclear Information System (INIS)

    Benke, Roland R.; Adams, George R.

    2008-01-01

    The U.S. Department of Energy (DOE) is currently considering design options for the facilities that will handle spent nuclear fuel and high-level radioactive waste at the potential nuclear waste repository at Yucca Mountain, Nevada. The license application must demonstrate compliance with the performance objectives of 10 CFR Part 63, which include occupational dose limits from 10 CFR Part 20. If DOE submits a license application under 10 CFR Part 63, the U.S. Nuclear Regulatory Commission (NRC) will conduct a risk-informed, performance-based review of the DOE license application and its preclosure safety analysis, in which in-depth technical evaluations are focused on technical areas that are significant to preclosure safety and risk. As part of pre-licensing activities, the Center for Nuclear Waste Regulatory Analyses (CNWRA) developed the Preclosure Safety Analysis Tool software to aid in the regulatory review of a DOE license application and support any independent confirmatory assessments that may be needed. Recent DOE information indicates a primarily canister-based handling approach that includes the wet transfer of individual assemblies where Heating, Ventilation, and Air Conditioning (HVAC) systems may be relied on to provide confinement and limit the spread of any airborne radioactive material from handling operations. Workers may be involved in manual and remote operations in handling transportation casks, canisters, waste packages, or bare spent nuclear fuel assemblies inside facility buildings. As part of routine operations within these facilities, radioactive material may potentially become airborne if canisters are opened or bare fuel assemblies are handled. Leakage of contaminated air from the handling area into adjacent occupied areas, therefore, represents a potential radiological exposure pathway for indoor workers. The objective of this paper is to demonstrate modeling capabilities that can be used by the regulator to estimate frequencies of

  16. 24 CFR 51.207 - Special circumstances.

    Science.gov (United States)

    2010-04-01

    ... Handling Conventional Fuels or Chemicals of an Explosive or Flammable Nature § 51.207 Special circumstances..., require the application of this subpart C with respect to a substance not listed in appendix I to this...

  17. Door and cabinet recognition using convolutional neural nets and real-time method fusion for handle detection and grasping

    DEFF Research Database (Denmark)

    Maurin, Adrian Llopart; Ravn, Ole; Andersen, Nils Axel

    2017-01-01

    In this paper we present a new method that robustly identifies doors, cabinets and their respective handles, with special emphasis on extracting useful features from handles to be then manipulated. The novelty of this system relies on the combination of a Convolutional Neural Net (CNN), as a form...

  18. A data communications systems for tamper-protected special nuclear materials (SNM) inventory management

    International Nuclear Information System (INIS)

    Hurkamp, A.C.

    1995-01-01

    The Department of Energy (D.O.E.) is responsible for the long term storage and protection of large quantities of Special Nuclear Material (SNM). This material is stored within individual containers located in vaults. Security measures are required to ensure that the SNM remains within the canisters where it is stored and that it is not disturbed in any manner. Conventional security and inventory techniques are manpower intensive and often require exposure to radiation hazards. The Purpose of this D.O.E sponsored project is to develop a cost effective system to monitor Special Nuclear Materials that, when fielded, would result in an extension of manual inventory cycles at a wide variety of SNM storage locations. The system consists of a computer, radio frequency interrogator, and individual miniaturized radio frequency transponders (tags) that are co-located with individual SNM containers. Each tag can perform SNM inventory, tamper alarm, and multiple sensor data transmission to the interrogator under the control of software designed by the user. SNM custodians can customize the system by their choice of packaging, software, and sensors. When implemented in accordance with current department of energy (D.O.E.) Policy on SNM inventory extension, the system has the potential to qualify for maximum extension times thus saving considerable resources through reduction of radiation exposure

  19. Remote technologies for handling spent fuel

    International Nuclear Information System (INIS)

    Ramakumar, M.S.

    1999-01-01

    The nuclear programme in India involves building and operating power and research reactors, production and use of isotopes, fabrication of reactor fuel, reprocessing of irradiated fuel, recovery of plutonium and uranium-233, fabrication of fuel containing plutonium-239, uranium-233, post-irradiation examination of fuel and hardware and handling solid and liquid radioactive wastes. Fuel that could be termed 'spent' in thermal reactors is a source for second generation fuel (plutonium and uranium-233). Therefore, it is only logical to extend remote techniques beyond handling fuel from thermal reactors to fuel from fast reactors, post-irradiation examination etc. Fabrication of fuel containing plutonium and uranium-233 poses challenges in view of restriction on human exposure to radiation. Hence, automation will serve as a step towards remotisation. Automated systems, both rigid and flexible (using robots) need to be developed and implemented. Accounting of fissile material handled by robots in local area networks with appropriate access codes will be possible. While dealing with all these activities, it is essential to pay attention to maintenance and repair of the facilities. Remote techniques are essential here. There are a number of commonalities in these requirements and so development of modularized subsystems, and integration of different configurations should receive attention. On a long-term basis, activities like decontamination, decommissioning of facilities and handling of waste generated have to be addressed. While robotized remote systems have to be designed for existing facilities, future designs of facilities should take into account total operation with robotic remote systems. (author)

  20. American National Standard ANSI/ANS-8.15-1983: Nuclear criticality control of special actinide elements

    International Nuclear Information System (INIS)

    Brewer, R.W.; Pruvost, N.L.; Rombough, C.T.

    1996-01-01

    The American National Standard, 'Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors' ANSI/ANS-8.1- 1983 provides guidance for the nuclides [sup 233]U, [sup 235]U, and [sup 239]Pu These three nuclides are of primary interest in out-of-reactor criticality safety since they are the most commonly encountered in the vast majority of operations. However, some operations can involve nuclides other than 'U, 'U, and 'Pu in sufficient quantities that their effect on criticality safety could be of concern. The American National Standard, 'Nuclear Criticality Control of Special Actinide Elements' ANSI/ANS-8.'15-1983 (Ref 2), provides guidance for fifteen such nuclides

  1. Analysis on approach of safeguards implementation at research reactor handling item count and bulk material

    International Nuclear Information System (INIS)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Jung, Juang

    2016-01-01

    KiJang research reactor (KJRR) will be constructed to produce the radioisotope such as Mo-99 etc., provide the neutron transmutation doping (NTD) service of silicon, and develop the core technologies of research reactor. In this paper, the features of the process and nuclear material flow are reviewed and the material balance area (MBA) and key measurement point (KMP) are established based on the nuclear material flow. Also, this paper reviews the approach on safeguards and nuclear material accountancy at the facility level for Safeguards-by-Design at research reactor handling item count and bulk material. In this paper, MBA and KMPs are established through the analysis on facility features and major process at KJRR handling item count and bulk material. Also, this paper reviews the IAEA safeguards implementation and nuclear material accountancy at KJRR. It is necessary to discuss the safeguards approach on the fresh FM target assemblies and remaining uranium in the intermediate level liquid wastes

  2. Analysis on approach of safeguards implementation at research reactor handling item count and bulk material

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jo; Lee, Sung Ho; Lee, Byung Doo; Jung, Juang [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    KiJang research reactor (KJRR) will be constructed to produce the radioisotope such as Mo-99 etc., provide the neutron transmutation doping (NTD) service of silicon, and develop the core technologies of research reactor. In this paper, the features of the process and nuclear material flow are reviewed and the material balance area (MBA) and key measurement point (KMP) are established based on the nuclear material flow. Also, this paper reviews the approach on safeguards and nuclear material accountancy at the facility level for Safeguards-by-Design at research reactor handling item count and bulk material. In this paper, MBA and KMPs are established through the analysis on facility features and major process at KJRR handling item count and bulk material. Also, this paper reviews the IAEA safeguards implementation and nuclear material accountancy at KJRR. It is necessary to discuss the safeguards approach on the fresh FM target assemblies and remaining uranium in the intermediate level liquid wastes.

  3. Handling, treatment, conditioning and storage of biological radioactive wastes. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    International Nuclear Information System (INIS)

    1994-12-01

    Biological materials that contain radioactive isotopes have many important applications. During the production and use of these materials, waste will inevitably arise which must be managed with particular care due to their potential biological as well as radiological hazards. This report deals with wastes that arise outside the nuclear fuel cycle and is directed primarily to countries without nuclear power programmes. It is intended to provide guidance to Member States in the handling, treatment and conditioning of biological radioactive materials. The objective of radioactive waste management is to handle, pretreat, treat, condition, store, transport and dispose of radioactive waste in a manner that protects human health and the environment without imposing undue burdens on future generations. 31 refs, 15 figs, 3 tabs

  4. Handling, treatment, conditioning and storage of biological radioactive wastes. Technical manual for the management of low and intermediate level wastes generated at small nuclear research centres and by radioisotope users in medicine, research and industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Biological materials that contain radioactive isotopes have many important applications. During the production and use of these materials, waste will inevitably arise which must be managed with particular care due to their potential biological as well as radiological hazards. This report deals with wastes that arise outside the nuclear fuel cycle and is directed primarily to countries without nuclear power programmes. It is intended to provide guidance to Member States in the handling, treatment and conditioning of biological radioactive materials. The objective of radioactive waste management is to handle, pretreat, treat, condition, store, transport and dispose of radioactive waste in a manner that protects human health and the environment without imposing undue burdens on future generations. 31 refs, 15 figs, 3 tabs.

  5. Fuel handling machine and auxiliary systems for a fuel handling cell

    International Nuclear Information System (INIS)

    Suikki, M.

    2013-10-01

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  6. Fuel handling machine and auxiliary systems for a fuel handling cell

    Energy Technology Data Exchange (ETDEWEB)

    Suikki, M. [Optimik Oy, Turku (Finland)

    2013-10-15

    This working report is an update for as well as a supplement to an earlier fuel handling machine design (Kukkola and Roennqvist 2006). A focus in the earlier design proposal was primarily on the selection of a mechanical structure and operating principle for the fuel handling machine. This report introduces not only a fuel handling machine design but also auxiliary fuel handling cell equipment and its operation. An objective of the design work was to verify the operating principles of and space allocations for fuel handling cell equipment. The fuel handling machine is a remote controlled apparatus capable of handling intensely radiating fuel assemblies in the fuel handling cell of an encapsulation plant. The fuel handling cell is air tight space radiation-shielded with massive concrete walls. The fuel handling machine is based on a bridge crane capable of traveling in the handling cell along wall tracks. The bridge crane has its carriage provided with a carousel type turntable having mounted thereon both fixed and telescopic masts. The fixed mast has a gripper movable on linear guides for the transfer of fuel assemblies. The telescopic mast has a manipulator arm capable of maneuvering equipment present in the fuel handling cell, as well as conducting necessary maintenance and cleaning operations or rectifying possible fault conditions. The auxiliary fuel handling cell systems consist of several subsystems. The subsystems include a service manipulator, a tool carrier for manipulators, a material hatch, assisting winches, a vacuum cleaner, as well as a hose reel. With the exception of the vacuum cleaner, the devices included in the fuel handling cell's auxiliary system are only used when the actual encapsulation process is not ongoing. The malfunctions of mechanisms or actuators responsible for the motion actions of a fuel handling machine preclude in a worst case scenario the bringing of the fuel handling cell and related systems to a condition appropriate for

  7. Current US strategy and technologies for spent fuel handling

    International Nuclear Information System (INIS)

    Bennett, P.C.; Stringer, J.B.

