WorldWideScience

Sample records for hand-supportable digital image

  1. Film-screen vs. digital radiography in rheumatoid arthritis of the hand. An ROC analysis

    International Nuclear Information System (INIS)

    Jonsson, A.; Borg, A.; Hannesson, P.; Herrlin, K.; Jonsson, K.; Sloth, M.; Pettersson, H.

    1994-01-01

    In a prospective investigation the diagnostic accuracy of filmscreen and digital radiography in rheumatoid arthritis of hands was compared. Seventy hands of 36 patients with established rheumatoid arthritis were included in the study. Each of 11 joints in every hand was evaluated regarding the following radiologic parameters: soft tissue swelling, joint space narrowing, erosions and periarticular osteopenia. The digital images were obtained with storage phosphor image plates and evaluated in 2 forms; as digital hard-copy on film and on a monitor of an interactive workstation. The digital images had a resolution of either 3.33 or 5.0 lp/mm. ROC curves were constructed and comparing the area under the curves no significant difference was found between the 3 different imaging forms in either resolution group for soft tissue swelling, joint space narrowing and erosions. The film-screen image evaluation of periarticular osteopenia was significantly better than the digital hard-copy one in the 3.33 lp/mm resolution group, but no significant difference was found in the 5.0 lp/mm group. These results support the view that currently available digital systems are capable of adequate diagnostic performance. (orig.)

  2. A natural approach to convey numerical digits using hand activity recognition based on hand shape features

    Science.gov (United States)

    Chidananda, H.; Reddy, T. Hanumantha

    2017-06-01

    This paper presents a natural representation of numerical digit(s) using hand activity analysis based on number of fingers out stretched for each numerical digit in sequence extracted from a video. The analysis is based on determining a set of six features from a hand image. The most important features used from each frame in a video are the first fingertip from top, palm-line, palm-center, valley points between the fingers exists above the palm-line. Using this work user can convey any number of numerical digits using right or left or both the hands naturally in a video. Each numerical digit ranges from 0 to9. Hands (right/left/both) used to convey digits can be recognized accurately using the valley points and with this recognition whether the user is a right / left handed person in practice can be analyzed. In this work, first the hand(s) and face parts are detected by using YCbCr color space and face part is removed by using ellipse based method. Then, the hand(s) are analyzed to recognize the activity that represents a series of numerical digits in a video. This work uses pixel continuity algorithm using 2D coordinate geometry system and does not use regular use of calculus, contours, convex hull and datasets.

  3. X-ray film digitization using a personal computer and hand-held scanner: a simple technique for storing images

    International Nuclear Information System (INIS)

    Munoz-Nunez, C. F.; Lloret-Alcaniz, A.

    1998-01-01

    To develop a simple, low-cost technique for the digitization of X-ray films for personal use. A 66-MHz 486 PC with 8 MB of RAM, a Logitech ScanMan 256 hand-held scanner and a standard negatoscope with the power source converted to direct current. Although the system was originally designed for the digitization of mammographies, it has also been used with computed tomography, magnetic resonance, digital angiography and ultrasonographic images, as well as plain X-rays. After a minimal training period, the system digitized X-ray films easily and rapidly. Although the scanning values vary depending on the type of image to be digitized, an input spatial resolution of 200 dpi and a contrast resolution of 256 levels of gray are generally adequate. Of the storage formats tested, JPEG presented the best quality/image size ratio. A simple, low-cost technique has been developed for the digitization of X-ray films. This technique enables the storage of images in a digital format, thus facilitating their presentation and transmission. (Author) 9 refs

  4. Digital tomosynthesis of hand joints for arthritis assessment

    International Nuclear Information System (INIS)

    Duryea, J.; Dobbins, J.T. III; Lynch, J.A.

    2003-01-01

    The two principal forms of hand arthritis, rheumatoid arthritis (RA) and osteoarthritis (OA) have large clinical and economic costs. Radiography has been shown to be a useful tool to assess the condition of the disease. A hand radiograph, however, is a two-dimensional projection of a three-dimensional object. In this report we present the results of a study that applied digital tomosynthesis to hand radiography in order to extract three-dimensional outcome measures that should be more sensitive to arthritis progression. The study was performed using simulated projection radiographs created using micro computed tomography (μCT) and a set of five dry-bone hand skeletons. These simulated projection images were then reconstructed into tomographic slices using the matrix inversion tomosynthesis (MITS) algorithm. The accuracy of the tomosynthesis reconstruction was evaluated by comparing the reconstructed images to a gold standard created using the μCT data. A parameter from image registration science, normalized mutual information, provided a quantifiable figure of merit. This study examined the effects of source displacement, number of reconstructed planes, number of acquisitions, noise added to the gray scale images, and errors in the location of a fiducial marker. We also optimized the reconstruction as a function of two variables k and α, that controlled the mixing of MITS with conventional shift-and-add tomosynthesis. A study using hand delineated joint margins demonstrated that MITS images provided a better measurement of average joint space width. We found good agreement between the MITS slices and the true planes. Both joint margins and trabecular structure were visible and the reconstructed slices showed additional structures not visible with the standard projection image. Using hand-delineated joint margins we compared the average joint space width of the gold standard slices to the MITS and projection images. A root-mean square deviation (RMSD), calculated

  5. Effect of data compression on diagnostic accuracy in digital hand and chest radiography

    Science.gov (United States)

    Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita

    1992-05-01

    Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.

  6. [Evaluating the maturity of IT-supported clinical imaging and diagnosis using the Digital Imaging Adoption Model : Are your clinical imaging processes ready for the digital era?

    Science.gov (United States)

    Studzinski, J

    2017-06-01

    The Digital Imaging Adoption Model (DIAM) has been jointly developed by HIMSS Analytics and the European Society of Radiology (ESR). It helps evaluate the maturity of IT-supported processes in medical imaging, particularly in radiology. This eight-stage maturity model drives your organisational, strategic and tactical alignment towards imaging-IT planning. The key audience for the model comprises hospitals with imaging centers, as well as external imaging centers that collaborate with hospitals. The assessment focuses on different dimensions relevant to digital imaging, such as software infrastructure and usage, workflow security, clinical documentation and decision support, data exchange and analytical capabilities. With its standardised approach, it enables regional, national and international benchmarking. All DIAM participants receive a structured report that can be used as a basis for presenting, e.g. budget planning and investment decisions at management level.

  7. Digitized hand-wrist radiographs: comparison of subjective and software-derived image quality at various compression ratios.

    Science.gov (United States)

    McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R

    2007-05-01

    The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.

  8. Digital image analysis

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Vainer, Ben; Steiniche, Torben

    2012-01-01

    Digital image analysis (DIA) is increasingly implemented in histopathological research to facilitate truly quantitative measurements, decrease inter-observer variation and reduce hands-on time. Originally, efforts were made to enable DIA to reproduce manually obtained results on histological slides...... reproducibility, application of stereology-based quantitative measurements, time consumption, optimization of histological slides, regions of interest selection and recent developments in staining and imaging techniques....

  9. Diagnosis and evaluation of diseases of the hand by intravenous digital subtraction angiography done by an improved method

    International Nuclear Information System (INIS)

    Minakuchi, Kazuo; Nakamura, Kenji; Kudoh, Hiroaki; Takashima, Sumio; Manabe, Takao; Kaminoh, Toshio; Onoyama, Yasuto

    1988-01-01

    Twenty patients with various diseases of the hand were studied by intravenous digital subtraction angiography (IV-DSA). We used clay preparation as a compensatory filter to improve the radiological conditions and increased local circulation by use of a hot compress. By IV-DSA done in this way, excellent or good images of the carpal arteries were obtained in 21 of 23 hands examined (91%). For the metacarpal region, images were excellent or good for 13 hands (57%), and for the digital region, for 4 (17%). The arteries of the hand could be seen in all studies, although sometimes the image was poor. Further improvements of images by IV-DSA should make it possible to use IV-DSA for screening and follow-up studies of many parts of the body. (author)

  10. Impacts of Digital Imaging versus Drawing on Student Learning in Undergraduate Biodiversity Labs

    Science.gov (United States)

    Basey, John M.; Maines, Anastasia P.; Francis, Clinton D.; Melbourne, Brett

    2014-01-01

    We examined the effects of documenting observations with digital imaging versus hand drawing in inquiry-based college biodiversity labs. Plant biodiversity labs were divided into two treatments, digital imaging (N = 221) and hand drawing (N = 238). Graduate-student teaching assistants (N = 24) taught one class in each treatment. Assessments…

  11. Qualification process of CR system and quantification of digital image quality

    Science.gov (United States)

    Garnier, P.; Hun, L.; Klein, J.; Lemerle, C.

    2013-01-01

    CEA Valduc uses several X-Ray generators to carry out many inspections: void search, welding expertise, gap measurements, etc. Most of these inspections are carried out on silver based plates. For several years, the CEA/Valduc has decided to qualify new devices such as digital plates or CCD/flat panel plates. On one hand, the choice of this technological orientation is to forecast the assumed and eventual disappearance of silver based plates; on the other hand, it is also to keep our skills mastering up-to-date. The main improvement brought by numerical plates is the continuous progress of the measurement accuracy, especially with image data processing. It is now common to measure defects thickness or depth position within a part. In such applications, data image processing is used to obtain complementary information compared to scanned silver based plates. This scanning procedure is harmful for measurements which imply a data corruption of the resolution, the adding of numerical noise and is time expensive. Digital plates enable to suppress the scanning procedure and to increase resolution. It is nonetheless difficult to define, for digital images, single criteria for the image quality. A procedure has to be defined in order to estimate quality of the digital data itself; the impact of the scanning device and the configuration parameters are also to be taken into account. This presentation deals with the qualification process developed by CEA/Valduc for digital plates (DUR-NDT) based on the study of quantitative criteria chosen to define a direct numerical image quality that could be compared with scanned silver based pictures and the classical optical density. The versatility of the X-Ray parameters is also discussed (X-ray tension, intensity, time exposure). The aim is to be able to transfer the year long experience of CEA/Valduc with silver-based plates inspection to these new digital plates supports. This is an industrial stake.

  12. Digital image information systems in radiology

    International Nuclear Information System (INIS)

    Greinacher, C.F.C.; Luetke, B.; Seufert, G.

    1987-01-01

    About 25% of all patient examinations are performed digitally in a today's radiological department. A computerized system is described that supports generation, transport, interpretation and archiving of digital radiological images (Picture Archiving and Communication System PACS). The technical features concerning image communication via local area networks, image storage on magnetic and optical media and digital workstations for image display and manipulation are described. A structured system architecture is introduced. It allows flexible adaption to individual organizations and minimizes the requirements of the communication network. (orig.) [de

  13. Functions of the digital image in Education: A methodological proposal for reading and writing the digital image on instructional screens

    Directory of Open Access Journals (Sweden)

    Mariella Milagros Azzato

    2011-07-01

    Full Text Available This research goes through the instructional possibilities that reading and writing the digital image have in Education. Along these lines, we are presenting this research that looks for, on one hand, to develop a methodological proposal for reading and writing the digital image, and on the other, to implement these methodologies in a course used as a study case and whose objective was to evaluate students' performance when writing screens for a learning object using the methodologies for reading and writing the digital image. The process for compiling date was based on the questionnaire technique, individual interviews and the analysis of course proposed activities. The application of the first questionnaire allowed us to determine students' knowledge level about the digital image before starting the course. The individual interview allowed us to determine the students' reading criteria gained after using the reading methodology for the digital image to analyse educational materials (Galavis, 2008; Azzato, 2009. The proposed activities for the course permitted us to value students' performance when reading and writing the digital image of a learning object. Finally, after course completion, the second questionnaire was applied in order to determine the students' acquired knowledge level about reading and writing an image on digital screens. The results obtained in each of the analysis allowed us to establish that the proposed methodologies were highly useful to write the educational image for the screens of each one of the learning objects created in the course.

  14. Panoramic images of conventional radiographs: digital panoramic dynamic images

    International Nuclear Information System (INIS)

    Schultze, M.

    2001-01-01

    The benefits of digital technic s to od ontology are evident. Instant images, the possibility to handle them, the reduction of exposition time to radiations, better quality image, better quality information, Stocking them in a compact disc, occupying very little space, allows an easy transport and duplication, as well as the possibility to transfer and save it in an electronica l support.This kind of communication allows the transmission of digital images and every other type of data, instantaneously and no matter distances or geographical borders. Anyway, we should point out that conventional and digital technic s reveal the same information contents

  15. Making the Case for Embedded Metadata in Digital Images

    DEFF Research Database (Denmark)

    Smith, Kari R.; Saunders, Sarah; Kejser, U.B.

    2014-01-01

    This paper discusses the standards, methods, use cases, and opportunities for using embedded metadata in digital images. In this paper we explain the past and current work engaged with developing specifications, standards for embedding metadata of different types, and the practicalities of data...... exchange in heritage institutions and the culture sector. Our examples and findings support the case for embedded metadata in digital images and the opportunities for such use more broadly in non-heritage sectors as well. We encourage the adoption of embedded metadata by digital image content creators...... and curators as well as those developing software and hardware that support the creation or re-use of digital images. We conclude that the usability of born digital images as well as physical objects that are digitized can be extended and the files preserved more readily with embedded metadata....

  16. Making the Case for Embedded Metadata in Digital Images

    DEFF Research Database (Denmark)

    Smith, Kari R.; Saunders, Sarah; Kejser, U.B.

    2014-01-01

    exchange in heritage institutions and the culture sector. Our examples and findings support the case for embedded metadata in digital images and the opportunities for such use more broadly in non-heritage sectors as well. We encourage the adoption of embedded metadata by digital image content creators......This paper discusses the standards, methods, use cases, and opportunities for using embedded metadata in digital images. In this paper we explain the past and current work engaged with developing specifications, standards for embedding metadata of different types, and the practicalities of data...... and curators as well as those developing software and hardware that support the creation or re-use of digital images. We conclude that the usability of born digital images as well as physical objects that are digitized can be extended and the files preserved more readily with embedded metadata....

  17. Digital image processing for radiography in nuclear power plants

    International Nuclear Information System (INIS)

    Heidt, H.; Rose, P.; Raabe, P.; Daum, W.

    1985-01-01

    With the help of digital processing of radiographic images from reactor-components it is possible to increase the security and objectiveness of the evaluation. Several examples of image processing procedures (contrast enhancement, density profiles, shading correction, digital filtering, superposition of images etc.) show the advantages for the visualization and evaluation of radiographs. Digital image processing can reduce some of the restrictions of radiography in nuclear power plants. In addition a higher degree of automation can be cost-saving and increase the quality of radiographic evaluation. The aim of the work performed was to to improve the readability of radiographs for the human observer. The main problem is lack of contrast and the presence of disturbing structures like weld seams. Digital image processing of film radiographs starts with the digitization of the image. Conventional systems use TV-cameras or scanners and provide a dynamic range of 1.5. to 3 density units, which are digitized to 256 grey levels. For the enhancement process it is necessary that the grey level range covers the density range of the important regions of the presented film. On the other hand the grey level coverage should not be wider than necessary to minimize the width of digitization steps. Poor digitization makes flaws and cracks invisible and spoils all further image processing

  18. An efficient architecture to support digital pathology in standard medical imaging repositories.

    Science.gov (United States)

    Marques Godinho, Tiago; Lebre, Rui; Silva, Luís Bastião; Costa, Carlos

    2017-07-01

    In the past decade, digital pathology and whole-slide imaging (WSI) have been gaining momentum with the proliferation of digital scanners from different manufacturers. The literature reports significant advantages associated with the adoption of digital images in pathology, namely, improvements in diagnostic accuracy and better support for telepathology. Moreover, it also offers new clinical and research applications. However, numerous barriers have been slowing the adoption of WSI, among which the most important are performance issues associated with storage and distribution of huge volumes of data, and lack of interoperability with other hospital information systems, most notably Picture Archive and Communications Systems (PACS) based on the DICOM standard. This article proposes an architecture of a Web Pathology PACS fully compliant with DICOM standard communications and data formats. The solution includes a PACS Archive responsible for storing whole-slide imaging data in DICOM WSI format and offers a communication interface based on the most recent DICOM Web services. The second component is a zero-footprint viewer that runs in any web-browser. It consumes data using the PACS archive standard web services. Moreover, it features a tiling engine especially suited to deal with the WSI image pyramids. These components were designed with special focus on efficiency and usability. The performance of our system was assessed through a comparative analysis of the state-of-the-art solutions. The results demonstrate that it is possible to have a very competitive solution based on standard workflows. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Fundamental concepts of digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Twogood, R.E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  20. Fundamental Concepts of Digital Image Processing

    Science.gov (United States)

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  1. Imaging of the digital arteries: Digital subtraction angiography versus conventional angiography

    International Nuclear Information System (INIS)

    Menanteau, B.P.; Treutenaere, J.M.; Marcus, C.; Ladam, V.; Gausserand, F.

    1986-01-01

    The authors report their experience with the use of digital subtraction angiography (DSA) and conventional angiography of the hand. Of the 95 patients in the study group, 80 underwent conventional angiography and 15 underwent DSA. They analyzed the studies with regard to the type and amount of contrast agent used, the number of radiographs needed, and the diagnostic quality of the images. Conventional angiography often requires general anesthesia, magnification, and pharmaco-angiographic techniques to improve the image-based diagnosis. In comparison with conventional angiography, intraarterial DSA is characterized by improved contrast sensitivity and inferior spatial resolution. However, DSA provides images as acceptable as those of conventional angiography. Smaller catheters can be used, and the examination is performed under local anesthesia. The authors conclude that intraarterial DSA is now the technique of choice for examining patients with chronic ischemia of the hand

  2. A hand-held beta imaging probe for FDG.

    Science.gov (United States)

    Singh, Bipin; Stack, Brendan C; Thacker, Samta; Gaysinskiy, Valeriy; Bartel, Twyla; Lowe, Val; Cool, Steven; Entine, Gerald; Nagarkar, Vivek

    2013-04-01

    Advances in radiopharmaceuticals and clinical understanding have escalated the use of intraoperative gamma probes in surgery. However, most probes on the market are non-imaging gamma probes that suffer from the lack of ancillary information of the surveyed tissue area. We have developed a novel, hand-held digital Imaging Beta Probe™ (IBP™) to be used in surgery in conjunction with beta-emitting radiopharmaceuticals such as (18)FDG, (131)I and (32)P for real-time imaging of a surveyed area with higher spatial resolution and sensitivity and greater convenience than existing instruments. We describe the design and validation of a hand-held beta probe intended to be used as a visual mapping device to locate and confirm excision of (18)FDG-avid primary tumors and metastases in an animal model. We have demonstrated a device which can generate beta images from (18)FDG avid lesions in an animal model. It is feasible to image beta irradiation in animal models of cancer given (18)FDG. This technology may be applied to clinical mapping of tumors and/or their metastases in the operating room. Visual image depiction of malignancy may aid the surgeon in localization and excision of lesions of interest.

  3. Digital cine-imaging

    International Nuclear Information System (INIS)

    Masuda, Kazuhiro

    1992-01-01

    Digitization of fluoroscopic images has been developed for the digital cine imaging system as a result of the computer technology, television technology, and popularization of interventional radiology. Present digital cine imaging system is able to offer images similar to cine film because of the higher operatability and better image quality with the development of interventional radiology. As a result, its higher usefulness for catheter diagnosis examination except for interventional radiology was reported, and the possibility of having filmless cine is close to becoming a reality. However several problems have been pointed out, such as spatial resolution, time resolution, storage and exchangeability of data, disconsolidated viewing functions, etc. Anyhow, digital cine imaging system has some unresolved points and lots the needs to be discussed. The tendency of digitization is the passage of the time and we have to promote a study for more useful digital cine imaging system in team medical treatment which centers on the patients. (author)

  4. Bone age assessment in Hispanic children: digital hand atlas compared with the Greulich and Pyle (G&P) atlas

    Science.gov (United States)

    Fernandez, James Reza; Zhang, Aifeng; Vachon, Linda; Tsao, Sinchai

    2008-03-01

    Bone age assessment is most commonly performed with the use of the Greulich and Pyle (G&P) book atlas, which was developed in the 1950s. The population of theUnited States is not as homogenous as the Caucasian population in the Greulich and Pyle in the 1950s, especially in the Los Angeles, California area. A digital hand atlas (DHA) based on 1,390 hand images of children of different racial backgrounds (Caucasian, African American, Hispanic, and Asian) aged 0-18 years was collected from Children's Hospital Los Angeles. Statistical analysis discovered significant discrepancies exist between Hispanic and the G&P atlas standard. To validate the usage of DHA as a clinical standard, diagnostic radiologists performed reads on Hispanic pediatric hand and wrist computed radiography images using either the G&P pediatric radiographic atlas or the Children's Hospital Los Angeles Digital Hand Atlas (DHA) as reference. The order in which the atlas is used (G&P followed by DHA or vice versa) for each image was prepared before actual reading begins. Statistical analysis of the results was then performed to determine if a discrepancy exists between the two readings.

  5. Digital image analysis of X-ray television with an image digitizer

    International Nuclear Information System (INIS)

    Mochizuki, Yasuo; Akaike, Hisahiko; Ogawa, Hitoshi; Kyuma, Yukishige

    1995-01-01

    When video signals of X-ray fluoroscopy were transformed from analog-to-digital ones with an image digitizer, their digital characteristic curves, pre-sampling MTF's and digital Wiener spectral could be measured. This method was advant ageous in that it was able to carry out data sampling because the pixel values inputted could be verified on a CRT. The system of image analysis by this method is inexpensive and effective in evaluating the image quality of digital system. Also, it is expected that this method can be used as a tool for learning the measurement techniques and physical characteristics of digital image quality effectively. (author)

  6. Digital knowledge in the coat pocket - hand-held personal digital assistants in radiology

    International Nuclear Information System (INIS)

    Niehues, S.M.; Froehlich, M.; Felix, R.; Lemke, A.J.

    2004-01-01

    The personal digital assistant (PDA) enables the independent access to large data in a pocket-sized format. The applications for hand-held computers are growing steadily and can support almost any kind of problem. An overview of the available hardware and software is provided and evaluated. Furthermore, the use of the PDA in the clinical daily routine is described. In view of the numerous software programs available in radiology, the range of software solutions for radiologists is presented. Despite the high acquisition cost, the PDA has already become the digital assistant for the radiologist. After a short time of getting used to the PDA, nobody wants to miss it at work or at home. New technical features and available software programs will continuously increase the integration of the PDA into the medical workflow in the near future. (orig.)

  7. Digital radiology and digitally formatted image management systems

    International Nuclear Information System (INIS)

    Cox, G.G.; Dwyer, S.J. III; Templeton, A.W.

    1987-01-01

    The number of diagnostic examinations performed with digitally formatted imaging equipment is increasing. Digital general-purpose and fluoroscopic radiology systems are being clinically evaluated. Digitizing conventional x-ray films, such as mammograms, frequently improves the diagnostic quality of the images. The digitizing process with laser has also afforded the opportunity to document required spatial resolution for digital imaging and network systems. The use of digitally formatted image instrumentation imposes new requirements on the acquisition, display and manipulation, transmission, hard copy image recording, and archiving of diagnostic data. Networking of digitally formatted image data offers many advantages for managing digital information. This paper identifies and describes digital radiographic systems. Parameters required for designing and implementing a digital image management system are outlined. Spatial and contrast resolution requirements are identified. The key parameters include the amount of image data generated each working day, the retrieval rate of the generated data, the display hardware and software needed for interactive diagnosis display stations, the requirements for analog hard copy generation, and on-line and long-term archiving requirements. These image management systems are often called PACS (Picture Archiving and Communication Systems)

  8. Digital fringe projection for hand surface coordinate variation analysis caused by osteoarthritis

    Science.gov (United States)

    Nor Haimi, Wan Mokhdzani Wan; Hau Tan, Cheek; Retnasamy, Vithyacharan; Vairavan, Rajendaran; Sauli, Zaliman; Roshidah Yusof, Nor; Hambali, Nor Azura Malini Ahmad; Aziz, Muhammad Hafiz Ab; Bakhit, Ahmad Syahir Ahmad

    2017-11-01

    Hand osteoarthritis is one of the most common forms of arthritis which impact millions of people worldwide. The disabling problem occurs when the protective cartilage on the boundaries of bones wear off over time. Currently, in order to identify hand osteoarthritis, special instruments namely X-ray scanning and MRI are used for the detection but it also has its limitations such as radiation exposure and can be quite costly. In this work, an optical metrology system based on digital fringe projection which comprises of an LCD projector, CCD camera and a personal computer has been developed to anticipate abnormal growth or deformation on the joints of the hand which are common symptoms of osteoarthritis. The main concept of this optical metrology system is to apply structured light as imaging source for surface change detection. The imaging source utilizes fringe patterns generated by C++ programming and is shifted by 3 phase shifts based on the 3 steps 2 shifts method. Phase wrapping technique and analysis were applied in order to detect the deformation of live subjects. The result has demonstrated a successful method of hand deformation detection based on the pixel tracking differences of a normal and deformed state.

  9. DHM (Digital Holography Microscope) for imaging cells

    International Nuclear Information System (INIS)

    Emery, Yves; Cuche, Etienne; Colomb, Tristan; Depeursinge, Christian; Rappaz, Benjamin; Marquet, Pierre; Magistretti, Pierre

    2007-01-01

    Light interaction with a sample modifies both intensity and phase of the illuminating wave. Any available supports for image recording are only sensitive to intensity, but Denis Gabor [P. Marquet, B. Rappaz, P. Magistretti, et. al. Digital Holography for quantitative phase-contrast imaging, Optics Letters, 30, 5, pp 291-93 (2005)] invented in 1948 a way to encode the phase as an intensity variation: the h ologram . Digital Holographic Microscopy (DHM) [D. Gabor, A new microscopic principle, Nature, 1948] implements digitally this powerful hologram. Characterization of various pollen grains and of morphology changes of neurones associated with hypotonic shock demonstrates the potential of DHM for imaging cells

  10. Imaging of hand injuries. Anatomic and radiodiagnostic considerations

    International Nuclear Information System (INIS)

    Schmitt, Rainer

    2011-01-01

    Imaging recommendations for assessing injuries of the forearm, wrist, metacarpus and the digits are given with respect to anatomic considerations. Furthermore, dedicated algorithms of advanced imaging are introduced with radiography as the primary diagnostic tool. High-resolution CT is used for detecting and staging the complex fractures of the radius and the wrist, whereas contrast-enhanced MRI serves for depicting the injured soft tissues. At the wrist, tears of the intrinsic ligaments and the TFCC are assessed with high accuracy when applying MR arthrography or CT arthrography. Dedicated radiologic tools as well as comprehensive reports are suggested in the management of the various hand injuries. (orig.)

  11. Digital cardiovascular imaging

    International Nuclear Information System (INIS)

    Myerowitz, P.D.; Mistretta, C.A.; Shaw, C.-G.; Van Lysel, M.S.; Swanson, D.K.; Lasser, T.A.; Dhanani, S.P.; Zarnstorff, W.C.; Vander Ark, C.R.; Dobbins, J.T.; Peppler, W.W.; Crummy, A.B.

    1982-01-01

    The authors have previously reported on real time digital fluoroscopic subtraction techniques developed in the laboratory during the past 10 years. This paper outlines basic apparatus configuration and imaging modes used for preliminary studies involving visualization of the canine and human heart. All of the techniques involve the use of real time digital subtraction processing of data from an image intensified television fluoroscopy system. Based on the configuration of the digital processing equipment a number of different imaging modalities are possible. A brief description of the apparatus and these imaging modes is given. (Auth.)

  12. Improving digital image watermarking by means of optimal channel selection

    NARCIS (Netherlands)

    Huynh-The, Thien; Banos Legran, Oresti; Lee, Sungyoung; Yoon, Yongik; Le-Tien, Thuong

    2016-01-01

    Supporting safe and resilient authentication and integrity of digital images is of critical importance in a time of enormous creation and sharing of these contents. This paper presents an improved digital image watermarking model based on a coefficient quantization technique that intelligently

  13. Digital Imaging. Chapter 16

    Energy Technology Data Exchange (ETDEWEB)

    Clunie, D. [CoreLab Partners, Princeton (United States)

    2014-09-15

    The original means of recording X ray images was a photographic plate. Nowadays, all medical imaging modalities provide for digital acquisition, though globally, the use of radiographic film is still widespread. Many modalities are fundamentally digital in that they require image reconstruction from quantified digital signals, such as computed tomography (CT) and magnetic resonance imaging (MRI)

  14. A digital library of radiology images.

    Science.gov (United States)

    Kahn, Charles E

    2006-01-01

    A web-based virtual library of peer-reviewed radiological images was created for use in education and clinical decision support. Images were obtained from open-access content of five online radiology journals and one e-learning web site. Figure captions were indexed by Medical Subject Heading (MeSH) codes, imaging modality, and patient age and sex. This digital library provides a new, valuable online resource.

  15. Hands-free image capture, data tagging and transfer using Google Glass: a pilot study for improved wound care management.

    Directory of Open Access Journals (Sweden)

    Gabriel Aldaz

    Full Text Available Chronic wounds, including pressure ulcers, compromise the health of 6.5 million Americans and pose an annual estimated burden of $25 billion to the U.S. health care system. When treating chronic wounds, clinicians must use meticulous documentation to determine wound severity and to monitor healing progress over time. Yet, current wound documentation practices using digital photography are often cumbersome and labor intensive. The process of transferring photos into Electronic Medical Records (EMRs requires many steps and can take several days. Newer smartphone and tablet-based solutions, such as Epic Haiku, have reduced EMR upload time. However, issues still exist involving patient positioning, image-capture technique, and patient identification. In this paper, we present the development and assessment of the SnapCap System for chronic wound photography. Through leveraging the sensor capabilities of Google Glass, SnapCap enables hands-free digital image capture, and the tagging and transfer of images to a patient's EMR. In a pilot study with wound care nurses at Stanford Hospital (n=16, we (i examined feature preferences for hands-free digital image capture and documentation, and (ii compared SnapCap to the state of the art in digital wound care photography, the Epic Haiku application. We used the Wilcoxon Signed-ranks test to evaluate differences in mean ranks between preference options. Preferred hands-free navigation features include barcode scanning for patient identification, Z(15 = -3.873, p < 0.001, r = 0.71, and double-blinking to take photographs, Z(13 = -3.606, p < 0.001, r = 0.71. In the comparison between SnapCap and Epic Haiku, the SnapCap System was preferred for sterile image-capture technique, Z(16 = -3.873, p < 0.001, r = 0.68. Responses were divided with respect to image quality and overall ease of use. The study's results have contributed to the future implementation of new features aimed at enhancing mobile hands-free digital

  16. Hands-Free Image Capture, Data Tagging and Transfer Using Google Glass: A Pilot Study for Improved Wound Care Management

    Science.gov (United States)

    Aldaz, Gabriel; Shluzas, Lauren Aquino; Pickham, David; Eris, Ozgur; Sadler, Joel; Joshi, Shantanu; Leifer, Larry

    2015-01-01

    Chronic wounds, including pressure ulcers, compromise the health of 6.5 million Americans and pose an annual estimated burden of $25 billion to the U.S. health care system. When treating chronic wounds, clinicians must use meticulous documentation to determine wound severity and to monitor healing progress over time. Yet, current wound documentation practices using digital photography are often cumbersome and labor intensive. The process of transferring photos into Electronic Medical Records (EMRs) requires many steps and can take several days. Newer smartphone and tablet-based solutions, such as Epic Haiku, have reduced EMR upload time. However, issues still exist involving patient positioning, image-capture technique, and patient identification. In this paper, we present the development and assessment of the SnapCap System for chronic wound photography. Through leveraging the sensor capabilities of Google Glass, SnapCap enables hands-free digital image capture, and the tagging and transfer of images to a patient’s EMR. In a pilot study with wound care nurses at Stanford Hospital (n=16), we (i) examined feature preferences for hands-free digital image capture and documentation, and (ii) compared SnapCap to the state of the art in digital wound care photography, the Epic Haiku application. We used the Wilcoxon Signed-ranks test to evaluate differences in mean ranks between preference options. Preferred hands-free navigation features include barcode scanning for patient identification, Z(15) = -3.873, p < 0.001, r = 0.71, and double-blinking to take photographs, Z(13) = -3.606, p < 0.001, r = 0.71. In the comparison between SnapCap and Epic Haiku, the SnapCap System was preferred for sterile image-capture technique, Z(16) = -3.873, p < 0.001, r = 0.68. Responses were divided with respect to image quality and overall ease of use. The study’s results have contributed to the future implementation of new features aimed at enhancing mobile hands-free digital

  17. Imaging and computational considerations for image computed permeability: Operating envelope of Digital Rock Physics

    Science.gov (United States)

    Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias

    2018-06-01

    This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.

  18. Epistemic Function and Ontology of Analog and Digital Images

    Directory of Open Access Journals (Sweden)

    Aleksandra Łukaszewicz Alcaraz

    2016-01-01

    Full Text Available The important epistemic function of photographic images is their active role in construction and reconstruction of our beliefs concerning the world and human identity, since we often consider photographs as presenting reality or even the Real itself. Because photography can convince people of how different social and ethnic groups and even they themselves look, documentary projects and the dissemination of photographic practices supported the transition from disciplinary society to the present-day society of control. While both analog and digital images are formed from the same basic materia, the ways in which this matter appears are distinctive. In the case of analog photography, we deal with physical and chemical matter, whereas with digital images we face electronic matter. Because digital photography allows endless modification of the image, we can no longer believe in the truthfulness of digital images.

  19. Digital imaging in health care

    International Nuclear Information System (INIS)

    1987-01-01

    This volume describes equipment for the generation and processing of digital images in medicine. Separate chapters deal with international trade i this equipment, with economic and social considerations of digital imaging, with experiences in the use and production of digital imaging equipment and with the current status and likely trends in applications of digital imaging. 84 refs, figs and tabs

  20. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  1. Classifying Physical Morphology of Cocoa Beans Digital Images using Multiclass Ensemble Least-Squares Support Vector Machine

    Science.gov (United States)

    Lawi, Armin; Adhitya, Yudhi

    2018-03-01

    The objective of this research is to determine the quality of cocoa beans through morphology of their digital images. Samples of cocoa beans were scattered on a bright white paper under a controlled lighting condition. A compact digital camera was used to capture the images. The images were then processed to extract their morphological parameters. Classification process begins with an analysis of cocoa beans image based on morphological feature extraction. Parameters for extraction of morphological or physical feature parameters, i.e., Area, Perimeter, Major Axis Length, Minor Axis Length, Aspect Ratio, Circularity, Roundness, Ferret Diameter. The cocoa beans are classified into 4 groups, i.e.: Normal Beans, Broken Beans, Fractured Beans, and Skin Damaged Beans. The model of classification used in this paper is the Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM), a proposed improvement model of SVM using ensemble method in which the separate hyperplanes are obtained by least square approach and the multiclass procedure uses One-Against- All method. The result of our proposed model showed that the classification with morphological feature input parameters were accurately as 99.705% for the four classes, respectively.

  2. Force-independent distribution of correlated neural inputs to hand muscles during three-digit grasping.

    Science.gov (United States)

    Poston, Brach; Danna-Dos Santos, Alessander; Jesunathadas, Mark; Hamm, Thomas M; Santello, Marco

    2010-08-01

    The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG-EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle x force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897-0.997). Similarly, EMG-EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups.

  3. Dupuytren’s disease digital radius IV right hand and carpal tunnel syndrome on ipsilateral hand

    Directory of Open Access Journals (Sweden)

    Teona Sebe Ioana

    2015-11-01

    Full Text Available Dupuytren’s contracture is a fibroproliferative disease whose etiology and pathophysiology are unclear and controversial. It is a connective tissue disorder, which takes part in the palmar’s fibromatosis category and has common characteristics with the healing process. Dupuytren’s disease is characterized by the flexion contracture of the hand due to palmar and digital aponevrosis. It generally affects the 4th digital radius, followed by the 5th one. Without surgery, it leads to functional impotence of those digital rays and/or hand. It is associated with other diseases and situational conditions like Peyronie’s disease, the Lederhose disease (plantar fibromatosis, Garrod’s digital knuckle-pads, diabetes, epilepsy, alcoholism, micro traumatisms, stenosing tenosynovitis and not the least with carpal tunnel syndrome. The carpal tunnel syndrome is a peripheral neuropathy with the incarceration of the median nerve at the ARC level, expressed clinically by sensory and motor disturbances in the distribution territory of the median nerve, which cause functional limitations of daily activities of the patient. After the failure of the nonsurgical treatment or the appearance of the motor deficit, is established the open or endoscopic surgical treatment with the release of the median nerve. Postoperative recovery in both diseases is crucial to the functionality of the affected upper limb and to the quality of the patient’s life. The patient, a 61 years old man, admitted to the clinic for the functional impotence of the right hand, for the permanent flexion contracture of the metacarpophalangeal joint (MCP and proximal interphalangeal joint (PIP of the 4th finger with extension deficit, for the damage of the thumb pulp clamp of the 4th finger, for nocturnal paresthesia of fingers I-III and pain that radiates into the fingertips. After clinical, paraclinical, imagistic and electrical investigations, surgery is practiced partial aponevrectomy

  4. Digital imaging in dentistry.

    Science.gov (United States)

    Essen, S Donovan

    2011-01-01

    Information technology is vital to operations, marketing, accounting, finance and administration. One of the most exciting and quickly evolving technologies in the modern dental office is digital applications. The dentist is often the business manager, information technology officer and strategic planning chief for his small business. The information systems triangle applies directly to this critical manager supported by properly trained ancillary staff and good equipment. With emerging technology driving all medical disciplines and the rapid pace at which it emerges, it is vital for the contemporary practitioner to keep abreast of the newest information technology developments. This article compares the strategic and operational advantages of digital applications, specifically imaging. The focus of this paper will be on digital radiography (DR), 3D computerized tomography, digital photography and digitally-driven CAD/CAM to what are now considered obsolescing modalities and contemplates what may arrive in the future. It is the purpose of this essay to succinctly evaluate the decisions involved in the role, application and implications of employing this tool in the dental environment

  5. Control Design and Digital Implementation of a Fast 2-Degree-of-Freedom Translational Optical Image Stabilizer for Image Sensors in Mobile Camera Phones.