    1999-01-01

    The United States Department of Energy has recently completed a topical safety analysis report outlining the design and operation of a Centralized Interim Storage Facility for spent commercial nuclear fuel. During the course of the design, dose assessments indicated the need for remote operation of many of the cask handling operations. Use of robotic equipment was identified as a desirable handling solution that is capable of automating many of the operations to maintain throughput, and sufficiently flexible to handle five or more different storage cask designs in varying numbers on a given day. This paper discusses the facility and the dose assessment leading to this choice, and reviews factors to be considered when choosing robotics or automation. Further, a new computer simulation tool to quantify dose to humans working in radiological environments, the Radiological Environment Modeling System (REMS), is introduced. REMS has been developed to produce a more accurate estimate of dose to radiation workers in new activities with radiological hazards. (author)

  8. Criteria for Special Nuclear Materials Inventory and Control Procedures; Criteres a Suivre Pour Proceder a l'Inventaire des Matieres Nucleaires Speciales et aux Mesures de Controle; Kriterii dlya inventarizatsii spetsial'nykh yadernykh materialov i metody ucheta; Criterios a Que Deben Ajustarse los Procedimientos de Inventario y Control de los Materiales Nucleares Especiales

    Energy Technology Data Exchange (ETDEWEB)

    Kinderman, E. M.; Tarrice, R. R. [Stanford Research Institute, Menlo Park, CA (United States)

    1966-02-15

    One of tile most significant problems that will face investors, managers and operators in nuclear activities and especially in the field of commercial nuclear power, will be the proper control of a nuclear materials inventory that will exceed US $5000 million in value by 1980. Special nuclear materials are expensive when compared to most materials of commerce, e.g. US prices for 90% enriched uranium and 3% enriched uranium as hexafluoride, and for heavy water are $10 808, $254 and $61.60 per kg, respectively. Moreover, in many cases these materials are subjected because of health and safety requirements to special governmental controls not directly related to their monetary value. Despite the high monetary values assigned to these materials, they are destined to be used in large quantity, e.g. some 50- 75 t of 3% enriched material will be used in 500-MW light-water-moderated reactor, and perhaps the equivalent of 200 to 300 reactors of such size will be in operation throughout the world by 1980. Past experience has resulted in the development of special procedures and practice for the commercial control of the large quantity, lower-value materials such as coal or iron ore and for the small quantity, higher value materials such as the precious metals. While they have like prices, special nuclear materials are different in kind and will be handled in quantities much greater than the precious metals. However, while special techniques or special adaptations of old techniques may be necessary, proper use of various established inventory control practices should be sufficient in most cases to protect adequately the investment of nations and individuals in these expensive materials. This paper establishes criteria for materials control. It specifically considers the appropriateness of various techniques of inventory control ranging from annual balancing of book records of receipts and shipments through detailed daily physical inventory in the light of the specific value

  9. Special committee review of the Nuclear Regulatory Commission's severe accident risks report (NUREG--1150)

    International Nuclear Information System (INIS)

    Kouts, H.J.C.; Apostolakis, G.; Kastenberg, W.E.; Birkhofer, E.H.A.; Hoegberg, L.G.; LeSage, L.G.; Rasmussen, N.C.; Teague, H.J.; Taylor, J.J.

    1990-08-01

    In April 1989, the Nuclear Regulatory Commission's (NRC) Office of Nuclear Regulatory Research (RES) published a draft report ''Severe Accident Risks: An Assessment for Five US Nuclear Power Plants,'' NUREG-1150. This report updated, extended and improved upon the information presented in the 1974 ''Reactor Safety Study,'' WASH-1400. Because the information in NUREG-1150 will play a significant role in implementing the NRC's Severe Accident Policy, its quality and credibility are of critical importance. Accordingly, the Commission requested that the RES conduct a peer review of NUREG-1150 to ensure that the methods, safety insights and conclusions presented are appropriate and adequately reflect the current state of knowledge with respect to reactor safety. To this end, RES formed a special committee in June of 1989 under the provisions of the Federal Advisory Committee Act. The Committee, composed of a group of recognized national and international experts in nuclear reactor safety, was charged with preparing a report reflecting their review of NUREG-1150 with respect to the adequacy of the methods, data, analysis and conclusions it set forth. The report which precedes reflects the results of this peer review

  10. Radiation-tolerant cable management systems for remote handling applications in the nuclear industry

    International Nuclear Information System (INIS)

    Cullen, S.; Thom, M.

    1993-01-01

    Experience has shown that one of the most vulnerable areas within remote handling equipment is the umbilical cable and termination system. Repairs of a damaged system can be very long due to poorly designed termination techniques. Over the past five years W.L. Gore has gained considerable experience in the design and manufacture of cable systems, utilising unique radiation tolerant materials and manufacturing processes. The cable systems manufactured at the W.L. Gore, Dunfermline, Scotland facility have proven to give excellent performance in the most demanding of remote handling applications. (author)

  11. Handling device for nuclear fuel assemblies and assembly appropriate for such a device

    International Nuclear Information System (INIS)

    Cransac, J.P.; Jaquelin, R.; Renaux, C.

    1985-01-01

    The handling device comprises a guide tube of which axis is vertical, in which a grab moves, hanging from a chain, under the action of a back-geared motor. The grab being stopped in its rotation in the guide tube, an assembly can be gripped with a bayonet system while controlling the rotation of the grab - guide tube system a back-geared motor. The device can be hanged from the small or large rotating plug of a fast neutron reactor. It can be used in a handling flask [fr

  12. Observations on human-technology interaction aspects in remote handling for fusion

    International Nuclear Information System (INIS)

    Salminen, Karoliina

    2009-01-01

    Remote handling can been seen as cooperation between human and machine. One of the characteristics of remote handling is that there is always a human involved in the technique: there is always a human guiding and supervising the movements and deciding the actions of the machine. Unlike many other fields of remote handling for fusion, the human-technology interaction side has not been studied carefully recently. The state-of-the-art research about different kinds of remote handling systems shows that there is a lot of information available in this subject, but there is a clear need for studies where the special needs of ITER are taken into account. During the PREFIT programme, the human-interaction aspects of remote handling have been studied, and the goal has been to find solutions compatible with ITER. Some of the aspects that make ITER a unique system are its new technology combining state-of-the-art knowledge from several different fields, and its very international working environment. When discussing the human aspects, the fact of the multinational cooperation cannot be neglected. Since the majority of the information found in the literature review is not about remote handling, references need to be taken from other industries, like aviation. This article consists of ITER remote handling relevant findings in state-of-the-art research and information and knowledge gained during the PREFIT programme, especially during the training periods at JET in Culham and at CEA in Fontenay-aux-Roses. It also discusses the importance of human-technology interaction field in remote handling, especially in ITER.

  13. Development of spent fuel remote handling technology

    International Nuclear Information System (INIS)

    Yoon, Ji Sup; Park, B. S.; Park, Y. S.; Oh, S. C.; Kim, S. H.; Cho, M. W.; Hong, D. H.

    1997-12-01

    Since the nation's policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  14. Considerations for handling failed fuel at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, R.T.; Cholister, R.J.

    1982-05-01

    The impact of failed fuel receipt on reprocessing operations is qualitatively described. It appears that extended storage of fuel, particularly with advanced storage techniques, will increase the quantity of failed fuel, the nature and possibly the configuration of the fuel. The receipt of failed fuel at the BNFP increases handling problems, waste volumes, and operator exposure. If it is necessary to impose special operating precautions to minimize this impact, a loss in plant throughput will result. Hence, ideally, the reprocessing plant operator would take every reasonable precaution so that no failed fuel is received. An alternative policy would be to require that failed fuel be placed in a sealed canister. In the latter case the canister must be compatible with the shipping cask and suitable for in-plant storage. A required inspection of bare fuel would be made at the reactor prior to shipping off-site. This would verify fuel integrity. These requirements are obviously idealistic. Due to the current uncertain status of reprocessing and the need to keep reactors operating, business or governmental policy may be enacted resulting in the receipt of a negotiated quantity of non-standard fuel (including failed fuel). In this situation, BNFP fuel receiving policy based soley on fuel cladding integrity would be difficult to enforce. There are certain areas where process incompatibility does exist and where a compromise would be virtually impossible, e.g., canned fuel for which material or dimensional conflicts exist. This fuel would have to be refused or the fuel would require recanning prior to shipment. In other cases, knowledge of the type and nature of the failure may be acceptable to the operator. A physical inspection of the fuel either before shipment or after the cask unloading operation would be warranted. In this manner, concerns with pool contamination can be identified and the assembly canned if deemed necessary

  15. Nuclear energy in question

    International Nuclear Information System (INIS)

    Simon, D.N.; Carvalho, J.F. de; Goldemberg, J.; Menezes, L.C.; Rosa, L.P.; Oliveira, R.G. de.

    1981-01-01

    The basic requirements demanded for the physical protection of nuclear operational units, is established. These units can be, production, utilization, processing, reprocessing, handling, transport or storage of materials of interesting to Brazilian Nuclear Program. (E.G.) [pt

  16. Reproductive handle of the herd of cattle of double purpose

    International Nuclear Information System (INIS)

    Castro Hernandez, A.

    1988-01-01

    The influence of the environmental factors is analyzed, in the reproductive efficiency of herd cattle of double purpose. The reproductive behavior begins with the gestation of the heifers. Under the conditions of the Colombian tropic these they reach the weight required for the reproduction to an age but late that in the temperate areas. Once the first childbirth, the cow takes place it enters in exhaustion that makes that this animal is the but difficult to reproduce after the childbirth, that which demands special cares of handling and feeding. The interval among the childbirth to evaluate the reproductive efficiency. Environmental factors that influence significantly. The use of the practice simple of handling, health, selection and feeding produces significant increments in the fertility of the herd of cattle of double purpose. One practices of effective handling in the improvement of the reproductive behavior of the cows of double purpose it is the restricted nursing

  17. Fuel handling at Cernavoda 1 N.P.S. - commissioning and training philosophy

    Energy Technology Data Exchange (ETDEWEB)

    Standen, G W [AECL-Ansaldo Consortium, Cernavoda (Romania); Tiron, C; Marinescu, S [Regia Nationala de Electricitate (RENEL), Cernavoda (Romania); [Filiala Centrala Nuclearo Electrica (FCNE), Cernavoda (Romania)

    1997-12-31

    Efficient operation of a Candu nuclear power plant depends greatly on the reliable and safe operation of the fuel handling system. Successful commissioning of the system is obviously a key aspect of the reliability of the system and this coupled with a rigorous training programme for the fuel handling staff will ensure the system`s safe operation. This paper describes the philosophy used at Cernavoda 1 N.P.S. for the commissioning of the fuel handling systems and for the training of staff for operation and maintenance of these systems. The paper also reviews the commissioning programme, describing the milestones achieved and discussing some of the more interesting technical aspects which includes some unique Romanian input. In conclusion the paper looks at the organization of the mature fuel handling department from the operations, maintenance and technical support points of view and the long term plans for the future. (author). 1 fig.

  18. Fuel handling at Cernavoda 1 N.P.S. - commissioning and training philosophy

    International Nuclear Information System (INIS)

    Standen, G.W.; Tiron, C.; Marinescu, S.

    1996-01-01

    Efficient operation of a Candu nuclear power plant depends greatly on the reliable and safe operation of the fuel handling system. Successful commissioning of the system is obviously a key aspect of the reliability of the system and this coupled with a rigorous training programme for the fuel handling staff will ensure the system's safe operation. This paper describes the philosophy used at Cernavoda 1 N.P.S. for the commissioning of the fuel handling systems and for the training of staff for operation and maintenance of these systems. The paper also reviews the commissioning programme, describing the milestones achieved and discussing some of the more interesting technical aspects which includes some unique Romanian input. In conclusion the paper looks at the organization of the mature fuel handling department from the operations, maintenance and technical support points of view and the long term plans for the future. (author). 1 fig

  19. Constitutional problems in the handling of plutonium

    International Nuclear Information System (INIS)

    Witt, S. de.

    1989-01-01

    Reprocessing and final storage involve two different systems of nuclear energy utilization: with or without the use of plutonium. There is a choice available between these two systems. The paper discusss the constitutional implications of this choice. The permission of the use of plutonium as nuclear fuel by the Atomic Energy Law is irreconcilable with the Basic Law, i.e. the Constitution. If the corresponding provisions of the Atomic Energy Law are repealed, then only the plutonium-related branch will be revoked and not the legal permission of nuclear energy as a whole. The fact is not ignored that the Atomic Energy law does not permit the construction and operation of a plant or the handling of plutonium if this were to violate a basic right. However, the plutonium-related branch of nculear energy utilization inevitably results in such basic right violations; hence the Atomic Energy law is unconstitutional in this respect. (orig./HSCH) [de

  20. Progress in control equipment for fuel-handling machinery

    International Nuclear Information System (INIS)

    Nutting, B.A.

    1986-01-01

    The paper outlines the development of the equipment used to control the fuel-handling machinery associated with nuclear reactors, from the early electromechanical equipment, through solid-state switching logic to programmable controllers and microprocessors. The control techniques have developed along with the technology, and modern systems offer versatility, reliability and ease of design, operation and maintenance. Future trends and developments are discussed together with possible limiting factors. (author)

  1. Prepare the Future Robotics in Nuclear; Preparar el futuro en Robotica Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez de Leon, J. N.; Ferre Perez, M.

    2013-07-01

    The design and construction of ITER has shown the relevance of Robotics for optimal maintenance and operation of facilities. The Laboratory of Remote Handling included in the design has TechnoFusion given the opportunity to carry out a reflection on the strategy to promote robotics in the nuclear sector in Spain. And take advantage of the scientific and technological potential of Spanish research groups. This work of research and reflection has led to further international standardization activities in this field. Adopted ISO TC 85/SC 2/WG in the 24 development of a standard for Tele robotics. In Spain, para follow this work was created last January 73 inside the CTN AENOR Nuclear Industry a Working Group on Nuclear Remote Handling.

  2. Specialized medical sections for the treatment of radiation injuries from accidents in nuclear power plants

    International Nuclear Information System (INIS)

    Deanovic, Z.; Boranic, M.; Vitale, B.

    1980-01-01

    Presented is the organization of the final, highly specialized treatment (diagnostic and therapeutic) of persons that have been severely injured in a radiation or nuclear accident. In this organizational scheme, the leading idea was to group and establish suitable medical sections for the acceptance, diagnosic work-up, and treatment of radiation casualties, around a strong medical center in which the different specialists would be available

  3. Nuclear fuel replacement device

    International Nuclear Information System (INIS)

    Ritz, W.C.; Robey, R.M.; Wett, J.F.

    1984-01-01

    A fuel handling arrangement for a liquid metal cooled nuclear reactor having a single rotating plug eccentric to the fuel core and a fuel handling machine radially movable along a slot in the plug with a transfer station disposed outside the fuel core but covered by the eccentric plug and within range of movement of said fuel handling machine to permit transfer of fuel assemblies between the core and the transfer station. (author)

  4. A magnet without a magnetic circuit, of high homogeneity, specially for nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Barjhoux, Yves.

    1981-01-01

    This invention concerns a high homogeneity, double access magnet without a magnetic circuit. It is specially adapted for nuclear magnetic resonance (N.M.R.) imagery. Another advantage worth stressing resides in the possibilities of NMR in biochemical analysis which will enable, for instance, cancerous tumours to be detected in vivo. In order to increase the NMR signal ratio over background noise, it is necessary to increase the homogeneity of the B 0 orientating magnetic field. This magnetic field must orientate the nuclear magnetic moments of the elementary particles which compose the body being examined and in particular the protons. It must therefore be relatively constant in intensity and direction in the entire domain of the examination [fr

  5. Accelerator for nuclear transmutation

    International Nuclear Information System (INIS)

    Schapira, J.P.

    1984-01-01

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program [fr

  6. Educational Research Centre of the Joint Institute for Nuclear Research and students training on the 'Medical Physics' speciality

    International Nuclear Information System (INIS)

    Ivanova, S.P.; )

    2005-01-01

    The Educational Research Centre (ERC) of the Joint Institute for Nuclear Research is the place of joint activity of the JINR, Moscow State University (MSU) and Moscow Engineering Physical Institute (MEFI) on students training by a broadened circle of specialities with introduction of new educational forms. Active application of medical accelerator beams of the JINR Laboratory of Nuclear Beams becomes a reason for implementation of a new training chair in the MEFI on the JINR base - the Physical methods in applied studies in the medicine chair. For the 'medical physics' trend development in 2003 the workshop on discussion both curricula and teaching methodic by the speciality was held. One the Educational Research Centre main activities is both organization and conducting an international scientific schools and training courses. The International student School 'Nuclear-Physical Methods and Accelerators is the most popular and traditional. The principal aim of these schools and courses is familiarization of students and postgraduates with last achievement and and contemporary problems of applied medical physics. The school audience is a students and postgraduates of ERC, MSU, MEFI, and an institutes of Poland, Hungary, Slovakia, France, Czech and Bulgaria

  7. Decontamination process applied to radioactive solid wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Franco, Milton B.; Kastner, Geraldo F.; Monteiro, Roberto Pellacani G.

    2009-01-01

    The process of decontamination is an important step in the economic operation of nuclear facilities. A large number of protective clothing, metallic parts and equipment get contaminated during the handling of radioactive materials in laboratory, plants and reactors. Safe and economic operation of these nuclear facilities will have a bearing on the extent to which these materials are reclaimed by the process of decontamination. The most common radioactive contaminants are fission products, corrosion products, uranium and thorium. The principles involved in decontamination are the same as those for an industrial cleaning process. However, the main difference is in the degree of cleaning required and at times special techniques have to be employed for removing even trace quantities of radioactive materials. This paper relate decontaminations experiences using acids and acids mixtures (HCl, HF, HNO 3 , KMnO 4 , C 2 H 2 O 4 , HBF 4 ) in several kinds of radioactive solid wastes from nuclear power plants. The result solutions were monitored by nuclear analytical techniques, in order to contribute for radiochemical characterization of these wastes. (author)

  8. Nuclear Safety

    Energy Technology Data Exchange (ETDEWEB)

    Silver, E G [ed.

    1989-01-01

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  9. Special training of shift personnel

    International Nuclear Information System (INIS)

    Martin, H.D.

    1981-01-01

    The first step of on-the-job training is practical observation phase in an operating Nuclear Plant, where the participants are assigned to shift work. The simulator training for operating personnel, for key personnel and, to some extent, also for maintenance personnel and specialists give the practical feeling for Nuclear Power Plant behaviour during normal and abnormal conditions. During the commissioning phase of the own Nuclear Power Plant, which is the most important practical training, the participants are integrated into the commissioning staff and assisted during their process of practical learning by special instructors. The preparation for the licensing exams is vitally important for shift personnel and special courses are provided after the first non-nuclear trial operation of the plant. Personnel training also includes performance of programmes and material for retraining, training of instructors and assistance in building up special training programmes and material as well as training centers. (orig./RW)

  10. The handling of data from experiments

    CERN Document Server

    Davies, H E

    1974-01-01

    The use of small computers in on-line experiments in high-energy physics is briefly indicated. The requirement for an above-average performance (data-handling rates up to 1.5 Mbit/sec) is described, emphasizing the problem of data acquisition; data rates and buffering, data storage, and the importance of flexibility are dealt with. The discussion of hardware solutions to the special problems posed by on- line experiments includes the use of CAMAC interfaces, systems of linked computers, and the use of special processors which perform the first steps of data analysis very rapidly. A section on the software solution to data acquisition problems treats the requirements for flexibility and ease of use, giving as an example a comparison of a manufacturer-supplied Editor and CERN's ORION Editor, and concludes with an outline of the need for direct access to more powerful computers, giving as an illustration the FOCUS and Omega/SFM networks. (0 refs).

  11. Special nuclear material radiation monitors for the 1980's

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1985-01-01

    During the two decades that automatic gamma-radiation monitors have been applied to detecting special nuclear material (SNM), little attention has been devoted to how well the monitors perform in plant environments. Visits to 11 DOE facilities revealed poor information flow between developers, manufacturers, and maintainers of SNM radiation monitors. To help users achieve best performance from their monitors or select new ones, Los Alamos National Laboratory developed a hand-held monitor user's guide, calibration manuals for some commercial SNM pedestrian monitors, and an application guide for SNM pedestrian monitors. In addition, Los Alamos evaluated new commercial SNM monitors, considered whether to apply neutron detection to SNM monitoring, and investigated the problem of operating gamma-ray SNM monitors in variable plutonium gamma-radiation fields. As a result, the performance of existing SNM monitors will improve and alternative monitoring methods will become commerciallly available during the 1980s. 9 refs., 6 figs., 1 tab

  12. Selected topics in special nuclear materials safeguard system design

    International Nuclear Information System (INIS)

    King, L.L.; Thatcher, C.D.; Clarke, J.D.; Rodriguez, M.P.

    1991-01-01

    During the past two decades the improvements in circuit integration have given rise to many new applications in digital processing technology by continuously reducing the unit cost of processing power. Along with this increase in processing power a corresponding decrease in circuit volume has been achieved. Progress has been so swift that new classes of applications become feasible every 2 or 3 years. This is especially true in the application of proven new technology to special nuclear materials (SNM) safeguard systems. Several areas of application were investigated in establishing the performance requirements for the SNM safeguard system. These included the improvements in material control and accountability and surveillance by using multiple sensors to continuously monitor SNM inventory within the selected value(s); establishing a system architecture to provide capabilities needed for present and future performance requirements; and limiting operating manpower exposure to radiation. This paper describes two selected topics in the application of state-of-the-art, well-proven technology to SNM safeguard system design

  13. Development of spent fuel remote handling technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ji Sup; Park, B S; Park, Y S; Oh, S C; Kim, S H; Cho, M W; Hong, D H

    1997-12-01

    Since the nation`s policy on spent fuel management is not finalized, the technical items commonly required for safe management and recycling of spent fuel - remote technologies of transportation, inspection, maintenance, and disassembly of spent fuel - are selected and pursued. In this regards, the following R and D activities are carried out : collision free transportation of spent fuel assembly, mechanical disassembly of spent nuclear fuel and graphical simulation of fuel handling / disassembly process. (author). 36 refs., 16 tabs., 77 figs

  14. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  15. Nuclear Law: A Key Against Nuclear Terrorism

    International Nuclear Information System (INIS)

    Cardozo, P.