    Science.gov (United States)

    Wang, Jeremy H-S; Qiu, Kang-Fu; Chao, Paul C-P

    2017-10-13

    This study presents design, digital implementation and performance validation of a lead-lag controller for a 2-degree-of-freedom (DOF) translational optical image stabilizer (OIS) installed with a digital image sensor in mobile camera phones. Nowadays, OIS is an important feature of modern commercial mobile camera phones, which aims to mechanically reduce the image blur caused by hand shaking while shooting photos. The OIS developed in this study is able to move the imaging lens by actuating its voice coil motors (VCMs) at the required speed to the position that significantly compensates for imaging blurs by hand shaking. The compensation proposed is made possible by first establishing the exact, nonlinear equations of motion (EOMs) for the OIS, which is followed by designing a simple lead-lag controller based on established nonlinear EOMs for simple digital computation via a field-programmable gate array (FPGA) board in order to achieve fast response. Finally, experimental validation is conducted to show the favorable performance of the designed OIS; i.e., it is able to stabilize the lens holder to the desired position within 0.02 s, which is much less than previously reported times of around 0.1 s. Also, the resulting residual vibration is less than 2.2-2.5 μm, which is commensurate to the very small pixel size found in most of commercial image sensors; thus, significantly minimizing image blur caused by hand shaking.

  6. Applying and extending ISO/TC42 digital camera resolution standards to mobile imaging products

    Science.gov (United States)

    Williams, Don; Burns, Peter D.

    2007-01-01

    There are no fundamental differences between today's mobile telephone cameras and consumer digital still cameras that suggest many existing ISO imaging performance standards do not apply. To the extent that they have lenses, color filter arrays, detectors, apertures, image processing, and are hand held, there really are no operational or architectural differences. Despite this, there are currently differences in the levels of imaging performance. These are driven by physical and economic constraints, and image-capture conditions. Several ISO standards for resolution, well established for digital consumer digital cameras, require care when applied to the current generation of cell phone cameras. In particular, accommodation of optical flare, shading non-uniformity and distortion are recommended. We offer proposals for the application of existing ISO imaging resolution performance standards to mobile imaging products, and suggestions for extending performance standards to the characteristic behavior of camera phones.

  7. A CAD system and quality assurance protocol for bone age assessment utilizing digital hand atlas

    Science.gov (United States)

    Gertych, Arakadiusz; Zhang, Aifeng; Ferrara, Benjamin; Liu, Brent J.

    2007-03-01

    Determination of bone age assessment (BAA) in pediatric radiology is a task based on detailed analysis of patient's left hand X-ray. The current standard utilized in clinical practice relies on a subjective comparison of the hand with patterns in the book atlas. The computerized approach to BAA (CBAA) utilizes automatic analysis of the regions of interest in the hand image. This procedure is followed by extraction of quantitative features sensitive to skeletal development that are further converted to a bone age value utilizing knowledge from the digital hand atlas (DHA). This also allows providing BAA results resembling current clinical approach. All developed methodologies have been combined into one CAD module with a graphical user interface (GUI). CBAA can also improve the statistical and analytical accuracy based on a clinical work-flow analysis. For this purpose a quality assurance protocol (QAP) has been developed. Implementation of the QAP helped to make the CAD more robust and find images that cannot meet conditions required by DHA standards. Moreover, the entire CAD-DHA system may gain further benefits if clinical acquisition protocol is modified. The goal of this study is to present the performance improvement of the overall CAD-DHA system with QAP and the comparison of the CAD results with chronological age of 1390 normal subjects from the DHA. The CAD workstation can process images from local image database or from a PACS server.

  8. Digital imaging primer

    CERN Document Server

    Parkin, Alan

    2016-01-01

    Digital Imaging targets everyyone with an interest in digital imaging, be they professional or private, who uses even quite modest equipment such as a PC, digital camera and scanner, a graphics editor such as Paint, and an inkjet printer. Uniquely, it is intended to fill the gap between highly technical texts for academics (with access to expensive equipment) and superficial introductions for amateurs. The four-part treatment spans theory, technology, programs and practice. Theory covers integer arithmetic, additive and subtractive color, greyscales, computational geometry, and a new presentation of discrete Fourier analysis; Technology considers bitmap file structures, scanners, digital cameras, graphic editors, and inkjet printers; Programs develops several processing tools for use in conjunction with a standard Paint graphics editor and supplementary processing tools; Practice discusses 1-bit, greyscale, 4-bit, 8-bit, and 24-bit images for the practice section. Relevant QBASIC code is supplied an accompa...

  9. Imaging sunlight using a digital spectroheliograph

    CERN Document Server

    Harrison, Ken M

    2016-01-01

    Ken M. Harrison's latest book is a complete guide for amateur astronomers who want to obtain detailed narrowband images of the Sun using a digital spectroheliograph (SHG). The SHG allows the safe imaging of the Sun without the expense of commercial ‘etalon’ solar filters. As the supporting software continues to be refined, the use of the digital spectroheliograph will become more and more mainstream and has the potential to replace the expensive solar filters currently in use. The early chapters briefly explain the concept of the SHG and how it can produce an image from the solar spectrum. A comparison of the currently available narrow band solar filters is followed by a detailed analysis of the critical design, construction and assembly features of the SHG. The design and optimum layout of the instrument is discussed to allow evaluation of performance. This information explains how to assemble a fully functional SHG using readily available components. The software required to process the images is exp...

  10. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  11. Methods of digital image processing

    International Nuclear Information System (INIS)

    Doeler, W.

    1985-01-01

    Increasing use of computerized methods for diagnostical imaging of radiological problems will open up a wide field of applications for digital image processing. The requirements set by routine diagnostics in medical radiology point to picture data storage and documentation and communication as the main points of interest for application of digital image processing. As to the purely radiological problems, the value of digital image processing is to be sought in the improved interpretability of the image information in those cases where the expert's experience and image interpretation by human visual capacities do not suffice. There are many other domains of imaging in medical physics where digital image processing and evaluation is very useful. The paper reviews the various methods available for a variety of problem solutions, and explains the hardware available for the tasks discussed. (orig.) [de

  12. Analog and digital image quality:

    OpenAIRE

    Sardo, Alberto

    2004-01-01

    Background. Lastly the X ray facilities are moving to a slow, but continuous process of digitalization. The dry laser printers allow hardcopy images with optimum resolution and contrast for all the modalities. In breast imaging, thedelay of digitalization depends to the high cost of digital systems and, attimes, to the doubts of the diagnostic accuracy of reading the breast digital images. Conclusions. The Screen film mammography (SFM) is the most efficient diagnostic modality to detect the b...

  13. The Image Quality Translator – A Way to Support Specification of Imaging Requirements

    DEFF Research Database (Denmark)

    Kejser, Ulla Bøgvad; Bech, Mogens

    2015-01-01

    Archives, libraries, and museums run numerous imaging projects to digitize physical works and collections of cultural heritage. This study presents a tool called the 'Image Quality Translator' that is being designed at the Royal Library to support the planning of digitization projects and to make...... the process of specifying and controlling imaging requirements more efficient. The tool seeks to translate between the language used by collection managers and curators to express needs for image quality, and the more technical terms and metrics used by imaging experts and photographers to express...

  14. Your fate is in your hands? Handedness, digit ratio (2D:4D), and selection to a national talent development system.

    Science.gov (United States)

    Baker, Joseph; Kungl, Ann-Marie; Pabst, Jan; Strauß, Bernd; Büsch, Dirk; Schorer, Jörg

    2013-01-01

    Over the past decade a small evidence base has highlighted the potential importance of seemingly innocuous variables related to one's hands, such as hand dominance and the relative length of the second and fourth digits (2D:4D ratio), to success in sport. This study compared 2D:4D digit ratio and handedness among handball players selected to advance in a national talent development system with those not selected. Participants included 480 youth handball players (240 females and 240 males) being considered as part of the talent selection programme for the German Youth National team. Hand dominance and digit ratio were compared to age-matched control data using standard t-tests. There was a greater proportion of left-handers compared to the normal population in males but not in females. There was also a lower digit ratio in both females and males. However, there were no differences between those selected for the next stage of talent development and those not selected on either handedness or digit ratio. These results add support for general effects for both digit ratio and handedness in elite handball; however, these factors seem inadequate to explain talent selection decisions at this level.

  15. Digital stereoscopic imaging

    Science.gov (United States)

    Rao, A. Ravishankar; Jaimes, Alejandro

    1999-05-01

    The convergence of inexpensive digital cameras and cheap hardware for displaying stereoscopic images has created the right conditions for the proliferation of stereoscopic imagin applications. One application, which is of growing importance to museums and cultural institutions, consists of capturing and displaying 3D images of objects at multiple orientations. In this paper, we present our stereoscopic imaging system and methodology for semi-automatically capturing multiple orientation stereo views of objects in a studio setting, and demonstrate the superiority of using a high resolution, high fidelity digital color camera for stereoscopic object photography. We show the superior performance achieved with the IBM TDI-Pro 3000 digital camera developed at IBM Research. We examine various choices related to the camera parameters, image capture geometry, and suggest a range of optimum values that work well in practice. We also examine the effect of scene composition and background selection on the quality of the stereoscopic image display. We will demonstrate our technique with turntable views of objects from the IBM Corporate Archive.

  16. Validation of hand and foot anatomical feature measurements from smartphone images

    Science.gov (United States)

    Amini, Mohammad; Vasefi, Fartash; MacKinnon, Nicholas

    2018-02-01

    A smartphone mobile medical application, previously presented as a tool for individuals with hand arthritis to assess and monitor the progress of their disease, has been modified and expanded to include extraction of anatomical features from the hand (joint/finger width, and angulation) and foot (length, width, big toe angle, and arch height index) from smartphone camera images. Image processing algorithms and automated measurements were validated by performing tests on digital hand models, rigid plastic hand models, and real human hands and feet to determine accuracy and reproducibility compared to conventional measurement tools such as calipers, rulers, and goniometers. The mobile application was able to provide finger joint width measurements with accuracy better than 0.34 (+/-0.25) millimeters. Joint angulation measurement accuracy was better than 0.50 (+/-0.45) degrees. The automatically calculated foot length accuracy was 1.20 (+/-1.27) millimeters and the foot width accuracy was 1.93 (+/-1.92) millimeters. Hallux valgus angle (used in assessing bunions) accuracy was 1.30 (+/-1.29) degrees. Arch height index (AHI) measurements had an accuracy of 0.02 (+/-0.01). Combined with in-app documentation of symptoms, treatment, and lifestyle factors, the anatomical feature measurements can be used by both healthcare professionals and manufacturers. Applications include: diagnosing hand osteoarthritis; providing custom finger splint measurements; providing compression glove measurements for burn and lymphedema patients; determining foot dimensions for custom shoe sizing, insoles, orthotics, or foot splints; and assessing arch height index and bunion treatment effectiveness.

  17. Diagnostic imaging of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Rainer [Hospital for Cardiovascular Diseases, Bad Neustadt an der Saale (Germany). Dept. of Radiology; Lanz, Ulrich [Perlach Hospital, Munich (Germany). Dept. of Hand Surgery

    2008-07-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  18. Diagnostic imaging of the hand

    International Nuclear Information System (INIS)

    Schmitt, Rainer; Lanz, Ulrich

    2008-01-01

    With its complex anatomy and specialized biomechanics, the human hand has always presented physicians with a unique challenge when it comes to diagnosing and treating the diseases that afflict it. And while recent decades have seen a rapid increase in the number of therapeutic options, many diseases and injuries of the hand are still commonly misinterpreted. In diagnostic imaging of the hand, an interdisciplinary team, comprisingspecialists in radiology, surgery, and rheumatology, presents a comprehensive,reliable guide to this topographically intricate area. Highlights include: - More than 1000 high-quality illustrations - All state-of-the-art imaging modalities-including multidetector CT, with 2D displays and 3D reconstructions, and contrast-enhanced MRI with multi-channel, phased-array coils - An overview of all currently used methods of examination - A detailed presentation of the anatomic and functional foundations necessary for diagnosis - Full coverage of all disorders of the hand - Systematic treatment of each disease's definition, pathogenesis, and clinical symptoms, according to a graduated diagnostic plan - Easy-to-use format, featuring crisp images and line drawings seamlessly integrated with concise text, summary tables, and handy checklists - A heavily cross-referenced appendix of differential diagnosis tables - Emphasis on interdisciplinary consultation throughout designed to help both radiologists and clinicians develop the most efficient and effective strategies for evaluating and treating patients, Diagnostic imaging of the hand will leave specialists of all levels with a fresh appreciation for - and a richer understanding of - the expanding array of cutting-edge alternatives for diagnosing and treating disorders of the hand. (orig.)

  19. Osteoporosis: a new approach of digital processing of radiological images

    International Nuclear Information System (INIS)

    Salles, Adilson Dias; Braz, Valeria Silva

    1998-01-01

    The authors applied a method based on digital processing of radiological images (fast Fourier transform) to analyze the radius distal epiphysis and calcaneus spongy bone architecture. The study revealed distinct patterns of trabecular distribution. Prior studies about osteoporosis have focused on bone density quantification and its role on fracture prediction. However, resistance to fractures (mechanical strength) is also determined by structural arrangement of bone. THe digital processing (spectral analysis) was applied to radiological images of the radius and calcaneus from 15 normal and osteopenic individuals. Normal bone trabeculae showed an individualized behavior (stress lines). On the other hand, porotic bone trabeculae revealed a diffuse pattern (honey comb). The scattered frequency components showed that the porotic bone trabeculae were remodeled. This process would be responsible for the maintenance of its physical properties. (author)

  20. Digital vascular imaging

    International Nuclear Information System (INIS)

    Ludwig, J.W.; Engels, B.C.H.

    1981-01-01

    Digitalizing videosignals from an image intensifying TV-chain, followed by subtraction, contrast intensifying, and reformation to analogous signal deliver angiography pictures of high quality after intravenous injection of the contrast medium. As the examination is only little invasive it can be carried out on outdoor patients or in the polyclinics. The possibilities of the digital vessel imagination (DVI) are shown at vessel images of different parts of the body; a 36 cm image intensifyer which can be switched to 3 different sorts of operation and has a plumbicon-TV recording tube is used as receiver. (orig.) [de

  1. Digital X-ray Imaging in Dentistry

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    1999-01-01

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  2. Digital X-ray Imaging in Dentistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Dankook University, Yongin (Korea, Republic of)

    1999-08-15

    In dentistry, Radio Visio Graphy was introduced as a first electronic dental x-ray imaging modality in 1989. Thereafter, many types of direct digital radiographic systems have been produced in the last decade. They are based either on charge-coupled device (CCD) or on storage phosphor technology. In addition, new types of digital radiographic system using amorphous selenium, image intensifier etc. are under development. Advantages of digital radiographic system are elimination of chemical processing, reduction in radiation dose, image processing, computer storage, electronic transfer of images and so on. Image processing includes image enhancement, image reconstruction, digital subtraction, etc. Especially digital subtraction and reconstruction can be applied in many aspects of clinical practice and research. Electronic transfer of images enables filmless dental hospital and teleradiology/teledentistry system. Since the first image management and communications system (IMACS) for dentomaxillofacial radiology was reported in 1992, IMACS in dental hospital has been increasing. Meanwhile, researches about computer-assisted diagnosis, such as structural analysis of bone trabecular patterns of mandible, feature extraction, automated identification of normal landmarks on cephalometric radiograph and automated image analysis for caries or periodontitis, have been performed actively in the last decade. Further developments in digital radiographic imaging modalities, image transmission system, imaging processing and automated analysis software will change the traditional clinical dental practice in the 21st century.

  3. Digital imaging in cardiovascular radiology

    International Nuclear Information System (INIS)

    Heintzen, P.H.; Brennecke, R.

    1983-01-01

    The present book contains 27 papers presented at an international symposium on digital imaging in cardiovascular radiology held in Kiel in 1982. The main themes were as follows. Introductory reviews, digital systems for X-ray video imaging, quantitative X-ray image analysis, and clinical applications. (MG)

  4. Managing digitally formatted diagnostic image data

    International Nuclear Information System (INIS)

    Templeton, A.W.; Dwyer, S.J.

    1985-01-01

    Diagnostic radiologists are very comfortable using analog radiographic film and interpreting its recorded images. To improve patient care, the radiologist has sought the finest quality radiographic film for use with the best radiographic imaging systems. The proper choice and use of x-ray tubes, generators, film-screen combinations, and contrast media has occupied the professional attention of the radiologist since the inception of radiology. Image quality can be significantly improved with digitally formatted diagnostic imaging systems by providing dynamic ranges in excess of those possible with analog x-ray films. In a CT scanner, the digital acquisition and reconstruction system can obtain a dynamic range (contrast resolution) of 10,000 to 1. Digital subtraction angiography systems achieve 10-bit dynamic ranges for each of the acquired television frames. Increases in the dynamic ranges of the various imaging modalities have been coupled with improved spatial resolution. A digitally formatted image is a two-dimensional, numerical array of discrete image elements. Each picture element is called a pixel. Each pixel has a discrete size. Figure 15.1 illustrates a digitally formatted image depicting the spatial resolution, array size, and quantization or numerical range of the pixel values. Currently, 512 x 512 image arrays are standard. Development of 1024 x 1024 digital arrays are underway. Significant improvements have also been achieved in the rates at which digital diagnostic imaging data can be acquired, manipulated, and archived

  5. Could digital imaging be an alternative for digital colorimeters?

    Science.gov (United States)

    Caglar, Alper; Yamanel, Kivanc; Gulsahi, Kamran; Bagis, Bora; Ozcan, Mutlu

    2010-12-01

    This study evaluated the colour parameters of composite and ceramic shade guides determined using a colorimeter and digital imaging method with illuminants at different colour temperatures. Two different resin composite shade guides, namely Charisma (Heraeus Kulzer) and Premise (Kerr Corporation), and two different ceramic shade guides, Vita Lumin Vacuum (VITA Zahnfabrik) and Noritake (Noritake Co.), were evaluated at three different colour temperatures (2,700 K, 2,700-6,500 K, and 6500 K) of illuminants. Ten shade tabs were selected (A1, A2, A3, A3,5, A4, B1, B2, B3, C2 and C3) from each shade guide. CIE Lab values were obtained using digital imaging and a colorimeter (ShadeEye NCC Dental Chroma Meter, Shofu Inc.). The data were analysed using two-way ANOVA, and Pearson's correlation. While mean L* values of both composite and ceramic shade guides were not affected from the colour temperature, L* values obtained with the colorimeter showed significantly lower values than those of the digital imaging (p colorimeter and digital imaging did not show significant differences (p > 0.05). For both composite and ceramic shade guides, L* and b* values obtained from colorimeter and digital imaging method presented a high level of correlation. High-level correlations were also acquired for a* values in all shade guides except for the Charisma composite shade guide. Digital imaging method could be an alternative for the colorimeters unless the proper object-camera distance, digital camera settings and suitable illumination conditions could be supplied. However, variations in shade guides, especially for composites, may affect the correlation.

  6. Digital imaging in diagnostic radiology

    International Nuclear Information System (INIS)

    Newell, J.D. Jr.; Kelsey, C.A.

    1990-01-01

    This monograph on digital imaging provides a basic overview of this field at the present time. This paper covers clinical application, including subtraction angiography; chest radiology; genitourinary, gastrointestinal, and breast radiology; and teleradiology. The chest section also includes an explanation of multiple beam equalization radiography. The remaining chapters discuss some of the technical aspects of digital radiology. It includes the basic technology of digital radiography, image compression, and reconstruction information on the economics of digital radiography

  7. Digital image monitoring to optimise safe port operation

    CSIR Research Space (South Africa)

    Phelp, D

    2008-11-01

    Full Text Available This paper describes a low cost video system ‘Harbour Watch’, which can be used to support safe port operations, especially in developing countries. Preset digital images are geo-referenced and then archived for later analysis to improve...

  8. Digital image intensifier radiography: first experiences with the DSI (Digital Spot Imaging)

    International Nuclear Information System (INIS)

    Rueckforth, J.; Wein, B.; Stargardt, A.; Guenther, R.W.

    1995-01-01

    We performed a comparative study of digitally and conventionally acquired images in gastrointestinal examinations. Radiation dose and spatial resolution were determined in a water phantom. In 676 examinations with either conventional or digital imaging (system: Diagnost 76, DSI) the number of images and the duration of the fluoroscopy time were compared. 101 examinations with digital as well as conventional documentation were evaluated by using 5 criteria describing the diagnostic performance. The entrance dose of the DSI is 12% to 36% of the film/screen system and the spatial resolution of the DSI may be better than that of a film/screen system with a speed of 200. The fluoroscopy time shows no significant difference between DSI and the film/screen technique. In 2 of 4 examination modes significantly more images were produced by the DSI. With exception of the criterion of edge sharpness, DSI yields a significantly inferior assessment compared with the film/screen technique. (orig./MG) [de

  9. Digital image analysis of NDT radiographs

    International Nuclear Information System (INIS)

    Graeme, W.A. Jr.; Eizember, A.C.; Douglass, J.

    1989-01-01

    Prior to the introduction of Charge Coupled Device (CCD) detectors the majority of image analysis performed on NDT radiographic images was done visually in the analog domain. While some film digitization was being performed, the process was often unable to capture all the usable information on the radiograph or was too time consuming. CCD technology now provides a method to digitize radiographic film images without losing the useful information captured in the original radiograph in a timely process. Incorporating that technology into a complete digital radiographic workstation allows analog radiographic information to be processed, providing additional information to the radiographer. Once in the digital domain, that data can be stored, and fused with radioscopic and other forms of digital data. The result is more productive analysis and management of radiographic inspection data. The principal function of the NDT Scan IV digital radiography system is the digitization, enhancement and storage of radiographic images

  10. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... of conflict-related images raise issues of knowledge production and research....

  11. Optimal image resolution for digital storage of radiotherapy-planning images

    International Nuclear Information System (INIS)

    Baba, Yuji; Furusawa, Mitsuhiro; Murakami, Ryuji; Baba, Takashi; Yokoyama, Toshimi; Nishimura, Ryuichi; Takahashi, Mutsumasa

    1998-01-01

    Purpose: To evaluate the quality of digitized radiation-planning images at different resolution and to determine the optimal resolution for digital storage. Methods and Materials: Twenty-five planning films were scanned and digitized using a film scanner at a resolution of 72 dots per inch (dpi) with 8-bit depth. The resolution of scanned images was reduced to 48, 36, 24, and 18 dpi using computer software. Image qualities of these five images (72, 48, 36, 24, and 18 dpi) were evaluated and given scores (4 = excellent; 3 = good; 2 = fair; and 1 = poor) by three radiation oncologists. An image data compression algorithm by the Joint Photographic Experts Group (JPEG) (not reversible and some information will be lost) was also evaluated. Results: The scores of digitized images with 72, 48, 36, 24, and 17 dpi resolution were 3.8 ± 0.3, 3.5 ± 0.3, 3.3 ± 0.5, 2.7 ± 0.5, and 1.6 ± 0.3, respectively. The quality of 36-dpi images were definitely worse compared to 72-dpi images, but were good enough as planning films. Digitized planning images with 72- and 36-dpi resolution requires about 800 and 200 KBytes, respectively. The JPEG compression algorithm produces little degradation in 36-dpi images at compression ratios of 5:1. Conclusion: The quality of digitized images with 36-dpi resolution was good enough as radiation-planning images and required 200 KBytes/image

  12. Diagnostic image quality of video-digitized chest images

    International Nuclear Information System (INIS)

    Winter, L.H.; Butler, R.B.; Becking, W.B.; Warnars, G.A.O.; Haar Romeny, B. ter; Ottes, F.P.; Valk, J.-P.J. de

    1989-01-01

    The diagnostic accuracy obtained with the Philips picture archiving and communications subsystem was investigated by means of an observer performance study using receiver operating characteristic (ROC) analysis. The image qualities of conventional films and video digitized images were compared. The scanner had a 1024 x 1024 x 8 bit memory. The digitized images were displayed on a 60 Hz interlaced display monitor 1024 lines. Posteroanterior (AP) roetgenograms of a chest phantom with superimposed simulated interstitial pattern disease (IPD) were produced; there were 28 normal and 40 abnormal films. Normal films were produced by the chest phantom alone. Abnormal films were taken of the chest phantom with varying degrees of superimposed simulated intersitial disease (PND) for an observer performance study, because the results of a simulated interstitial pattern disease study are less likely to be influenced by perceptual capabilities. The conventional films and the video digitized images were viewed by five experienced observers during four separate sessions. Conventional films were presented on a viewing box, the digital images were displayed on the monitor described above. The presence of simulated intersitial disease was indicated on a 5-point ROC certainty scale by each observer. We analyzed the differences between ROC curves derived from correlated data statistically. The mean time required to evaluate 68 digitized images is approximately four times the mean time needed to read the convential films. The diagnostic quality of the video digitized images was significantly lower (at the 5% level) than that of the conventional films (median area under the curve (AUC) of 0.71 and 0.94, respectively). (author). 25 refs.; 2 figs.; 4 tabs

  13. Digital image processing of periapical radiographs with low dose of radiation

    International Nuclear Information System (INIS)

    Kerbauy, Warley David; Moraes, Luiz Cesar de

    1996-01-01

    The aim of the study was to evaluate whether digitized images obtained from peri apical radiographs taken with low dose of radiation could be improved with the aid of a computer software (Photo Styler) for digital treatment. Serial and standardized radiographs of molar and pre molar areas were studied. A total of 57 images equivalent to the radiographs taken with reduced exposure time (60 and 80% of the time considered normal), digitized and treated, were submitted to the evaluation of seven examiners which compared them with those images without treatment. It was verified that about 80% of the images equivalent to the radiographs taken with 60% reduction of ordinary exposure time were considered to having quality for supporting diagnosis. As for the images taken with 80% reduction of ordinary exposure time, about 50% of them were considered suitable for the same purpose. (author)

  14. The Neuro-Image: Alain Resnais's Digital Cinema without the Digits

    NARCIS (Netherlands)

    Pisters, P.

    2011-01-01

    This paper proposes to read cinema in the digital age as a new type of image, the neuroimage. Going back to Gilles Deleuze's cinema books and it is argued that the neuro-image is based in the future. The cinema of Alain Resnais is analyzed as a neuro-image and digital cinema .

  15. Three-dimensional facial digitization using advanced digital image correlation.

    Science.gov (United States)

    Nguyen, Hieu; Kieu, Hien; Wang, Zhaoyang; Le, Hanh N D

    2018-03-20

    Presented in this paper is an effective technique to acquire the three-dimensional (3D) digital images of the human face without the use of active lighting and artificial patterns. The technique is based on binocular stereo imaging and digital image correlation, and it includes two key steps: camera calibration and image matching. The camera calibration involves a pinhole model and a bundle-adjustment approach, and the governing equations of the 3D digitization process are described. For reliable pixel-to-pixel image matching, the skin pores and freckles or lentigines on the human face serve as the required pattern features to facilitate the process. It employs feature-matching-based initial guess, multiple subsets, iterative optimization algorithm, and reliability-guided computation path to achieve fast and accurate image matching. Experiments have been conducted to demonstrate the validity of the proposed technique. The simplicity of the approach and the affordable cost of the implementation show its practicability in scientific and engineering applications.

  16. The hand of birds revealed by early ostrich embryos

    Science.gov (United States)

    Feduccia, Alan; Nowicki, Julie

    2002-08-01

    The problem of resolving the homology of the digits of the avian hand has been framed as a conflict between paleontological and embryological evidence, the former thought to support a hand composed of digits I, II, III, because of similarity of the phalangeal formulae of the earliest known bird Archaeopteryx to that of Mesozoic pentadactyl archosaurs, while embryological evidence has traditionally favored a II, III, IV avian hand. We have identified the critical developmental period for the major features of the avian skeleton in a primitive bird, the ostrich. Analysis of digit anlagen in the avian hand has revealed those for digits/metacarpals I and V, thus confirming previous embryological studies that indirectly suggested that the avian hand comprises digits II, III, IV, and was primitively pentadactyl.

  17. Whole slide images and digital media in pathology education, testing, and practice: the Oklahoma experience.

    Science.gov (United States)

    Fung, Kar-Ming; Hassell, Lewis A; Talbert, Michael L; Wiechmann, Allan F; Chaser, Brad E; Ramey, Joel

    2012-01-01

    Examination of glass slides is of paramount importance in pathology training. Until the introduction of digitized whole slide images that could be accessed through computer networks, the sharing of pathology slides was a major logistic issue in pathology education and practice. With the help of whole slide images, our department has developed several online pathology education websites. Based on a modular architecture, this program provides online access to whole slide images, still images, case studies, quizzes and didactic text at different levels. Together with traditional lectures and hands-on experiences, it forms the back bone of our histology and pathology education system for residents and medical students. The use of digitized whole slide images has a.lso greatly improved the communication between clinicians and pathologist in our institute.

  18. Digital Image Quantitative Evaluations for Low Cost Film Digitizers Height Determination

    International Nuclear Information System (INIS)

    Khairul Anuar Mohd Salleh; Arshad Yassin; Ahmad Nasir Yusof; Noorhazleena Azaman

    2016-01-01

    Non Destructive Testing (NDT) technology contributes significant improvement to the quality of industrial products, and the integrity of equipment and plants. Introduction of powerful computers and reliable imaging technology has had significant impact on the traditional nuclear based NDT technology. Demand for faster, reliable, low cost, and flexible technology is rapidly increased. With the growing demand for more efficient digital archiving, digital image analysis, and reporting results with a low cost technology, one cannot deny the importance of having another cheaper solution. This project will apply fundamental principle of image digitization to be used in building up a low cost film digitization solution. The height of the film digitization was carefully determined by examining each digital images produced. Three (3) repetitive quantitative evaluations (Modulation Transfer Function [MTF], Characteristic Transfer Curve [CTC], and Contrast to Noise Ratio [CNR]) were performed at different condition to assist with the determination of the low cost film digitizers height. All 3 evaluations were successfully applied and the most appropriate height was successfully determined. (author)

  19. Temporary Nerve Block at Selected Digits Revealed Hand Motor Deficits in Grasping Tasks

    Directory of Open Access Journals (Sweden)

    Aude Carteron

    2016-11-01

    Full Text Available Peripheral sensory feedback plays a crucial role in ensuring correct motor execution throughout hand grasp control. Previous studies utilized local anesthesia to deprive somatosensory feedback in the digits or hand, observations included sensorimotor deficits at both corticospinal and peripheral levels. However, the questions of how the disturbed and intact sensory input integrate and interact with each other to assist the motor program execution, and whether the motor coordination based on motor output variability between affected and non-affected elements (e.g., digits becomes interfered by the local sensory deficiency, have not been answered. The current study aims to investigate the effect of peripheral deafferentation through digital nerve blocks at selective digits on motor performance and motor coordination in grasp control. Our results suggested that the absence of somatosensory information induced motor deficits in hand grasp control, as evidenced by reduced maximal force production ability in both local and non-local digits, impairment of force and moment control during object lift and hold, and attenuated motor synergies in stabilizing task performance variables, namely the tangential force and moment of force. These findings implied that individual sensory input is shared across all the digits and the disturbed signal from local sensory channel(s has a more comprehensive impact on the process of the motor output execution in the sensorimotor integration process. Additionally, a feedback control mechanism with a sensation-based component resides in the formation process for the motor covariation structure.

  20. Digital fluoroscopy: a new development in medical imaging

    International Nuclear Information System (INIS)

    Maher, K.P.; Malone, J.F.; Dublin Inst. of Technology

    1986-01-01

    Medical fluoroscopy is briefly reviewed and video-image digitization is described. Image processing requirements and image processors available for digital fluoroscopy are discussed in detail. Specific reference is made to an application of digital fluoroscopy in the imaging of blood-vessels. This application involves an image substraction technique which is referred to as digital subtraction angiography (DSA). A number of DSA images of relevance to the discussion are included. (author)

  1. Specters in the Archive: Faculty Digital Image Collections and the Problems of Invisibility

    Science.gov (United States)

    Beaudoin, Joan E.

    2011-01-01

    This paper presents the findings of a research study which investigated the digital preservation practices among two faculty user groups, archeologists and art historians. This faculty's knowledge of digital preservation practices and their perceptions and emotions concerning the digital images they had created and, or collected to support their…

  2. X-ray images in the digital mode

    International Nuclear Information System (INIS)

    Buchmann, F.; Balter, S.

    1981-01-01

    In addition to computed tomography which presents actually the most important processing and transfer procedure of digital X-ray images, application of real time addition and substraction of X-ray images in a digital mode has found considerable interest. An estimation of the information contents of both digital and analog images is made in close relation to applications. As example of an image processing system on digital base a recently developed system for intravenous arteriography is described: the Philips-DVI. (orig.) [de

  3. Study on the Image Quality Comparison between in Digital RT and Film RT

    International Nuclear Information System (INIS)

    Park, Sang Ki; Ahn, Yean Shik; Gil, Doo Song

    2011-01-01

    Conventional film radiographic test has been generally and widely used in the inspection on the weldment for quality assurance. On the other hand, since the analog RT is well known for typical time and cost consuming method with complex process of inspection, the industry has researched various ways how to improve radiographic test technology. In this study, we verified the fact that digital RT provides a lot more benefit in effectively detecting defects, ever film details, through digital processing of image enhancement, compared to film RT. As a result, we reached conclusion that digital RT is positively able to replace the film RT in industry in part or in whole

  4. Image processing techniques for digital orthophotoquad production

    Science.gov (United States)

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  5. Functional and cosmetic outcome of single-digit ray amputation in hand.

    Science.gov (United States)

    Bhat, A K; Acharya, A M; Narayanakurup, J K; Kumar, B; Nagpal, P S; Kamath, A

    2017-12-01

    To assess patient satisfaction, functional and cosmetic outcomes of single-digit ray amputation in hand and identify factors that might affect the outcome. Forty-five patients who underwent ray amputation were evaluated, 37 males and eight females whose mean age was 36.6 years ranging between 15 and 67 years. Twenty-eight patients had dominant hand involvement. Twenty-one patients underwent primary ray amputation, and 24 patients had secondary ray amputation. Eight out of the 23 patients with central digit injuries underwent transposition. Grip strength, pinch strength, tactile sensibility and functional evaluation using Result Assessment Scale (RAS) and DASH score were analysed. Cosmetic assessment was performed using visual analogue scale (VAS) for cosmesis. Median time of assessment after surgery was 20 months. Average loss of grip strength and pinch strength was found to be 43.3 and 33.6%, respectively. Average RAS score was 3.75. Median DASH score was 23.4. Eighty-three percentage of patients had excellent or good cosmesis on the VAS. Transposition causes significant increase in DASH scores for central digit ray amputations but was cosmetically superior. Middle finger ray amputation had the maximum loss of grip strength, and index finger ray amputation had greater loss of pinch strength. Affection of neighbouring digits caused greater grip and pinch loss, and a higher DASH score. Primary ray resection decreased the total disability and eliminated the costs of a second procedure. Following ray amputation, one can predict an approximate 43.3% loss of grip strength and 33.6% loss of pinch strength. The patients can be counselled regarding the expected time off from work, amount of disability and complications after a single-digit ray amputation. Majority of the patients can return to the same occupation after a period of dedicated hand therapy. Therapeutic, Level III.

  6. Surgical amputation of the digit: an investigation into the technical variations among hand surgeons.

    Science.gov (United States)

    Li, Andrew; Meunier, Matthew; Rennekampff, Hans-Oliver; Tenenhaus, Mayer

    2013-01-01

    Digital injuries are common and frequently complicate occupational hazards and trauma. The management of these injuries often necessitates digital amputation, and a variety of different amputation techniques are advocated and employed by hand surgeons. In this survey study, we investigate the variation in technical detail among a group of hand surgeons when performing digital amputations, specifically the preferred management of the residual articular cartilage, transected nerves, and phalangeal contouring. We reviewed the literature on techniques in digital amputation and created a 7-question survey that targeted controversial issues within this specific topic. We then sent this survey electronically to the members of the American Society for Surgery of the Hand and reviewed the responses of the respondents (n = 592, 20%). There was a mixed response regarding whether or not to remove the articular cartilage when disarticulating, nearly a 50% split between the respondents. Most would perform a "pull and resect" technique for transected nerves. Phalangeal contouring was generally agreed upon, though the technique in doing so varied from performing condylectomies, to bony contouring only, to some combination of both. We detected a substantial variation in technique among our group of hand surgeons regarding the treatment of articular cartilage and the method of phalangeal contouring. There was more consensus regarding the treatment of transected nerve. It is interesting that to date, the aforementioned issues in digital amputation have not been critically evaluated by definitive and well-controlled studies.