    2004-01-01

    The role of the legal instruments in the war against nuclear terrorism. Control of radioactive sources. Elements of Nuclear Law: Definition: it is the body of special legislation that regulates the pacific uses of nuclear energy and the conduct of the persons engaged in activities related to fissionable materials and ionizing radiation . Objective: to provide a legal framework in order to protect individuals , property and the environment against the harmful effects of the use of nuclear energy and ionising radiation. Principles of nuclear energy legislation: safety principle, exclusively operator responsibility, authorization, independence of the regulatory body, inspections and enforcement, nuclear damage compensation, international cooperation. National regulatory infrastructure. Establishment of special law in Emergency Preparedness for nuclear or radiological disaster. IAEA Conventions. Transportation of nuclear material. IAEA regulations on radioactive material. Compensation for nuclear damage. Nuclear safety, security and terrorism. International and domestic instruments. Anti terrorism acts. International agreements on Safety Cooperation. (Author)

  16. NUCLEAR WASTE state-of-the-art reports 2004

    International Nuclear Information System (INIS)

    2004-01-01

    The report is organized in three parts. First part: 'The nuclear waste question in international and Swedish perspective' takes up questions about how the handling of nuclear waste is organized. This part starts with an international overview of nuclear waste handling in several countries. The overview gives a hint about how countries look for solutions that are judged to be appropriate in the own country. The overview shows clearly that the responsibility for the nuclear waste includes both private and public operators, in varying degrees from country to country. A detailed review is presented of the Swedish process in the chapter 'The municipalities - major stakeholders in the nuclear waste issue'. In the light of the the international overview it is shown that great efforts are spent in order to reach mutual understanding and agreement at the local basis in the Swedish consultation procedure. Part two 'To handle nuclear waste risks: An overview over methods, problems and possibilities' contains an overview of our knowledge in estimating and handling risks and about methods to produce data for assessments associated with the disposal of nuclear waste from a scientific perspective. This part first presents two geoscientific methods that are used to calculate stability and hydraulic conductivity of the bedrock. In the chapter 'Fractioning of different isotopes' the possibility to consider properties of different isotopes for estimation of transport velocities of radioactive substances is discussed, for a repository for spent nuclear fuel or other radioactive wastes. In the chapter 'Copper canisters - production, sealing, durability' an overview is given of the methods used for manufacture and control of those copper canisters that constitute one of the protective barriers around the waste at geologic disposal according to the KBS-3-method. In the last chapter, an experiment to compare classification of radioactive wastes and chemical wastes, is discussed. 'The

  17. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multimodal transportation network

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-01-01

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, and focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  18. Standard guide for application of radiation monitors to the control and physical security of special nuclear material

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This guide briefly describes the state-of-the-art of radiation monitors for detecting special nuclear material (SNM) in order to establish the context in which to write performance standards for the monitors. This guide extracts information from technical documentation to provide information for selecting, calibrating, testing, and operating such radiation monitors when they are used for the control and protection of SNM. This guide offers an unobtrusive means of searching pedestrians, packages, and motor vehicles for concealed SNM as one part of a nuclear material control or security plan for nuclear materials. The radiation monitors can provide an efficient, sensitive, and reliable means of detecting the theft of small quantities of SNM while maintaining a low likelihood of nuisance alarms

  19. Development of Pneumatic Transport System (PTS) for safe handling of uranium oxide powder in UMP/UED

    International Nuclear Information System (INIS)

    Manna, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Tonnage quantity radioactive uranium oxide powder of particle size sub micron to 100 micron is handled in Uranium Metal Plant (UMP), UED/BARC for production of nuclear grade uranium metal, required for fuelling research reactors - Dhruva and Cirus. A Pneumatic Transfer System (PTS) using vacuum has been introduced and is being used for handling radioactive powder to improve radiation protection

  20. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  1. Overview moderator material for nuclear reactor components

    International Nuclear Information System (INIS)

    Mairing Manutu Pongtuluran; Hendra Prihatnadi

    2009-01-01

    In order for a reactor design is considered acceptable absolute technical requirement is fulfilled because the most important part of a reactor design. Safety considerations emphasis on the handling of radioactive substances emitted during the operation of a reactor and radioactive waste handling. Moderator material is a layer that interacts directly with neutrons split the nuclear fuel that will lead to changes in physical properties, nuclear properties, mechanical properties and chemical properties. Reviews moderator of this time is of the types of moderator is often used to meet the requirements as nuclear material. (author)

  2. SP-100 reactor disassembly remote handling test program

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Maiden, G.E.; Vader, D.P.

    1991-01-01

    This paper is presented as an overview of the remote handling equipment validation testing, which will be conducted before installation and use in the ground engineering test facility. This equipment will be used to defuel the SP-100 reactor core after removing it from the Test Assembly following nuclear testing. A series of full scale mock-up operational tests will be conducted at a Hanford Site facility to verify equipment design, operation, and capabilities

  3. How to Handle Difficult Parents: Proven Solutions for Teachers. Second Edition

    Science.gov (United States)

    Tingley, Suzanne Capek

    2012-01-01

    "How to Handle Difficult Parents" is a funny, but practical, guide to working effectively with parents and avoiding unnecessary conflict. Whether you're a teacher (regular or special education) or a coach, this book will give you practical suggestions regarding what to say and how to say it to parents who question your lesson plans, challenge your…

  4. Special Radiation Protection Precautions in Therapeutic Nuclear Medicine

    Science.gov (United States)

    Stefanoyiannis, A. P.; Gerogiannis, J.

    2010-01-01

    Therapeutic Nuclear Medicine concerns the administration of appropriate amounts of radioactivity of certain isotopes, in order to achieve internal localized irradiation of neoplasmatic cells. Due to the increased level and the specific isotope characteristics of administered radioactivity, special Radiation Protection precautions must be taken. This study addresses such issues, based on national as well as international legislation and guidelines. Application of the principle of optimization is of outmost importance and is based on individual dose planning. The decision about the release of Nuclear Medicine patients after therapy is determined on an individual basis, taking into account patients' pattern of contact with other people, their age and that of persons in the home environment, in addition to other factors. Estimation of the absorbed dose given to the treated organ is based on uptake measurements and other biokinetic data, as well as on the mass of the treated tissue or organ. Concerning pregnant women, the rule of thumb is that they should not be treated, unless the radionuclide therapy is required to save their lives. In that case, the potential absorbed dose and risk to the foetus should be estimated and conveyed to the patient. After radionuclide therapy, a female should be advised to avoid pregnancy for the period of time depending on the specific radionuclide. This is to ensure that the dose to a conceptus/foetus would probably not exceed 1 mGy (the member of the public dose limit). The radiation risk for relatives and caregivers is small and unlikely to exceed the legal dose constraints during the period of the patient's treatment. Solid waste from the patient's stay in hospital is a different matter, and is normally incinerated or held for a period until radioactive decay brings the activity to an acceptable level.

  5. Application of advanced remote systems technology to future waste handling facilities

    International Nuclear Information System (INIS)

    Kring, C.T.; Meacham, S.A.

    1987-01-01

    The Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) has been advancing the technology of remote handling and remote maintenance for in-cell systems planned for future nuclear fuel reprocessing plants. Much of the experience and technology developed over the past decade in this endeavor is directly applicable to the proposed in-cell systems being considered for the facilities of the Federal Waste Management System (FWMS). The application of teleoperated, force-reflecting servomanipulators with television viewing could be a major step forward in waste handling facility design. Primary emphasis in the current program is the operation of a prototype remote handling and maintenance system, the advanced servomanipulator (ASM), which specifically addresses the requirements of fuel reprocessing and waste handling with emphasis on force reflection, remote maintainability, reliability, radiation tolerance, and corrosion resistance. Concurrent with the evolution of dexterous manipulators, concepts have also been developed that provide guidance for standardization of the design of the remotely operated and maintained equipment, the interface between the maintenance tools and the equipment, and the interface between the in-cell components and the facility

  6. Nuclear power. Volume 2. Nuclear power project management

    International Nuclear Information System (INIS)

    Pedersen, E.S.

    1978-01-01

    NUCLEAR POWER PLANT DESIGN is intended to be used as a working reference book for management, engineers and designers, and as a graduate-level text for engineering students. The book is designed to combine theory with practical nuclear power engineering and design experience, and to give the reader an up-to-date view of the status of nuclear power and a basic understanding of how nuclear power plants function. Volume 2 contains the following chapters: (1) review of nuclear power plants; (2) licensing procedures; (3) safety analysis; (4) project professional services; (5) quality assurance and project organization; (6) construction, scheduling, and operation; (7) nuclear fuel handling and fuel management; (8) plant cost management; and (9) conclusion

  7. Special protective concretes

    International Nuclear Information System (INIS)

    Bouniol, P.

    2001-01-01

    Concrete is the most convenient material when large-scale radiation protection is needed. Thus, special concretes for nuclear purposes are used in various facilities like reactors, reprocessing centers, storage sites, accelerators, hospitals with nuclear medicine equipment, food ionization centers etc.. The recent advances made in civil engineering for the improvement of concrete durability and compactness are for a large part transposable to protection concretes. This article presents the basic knowledge about protection concretes with the associated typological and technological aspects. A large part is devoted to the intrinsic properties of concretes and to their behaviour in irradiation and temperature conditions: 1 - definition and field of application of special protective concretes; 2 - evolution of concepts and technologies (durability of structures, techniques of formulation, new additives, market evolution); 3 - design of protective structures (preliminary study, radiation characteristics, thermal constraints, damping and dimensioning, mechanical criteria); 4 - formulation of special concretes (general principles, granulates, hydraulic binders, pulverulent additives, water/cement ratio, reference composition of some special concretes); 5 - properties of special concretes (damping and thermo-mechanical properties); 6 - induced-irradiation and temperature phenomena (activation, radiolysis, mineralogical transformations, drying, shrinking, creep, corrosion of reinforcement). (J.S.)

  8. On current US strategy and technologies for spent fuel handling

    International Nuclear Information System (INIS)

    Bennett, P.C.

    1997-01-01

    The US Department of Energy has recently completed a topical safety analysis report outlining the design and operation of a Centralized Interim Storage Facility for spent commercial nuclear fuel. During the course of the design, dose assessments indicated the need for remote operation of many of the cask handling operations. Use of robotic equipment was identified as a desirable handling solution that is capable of automating many of the operations to maintain throughput, and sufficiently flexible to handle five or more different storage cask designs in varying numbers on a given day. This paper discusses the facility and the dose assessment leading to this choice, and reviews factors to be considered when choosing robotics or automation. Further, a new computer simulation tool to quantify dose to humans working in radiological environments, the Radiological Environment Modeling System (REMS), is introduced. REMS has been developed to produce a more accurate estimate of dose to radiation workers in new activities with radiological hazards

  9. Test of fuel handling machine for Monju in sodium

    International Nuclear Information System (INIS)

    Ishii, Yoichiro; Masuda, Yoichi; Kataoka, Hajime

    1980-01-01

    Various types of fuel handling machines were studied, and under-the-plug method of fuel exchange and the fuel handling machine of single turning plug, fixed arm type were selected for the prototype reactor ''Monju'', because the turning plug is relatively small, and the rate of operation, safety, operational ability, maintainability and reliability required for the reactor are satisfied, moreover, the extrapolation to the demonstration reactor was considered. Attention must be paid to the points that the fuel handling machine is very long and invisible from outside, and the smooth operation and endurance in sodium are required for it. The full mock-up testing facility of single turning plug, fixed arm type was installed in 1974, and the full mock-up test has been carried out since 1975 in Oarai. Fuel exchange is carried out at about 6 months intervals in Monju, and about 20 to 30% of core and blanket fuels are exchanged for about one month period. The functions required for the fuel handling machine for Monju, the outline of the testing facility, the schedule of the testing, the items of testing and the results, and the matters to be specially written are described. The full mock-up test in sodium has been carried out for 5 years, and the functions and the endurance have been proved sufficiently. (Kako, I.)

  10. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    Science.gov (United States)

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  11. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    Directory of Open Access Journals (Sweden)

    Xuesong Zhou

    2010-08-01

    Full Text Available In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  12. Detection of special nuclear material from delayed neutron emission induced by a dual-particle monoenergetic source

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M. [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Nattress, J.; Jovanovic, I., E-mail: ijov@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-06-27

    Detection of unique signatures of special nuclear materials is critical for their interdiction in a variety of nuclear security and nonproliferation scenarios. We report on the observation of delayed neutrons from fission of uranium induced in dual-particle active interrogation based on the {sup 11}B(d,n γ){sup 12}C nuclear reaction. Majority of the fissions are attributed to fast fission induced by the incident quasi-monoenergetic neutrons. A Li-doped glass–polymer composite scintillation neutron detector, which displays excellent neutron/γ discrimination at low energies, was used in the measurements, along with a recoil-based liquid scintillation detector. Time-dependent buildup and decay of delayed neutron emission from {sup 238}U were measured between the interrogating beam pulses and after the interrogating beam was turned off, respectively. Characteristic buildup and decay time profiles were compared to the common parametrization into six delayed neutron groups, finding a good agreement between the measurement and nuclear data. This method is promising for detecting fissile and fissionable materials in cargo scanning applications and can be readily integrated with transmission radiography using low-energy nuclear reaction sources.

  13. Promise and peril of nuclear energy

    International Nuclear Information System (INIS)

    Weaver, K.F.

    1979-01-01

    Against the backdrop of a national debate ranging from total opposition to nuclear energy development to a recognition of its necessity are the facts that 70 nuclear plants in 27 states are now generating one-eighth of the nation's electrical needs. An overview of the nuclear fuel cycle, the global distribution of nuclear power, and the alternatives to nuclear energy are followed by a discussion of the major points of controversy. The debate has focused on the safety of nuclar plants and the handling, storing, and security of radioactive materials. Critics challenge transport methods and the handling of waste disposal. The author reviews procedures used in the US and in some of the 43 other countries having nuclear energy programs. The future of nuclear power in the face of citizen protests and the threat of international terrorism is concluded to remain a picture clouded by emotion and uncertainty unless regulatory and construction delays can be eased and unless the necessary capital and public acceptance can be developed

  14. Glass fiber sensors for detecting special nuclear materials at portal and monitor stations

    International Nuclear Information System (INIS)

    Hull, C.D.; Seymour, R.; Crawford, T.; Bliss, M.; Craig, R.A.

    2001-01-01

    Nuclear Safeguards and Security Systems LLC (NucSafe) participated in the Illicit Trafficking Radiation Assessment Program (ITRAP) recently conducted by the Austrian Research Center, Seibersdorf (ARCS) for IAEA, INTERPOL, and the World Customs Organization (IAEA, in press). This presentation reviews ITRAP test results of NucSafe instrumentation. NucSafe produces stationary, mobile, and hand-held systems that use neutron and gamma ray sensors to detect Special Nuclear Materials (SNM). Neutron sensors are comprised of scintillating glass fibers (trade name 'PUMA' for Pu Materials Analysis), which provide several advantages over 3 He and 10 BF 3 tubes. PUMA 6 Li glass fiber sensors offer greater neutron sensitivity and dynamic counting range with significantly less microphonic susceptibility than tubes, while eliminating transport and operational hazards. PUMA sensors also cost less per active area than gas tubes, which is important since rapid neutron detection at passenger, freight, and vehicle portals require large sensor areas to provide the required sensitivity

  15. Special Equipment and/or Devices.

    Science.gov (United States)

    National Sanitation Foundation, Ann Arbor, MI.

    This standard covers the sanitation requirements for equipment and/or devices used in the storage, preparation, or handling of foods and beverages. The National Sanitation Foundation's basic criteria for the evaluation of special equipment and/or devices has been prepared to fulfill several specific needs, its major function being to serve as a…

  16. System simulation on fractionation radiation doses and radioisotope handling in Nuclear medicine

    International Nuclear Information System (INIS)

    Dytz, Aline Guerra; Dullius, Marcos Alexandre; Gomes, Camila e Silva

    2008-01-01

    This paper describes the practical and theoretical learning of students from Medical Physics course at the Fundacao Universidade Federal do Rio Grande (FURG) on fractionation radiation doses, radioisotope handling and elution of molybdenum generators (Mo-99) / technetium (Tc -99m)

  17. Special actinide nuclides: Fuel or waste?

    International Nuclear Information System (INIS)

    Srinivasan, M.; Rao, K.S.; Dingankar, M.V.

    1989-01-01

    The special actinide nuclides such as Np, Cm, etc. which are produced as byproducts during the operation of fission reactors are presently looked upon as 'nuclear waste' and are proposed to be disposed of as part of high level waste in deep geological repositories. The potential hazard posed to future generations over periods of thousands of years by these long lived nuclides has been a persistent source of concern to critics of nuclear power. However, the authors have recently shown that each and every one of the special actinide nuclides is a better nuclear fuel than the isotopes of plutonium. This finding suggests that one does not have to resort to exotic neutron sources for transmuting/incinerating them as proposed by some researchers. Recovery of the special actinide elements from the waste stream and recycling them back into conventional fission reactors would eliminate one of the stigmas attached to nuclear energy

  18. Safety of handling, storing and transportation of spent nuclear fuel and vitrified high-level wastes

    International Nuclear Information System (INIS)

    Ericsson, A.M.

    1977-11-01

    The safety of handling and transportation of spent fuel and vitrified high-level waste has been studied. Only the operations which are performed in Sweden are included. That is: - Transportation of spent fuel from the reactors to an independant spent fuel storage installation (ISFSI). - Temporary storage of spent fuel in the ISFSI. - Transportation of the spent fuel from the ISFSI to a foreign reprocessing plant. - Transportation of vitrified high-level waste to an interim storage facility. - Interim storage of vitrified high-level waste. - Handling of the vitrified high-level waste in a repository for ultimate disposal. For each stage in the handling sequence above the following items are given: - A brief technical description. - A description of precautionary measures considered in the design. - An analysis of the discharges of radioactive materials to the environment in normal operation. - An analysis of the discharges of radioactive materials due to postulated accidents. The dose to the public has been roughly and conservatively estimated for both normal and accident conditions. The expected rate of occurence are given for the accidents. The results show that above described handling sequence gives only a minor risk contribution to the public

  19. Very small HTGR nuclear power plant concepts for special terrestrial applications

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1983-01-01

    The role of the very small nuclear power plant, of a few megawatts capacity, is perceived to be for special applications where an energy source as required but the following prevail: 1) no indigenous fossil fuel source, in long transport distances that add substantially to the cost of oil, coal in gas, and 3) secure long-term power production for defense applications with freedom from fuel supply lines. A small High Temperature Gas-Cooled reactor (HTGR) plant could provide the total energy needs for 1) a military installation, 2) an island base of strategic significance, 3) an industrial community or 4) an urban area. The small HTGR is regarded as a fixed-base installation (as opposed to a mobile system). All of the major components would be factory fabricated and transported to the site where emphasis would be placed on minimizing the construction time. The very small HTGR plant, currently in an early stage of design definition, has the potential for meeting the unique needs of the small energy user in both the military and private sectors. The plant may find acceptance for specialized applications in the industrialized nations and to meet the energy needs of developing nations. Emphasis in the design has been placed on safety, simplicity and compactness

  20. Plutonium safe handling

    International Nuclear Information System (INIS)

    Tvehlov, Yu.

    2000-01-01

    The abstract, prepared on the basis of materials of the IAEA new leadership on the plutonium safe handling and its storage (the publication no. 9 in the Safety Reports Series), aimed at presenting internationally acknowledged criteria on the radiation danger evaluation and summarizing the experience in the safe management of great quantities of plutonium, accumulated in the nuclear states, is presented. The data on the weapon-class and civil plutonium, the degree of its danger, the measures for provision of its safety, including the data on accident radiation consequences with the fission number 10 18 , are presented. The recommendations, making it possible to eliminate the super- criticality danger, as well as ignition and explosion, to maintain the tightness of the facility, aimed at excluding the radioactive contamination and the possibility of internal irradiation, to provide for the plutonium security, physical protection and to reduce irradiation are given [ru

  1. The claims handling process of liability insurance in South Africa

    Directory of Open Access Journals (Sweden)

    Jacoline van Jaarsveld

    2015-04-01

    Full Text Available Liabilities play a very important financial role in business operations, professional service providers as well as in the personal lives of people. It is possible that a single claim may even lead to the bankruptcy of the defendant. The claims handling process of liability insurance by short-term insurers is therefore very important to these parties as it should be clear that liability claims may have enormous and far-reaching financial implications for them. The objective of this research paper embodies the improvement of financial decision-making by short-term insurers with regard to the claims handling process of liability insurance. Secondary data was initially studied which provided the basis to compile a questionnaire for the empirical survey. The leaders of liability insurance in the South African short-term insurance market that represented 69.5% of the annual gross written premiums received for liability insurance in South Africa were the respondents of the empirical study. The perceptions of these short-term insurers provided the primary data for the vital conclusions of this research. This paper pays special attention to the importance of the claims handling factors of liability insurance, how often the stipulations of liability insurance policies are adjusted by the short-term insurers to take the claims handling factors into consideration, as well as the problem areas which short-term insurers may experience during the claims handling process. Feasible solutions to address the problem areas are also discussed.

  2. Acoustophoretic contactless transport and handling of matter in air.

    Science.gov (United States)

    Foresti, Daniele; Nabavi, Majid; Klingauf, Mirko; Ferrari, Aldo; Poulikakos, Dimos

    2013-07-30

    Levitation and controlled motion of matter in air have a wealth of potential applications ranging from materials processing to biochemistry and pharmaceuticals. We present a unique acoustophoretic concept for the contactless transport and handling of matter in air. Spatiotemporal modulation of the levitation acoustic field allows continuous planar transport and processing of multiple objects, from near-spherical (volume of 0.1-10 μL) to wire-like, without being limited by the acoustic wavelength. The independence of the handling principle from special material properties (magnetic, optical, or electrical) is illustrated with a wide palette of application experiments, such as contactless droplet coalescence and mixing, solid-liquid encapsulation, absorption, dissolution, and DNA transfection. More than a century after the pioneering work of Lord Rayleigh on acoustic radiation pressure, a path-breaking concept is proposed to harvest the significant benefits of acoustic levitation in air.