  7. Image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Manninen, H.; Partanen, K.; Lehtovirta, J.; Matsi, P.; Soimakallio, S.

    1992-01-01

    The usefulness of digital image processing of chest radiographs was evaluated in a clinical study. In 54 patients, chest radiographs in the posteroanterior projection were obtained by both 14 inch digital image intensifier equipment and the conventional screen-film technique. The digital radiographs (512x512 image format) viewed on a 625 line monitor were processed in 3 different ways: 1.standard display; 2.digital edge enhancement for the standard display; 3.inverse intensity display. The radiographs were interpreted independently by 3 radiologists. Diagnoses were confirmed by CT, follow-up radiographs and clinical records. Chest abnormalities of the films analyzed included 21 primary lung tumors, 44 pulmonary nodules, 16 cases with mediastinal disease, 17 with pneumonia /atelectasis. Interstitial lung disease, pleural plaques, and pulmonary emphysema were found in 30, 18 and 19 cases respectively. Sensitivity of conventional radiography when averaged overall findings was better than that of digital techniques (P<0.001). Differences in diagnostic accuracy measured by sensitivity and specificity between the 3 digital display modes were small. Standard image display showed better sensitivity for pulmonary nodules (0.74 vs 0.66; P<0.05) but poorer specificity for pulmonary emphysema (0.85 vs 0.93; P<0.05) compared with inverse intensity display. It is concluded that when using 512x512 image format, the routine use of digital edge enhancement and tone reversal at digital chest radiographs is not warranted. (author). 12 refs.; 4 figs.; 2 tabs

  8. Compression and archiving of digital images

    International Nuclear Information System (INIS)

    Huang, H.K.

    1988-01-01

    This paper describes the application of a full-frame bit-allocation image compression technique to a hierarchical digital image archiving system consisting of magnetic disks, optical disks and an optical disk library. The digital archiving system without the compression has been in clinical operation in the Pediatric Radiology for more than half a year. The database in the system consists of all pediatric inpatients including all images from computed radiography, digitized x-ray films, CT, MR, and US. The rate of image accumulation is approximately 1,900 megabytes per week. The hardware design of the compression module is based on a Motorola 68020 microprocessor, A VME bus, a 16 megabyte image buffer memory board, and three Motorola digital signal processing 56001 chips on a VME board for performing the two-dimensional cosine transform and the quantization. The clinical evaluation of the compression module with the image archiving system is expected to be in February 1988

  9. Advanced digital image archival system using MPEG technologies

    Science.gov (United States)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  10. New directions in pediatric digital imaging

    International Nuclear Information System (INIS)

    Fletcher, B.D.; Adams, R.B.; Blackham, W.C.

    1985-01-01

    In this chapter the authors describe several simple experiments performed utilizing digital equipment which apply to clinical situations in pediatrics and which suggest future directions for research in digital imaging. They also discuss experimental systems which they believe will overcome certain limitations of current equipment and might be applicable to pediatric digital imaging in the future

  11. Application of digital-image-correlation techniques in analysing ...

    Indian Academy of Sciences (India)

    Basis theory of strain analysis using the digital image correlation method .... Type 304N Stainless Steel (Modulus of Elasticity = 193 MPa, Tensile Yield .... also proves the accuracy of the qualitative analyses by using the DIC ... We thank the National Science Council of Taiwan for supporting this research through grant. No.

  12. Hand and foot pressures in the aye-aye (Daubentonia madagascariensis) reveal novel biomechanical trade-offs required for walking on gracile digits.

    Science.gov (United States)

    Kivell, Tracy L; Schmitt, Daniel; Wunderlich, Roshna E

    2010-05-01

    Arboreal animals with prehensile hands must balance the complex demands of bone strength, grasping and manipulation. An informative example of this problem is that of the aye-aye (Daubentonia madagascariensis), a rare lemuriform primate that is unusual in having exceptionally long, gracile fingers specialized for foraging. In addition, they are among the largest primates to engage in head-first descent on arboreal supports, a posture that should increase loads on their gracile digits. We test the hypothesis that aye-ayes will reduce pressure on their digits during locomotion by curling their fingers off the substrate. This hypothesis was tested using simultaneous videographic and pressure analysis of the hand, foot and digits for five adult aye-ayes during horizontal locomotion and during ascent and descent on a 30 degrees instrumented runway. Aye-ayes consistently curled their fingers during locomotion on all slopes. When the digits were in contact with the substrate, pressures were negligible and significantly less than those experienced by the palm or pedal digits. In addition, aye-ayes lifted their hands vertically off the substrate instead of 'toeing-off' and descended head-first at significantly slower speeds than on other slopes. Pressure on the hand increased during head-first descent relative to horizontal locomotion but not as much as the pressure increased on the foot during ascent. This distribution of pressure suggests that aye-ayes shift their weight posteriorly during head-first descent to reduce loads on their gracile fingers. This research demonstrates several novel biomechanical trade-offs to deal with complex functional demands on the mammalian skeleton.

  13. Digital image envelope: method and evaluation

    Science.gov (United States)

    Huang, H. K.; Cao, Fei; Zhou, Michael Z.; Mogel, Greg T.; Liu, Brent J.; Zhou, Xiaoqiang

    2003-05-01

    Health data security, characterized in terms of data privacy, authenticity, and integrity, is a vital issue when digital images and other patient information are transmitted through public networks in telehealth applications such as teleradiology. Mandates for ensuring health data security have been extensively discussed (for example The Health Insurance Portability and Accountability Act, HIPAA) and health informatics guidelines (such as the DICOM standard) are beginning to focus on issues of data continue to be published by organizing bodies in healthcare; however, there has not been a systematic method developed to ensure data security in medical imaging Because data privacy and authenticity are often managed primarily with firewall and password protection, we have focused our research and development on data integrity. We have developed a systematic method of ensuring medical image data integrity across public networks using the concept of the digital envelope. When a medical image is generated regardless of the modality, three processes are performed: the image signature is obtained, the DICOM image header is encrypted, and a digital envelope is formed by combining the signature and the encrypted header. The envelope is encrypted and embedded in the original image. This assures the security of both the image and the patient ID. The embedded image is encrypted again and transmitted across the network. The reverse process is performed at the receiving site. The result is two digital signatures, one from the original image before transmission, and second from the image after transmission. If the signatures are identical, there has been no alteration of the image. This paper concentrates in the method and evaluation of the digital image envelope.

  14. Image quality in digital radiography

    International Nuclear Information System (INIS)

    Kuhn, H.

    1986-01-01

    The contribution deals with the potentials of digital radiography and critically evaluates the advantages of drawbacks of the image intensifier-tv-digital system; digitalisation of the X-ray film and scanning of luminescent storage foils. The evaluation is done in comparison with the image quality of the traditional, large-size X-ray picture. (orig.) [de

  15. Image rejects in general direct digital radiography

    International Nuclear Information System (INIS)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-01-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality

  16. Image rejects in general direct digital radiography.

    Science.gov (United States)

    Hofmann, Bjørn; Rosanowsky, Tine Blomberg; Jensen, Camilla; Wah, Kenneth Hong Ching

    2015-10-01

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality.

  17. Teknik Pengolahan Citra Digital Berdomain Spasial untuk Peningkatan Citra Sinar-X

    Directory of Open Access Journals (Sweden)

    Diah Priyawati

    2017-01-01

    Full Text Available In line with the growing use of computers in medicine, the perceived needs of the image data in digital format. The digital format allows for storage of image data in the computer and processes for further image analysis. Available images today are analog images, the necessary process of digitization with digitizer equipment.The image obtained is not necessarily as expected. Supporting equipment, film, and the scanner has a part in creating the image.Quality of image enhancement is needed to create a quality image allows physicians in diagnosing and minimize the possibility of error analysis.  One of the digital image processing techniques is improving the quality of the image (image enhancement. This is done to obtain a good image after a loss of quality during the process of digitizing the image. Image enhancement techniques are divided into two parts. They are spatial domain and frequency domain. This study uses the spatial domain technique which consists of two stages, such as point operation and mask operation. Image experiments performed with several samples such as thorak, collar bone, bone, body tissue, and the image of the hand. Some sample images have different characteristics but the process of image enhancement have in common that will be improving the image brightness.  Combining the methods of image enhancement performed to get the final digital image that has good qualities, such as histogram function,sharpen function, and continued with the function of a negative image. The final result of the digital image after processing showed that the better image quality.

  18. Natural-pose hand detection in low-resolution images

    Directory of Open Access Journals (Sweden)

    Nyan Bo Bo1

    2009-07-01

    Full Text Available Robust real-time hand detection and tracking in video sequences would enable many applications in areas as diverse ashuman-computer interaction, robotics, security and surveillance, and sign language-based systems. In this paper, we introducea new approach for detecting human hands that works on single, cluttered, low-resolution images. Our prototype system, whichis primarily intended for security applications in which the images are noisy and low-resolution, is able to detect hands as smallas 2424 pixels in cluttered scenes. The system uses grayscale appearance information to classify image sub-windows as eithercontaining or not containing a human hand very rapidly at the cost of a high false positive rate. To improve on the false positiverate of the main classifier without affecting its detection rate, we introduce a post-processor system that utilizes the geometricproperties of skin color blobs. When we test our detector on a test image set containing 106 hands, 92 of those hands aredetected (86.8% detection rate, with an average false positive rate of 1.19 false positive detections per image. The rapiddetection speed, the high detection rate of 86.8%, and the low false positive rate together ensure that our system is useable asthe main detector in a diverse variety of applications requiring robust hand detection and tracking in low-resolution, clutteredscenes.

  19. The use of digital images in pathology.

    Science.gov (United States)

    Furness, P N

    1997-11-01

    Digital images are routinely used by the publishing industry, but most diagnostic pathologists are unfamiliar with the technology and its possibilities. This review aims to explain the basic principles of digital image acquisition, storage, manipulation and use, and the possibilities provided not only in research, but also in teaching and in routine diagnostic pathology. Images of natural objects are usually expressed digitally as 'bitmaps'--rectilinear arrays of small dots. The size of each dot can vary, but so can its information content in terms, for example, of colour, greyscale or opacity. Various file formats and compression algorithms are available. Video cameras connected to microscopes are familiar to most pathologists; video images can be converted directly to a digital form by a suitably equipped computer. Digital cameras and scanners are alternative acquisition tools of relevance to pathologists. Once acquired, a digital image can easily be subjected to the digital equivalent of any conventional darkroom manipulation and modern software allows much more flexibility, to such an extent that a new tool for scientific fraud has been created. For research, image enhancement and analysis is an increasingly powerful and affordable tool. Morphometric measurements are, after many predictions, at last beginning to be part of the toolkit of the diagnostic pathologist. In teaching, the potential to create dramatic yet informative presentations is demonstrated daily by the publishing industry; such methods are readily applicable to the classroom. The combination of digital images and the Internet raises many possibilities; for example, instead of seeking one expert diagnostic opinion, one could simultaneously seek the opinion of many, all around the globe. It is inevitable that in the coming years the use of digital images will spread from the laboratory to the medical curriculum and to the whole of diagnostic pathology.

  20. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  1. Vascular changes of the hand in professional baseball players with emphasis on digital ischemia in catchers.

    Science.gov (United States)

    Ginn, T Adam; Smith, Adam M; Snyder, Jon R; Koman, L Andrew; Smith, Beth P; Rushing, Julia

    2005-07-01

    Repetitive trauma to the hand is a concern for baseball players. The present study investigated the effects of repetitive trauma and the prevalence of microvascular pathological changes in the hands of minor league professional baseball players. In contrast to previous investigators, we documented the presence of abnormalities in younger, asymptomatic individuals. Thirty-six baseball players on active minor league rosters underwent a history and physical examination of both hands as well as additional specialized tests, including Doppler ultrasound, a timed Allen test, determination of digital brachial pressure indices, and ring sizing of fingers. Data were compared between gloved hands and throwing hands, hitters and nonhitters, and players at four different positions (catcher [nine subjects], outfielder [seven subjects], infielder [five subjects], and pitcher [fifteen subjects]). Digital brachial indices in the ring fingers of the gloved (p healthy professional baseball players in all positions, with a significantly higher prevalence in catchers, prior to the development of clinically important ischemia. Repetitive trauma resulting from the impact of the baseball also leads to digital hypertrophy in the index finger of the gloved hand of catchers. Gloves currently used by professional catchers do not adequately protect the hand from repetitive trauma.

  2. Digital Images and Globalized Conflict

    DEFF Research Database (Denmark)

    Blaagaard, Bolette; Mortensen, Mette; Neumayer, Christina

    2017-01-01

    As the number of digital images of globalized conflicts online grow, critical examination of their impact and consequence is timely. This editorial provides an overview of digital images and globalized conflict as a field of study by discussing regimes of visibility and invisibility, proximity...... and distance, and the multiplicity of images. It engages critically with these interlinking themes as they are addressed in the contributing articles to the Special Issue as well as beyond, asking how genres and tropes are reproduced, how power plays a role in access to images, and how the sheer quantity...... of conflict-related images raise issues of knowledge production and research....

  3. Utility of Digital Stereo Images for Optic Disc Evaluation

    Science.gov (United States)

    Ying, Gui-shuang; Pearson, Denise J.; Bansal, Mayank; Puri, Manika; Miller, Eydie; Alexander, Judith; Piltz-Seymour, Jody; Nyberg, William; Maguire, Maureen G.; Eledath, Jayan; Sawhney, Harpreet

    2010-01-01

    Purpose. To assess the suitability of digital stereo images for optic disc evaluations in glaucoma. Methods. Stereo color optic disc images in both digital and 35-mm slide film formats were acquired contemporaneously from 29 subjects with various cup-to-disc ratios (range, 0.26–0.76; median, 0.475). Using a grading scale designed to assess image quality, the ease of visualizing optic disc features important for glaucoma diagnosis, and the comparative diameters of the optic disc cup, experienced observers separately compared the primary digital stereo images to each subject's 35-mm slides, to scanned images of the same 35-mm slides, and to grayscale conversions of the digital images. Statistical analysis accounted for multiple gradings and comparisons and also assessed image formats under monoscopic viewing. Results. Overall, the quality of primary digital color images was judged superior to that of 35-mm slides (P digital color images were mostly equivalent to the scanned digitized images of the same slides. Color seemingly added little to grayscale optic disc images, except that peripapillary atrophy was best seen in color (P digital over film images was maintained under monoscopic viewing conditions. Conclusions. Digital stereo optic disc images are useful for evaluating the optic disc in glaucoma and allow the application of advanced image processing applications. Grayscale images, by providing luminance distinct from color, may be informative for assessing certain features. PMID:20505199

  4. HD Photo: a new image coding technology for digital photography

    Science.gov (United States)

    Srinivasan, Sridhar; Tu, Chengjie; Regunathan, Shankar L.; Sullivan, Gary J.

    2007-09-01

    This paper introduces the HD Photo coding technology developed by Microsoft Corporation. The storage format for this technology is now under consideration in the ITU-T/ISO/IEC JPEG committee as a candidate for standardization under the name JPEG XR. The technology was developed to address end-to-end digital imaging application requirements, particularly including the needs of digital photography. HD Photo includes features such as good compression capability, high dynamic range support, high image quality capability, lossless coding support, full-format 4:4:4 color sampling, simple thumbnail extraction, embedded bitstream scalability of resolution and fidelity, and degradation-free compressed domain support of key manipulations such as cropping, flipping and rotation. HD Photo has been designed to optimize image quality and compression efficiency while also enabling low-complexity encoding and decoding implementations. To ensure low complexity for implementations, the design features have been incorporated in a way that not only minimizes the computational requirements of the individual components (including consideration of such aspects as memory footprint, cache effects, and parallelization opportunities) but results in a self-consistent design that maximizes the commonality of functional processing components.

  5. Imagers for digital still photography

    Science.gov (United States)

    Bosiers, Jan; Dillen, Bart; Draijer, Cees; Manoury, Erik-Jan; Meessen, Louis; Peters, Inge

    2006-04-01

    This paper gives an overview of the requirements for, and current state-of-the-art of, CCD and CMOS imagers for use in digital still photography. Four market segments will be reviewed: mobile imaging, consumer "point-and-shoot cameras", consumer digital SLR cameras and high-end professional camera systems. The paper will also present some challenges and innovations with respect to packaging, testing, and system integration.

  6. ANALYSIS OF THE EFFECTS OF IMAGE QUALITY ON DIGITAL MAP GENERATION FROM SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    H. Kim

    2012-07-01

    Full Text Available High resolution satellite images are widely used to produce and update a digital map since they became widely available. It is well known that the accuracy of digital map produced from satellite images is decided largely by the accuracy of geometric modelling. However digital maps are made by a series of photogrammetric workflow. Therefore the accuracy of digital maps are also affected by the quality of satellite images, such as image interpretability. For satellite images, parameters such as Modulation Transfer Function(MTF, Signal to Noise Ratio(SNR and Ground Sampling Distance(GSD are used to present images quality. Our previous research stressed that such quality parameters may not represent the quality of image products such as digital maps and that parameters for image interpretability such as Ground Resolved Distance(GRD and National Imagery Interpretability Rating Scale(NIIRS need to be considered. In this study, we analyzed the effects of the image quality on accuracy of digital maps produced by satellite images. QuickBird, IKONOS and KOMPSAT-2 imagery were used to analyze as they have similar GSDs. We measured various image quality parameters mentioned above from these images. Then we produced digital maps from the images using a digital photogrammetric workstation. We analyzed the accuracy of the digital maps in terms of their location accuracy and their level of details. Then we compared the correlation between various image quality parameters and the accuracy of digital maps. The results of this study showed that GRD and NIIRS were more critical for map production then GSD, MTF or SNR.

  7. Image Acquisition and Quality in Digital Radiography.

    Science.gov (United States)

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. ©2016 American Society of Radiologic Technologists.

  8. Image processing by use of the digital cross-correlator

    International Nuclear Information System (INIS)

    Katou, Yoshinori

    1982-01-01

    We manufactured for trial an instrument which achieved the image processing using digital correlators. A digital correlator perform 64-bit parallel correlation at 20 MH. The output of a digital correlator is a 7-bit word representing. An A-D converter is used to quantize it a precision of six bits. The resulting 6-bit word is fed to six correlators, wired in parallel. The image processing achieved in 12 bits, whose digital outputs converted an analog signal by a D-A converter. This instrument is named the digital cross-correlator. The method which was used in the image processing system calculated the convolution with the digital correlator. It makes various digital filters. In the experiment with the image processing video signals from TV camera were used. The digital image processing time was approximately 5 μs. The contrast was enhanced and smoothed. The digital cross-correlator has the image processing of 16 sorts, and was produced inexpensively. (author)

  9. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  10. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    Completely self-contained-and heavily illustrated-this introduction to basic concepts and methodologies for digital image processing is written at a level that truly is suitable for seniors and first...

  11. 3D palmprint and hand imaging system based on full-field composite color sinusoidal fringe projection technique.

    Science.gov (United States)

    Zhang, Zonghua; Huang, Shujun; Xu, Yongjia; Chen, Chao; Zhao, Yan; Gao, Nan; Xiao, Yanjun

    2013-09-01

    Palmprint and hand shape, as two kinds of important biometric characteristics, have been widely studied and applied to human identity recognition. The existing research is based mainly on 2D images, which lose the third-dimensional information. The biological features extracted from 2D images are distorted by pressure and rolling, so the subsequent feature matching and recognition are inaccurate. This paper presents a method to acquire accurate 3D shapes of palmprint and hand by projecting full-field composite color sinusoidal fringe patterns and the corresponding color texture information. A 3D imaging system is designed to capture and process the full-field composite color fringe patterns on hand surface. Composite color fringe patterns having the optimum three fringe numbers are generated by software and projected onto the surface of human hand by a digital light processing projector. From another viewpoint, a color CCD camera captures the deformed fringe patterns and saves them for postprocessing. After compensating for the cross talk and chromatic aberration between color channels, three fringe patterns are extracted from three color channels of a captured composite color image. Wrapped phase information can be calculated from the sinusoidal fringe patterns with high precision. At the same time, the absolute phase of each pixel is determined by the optimum three-fringe selection method. After building up the relationship between absolute phase map and 3D shape data, the 3D palmprint and hand are obtained. Color texture information can be directly captured or demodulated from the captured composite fringe pattern images. Experimental results show that the proposed method and system can yield accurate 3D shape and color texture information of the palmprint and hand shape.

  12. Digital imaging in conventional diagnostic radiology: status and trends

    International Nuclear Information System (INIS)

    Pfeiler, M.; Marhoff, P.; Schipper, P.

    1984-01-01

    Digital techniques, i.e. techniques using microcomputers of minicomputers, are getting increasingly common in so-called conventional radiography. These nonreconstructive techniques are referred to here as 'digital, direct-imaging radiography' in order to contrast them with the reconstructive techniques of computerized tomography. Digitalisation of imaging and image processing operation and control will change the jobs of the radiologist and radiological assistants in such manner that only X-ray units with film-foil systems or with X-ray image intensification should be classified as conventional systems. Digital and conventional systems differ in that digital techniques imply the possibility of establishing data pools which may eventually be developed into a digital image interconnection and archiving system. The authors first describe the general system in which the digital imaging systems must be integrated on a medium-term and long-term basis and then proceed to discuss digital imaging and image processing in some more detail. (orig./WU) [de

  13. Incidence of Apical Crack Initiation during Canal Preparation using Hand Stainless Steel (K-File) and Hand NiTi (Protaper) Files.

    Science.gov (United States)

    Soni, Dileep; Raisingani, Deepak; Mathur, Rachit; Madan, Nidha; Visnoi, Suchita

    2016-01-01

    To evaluate the incidence of apical crack initiation during canal preparation with stainless steel K-files and hand protaper files (in vitro study). Sixty extracted mandibular premo-lar teeth are randomly selected and embedded in an acrylic tube filled with autopolymerizing resin. A baseline image of the apical surface of each specimen was recorded under a digital microscope (80×). The cervical and middle thirds of all samples were flared with #2 and #1 Gates-Glidden (GG) drills, and a second image was recorded. The teeth were randomly divided into four groups of 15 teeth each according to the file type (hand K-file and hand-protaper) and working length (WL) (instrumented at WL and 1 mm less than WL). Final image after dye penetration and photomicrograph of the apical root surface were digitally recorded. Maximum numbers of cracks were observed with hand protaper files compared with hand K-file at the WL and 1 mm short of WL. Chi-square testing revealed a highly significant effect of WL on crack formation at WL and 1 mm short of WL (p = 0.000). Minimum numbers of cracks at WL and 1 mm short of WL were observed with hand K-file and maximum with hand protaper files. Soni D, Raisingani D, Mathur R, Madan N, Visnoi S. Incidence of Apical Crack Initiation during Canal Preparation using Hand Stainless Steel (K-File) and Hand NiTi (Protaper) Files. Int J Clin Pediatr Dent 2016;9(4):303-307.

  14. Development and evaluation of a hand tracker using depth images captured from an overhead perspective.

    Science.gov (United States)

    Czarnuch, Stephen; Mihailidis, Alex

    2015-03-27

    We present the development and evaluation of a robust hand tracker based on single overhead depth images for use in the COACH, an assistive technology for people with dementia. The new hand tracker was designed to overcome limitations experienced by the COACH in previous clinical trials. We train a random decision forest classifier using ∼5000 manually labeled, unbalanced, training images. Hand positions from the classifier are translated into task actions based on proximity to environmental objects. Tracker performance is evaluated using a large set of ∼24 000 manually labeled images captured from 41 participants in a fully-functional washroom, and compared to the system's previous colour-based hand tracker. Precision and recall were 0.994 and 0.938 for the depth tracker compared to 0.981 and 0.822 for the colour tracker with the current data, and 0.989 and 0.466 in the previous study. The improved tracking performance supports integration of the depth-based tracker into the COACH toward unsupervised, real-world trials. Implications for Rehabilitation The COACH is an intelligent assistive technology that can enable people with cognitive disabilities to stay at home longer, supporting the concept of aging-in-place. Automated prompting systems, a type of intelligent assistive technology, can help to support the independent completion of activities of daily living, increasing the independence of people with cognitive disabilities while reducing the burden of care experienced by caregivers. Robust motion tracking using depth imaging supports the development of intelligent assistive technologies like the COACH. Robust motion tracking also has application to other forms of assistive technologies including gaming, human-computer interaction and automated assessments.

  15. How Digital Image Processing Became Really Easy

    Science.gov (United States)

    Cannon, Michael

    1988-02-01

    In the early and mid-1970s, digital image processing was the subject of intense university and corporate research. The research lay along two lines: (1) developing mathematical techniques for improving the appearance of or analyzing the contents of images represented in digital form, and (2) creating cost-effective hardware to carry out these techniques. The research has been very effective, as evidenced by the continued decline of image processing as a research topic, and the rapid increase of commercial companies to market digital image processing software and hardware.

  16. Digital medical imaging

    International Nuclear Information System (INIS)

    Goeringer, F.; Mun, S.K.; Kerlin, B.D.

    1989-01-01

    In formulating an implementation strategy for digital medical imaging, three interrelated thrusts have emerged for the defense medical establishment. These thrusts: totally filmless medical imaging on the battlefield, teleradiology, and DIN/PACS for peacetime military health care are discussed. They have implications in their fully developed form as resource savers and quality improvers for the unique aspects of military health care

  17. Edge-detect interpolation for direct digital periapical images

    International Nuclear Information System (INIS)

    Song, Nam Kyu; Koh, Kwang Joon

    1998-01-01

    The purpose of this study was to aid in the use of the digital images by edge-detect interpolation for direct digital periapical images using edge-deted interpolation. This study was performed by image processing of 20 digital periapical images; pixel replication, linear non-interpolation, linear interpolation, and edge-sensitive interpolation. The obtained results were as follows ; 1. Pixel replication showed blocking artifact and serious image distortion. 2. Linear interpolation showed smoothing effect on the edge. 3. Edge-sensitive interpolation overcame the smoothing effect on the edge and showed better image.

  18. Digital repeat analysis; setup and operation.

    Science.gov (United States)

    Nol, J; Isouard, G; Mirecki, J

    2006-06-01

    Since the emergence of digital imaging, there have been questions about the necessity of continuing reject analysis programs in imaging departments to evaluate performance and quality. As a marketing strategy, most suppliers of digital technology focus on the supremacy of the technology and its ability to reduce the number of repeats, resulting in less radiation doses given to patients and increased productivity in the department. On the other hand, quality assurance radiographers and radiologists believe that repeats are mainly related to positioning skills, and repeat analysis is the main tool to plan training needs to up-skill radiographers. A comparative study between conventional and digital imaging was undertaken to compare outcomes and evaluate the need for reject analysis. However, digital technology still being at its early development stages, setting a credible reject analysis program became the major task of the study. It took the department, with the help of the suppliers of the computed radiography reader and the picture archiving and communication system, over 2 years of software enhancement to build a reliable digital repeat analysis system. The results were supportive of both philosophies; the number of repeats as a result of exposure factors was reduced dramatically; however, the percentage of repeats as a result of positioning skills was slightly on the increase for the simple reason that some rejects in the conventional system qualifying for both exposure and positioning errors were classified as exposure error. The ability of digitally adjusting dark or light images reclassified some of those images as positioning errors.

  19. Digital Imaging: An Adobe Photoshop Course

    Science.gov (United States)

    Cobb, Kristine

    2007-01-01

    This article introduces digital imaging, an Adobe Photoshop course at Shrewsbury High School in Shrewsbury, Massachusetts. Students are able to earn art credits to graduate by successfully completing the course. Digital imaging must cover art criteria as well as technical skills. The course begins with tutorials created by the instructor and other…

  20. Standard digital reference images for titanium castings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The digital reference images provided in the adjunct to this standard illustrate various types and degrees of discontinuities occurring in titanium castings. Use of this standard for the specification or grading of castings requires procurement of the adjunct digital reference images, which illustrate the discontinuity types and severity levels. They are intended to provide the following: 1.1.1 A guide enabling recognition of titanium casting discontinuities and their differentiation both as to type and degree through digital radiographic examination. 1.1.2 Example digital radiographic illustrations of discontinuities and a nomenclature for reference in acceptance standards, specifications and drawings. 1.2 The digital reference images consist of seventeen digital files each illustrating eight grades of increasing severity. The files illustrate seven common discontinuity types representing casting sections up to 1-in. (25.4-mm). 1.3 The reference radiographs were developed for casting sections up to 1...

  1. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  2. Securing Digital Images Integrity using Artificial Neural Networks

    Science.gov (United States)

    Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed

    2018-05-01

    Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.

  3. The Digital Microscope and Its Image Processing Utility

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Supardi

    2011-12-01

    Full Text Available Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope.

  4. New possibilities of digital luminescence radiography (DLR) and digital image processing for verification and portal imaging

    International Nuclear Information System (INIS)

    Zimmermann, J.S.; Blume, J.; Wendhausen, H.; Hebbinghaus, D.; Kovacs, G.; Eilf, K.; Schultze, J.; Kimmig, B.N.

    1995-01-01

    We developed a method, using digital luminescence radiography (DLR), not only for portal imaging of photon beams in an excellent quality, but also for verification of electron beams. Furtheron, DLR was used as basic instrument for image fusion of portal and verification film and simulation film respectively for image processing in ''beams-eye-view'' verification (BEVV) of rotating beams or conformation therapy. Digital radiographs of an excellent quality are gained for verification of photon and electron beams. In photon beams, quality improvement vs. conventional portal imaging may be dramatic, even more for high energy beams (e.g. 15-MV-photon beams) than for Co-60. In electron beams, excellent results may be easily obtained. By digital image fusion of 1 or more verification films on simulation film or MRI-planning film, more precise judgement even on small differences between simulation and verification films becomes possible. Using BEVV, it is possible to compare computer aided simulation in rotating beams or conformation therapy with the really applied treatment. The basic principle of BEVV is also suitable for dynamic multileaf collimation. (orig.) [de

  5. Losing Images in Digital Radiology: More than You Think

    OpenAIRE

    Oglevee, Catherine; Pianykh, Oleg

    2014-01-01

    It is a common belief that the shift to digital imaging some 20 years ago helped medical image exchange and got rid of any potential image loss that was happening with printed image films. Unfortunately, this is not the case: despite the most recent advances in digital imaging, most hospitals still keep losing their imaging data, with these losses going completely unnoticed. As a result, not only does image loss affect the faith in digital imaging but it also affects patient diagnosis and dai...

  6. Detection and optimization of image quality and dose in digital mammography systems

    International Nuclear Information System (INIS)

    Semturs, F.

    2015-01-01

    Background and purpose: During the last few years, mammography institutes have replaced their conventional mammography systems (FSM) with digital mammography systems (FFDM). This happened mainly in direction to digital computed radiography systems (FFDM-CR), where the mammography device could be kept in operation. Consequently also the AEC-parameters have not been changed and therefore the same dose as for FFM was used. Following the main theme of the thesis "Optimization of image quality and dose", also measurements with such CR-Systems have been performed in relation to image quality and dose behavior. Optimization in this context means - in following the ALARA principle - the reduction of dose while ensuring required clinical image quality. With other words - image quality is of higher value compared to dose. Considering this, it has been found out through measurements during this thesis, that FFDM-CR Systems need considerable more dose for achieving image quality comparable with FFM. On the other hand, it has been shown with measurements during this thesis, that the newest FFDM-CR technology (needle structure) supports dose reduction (optimization) to a certain degree without compromising image quality. Dose increase, as recommended in this thesis, could also increase the danger of more radiation induced carcinoma. There are several studies (which are also discussed in this thesis), which show that the benefit of not missing cancers because of higher dose dramatically overrides any health concerns. Such an optimization of image quality and dose is now described in more detail by comparing the new CR needle technology with the older power based CR technology. Material and Methods: The image quality and dose behavior for multiple breast thicknesses (simulated with PMMA slabs) of a CR needle crystal detector system is optimized by considering also different beam qualities. Technical image quality is determined with a low contrast phantom (CDMAM phantom) and from

  7. The impact of digital imaging in the field of cytopathology.

    Science.gov (United States)

    Pantanowitz, Liron; Hornish, Maryanne; Goulart, Robert A

    2009-03-06

    With the introduction of digital imaging, pathology is undergoing a digital transformation. In the field of cytology, digital images are being used for telecytology, automated screening of Pap test slides, training and education (e.g. online digital atlases), and proficiency testing. To date, there has been no systematic review on the impact of digital imaging on the practice of cytopathology. This article critically addresses the emerging role of computer-assisted screening and the application of digital imaging to the field of cytology, including telecytology, virtual microscopy, and the impact of online cytology resources. The role of novel diagnostic techniques like image cytometry is also reviewed.

  8. Camac interface for digitally recording infrared camera images

    International Nuclear Information System (INIS)

    Dyer, G.R.

    1986-01-01

    An instrument has been built to store the digital signals from a modified imaging infrared scanner directly in a digital memory. This procedure avoids the signal-to-noise degradation and dynamic range limitations associated with successive analog-to-digital and digital-to-analog conversions and the analog recording method normally used to store data from the scanner. This technique also allows digital data processing methods to be applied directly to recorded data and permits processing and image reconstruction to be done using either a mainframe or a microcomputer. If a suitable computer and CAMAC-based data collection system are already available, digital storage of up to 12 scanner images can be implemented for less than $1750 in materials cost. Each image is stored as a frame of 60 x 80 eight-bit pixels, with an acquisition rate of one frame every 16.7 ms. The number of frames stored is limited only by the available memory. Initially, data processing for this equipment was done on a VAX 11-780, but images may also be displayed on the screen of a microcomputer. Software for setting the displayed gray scale, generating contour plots and false-color displays, and subtracting one image from another (e.g., background suppression) has been developed for IBM-compatible personal computers

  9. Computing Hypercrossed Complex Pairings in Digital Images

    Directory of Open Access Journals (Sweden)

    Simge Öztunç

    2013-01-01

    Full Text Available We consider an additive group structure in digital images and introduce the commutator in digital images. Then we calculate the hypercrossed complex pairings which generates a normal subgroup in dimension 2 and in dimension 3 by using 8-adjacency and 26-adjacency.

  10. Radiological imaging of congenital hand anomalies - a 6-year single-centre experience and what the hand surgeons want to know

    International Nuclear Information System (INIS)

    Gerety, E.L.; Hopper, M.A.; Grant, I.

    2015-01-01

    Congenital hand anomalies present a rare but important physical and emotional challenge for children and parents. Radiological imaging is important for accurate diagnosis, to aid decision making and to monitor changes in the growing hand. The goal of any treatment is to help the child achieve his/her maximum potential, to provide a useful hand with attention to cosmesis. We investigated the range of congenital hand anomalies imaged in a tertiary referral centre. We examined the timing of imaging and the key clinical questions. The radiology imaging system was searched retrospectively for radiographs of congenital hand anomalies over a 6-year period. The images were reviewed and patient demographics, diagnosis and other imaging recorded. Over 6 years, 85 patients had imaging. Twenty-three patients had bilateral problems and 11 had recognised syndromes. The most common abnormalities imaged were duplicated thumbs (28 %), followed by syndactyly (18 %). Children were first imaged as early as 1 day old, with the median age of initial imaging 12 months. Thumb duplication and syndactyly are the most common conditions for which radiographs are requested at our hospital, although overall syndactyly is considered the most common congenital hand anomaly. For a variety of reasons, children are often imaged very early, before review by the Specialist in Children's Hand Surgery (despite surgery being unlikely before 1 year of age.) We discuss the classification systems and specific issues that hand surgeons want to know from the radiologists. (orig.)

  11. Radiological imaging of congenital hand anomalies - a 6-year single-centre experience and what the hand surgeons want to know

    Energy Technology Data Exchange (ETDEWEB)

    Gerety, E.L.; Hopper, M.A. [Cambridge University Hospitals NHS Foundation Trust, Department of Radiology, Cambridge (United Kingdom); Grant, I. [Cambridge University Hospitals NHS Foundation Trust, Department of Plastic Surgery, Cambridge (United Kingdom)

    2014-12-19

    Congenital hand anomalies present a rare but important physical and emotional challenge for children and parents. Radiological imaging is important for accurate diagnosis, to aid decision making and to monitor changes in the growing hand. The goal of any treatment is to help the child achieve his/her maximum potential, to provide a useful hand with attention to cosmesis. We investigated the range of congenital hand anomalies imaged in a tertiary referral centre. We examined the timing of imaging and the key clinical questions. The radiology imaging system was searched retrospectively for radiographs of congenital hand anomalies over a 6-year period. The images were reviewed and patient demographics, diagnosis and other imaging recorded. Over 6 years, 85 patients had imaging. Twenty-three patients had bilateral problems and 11 had recognised syndromes. The most common abnormalities imaged were duplicated thumbs (28 %), followed by syndactyly (18 %). Children were first imaged as early as 1 day old, with the median age of initial imaging 12 months. Thumb duplication and syndactyly are the most common conditions for which radiographs are requested at our hospital, although overall syndactyly is considered the most common congenital hand anomaly. For a variety of reasons, children are often imaged very early, before review by the Specialist in Children's Hand Surgery (despite surgery being unlikely before 1 year of age.) We discuss the classification systems and specific issues that hand surgeons want to know from the radiologists. (orig.)