  3. Radiation exposure control in back end of nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Pendharkar, K.A.

    2003-01-01

    Fuel Reprocessing Plant and Waste Immobilization Plant for management of high level liquid waste, generated during reprocessing, form part of the back end of Nuclear Fuel Cycle. Both the plants handle annually several million curie of fission products in easily dispersible form. There is potential for significant external exposure and internal contamination to plant workers during plant operations, associated maintenance works and also during outages for carrying out repairs/modifications inside cells where process equipment handling/storing radioactive materials are installed. In view of handling of fissile material (Pu) in a reprocessing plant, special attention has to be paid to ensure that a condition for self sustaining nuclear fission chain reaction (criticality) does not arise even under foreseeable maloperation conditions. The reprocessing plant and Waste Immobilization plant have several engineered safety features such as shielding, ventilation, containment, remote operation etc. These features aim at reducing exposure to plant personnel and keeping the release of radioactive materials to environment below the limits specified in Technical Specifications of the plant. Execution of a comprehensive radiological surveillance programme which includes area monitoring, personal monitoring, effluent monitoring and investigative surveys in connection with safety related unusual occurrences, plays very important role in ensuring radiation safety of plant personnel and the environment. This together with training in radiation safety to plant workers helps reduce 'radiation phobia' in some workers. The paper describes radiological safety considerations and radiological surveillance programme (giving specific examples where required) that is being implemented in reprocessing plants and Waste Immobilization Plants in India. (author)

  4. Strategic special nuclear material Inventory Differences. Semiannual report, April 1-September 30, 1984

    International Nuclear Information System (INIS)

    1985-07-01

    This sixteenth periodic semiannual report of Inventory Differences (ID) covers the last six months of fiscal year 1984 (April 1, 1984, through September 30, 1984), for the Department of Energy (DOE) and DOE contractor facilities possessing significant quantities of strategic special nuclear material (SSNM). Inventory Differences are simply the differences between the amount of material shown in the accounting records and the amount of material reported in the physical inventory. These differences are generally due to errors in estimating material in unmeasurable form at the time of an inventory, unmeasurable holdup in equipment, measurement imprecisions, inaccuracies in initial determinations of SSNM produced or used in nuclear reactors, and inventory or bookkeeping errors. Both DOE and contractors operating DOE facilities carefully maintain, analyze, and investigate ID data. Inventory Differences are expected in nuclear material processing and are not, in and of themselves, evidence of lost or stolen material. On the other hand, ID analysis provides valuable information on the effectiveness of the safeguards system's physical protection and material control measures as well as a check on the process controls and material management procedures. ID's outside safeguards control limits or involving a missing SSNM discrete item are investigated. If necessary, an operation may be shut down until an ID is resolved

  5. Handling and raising analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Rafer, J.-F.

    1981-01-01

    Cranes pose a safety problem essentially due to their concentration on nuclear power station work sites. A study is made of the various devices for preventing the occurence of collisions: electromechanical contacts, optical and phonic signals and microprocessors [fr

  6. Simulator for candu600 fuel handling system. environmental implications

    International Nuclear Information System (INIS)

    Vulpe, S.; Valeca, S.; Predescu, D.

    2016-01-01

    Personnel training are a main topic in the security and reliability of several industrial processes. The simulator is a physical device that reproduces real operation of a device used in a production process technology. Typically, a simulator is intended to train the operators to work properly with the real device in the production process, but simulators can be involved frequently in the research and evaluation of performance of human operators. Process simulation has a significant role in the training of operators of nuclear plants. To ensure the safe operation, protection of workers and the environment, of any nuclear power plant, the training of its operators in all operating modes of the plant is essential. A trained operator who can handle any emergency in a controlled manner, without panic, protecting equipment and personnel is an asset for a nuclear power plant. (authors)

  7. Alternative configurations for the waste-handling building at the Yucca Mountain Repository

    International Nuclear Information System (INIS)

    1990-08-01

    Two alternative configurations of the waste-handling building have been developed for the proposed nuclear waste repository in tuff at Yucca Mountain, Nevada. One configuration is based on criteria and assumptions used in Case 2 (no monitored retrievable storage facility, no consolidation), and the other configuration is based on criteria and assumptions used in Case 5 (consolidation at the monitored retrievable storage facility) of the Monitored Retrievable Storage System Study for the Repository. Desirable waste-handling design concepts have been selected and are included in these configurations. For each configuration, general arrangement drawings, plot plans, block flow diagrams, and timeline diagrams are prepared

  8. Current state of nuclear fuel cycles in nuclear engineering and trends in their development according to the environmental safety requirements

    Science.gov (United States)

    Vislov, I. S.; Pischulin, V. P.; Kladiev, S. N.; Slobodyan, S. M.

    2016-08-01

    The state and trends in the development of nuclear fuel cycles in nuclear engineering, taking into account the ecological aspects of using nuclear power plants, are considered. An analysis of advantages and disadvantages of nuclear engineering, compared with thermal engineering based on organic fuel types, was carried out. Spent nuclear fuel (SNF) reprocessing is an important task in the nuclear industry, since fuel unloaded from modern reactors of any type contains a large amount of radioactive elements that are harmful to the environment. On the other hand, the newly generated isotopes of uranium and plutonium should be reused to fabricate new nuclear fuel. The spent nuclear fuel also includes other types of fission products. Conditions for SNF handling are determined by ecological and economic factors. When choosing a certain handling method, one should assess these factors at all stages of its implementation. There are two main methods of SNF handling: open nuclear fuel cycle, with spent nuclear fuel assemblies (NFAs) that are held in storage facilities with their consequent disposal, and closed nuclear fuel cycle, with separation of uranium and plutonium, their purification from fission products, and use for producing new fuel batches. The development of effective closed fuel cycles using mixed uranium-plutonium fuel can provide a successful development of the nuclear industry only under the conditions of implementation of novel effective technological treatment processes that meet strict requirements of environmental safety and reliability of process equipment being applied. The diversity of technological processes is determined by different types of NFA devices and construction materials being used, as well as by the composition that depends on nuclear fuel components and operational conditions for assemblies in the nuclear power reactor. This work provides an overview of technological processes of SNF treatment and methods of handling of nuclear fuel

  9. Handling sticky resin by stingless bees (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    Markus Gastauer

    2011-06-01

    Full Text Available For their nest defense, stingless bees (Meliponini collect plant resins which they stick on intruders like ants or cleptobiotic robber bees causing their immobilization. The aim of this article is to identify all parts of stingless bee workers contacting these sticky resins. Of special interest are those body parts with anti-adhesive properties to resin, where it can be removed without residues. For that, extensive behavioral observations during foraging flight, handling and application of the resin have been carried out. When handling the resin, all tarsi touch the resin while walking above it. For transportation from plants to the nest during foraging flight, the resin is packed to the corbicula via tarsi and basitarsi of front and middle legs. Once stuck to the resin or after the corbicula had been unloaded, the bee's legs have to be cleaned thoroughly. Only the tips of the mandibles, that form, cut and apply the sticky resin, seem to have at least temporarily resin-rejecting properties.

  10. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (Spanish Edition); Capacitacion clinica de fisicos medicos especialistas en medicina nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-15

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  11. Contribution of the C.E.A. to standardization of nuclear plant equipments

    International Nuclear Information System (INIS)

    Dumax, P.; Seran, R.

    1980-01-01

    In research and production laboratories working in the nuclear field standardization of equipments greatly improves the profits of the installation and the protection of individuals and goods. The standardization effort on technical equipments of shielding, handling, detection and safety (so called P.M.D.S.) initiated by the C.E.A. in 1967 is being carried out now within the Institute of Protection and Nuclear Safety (I.P.S.N.) by a technical Service specialized in protection and dosimetry (S.T.E.P.D.). Its purpose is to establish standardization documents for internal use and to take part in the work of official standardization organizations. The benefits of standardization are reviewed. The achievements of the various working groups common to C.E.A. centers are stated and the documents published or to be published are listed [fr

  12. WWER NPPs fuel handling machine control system

    International Nuclear Information System (INIS)

    Mini, G.; Rossi, G.; Barabino, M.; Casalini, M.

    2001-01-01

    In order to increase the safety level of the fuel handling machine on WWER NPPs, Ansaldo Nucleare was asked to design and supply a new Control System. Two FHM Control System units have been already supplied for Temelin NPP and others supplies are in process for the Atommash company, which has in charge the supply of FHMs for NPPs located in Russia, Ukraine and China. The Fuel Handling Machine (FHM) Control System is an integrated system capable of a complete management of nuclear fuel assemblies. The computer-based system takes into account all the operational safety interlocks so that it is able to avoid incorrect and dangerous manoeuvres in the case of operator error. Control system design criteria, hardware and software architecture, and quality assurance control, are in accordance with the most recent international requirements and standards, and in particular for electromagnetic disturbance immunity demands and seismic compatibility. The hardware architecture of the control system is based on ABB INFI 90 system. The microprocessor-based ABB INFI 90 system incorporates and improves upon many of the time proven control capabilities of Bailey Network 90, validated over 14,000 installations world-wide. The control system complies all the former designed sensors and devices of the machine and markedly the angular position measurement sensors named 'selsyn' of Russian design. Nevertheless it is fully compatible with all the most recent sensors and devices currently available on the market (for ex. Multiturn absolute encoders). All control logic components were developed using standard INFI 90 Engineering Work Station, interconnecting blocks extracted from an extensive SAMA library by using a graphical approach (CAD) and allowing an easier intelligibility, more flexibility and updated and coherent documentation. The data acquisition system and the Man Machine Interface are implemented by ABB in co-operation with Ansaldo. The flexible and powerful software structure

  13. Handling of multiassembly sealed baskets between reactor storage and a remote handling facility

    International Nuclear Information System (INIS)

    Massey, J.V.; Kessler, J.H.; McSherry, A.J.

    1989-06-01

    The storage of multiple fuel assemblies in sealed (welded) dry storage baskets is gaining increasing use to augment at-reactor fuel storage capacity. Since this increasing use will place a significant number of such baskets on reactor sites, some initial downstream planning for their future handling scenarios for retrieving multi-assembly sealed baskets (MSBs) from onsite storage and transferring and shipping the fuel (and/or the baskets) to a federally operated remote handling facility (RHF). Numerous options or at-reactor and away-from-reactor handling were investigated. Materials handling flowsheets were developed along with conceptual designs for the equipment and tools required to handle and open the MSBs. The handling options were evaluated and compared to a reference case, fuel handling sequence (i.e., fuel assemblies are taken from the fuel pool, shipped to a receiving and handling facility and placed into interim storage). The main parameters analyzed are throughout, radiation dose burden and cost. In addition to evaluating the handling of MSBs, this work also evaluated handling consolidated fuel canisters (CFCs). In summary, the handling of MSBs and CFCs in the store, ship and bury fuel cycle was found to be feasible and, under some conditions, to offer significant benefits in terms of throughput, cost and safety. 14 refs., 20 figs., 24 tabs

  14. Regulation at nuclear fuel cycle

    International Nuclear Information System (INIS)

    2002-01-01

    This bulletin contains information about activities of the Nuclear Regulatory Authority of the Slovak Republic (UJD). In this leaflet the role of the UJD in regulation at nuclear fuel cycle is presented. The Nuclear Fuel Cycle (NFC) is a complex of activities linked with production of nuclear fuel for nuclear reactors as a source of energy used for production of electricity and heat, and of activities linked with spent nuclear fuel handling. Activities linked with nuclear fuel (NF) production, known as the Front-End of Nuclear Fuel Cycle, include (production of nuclear fuel from uranium as the most frequently used element). After discharging spent nuclear fuel (SNF) from nuclear reactor the activities follow linked with its storage, reprocessing and disposal known as the Back-End of Nuclear Fuel Cycle. Individual activity, which penetrates throughout the NFC, is transport of nuclear materials various forms during NF production and transport of NF and SNF. Nuclear reactors are installed in the Slovak Republic only in commercial nuclear power plants and the NFC is of the open type is imported from abroad and SNF is long-term supposed without reprocessing. The main mission of the area of NFC is supervision over: - assurance of nuclear safety throughout all NFC activities; - observance of provisions of the Treaty on Non-Proliferation of Nuclear Weapons during nuclear material handling; with an aim to prevent leakage of radioactive substances into environment (including deliberated danage of NFC sensitive facilities and misuse of nuclear materials to production of nuclear weapons. The UJD carries out this mission through: - assessment of safety documentation submitted by operators of nuclear installations at which nuclear material, NF and SNF is handled; - inspections concentrated on assurance of compliance of real conditions in NFC, i.e. storage and transport of NF and SNF; storage, transport and disposal of wastes from processing of SNF; with assumptions of the safety

  15. Legal aspects of handling and disposal of nuclear waste - an Indian perspective

    International Nuclear Information System (INIS)

    Sree Sudha, P.