  12. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    International Nuclear Information System (INIS)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina

    2012-01-01

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., “FOR PROCESSING”) and vendor postprocessed (i.e., “FOR PRESENTATION”), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely fibroglandular, which

  13. Steganography and Steganalysis in Digital Images

    Science.gov (United States)

    2012-01-01

    REPORT Steganography and Steganalysis in Digital Images 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Steganography (from the Greek for "covered writing...12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Least Significant Bit ( LSB ), steganography , steganalysis, stegogramme. Dr. Jeff Duffany...Z39.18 - Steganography and Steganalysis in Digital Images Report Title ABSTRACT Steganography (from the Greek for "covered writing") is the secret

  14. Topology of digital images visual pattern discovery in proximity spaces

    CERN Document Server

    Peters, James F

    2014-01-01

    This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topolo- gies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of prox- imity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping ...

  15. A biometric authentication model using hand gesture images.

    Science.gov (United States)

    Fong, Simon; Zhuang, Yan; Fister, Iztok; Fister, Iztok

    2013-10-30

    A novel hand biometric authentication method based on measurements of the user's stationary hand gesture of hand sign language is proposed. The measurement of hand gestures could be sequentially acquired by a low-cost video camera. There could possibly be another level of contextual information, associated with these hand signs to be used in biometric authentication. As an analogue, instead of typing a password 'iloveu' in text which is relatively vulnerable over a communication network, a signer can encode a biometric password using a sequence of hand signs, 'i' , 'l' , 'o' , 'v' , 'e' , and 'u'. Subsequently the features from the hand gesture images are extracted which are integrally fuzzy in nature, to be recognized by a classification model for telling if this signer is who he claimed himself to be, by examining over his hand shape and the postures in doing those signs. It is believed that everybody has certain slight but unique behavioral characteristics in sign language, so are the different hand shape compositions. Simple and efficient image processing algorithms are used in hand sign recognition, including intensity profiling, color histogram and dimensionality analysis, coupled with several popular machine learning algorithms. Computer simulation is conducted for investigating the efficacy of this novel biometric authentication model which shows up to 93.75% recognition accuracy.

  16. Effects of optimization and image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Kheddache, S.; Maansson, L.G.; Angelhed, J.E.; Denbratt, L.; Gottfridsson, B.; Schlossman, D.

    1991-01-01

    A digital system for chest radiography based on a large image intensifier was compared to a conventional film-screen system. The digital system was optimized with regard to spatial and contrast resolution and dose. The images were digitally processed for contrast and edge enhancement. A simulated pneumothorax and two and two simulated nodules were positioned over the lungs and the mediastinum of an anthro-pomorphic phantom. Observer performance was evaluated with Receiver Operating Characteristic (ROC) analysis. Five observers assessed the processed digital images and the conventional full-size radiographs. The time spent viewing the full-size radiographs and the digital images was recorded. For the simulated pneumothorax, the results showed perfect performance for the full-size radiographs and detectability was high also for the processed digital images. No significant differences in the detectability of the simulated nodules was seen between the two imaging systems. The results for the digital images showed a significantly improved detectability for the nodules in the mediastinum as compared to a previous ROC study where no optimization and image processing was available. No significant difference in detectability was seen between the former and the present ROC study for small nodules in the lung. No difference was seen in the time spent assessing the conventional full-size radiographs and the digital images. The study indicates that processed digital images produced by a large image intensifier are equal in image quality to conventional full-size radiographs for low-contrast objects such as nodules. (author). 38 refs.; 4 figs.; 1 tab

  17. A Preliminary Comparison of Three Dimensional Particle Tracking and Sizing using Plenoptic Imaging and Digital In-line Holography

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert; Munz, Elise Dahnke; Farias, Paul Abraham; Thurow, Brian S [Auburn U

    2015-12-01

    Digital in-line holography and plenoptic photography are two techniques for single-shot, volumetric measurement of 3D particle fields. Here we present a preliminary comparison of the two methods by applying plenoptic imaging to experimental configurations that have been previously investigated with digital in-line holography. These experiments include the tracking of secondary droplets from the impact of a water drop on a thin film of water and tracking of pellets from a shotgun. Both plenoptic imaging and digital in-line holography successfully quantify the 3D nature of these particle fields. This includes measurement of the 3D particle position, individual particle sizes, and three-component velocity vectors. For the initial processing methods presented here, both techniques give out-of-plane positional accuracy of approximately 1-2 particle diameters. For a fixed image sensor, digital holography achieves higher effective in-plane spatial resolutions. However, collimated and coherent illumination makes holography susceptible to image distortion through index of refraction gradients, as demonstrated in the shotgun experiments. On the other hand, plenotpic imaging allows for a simpler experimental configuration. Furthermore, due to the use of diffuse, white-light illumination, plenoptic imaging is less susceptible to image distortion in the shotgun experiments. Additional work is needed to better quantify sources of uncertainty, particularly in the plenoptic experiments, as well as develop data processing methodologies optimized for the plenoptic measurement.

  18. Existential space understanding through digital image

    Directory of Open Access Journals (Sweden)

    Susana Iñarra Abad

    2013-10-01

    Full Text Available The logical way to learn from the architectural space and then be able to design and represent it is, undoubtedly, that of experiencing it through all the sensitive channels that the space wakes up us.  But since the last 30 years, much of our learning about space comes from images of architecture and not from the space itself. The art of architecture is drifting towards a visual art and moving away from its existential side. In digital images that have flooded the architectural media, digital photographs of existing spaces intermingle with non-existent space renderings (photographs with a virtual camera. The first ones represent existing places but can be altered to change the perception that  the observer of the image will have, the second ones speak to us about places that do not exist yet but they present reality portions through extracts from digital photography (textures, trees, people... that compose the image.

  19. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  20. Report from the research committee of digital imaging standardization in nuclear medicine

    International Nuclear Information System (INIS)

    Nakamura, Yutaka; Ise, Toshihide; Isetani, Osamu; Ichihara, Takashi; Ohya, Nobuyoshi; Kanaya, Shinichi; Fukuda, Toshio; Horii, Hitoshi.

    1994-01-01

    Since digital scintillation camera systems were developed in 1982, digital imaging is rapidly replacing analog imaging. During the first year, the research committee of digital imaging standardization has collected and analyzed basic data concerning digital examination equipment systems, display equipments, films, and hardware and software techniques to determine items required for the standardization of digital imaging. During the second year, it has done basic phantom studies to assess digital images and analyzed the results from both physical and visual viewpoints. On the basis of the outcome of the research committee's activities and the nationwide survey, the draft of digital imaging standardization in nuclear medicine has been presented. In this paper. the analytical data of the two-year survey, made by the research committee of digital imaging standardization, are presented. The descriptions are given under the following four items: (1) standardization digital examination techniques, (2) standardization of display techniques, (3) the count and pixel of digital images, and (4) standardization of digital imaging techniques. (N.K.)

  1. Computer assisted visualization of digital mammography images

    International Nuclear Information System (INIS)

    Funke, M.; Breiter, N.; Grabbe, E.; Netsch, T.; Biehl, M.; Peitgen, H.O.

    1999-01-01

    Purpose: In a clinical study, the feasibility of using a mammography workstation for the display and interpretation of digital mammography images was evaluated and the results were compared with the corresponding laser film hard copies. Materials and Methods: Digital phosphorous plate radiographs of the entire breast were obtained in 30 patients using a direct magnification mammography system. The images were displayed for interpretation on the computer monitor of a dedicated mammography workstation and also presented as laser film hard copies on a film view box for comparison. The images were evaluted with respect to the image handling, the image quality and the visualization of relevant structures by 3 readers. Results: Handling and contrast of the monitor displayed images were found to be superior compared with the film hard copies. Image noise was found in some cases but did not compromise the interpretation of the monitor images. The visualization of relevant structures was equal with both modalities. Altogether, image interpretation with the mammography workstation was considered to be easy, quick and confident. Conclusions: Computer-assisted visualization and interpretation of digital mammography images using a dedicated workstation can be performed with sufficiently high diagnostic accuracy. (orig.) [de

  2. Advantages of digital imaging for radiological diagnostic

    International Nuclear Information System (INIS)

    Trapero, M. A.; Gonzalez, S.; Albillos, J. C.; Martel, J.; Rebollo, M.

    2006-01-01

    The advantages and limitations of radiological digital images in comparison with analogic ones are analyzed. We discuss three main topics: acquisition, post-procedure manipulation, and visualization, archive and communication. Digital acquisition with computed radiology systems present a global sensitivity very close to conventional film for diagnostic purposes. However, flat panel digital systems seems to achieve some advantages in particular clinical situations. A critical issue is the radiation dose-reduction that can be accomplished without reducing image quality nor diagnostic exactitude. The post-procedure manipulation allows, particularly in multiplanar modalities like CT or MR, to extract all implicit diagnostic information in the images: Main procedures are multiplanar and three-dimensional reformations, dynamic acquisitions, functional studies and image fusion. The use of PACS for visualization, archive and communication of images, improves the effectiveness and the efficiency of the workflow, allows a more comfortable diagnosis for the radiologist and gives way to improvements in the communication of images, allowing tele consulting and the tele radiology. (Author) 6 refs

  3. Structure of the medical digital image

    International Nuclear Information System (INIS)

    Baltadzhiev, D.

    1997-01-01

    In up-to-date medical practice diagnostic imaging techniques are the most powerful tools available to clinicians. The modern medical equipment is entirely based on digital technology. In this article the principle of generating medical images is presented. The concept for gray scale where medical images are commonly presented is described. The patterns of gray images transformation into colour scale are likewise outlined. Basic notions from medical imaging terminology such as image matrix, pixel, spatial and contrast resolution power, bit, byte and the like are explained. Also an example is given of how the binary system treats images. On the basis of digital technology the obtained medical images lend themselves readily to additional processing, reconstruction (including 3D) and storage for subsequent utilization. The ceaseless progress of computerized communications promote easy and prompt access for clinicians to the diagnostic images needed as well as realization of expert consultations by teleconference contact (author)

  4. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study

    Directory of Open Access Journals (Sweden)

    Jelena Reste

    2015-08-01

    Full Text Available Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad. The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C, while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.

  5. eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.

    Science.gov (United States)

    Sbrollini, Agnese; Agostinelli, Angela; Marcantoni, Ilaria; Morettini, Micaela; Burattini, Luca; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2018-03-01

    Cardiotocography (CTG), consisting in the simultaneous recording of fetal heart rate (FHR) and maternal uterine contractions (UC), is a popular clinical test to assess fetal health status. Typically, CTG machines provide paper reports that are visually interpreted by clinicians. Consequently, visual CTG interpretation depends on clinician's experience and has a poor reproducibility. The lack of databases containing digital CTG signals has limited number and importance of retrospective studies finalized to set up procedures for automatic CTG analysis that could contrast visual CTG interpretation subjectivity. In order to help overcoming this problem, this study proposes an electronic procedure, termed eCTG, to extract digital CTG signals from digital CTG images, possibly obtainable by scanning paper CTG reports. eCTG was specifically designed to extract digital CTG signals from digital CTG images. It includes four main steps: pre-processing, Otsu's global thresholding, signal extraction and signal calibration. Its validation was performed by means of the "CTU-UHB Intrapartum Cardiotocography Database" by Physionet, that contains digital signals of 552 CTG recordings. Using MATLAB, each signal was plotted and saved as a digital image that was then submitted to eCTG. Digital CTG signals extracted by eCTG were eventually compared to corresponding signals directly available in the database. Comparison occurred in terms of signal similarity (evaluated by the correlation coefficient ρ, and the mean signal error MSE) and clinical features (including FHR baseline and variability; number, amplitude and duration of tachycardia, bradycardia, acceleration and deceleration episodes; number of early, variable, late and prolonged decelerations; and UC number, amplitude, duration and period). The value of ρ between eCTG and reference signals was 0.85 (P digital FHR and UC signals from digital CTG images. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The hand: MR imaging with a 4.7-T magnet

    International Nuclear Information System (INIS)

    Wang, P.C.; Archer, A.; Rajan, S.; Carvlin, M.J.; Mun, S.K.; Nelson, M.C.

    1987-01-01

    MR images of normal and pathologic human hands were obtained using a 4.7-T magnet Varian system. Standard spin-echo techniques and inversion-recovery sequences were used to produce both T1- and T2-weighted images. The higher gradient (2 gauss/cm) of the 4.7-T system allows submillimeter resolution. A specially designed surface coil is used to improve the signal-to-noise ratio. The coil is elliptical and measures 3 inches by 4.5 inches. Axial, coronal, and sagittal images were obtained, revealing fine, detailed structures of the human hand. The joint capsule, ligaments and tendons, and vascular structures were clearly visible. The authors will show images of the normal anatomy of the hand, as well as pathologic lesions of inflammatory and crystalline arthropathy. Techniques and special problems of imaging the human hand with a 4.7-T system are discussed

  7. Noncontrast magnetic resonance angiography of the hand: improved arterial conspicuity by multidirectional flow-sensitive dephasing magnetization preparation in 3D balanced steady-state free precession imaging.

    Science.gov (United States)

    Fan, Zhaoyang; Hodnett, Philip A; Davarpanah, Amir H; Scanlon, Timothy G; Sheehan, John J; Varga, John; Carr, James C; Li, Debiao

    2011-08-01

    : To develop a flow-sensitive dephasing (FSD) preparative scheme to facilitate multidirectional flow-signal suppression in 3-dimensional balanced steady-state free precession imaging and to validate the feasibility of the refined sequence for noncontrast magnetic resonance angiography (NC-MRA) of the hand. : A new FSD preparative scheme was developed that combines 2 conventional FSD modules. Studies using a flow phantom (gadolinium-doped water 15 cm/s) and the hands of 11 healthy volunteers (6 males and 5 females) were performed to compare the proposed FSD scheme with its conventional counterpart with respect to the signal suppression of multidirectional flow. In 9 of the 11 healthy subjects and 2 patients with suspected vasculitis and documented Raynaud phenomenon, respectively, 3-dimensional balanced steady-state free precession imaging coupled with the new FSD scheme was compared with spatial-resolution-matched (0.94 × 0.94 × 0.94 mm) contrast-enhanced magnetic resonance angiography (0.15 mmol/kg gadopentetate dimeglumine) in terms of overall image quality, venous contamination, motion degradation, and arterial conspicuity. : The proposed FSD scheme was able to suppress 2-dimensional flow signal in the flow phantom and hands and yielded significantly higher arterial conspicuity scores than the conventional scheme did on NC-MRA at the regions of common digitals and proper digitals. Compared with contrast-enhanced magnetic resonance angiography, the refined NC-MRA technique yielded comparable overall image quality and motion degradation, significantly less venous contamination, and significantly higher arterial conspicuity score at digital arteries. : The FSD-based NC-MRA technique is improved in the depiction of multidirectional flow by applying a 2-module FSD preparation, which enhances its potential to serve as an alternative magnetic resonance angiography technique for the assessment of hand vascular abnormalities.

  8. Digital image display system for emergency room

    International Nuclear Information System (INIS)

    Murry, R.C.; Lane, T.J.; Miax, L.S.

    1989-01-01

    This paper reports on a digital image display system for the emergency room (ER) in a major trauma hospital. Its objective is to reduce radiographic image delivery time to a busy ER while simultaneously providing a multimodality capability. Image storage, retrieval, and display will also be facilitated with this system. The system's backbone is a token-ring network of RISC and personal computers. The display terminals are higher- function RISC computers with 1,024 2 color or gray-scale monitors. The PCs serve as administrative terminals. Nuclear medicine, CT, MR, and digitized film images are transferred to the image display system

  9. Digital subtraction imaging in cardiac investigations

    International Nuclear Information System (INIS)

    Partridge, J.B.; Dickinson, D.F.

    1984-01-01

    The role of digital subtraction imaging (DSI) in the investigation of heart disease in patients of all ages, including neonates, was evaluated by the addition of a continuous fluoroscopy system to an existing, single-plane catheterisation laboratory. In some situations, DSI provided diagnostic images where conventional radiography could not and, in general, provided images of comparable quality to cineangiography. The total dose of contrast medium was usually less than that which would have been required for biplane cineangiography and the dose of radiation was always less. Digital subtraction imaging can make a significant contribution to the investigation of congenital heart disease and has some useful features in the study of acquired heart disease. (author)

  10. Hand and digital ischemia due to arteriosclerosis and thromboembolization in young adults: pathologic features with clinical correlations.

    Science.gov (United States)

    Guarda, L A; Borrero, J L

    1990-11-01

    Twenty young adult patients with hand and digital ischemia were found to have obstructive arterial disease. All patients were surgically explored, and the occluded vessels were resected and by-passed. Eighteen patients had obstruction at the level of the distal ulnar artery and palmar arch, and 12 had obstruction of the common digital and digital proper arteries. Occlusive arteriosclerotic lesions were found in all patients; these lesions were characterized by prominent fibromuscular intimal plaques with superimposed thrombosis. Six patients had also thromboembolism to distal digital vessels. Vasculitis, calcifications, cholesterol deposits, and atheromatous emboli were not observed. Five patients had transmural neovascularization of the lesions in a similar manner to that described in coronary artery lesions. Obstructive lesions due to fibromuscular intimal proliferation with associated thrombosis and/or distal thromboembolization affecting arteries of hands and digits appear to be an important lesion that can affect young patients.

  11. Analysis of Information Remaining on Hand Held Devices Offered for Sale on the Second Hand Market

    Directory of Open Access Journals (Sweden)

    Andy Jones

    2008-06-01

    resellers.The study was carried out by the security research team at the BT IT Futures Centre in conjunction with Edith Cowan University in Australia and the University of Glamorgan in the UK. The basis of the research was to acquire a number of second hand held devices from a diverse range of sources and then determine whether they still contained information relating to a previous owner or whether the information had been effectively removed. The devices that were obtained for the research were supplied blind to the researchers through a third party. The ‘blind’ supply of the devices meant that the people undertaking the research were provided with no information about the device and that the source of the devices and any external markings were hidden from them. This process was put in place to ensure that any findings of the research were based solely on the information that could be recovered from the digital storage media that was contained within the device.The underlying methodology that was used in the research was based on the forensic imaging of the devices. A forensic image of a device is a copy of the digital media that has been created in a scientifically sound manner to a standard that is acceptable to the courts. This procedure was implemented to ensure that the evidential integrity of the devices was maintained, with the devices also then being stored in a secure manner.  All subsequent research was then conducted on the image of the device. This was considered to be a sensible precaution against the possibility that information discovered on a device might indicate criminal activity and require the involvement of law enforcement.  Following the forensic imaging of the devices, the images that were created were then analyzed to determine whether any information remained and whether it could be easily recovered using commonly available tools and techniques that anyone who had purchased the device could acquire.

  12. Eliminating "Hotspots" in Digital Image Processing

    Science.gov (United States)

    Salomon, P. M.

    1984-01-01

    Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.

  13. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    International Nuclear Information System (INIS)

    Sammet, S.

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  14. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    International Nuclear Information System (INIS)

    Lu, Z.

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  15. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Sammet, S. [University of Chicago Medical Center (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  16. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z. [University of Chicago (United States)

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  17. Losing images in digital radiology: more than you think.

    Science.gov (United States)

    Oglevee, Catherine; Pianykh, Oleg

    2015-06-01

    It is a common belief that the shift to digital imaging some 20 years ago helped medical image exchange and got rid of any potential image loss that was happening with printed image films. Unfortunately, this is not the case: despite the most recent advances in digital imaging, most hospitals still keep losing their imaging data, with these losses going completely unnoticed. As a result, not only does image loss affect the faith in digital imaging but it also affects patient diagnosis and daily quality of clinical work. This paper identifies the origins of invisible image losses, provides methods and procedures to detect image loss, and demonstrates modes of action that can be taken to stop the problem from happening.

  18. Quality assessment of the digitalization process of analog x-ray images

    International Nuclear Information System (INIS)

    Georgieva, D.

    2014-01-01

    Computer-assisted diagnosis enabled doctors for a second point-of-view on the test results. This improves the diseases' early detection and significantly reduces the chance of errors. These methods very nicely complemented the possibilities of digital medical imaging apparatus, but in analog images their applicability and results entirely depend on the quality of analog images digitalisation. Today many standards and remarks for good practices discuss the digital apparatus image quality but the digitalisation process of analog medical images is not a part of them. Medical imaging apparatus have become digital, but within an entirely digital medical environment is necessary for their ability to blend with the old analog medical imaging carriers. The life of patients doesn't start with the beginning of digital era and for the aim of tracking diseases it is necessary to use the new digital images as well as older analog ones. For the generation of 40-50 years a large archive of images is piled up, which should be accounted of in the diagnosis process. This article is the author's study of the digitalized image quality problem. It offers a new approach to the x-ray image digitalisation - getting the HDR-image by optical sensor. After the HDR-image generation method offers to be used a digital signal processing to improve the quality of the final 16 bit gray scale medical image. The new method for medical image enhancement is proposed - it improves the image contrast, it increases or preserves the dynamic range and it doesn't lead to the loss of small low contrast structures in the image. Key words: Quality of Digital X-Rays Images

  19. A Methodology and Implementation for Annotating Digital Images for Context-appropriate Use in an Academic Health Care Environment

    Science.gov (United States)

    Goede, Patricia A.; Lauman, Jason R.; Cochella, Christopher; Katzman, Gregory L.; Morton, David A.; Albertine, Kurt H.

    2004-01-01

    Use of digital medical images has become common over the last several years, coincident with the release of inexpensive, mega-pixel quality digital cameras and the transition to digital radiology operation by hospitals. One problem that clinicians, medical educators, and basic scientists encounter when handling images is the difficulty of using business and graphic arts commercial-off-the-shelf (COTS) software in multicontext authoring and interactive teaching environments. The authors investigated and developed software-supported methodologies to help clinicians, medical educators, and basic scientists become more efficient and effective in their digital imaging environments. The software that the authors developed provides the ability to annotate images based on a multispecialty methodology for annotation and visual knowledge representation. This annotation methodology is designed by consensus, with contributions from the authors and physicians, medical educators, and basic scientists in the Departments of Radiology, Neurobiology and Anatomy, Dermatology, and Ophthalmology at the University of Utah. The annotation methodology functions as a foundation for creating, using, reusing, and extending dynamic annotations in a context-appropriate, interactive digital environment. The annotation methodology supports the authoring process as well as output and presentation mechanisms. The annotation methodology is the foundation for a Windows implementation that allows annotated elements to be represented as structured eXtensible Markup Language and stored separate from the image(s). PMID:14527971

  20. Study of the inferior alveolar canal and mental foramen on digital panoramic images.

    Science.gov (United States)

    Pria, Carlos M; Masood, Farah; Beckerley, Joy M; Carson, Robert E

    2011-07-01

    To study the radiographic location of the mental foramen and appearance of the inferior alveolar canal and the relationship between image gray values and the clarity of inferior alveolar canal on the digital panoramic images and to evaluate if the histogram equalization of the digital image would improve the visualization of the inferior alveolar canal outline on the digital panoramic images in the mandible. Five hundred digital panoramic images were evaluated by two examiners using a specific inclusion criteria. Only the right side of the mandible was studied. Chi-square analyses were used for comparisons of distributions. Mean and median pixel values were analyzed separately with a one-way analysis of variance. Also, percentages were calculated to report the usefulness of the histogram equalization for visualization of canal. RESULTS show variation in location of mental foramen. Most frequent location of the mental foramen was reported as first and second premolar region. Chi-square analysis showed that the frequency of occurrence of the mental foramen was equally probable for any of the three locations. The study did not find significant usefulness of the gray values obtained from the histogram equalization in predicting the clarity of inferior alveolar canal outlines. Knowing the normal relationship and the anatomical variation of the maxillofacial structures for each patient is important for surgical implant treatment planning to avoid future complications. It is also important to be familiar with the advantages and limitations of diagnostic aids available before making treatment planning decisions based on such findings. Digital imaging, Panoramic, Inferior alveolar canal, Mental foramen. How to cite this article: Pria CM, Masood F, Beckerley JM, Carson RE. Study of the Inferior Alveolar Canal and Mental Foramen on Digital Panoramic Images. J Contemp Dent Pract 2011;12(4):265-271. Source of support: Nil Conflict of interest: None declared.

  1. Ethical Implications of Digital Imaging in Photojournalism.

    Science.gov (United States)

    Terry, Danal; Lasorsa, Dominic L.

    Arguing that the news media are about to adopt digital imaging systems that will have far-reaching implications for the practice of journalism, this paper discusses how the news media is expected to adopt the new technology and explains why the marriage of journalism and digital imaging will create ethical issues with respect to photo manipulation…

  2. A kind of video image digitizing circuit based on computer parallel port

    International Nuclear Information System (INIS)

    Wang Yi; Tang Le; Cheng Jianping; Li Yuanjing; Zhang Binquan

    2003-01-01

    A kind of video images digitizing circuit based on parallel port was developed to digitize the flash x ray images in our Multi-Channel Digital Flash X ray Imaging System. The circuit can digitize the video images and store in static memory. The digital images can be transferred to computer through parallel port and can be displayed, processed and stored. (authors)

  3. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  4. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  5. Digital Data Processing of Images

    African Journals Online (AJOL)

    Digital data processing was investigated to perform image processing. Image smoothing and restoration were explored and promising results obtained. The use of the computer, not only as a data management device, but as an important tool to render quantitative information, was illustrated by lung function determination.

  6. Self-adaptive isogeometric global digital image correlation and digital height correlation

    NARCIS (Netherlands)

    Hoefnagels, J. P M; Kleinendorst, S. M.; Ruybalid, A. P.; Verhoosel, C. V.; Geers, M. G D; Yoshida, S.; Lamberti, L.; Sciammarella, C.

    2017-01-01

    This work explores the full potential of isogeometric shape functions for global digital image correlation. To this end, a novel DIC and DHC (digital height correlation) methodology have been developed based on adaptive refinement of isogeometric shape functions. Non-Uniform Rational B-Spline

  7. Digitalization and networking of analog simulators and portal images.

    Science.gov (United States)

    Pesznyák, Csilla; Zaránd, Pál; Mayer, Arpád

    2007-03-01

    Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R&V (Record & Verify) system is required. Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R&V system.

  8. Gen-2 Hand-Held Optical Imager towards Cancer Imaging: Reflectance and Transillumination Phantom Studies

    Directory of Open Access Journals (Sweden)

    Anuradha Godavarty

    2012-02-01

    Full Text Available Hand-held near-infrared (NIR optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2 hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s allows for reflectance imaging (as in ultrasound and transillumination or compressed imaging (as in X-ray mammography. Phantom studies were performed to demonstrate two-dimensional (2D target detection via reflectance and transillumination imaging at various target depths (1–5 cm deep and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  9. Improving image quality of parallel phase-shifting digital holography

    International Nuclear Information System (INIS)

    Awatsuji, Yasuhiro; Tahara, Tatsuki; Kaneko, Atsushi; Koyama, Takamasa; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2008-01-01

    The authors propose parallel two-step phase-shifting digital holography to improve the image quality of parallel phase-shifting digital holography. The proposed technique can increase the effective number of pixels of hologram twice in comparison to the conventional parallel four-step technique. The increase of the number of pixels makes it possible to improve the image quality of the reconstructed image of the parallel phase-shifting digital holography. Numerical simulation and preliminary experiment of the proposed technique were conducted and the effectiveness of the technique was confirmed. The proposed technique is more practical than the conventional parallel phase-shifting digital holography, because the composition of the digital holographic system based on the proposed technique is simpler.

  10. Introduction to digital image processing

    CERN Document Server

    Pratt, William K

    2013-01-01

    CONTINUOUS IMAGE CHARACTERIZATION Continuous Image Mathematical Characterization Image RepresentationTwo-Dimensional SystemsTwo-Dimensional Fourier TransformImage Stochastic CharacterizationPsychophysical Vision Properties Light PerceptionEye PhysiologyVisual PhenomenaMonochrome Vision ModelColor Vision ModelPhotometry and ColorimetryPhotometryColor MatchingColorimetry ConceptsColor SpacesDIGITAL IMAGE CHARACTERIZATION Image Sampling and Reconstruction Image Sampling and Reconstruction ConceptsMonochrome Image Sampling SystemsMonochrome Image Reconstruction SystemsColor Image Sampling SystemsImage QuantizationScalar QuantizationProcessing Quantized VariablesMonochrome and Color Image QuantizationDISCRETE TWO-DIMENSIONAL LINEAR PROCESSING Discrete Image Mathematical Characterization Vector-Space Image RepresentationGeneralized Two-Dimensional Linear OperatorImage Statistical CharacterizationImage Probability Density ModelsLinear Operator Statistical RepresentationSuperposition and ConvolutionFinite-Area Superp...

  11. An image adaptive, wavelet-based watermarking of digital images

    Science.gov (United States)

    Agreste, Santa; Andaloro, Guido; Prestipino, Daniela; Puccio, Luigia

    2007-12-01

    In digital management, multimedia content and data can easily be used in an illegal way--being copied, modified and distributed again. Copyright protection, intellectual and material rights protection for authors, owners, buyers, distributors and the authenticity of content are crucial factors in solving an urgent and real problem. In such scenario digital watermark techniques are emerging as a valid solution. In this paper, we describe an algorithm--called WM2.0--for an invisible watermark: private, strong, wavelet-based and developed for digital images protection and authenticity. Using discrete wavelet transform (DWT) is motivated by good time-frequency features and well-matching with human visual system directives. These two combined elements are important in building an invisible and robust watermark. WM2.0 works on a dual scheme: watermark embedding and watermark detection. The watermark is embedded into high frequency DWT components of a specific sub-image and it is calculated in correlation with the image features and statistic properties. Watermark detection applies a re-synchronization between the original and watermarked image. The correlation between the watermarked DWT coefficients and the watermark signal is calculated according to the Neyman-Pearson statistic criterion. Experimentation on a large set of different images has shown to be resistant against geometric, filtering and StirMark attacks with a low rate of false alarm.

  12. Endless everyday images: links and excesses in digital image

    Directory of Open Access Journals (Sweden)

    Ana Cláudia do Amaral Leão

    2013-08-01

    Full Text Available The research analyzed the relationships and communication links between overproduced images on digital media and their carriers. I start from the hypothesis that the way we look, record, save and access images have been deeply modified with the advent of digital cameras and ‘phone cameras’ – encouraging an addictive behavior for pictures. The method was based on interviews with ten informers – the images’ carriers, who let us conclude that we are overproducing pictures as information. In this context arise the producers of endless everyday pictures, here named ‘photomaniacs’, who give birth two kinds of images: the circulatory infoimages and the everyday infoimages. Overproduced digital images transform devices in our magnifiers of memory and oblivion, undoing the way we compile, save or file – and operating in cumulative, disordered, small and private stock of images. Thus, we try to saturate our most superficial memory, that generates schizophrenic pictures when operates on excess. However, even if the way is only technological, we must remember that the body is the living organism suitable to pictures, the place where we hold deep bonding relations. Over this body surface, images survive impregnated of meanings, links, belonging and healing. The research was based on the theories of communication links of Boris Cyrulnik, Jose Ângelo Gaiarsa and Ashley Montagu, besides the works on images and schizophrenia of Nise da Silveira and Leo Navratil. The research also activated the central European stream of Cultural Semiotics, specially the theories of images proposed by Aby Warburg, Walter Benjamin, Dietmar Kamper, Norval Baitello Junior, Hans Belting and Vilém Flusser.

  13. Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Brad M.; Nathan, Diane L.; Wang Yan; Zheng Yuanjie; Gee, James C.; Conant, Emily F.; Kontos, Despina [Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2012-08-15

    Purpose: The amount of fibroglandular tissue content in the breast as estimated mammographically, commonly referred to as breast percent density (PD%), is one of the most significant risk factors for developing breast cancer. Approaches to quantify breast density commonly focus on either semiautomated methods or visual assessment, both of which are highly subjective. Furthermore, most studies published to date investigating computer-aided assessment of breast PD% have been performed using digitized screen-film mammograms, while digital mammography is increasingly replacing screen-film mammography in breast cancer screening protocols. Digital mammography imaging generates two types of images for analysis, raw (i.e., 'FOR PROCESSING') and vendor postprocessed (i.e., 'FOR PRESENTATION'), of which postprocessed images are commonly used in clinical practice. Development of an algorithm which effectively estimates breast PD% in both raw and postprocessed digital mammography images would be beneficial in terms of direct clinical application and retrospective analysis. Methods: This work proposes a new algorithm for fully automated quantification of breast PD% based on adaptive multiclass fuzzy c-means (FCM) clustering and support vector machine (SVM) classification, optimized for the imaging characteristics of both raw and processed digital mammography images as well as for individual patient and image characteristics. Our algorithm first delineates the breast region within the mammogram via an automated thresholding scheme to identify background air followed by a straight line Hough transform to extract the pectoral muscle region. The algorithm then applies adaptive FCM clustering based on an optimal number of clusters derived from image properties of the specific mammogram to subdivide the breast into regions of similar gray-level intensity. Finally, a SVM classifier is trained to identify which clusters within the breast tissue are likely

  14. Dynamic imaging through turbid media based on digital holography.

    Science.gov (United States)

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  15. Digital memory for TV image information

    International Nuclear Information System (INIS)

    Paretti, C.

    1975-01-01

    A system employing closed circuit TV camera and MOS memory is presented to take image information and store it. The apparatus is made in two sections: analog filters and digital memory. Filters have been used to select low amplitude signals from high frequency and low frequency noise components. The memory is arranged to make nondestroying overlap of digit array: this facility is useful for microscope image prejection to overcome depth of field limits, as in automatic nuclear emulsion scanners for personnel radiation monitoring. (author)

  16. System for objective assessment of image differences in digital cinema

    Science.gov (United States)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  17. Problems with Permatrace: a note on digital image publication

    Directory of Open Access Journals (Sweden)

    Guy Hopkinson

    2004-01-01

    Full Text Available The methodology presented here developed out of work required to convert the hard-copy illustrations submitted to Internet Archaeology for publication of the 1975 excavations at Cricklade. The publication (and digital image preparatory work was funded by English Heritage and was, in part, an experiment designed to explore some of the possibilities presented by digital image publication. Various challenges in how to transform the drawings on permatrace to a digital format were encountered. While a full exploration of the potential of all areas of digital image preparation and publication was not possible, some interesting technical options were evaluated. This short article explains the processes applied in creating the images that were finally incorporated within the publication. It also examines some other avenues regarding the presentation of archaeological drawings that could be explored in both future Internet Archaeology content and other digital publications.

  18. The FBI compression standard for digitized fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.; Bradley, J.N. [Los Alamos National Lab., NM (United States); Onyshczak, R.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Hopper, T. [Federal Bureau of Investigation, Washington, DC (United States)

    1996-10-01

    The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.

  19. The role of camera-bundled image management software in the consumer digital imaging value chain

    Science.gov (United States)

    Mueller, Milton; Mundkur, Anuradha; Balasubramanian, Ashok; Chirania, Virat

    2005-02-01

    This research was undertaken by the Convergence Center at the Syracuse University School of Information Studies (www.digital-convergence.info). Project ICONICA, the name for the research, focuses on the strategic implications of digital Images and the CONvergence of Image management and image CApture. Consumer imaging - the activity that we once called "photography" - is now recognized as in the throes of a digital transformation. At the end of 2003, market researchers estimated that about 30% of the households in the U.S. and 40% of the households in Japan owned digital cameras. In 2004, of the 86 million new cameras sold (excluding one-time use cameras), a majority (56%) were estimated to be digital cameras. Sales of photographic film, while still profitable, are declining precipitously.

  20. Digital networks for the image management

    International Nuclear Information System (INIS)

    Gomez del Campo L, A.

    1999-01-01

    The digital networks designed specifically for the X-ray departments in the hospitals already were found in open development at beginning the 80's decade. Actually the digital network will be present include the image generation without the necessity to use film in direct form and in its case to print it through a laser ray printers network, an electronic image file, the possibility to integrate the hospitable information system to the electronic expedient which will allow communicate radiograph electronic files and consult by satellite via the problem cases. (Author)

  1. Quality assurance in digital dental imaging: a systematic review.

    Science.gov (United States)

    Metsälä, Eija; Henner, Anja; Ekholm, Marja

    2014-07-01

    Doses induced by individual dental examinations are low. However, dental radiography accounts for nearly one third of the total number of radiological examinations in the European Union. Therefore, special attention is needed with regard to radiation protection. In order to lower patient doses, the staff performing dental examinations must have competence in imaging as well as in radiation protection issues. This paper presents a systematic review about the core competencies needed by the healthcare staff in performing digital dental radiological imaging quality assurance. The following databases were searched: Pubmed, Cinahl, Pro Quest and IEEXplore digital library. Also volumes of some dental imaging journals and doctoral theses of the Finnish universities educating dentists were searched. The search was performed using both MeSH terms and keywords using the option 'search all text'. The original keywords were: dental imaging, digital, x-ray, panoramic, quality, assurance, competence, competency, skills, knowledge, radiographer, radiologist technician, dentist, oral hygienist, radiation protection and their Finnish synonyms. Core competencies needed by the healthcare staff performing digital dental radiological imaging quality assurance described in the selected studies were: management of dental imaging equipment, competence in image quality and factors associated with it, dose optimization and quality assurance. In the future there will be higher doses in dental imaging due to increasing use of CBCT and digital imaging. The staff performing dental imaging must have competence in dental imaging quality assurance issues found in this review. They also have to practice ethical radiation safety culture in clinical practice.