    2014-01-01

    India's rise as a global power has made it an extremely lucrative market, especially in the field of nuclear energy. Nuclear energy is often painted as a 'clean- energy option, and therefore a solution to climate change. Splitting the atom doesn't produce greenhouse gases, but the nuclear fuel cycle is far from clean: it produces radioactive waste that pollutes the environment for generations. As the most populous democracy in the world, India's energy needs far exceed its current capacity and to achieve this, the Government of India intends to draw twenty-five percent of its energy from nuclear power by the year 2050. This plan includes 20,000 MW of installed capacity from nuclear energy by 2020, and 63,000 MW by 2032. There are currently twenty operational nuclear power reactors in India, across six states. They contribute less than three per cent of the country's total energy generation, yet radioactively pollute at every stage of the nuclear fuel cycle: from mining and milling to reprocessing or disposal. There is no long-term radioactive waste disposal policy in India. India is one of the few countries in the world that is expanding its nuclear power sector at an enormous rate. Seven more nuclear reactors of 4800 MW installed capacity are under construction. At least thirty-six new nuclear reactors are planned or proposed. A critical subset of any country's nuclear safety approach is its radioactive waste management, in particular management of High Level Waste. By recognizing the facts that nuclear safety and waste management are of utmost importance for success of the nuclear energy program, India ratified the Convention on Nuclear Safety (CNS) in 2005 and has recently submitted its second National Report for review. The CNS essentially seeks to commit Parties to maintain a high level of safety by setting international benchmarks based on the IAEA fundamental principles of safety, which cover design, construction, operation, the

  16. ATALANTE, innovation for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    At Marcoule (France) CEA has been operating a facility called ATALANTE since the beginning of the eighties and dedicated to research on the nuclear fuel cycle. 4 lines of research are pursued: a technical support for nuclear industry, advanced nuclear fuel cycles, the recycling of minor actinides, and the vitrification of high level radioactive wastes. ATALANTE facility consists of 17 laboratories working on 250 glove boxes and 11 shielded hot cells. The latter allow the handling of highly gamma emitting materials through 59 workstations equipped with remote manipulatory arms, while the former allow the handling of contaminating (but low irradiating) materials like most actinides. In 2013 ATALANTE was rewarded the 'Nuclear historic landmark' by the American Nuclear Society that awards facilities that have led to major advances in scientific knowledge

  17. Project plan remove special nuclear material from PFP project plutonium finishing plant

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove Special Nuclear Material (SNM) Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This project plan is the top-level definitive project management document for PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Remove SNM Materials project. Any deviations to the document must be authorized through the appropriate change control process

  18. Modeling most likely pathways for smuggling radioactive and special nuclear materials on a worldwide multi-modal transportation network

    Energy Technology Data Exchange (ETDEWEB)

    Saeger, Kevin J [Los Alamos National Laboratory; Cuellar, Leticia [Los Alamos National Laboratory

    2010-10-28

    Nuclear weapons proliferation is an existing and growing worldwide problem. To help with devising strategies and supporting decisions to interdict the transport of nuclear material, we developed the Pathway Analysis, Threat Response and Interdiction Options Tool (PATRIOT) that provides an analytical approach for evaluating the probability that an adversary smuggling radioactive or special nuclear material will be detected during transit. We incorporate a global, multi-modal transportation network, explicit representation of designed and serendipitous detection opportunities, and multiple threat devices, material types, and shielding levels. This paper presents the general structure of PATRIOT, all focuses on the theoretical framework used to model the reliabilities of all network components that are used to predict the most likely pathways to the target.

  19. Special irradiation techniques

    International Nuclear Information System (INIS)

    Colomez, Gerard; Veyrat, J.F.

    1981-01-01

    Irradiation trials conducted on materials-testing reactors should provide a better understanding of the phenomena which characterize the working and evolution in time of electricity-generating nuclear reactors. The authors begin by outlining the objectives behind experimental irradiation (applied to the various nuclear chains) and then describe the special techniques deployed to achieve these objectives [fr

  20. Fuel handling system of Indian 500 MWe PHWR-evolution and innovations

    International Nuclear Information System (INIS)

    Sanatkumar, A.; Jit, I.; Muralidhar, G.

    1996-01-01

    India has gained rich experience in design, manufacture, testing, operation and maintenance of the Fuel Handling System of CANDU type PHWRs. When design and layout of the first 500 MWe PHWR was being evolved, it was possible for us to introduce many special and innovative features in the Fuel Handling System which are friendly for operations and maintenance personnel. Some of these are: Simple, robust and modular mechanisms for ease of maintenance; Shorter turnaround time for refuelling a channel by introduction of transit equipment between the Fuelling Machine (FM) Head and light water equipment; Optimised layout to transport spent fuel in straight and short path and also to facilitate direct wheeling out of the FM Head from the Reactor Building to the Service Building; Provision to operate the FM Head even when the Primary Heat Transport (PHT) System is open for maintenance; Control-console engineered for carrying out refuelling operations in the sitting position; and, Dedicated calibration and maintenance facility to facilitate quick replacement of the FM Head as a single unit. The above special features have been described in this paper. (author). 7 figs

  1. Fuel handling system of Indian 500 MWe PHWR-evolution and innovations

    Energy Technology Data Exchange (ETDEWEB)

    Sanatkumar, A; Jit, I; Muralidhar, G [Nuclear Power Corporation of India Ltd., Mumbai (India)

    1997-12-31

    India has gained rich experience in design, manufacture, testing, operation and maintenance of the Fuel Handling System of CANDU type PHWRs. When design and layout of the first 500 MWe PHWR was being evolved, it was possible for us to introduce many special and innovative features in the Fuel Handling System which are friendly for operations and maintenance personnel. Some of these are: Simple, robust and modular mechanisms for ease of maintenance; Shorter turnaround time for refuelling a channel by introduction of transit equipment between the Fuelling Machine (FM) Head and light water equipment; Optimised layout to transport spent fuel in straight and short path and also to facilitate direct wheeling out of the FM Head from the Reactor Building to the Service Building; Provision to operate the FM Head even when the Primary Heat Transport (PHT) System is open for maintenance; Control-console engineered for carrying out refuelling operations in the sitting position; and, Dedicated calibration and maintenance facility to facilitate quick replacement of the FM Head as a single unit. The above special features have been described in this paper. (author). 7 figs.

  2. ERROR HANDLING IN INTEGRATION WORKFLOWS

    Directory of Open Access Journals (Sweden)

    Alexey M. Nazarenko

    2017-01-01

    Full Text Available Simulation experiments performed while solving multidisciplinary engineering and scientific problems require joint usage of multiple software tools. Further, when following a preset plan of experiment or searching for optimum solu- tions, the same sequence of calculations is run multiple times with various simulation parameters, input data, or conditions while overall workflow does not change. Automation of simulations like these requires implementing of a workflow where tool execution and data exchange is usually controlled by a special type of software, an integration environment or plat- form. The result is an integration workflow (a platform-dependent implementation of some computing workflow which, in the context of automation, is a composition of weakly coupled (in terms of communication intensity typical subtasks. These compositions can then be decomposed back into a few workflow patterns (types of subtasks interaction. The pat- terns, in their turn, can be interpreted as higher level subtasks.This paper considers execution control and data exchange rules that should be imposed by the integration envi- ronment in the case of an error encountered by some integrated software tool. An error is defined as any abnormal behavior of a tool that invalidates its result data thus disrupting the data flow within the integration workflow. The main requirementto the error handling mechanism implemented by the integration environment is to prevent abnormal termination of theentire workflow in case of missing intermediate results data. Error handling rules are formulated on the basic pattern level and on the level of a composite task that can combine several basic patterns as next level subtasks. The cases where workflow behavior may be different, depending on user's purposes, when an error takes place, and possible error handling op- tions that can be specified by the user are also noted in the work.

  3. Swedish nuclear waste efforts

    International Nuclear Information System (INIS)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981

  4. U.S. N.R.C. special safeguards study on nuclear material control and accounting

    International Nuclear Information System (INIS)

    Smith, G.D.

    1976-01-01

    In Feb. 1975, NRC directed that an effort be made to determine a safeguards program for Pu recycle. This paper summarizes results of individual contractor evaluations of upgrading material control and accounting concepts as applied to strategically important special nuclear material and describes staff interpretations of these results as applied to future high-throughput fuel-cycle facilities. Real-time material control, design for physical inventory, Pu isotopics control and calorimetry, and material control and accounting for highly enriched uranium fuel materials were the concepts studied. 1 table, 15 references

  5. Estimation methods for process holdup of special nuclear materials

    International Nuclear Information System (INIS)

    Pillay, K.K.S.; Picard, R.R.; Marshall, R.S.

    1984-06-01

    The US Nuclear Regulatory Commission sponsored a research study at the Los Alamos National Laboratory to explore the possibilities of developing statistical estimation methods for materials holdup at highly enriched uranium (HEU)-processing facilities. Attempts at using historical holdup data from processing facilities and selected holdup measurements at two operating facilities confirmed the need for high-quality data and reasonable control over process parameters in developing statistical models for holdup estimations. A major effort was therefore directed at conducting large-scale experiments to demonstrate the value of statistical estimation models from experimentally measured data of good quality. Using data from these experiments, we developed statistical models to estimate residual inventories of uranium in large process equipment and facilities. Some of the important findings of this investigation are the following: prediction models for the residual holdup of special nuclear material (SNM) can be developed from good-quality historical data on holdup; holdup data from several of the equipment used at HEU-processing facilities, such as air filters, ductwork, calciners, dissolvers, pumps, pipes, and pipe fittings, readily lend themselves to statistical modeling of holdup; holdup profiles of process equipment such as glove boxes, precipitators, and rotary drum filters can change with time; therefore, good estimation of residual inventories in these types of equipment requires several measurements at the time of inventory; although measurement of residual holdup of SNM in large facilities is a challenging task, reasonable estimates of the hidden inventories of holdup to meet the regulatory requirements can be accomplished through a combination of good measurements and the use of statistical models. 44 references, 62 figures, 43 tables

  6. A computerized system for control and management of radionuclide inventory: application in nuclear medicine

    International Nuclear Information System (INIS)

    Hoory, S.; Levy, I.M.; Moskowitz, G.; Bandyopadhyay, D.; Vaugeois, J.C.

    1982-01-01

    An interactive computerized system for radioisotope management and instantaneous inventory is reported. The system is capable of handling operations such as filing, nuclear imaging and disposing of various radionuclides. All radiopharmaceutical transactions are achieved with the aid of a Prime 300 mini-computer of 192K words of high speed semi-conductor memory and over 120 mega bytes of disk storage. The system automatically corrects for the appropriate decay, monitors and updates the storage file after every subsequent study. The performed study is recorded in a special file, together with the time and data retrieved from the computer's real time clock at the time of the entry. The system provides an organized and complete bookkeeping of all records concerning radionuclide transactions. It is found to be simple, efficient, highly versatile, and drastically reduces the time of operation and errors in handling the radioisotope inventory. (author)

  7. Non-nuclear radiological emergencies. Special plan for radiological risk of the Valencian Community

    International Nuclear Information System (INIS)

    Rodríguez Rodrigo, I.; Piles Alepuz, I.; Peiró Juan, J.; Calvet Rodríguez, D.

    2015-01-01

    After the publication of the Radiological Hazard Basic Directive, Generalitat (the regional government in Valencian Community) initiated the edition of the pertinent Special Plan, with the objective to assemble the response of all the Security and Emergency Agencies, including the Armed Forces, in a radiological emergency affecting the territory of the Valencian Community, under a single hierarchy command. Being approved and homologated the Radiological Hazard Special Plan, Generalitat has undertaken the implementation process planned to finish in June 2015. Following the same process as other Plans, implementation is organized in a first informative stage, followed of a formative and training stage, and finishing with an activation exercise of the Plan. At the end of the process, is expected that every Agency will know their functions, the structure and organization in which the intervention takes place, the resources needed, and adapt their protocols to the Plan requirements. From the beginning, it has been essential working together with the Nuclear Safety Council, as is established in the agreement signed in order to collaborate in Planning, Preparedness and Response in Radiological Emergencies. [es

  8. Overview of remote handling technologies developed for inspection and maintenance of spent fuel management facilities in France

    Energy Technology Data Exchange (ETDEWEB)

    Desbats, Philippe [CEA - Direction de la Recherche Technologique / LIST, BP 6 - 92265, Fontenay-aux-Roses cedex (France); Piolain, Gerard [COGEMA-HAG/DMCO, AREVA NC SA, 2, rue Paul Dautier, BP 4, 78 141 Velizy Cedex (France)

    2006-07-01

    In the facilities of the end of the nuclear fuel cycle, like spent fuel storage pools, reprocessing plants, Plutonium-based fuel manufacturing plants or waste temporary storage units, materials handling must be carried out remotely, taking into account the nuclear radiating environment. In addition to the automation requirement, robotics equipment in the nuclear industry must be substituted to human operators in order to respect the ALARA principle. More over, remote handling technologies aim to improve the working conditions, as well as the quality of the work achieved by the operators. Ten years ago, COGEMA (AREVA Group) and CEA (French Atomic Energy Agency) started an ambitious R and D program in robotics and remote handling technologies applied to COGEMA spent fuel management facilities in France, with the aim to cover the requirements of the different plant life cycle steps. The paper gives an overview of the important developments that have been carried out by CEA and then transferred to the COGEMA industrial group. The range includes the next generation of servo-manipulators, long range inspection tools and carriers, nuclear versions of industrial robots, radiation hardened electronic systems, interactive environment modeling tools, as well as force-feedback master-slave generic control software for tele-operation systems. Some applications of this development are presented in the paper: - rad-hard electronic modules for robotic equipment which are used by COGEMA in high radiating environment; - long reach articulated carrier for inspection of spent full management blind cells; - new electrical force feedback master/slave system to improve the tele-operation of standard tele-manipulators; - generic control software for tele-manipulators. The results of the robotic program carried out by COGEMA and CEA have been very valuable for the introduction of new technologies inside nuclear industry. Innovative products and sub-systems can be integrated now in a large

  9. Development of a handling technology for underwater inspection and dismantling

    International Nuclear Information System (INIS)

    Rose, N.

    1994-01-01

    For the purpose of underwater inspection and dismantling of nuclear facilities, a prototype of a freely submersible, remote-controlled handling system was developed and tested under laboratory conditions. Particular interest was taken in the specific boundary conditions of the area of application and the methodological concept. The system was developed in three phases; in each phase, a prototype was constructed and tested. (orig.) [de

  10. Medication-handling challenges among visually impaired population

    Directory of Open Access Journals (Sweden)

    Ling Zhi-Han

    2017-01-01

    Full Text Available Objective: Visually impaired individuals are particularly at higher risk for experiencing a medication error. The aim of this study is to identify the problems encountered by the visually impaired population when handling their medication. Methods: A cross-sectional survey was conducted using an interviewer-guided questionnaire with 100 visually impaired individuals. The questionnaire comprised a series of questions in medication management. Results: All of the respondents perceived that self-administration of medication was a challenging task. A total of 89% of respondents were unable to read the prescription labels, 75% of respondents did not know the expiry date of their own medication, and 58% of respondents did not know the name of the medication. With regard to storage of medication, 72% of respondents did not practice appropriate methods to store their medication, and 80% of respondents kept the unused medication. All of the respondents disposed leftover medication through household rubbish. A total of 64% of respondents never practice medication review. Most (96% of them did not tell health-care providers when they faced difficulties in handling their medication. Conclusion: Most of the visually impaired individuals did not receive appropriate assistance regarding medicine use and having low awareness in medication management. This can lead to increased risk of medication errors or mismanagement among visually impaired population. Hence, effective strategies, especially in pharmaceutical care services, should be structured to assist this special population in medication handling.

  11. Nuclear Safety. Technical progress journal, April--June 1996: Volume 37, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Muhlheim, M D [ed.

    1996-01-01

    This journal covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.

  12. Remote handling equipment for CANDU retubing

    International Nuclear Information System (INIS)

    Crawford, G.S.; Lowe, H.

    1993-01-01

    Numet Engineering Ltd. has designed and supplied remote handling equipment for Ontario Hydro's retubing operation of its CANDU reactors at the Bruce Nuclear Generating Station. This equipment consists of ''Retubing Tool Carriers'' an'' Worktables'' which operate remotely or manually at the reactor face. Together they function to transport tooling to and from the reactor face, to position and support tooling during retubing operations, and to deliver and retrieve fuel channels and channel components. This paper presents the fundamentals of the process and discusses the equipment supplied in terms of its design, manufacturing, components and controls, to meet the functional and quality requirements of Ontario Hydro's retubing process. (author)

  13. Tritium handling facilities at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Anderson, J.L.; Damiano, F.A.; Nasise, J.E.

    1975-01-01

    A new tritium facility, recently activated at the Los Alamos Scientific Laboratory, is described. The facility contains a large drybox, associated gas processing system, a facility for handling tritium gas at pressures to approximately 100 MPa, and an effluent treatment system which removes tritium from all effluents prior to their release to the atmosphere. The system and its various components are discussed in detail with special emphasis given to those aspects which significantly reduce personnel exposures and atmospheric releases. (auth)

  14. Food handling and mastication in the carp (Cyprinus carpio L.)

    OpenAIRE

    Sibbing, F.A.

    1984-01-01

    The process of food handling in the common carp ( Cyprinus carpio L.) and its structures associated with feeding are analyzed. The aim of this study is to explain the relation between the the architecture of the head and its functions in food processing and to determine the specializations for some food types and the consequent restrictions for others. Such information improves our understanding of the trophic interrelations between different fish species living...

  15. The claims handling process of engineering insurance in South Africa

    Directory of Open Access Journals (Sweden)

    I.C. de Beer

    2015-05-01

    Full Text Available Due to technological developments, the complicated world of engineering and its associated products are continuously becoming more specialized. Short-term insurers provide engineering insurance to enable the owners and operators of engineering assets to combat the negative impact of the associated risks. It is, however, a huge challenge to the insurers of engineering insurance to manage the particular risks against the background of technological enhancement. The skills gap in the short-term insurance market and the engineering environment may be the main factor which inhibits the growth of the engineering insurance market. The objective of this research embodies the improvement of financial decision-making concerning the claims handling process of engineering insurance. Secondary as well as primary data were necessary to achieve the stated objective. The secondary data provided the background of the research and enabled the researchers to compile a questionnaire for the empirical survey. The questionnaire and a cover letter were sent to the top 10 short-term insurers in South Africa that are providing engineering insurance. Their perceptions should provide guidelines to other short-term insurers who are engaged in engineering insurance, as they are regarded as the market leaders of engineering insurance in South Africa. The empirical results of this research focus on the importance of various claims handling factors when assessing the claims handling process of engineering insurance, the problem areas in the claims handling process concerned, as well as how often the stipulations of engineering insurance policies are adjusted to take the claims handling factors into account.

  16. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    DeAnn Long; Michael Murphy

    2008-01-01

    Prior to April 2007, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site (NTS) was performed by the Radiological Health Instrumentation department. Calibration and performance testing on the PM-700 personnel portal monitor was performed, but there was no test program for the VM-250 vehicle portal monitor. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no performance test program. In April of 2007, the Material Control and Accountability Manager volunteered to take over performance testing of all SNM portal monitors at NTS in order to strengthen the program and meet U.S. Department of Energy Order requirements. This paper will discuss the following activities associated with developing a performance testing program: changing the culture, learning the systems, developing and implementing procedures, troubleshooting and repair, validating the process, physical control of equipment, acquisition of new systems, and implementing the performance test program

  17. Special Nuclear Material Portal Monitoring at the Nevada Test Site

    International Nuclear Information System (INIS)

    Mike Murphy

    2008-01-01

    In the past, acceptance and performance testing of the various Special Nuclear Material (SNM) monitoring devices at the Nevada Test Site has been performed by the Radiological Health Instrumentation Department. Calibration and performance tests on the PM-700 personnel portal monitor were performed but there was no test program for the VM-250 vehicle portal monitor because it had never been put into service. The handheld SNM monitors, the TSA model 470B, were being calibrated annually, but there was no program in place to test them quarterly. In April of 2007, the Material Control and Accountability (MC and A) Manager at the time decided that the program needed to be strengthened and MC and A took over performance testing of all SNM portal monitoring equipment. This paper will discuss the following activities associated with creating a performance testing program: changing the culture, learning the systems, writing procedures, troubleshooting/repairing, validating the process, control of equipment, acquisition of new systems, and running the program

  18. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  19. Method for handling nuclear fuel casks

    International Nuclear Information System (INIS)

    Weems, S.J.

    1976-01-01

    A heavy shielded nuclear fuel cask is lowered into and removed from a water filled spent fuel pool by providing a vertical guide tube in the pool, affixing to the bottom of the cask a base plate that approximates the transverse dimension of the guide tube, and lowering and elevating the cask and base plate assembly into and out of the pool by causing it to traverse within the guide tube. The guide tube and base plate coact to function as a dashpot, thereby cushioning and controlling the fall of the cask in the pool should it break loose while being lowered into or raised out of the pool. a specified approach path to the guide tube insures that the cask assembly will not fall into the pool, should it break loose on its approach to the guide tube

  20. Different aspects of safety in Nuclear Fuel Plant at Pitesti, Romania

    International Nuclear Information System (INIS)

    Ivana, T.; Epure, Gh.

    2009-01-01

    Nuclear Fuel Plant (FCN) is a facility that produces fuel bundles of CANDU-6 type for the CANDU nuclear power plant. Only natural and depleted uranium in bulk and itemized form are present as nuclear materials in this facility. Uranium and wastes from the plant are handled, processed, treated and stored throughout the entire facility. The nuclear materials with natural and depleted uranium are entirely under nuclear safeguards. The amount of uranium present in the plant in different forms and activities together with zircaloy, beryllium and other hazardous substances, wastes, explosive materials at high temperatures, etc. lead to special measures undertaken by Nuclear Safety Department (DNS) to ensure nuclear safety. Different aspects of safety are continuously monitored in the plant: operational safety, industrial safety, radiological safety, labour safety, informational safety. The emergency preparedness and response, physical protection and the security of the plant and of the transportation of radioactive materials are contributing to cover the multitude of safety aspects. The safety culture of workers built directly on the safety components completes this activity in the plant. In addition the aspects of safety, security and safeguards are in permanent synergy, parts of the three components being included in each other. In the future the policy of FCN will be focused so that any improvement of one of the safety components will be reflected in improving the other safety aspects. (authors)