  2. Digitalization and networking of analog simulators and portal images

    Energy Technology Data Exchange (ETDEWEB)

    Pesznyak, C.; Zarand, P.; Mayer, A. [Uzsoki Hospital, Budapest (Hungary). Inst. of Oncoradiology

    2007-03-15

    Background: Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R and V (Record and Verify) system is required. Material and Methods: Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Results: Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. Conclusion: The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R and V system. (orig.)

  3. Grid-supported Medical Digital Library.

    Science.gov (United States)

    Kosiedowski, Michal; Mazurek, Cezary; Stroinski, Maciej; Weglarz, Jan

    2007-01-01

    Secure, flexible and efficient storing and accessing digital medical data is one of the key elements for delivering successful telemedical systems. To this end grid technologies designed and developed over the recent years and grid infrastructures deployed with their use seem to provide an excellent opportunity for the creation of a powerful environment capable of delivering tools and services for medical data storage, access and processing. In this paper we present the early results of our work towards establishing a Medical Digital Library supported by grid technologies and discuss future directions of its development. These works are part of the "Telemedycyna Wielkopolska" project aiming to develop a telemedical system for the support of the regional healthcare.

  4. Three-dimensional digital breast histopathology imaging

    Science.gov (United States)

    Clarke, G. M.; Peressotti, C.; Mawdsley, G. E.; Eidt, S.; Ge, M.; Morgan, T.; Zubovits, J. T.; Yaffe, M. J.

    2005-04-01

    We have developed a digital histology imaging system that has the potential to improve the accuracy of surgical margin assessment in the treatment of breast cancer by providing finer sampling and 3D visualization. The system is capable of producing a 3D representation of histopathology from an entire lumpectomy specimen. We acquire digital photomicrographs of a stack of large (120 x 170 mm) histology slides cut serially through the entire specimen. The images are then registered and displayed in 2D and 3D. This approach dramatically improves sampling and can improve visualization of tissue structures compared to current, small-format histology. The system consists of a brightfield microscope, adapted with a freeze-frame digital video camera and a large, motorized translation stage. The image of each slide is acquired as a mosaic of adjacent tiles, each tile representing one field-of-view of the microscope, and the mosaic is assembled into a seamless composite image. The assembly is done by a program developed to build image sets at six different levels within a multiresolution pyramid. A database-linked viewing program has been created to efficiently register and display the animated stack of images, which occupies about 80 GB of disk space per lumpectomy at full resolution, on a high-resolution (3840 x 2400 pixels) colour monitor. The scanning or tiling approach to digitization is inherently susceptible to two artefacts which disrupt the composite image, and which impose more stringent requirements on system performance. Although non-uniform illumination across any one isolated tile may not be discernible, the eye readily detects this non-uniformity when the entire assembly of tiles is viewed. The pattern is caused by deficiencies in optical alignment, spectrum of the light source, or camera corrections. The imaging task requires that features as small as 3.2 &mum in extent be seamlessly preserved. However, inadequate accuracy in positioning of the translation

  5. Effects of scanning resolution and digital image magnification on photostimulable phosphor imaging system

    International Nuclear Information System (INIS)

    Sakurai, Takashi; Inagaki, Masafumi; Asai, Hideomi; Koyama, Atsushi; Kashima, Isamu

    2000-01-01

    The purpose of this study is to examine the effects of changes in scanning resolution and digital magnification on the image quality and diagnostic ability of the photostimulable phosphor imaging system. Using a photostimulable phosphor imaging system, images of a human adult dried mandible phantom embedded in a 25 mm-thick epoxy resin block were made. The latent images on the photostimulable phosphor imaging plate were scanned using four different pixel sizes as follows: 25 μm x 25 μm, 50 μm x 50 μm, 100 μm x 100 μm and 200 μm x 200 μm. A primary image was produced for each pixel size. These images were also digitally magnified at powers of 2, 4 and 8 times. The gradient range, brightness and contrast of each image were adjusted to optimum levels on a cathode ray tube display, and hard copies were produced with a writing pixel size of 60 μm x 60 μm. The granularity, sharpness and anatomical diagnostic ability of the images were assessed subjectively by eight dentists. Increasing the scanning resolution tended to generally improve image quality and diagnostic ability. Visual image quality was maintained up to a pixel size of 50 μm, and diagnostic ability was maintained up to a pixel size of 100 μm. Digital image magnification degraded image quality, and more than 2-times magnification degraded diagnostic ability. Under the present experimental conditions, increasing the scanning resolution did not always lead to an improvement in image quality or diagnostic ability, and digital image magnification degraded image quality and diagnostic ability. (author)

  6. Bilateral ce-MR angiography of the hands at 3.0 T and 1.5 T: intraindividual comparison of quantitative and qualitative image parameters in healthy volunteers

    International Nuclear Information System (INIS)

    Winterer, Jan T.; Markl, Michael; Frydrychowicz, Alexander; Bley, Thorsten A.; Langer, Mathias; Moske-Eick, Olaf

    2008-01-01

    The purpose of this study was to determine the benefit of bilateral contrast-enhanced MR angiography (ce-MRA) of the hands at 3.0 Tesla (T) compared with an established 1.5-T technique in healthy volunteers. Intraindividual bilateral ce-MRA of the hands was performed at 1.5 T and 3.0 T in 14 healthy volunteers using a timed ultra-fast GRE sequence featuring parallel acquisition. The evaluation comprised measurement of the vessel signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), rating of the image quality and the assessment of artefacts and venous contamination. At 3.0 T, SNR improved up to 95% and CNR up to 129%. The image quality of the larger inflow arteries, the palm arches and common digital arteries was good or sufficient at either magnetic field strengths. However, 3.0-T MRA was clearly superior in the depiction of the digital arteries. Ce-MRA of the hand clearly profits from the use of 3.0 T. Compared with 1.5 T, a substantial increase of CNR is found resulting in a significantly better delineation of the small digital arteries. Saturation affects more the SNR of the perivascular tissue than the contrast-enhanced blood, and thus leads to a marked increase of CNR at 3.0. (orig.)

  7. Image quality of digital mammography images produced using wet and dry laser imaging systems

    International Nuclear Information System (INIS)

    Al Khalifah, K.; Brindhaban, A.; AlArfaj, R.; Jassim, O.

    2006-01-01

    Introduction: A study was carried out to compare the quality of digital mammographic images printed or processed by a wet laser imaging system and a dedicated mammographic dry laser imaging system. Material and methods: Digital images of a tissue equivalent breast phantom were obtained using a GE Senographe 2000D digital mammography system and different target/filter combinations of the X-ray tube. These images were printed on films using the Fuji FL-IM D wet laser imaging system and the Kodak DryView 8600 dry laser imaging system. The quality of images was assessed in terms of detectability of microcalcifications and simulated tumour masses by five radiologists. In addition, the contrast index and speed index of the two systems were measured using the step wedge in the phantom. The unpaired, unequal variance t-test was used to test any statistically significant differences. Results: There were no significant (p < 0.05) differences between the images printed using the two systems in terms of microcalcification and tumour mass detectability. The wet system resulted in slightly higher contrast index while the dry system showed significantly higher speed index. Conclusion: Both wet and dry laser imaging systems can produce mammography images of good quality on which 0.2 mm microcalcifications and 2 mm tumour masses can be detected. Dry systems are preferable due to the absence of wet chemical processing and solid or liquid chemical waste. The wet laser imaging systems, however, still represent a useful alternative to dry laser imaging systems for mammography studies

  8. Practical digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Beverly E. [Washington Univ., Seattle, WA (United States)]|[Virginia Mason Medical Center, VA (United States)

    2008-07-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques.

  9. Practical digital mammography

    International Nuclear Information System (INIS)

    Hashimoto, Beverly E.

    2008-01-01

    This book is meant for the radiologist who is facing the challenge of organizing a digital mammographic imaging center. This text is meant to be a practical book that provides information about digital mammographic physics and equipment which will allow one to intelligently compare technologies and systems. Some of the major challenges include: large expense; rapidly changing technology, and inconsistent connectivity; and finally, need for strong information technology support. The initial conversion cost to digital mammographic imaging is relatively expensive due to the cost of digital mammography hardware, software, and storage. Virtually all other imaging modalities are being converted to purely digital storage and transfer, and the digital trend in mammography is inevitable. Technical advantages of digital mammography are described. However, the improved flexibility in image display and transfer are some of its strongest features. In conclusion, although there are increasing imaging modalities that may be used to evaluate breast disease, mammography will continue to play a key role in detecting breast cancer. To be an effective imager, the radiologist should become familiar with digital mammography and understand its role within the increasing complex structure of breast imaging techniques

  10. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    Science.gov (United States)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  11. The wavelet/scalar quantization compression standard for digital fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, J.N.; Brislawn, C.M.

    1994-04-01

    A new digital image compression standard has been adopted by the US Federal Bureau of Investigation for use on digitized gray-scale fingerprint images. The algorithm is based on adaptive uniform scalar quantization of a discrete wavelet transform image decomposition and is referred to as the wavelet/scalar quantization standard. The standard produces archival quality images at compression ratios of around 20:1 and will allow the FBI to replace their current database of paper fingerprint cards with digital imagery.

  12. The influence of software filtering in digital mammography image quality

    Science.gov (United States)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  13. The influence of software filtering in digital mammography image quality

    International Nuclear Information System (INIS)

    Michail, C; Spyropoulou, V; Valais, I; Panayiotakis, G; Kalyvas, N; Fountos, G; Kandarakis, I; Dimitropoulos, N

    2009-01-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  14. A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging

    Science.gov (United States)

    Dickenson, Rueben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.

    1992-01-01

    A new method of analyzing the kinematics of joint motion is developed. Magnetic Resonance Imaging (MRI) offers several distinct advantages. Past methods of studying anatomic joint motion have usually centered on four approaches. These methods are x-ray projection, goniometric linkage analysis, sonic digitization, and landmark measurement of photogrammetry. Of these four, only x-ray is applicable for in vivo studies. The remaining three methods utilize other types of projections of inter-joint measurements, which can cause various types of error. MRI offers accuracy in measurement due to its tomographic nature (as opposed to projection) without the problems associated with x-ray dosage. Once the data acquisition of MR images was complete, the images were processed using a 3D volume rendering workstation. The metacarpalphalangeal (MCP) joint of the left index finger was selected and reconstructed into a three-dimensional graphic display. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones were obtained and processed by analyzing the screw motion of the MCP joint. Landmark positions were chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily two dimensional planar motion of this joint was then studied using a method of constructing coordinate systems using three (or more) points. A transformation matrix based on a world coordinate system described the location and orientation of a local target coordinate system. Future research involving volume rendering of MRI data focusing on the internal kinematics of the hand's individual ligaments, cartilage, tendons, etc. will follow. Its findings will show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove (power assisted) design for extravehicular activity (EVA).

  15. Moiré Effect: Index and the Digital Image

    Directory of Open Access Journals (Sweden)

    Stella Baraklianou

    2014-10-01

    Full Text Available The moiré effect and phenomena are natural occurring geometric formations that appear during the super-position of grid structures. Most widely recognisable in colour printing practices, generally viewed on screens (computer and TV they are in most cases examples of interference within a signal or a code, unwanted visual mis-alignment. Especially in digital image capture, moiré patternings appear when a geometrically even pattern, like a fabric or close-up of fine texture, has an appearance of rippled water with blue or red hues of concentric circle formations. The intriguing pattern formation in this case points back not only to the mis-alignment of frequencies, but can be further seen as the intersection point of a speculative ontology for the index of the digital image. Moiré not only as a visually reproducible phenomenon or effect, but a field of vision that blurs the boundaries between analogue and digital, perception and affect, manifesting the photographic as a constant site of becoming, a site of immanence. The philosophy of Henri Bergson, Brian Massumi and Francois Laruelle will be explored alongside the moiré image and phenomenon, to see if there is such a speculative site underlining the becoming of the digital image and its repercussions in contemporary digital culture.

  16. Digital tissue and what it may reveal about the brain.

    Science.gov (United States)

    Morgan, Josh L; Lichtman, Jeff W

    2017-10-30

    Imaging as a means of scientific data storage has evolved rapidly over the past century from hand drawings, to photography, to digital images. Only recently can sufficiently large datasets be acquired, stored, and processed such that tissue digitization can actually reveal more than direct observation of tissue. One field where this transformation is occurring is connectomics: the mapping of neural connections in large volumes of digitized brain tissue.

  17. Qualitative Evaluation of Digital Hand X-rays is Not a Reliable Method to Assess Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    AndrewJ. Miller

    2017-01-01

    Full Text Available Object: The gold standard for evaluating bone mineral density is dual energy x-ray absorptiometry (DEXA.  Prior studies have shown poor reliability using analog wrist X-rays in diagnosing osteoporosis. Our goal was to investigate if there was improved diagnostic value to visual assessment of digital hand X-rays in osteoporosis screening. We hypothesized that similar to analog counterparts, digital hand X-rays have poor correlation and reliability in determining bone mineral density (BMD relative to DEXA.Methods: We prospectively evaluated female patients older than 65 years who presented to our hand clinic with digital hand and wrist X-rays as part of their evaluation over six months. Patients who had a fracture and were without DEXA scans within the past two years were excluded. Five fellowship-trained hand surgeons, blinded to DEXA T-scores, evaluated the x-rays over two assessments separated by four weeks and classified them as osteoporotic, osteopenic, or normal BMD.  Accuracy relative to DEXA T-score, interobserver and intraobserver rates were calculated.Results: Thirty four patients met the inclusion criteria and a total of 340 x-rays reviews were performed.  The assessments were correct in 169 cases (49% as compared to the DEXA T-scores. A mean weighted kappa coefficient of agreement between observers was 0.29 (range 0.02-0.41 reflecting a fair agreement. The first and second assessment for all five physicians was 0.46 (range 0.19-0.78 reflecting a moderate agreement.  Grouping osteoporosis and osteopenia together compared to normal, the accuracy, interobserver and intraobserver rates increased to 63%, 0.42 and 0.54 respectively.Conclusion: Abnormally low BMD is a common occurrence in patients treated for upper extremity disorders. There is poor accuracy relative to DEXA scan and only fair agreement in diagnosing osteoporosis using visual assessments of digital x-rays.

  18. Surface Distresses Detection of Pavement Based on Digital Image Processing

    OpenAIRE

    Ouyang , Aiguo; Luo , Chagen; Zhou , Chao

    2010-01-01

    International audience; Pavement crack is the main form of early diseases of pavement. The use of digital photography to record pavement images and subsequent crack detection and classification has undergone continuous improvements over the past decade. Digital image processing has been applied to detect the pavement crack for its advantages of large amount of information and automatic detection. The applications of digital image processing in pavement crack detection, distresses classificati...

  19. Hand and wrist arthritis of Behcet disease: Imaging features

    International Nuclear Information System (INIS)

    Sugawara, Shunsuke; Ehara, Shigeru; Hitachi, Shin; Sugimoto, Hideharu

    2010-01-01

    Background: Reports on arthritis in Behcet disease are relatively scarce, and imaging features vary. Purpose: To document the various imaging features of articular disorders of the hand and wrist in Behcet disease. Material and Methods: Four patients, four women aged 26 to 65 years, fulfilling the diagnostic criteria of Behcet disease, with imaging findings of hand and wrist arthritis, were seen in two institutions. Radiography and magnetic resonance (MR) imaging were studied to elucidate the pattern and distribution. Results: Both non-erosive arthritis and erosive arthritis of different features were noted: one with non-erosive synovitis of the wrist, one with wrist synovitis with minimal erosion, and two with erosive arthritis of the distal interphalangeal joint. Conclusion: Imaging manifestations of arthritis of Behcet disease vary, and may be similar to other seronegative arthritides

  20. An Intelligent Web Digital Image Metadata Service Platform for Social Curation Commerce Environment

    Directory of Open Access Journals (Sweden)

    Seong-Yong Hong

    2015-01-01

    Full Text Available Information management includes multimedia data management, knowledge management, collaboration, and agents, all of which are supporting technologies for XML. XML technologies have an impact on multimedia databases as well as collaborative technologies and knowledge management. That is, e-commerce documents are encoded in XML and are gaining much popularity for business-to-business or business-to-consumer transactions. Recently, the internet sites, such as e-commerce sites and shopping mall sites, deal with a lot of image and multimedia information. This paper proposes an intelligent web digital image information retrieval platform, which adopts XML technology for social curation commerce environment. To support object-based content retrieval on product catalog images containing multiple objects, we describe multilevel metadata structures representing the local features, global features, and semantics of image data. To enable semantic-based and content-based retrieval on such image data, we design an XML-Schema for the proposed metadata. We also describe how to automatically transform the retrieval results into the forms suitable for the various user environments, such as web browser or mobile device, using XSLT. The proposed scheme can be utilized to enable efficient e-catalog metadata sharing between systems, and it will contribute to the improvement of the retrieval correctness and the user’s satisfaction on semantic-based web digital image information retrieval.

  1. Image quality analysis of digital mammographic equipments

    Energy Technology Data Exchange (ETDEWEB)

    Mayo, P.; Pascual, A.; Verdu, G. [Valencia Univ. Politecnica, Chemical and Nuclear Engineering Dept. (Spain); Rodenas, F. [Valencia Univ. Politecnica, Applied Mathematical Dept. (Spain); Campayo, J.M. [Valencia Univ. Hospital Clinico, Servicio de Radiofisica y Proteccion Radiologica (Spain); Villaescusa, J.I. [Hospital Clinico La Fe, Servicio de Proteccion Radiologica, Valencia (Spain)

    2006-07-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  2. Image quality analysis of digital mammographic equipments

    International Nuclear Information System (INIS)

    Mayo, P.; Pascual, A.; Verdu, G.; Rodenas, F.; Campayo, J.M.; Villaescusa, J.I.

    2006-01-01

    The image quality assessment of a radiographic phantom image is one of the fundamental points in a complete quality control programme. The good functioning result of all the process must be an image with an appropriate quality to carry out a suitable diagnostic. Nowadays, the digital radiographic equipments are replacing the traditional film-screen equipments and it is necessary to update the parameters to guarantee the quality of the process. Contrast-detail phantoms are applied to digital radiography to study the threshold contrast detail sensitivity at operation conditions of the equipment. The phantom that is studied in this work is C.D.M.A.M. 3.4, which facilitates the evaluation of image contrast and detail resolution. One of the most extended indexes to measure the image quality in an objective way is the Image Quality Figure (I.Q.F.). This parameter is useful to calculate the image quality taking into account the contrast and detail resolution of the image analysed. The contrast-detail curve is useful as a measure of the image quality too, because it is a graphical representation in which the hole thickness and diameter are plotted for each contrast-detail combination detected in the radiographic image of the phantom. It is useful for the comparison of the functioning of different radiographic image systems, for phantom images under the same exposition conditions. The aim of this work is to study the image quality of different images contrast-detail phantom C.D.M.A.M. 3.4, carrying out the automatic detection of the contrast-detail combination and to establish a parameter which characterize in an objective way the mammographic image quality. This is useful to compare images obtained at different digital mammographic equipments to study the functioning of the equipments. (authors)

  3. Fractal Image Coding with Digital Watermarks

    Directory of Open Access Journals (Sweden)

    Z. Klenovicova

    2000-12-01

    Full Text Available In this paper are presented some results of implementation of digitalwatermarking methods into image coding based on fractal principles. Thepaper focuses on two possible approaches of embedding digitalwatermarks into fractal code of images - embedding digital watermarksinto parameters for position of similar blocks and coefficients ofblock similarity. Both algorithms were analyzed and verified on grayscale static images.

  4. Digital image correlation in analysis of striffness in local zones of welded joints

    Czech Academy of Sciences Publication Activity Database

    Milosevic, M.; Milosevic, N.J.; Sedmak, S.; Tatic, U.; Mitrovic, N.; Hloch, Sergej; Jovicic, R.

    2016-01-01

    Roč. 23, č. 1 (2016), s. 19-24 ISSN 1330-3651 Institutional support: RVO:68145535 Keywords : Aramis software * digital image correlation * strain analysis * stiffness * welded joints Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/file/225545

  5. Hybrid phase retrieval algorithm for solving the twin image problem in in-line digital holography

    Science.gov (United States)

    Zhao, Jie; Wang, Dayong; Zhang, Fucai; Wang, Yunxin

    2010-10-01

    For the reconstruction in the in-line digital holography, there are three terms overlapping with each other on the image plane, named the zero order term, the real image and the twin image respectively. The unwanted twin image degrades the real image seriously. A hybrid phase retrieval algorithm is presented to address this problem, which combines the advantages of two popular phase retrieval algorithms. One is the improved version of the universal iterative algorithm (UIA), called the phase flipping-based UIA (PFB-UIA). The key point of this algorithm is to flip the phase of the object iteratively. It is proved that the PFB-UIA is able to find the support of the complicated object. Another one is the Fienup algorithm, which is a kind of well-developed algorithm and uses the support of the object as the constraint among the iteration procedure. Thus, by following the Fienup algorithm immediately after the PFB-UIA, it is possible to produce the amplitude and the phase distributions of the object with high fidelity. The primary simulated results showed that the proposed algorithm is powerful for solving the twin image problem in the in-line digital holography.

  6. The impact of technical conditions of X-ray imaging on reproducibility and precision of digital computer-assisted X-ray radiogrammetry (DXR)

    International Nuclear Information System (INIS)

    Malich, A.; Boettcher, J.; Pfeil, A.; Sauner, D.; Heyne, J.P.; Petrovitch, A.; Hansch, A.; Kaiser, W.A.; Linss, W.

    2004-01-01

    To evaluate the reproducibility of imaging and analysis for bone mineral density (BMD) determination using digital computer-assisted X-ray radiogrammetry (DXR; Pronosco X-posure, version V.2, Sectra Pronosco, Denmark); to verify potential factors that influence BMD extrapolation such as tube voltage, film-focus distance (FFD), film quality and brand (Kodak T-MAT-Plus, Konika SRH, Agfa Scopix), imaging technology (conventional, digital), imaging system (Kodak, Agfa) and exposure level (mAs); and to clarify whether DXR analysis based on printouts of digital images is comparable to analysis of conventional images. The hand of a cadaver was X-rayed using varied parameters: 4-8 mAs, 40-52 kV, 90-130 cm FFD. Radiographs under standardised conditions were performed 10 times using a conventional machine (Philips Super 80 CP) and the printouts of a digital system (Digital Diagnost Philips Optimus) for the analysis of reproducibility. One image was scanned and analysed 10 times additionally for imaging reproducibility. Reliability error of the system for the imaging process using conventional radiographs-rays was 0.49% (standard conditions: 6 mAs, 40 kV, 1 m FFD), using printouts of digital images was 2.89% (4 mAs, 42 kV, 1 m FFD) and regarding the analysis process was 0.22%. BMD calculation is not affected by alterations in FFD (precision error 1.21%), mAs (0.83%) or film quality/brand (0.38%), but differs significantly depending on tube voltage (2.70%). The system was not able to analyse conventional images with tube voltages of 49/52 kV. DXR technology is stable with most of the tested parameters. Normative data should exclusively be used for calculations using similar tube voltage or correction factors. All other parameters had no significant influence on the BMD calculation. Reproducibility is high. For technical reasons it is not recommended to use the printouts of digital images for BMD determination. (orig.)

  7. Comparison of image quality and radiation exposure from digital and 105-mm film images in pediatric fluoroscopy

    International Nuclear Information System (INIS)

    Drake, D.G.; Day, D.L.; Alford, B.A.; Geise, R.; Thompson, W.M.

    1987-01-01

    This study was designed to compare image quality of digitally acquired films compared with conventional 105-mm films in pediatric gastrointestinal and genitourinary fluoroscopic studies. Films were acquired digitally in 1,024 x 1,024 matrix, 512 x 512 matrix, and 105-mm film. Based on the observers' median scoring, the 1,024 x 1,024 reduced to 512 x 512 matrix provided similar overall image quality to the 105-mm films. The digital images produced a patient radiation exposure of 25% to 30% that of the 105-mm images on their equipment. The authors conclude that digital images provide similar image quality to 105-mm images with a significant reduction in patient radiation exposure

  8. The role of hand drawing in basic design education in the digital age

    NARCIS (Netherlands)

    Have, R.; Van den Toorn, M.W.M.

    2012-01-01

    In the last decennia, hand drawing has been slowly moved out of the curricula in architecture schools and the teaching of computer skills has taken over. It has also created an 'intellectual dichotomy of viewpoints'; the digital and analogues. The question now is how to find a new balance for

  9. Digital Image Watermarking in Transform Domains

    International Nuclear Information System (INIS)

    EL-Shazly, E.H.M.

    2012-01-01

    Fast development of internet and availability of huge digital content make it easy to create, modify and copy digital media such as audio, video and images. This causes a problem for owners of that content and hence a need to copy right protection tool was essential. First, encryption was proposed but it ensures protection during transmission only and once decryption occurred any one can modify the data. at that point watermarking was introduced as a solution to such problem. Watermarking is a process of inserting a low energy signal in to a high energy one so that it doesn't affect the main signal features. A good digital image watermarking technique should satisfy four requirements: 1) Embedding of a watermark should not degrade the host image visual quality (imperceptibility). 2) The embedded watermark should stick to the host image so that it couldn’t be removed by common image processing operation and could be extracted from the attacked watermarked image (robustness). 3) Knowing the embedding and extraction procedures is sufficient but not enough to extract the watermark; extra keys should be needed (security). 4) The watermarking technique should allow embedding and extraction of more than one watermark each independent of the other (capacity). This thesis presents a watermarking scheme that full fill the mentioned four requirements by jointing transform domains with Fractional Fourier Transform Domain (FracFT). More work on cascaded Discrete Wavelet Transform DWT with FracFT was done to develop a joint transform simply called Fractional Wavelet Transform (FWT). The proposed schemes were tested with different image processing attacks to verify its robustness. Finally, the watermarked image is transmitted over simulated MC CDMA channel to prove robustness in real transmission conditions case.

  10. The clinical application of the digital imaging in urography

    International Nuclear Information System (INIS)

    Zhu Yuelong; Xie Sumin; Zhang Li; Li Huayu

    2003-01-01

    Objective: To evaluate the clinical application of the digital imaging in the urography. Methods: In total 112 patients underwent digital urography, including intravenous pyelography (IVP) in 38 cases and retrograde pyelography in 74 cases. Results: the entire urinary tract was better shown on digital imaging, which was accurate in locating the obstruction of urinary tract and helped the qualitative diagnosis. Digital urography was especially valuable in detecting urinary calculus. In 38 cases of IVP, the results were normal in 5 patients, renal stone in 12, ureteral stone in 13, ureteral stenosis in 6 and nephroblastom in 2. In the 74 cases of retrograde pyelography, benign ureteral stenosis was found in 31 patients, ureteral stone in 27, ureteral polyp in 2, urethral stone in 8 and benign urethral stenosis in 6. Conclusion: Digital imaging technique is of big value in the diagnosis of urinary tract lesions

  11. Postoperative imaging of orthopaedic hardware in the hand and wrist: is there an added value for tomosynthesis?

    Science.gov (United States)

    De Silvestro, A; Martini, K; Becker, A S; Kim-Nguyen, T D L; Guggenberger, R; Calcagni, M; Frauenfelder, T

    2018-02-01

    To prospectively investigate digital tomosynthesis (DTS) as an alternative to digital radiography (DR) for postoperative imaging of orthopaedic hardware after trauma or arthrodesis in the hand and wrist. Thirty-six consecutive patients (12 female, median age 36 years, range 19-86 years) were included in this institutional review board approved clinical trial. Imaging was performed with DTS in dorso-palmar projection and DR was performed in dorso-palmar, lateral, and oblique views. Images were evaluated by two independent radiologists for qualitative and diagnosis-related imaging parameters using a four-point Likert scale (1=excellent, 4not diagnostic) and nominal scale. Interobserver agreement between the two readers was assessed with Cohen's kappa (k). Differences between DTS and CR were tested with Wilcoxon's signed-rank test. A p-value <0.05 was considered statistically significant. Regarding image quality, interobserver agreement was higher for DTS compared to DR, especially for fracture-related parameters (delineation osteosynthesis material [OSM]: K DTS 0.96 versus K DR 0.45; delineation fracture margins: K DTS 0.78 versus K DR 0.35). Delineation of fracture margins and delineation of adjacent joint spaces scored significant better for DTS compared to DR (delineation fracture margins: DTS1.54, DR2.28, p0.001; delineation adjacent joint spaces: DTS1.31, DR2.24, p0.001). Regarding diagnosis-related findings, interobserver agreement was almost equal. DTS showed a significant higher sharpness of fracture margins (DTS1.94, DR2.33, p0.04). Mean dose area product (DAP) for DTS was significant higher compared to DR (mean DR0.219 Gy·cm 2 , mean DTS0.903 Gy·cm 2 , p0.001). Fracture healing is more visible and interobserver agreement is higher for DTS compared to DR in the postoperative assessment of orthopaedic hardware in the hand and wrist. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. Integrating digital topology in image-processing libraries.

    Science.gov (United States)

    Lamy, Julien

    2007-01-01

    This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.

  13. Better imaging: the advantages of digital radiography

    NARCIS (Netherlands)

    van der Stelt, P.F.

    2008-01-01

    Background. Digital radiography has been available in dentistry for more than 25 years, but it has not replaced conventional film-based radiography completely. This could be because of the costs involved in replacing conventional radiographic equipment with a digital imaging system, or because

  14. Principles of digital image synthesis

    CERN Document Server

    Glassner, Andrew S

    1995-01-01

    Image synthesis, or rendering, is a field of transformation: it changesgeometry and physics into meaningful images. Because the most popularalgorithms frequently change, it is increasingly important for researchersand implementors to have a basic understanding of the principles of imagesynthesis. Focusing on theory, Andrew Glassner provides a comprehensiveexplanation of the three core fields of study that come together to formdigital image synthesis: the human visual system, digital signalprocessing, and the interaction of matter and light. Assuming no more thana basic background in calculus,

  15. Practical evaluation of clinical image quality (4). Determination of image quality in digital radiography system

    International Nuclear Information System (INIS)

    Katayama, Reiji

    2016-01-01

    Recently, for medical imaging, digital radiography systems are widely used in clinical practices. However, a study in the past reported that a patient radiation exposure level by digital radiography is in fact not lower than that by analog radiography system. High level of attention needs to be paid for over-exposure when using the conventional analog radiography with a screen and a film, as it results in high density of the film. However, for digital radiography systems, since the automatic adjusting function of image density is equipped with them, no attention for radiation dose need to be paid. Thus technologists tend to be careless and results in higher chance for over-exposure. Current digital radiography systems are high-performance in the image properties and capable of patient dose reduction. Especially, the image quality of the flat panel detector system is recognized, higher than that of the computed radiography system by imaging plates, in both objective and subjective evaluations. Therefore, we technologists are responsible for optimizing the balance between the image quality of the digital radiogram and the radiation dose required for each case. Moreover, it is also required for us as medical technologists to make effective use of such evaluation result of medical images for patients. (author)

  16. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various samples. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  17. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various materials. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  18. Detecting jaundice by using digital image processing

    Science.gov (United States)

    Castro-Ramos, J.; Toxqui-Quitl, C.; Villa Manriquez, F.; Orozco-Guillen, E.; Padilla-Vivanco, A.; Sánchez-Escobar, JJ.

    2014-03-01

    When strong Jaundice is presented, babies or adults should be subject to clinical exam like "serum bilirubin" which can cause traumas in patients. Often jaundice is presented in liver disease such as hepatitis or liver cancer. In order to avoid additional traumas we propose to detect jaundice (icterus) in newborns or adults by using a not pain method. By acquiring digital images in color, in palm, soles and forehead, we analyze RGB attributes and diffuse reflectance spectra as the parameter to characterize patients with either jaundice or not, and we correlate that parameters with the level of bilirubin. By applying support vector machine we distinguish between healthy and sick patients.

  19. Desktop publishing and medical imaging: paper as hardcopy medium for digital images.

    Science.gov (United States)

    Denslow, S

    1994-08-01

    Desktop-publishing software and hardware has progressed to the point that many widely used word-processing programs are capable of printing high-quality digital images with many shades of gray from black to white. Accordingly, it should be relatively easy to print digital medical images on paper for reports, instructional materials, and in research notes. Components were assembled that were necessary for extracting image data from medical imaging devices and converting the data to a form usable by word-processing software. A system incorporating these components was implemented in a medical setting and has been operating for 18 months. The use of this system by medical staff has been monitored.

  20. Investigation of physical imaging properties in various digital radiography systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hoi Woun [Dept. of Radiological Science, Baekseok Culture University, Cheonan (Korea, Republic of); Min, Jung Hwan [Dept. of Radiological technology, Shingu University, Seongnam (Korea, Republic of); Yoon, Yong Su [Dept. of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Kyushu (Japan); Kim, Jung Min [Dept. of Health and Environmental Science, College of Health Science, Korea University, Seoul (Korea, Republic of)

    2017-09-15

    We aimed to evaluate the physical imaging properties in various digital radiography systems with charged coupled device (CCD), computed radiography (CR), and indirect flat panel detector (FPD). The imaging properties measured in this study were modulation transfer function (MTF) wiener spectrum (WS), and detective quantum efficiency (DQE) to compare the performance of each digital radiography system. The system response of CCD were in a linear relationship with exposure and that of CR and FPD were proportional to the logarithm of exposure. The MTF of both CR and FPD indicated a similar tendency but in case of CCD, it showed lower MTF than that of CR and FPD. FPD showed the lowest WS and also indicated the highest DQE among three systems. According to the results, digital radiography system with different type of image receptor had its own image characteristics. Therefore, it is important to know the physical imaging characteristics of the digital radiography system accurately to obtain proper image quality.

  1. The effects of gray scale image processing on digital mammography interpretation performance.

    Science.gov (United States)

    Cole, Elodia B; Pisano, Etta D; Zeng, Donglin; Muller, Keith; Aylward, Stephen R; Park, Sungwook; Kuzmiak, Cherie; Koomen, Marcia; Pavic, Dag; Walsh, Ruth; Baker, Jay; Gimenez, Edgardo I; Freimanis, Rita

    2005-05-01

    To determine the effects of three image-processing algorithms on diagnostic accuracy of digital mammography in comparison with conventional screen-film mammography. A total of 201 cases consisting of nonprocessed soft copy versions of the digital mammograms acquired from GE, Fischer, and Trex digital mammography systems (1997-1999) and conventional screen-film mammograms of the same patients were interpreted by nine radiologists. The raw digital data were processed with each of three different image-processing algorithms creating three presentations-manufacturer's default (applied and laser printed to film by each of the manufacturers), MUSICA, and PLAHE-were presented in soft copy display. There were three radiologists per presentation. Area under the receiver operating characteristic curve for GE digital mass cases was worse than screen-film for all digital presentations. The area under the receiver operating characteristic for Trex digital mass cases was better, but only with images processed with the manufacturer's default algorithm. Sensitivity for GE digital mass cases was worse than screen film for all digital presentations. Specificity for Fischer digital calcifications cases was worse than screen film for images processed in default and PLAHE algorithms. Specificity for Trex digital calcifications cases was worse than screen film for images processed with MUSICA. Specific image-processing algorithms may be necessary for optimal presentation for interpretation based on machine and lesion type.

  2. Digital image intensifier radiography. One year's experience with a Polytron system

    International Nuclear Information System (INIS)

    Busch, H.P.; Lehmann, K.J.; Georgi, M.

    1989-01-01

    Since January 1988, digital image intensifier radiography has been used in the Clinic in Mannheim for DSA examinations and also in place of conventional screen/film examinations. Measurements have shown that compared with 100 mm and film/screen formats, digital radiography has poorer spatial resolution, but improved contrast resolution. The most common use of digital radiography was for examinations of the gastrointestinal tract. Using the demonstration of the mucosal fine relief pattern as a criterion of image quality, digital image intensifier radiography was able to achieve this satisfactorily. Comparison with film/screen examinations showed no loss of diagnostic information. Advantages of image intensifier radiography are reduced radiation dose, the possibility of postprocessing and economy. On the basis of 399 examinations, digital image intensifier radiography is now firmly established as part of the daily routine of the Mannheim Clinic. (orig.) [de

  3. Quantity and Quality of Support for Digital Engagement

    NARCIS (Netherlands)

    van Deursen, Alexander Johannes Aloysius Maria; Helsper, Ellen

    2016-01-01

    Following the course taking by digital divide or digital inclusion research, this paper uses socio-cultural, socio-economic, social, and digital indicators to predict access to and the type of potential and actual social support networks that might help an individual in using the Internet. In

  4. Implementation of a dedicated digital projectional radiographic system in thoracic imaging

    International Nuclear Information System (INIS)

    Aberle, D.R.; Batra, P.; Hayrapetian, A.S.; Brown, K.; Morioka, C.A.; Steckel, R.J.

    1988-01-01

    An integrated digital radiographic system was evaluated with respect to image quality and impact on diagnosis relative to conventional chest radiographs for a variety of focal and diffuse lung processes. Digital images were acquired with a stimulable phosphor plate detector that was scanned by a semiconductor laser for immediate digitalization to a 2,048 X 2,464 X 10-bit image. Digital images were displayed on a 2,048-line monitor and printed on 14 X 17-inch film with use of a laser film printer (Kodak). Preliminary results with this system, including the effects of user interaction with the display monitor, inverse intensity display, and regional magnification techniques, indicate that it may be successfully implemented for thoracic imaging

  5. Observation of Compressive Deformation Behavior of Nuclear Graphite by Digital Image Correlation

    International Nuclear Information System (INIS)

    Kim, Hyunju; Kim, Eungseon; Kim, Minhwan; Kim, Yongwan

    2014-01-01

    Polycrystalline nuclear graphite has been proposed as a fuel element, moderator and reflector blocks, and core support structures in a very high temperature gas-cooled reactor. During reactor operation, graphite core components and core support structures are subjected to various stresses. It is therefore important to understand the mechanism of deformation and fracture of nuclear graphites, and their significance to structural integrity assessment methods. Digital image correlation (DIC) is a powerful tool to measure the full field displacement distribution on the surface of the specimens. In this study, to gain an understanding of compressive deformation characteristic, the formation of strain field during a compression test was examined using a commercial DIC system. An examination was made to characterize the compressive deformation behavior of nuclear graphite by a digital image correlation. The non-linear load-displacement characteristic prior to the peak load was shown to be mainly dominated by the presence of localized strains, which resulted in a permanent displacement. Young's modulus was properly calculated from the measured strain

  6. Giant cell tumor of the tendon sheath of the hand - magnetic resonance image and orthopaedic treatment

    International Nuclear Information System (INIS)

    Kirova, G.; Monovska, T.; Jablanski, V.; Alexieva, K.; Velev, M.

    2009-01-01

    Giant cell tumour of the tendon sheath (GCT-TS), also known as localized nodular tenosynovitis, is a benign neoplasm that occurs dominantly on the digits. These tumours most commonly occur in patients aged 30-50 years and are associated with degenerative joint disease. GCT-TS usually arises from the synovium of tendon sheets, affecting interfalangeal joints of the hand, feet, ankle and knees. Magnetic Resonance Imaging is able to depict characteristic signal intensities and can accurately assess the tumor size and degree of extent around the phalanx. We present a case of a 36 years-old male patient with GCT-TS in the flexor tendon of his left second finger, diagnosed with Magnetic Resonance imaging. The mass was excised widely with preservation of the flexor tendon without recurrence. (authors)

  7. Integrating Digital Images into the Art and Art History Curriculum.

    Science.gov (United States)

    Pitt, Sharon P.; Updike, Christina B.; Guthrie, Miriam E.

    2002-01-01

    Describes an Internet-based image database system connected to a flexible, in-class teaching and learning tool (the Madison Digital Image Database) developed at James Madison University to bring digital images to the arts and humanities classroom. Discusses content, copyright issues, ensuring system effectiveness, instructional impact, sharing the…

  8. Photography/Digital Imaging: Parallel & Paradoxical Histories.

    Science.gov (United States)

    Witte, Mary Stieglitz

    With the introduction of photography and photomechanical printing processes in the 19th century, the first age of machine pictures and reproductions emerged. The 20th century introduced computer image processing systems, creating a digital imaging revolution. Rather than concentrating on the adversarial aspects of the computer's influence on…

  9. Analysis of identification of digital images from a map of cosmic microwaves

    Science.gov (United States)

    Skeivalas, J.; Turla, V.; Jurevicius, M.; Viselga, G.

    2018-04-01

    This paper discusses identification of digital images from the cosmic microwave background radiation map formed according to the data of the European Space Agency "Planck" telescope by applying covariance functions and wavelet theory. The estimates of covariance functions of two digital images or single images are calculated according to the random functions formed of the digital images in the form of pixel vectors. The estimates of pixel vectors are formed on expansion of the pixel arrays of the digital images by a single vector. When the scale of a digital image is varied, the frequencies of single-pixel color waves remain constant and the procedure for calculation of covariance functions is not affected. For identification of the images, the RGB format spectrum has been applied. The impact of RGB spectrum components and the color tensor on the estimates of covariance functions was analyzed. The identity of digital images is assessed according to the changes in the values of the correlation coefficients in a certain range of values by applying the developed computer program.

  10. Digital Radiology Image Learning Library

    International Nuclear Information System (INIS)

    Arenson, R.L.; Greenes, R.; Allman, R.; Swett, H.

    1989-01-01

    The Digital Radiology Image Learning Library (DRILL) is designed as an interactive teaching tool targeted to the radiologic community. The DRILL pilot comprises a comprehensive mammographic information base consisting of factual data in a relational database, an extensive knowledge base in semantic nets and high-resolution images. A flexible query module permits the user to browse and retrieve examination data, case discussions, and related images. Other applications, including expert systems, instructional programs, and skill building exercises, can be accessed through well-defined software constructs

  11. Digital Shaded-Relief Image of Alaska

    Science.gov (United States)

    Riehle, J.R.; Fleming, Michael D.; Molnia, B.F.; Dover, J.H.; Kelley, J.S.; Miller, M.L.; Nokleberg, W.J.; Plafker, George; Till, A.B.

    1997-01-01

    Introduction One of the most spectacular physiographic images of the conterminous United States, and the first to have been produced digitally, is that by Thelin and Pike (USGS I-2206, 1991). The image is remarkable for its crispness of detail and for the natural appearance of the artificial land surface. Our goal has been to produce a shaded-relief image of Alaska that has the same look and feel as the Thelin and Pike image. The Alaskan image could have been produced at the same scale as its lower 48 counterpart (1:3,500,000). But by insetting the Aleutian Islands into the Gulf of Alaska, we were able to print the Alaska map at a larger scale (1:2,500,000) and about the same physical size as the Thelin and Pike image. Benefits of the 1:2,500,000 scale are (1) greater resolution of topographic features and (2) ease of reference to the U.S. Geological Survey (USGS) (1987) Alaska Map E and the statewide geologic map (Beikman, 1980), which are both 1:2,500,000 scale. Manually drawn, shaded-relief images of Alaska's land surface have long been available (for example, Department of the Interior, 1909; Raisz, 1948). The topography depicted on these early maps is mainly schematic. Maps showing topographic contours were first available for the entire State in 1953 (USGS, 1:250,000) (J.H. Wittmann, USGS, written commun., 1996). The Alaska Map E was initially released in 1954 in both planimetric (revised in 1973 and 1987) and shaded-relief versions (revised in 1973, 1987, and 1996); topography depicted on the shaded-relief version is based on the 1:250,000-scale USGS topographic maps. Alaska Map E was later modified to include hypsometric tinting by Raven Maps and Images (1989, revised 1993) as copyrighted versions. Other shaded-relief images were produced for The National Geographic Magazine (LaGorce, 1956; 1:3,000,000) or drawn by Harrison (1970; 1:7,500,000) for The National Atlas of the United States. Recently, the State of Alaska digitally produced a shaded-relief image

  12. Finite element formulation for a digital image correlation method

    International Nuclear Information System (INIS)

    Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei

    2005-01-01

    A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust

  13. [Managing digital medical imaging projects in healthcare services: lessons learned].

    Science.gov (United States)

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  14. Digital image processing of mandibular trabeculae on radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, Toshi

    1987-06-01

    The present study was aimed to reveal the texture patterns of the radiographs of the mandibular trabeculae by digital image processing. The 32 cases of normal subjects and the 13 cases of patients with mandibular diseases of ameloblastoma, primordial cysts, squamous cell carcinoma and odontoma were analyzed by their intra-oral radiographs in the right premolar regions. The radiograms were digitized by the use of a drum scanner densitometry method. The input radiographic images were processed by a histogram equalization method. The result are as follows : First, the histogram equalization method enhances the image contrast of the textures. Second, the output images of the textures for normal mandible-trabeculae radiograms are of network pattern in nature. Third, the output images for the patients are characterized by the non-network pattern and replaced by the patterns of the fabric texture, intertwined plants (karakusa-pattern), scattered small masses and amorphous texture. Thus, these results indicates that the present digital image system is expected to be useful for revealing the texture patterns of the radiographs and in the future for the texture analysis of the clinical radiographs to obtain quantitative diagnostic findings.

  15. Contactless and pose invariant biometric identification using hand surface.

    Science.gov (United States)

    Kanhangad, Vivek; Kumar, Ajay; Zhang, David

    2011-05-01

    This paper presents a novel approach for hand matching that achieves significantly improved performance even in the presence of large hand pose variations. The proposed method utilizes a 3-D digitizer to simultaneously acquire intensity and range images of the user's hand presented to the system in an arbitrary pose. The approach involves determination of the orientation of the hand in 3-D space followed by pose normalization of the acquired 3-D and 2-D hand images. Multimodal (2-D as well as 3-D) palmprint and hand geometry features, which are simultaneously extracted from the user's pose normalized textured 3-D hand, are used for matching. Individual matching scores are then combined using a new dynamic fusion strategy. Our experimental results on the database of 114 subjects with significant pose variations yielded encouraging results. Consistent (across various hand features considered) performance improvement achieved with the pose correction demonstrates the usefulness of the proposed approach for hand based biometric systems with unconstrained and contact-free imaging. The experimental results also suggest that the dynamic fusion approach employed in this work helps to achieve performance improvement of 60% (in terms of EER) over the case when matching scores are combined using the weighted sum rule.

  16. Higuchi dimension of digital images.

    Directory of Open Access Journals (Sweden)

    Helmut Ahammer

    Full Text Available There exist several methods for calculating the fractal dimension of objects represented as 2D digital images. For example, Box counting, Minkowski dilation or Fourier analysis can be employed. However, there appear to be some limitations. It is not possible to calculate only the fractal dimension of an irregular region of interest in an image or to perform the calculations in a particular direction along a line on an arbitrary angle through the image. The calculations must be made for the whole image. In this paper, a new method to overcome these limitations is proposed. 2D images are appropriately prepared in order to apply 1D signal analyses, originally developed to investigate nonlinear time series. The Higuchi dimension of these 1D signals is calculated using Higuchi's algorithm, and it is shown that both regions of interests and directional dependencies can be evaluated independently of the whole picture. A thorough validation of the proposed technique and a comparison of the new method to the Fourier dimension, a common two dimensional method for digital images, are given. The main result is that Higuchi's algorithm allows a direction dependent as well as direction independent analysis. Actual values for the fractal dimensions are reliable and an effective treatment of regions of interests is possible. Moreover, the proposed method is not restricted to Higuchi's algorithm, as any 1D method of analysis, can be applied.

  17. Benefits and unexpected artifacts of biplanar digital slot-scanning imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Blumer, Steven L. [Nemours/A.I duPont Hospital for Children, Department of Medical Imaging, Wilmington, DE (United States); Dinan, David [Nemours Children' s Hospital, Orlando, FL (United States); Grissom, Leslie E. [Nemours/Alfred I. duPont Hospital for Children, Department of Radiology, Wilmington, DE (United States)

    2014-07-15

    Biplanar digital slot-scanning allows for relatively low-dose orthopedic imaging, an advantage in imaging children given the growing concerns regarding radiosensitivity. We have used this system for approximately 1 year for orthopedic imaging of the spine and lower extremities. We have noted advantages of using the digital slot-scanning system when compared with computed radiographic and standard digital radiographic imaging systems, but we also found unexpected but common imaging artifacts that are the direct result of the imaging method and that have not been reported. This pictorial essay serves to familiarize radiologists with the advantages of the digital slot-scanning system as well as imaging artifacts common with this new technology. (orig.)

  18. Digital Imaging and Communications in Medicine Whole Slide Imaging Connectathon at Digital Pathology Association Pathology Visions 2017.

    Science.gov (United States)

    Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron

    2018-01-01

    As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products.

  19. Hands-off and hands-on casting consistency of amputee below knee sockets using magnetic resonance imaging.

    Science.gov (United States)

    Safari, Mohammad Reza; Rowe, Philip; McFadyen, Angus; Buis, Arjan

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit.

  20. Making cytological diagnoses on digital images using the iPath network.

    Science.gov (United States)

    Dalquen, Peter; Savic Prince, Spasenija; Spieler, Peter; Kunze, Dietmar; Neumann, Heinrich; Eppenberger-Castori, Serenella; Adams, Heiner; Glatz, Katharina; Bubendorf, Lukas

    2014-01-01

    The iPath telemedicine platform Basel is mainly used for histological and cytological consultations, but also serves as a valuable learning tool. To study the level of accuracy in making diagnoses based on still images achieved by experienced cytopathologists, to identify limiting factors, and to provide a cytological image series as a learning set. Images from 167 consecutive cytological specimens of different origin were uploaded on the iPath platform and evaluated by four cytopathologists. Only wet-fixed and well-stained specimens were used. The consultants made specific diagnoses and categorized each as benign, suspicious or malignant. For all consultants, specificity and sensitivity regarding categorized diagnoses were 83-92 and 85-93%, respectively; the overall accuracy was 88-90%. The interobserver agreement was substantial (κ = 0.791). The lowest rate of concordance was achieved in urine and bladder washings and in the identification of benign lesions. Using a digital image set for diagnostic purposes implies that even under optimal conditions the accuracy rate will not exceed to 80-90%, mainly because of lacking supportive immunocytochemical or molecular tests. This limitation does not disqualify digital images for teleconsulting or as a learning aid. The series of images used for the study are open to the public at http://pathorama.wordpress.com/extragenital-cytology-2013/. © 2014 S. Karger AG, Basel.

  1. Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography

    International Nuclear Information System (INIS)

    Diekmann, Felix; Bick, Ulrich

    2007-01-01

    Digital mammography is more and more replacing conventional mammography. Initial concerns about an inferior image quality of digital mammography have been largely overcome and recent studies even show digital mammography to be superior in women with dense breasts, while at the same time reducing radiation exposure. Nevertheless, an important limitation of digital mammography remains: namely, the fact that summation may obscure lesions in dense breast tissue. However, digital mammography offers the option of so-called advanced applications, and two of these, contrast-enhanced mammography and tomosynthesis, are promising candidates for improving the detection of breast lesions otherwise obscured by the summation of dense tissue. Two techniques of contrast-enhanced mammography are available: temporal subtraction of images acquired before and after contrast administration and the so-called dual-energy technique, which means that pairs of low/high-energy images acquired after contrast administration are subtracted. Tomosynthesis on the other hand provides three-dimensional information on the breast. The images are acquired with different angulations of the X-ray tube while the object or detector is static. Various reconstruction algorithms can then be applied to the set of typically nine to 28 source images to reconstruct 1-mm slices with a reduced risk of obscuring pathology. Combinations of both advanced applications have only been investigated in individual experimental studies; more advanced software algorithms and CAD systems are still in their infancy and have only undergone preliminary clinical evaluation. (orig.)

  2. Development of an image intensifier-TV digital imaging system with a multiple-slit scanning x-ray beam

    International Nuclear Information System (INIS)

    Kume, Y.; Doi, K.

    1986-01-01

    The authors are developing a new digital x-ray imaging system employing a multiple-slit assembly (MSA) and an image intensifier (II)-TV digital system. The final image consisting of primary radiation is digitally reconstructed from multiple slit images obtained with the MSA. This system can significantly reduce the scattered radiation from an object and the veiling glare from II-TV system. The quality of the reconstructed image is related to many parameters, such as slit width, the number of image frames, and the image reconstruction algorithm. They present the effect of these various parameters on basic imaging properties and the practicability of the method in comparison with conventional wide beam imaging

  3. A generic, time-resolved, integrated digital image correlation, identification approach

    NARCIS (Netherlands)

    Hoefnagels, J.P.M.; Neggers, J.; Blaysat, Benoît; Hild, François; Geers, M.G.D.; Jin, H.; Sciammarella, C.; Yoshida, S.; Lamberti, L.

    2015-01-01

    A generic one-step Integrated Digital Image Correlation (I-DIC) inverse parameter identification approach is introduced that enables direct identification of constitutive model parameters by intimately integrating a Finite Elements Method (FEM) with Digital Image Correlation (DIC), directly

  4. Image analysis and machine learning in digital pathology: Challenges and opportunities.

    Science.gov (United States)

    Madabhushi, Anant; Lee, George

    2016-10-01

    With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification

  5. Digital-image processing improves man-machine communication at a nuclear reactor

    International Nuclear Information System (INIS)

    Cook, S.A.; Harrington, T.P.; Toffer, H.

    1982-01-01

    The application of digital image processing to improve man-machine communication in a nuclear reactor control room is illustrated. At the Hanford N Reactor, operated by UNC Nuclear Industries for the United States Department of Energy, in Richland, Washington, digital image processing is applied to flow, temperature, and tube power data. Color displays are used to present the data in a clear and concise fashion. Specific examples are used to demonstrate the capabilities and benefits of digital image processing of reactor data. N Reactor flow and power maps for routine reactor operations and for perturbed reactor conditions are displayed. The advantages of difference mapping are demonstrated. Image processing techniques have also been applied to results of analytical reactor models; two examples are shown. The potential of combining experimental and analytical information with digital image processing to produce predictive and adaptive reactor core models is discussed. The applications demonstrate that digital image processing can provide new more effective ways for control room personnel to assess reactor status, to locate problems and explore corrective actions. 10 figures

  6. ASTM reference radiologic digital image standards

    International Nuclear Information System (INIS)

    Wysnewski, R.; Wysnewski, D.

    1996-01-01

    ASTM Reference Radiographs have been essential in defining industry's material defect grade levels for many years. ASTM Reference Radiographs are used extensively as even the American Society for Metals Nondestructive Inspection and Quality Control Metals Handbook, Volume 11, eighth edition refers to ASTM Standard Reference Radiographs. The recently published E 1648 Standard Reference Radiographs for Examination of Aluminum Fusion Welds is a prime example of the on-going need for these references. To date, 14 Standard Reference Radiographs have been published to characterize material defects. Standard Reference Radiographs do not adequately address film-less radiologic methods. There are differences in mediums to content with. On a computer CRT defect indications appear differently when compared to indications viewed in a radiograph on a view box. Industry that uses non-film radiologic methods of inspection can be burdened with additional time and money developing internal standard reference radiologic images. These references may be deemed necessary for grading levels of product defects. Because there are no ASTM Standard Reference Radiologic data files for addressing this need in the industry, the authors of this paper suggested implementing a method for their creation under ASTM supervision. ASTM can assure continuity to those users making the transition from analog radiographic images to digital image data by swiftly addressing the requirements for reference digital image standards. The current status and possible future activities regarding a method to create digital data files is presented in this paper summary

  7. A Comparative Study on Diagnostic Accuracy of Colour Coded Digital Images, Direct Digital Images and Conventional Radiographs for Periapical Lesions – An In Vitro Study

    Science.gov (United States)

    Mubeen; K.R., Vijayalakshmi; Bhuyan, Sanat Kumar; Panigrahi, Rajat G; Priyadarshini, Smita R; Misra, Satyaranjan; Singh, Chandravir

    2014-01-01

    Objectives: The identification and radiographic interpretation of periapical bone lesions is important for accurate diagnosis and treatment. The present study was undertaken to study the feasibility and diagnostic accuracy of colour coded digital radiographs in terms of presence and size of lesion and to compare the diagnostic accuracy of colour coded digital images with direct digital images and conventional radiographs for assessing periapical lesions. Materials and Methods: Sixty human dry cadaver hemimandibles were obtained and periapical lesions were created in first and second premolar teeth at the junction of cancellous and cortical bone using a micromotor handpiece and carbide burs of sizes 2, 4 and 6. After each successive use of round burs, a conventional, RVG and colour coded image was taken for each specimen. All the images were evaluated by three observers. The diagnostic accuracy for each bur and image mode was calculated statistically. Results: Our results showed good interobserver (kappa > 0.61) agreement for the different radiographic techniques and for the different bur sizes. Conventional Radiography outperformed Digital Radiography in diagnosing periapical lesions made with Size two bur. Both were equally diagnostic for lesions made with larger bur sizes. Colour coding method was least accurate among all the techniques. Conclusion: Conventional radiography traditionally forms the backbone in the diagnosis, treatment planning and follow-up of periapical lesions. Direct digital imaging is an efficient technique, in diagnostic sense. Colour coding of digital radiography was feasible but less accurate however, this imaging technique, like any other, needs to be studied continuously with the emphasis on safety of patients and diagnostic quality of images. PMID:25584318

  8. Comparison of the automated evaluation of phantom mama in digital and digitalized images

    International Nuclear Information System (INIS)

    Santana, Priscila do Carmo

    2011-01-01

    Mammography is an essential tool for diagnosis and early detection of breast cancer if it is provided as a very good quality service. The process of evaluating the quality of radiographic images in general, and mammography in particular, can be much more accurate, practical and fast with the help of computer analysis tools. This work compare the automated methodology for the evaluation of scanned digital images the phantom mama. By applied the DIP method techniques was possible determine geometrical and radiometric images evaluated. The evaluated parameters include circular details of low contrast, contrast ratio, spatial resolution, tumor masses, optical density and background in Phantom Mama scanned and digitized images. The both results of images were evaluated. Through this comparison was possible to demonstrate that this automated methodology is presented as a promising alternative for the reduction or elimination of subjectivity in both types of images, but the Phantom Mama present insufficient parameters for spatial resolution evaluation. (author)

  9. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  10. Digital imaging of autoradiographs from paintings by Georges de La Tour (1593-1652)

    CERN Document Server

    Fischer, C O; Laurenze, C; Schmidt, C; Slusallek, K

    1999-01-01

    The artistic work of the painter Georges de La Tour has been studied very intensively in the last few years, mainly by French and US-American art historians and natural scientists. To support the in-depth analysis of two paintings from the Kimbell Art Museum in Fort Worth, Texas, USA, two similar paintings from the Gemaeldegalerie Berlin have been investigated. The method of neutron activation autoradiography has been applied using imaging plates with digital image processing.

  11. Digital image technology and a measurement tool in physical models

    CSIR Research Space (South Africa)

    Phelp, David

    2006-05-01

    Full Text Available Advances in digital image technology has allowed us to use accurate, but relatively cost effective technology to measure a number of varied activities in physical models. The capturing and manipulation of high resolution digital images can be used...

  12. The establishment of Digital Image Capture System(DICS) using conventional simulator

    International Nuclear Information System (INIS)

    Oh, Tae Sung; Park, Jong Il; Byun, Young Sik; Shin, Hyun Kyoh

    2004-01-01

    The simulator is used to determine patient field and ensure the treatment field, which encompasses the required anatomy during patient normal movement such as during breathing. The latest simulator provide real time display of still, fluoroscopic and digitalized image, but conventional simulator is not yet. The purpose of this study is to introduce digital image capture system(DICS) using conventional simulator and clinical case using digital captured still and fluoroscopic image. We connect the video signal cable to the video terminal in the back up of simulator monitor, and connect the video jack to the A/D converter. After connection between the converter jack and computer, We can acquire still image and record fluoroscopic image with operating image capture program. The data created with this system can be used in patient treatment, and modified for verification by using image processing software. (j.e. photoshop, paintshop) DICS was able to establish easy and economical procedure. DCIS image was helpful for simulation. DICS imaging was powerful tool in the evaluation of the department specific patient positioning. Because the commercialized simulator based of digital capture is very expensive, it is not easily to establish DICS simulator in the most hospital. DICS using conventional simulator enable to utilize the practical use of image equal to high cost digitalized simulator and to research many clinical cases in case of using other software program.

  13. A radiographic image archive system on digital optical disks

    International Nuclear Information System (INIS)

    Mankovich, N.J.; Taira, R.K.; Cho, P.S.; Wong, W.K.; Stewart, B.K.; Huang, H.K.

    1986-01-01

    The recent introduction of projection computed radiography (CR) systems allows radiology departments to consider digital operation in over 90% of performed procedures. Ideally, current patient procedures from CT, CT, and MR along with laser-digitized historical films should be centrally stored at their full digital resolution. Magnetic disks, because of their limited storage capacity and expense, can only retain these data on a limited basis. The author devised an optical disk archive system which automatically stores images directly onto 2.6-gigabyte optical cartridges without recourse to film. This system is in full clinical operation in the UCLA Pediatric Radiology Section of the authors' department. From this experience they present (a) an analysis of the digital archiving requirements of the Pediatric Radiology Section based on CR, CT, MR, and laser digitized films; (b) the archive and retrieval methods along with performance statistics; and (c) the procedure for assuring digital image integrity

  14. Image quality in digital radiographic systems

    Directory of Open Access Journals (Sweden)

    Almeida Solange Maria de

    2003-01-01

    Full Text Available The aim of the present study was to evaluate the image quality of four direct digital radiographic systems. Radiographs were made of the maxillary central incisor and mandibular left molar regions of a dry skull, and an aluminum step-wedge. The X-ray generator operated at 10 mA, 60 and 70 kVp, and images were acquired with 3, 5, 8, 12, 24 and 48 exposure pulses. Six well-trained observers classified the images by means of scores from 1 to 3. Collected data were submitted to nonparametric statistical analysis using Fisher's exact test. Statistical analysis showed significant differences (p<0.01 in image quality with the four systems. Based on the results, it was possible to conclude that: 1 all of the digital systems presented good performance in producing acceptable images for diagnosis, if the exposures of the step-wedge and the maxillary central incisor region were made at 5 pulses, as well as at 8 pulses for the mandibular left molar region, selecting 60 or 70kVp; 2 higher percentages of acceptable images were obtained with the administration of lower radiation doses in CCD-sensors (charge-coupled device; 3 the Storage Phosphor systems produced acceptable images at a large range of exposure settings, that included low, intermediate and high radiation doses.

  15. Mechanical shape correlation : a novel integrated digital image correlation approach

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Hoefnagels, J.P.M.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    Mechanical Shape Correlation (MSC) is a novel integrated digital image correlation technique, used to determine the optimal set of constitutive parameters to describe the experimentally observed mechanical behavior of a test specimen, based on digital images taken during the experiment. In contrast

  16. Global manipulation of digital images can lead to variation in cytological diagnosis.

    Science.gov (United States)

    Prasad, H; Wanjari, Sangeeta; Parwani, Rajkumar

    2011-03-31

    With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. To analyse the impact of manipulating digital images on their diagnosis. Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP) to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted κ statistics was used to measure and assess the levels of agreement between observers. Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  17. Exploratory survey of image quality on CR digital mammography imaging systems in Mexico

    International Nuclear Information System (INIS)

    Gaona, E.; Rivera, T.; Arreola, M.; Franco, J.; Molina, N.; Alvarez, B.; Azorín, C.G.; Casian, G.

    2014-01-01

    The purpose of this study was to assess the current status of image quality and dose in computed radiographic digital mammography (CRDM) systems. Studies included CRDM systems of various models and manufacturers which dose and image quality comparisons were performed. Due to the recent rise in the use of digital radiographic systems in Mexico, CRDM systems are rapidly replacing conventional film-screen systems without any regard to quality control or image quality standards. Study was conducted in 65 mammography facilities which use CRDM systems in the Mexico City and surrounding States. The systems were tested as used clinically. This means that the dose and beam qualities were selected using the automatic beam selection and photo-timed features. All systems surveyed generate laser film hardcopies for the radiologist to read on a scope or mammographic high luminance light box. It was found that 51 of CRDM systems presented a variety of image artefacts and non-uniformities arising from inadequate acquisition and processing, as well as from the laser printer itself. Undisciplined alteration of image processing settings by the technologist was found to be a serious prevalent problem in 42 facilities. Only four of them showed an image QC program which is periodically monitored by a medical physicist. The Average Glandular Dose (AGD) in the surveyed systems was estimated to have a mean value of 2.4 mGy. To improve image quality in mammography and make more efficient screening mammographic in early detection of breast cancer is required new legislation. - Highlights: • Radiation dose in CR digital mammography (CRDM) systems was determined. • Image quality related with dose in CR digital mammography (CRDM) systems was analysed. • Image processing artefacts were observed and correlated with dose. • Measured entrance dose by TL phosphors could be good parameter for radiation protection optimization in patient

  18. Digital implementation of a neural network for imaging

    Science.gov (United States)

    Wood, Richard; McGlashan, Alex; Yatulis, Jay; Mascher, Peter; Bruce, Ian

    2012-10-01

    This paper outlines the design and testing of a digital imaging system that utilizes an artificial neural network with unsupervised and supervised learning to convert streaming input (real time) image space into parameter space. The primary objective of this work is to investigate the effectiveness of using a neural network to significantly reduce the information density of streaming images so that objects can be readily identified by a limited set of primary parameters and act as an enhanced human machine interface (HMI). Many applications are envisioned including use in biomedical imaging, anomaly detection and as an assistive device for the visually impaired. A digital circuit was designed and tested using a Field Programmable Gate Array (FPGA) and an off the shelf digital camera. Our results indicate that the networks can be readily trained when subject to limited sets of objects such as the alphabet. We can also separate limited object sets with rotational and positional invariance. The results also show that limited visual fields form with only local connectivity.

  19. A review on the application of medical infrared thermal imaging in hands

    Science.gov (United States)

    Sousa, Elsa; Vardasca, Ricardo; Teixeira, Sérgio; Seixas, Adérito; Mendes, Joaquim; Costa-Ferreira, António

    2017-09-01

    Infrared Thermal (IRT) imaging is a medical imaging modality to study skin temperature in real time, providing physiological information about the underlining structures. One of the most accessible body sites to be investigated using such imaging method is the hands, which can reflect valuable information about conditions affecting the upper limbs. The aim of this review is to acquaint the successful applications of IRT in the hands with a medical scope, opening horizons for future applications based in the achieved results. A systematic literature review was performed in order to assess in which applications medical IRT imaging was applied to the hands. The literature search was conducted in the reference databases: PubMed, Scopus and ISI Web of Science, making use of keywords (hand, thermography, infrared imaging, thermal imaging) combination that were present at the title and abstract. No temporal restriction was made. As a result, 4260 articles were identified, after removal of duplicates, 3224 articles remained and from first title and abstract filtering, a total of 388 articles were considered. After application of exclusion criteria (non-availability, non-clinical applications, reviews, case studies, written in other languages than English and using liquid crystal thermography), 146 articles were considered for this review. It can be verified that thermography provides useful diagnostic and monitoring information of conditions that directly or indirectly related to hands, as well as aiding in the treatment assessment. Trends and future challenges for IRT applications on hands are provided to stimulate researchers and clinicians to explore and address them.

  20. Digital Correlation based on Wavelet Transform for Image Detection

    International Nuclear Information System (INIS)

    Barba, L; Vargas, L; Torres, C; Mattos, L

    2011-01-01

    In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.

  1. Digital image processing in art conservation

    Czech Academy of Sciences Publication Activity Database

    Zitová, Barbara; Flusser, Jan

    č. 53 (2003), s. 44-45 ISSN 0926-4981 Institutional research plan: CEZ:AV0Z1075907 Keywords : art conservation * digital image processing * change detection Subject RIV: JD - Computer Applications, Robotics

  2. Digital pulse processor for ion beam microprobe imaging

    International Nuclear Information System (INIS)

    Bogovac, M.; Jaksic, M.; Wegrzynek, D.; Markowicz, A.

    2009-01-01

    Capabilities of spectroscopic ion beam analysis (IBA) techniques that are available in ion microprobe facilities can be greatly improved by the use of digital pulse processing. We report here development of a digital multi parameter data acquisition system suitable for IBA imaging applications. Input signals from charge sensitive preamplifier are conditioned by using a simple circuit and digitized with fast ADCs. The digitally converted signals are processed in real time using FPGA. Implementation of several components of the system is presented.

  3. The comparison between SVD-DCT and SVD-DWT digital image watermarking

    Science.gov (United States)

    Wira Handito, Kurniawan; Fauzi, Zulfikar; Aminy Ma’ruf, Firda; Widyaningrum, Tanti; Muslim Lhaksmana, Kemas

    2018-03-01

    With internet, anyone can publish their creation into digital data simply, inexpensively, and absolutely easy to be accessed by everyone. However, the problem appears when anyone else claims that the creation is their property or modifies some part of that creation. It causes necessary protection of copyrights; one of the examples is with watermarking method in digital image. The application of watermarking technique on digital data, especially on image, enables total invisibility if inserted in carrier image. Carrier image will not undergo any decrease of quality and also the inserted image will not be affected by attack. In this paper, watermarking will be implemented on digital image using Singular Value Decomposition based on Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT) by expectation in good performance of watermarking result. In this case, trade-off happen between invisibility and robustness of image watermarking. In embedding process, image watermarking has a good quality for scaling factor < 0.1. The quality of image watermarking in decomposition level 3 is better than level 2 and level 1. Embedding watermark in low-frequency is robust to Gaussian blur attack, rescale, and JPEG compression, but in high-frequency is robust to Gaussian noise.

  4. Effects of image enhancement on reliability of landmark identification in digital cephalometry

    Directory of Open Access Journals (Sweden)

    M Oshagh

    2013-01-01

    Full Text Available Introduction: Although digital cephalometric radiography is gaining popularity in orthodontic practice, the most important source of error in its tracing is uncertainty in landmark identification. Therefore, efforts to improve accuracy in landmark identification were directed primarily toward the improvement in image quality. One of the more useful techniques of this process involves digital image enhancement which can increase overall visual quality of image, but this does not necessarily mean a better identification of landmarks. The purpose of this study was to evaluate the effectiveness of digital image enhancements on reliability of landmark identification. Materials and Methods: Fifteen common landmarks including 10 skeletal and 5 soft tissues were selected on the cephalograms of 20 randomly selected patients, prepared in Natural Head Position (NHP. Two observers (orthodontists identified landmarks on the 20 original photostimulable phosphor (PSP digital cephalogram images and 20 enhanced digital images twice with an intervening time interval of at least 4 weeks. The x and y coordinates were further analyzed to evaluate the pattern of recording differences in horizontal and vertical directions. Reliability of landmarks identification was analyzed by paired t test. Results: There was a significant difference between original and enhanced digital images in terms of reliability of points Ar and N in vertical and horizontal dimensions, and enhanced images were significantly more reliable than original images. Identification of A point, Pogonion and Pronasal points, in vertical dimension of enhanced images was significantly more reliable than original ones. Reliability of Menton point identification in horizontal dimension was significantly more in enhanced images than original ones. Conclusion: Direct digital image enhancement by altering brightness and contrast can increase reliability of some landmark identification and this may lead to more

  5. Teaching and Learning to Read Images and Movies in the Digital Age

    Directory of Open Access Journals (Sweden)

    Michaël Bourgatte

    2015-10-01

    Full Text Available With digital technologies and Internet, pictures, movies and videos are increasingly present in our daily lives. Images are an excellent way to be informed, to communicate and, obviously, to learn. This phenomenon questions the educational stakeholders (public authorities, teachers, researchers, etc. who are seeking solutions to better train and support learners to understand the meaning of images and to be able to analyze them. In this context, we have set up educational activities with a film analysis software to promote the discovery of cinema. Two questions were asked at the beginning of the project. The first one relates to building competencies about film language with the help of digital technologies. The second question relates to the effects produced by the use of this very software in the classroom. To answer these questions, one must refer Gregory Bateson’s notion of double bind.

  6. Global manipulation of digital images can lead to variation in cytological diagnosis

    Directory of Open Access Journals (Sweden)

    H Prasad

    2011-01-01

    Full Text Available Background: With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. Aim: To analyse the impact of manipulating digital images on their diagnosis. Design: Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted k statistics was used to measure and assess the levels of agreement between observers. Results: Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Conclusion: Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  7. Touch-less interaction with medical images using hand & foot gestures

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Smith, Jeremiah; Sousa, Miguel

    2013-01-01

    control. In this paper, we present a system for gesture-based interaction with medical images based on a single wristband sensor and capacitive floor sensors, allowing for hand and foot gesture input. The first limited evaluation of the system showed an acceptable level of accuracy for 12 different hand...... & foot gestures; also users found that our combined hand and foot based gestures are intuitive for providing input....

  8. Low-Light Image Enhancement Using Adaptive Digital Pixel Binning

    Directory of Open Access Journals (Sweden)

    Yoonjong Yoo

    2015-06-01

    Full Text Available This paper presents an image enhancement algorithm for low-light scenes in an environment with insufficient illumination. Simple amplification of intensity exhibits various undesired artifacts: noise amplification, intensity saturation, and loss of resolution. In order to enhance low-light images without undesired artifacts, a novel digital binning algorithm is proposed that considers brightness, context, noise level, and anti-saturation of a local region in the image. The proposed algorithm does not require any modification of the image sensor or additional frame-memory; it needs only two line-memories in the image signal processor (ISP. Since the proposed algorithm does not use an iterative computation, it can be easily embedded in an existing digital camera ISP pipeline containing a high-resolution image sensor.

  9. Are digital images good enough? A comparative study of conventional film-screen vs digital radiographs on printed images of total hip replacement

    International Nuclear Information System (INIS)

    Eklund, K.; Jonsson, K.; Lindblom, G.; Lundin, B.; Sanfridsson, J.; Sloth, M.; Sivberg, B.

    2004-01-01

    The aim of this study was to evaluate the inter- and intra-observer variability and to find differences in diagnostic safety between digital and analog technique in diagnostic zones around hip prostheses. In 80 patients who had had a total hip replacement (THR) for more than 2 years, a conventional image and a digital image were taken. Gruen's model of seven distinct regions of interest was used for evaluations. Five experienced radiologists observed the seven regions and noted in a protocol the following distances: stem-cement; cement-bone; and stem-bone. All images were printed on hard copies and were read twice. Weighted kappa, κ w , analyses were used. The two most frequently loosening regions, stem-cement region 1 and cement-bone region 7, were closely analyzed. In region 1 the five observers had an agreement of 86.75-97.92% between analog and digital images in stem-cement, which is a varied κ w 0.29-0.71. For cement-bone region 7 an agreement of 87.21-90.45% was found, which is a varied κ w of 0.48-0.58. All the kappa values differ significantly from nil. The result shows that digital technique is as good as analog radiographs for diagnosing possible loosening of hip prostheses. (orig.)

  10. Hand preference and magnetic resonance imaging asymmetries of the central sulcus.

    Science.gov (United States)

    Foundas, A L; Hong, K; Leonard, C M; Heilman, K M

    1998-04-01

    Hand preference is perhaps the most evident behavioral asymmetry observed in humans. Anatomic brain asymmetries that may be associated with hand preference have not been extensively studied, and no clear relationship between asymmetries of the motor system and hand preference have been established. Therefore, using volumetric magnetic resonance imaging methodologies, the surface area of the hand representation was measured along the length of the central sulcus in 15 consistent right- and 15 left-handers matched for age and gender. There was a significant leftward asymmetry of the motor hand area of the precentral gyrus in the right-handers, but no directional asymmetry was found in the left-handers. When asymmetry quotients were computed to determine the distribution of interhemispheric asymmetries, the left motor bank was greater than the right motor bank in 9 of 15 right-handers, the right motor bank was greater than the left motor bank in 3 of 15 right-handers, and the motor banks were equal in 3 of 15 right-handers. In contrast, among left-handers, the left motor bank was greater than the right motor bank in 5 of 15, the right motor bank was greater than the left motor bank in 5 of 15, and the motor banks were equal in 5 of 15. Although no direct measure of motor dexterity and skill was performed, these data suggest that anatomic asymmetries of the motor hand area may be related to hand preference because of the differences in right-handers and left-handers. Furthermore, the predominant leftward asymmetry in right-handers and the random distribution of asymmetries in the left-handers support Annett's right-shift theory. It is unclear, however, whether these asymmetries are the result of preferential hand use or are a reflection of a biologic preference to use one limb over the other.

  11. Perceptual digital imaging methods and applications

    CERN Document Server

    Lukac, Rastislav

    2012-01-01

    Visual perception is a complex process requiring interaction between the receptors in the eye that sense the stimulus and the neural system and the brain that are responsible for communicating and interpreting the sensed visual information. This process involves several physical, neural, and cognitive phenomena whose understanding is essential to design effective and computationally efficient imaging solutions. Building on advances in computer vision, image and video processing, neuroscience, and information engineering, perceptual digital imaging greatly enhances the capabilities of tradition

  12. Digital image processing an algorithmic approach with Matlab

    CERN Document Server

    Qidwai, Uvais

    2009-01-01

    Introduction to Image Processing and the MATLAB EnvironmentIntroduction Digital Image Definitions: Theoretical Account Image Properties MATLAB Algorithmic Account MATLAB CodeImage Acquisition, Types, and File I/OImage Acquisition Image Types and File I/O Basics of Color Images Other Color Spaces Algorithmic Account MATLAB CodeImage ArithmeticIntroduction Operator Basics Theoretical TreatmentAlgorithmic Treatment Coding ExamplesAffine and Logical Operations, Distortions, and Noise in ImagesIntroduction Affine Operations Logical Operators Noise in Images Distortions in ImagesAlgorithmic Account

  13. Enhanced MR imaging of tenosynovitis of hand and wrist in inflammatory arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Tehranzadeh, J.; Ashilyan, O.; Anavim, A.; Tramma, S. [Univ. of California, Orange (United States). Dept. of Radiological Sciences

    2006-11-15

    The purpose of this study is to describe the appearance of tenosynovitis in various tendon groups in the wrist and hand and to compare MR enhanced and non-enhanced imaging evaluation of tenosynovitis of hand and wrist in inflammatory arthritis. We reviewed 72 MRI studies of hands and wrists, including coronal, axial and sagittal images in 30 consecutive patients with inflammatory arthritis and tenosynovitis. We compared the degree of synovitis on T2-weighted vs contrast-enhanced T1-weighted images, using a predetermined scale. We also measured the extent of tenosynovitis in three dimensions. The tendons were assigned to volar, dorsal, ulnar and radial groups in the wrist and to extensor, flexor and thumb groups in the hand. Degree of tenosynovitis (graded 0-3), cross-sectional area and volume of the inflamed synovium in various tendon groups were then compared by statistical analysis. Review of the medical records revealed the following diagnoses in our patient population: rheumatoid arthritis (n=16), unspecified inflammatory polyarthritis (n=9), psoriatic arthritis (n=2), CREST syndrome (n=1), systemic lupus erythematosus (n=1), paraneoplastic syndrome with arthritis (n=1). The average T2 brightness scores and post-gadolinium enhancement scores were 1.0 and 1.7 respectively (P<0.001) in the wrist studies. The average T2 brightness scores and post-gadolinium enhancement scores were 0.7 and 1.4, respectively (P<0.001) in the hand studies. The average sensitivity of T2-weighted imaging for detection of tenosynovitis was 40% in the hand and 67% in the wrist tendons, when contrast-enhanced images were used as a reference. Carpal tunnel flexor tendons were the most frequently affected tendons of the wrist. The most frequently affected tendons of the hand were second and third flexor tendons. The hand flexors demonstrated higher degrees of enhancement and larger volumes of the inflamed tenosynovium than did the hand extensors and tendons of the thumb.

  14. Enhanced MR imaging of tenosynovitis of hand and wrist in inflammatory arthritis

    International Nuclear Information System (INIS)

    Tehranzadeh, J.; Ashilyan, O.; Anavim, A.; Tramma, S.

    2006-01-01

    The purpose of this study is to describe the appearance of tenosynovitis in various tendon groups in the wrist and hand and to compare MR enhanced and non-enhanced imaging evaluation of tenosynovitis of hand and wrist in inflammatory arthritis. We reviewed 72 MRI studies of hands and wrists, including coronal, axial and sagittal images in 30 consecutive patients with inflammatory arthritis and tenosynovitis. We compared the degree of synovitis on T2-weighted vs contrast-enhanced T1-weighted images, using a predetermined scale. We also measured the extent of tenosynovitis in three dimensions. The tendons were assigned to volar, dorsal, ulnar and radial groups in the wrist and to extensor, flexor and thumb groups in the hand. Degree of tenosynovitis (graded 0-3), cross-sectional area and volume of the inflamed synovium in various tendon groups were then compared by statistical analysis. Review of the medical records revealed the following diagnoses in our patient population: rheumatoid arthritis (n=16), unspecified inflammatory polyarthritis (n=9), psoriatic arthritis (n=2), CREST syndrome (n=1), systemic lupus erythematosus (n=1), paraneoplastic syndrome with arthritis (n=1). The average T2 brightness scores and post-gadolinium enhancement scores were 1.0 and 1.7 respectively (P<0.001) in the wrist studies. The average T2 brightness scores and post-gadolinium enhancement scores were 0.7 and 1.4, respectively (P<0.001) in the hand studies. The average sensitivity of T2-weighted imaging for detection of tenosynovitis was 40% in the hand and 67% in the wrist tendons, when contrast-enhanced images were used as a reference. Carpal tunnel flexor tendons were the most frequently affected tendons of the wrist. The most frequently affected tendons of the hand were second and third flexor tendons. The hand flexors demonstrated higher degrees of enhancement and larger volumes of the inflamed tenosynovium than did the hand extensors and tendons of the thumb

  15. Hands on, mobiles on The use of a digital narrative as a scaffolding remedy in a classical science centre

    Directory of Open Access Journals (Sweden)

    Anne Kahr-Højland

    2010-12-01

    Full Text Available This article examines an educational design experiment which aimed to support young people’s involvement and reflection in the exhibition at a Danish science centre. The experiment consisted in the examination of the design and implementation of a mobile phone facilitated narrative, which was planned as a so-called scaffolding remedy in the hands-on based exhibition. The digital narrative, called EGO-TRAP, was developed using Design-Based Research as the overall methodological framework. The study of students’ interactions in the exhibition suggests, among other things, that because of its quality as a digital narrative, EGO-TRAP scaffolds pleasurable engagement and counteracts the tendency of "random button pressing" that often occurs in classical science centre exhibitions. In this connection, the mobile phone plays an essential role due to the fact that it, as the favoured media by the young students, offers an experience which they describe as both personal and flexible.

  16. Robotic Hand

    Science.gov (United States)

    1993-01-01

    The Omni-Hand was developed by Ross-Hime Designs, Inc. for Marshall Space Flight Center (MSFC) under a Small Business Innovation Research (SBIR) contract. The multiple digit hand has an opposable thumb and a flexible wrist. Electric muscles called Minnacs power wrist joints and the interchangeable digits. Two hands have been delivered to NASA for evaluation for potential use on space missions and the unit is commercially available for applications like hazardous materials handling and manufacturing automation. Previous SBIR contracts resulted in the Omni-Wrist and Omni-Wrist II robotic systems, which are commercially available for spray painting, sealing, ultrasonic testing, as well as other uses.

  17. Estimation of global daily irradiation in complex topography zones using digital elevation models and meteosat images: Comparison of the results

    International Nuclear Information System (INIS)

    Martinez-Durban, M.; Zarzalejo, L.F.; Bosch, J.L.; Rosiek, S.; Polo, J.; Batlles, F.J.

    2009-01-01

    The knowledge of the solar irradiation in a certain place is fundamental for the suitable location of solar systems, both thermal and photovoltaic. On the local scale, the topography is the most important modulating factor of the solar irradiation on the surface. In this work the global daily irradiation is estimated concerning various sky conditions, in zones of complex topography. In order to estimate the global daily irradiation we use a methodology based on a Digital Terrain Model (DTM), on one hand making use of pyranometer measurements and on the other hand utilizing satellite images. We underline that DTM application employing pyranometer measurements produces better results than estimation using satellite images, though accuracy of the same order is obtained in both cases for Root Mean Square Error (RMSE) and Mean Bias Error (MBE).

  18. Estimation of global daily irradiation in complex topography zones using digital elevation models and meteosat images: Comparison of the results

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Durban, M. [Dpto. de Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Zarzalejo, L.F.; Polo, J. [Dpto. de Energia, CIEMAT, 28040 Madrid (Spain); Bosch, J.L.; Rosiek, S.; Batlles, F.J. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain)

    2009-09-15

    The knowledge of the solar irradiation in a certain place is fundamental for the suitable location of solar systems, both thermal and photovoltaic. On the local scale, the topography is the most important modulating factor of the solar irradiation on the surface. In this work the global daily irradiation is estimated concerning various sky conditions, in zones of complex topography. In order to estimate the global daily irradiation we use a methodology based on a Digital Terrain Model (DTM), on one hand making use of pyranometer measurements and on the other hand utilizing satellite images. We underline that DTM application employing pyranometer measurements produces better results than estimation using satellite images, though accuracy of the same order is obtained in both cases for Root Mean Square Error (RMSE) and Mean Bias Error (MBE). (author)

  19. Talbot phase-contrast x-ray imaging for the small joints of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Dan [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Beck, Thomas J [Quantum Medical Metrics, 1450 South Rolling Road, Baltimore, MD 21227 (United States); Carrino, John A [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287 (United States); Bingham, Clifton O, E-mail: stutman@pha.jhu.edu [Divisions of Rheumatology and Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224 (United States)

    2011-09-07

    A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 {mu}m resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 {mu}m period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at {approx}25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a {approx}2 m long 'symmetric' interferometer operated in a high Talbot order.

  20. COMPARISON OF DIGITAL IMAGE STEGANOGRAPHY METHODS

    Directory of Open Access Journals (Sweden)

    S. A. Seyyedi

    2013-01-01

    Full Text Available Steganography is a method of hiding information in other information of different format (container. There are many steganography techniques with various types of container. In the Internet, digital images are the most popular and frequently used containers. We consider main image steganography techniques and their advantages and disadvantages. We also identify the requirements of a good steganography algorithm and compare various such algorithms.

  1. Use of digital images to estimate soil moisture

    Directory of Open Access Journals (Sweden)

    João F. C. dos Santos

    Full Text Available ABSTRACT The objective of this study was to analyze the relation between the moisture and the spectral response of the soil to generate prediction models. Samples with different moisture contents were prepared and photographed. The photographs were taken under homogeneous light condition and with previous correction for the white balance of the digital photograph camera. The images were processed for extraction of the median values in the Red, Green and Blue bands of the RGB color space; Hue, Saturation and Value of the HSV color space; and values of the digital numbers of a panchromatic image obtained from the RGB bands. The moisture of the samples was determined with the thermogravimetric method. Regression models were evaluated for each image type: RGB, HSV and panchromatic. It was observed the darkening of the soil with the increase of moisture. For each type of soil, a model with best fit was observed and to use these models for prediction purposes, it is necessary to choose the model with best fit in advance, according to the soil characteristics. Soil moisture estimation as a function of its spectral response by digital image processing proves promising.

  2. Image analysis of microsialograms of the mouse parotid gland using digital image processing

    International Nuclear Information System (INIS)

    Yoshiura, K.; Ohki, M.; Yamada, N.

    1991-01-01

    The authors compared two digital-image feature-extraction methods for the analysis of microsialograms of the mouse parotid gland following either overfilling, experimentally induced acute sialoadenitis or irradiation. Microsialograms were digitized using a drum-scanning microdensitometer. The grey levels were then partitioned into four bands representing soft tissue, peripheral minor, middle-sized and major ducts, and run-length and histogram analysis of the digital images performed. Serial analysis of microsialograms during progressive filling showed that both methods depicted the structural characteristics of the ducts at each grey level. However, in the experimental groups, run-length analysis showed slight changes in the peripheral duct system more clearly. This method was therefore considered more effective than histogram analysis

  3. An instructional guide for leaf color analysis using digital imaging software

    Science.gov (United States)

    Paula F. Murakami; Michelle R. Turner; Abby K. van den Berg; Paul G. Schaberg

    2005-01-01

    Digital color analysis has become an increasingly popular and cost-effective method utilized by resource managers and scientists for evaluating foliar nutrition and health in response to environmental stresses. We developed and tested a new method of digital image analysis that uses Scion Image or NIH image public domain software to quantify leaf color. This...

  4. Establishing imaging sensor specifications for digital still cameras

    Science.gov (United States)

    Kriss, Michael A.

    2007-02-01

    Digital Still Cameras, DSCs, have now displaced conventional still cameras in most markets. The heart of a DSC is thought to be the imaging sensor, be it Full Frame CCD, and Interline CCD, a CMOS sensor or the newer Foveon buried photodiode sensors. There is a strong tendency by consumers to consider only the number of mega-pixels in a camera and not to consider the overall performance of the imaging system, including sharpness, artifact control, noise, color reproduction, exposure latitude and dynamic range. This paper will provide a systematic method to characterize the physical requirements of an imaging sensor and supporting system components based on the desired usage. The analysis is based on two software programs that determine the "sharpness", potential for artifacts, sensor "photographic speed", dynamic range and exposure latitude based on the physical nature of the imaging optics, sensor characteristics (including size of pixels, sensor architecture, noise characteristics, surface states that cause dark current, quantum efficiency, effective MTF, and the intrinsic full well capacity in terms of electrons per square centimeter). Examples will be given for consumer, pro-consumer, and professional camera systems. Where possible, these results will be compared to imaging system currently on the market.

  5. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  6. Comparative study of digital laser film and analog paper image recordings

    International Nuclear Information System (INIS)

    Lee, K.R.; Cox, G.G.; Templeton, A.W.; Preston, D.F.; Anderson, W.H.; Hensley, K.S.; Dwyer, S.J.

    1987-01-01

    The increase in the use of various imaging modalities demands higher quality and more efficacious analog image recordings. Laser electronic recordings with digital array prints of 4,000 x 5,000 x 12 bits obtained using laser-sensitive film or paper are being evaluated. Dry silver paper recordings are being improved and evaluated. High-resolution paper dot printers are being studied to determine their gray-scale capabilities. The authors evaluated the image quality, costs, clinical utilization, and acceptability of CT scans, MR images, digital subtraction angiograms, digital radiographs, and radionuclide scans recorded by seven different printers (three laser, three silver paper, and one dot) and compared the same features in conventional film recording. This exhibit outlines the technical developments and instrumentation of digital laser film and analog paper recorders and presents the results of the study

  7. The application of digital image plane holography technology to identify Chinese herbal medicine

    Science.gov (United States)

    Wang, Huaying; Guo, Zhongjia; Liao, Wei; Zhang, Zhihui

    2012-03-01

    In this paper, the imaging technology of digital image plane holography to identify the Chinese herbal medicine is studied. The optical experiment system of digital image plane holography which is the special case of pre-magnification digital holography was built. In the record system, one is an object light by using plane waves which illuminates the object, and the other one is recording hologram by using spherical light wave as reference light. There is a Micro objective lens behind the object. The second phase factor which caus ed by the Micro objective lens can be eliminated by choosing the proper position of the reference point source when digital image plane holography is recorded by spherical light. In this experiment, we use the Lygodium cells and Onion cells as the object. The experiment results with Lygodium cells and Onion cells show that digital image plane holography avoid the process of finding recording distance by using auto-focusing approach, and the phase information of the object can be reconstructed more accurately. The digital image plane holography is applied to the microscopic imaging of cells more effectively, and it is suit to apply for the identify of Chinese Herbal Medicine. And it promotes the application of digital holographic in practice.

  8. Development of the bedridden person support system using hand gesture.

    Science.gov (United States)

    Ichimura, Kouhei; Magatani, Kazushige

    2015-08-01

    The purpose of this study is to support the bedridden and physically handicapped person who live independently. In this study, we developed Electric appliances control system that can be used on the bed. The subject can control Electric appliances using hand motion. Infrared sensors of a Kinect are used for the hand motion detection. Our developed system was tested with some normal subjects and results of the experiment were evaluated. In this experiment, all subjects laid on the bed and tried to control our system. As results, most of subjects were able to control our developed system perfectly. However, motion tracking of some subject's hand was reset forcibly. It was difficult for these subjects to make the system recognize his opened hand. From these results, we think if this problem will be improved our support system will be useful for the bedridden and physically handicapped persons.

  9. Chest imaging with dual-energy substraction digital tomosynthesis

    International Nuclear Information System (INIS)

    Sone, S.; Kasuga, T.; Sakai, F.; Hirano, H.; Kubo, K.; Morimoto, M.; Takemura, K.; Hosoba, M.

    1993-01-01

    Dual-energy subtraction digital tomosynthesis with pulsed X-ray and rapid kV switching was used to examine calcifications in pulmonary lesions. The digital tomosynthesis system used included a conventional fluororadiographic TV unit with linear tomographic capabilities, a high resolution videocamera, and an image processing unit. Low-voltage, high voltage, and soft tissue subtracted or bone subtracted tomograms of any desired layer height were reconstructed from the image data acquired during a single tomographic swing. Calcifications, as well as their characteristics and distribution in pulmonary lesions, were clearly shown. The images also permitted discrimination of calcifications from dense fibrotic lesions. This technique was effective in demonstrating calcifications together with a solitary mass or disseminated nodules. (orig.)

  10. Clinical evaluation of digital displays for PACS work stations

    International Nuclear Information System (INIS)

    Highman, J.H.; Craig, J.O.M.C.; Dawood, R.M.; Todd-Pokropek, A.; Porter, A.; Glass, H.I.; Wadsworth, J.

    1989-01-01

    The requirements for display of radiographic images at PAVS work stations is critical if reporting at CRT terminal is to become routine practice. This study determines the accuracy of reporting for the digital images displayed on commercially available systems. A number of pathologic conditions were selected by virtue of the high demands they made on spatial and contrast resolution. They included hyperparathyroid subperiosteal resorption in the hands, pneumocystis pneumonia, and mammographic microcalcification. For each condition, a series of up to 100 films were collected; approximately half were normal controls. These were digitized at 200 μm. Original films and their digitized images displayed on a 1,280-line monitor have been reported

  11. Metadata requirements for results of diagnostic imaging procedures: a BIIF profile to support user applications

    Science.gov (United States)

    Brown, Nicholas J.; Lloyd, David S.; Reynolds, Melvin I.; Plummer, David L.

    2002-05-01

    A visible digital image is rendered from a set of digital image data. Medical digital image data can be stored as either: (a) pre-rendered format, corresponding to a photographic print, or (b) un-rendered format, corresponding to a photographic negative. The appropriate image data storage format and associated header data (metadata) required by a user of the results of a diagnostic procedure recorded electronically depends on the task(s) to be performed. The DICOM standard provides a rich set of metadata that supports the needs of complex applications. Many end user applications, such as simple report text viewing and display of a selected image, are not so demanding and generic image formats such as JPEG are sometimes used. However, these are lacking some basic identification requirements. In this paper we make specific proposals for minimal extensions to generic image metadata of value in various domains, which enable safe use in the case of two simple healthcare end user scenarios: (a) viewing of text and a selected JPEG image activated by a hyperlink and (b) viewing of one or more JPEG images together with superimposed text and graphics annotation using a file specified by a profile of the ISO/IEC Basic Image Interchange Format (BIIF).

  12. Problems and image processing in X-ray film digitization

    International Nuclear Information System (INIS)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru

    1992-01-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author)

  13. Problems and image processing in X-ray film digitization

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Syousuke; Yoshita, Hisashi; Kuranishi, Makoto; Itoh, Hajime; Mori, Kouichi; Konishi, Minoru (Toyama Medical and Pharmaceutical Univ. (Japan). Hospital)

    1992-11-01

    Aiming at the realization of PACS, a study was conducted on the present state of, and various problems associated with, X-ray film digitization using a He-Ne laser-type film digitizer. Image quality was evaluated physically and clinically. With regard to the gradation specificity, the linear specificity was shown in a dynamic range of 4 figures. With regard to resolution specificity, visual evaluation was performed using a Hawlet Chart, with almost no difference being found between the CRT and laser printer output images and the decrease in resolution becoming more pronounced as the sampling pitch became greater. Clinical evaluation was performed with reference to the literature. The general evaluation of the clinicians was that although there was some deterioration for all of the shadows, (I have read this many times, but could not understand the last part.) by performing each of the kinds of image-processing enhancement of diagnostic ability was achieved, with a diagnosis being possible. The problem of unhindered diagnosis due to the development of artifacts from optical interference of the grid images projected onto the clinical pictures and digitizer sampling pitch was studied. As countermeasures, the use of a high density grid and adoption of a low-pass filter were useful in impending the development of artifacts. Regarding the operating problems, the inputting of index information requires a considerable number of manhours and a method of automatic recognition from digital data was introduced to overcome this problem. As future-prospects, the concepts of a practical system of X-ray film digitization and a film-screen system adapted to digitization were described. (author).

  14. Comparison of Diagnostic Accuracy of Breast Masses Using Digitized Images Versus Screen-Film Mammography

    International Nuclear Information System (INIS)

    Zhigang Liang; Xiangying Du; Jiabin Liu; Xinyu Yao; Yanhui Yang; Kuncheng Li

    2008-01-01

    Background: Medical film digitizers play an important transitory role as digital-analogue bridges in radiology. Digitized mammograms require evaluation of performance to assure medical image quality. Purpose: To compare the diagnostic accuracy in the interpretation of breast masses using original screen-film mammograms versus digitized images. Material and Methods: A total of 72 female patients between 55 and 81 years of age suspected of having breast cancer were selected by two non-observing radiologists. Of these, 31 cases were benign lesions and 41 cases were cancer. The mammography films were digitized using a laser film digitizer. Three radiologists, each with more than 10 years of experience in mammography, interpreted the screen-film mammograms and digitized images respectively. The time interval was 4 weeks. A four-point malignancy scale was used, with 1 defined as definitely not malignant, 2 as probably not malignant, 3 as probably malignant, and 4 as definitely malignant. Receiver operating characteristic (Roc) curves, sensitivity, and specificity were compared. Results: The average area-under-the-curve (Az) value of the original screen-film mammograms was 0.921, and the average Az value of the digitized images was 0.859. This difference was not statistically significant (P=0.131). The detection specificity of extremely dense breasts was lower than that for other breast compositions for both digitized images and screen-film mammograms. No statistical significance in sensitivity and specificity was observed between digitized images and mammograms for each breast composition. Original screen-film mammograms were observed to perform better than digitized images. Conclusion: Digitized images with a spatial resolution of 175 μm can be used instead of screen-film mammograms in the diagnosis of breast cancer

  15. New modified map for digital image encryption and its performance

    Science.gov (United States)

    Suryadi, MT; Yus Trinity Irsan, Maria; Satria, Yudi

    2017-10-01

    Protection to classified digital data becomes so important in avoiding data manipulation and alteration. The focus of this paper is in data and information protection of digital images form. Protection is provided in the form of encrypted digital image. The encryption process uses a new map, {x}n+1=\\frac{rλ {x}n}{1+λ {(1-{x}n)}2}\\quad ({mod} 1), which is called MS map. This paper will show: the results of digital image encryption using MS map and how the performance is regarding the average time needed for encryption/decryption process; randomness of key stream sequence with NIST test, histogram analysis and goodness of fit test, quality of the decrypted image by PSNR, initial value sensitivity level, and key space. The results show that the average time of the encryption process is relatively same as the decryption process and it depends to types and sizes of the image. Cipherimage (encrypted image) is uniformly distributed since: it passes the goodness of fit test and also the histogram of the cipherimage is flat; key stream, that are generated by MS map, passes frequency (monobit) test, and runs test, which means the key stream is a random sequence; the decrypted image has same quality as the original image; and initial value sensitivity reaches 10-17, and key space reaches 3.24 × 10634. So, that encryption algorithm generated by MS map is more resistant to brute-force attack and known plaintext attack.

  16. Coordination of intrinsic and extrinsic hand muscle activity as a function of wrist joint angle during two-digit grasping.

    Science.gov (United States)

    Johnston, Jamie A; Bobich, Lisa R; Santello, Marco

    2010-04-26

    Fingertip forces result from the activation of muscles that cross the wrist and muscles whose origins and insertions reside within the hand (extrinsic and intrinsic hand muscles, respectively). Thus, tasks that involve changes in wrist angle affect the moment arm and length, hence the force-producing capabilities, of extrinsic muscles only. If a grasping task requires the exertion of constant fingertip forces, the Central Nervous System (CNS) may respond to changes in wrist angle by modulating the neural drive to extrinsic or intrinsic muscles only or by co-activating both sets of muscles. To distinguish between these scenarios, we recorded electromyographic (EMG) activity of intrinsic and extrinsic muscles of the thumb and index finger as a function of wrist angle during a two-digit object hold task. We hypothesized that changes in wrist angle would elicit EMG amplitude modulation of the extrinsic and intrinsic hand muscles. In one experimental condition we asked subjects to exert the same digit forces at each wrist angle, whereas in a second condition subjects could choose digit forces for holding the object. EMG activity was significantly modulated in both extrinsic and intrinsic muscles as a function of wrist angle (both pextrinsic and intrinsic muscles as a muscle synergy. These findings are discussed within the theoretical frameworks of synergies and common neural input across motor nuclei of hand muscles. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Neural evidence for the use of digit-image mnemonic in a superior memorist: An fMRI study

    Directory of Open Access Journals (Sweden)

    Li-Jun eYin

    2015-03-01

    Full Text Available Some superior memorists demonstrated exceptional memory for reciting a large body of information. The underlying neural correlates, however, are seldom addressed. C.L., the current holder of Guinness World Record for reciting 67,890 digits in π, participated in this functional magnetic resonance imaging (fMRI study. Thirteen participants without any mnemonics training were included as controls. Our previous studies suggested that C.L. used a digit-image mnemonic in studying and recalling lists of digits, namely associating 2-digit groups of ‘00’ to ‘99’ with images and generating vivid stories out of them (Hu, Ericsson, Yang & Lu, 2009. Thus, 2-digit condition was included, with 1-digit numbers and letters as control conditions. We hypothesized that 2-digit condition in C.L. should elicit the strongest activity in the brain regions which are associated with his mnemonic. Functional MRI results revealed that bilateral frontal poles (FPs, BA10, left superior parietal lobule (SPL, left premotor cortex (PMC, and left dorsolateral prefrontal cortex (DLPFC, were more engaged in both the study and recall phase of 2-digit condition for C.L. relative to controls. Moreover, the left middle/inferior frontal gyri (M/IFG and intraparietal sulci (IPS were less engaged in the study phase of 2-digit condition for C.L. (vs. controls. These results suggested that C.L. relied more on brain regions that are associated with episodic memory other than verbal rehearsal while he used his mnemonic strategies. This study supported theoretical accounts of restructured cognitive mechanisms for the acquisition of superior memory performance.

  18. Gastrointestinal digital fluoroscopy: Comparison of digital pulsed progressive readout images with 100-mm spot films

    International Nuclear Information System (INIS)

    Steiner, E.; Ferrucci, J.T.; Mueller, P.R.; Hahn, P.F.

    1987-01-01

    New developments in pulsed progressive readout (PPR) techniques allow short, extremely intense pulses of radiation to be used to produce a latent image which is then progressively read off the video camera and placed in 1,024 x 1,024-pixel digital storage. The resulting image is produced by a 10-20-msec pulse, reducing motion artifact to below that achievable with conventional spot film techniques, with a potential for 50%-95% dose reduction. This technique of reducing motion artifact is ideal for digital applications in gastrointestinal radiology. The authors compared 10-mm spot films and PPR digital radiographs of 86 anatomic regions in 43 patients undergoing routine barium enema and cholangiographic examinations. Parameters evaluated included display of normal and pathologic features, image contrast, and resolution. The benefits of the PPR technique include postprocessing to evaluate low contrast region and the potential for significant dose reduction

  19. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  20. A High-Dynamic-Range Optical Remote Sensing Imaging Method for Digital TDI CMOS

    Directory of Open Access Journals (Sweden)

    Taiji Lan

    2017-10-01

    Full Text Available The digital time delay integration (digital TDI technology of the complementary metal-oxide-semiconductor (CMOS image sensor has been widely adopted and developed in the optical remote sensing field. However, the details of targets that have low illumination or low contrast in scenarios of high contrast are often drowned out because of the superposition of multi-stage images in digital domain multiplies the read noise and the dark noise, thus limiting the imaging dynamic range. Through an in-depth analysis of the information transfer model of digital TDI, this paper attempts to explore effective ways to overcome this issue. Based on the evaluation and analysis of multi-stage images, the entropy-maximized adaptive histogram equalization (EMAHE algorithm is proposed to improve the ability of images to express the details of dark or low-contrast targets. Furthermore, in this paper, an image fusion method is utilized based on gradient pyramid decomposition and entropy weighting of different TDI stage images, which can improve the detection ability of the digital TDI CMOS for complex scenes with high contrast, and obtain images that are suitable for recognition by the human eye. The experimental results show that the proposed methods can effectively improve the high-dynamic-range imaging (HDRI capability of the digital TDI CMOS. The obtained images have greater entropy and average gradients.

  1. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor.

    Science.gov (United States)

    Yu, Changwei; Nie, Kaiming; Xu, Jiangtao; Gao, Jing

    2016-09-23

    In this paper, an accumulation technique suitable for digital domain CMOS time delay integration (TDI) image sensors is proposed to reduce power consumption without degrading the rate of imaging. In terms of the slight variations of quantization codes among different pixel exposures towards the same object, the pixel array is divided into two groups: one is for coarse quantization of high bits only, and the other one is for fine quantization of low bits. Then, the complete quantization codes are composed of both results from the coarse-and-fine quantization. The equivalent operation comparably reduces the total required bit numbers of the quantization. In the 0.18 µm CMOS process, two versions of 16-stage digital domain CMOS TDI image sensor chains based on a 10-bit successive approximate register (SAR) analog-to-digital converter (ADC), with and without the proposed technique, are designed. The simulation results show that the average power consumption of slices of the two versions are 6 . 47 × 10 - 8 J/line and 7 . 4 × 10 - 8 J/line, respectively. Meanwhile, the linearity of the two versions are 99.74% and 99.99%, respectively.

  2. Computer processing of the scintigraphic image using digital filtering techniques

    International Nuclear Information System (INIS)

    Matsuo, Michimasa

    1976-01-01

    The theory of digital filtering was studied as a method for the computer processing of scintigraphic images. The characteristics and design techniques of finite impulse response (FIR) digital filters with linear phases were examined using the z-transform. The conventional data processing method, smoothing, could be recognized as one kind of linear phase FIR low-pass digital filtering. Ten representatives of FIR low-pass digital filters with various cut-off frequencies were scrutinized from the frequency domain in one-dimension and two-dimensions. These filters were applied to phantom studies with cold targets, using a Scinticamera-Minicomputer on-line System. These studies revealed that the resultant images had a direct connection with the magnitude response of the filter, that is, they could be estimated fairly well from the frequency response of the digital filter used. The filter, which was estimated from phantom studies as optimal for liver scintigrams using 198 Au-colloid, was successfully applied in clinical use for detecting true cold lesions and, at the same time, for eliminating spurious images. (J.P.N.)

  3. Imaging Total Stations - Modular and Integrated Concepts

    Science.gov (United States)

    Hauth, Stefan; Schlüter, Martin

    2010-05-01

    Keywords: 3D-Metrology, Engineering Geodesy, Digital Image Processing Initialized in 2009, the Institute for Spatial Information and Surveying Technology i3mainz, Mainz University of Applied Sciences, forces research towards modular concepts for imaging total stations. On the one hand, this research is driven by the successful setup of high precision imaging motor theodolites in the near past, on the other hand it is pushed by the actual introduction of integrated imaging total stations to the positioning market by the manufacturers Topcon and Trimble. Modular concepts for imaging total stations are manufacturer independent to a large extent and consist of a particular combination of accessory hardware, software and algorithmic procedures. The hardware part consists mainly of an interchangeable eyepiece adapter offering opportunities for digital imaging and motorized focus control. An easy assembly and disassembly in the field is possible allowing the user to switch between the classical and the imaging use of a robotic total station. The software part primarily has to ensure hardware control, but several level of algorithmic support might be added and have to be distinguished. Algorithmic procedures allow to reach several levels of calibration concerning the geometry of the external digital camera and the total station. We deliver insight in our recent developments and quality characteristics. Both the modular and the integrated approach seem to have its individual strengths and weaknesses. Therefore we expect that both approaches might point at different target applications. Our aim is a better understanding of appropriate applications for robotic imaging total stations. First results are presented. Stefan Hauth, Martin Schlüter i3mainz - Institut für Raumbezogene Informations- und Messtechnik FH Mainz University of Applied Sciences Lucy-Hillebrand-Straße 2, 55128 Mainz, Germany

  4. Cancer Digital Slide Archive: an informatics resource to support integrated in silico analysis of TCGA pathology data

    Science.gov (United States)

    Gutman, David A; Cobb, Jake; Somanna, Dhananjaya; Park, Yuna; Wang, Fusheng; Kurc, Tahsin; Saltz, Joel H; Brat, Daniel J; Cooper, Lee A D

    2013-01-01

    Background The integration and visualization of multimodal datasets is a common challenge in biomedical informatics. Several recent studies of The Cancer Genome Atlas (TCGA) data have illustrated important relationships between morphology observed in whole-slide images, outcome, and genetic events. The pairing of genomics and rich clinical descriptions with whole-slide imaging provided by TCGA presents a unique opportunity to perform these correlative studies. However, better tools are needed to integrate the vast and disparate data types. Objective To build an integrated web-based platform supporting whole-slide pathology image visualization and data integration. Materials and methods All images and genomic data were directly obtained from the TCGA and National Cancer Institute (NCI) websites. Results The Cancer Digital Slide Archive (CDSA) produced is accessible to the public (http://cancer.digitalslidearchive.net) and currently hosts more than 20 000 whole-slide images from 22 cancer types. Discussion The capabilities of CDSA are demonstrated using TCGA datasets to integrate pathology imaging with associated clinical, genomic and MRI measurements in glioblastomas and can be extended to other tumor types. CDSA also allows URL-based sharing of whole-slide images, and has preliminary support for directly sharing regions of interest and other annotations. Images can also be selected on the basis of other metadata, such as mutational profile, patient age, and other relevant characteristics. Conclusions With the increasing availability of whole-slide scanners, analysis of digitized pathology images will become increasingly important in linking morphologic observations with genomic and clinical endpoints. PMID:23893318

  5. The Avocado Hand

    LENUS (Irish Health Repository)

    Rahmani, G

    2017-11-01

    Accidental self-inflicted knife injuries to digits are a common cause of tendon and nerve injury requiring hand surgery. There has been an apparent increase in avocado related hand injuries. Classically, the patients hold the avocado in their non-dominant hand while using a knife to cut\\/peel the fruit with their dominant hand. The mechanism of injury is usually a stabbing injury to the non-dominant hand as the knife slips past the stone, through the soft avocado fruit. Despite their apparent increased incidence, we could not find any cases in the literature which describe the “avocado hand”. We present a case of a 32-year-old woman who sustained a significant hand injury while preparing an avocado. She required exploration and repair of a digital nerve under regional anaesthesia and has since made a full recovery.

  6. Digital image processing for real-time neutron radiography and its applications

    International Nuclear Information System (INIS)

    Fujine, Shigenori

    1989-01-01

    The present paper describes several digital image processing approaches for the real-time neutron radiography (neutron television-NTV), such as image integration, adaptive smoothing and image enhancement, which have beneficial effects on image improvements, and also describes how to use these techniques for applications. Details invisible in direct images of NTV are able to be revealed by digital image processing, such as reversed image, gray level correction, gray scale transformation, contoured image, subtraction technique, pseudo color display and so on. For real-time application a contouring operation and an averaging approach can also be utilized effectively. (author)

  7. An overview of digital image processing in the field of nuclear medicine

    International Nuclear Information System (INIS)

    Okuyama, Yasuo

    1992-01-01

    The current status and remaining problems of digital image processing in nuclear medicine were discussed. Digitalization of nuclear medicine images has made it possible, in conjunction with computers, to obtain new information (Fourier analysis, Factor analysis, etc.) with added value from images, in place of the fixed concepts that had formerly been drawn only from images. However, the basis of this technology is the special QC and QA of nuclear medicine examinations, and those techniques have not yet been adequately established. The advantage of digitalization is the flexibility that comes from the programs, but the element of the subjectivity of each individual plays a large role, and it can be said that there is also the risk that the logic of image diagnosis established to date will be destroyed. Accordingly, the creation of digital image processing technique with specifications will give birth to standardized digital nuclear medicine images, and these development will certainly lead to progress in nuclear medicine diagnosis. In addition, in comparison with other modalities, the field of nuclear medicine involves a lesser amount of information, and this simplifiers the digitalization of images. At present, equipment is being designed and developed with incorporation of the concept of a work station. A serious problem that remains in this field is the standardization of image transmission. In summary, the main problem that must be solved in the field of nuclear medicine examinations is the establishment of QC and QA methods and practical algorithms for the software. It is hoped that there will be open access to information, etc., related to the software. (author)

  8. Diagnostic ability of the periapical radiographs and digital image in the detection of the artificial proximal caries

    International Nuclear Information System (INIS)

    Heo, Min Suk; You, Dong Soo

    1994-01-01

    Recently, the digital image was introduced into radiological image. The digital image has the power of contrast enhancement, histogram control, and other digitally enhancement. At the point of the resolution, periapical radiograph is superior to the digital image, but enhanced digital procedure improves the diagnostic ability of the digital image. The purpose of this study was to evaluate the diagnostic ability of artificial proximal caries in conventional radiographs, digital radiographs and enhanced digital radiographs (histogram specification). ROC (Receiver Operating Characteristic) analysis and paired t-test were used for the evaluation of detectability, and following results were acquired: 1. The mean ROC area of conventional radiographs was 0.9274. 2. The mean ROC area of unenhanced digital image was 0.9168. 3. The mean ROC area of enhanced digital image was 0.9339. 4. The diagnostic ability of three imaging methods was not significant difference (p>0.05). So, the digital images had similar diagnostic ability of artificial proximal caries to conventional radiographs. If properly enhanced digital image, it may be superior to conventional radiographs.

  9. Comparison of hand and semiautomatic tracing methods for creating maxillofacial artificial organs using sequences of computed tomography (CT) and cone beam computed tomography (CBCT) images.

    Science.gov (United States)

    Szabo, Bence T; Aksoy, Seçil; Repassy, Gabor; Csomo, Krisztian; Dobo-Nagy, Csaba; Orhan, Kaan

    2017-06-09

    The aim of this study was to compare the paranasal sinus volumes obtained by manual and semiautomatic imaging software programs using both CT and CBCT imaging. 121 computed tomography (CT) and 119 cone beam computed tomography (CBCT) examinations were selected from the databases of the authors' institutes. The Digital Imaging and Communications in Medicine (DICOM) images were imported into 3-dimensonal imaging software, in which hand mode and semiautomatic tracing methods were used to measure the volumes of both maxillary sinuses and the sphenoid sinus. The determined volumetric means were compared to previously published averages. Isometric CBCT-based volume determination results were closer to the real volume conditions, whereas the non-isometric CT-based volume measurements defined coherently lower volumes. By comparing the 2 volume measurement modes, the values gained from hand mode were closer to the literature data. Furthermore, CBCT-based image measurement results corresponded to the known averages. Our results suggest that CBCT images provide reliable volumetric information that can be depended on for artificial organ construction, and which may aid the guidance of the operator prior to or during the intervention.

  10. Are digital images good enough? A comparative study of conventional film-screen vs digital radiographs on printed images of total hip replacement

    Energy Technology Data Exchange (ETDEWEB)

    Eklund, K.; Jonsson, K.; Lindblom, G.; Lundin, B.; Sanfridsson, J.; Sloth, M. [Department of Radiology, Center for Medical Imaging and Physiology, Lund University Hospital, 22185, Lund (Sweden); Sivberg, B. [Department of Nursing, Faculty of Medicine, Lund University, P.O. Box 157, 22100, Lund (Sweden)

    2004-05-01

    The aim of this study was to evaluate the inter- and intra-observer variability and to find differences in diagnostic safety between digital and analog technique in diagnostic zones around hip prostheses. In 80 patients who had had a total hip replacement (THR) for more than 2 years, a conventional image and a digital image were taken. Gruen's model of seven distinct regions of interest was used for evaluations. Five experienced radiologists observed the seven regions and noted in a protocol the following distances: stem-cement; cement-bone; and stem-bone. All images were printed on hard copies and were read twice. Weighted kappa, {kappa}{sub w}, analyses were used. The two most frequently loosening regions, stem-cement region 1 and cement-bone region 7, were closely analyzed. In region 1 the five observers had an agreement of 86.75-97.92% between analog and digital images in stem-cement, which is a varied {kappa}{sub w} 0.29-0.71. For cement-bone region 7 an agreement of 87.21-90.45% was found, which is a varied {kappa}{sub w} of 0.48-0.58. All the kappa values differ significantly from nil. The result shows that digital technique is as good as analog radiographs for diagnosing possible loosening of hip prostheses. (orig.)

  11. Standard practice for digital imaging and communication in nondestructive evaluation (DICONDE) for digital radiographic (DR) test methods

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice facilitates the interoperability of digital X-ray imaging equipment by specifying image data transfer and archival methods in commonly accepted terms. This document is intended to be used in conjunction with Practice E2339 on Digital Imaging and Communication in Nondestructive Evaluation (DICONDE). Practice E2339 defines an industrial adaptation of the NEMA Standards Publication titled Digital Imaging and Communications in Medicine (DICOM, see http://medical.nema.org), an international standard for image data acquisition, review, storage and archival storage. The goal of Practice E2339, commonly referred to as DICONDE, is to provide a standard that facilitates the display and analysis of NDE results on any system conforming to the DICONDE standard. Toward that end, Practice E2339 provides a data dictionary and a set of information modules that are applicable to all NDE modalities. This practice supplements Practice E2339 by providing information object definitions, information modules and a ...

  12. 78 FR 32427 - Notice of Issuance of Final Determination Concerning Multifunctional Digital Imaging Systems

    Science.gov (United States)

    2013-05-30

    ... multifunctional digital imaging systems for purposes of U.S. Government procurement. DATES: The final... Determination Concerning Multifunctional Digital Imaging Systems AGENCY: U.S. Customs and Border Protection... country of origin of certain multifunctional digital imaging systems. Based upon the facts presented, CBP...

  13. Enhancement of digital radiography image quality using a convolutional neural network.

    Science.gov (United States)

    Sun, Yuewen; Li, Litao; Cong, Peng; Wang, Zhentao; Guo, Xiaojing

    2017-01-01

    Digital radiography system is widely used for noninvasive security check and medical imaging examination. However, the system has a limitation of lower image quality in spatial resolution and signal to noise ratio. In this study, we explored whether the image quality acquired by the digital radiography system can be improved with a modified convolutional neural network to generate high-resolution images with reduced noise from the original low-quality images. The experiment evaluated on a test dataset, which contains 5 X-ray images, showed that the proposed method outperformed the traditional methods (i.e., bicubic interpolation and 3D block-matching approach) as measured by peak signal to noise ratio (PSNR) about 1.3 dB while kept highly efficient processing time within one second. Experimental results demonstrated that a residual to residual (RTR) convolutional neural network remarkably improved the image quality of object structural details by increasing the image resolution and reducing image noise. Thus, this study indicated that applying this RTR convolutional neural network system was useful to improve image quality acquired by the digital radiography system.

  14. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1982-01-01

    A method of producing visible difference images derived from an x-ray image of an anatomical subject is described. X-rays are directed through the subject, and the image is converted into television fields comprising trains of analog video signals. The analog signals are converted into digital signals, which are then integrated over a predetermined time corresponding to several television fields. Difference video signals are produced by performing a subtraction between the ongoing video signals and the corresponding integrated signals, and are converted into visible television difference images representing changes in the x-ray image

  15. Quantitative impact of direct, personal feedback on hand hygiene technique.

    Science.gov (United States)

    Lehotsky, Á; Szilágyi, L; Ferenci, T; Kovács, L; Pethes, R; Wéber, G; Haidegger, T

    2015-09-01

    This study investigated the effectiveness of targeting hand hygiene technique using a new training device that provides objective, personal and quantitative feedback. One hundred and thirty-six healthcare workers in three Hungarian hospitals participated in a repetitive hand hygiene technique assessment study. Ultraviolet (UV)-labelled hand rub was used at each event, and digital images of the hands were subsequently taken under UV light. Immediate objective visual feedback was given to participants, showing missed areas on their hands. The rate of inadequate hand rubbing reduced from 50% to 15% (P < 0.001). However, maintenance of this reduced rate is likely to require continuous use of the electronic equipment. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Feed particle size evaluation: conventional approach versus digital holography based image analysis

    Directory of Open Access Journals (Sweden)

    Vittorio Dell’Orto

    2010-01-01

    Full Text Available The aim of this study was to evaluate the application of image analysis approach based on digital holography in defining particle size in comparison with the sieve shaker method (sieving method as reference method. For this purpose ground corn meal was analyzed by a sieve shaker Retsch VS 1000 and by image analysis approach based on digital holography. Particle size from digital holography were compared with results obtained by screen (sieving analysis for each of size classes by a cumulative distribution plot. Comparison between particle size values obtained by sieving method and image analysis indicated that values were comparable in term of particle size information, introducing a potential application for digital holography and image analysis in feed industry.

  17. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  18. Digital image correlation based on a fast convolution strategy

    Science.gov (United States)

    Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong

    2017-10-01

    In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.

  19. Evaluation of display on CRT by various processing digital images

    International Nuclear Information System (INIS)

    Toyama, Yasuhiko; Akagi, Naoki; Ohara, Shuichi; Maeda, Tomoho; Kitazoe, Yasuhiro; Yamamoto, Kouji

    1986-01-01

    In this study, we digitized three sheets of thin line chart X-ray photographs altered the photographic density. By selecting the width of the photographic density at displaying the images on the CRT, We could augment the contrast of images and more easily recognize line images compared with original X-ray photos. This characteristic was clearly observed within the region of low wave length. Though the easy recognition was got by adjusting the contrast, the sharpness of line images was not in accordance with it. As mentioned above, we discussed the relation between the contrast and the sharpness of digitized images obtained with a multi-format camera. (author)

  20. Evaluation of display on CRT by various processing digital images

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Yasuhiko; Akagi, Naoki; Ohara, Shuichi; Maeda, Tomoho; Kitazoe, Yasuhiro; Yamamoto, Kouji

    1986-12-01

    In this study, we digitized three sheets of thin line chart X-ray photographs altered the photographic density. By selecting the width of the photographic density at displaying the images on the CRT, We could augment the contrast of images and more easily recognize line images compared with original X-ray photos. This characteristic was clearly observed within the region of low wave length. Though the easy recognition was got by adjusting the contrast, the sharpness of line images was not in accordance with it. As mentioned above, we discussed the relation between the contrast and the sharpness of digitized images obtained with a multi-format camera.

  1. Creating a panorama of the heart with digital images.

    Science.gov (United States)

    Rosebrock, L

    2000-01-01

    Digital imaging offers new opportunities still being discovered by users. This article describes a technique that was created using a digital camera to photograph the entire surface of a rat heart. The technique may have other applications as well.

  2. Design, data, and theory regarding a digital hand inclinometer: a portable device for studying slant perception.

    Science.gov (United States)

    Li, Zhi; Durgin, Frank H

    2011-06-01

    Palm boards are often used as a nonverbal measure in human slant perception studies. It was recently found that palm boards are biased and relatively insensitive measures, and that an unrestricted hand gesture provides a more sensitive response (Durgin, Hajnal, Li, Tonge, & Stigliani, Acta Psychologica, 134, 182-197, 2010a). In this article, we describe an original design for a portable lightweight digital device for measuring hand orientation. This device is microcontroller-based and uses a micro inclinometer chip as its inclination sensor. The parts are fairly inexpensive. This device, used to measure hand orientation, provides a sensitive nonverbal method for studying slant perception, which can be used in both indoor and outdoor environments. We present data comparing the use of a free hand to palm-board and verbal measures for surfaces within reach and explain how to interpret free-hand measures for outdoor hills.

  3. Iso-precision scaling of digitized mammograms to facilitate image analysis

    International Nuclear Information System (INIS)

    Karssmeijer, N.; van Erning, L.

    1991-01-01

    This paper reports on a 12 bit CCD camera equipped with a linear sensor of 4096 photodiodes which is used to digitize conventional mammographic films. An iso-precision conversion of the pixel values is preformed to transform the image data to a scale on which the image noise is equal at each level. For this purpose film noise and digitization noise have been determined as a function of optical density and pixel size. It appears that only at high optical densities digitization noise is comparable to or larger than film noise. The quantization error caused by compression of images recorded with 12 bits per pixel to 8 bit images by an iso-precision conversion has been calculated as a function of the number of quantization levels. For mammograms digitized in a 4096 2 matrix the additional error caused by such a scale transform is only about 1.5 percent. An iso-precision scale transform can be advantageous when automated procedures for quantitative image analysis are developed. Especially when detection of signals in noise is aimed at, a constant noise level over the whole pixel value range is very convenient. This is demonstrated by applying local thresholding to detect small microcalcifications. Results are compared to those obtained by using logarithmic or linearized scales

  4. An experimental study on the readability of digital images in the furcal bone defects

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyung Wuk; Hwang, Eui Hwan; Lee, Sang Rae [Kyunghee University College of Medicine, Seoul (Korea, Republic of)

    2003-06-15

    To evaluate and compare the efficacy of digital radiographic images in the detection of bone loss at the bifurcation area of the mandibular first molar with traditional film-based periapical radiographs. One dried human mandible with minimal periodontal bone loss around the first molar was selected and an artificial alveolar bone defect at the bifurcation area was serially prepared over 18 steps. Images were taken using a direct CCD-based system and with F-speed periapical films. The images were evaluated by seven interpreters (3 radiologists, 3 periodontologists, and 1 general dentist) using a 5-point confidence rating scale. The readability of both periapical radiographs and digital image increased as the size of the artificial lesion and exposure time increased (p<0.05). Periapical radiographs offered greater readability of smaller bone defects than digital images, and the coefficient of variation of mean score between periapical radiographs and digital images showed a significant difference. The experimental results indicate that a significant difference in the coefficient of variation of mean score exists between periapical radiographs and digital images, and that traditional film-based periapical images offer greater readability of smaller bone defects than digital images can presently offer.

  5. An experimental study on the readability of digital images in the furcal bone defects

    International Nuclear Information System (INIS)

    Kang, Hyung Wuk; Hwang, Eui Hwan; Lee, Sang Rae

    2003-01-01

    To evaluate and compare the efficacy of digital radiographic images in the detection of bone loss at the bifurcation area of the mandibular first molar with traditional film-based periapical radiographs. One dried human mandible with minimal periodontal bone loss around the first molar was selected and an artificial alveolar bone defect at the bifurcation area was serially prepared over 18 steps. Images were taken using a direct CCD-based system and with F-speed periapical films. The images were evaluated by seven interpreters (3 radiologists, 3 periodontologists, and 1 general dentist) using a 5-point confidence rating scale. The readability of both periapical radiographs and digital image increased as the size of the artificial lesion and exposure time increased (p<0.05). Periapical radiographs offered greater readability of smaller bone defects than digital images, and the coefficient of variation of mean score between periapical radiographs and digital images showed a significant difference. The experimental results indicate that a significant difference in the coefficient of variation of mean score exists between periapical radiographs and digital images, and that traditional film-based periapical images offer greater readability of smaller bone defects than digital images can presently offer.

  6. The Plastic Surgery Hand Curriculum.

    Science.gov (United States)

    Silvestre, Jason; Levin, L Scott; Serletti, Joseph M; Chang, Benjamin

    2015-12-01

    Designing an effective hand rotation for plastic surgery residents is difficult. The authors address this limitation by elucidating the critical components of the hand curriculum during plastic surgery residency. Hand questions on the Plastic Surgery In-Service Training Exam for six consecutive years (2008 to 2013) were characterized by presence of imaging, vignette setting, question taxonomy, answer domain, anatomy, and topic. Answer references were quantified by source and year of publication. Two hundred sixty-six questions were related to hand surgery (22.7 percent of all questions; 44.3 per year) and 61 were accompanied by an image (22.9 percent). Vignettes tended to be clinic- (50.0 percent) and emergency room-based (35.3 percent) (p < 0.001). Questions required decision-making (60.5 percent) over interpretation (25.9 percent) and recall skills (13.5 percent) (p < 0.001). Answers focused on interventions (57.5 percent) over anatomy/pathology (25.2 percent) and diagnoses (17.3 percent) (p < 0.001). Nearly half of the questions focused on the digits. The highest yield topics were trauma (35.3 percent), reconstruction (24.4 percent), and aesthetic and functional problems (14.2 percent). The Journal of Hand Surgery (American volume) (20.5 percent) and Plastic and Reconstructive Surgery (18.0 percent) were the most-cited journals, and the median publication lag was 7 years. Green's Operative Hand Surgery was the most-referenced textbook (41.8 percent). These results will enable trainees to study hand surgery topics with greater efficiency. Faculty can use these results to ensure that tested topics are covered during residency training. Thus, a benchmark is established to improve didactic, clinical, and operative experiences in hand surgery.

  7. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  8. Monuments deterioration evaluation, using digited images. A methodology

    Directory of Open Access Journals (Sweden)

    Ángel, María C.

    1995-12-01

    Full Text Available In this work a methodology is proposed for data processing, integrating the techniques of digital images processing and the analytical capacity of graphical referencing systems and relational databases, in relation with the monuments. The images are generated using the digital image processing and they are included into a graphical data processing systems associated with a database containing the characteristics of the ashars or constituent elements. By combination of the images with the database induced properties the information is processed. The results are thematic maps that we save such as images. These maps are layers of new information (deduced levels. The elaboration of these maps allows attacking the problems of the restoration, renovation or treatment of the different monumental spaces on a global way, paying special attention on the most gravely affected areas.

    En este trabajo se propone una metodología para el tratamiento de la información, integrando las técnicas de proceso digital de imágenes, la capacidad de análisis de los sistemas de referenciación gráfica y las bases de datos relacionales, referidas a monumentos. Para ello se elaboran las imágenes base por algoritmos propios del proceso digital, incluyendo aquellas en una aplicación especifica que asocia cada capa a una base de datos con las propiedades petrofísicas, hídricas, etc., o bien entre si, dando lugar a mapas temáticos. La generación de estos mapas permite abordar los problemas de restauración, rehabilitación o tratamiento de los diferentes espacios monumentales de forma global, con incidencia especial en las zonas más afectadas.

  9. Twin-image reduction in inline digital holography using an object segmentation heuristic

    International Nuclear Information System (INIS)

    McElhinney, Conor P; Hennelly, Bryan M; Naughton, Thomas J

    2008-01-01

    We present a digital image processing heuristic for the removal of the twin-image in inline digital holograms. Typically, the unwanted twin manifests itself as visible corruptive noise in the reconstruction plane. We reconstruct the unwanted twin-image at its in-focus plane and suppress it by first finding the boundary of the object, and then removing the optical energy within this boundary. In this plane, the wanted twin-image optical energy is largely dispersed outside this boundary and so it is retained. The heuristic's effectiveness is demonstrated using a digital hologram of a real-world object.

  10. Twin-image reduction in inline digital holography using an object segmentation heuristic

    Energy Technology Data Exchange (ETDEWEB)

    McElhinney, Conor P; Hennelly, Bryan M [Department of Computer Science, National University of Ireland, Maynooth, County Kildare (Ireland); Naughton, Thomas J [University of Oulu, RFMedia Laboratory, Oulu Southern Institute, Vierimaantie 5, 84100 Ylivieska (Finland)], E-mail: conormce@cs.nuim.ie, E-mail: tomn@cs.nuim.ie

    2008-11-01

    We present a digital image processing heuristic for the removal of the twin-image in inline digital holograms. Typically, the unwanted twin manifests itself as visible corruptive noise in the reconstruction plane. We reconstruct the unwanted twin-image at its in-focus plane and suppress it by first finding the boundary of the object, and then removing the optical energy within this boundary. In this plane, the wanted twin-image optical energy is largely dispersed outside this boundary and so it is retained. The heuristic's effectiveness is demonstrated using a digital hologram of a real-world object.

  11. Digital radiography versus conventional radiography during excretory urography: our experience

    International Nuclear Information System (INIS)

    Cervi, P.M.; Bighi, S.; Merlo, L.; Lupi, L.; Vita, G.

    1990-01-01

    The authors describe a computed radiographic system employed to generate and archive digital images in intravenous urography. For each exposure the system produces two digital images: the first (left image) simulates a conventional screen-film radiograph, the second (right image); enhances some spatial frequencies and emphasizes the margins of the structures. These images can be modified in their chief parameters and then printed by a laser-printer and archived on optical disks. Four experienced radiologists evaluated digital images with regard to some chief diagnostic parameters and, in 50 patients, they compared digital images with conventional screen-film radiographs and submitted the results to statistical analysis. For some of the chosen parameters, particularly for the evaluation of renal margins before and after contrast medium injection, digital images gave statistically better results than conventional films, while, no statistically significant different was observed for the other parameters. From the results of this preliminary study digital radiography was found to be useful in intravenous urography by reducing the patient's exposition dose, by always obtaining images of good quality, and by enhancing some particular features of the standard image; on the other hand there were many unsolved problems regarding the communicating and archiving system (PACS), because of the slowness of the image transfer procedure, difficulties in data transmission and complexity of referential procedures

  12. A dual-view digital tomosynthesis imaging technique for improved chest imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C., E-mail: cshaw@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054 (United States)

    2015-09-15

    Purpose: Digital tomosynthesis (DTS) has been shown to be useful for reducing the overlapping of abnormalities with anatomical structures at various depth levels along the posterior–anterior (PA) direction in chest radiography. However, DTS provides crude three-dimensional (3D) images that have poor resolution in the lateral view and can only be displayed with reasonable quality in the PA view. Furthermore, the spillover of high-contrast objects from off-fulcrum planes generates artifacts that may impede the diagnostic use of the DTS images. In this paper, the authors describe and demonstrate the use of a dual-view DTS technique to improve the accuracy of the reconstructed volume image data for more accurate rendition of the anatomy and slice images with improved resolution and reduced artifacts, thus allowing the 3D image data to be viewed in views other than the PA view. Methods: With the dual-view DTS technique, limited angle scans are performed and projection images are acquired in two orthogonal views: PA and lateral. The dual-view projection data are used together to reconstruct 3D images using the maximum likelihood expectation maximization iterative algorithm. In this study, projection images were simulated or experimentally acquired over 360° using the scanning geometry for cone beam computed tomography (CBCT). While all projections were used to reconstruct CBCT images, selected projections were extracted and used to reconstruct single- and dual-view DTS images for comparison with the CBCT images. For realistic demonstration and comparison, a digital chest phantom derived from clinical CT images was used for the simulation study. An anthropomorphic chest phantom was imaged for the experimental study. The resultant dual-view DTS images were visually compared with the single-view DTS images and CBCT images for the presence of image artifacts and accuracy of CT numbers and anatomy and quantitatively compared with root-mean-square-deviation (RMSD) values

  13. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin; Zhang Qi; Zheng Futang

    2000-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images are presented. The software for object separating, mass calculating, 3D positioning, speed determining and cavity reconstruction are described

  14. Network based multi-channel digital flash X-ray imaging system

    International Nuclear Information System (INIS)

    Wang Jingjin; Yuan Jie; Liu Yaqiang; Lin Yong; Song Zheng; Liu Keyin

    2003-01-01

    A network based multi-channel digital flash X-ray imaging system has been developed. It can be used to acquire and digitize orthogonal flash X-ray images in multi-interval, and to distribute the images on the network. There is no need of films and chemical process, no anxiety of waiting and no trouble of film archiving. This system is useful for testing ballistics, jet, explode, armour-piercing and fast running machines. The system composing and acquired images of terminal ballistics are presented. The software for object separating, profile calculating and 3D cavity reconstruction are described

  15. How to optimize radiological images captured from digital cameras, using the Adobe Photoshop 6.0 program.

    Science.gov (United States)

    Chalazonitis, A N; Koumarianos, D; Tzovara, J; Chronopoulos, P

    2003-06-01

    Over the past decade, the technology that permits images to be digitized and the reduction in the cost of digital equipment allows quick digital transfer of any conventional radiological film. Images then can be transferred to a personal computer, and several software programs are available that can manipulate their digital appearance. In this article, the fundamentals of digital imaging are discussed, as well as the wide variety of optional adjustments that the Adobe Photoshop 6.0 (Adobe Systems, San Jose, CA) program can offer to present radiological images with satisfactory digital imaging quality.

  16. Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera

    Science.gov (United States)

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2011-08-01

    In order to visualize human skin hemodynamics, we investigated a method that is specifically developed for the visualization of concentrations of oxygenated blood, deoxygenated blood, and melanin in skin tissue from digital RGB color images. Images of total blood concentration and oxygen saturation can also be reconstructed from the results of oxygenated and deoxygenated blood. Experiments using tissue-like agar gel phantoms demonstrated the ability of the developed method to quantitatively visualize the transition from an oxygenated blood to a deoxygenated blood in dermis. In vivo imaging of the chromophore concentrations and tissue oxygen saturation in the skin of the human hand are performed for 14 subjects during upper limb occlusion at 50 and 250 mm Hg. The response of the total blood concentration in the skin acquired by this method and forearm volume changes obtained from the conventional strain-gauge plethysmograph were comparable during the upper arm occlusion at pressures of both 50 and 250 mm Hg. The results presented in the present paper indicate the possibility of visualizing the hemodynamics of subsurface skin tissue.

  17. Digital processing of radiographic images

    Science.gov (United States)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  18. Application of the Digital Image Technology in the Visual Monitoring and Prediction of Shuttering Construction Safety

    Science.gov (United States)

    Ummin, Okumura; Tian, Han; Zhu, Haiyu; Liu, Fuqiang

    2018-03-01

    Construction safety has always been the first priority in construction process. The common safety problem is the instability of the template support. In order to solve this problem, the digital image measurement technology has been contrived to support real-time monitoring system which can be triggered if the deformation value exceed the specified range. Thus the economic loss could be reduced to the lowest level.

  19. Digital color image encoding and decoding using a novel chaotic random generator

    International Nuclear Information System (INIS)

    Nien, H.H.; Huang, C.K.; Changchien, S.K.; Shieh, H.W.; Chen, C.T.; Tuan, Y.Y.

    2007-01-01

    This paper proposes a novel chaotic system, in which variables are treated as encryption keys in order to achieve secure transmission of digital color images. Since the dynamic response of chaotic system is highly sensitive to the initial values of a system and to the variation of a parameter, and chaotic trajectory is so unpredictable, we use elements of variables as encryption keys and apply these to computer internet communication of digital color images. As a result, we obtain much higher communication security. We adopt one statistic method involving correlation coefficient γ and FIPS PUB 140-1 to test on the distribution of distinguished elements of variables for continuous-time chaotic system, and accordingly select optimal encryption keys to use in secure communication of digital color images. At the transmitter end, we conduct RGB level decomposition on digital color images, and encrypt them with chaotic keys, and finally transmit them through computer internet. The same encryption keys are used to decrypt and recover the original images at the receiver end. Even if the encrypted images are stolen in the public channel, an intruder is not able to decrypt and recover the original images because of the lack of adequate encryption keys. Empirical example shows that the chaotic system and encryption keys applied in the encryption, transmission, decryption, and recovery of digital color images can achieve higher communication security and best recovered images

  20. Watermarking Techniques Using Least Significant Bit Algorithm for Digital Image Security Standard Solution- Based Android

    Directory of Open Access Journals (Sweden)

    Ari Muzakir

    2017-05-01

    Full Text Available Ease of deployment of digital image through the internet has positive and negative sides, especially for owners of the original digital image. The positive side of the ease of rapid deployment is the owner of that image deploys digital image files to various sites in the world address. While the downside is that if there is no copyright that serves as protector of the image it will be very easily recognized ownership by other parties. Watermarking is one solution to protect the copyright and know the results of the digital image. With Digital Image Watermarking, copyright resulting digital image will be protected through the insertion of additional information such as owner information and the authenticity of the digital image. The least significant bit (LSB is one of the algorithm is simple and easy to understand. The results of the simulations carried out using android smartphone shows that the LSB watermarking technique is not able to be seen by naked human eye, meaning there is no significant difference in the image of the original files with images that have been inserted watermarking. The resulting image has dimensions of 640x480 with a bit depth of 32 bits. In addition, to determine the function of the ability of the device (smartphone in processing the image using this application used black box testing. 

  1. Effects of Carpal Tunnel Syndrome on adaptation of multi-digit forces to object mass distribution for whole-hand manipulation

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2012-11-01

    Full Text Available Abstract Background Carpal tunnel syndrome (CTS is a compression neuropathy of the median nerve that results in sensorimotor deficits in the hand. Until recently, the effects of CTS on hand function have been studied using mostly two-digit grip tasks. The purpose of this study was to investigate the coordination of multi-digit forces as a function of object center of mass (CM during whole-hand grasping. Methods Fourteen CTS patients and age- and gender-matched controls were instructed to grasp, lift, hold, and release a grip device with five digits for seven consecutive lifts while maintaining its vertical orientation. The object CM was changed by adding a mass at different locations at the base of the object. We measured forces and torques exerted by each digit and object kinematics and analyzed modulation of these variables to object CM at object lift onset and during object hold. Our task requires a modulation of digit forces at and after object lift onset to generate a compensatory moment to counteract the external moment caused by the added mass and to minimize object tilt. Results We found that CTS patients learned to generate a compensatory moment and minimized object roll to the same extent as controls. However, controls fully exploited the available degrees of freedom (DoF in coordinating their multi-digit forces to generate a compensatory moment, i.e., digit normal forces, tangential forces, and the net center of pressure on the finger side of the device at object lift onset and during object hold. In contrast, patients modulated only one of these DoFs (the net center of pressure to object CM by modulating individual normal forces at object lift onset. During object hold, however, CTS patients were able to modulate digit tangential force distribution to object CM. Conclusions Our findings suggest that, although CTS did not affect patients’ ability to perform our manipulation task, it interfered with the modulation of specific grasp

  2. Diagnostic imaging of the hand. 3. rev. and enl. ed.; Bildgebende Diagnostik der Hand

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Rainer [Herz und Gefaessklinik GmbH, Bad Neustadt (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Lanz, Ulrich

    2015-07-01

    The book on diagnostic imaging of the hand covers the following issues: projection radiography, cinematography, MRT and CR arthrography, arthroscopy, arteriography, skeleton scintiscanning, sonography, computerized tomography, magnetic resonance tomography, anatomy of forearm and carpus, anatomy of metacarpus and fingers, carpal function and morphometry, postoperative X-ray diagnostic, growing hand skeleton, normative variants, malformations and deformities, trauma of the distal forearm, lesions of the ulnocarpal complex (TFCC), scaphoid fractures, scaphoid arthrosis, fractures of other carpus bones, carpal luxations and luxation fractures, carpal instabilities, fractures of the metacarpalla, finger fractures, arthrosis deformans, enthesiopathies, sport induced soft tissue lesions, osteonecrosis, impingement syndromes, osteopenic skeletal diseases, metabolis diseases, crystal-induced osteoarthropaties, rheumatoid arthritis, spondyloarthritis, rheumatic fever, collagenoses, infective arthritis, osteomyelitis, soft tissue infections, cystoids bone lesions, skeletal tumors, soft tissue tumors, carpal tunnel syndrome, nerve compression syndrome, arterial perfusion disturbances, differential diagnostic tables on hand lesions.

  3. A survey of passive technology for digital image forensics

    Institute of Scientific and Technical Information of China (English)

    LUO Weiqi; QU Zhenhua; PAN Feng; HUANG Jiwu

    2007-01-01

    Over the past years,digital images have been widely used in the Internet and other applications.Whilst image processing techniques are developing at a rapid speed,tampering with digital images without leaving any obvious traces becomes easier and easier.This may give rise to some problems such as image authentication.A new passive technology for image forensics has evolved quickly during the last few years.Unlike the signature-based or watermark-based methods,the new technology does not need any signature generated or watermark embedded in advance,it assumes that different imaging devices or processing would introduce different inherent patterns into the output images.These underlying patterns are consistent in the original untampered images and would be altered after some kind of manipulations.Thus,they can be used as evidence for image source identification and alteration detection.In this paper,we will discuss this new forensics technology and give an overview of the prior literatures.Some concluding remarks are made about the state of the art and the challenges in this novel technology.

  4. Patient doses in digital cardiac imaging

    International Nuclear Information System (INIS)

    Huda, W.; Ogden, K.M.; Roskopf, M.L.; Phadke, K.

    2001-01-01

    In this pilot study, we obtained estimates of entrance skin doses and the corresponding effective doses to patients undergoing digital cardiac imaging procedures on a GE Advantx LC/LP Plus system. Data were obtained for six patients undergoing diagnostic examinations and six patients who had interventional procedures. For each patient examination, radiographic techniques for fluoroscopic and digital cine imaging were recorded, together with the irradiation geometry. The projection with the highest exposure resulted in an average skin dose of 0.64 ± 0.41 Gy (maximum of 1.6 Gy). The average patient skin doses taking into account overlapping projections was 1.1 ± 0.8 Gy (maximum of 3.0 Gy). The exposure area product (EAP) incident on the patient was converted into the energy imparted to the patient and the corresponding effective dose. The average patient effective dose was 28 ± 14 mSv (maximum 62 mSv), with the resultant average fatal cancer risk estimated to be of the order of 8x10 -3 . Average doses for interventional procedures in cardiac imaging are higher than those associated with diagnostic examinations by approximately 50%. (author)

  5. Crack Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal, Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better than that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  6. Thinning an object boundary on digital image using pipelined algorithm

    International Nuclear Information System (INIS)

    Dewanto, S.; Aliyanta, B.

    1997-01-01

    In digital image processing, the thinning process to an object boundary is required to analyze the image structure with a measurement of parameter such as area, circumference of the image object. The process needs a sufficient large memory and time consuming if all the image pixels stored in the memory and the following process is done after all the pixels has ben transformed. pipelined algorithm can reduce the time used in the process. This algorithm uses buffer memory where its size can be adjusted. the next thinning process doesn't need to wait all the transformation of pixels. This paper described pipelined algorithm with some result on the use of the algorithm to digital image

  7. Latin American image quality survey in digital mammography studies

    International Nuclear Information System (INIS)

    Mora, Patricia; Khoury, Helen; Bitelli, Regina; Quintero, Ana Rosa; Garay, Fernando; Garcia Aguilar, Juan; Gamarra, Mirtha; Ubeda, Carlos

    2017-01-01

    Under International Atomic Energy Agency regional programme TSA3 Radiological Protection of Patients in Medical Exposures, Latin American countries evaluated the image quality and glandular doses for digital mammography equipment with the purpose of seeing the performance and compliance with international recommendations. Totally, 24 institutions participated from Brazil, Chile, Costa Rica, El Salvador, Mexico, Paraguay and Venezuela. Signal difference noise ratio results showed for CR poor compliance with tolerances; better results were obtained for full-field digital mammography equipment. Mean glandular dose results showed that the majority of units have values below the acceptable dose levels. This joint Latin American project identified common problems: difficulty in working with digital images and lack of specific training by medical physicists from the region. Image quality is a main issue not being satisfied in accordance with international recommendations; optimisation processes in which the doses are increased should be very carefully done in order to improve early detection of any cancer signs. (authors)

  8. Survey of best practices in digital image collection management, 2016 edition

    CERN Document Server

    2016-01-01

    The study presents data and commentary from 55 institutions that manage digital image collections, including museums, historical societies, botanic gardens, churches colleges and universities, government agencies and others. The study looks at a broad range of issues in cataloging, findability, marketing, revenue generation, technology use, rights, digitization, staffing, budgets, access, preservation, image collection building and many other issues of interest to administrators of large digital image collections. Just a few of the report's many findings are that: Only 9.1% of the institutions sampled acquire images from imaging vendors; mostly this was done by college and university collections in the United States; 10% of the institutions sampled had annual revenues from image sales and licensing that exceeded 50,000; No organization in the sample chose outsourced vendor scanning as their primary means of building their collections though 14.55% chose it second and 12.73% ranked it third; 43.64% of those s...

  9. Screening for diabetic retinopathy in rural area using single-field, digital fundus images.

    Science.gov (United States)

    Ruamviboonsuk, Paisan; Wongcumchang, Nattapon; Surawongsin, Pattamaporn; Panyawatananukul, Ekchai; Tiensuwan, Montip

    2005-02-01

    To evaluate the practicability of using single-field, 2.3 million-pixel, digital fundus images for screening of diabetic retinopathy in rural areas. All diabetic patients who regularly attended the diabetic clinic at Kabcheang Community Hospital, located at 15 kilometers from the Thailand-Cambodia border, were appointed to the hospital for a 3-day diabetic retinopathy screening programme. The fundi of all patients were captured in single-field, 45 degrees, 2.3 million-pixel images using nonmydriatic digital fundus camera and then sent to a reading center in Bangkok. The fundi were also examined through dilated pupils by a retinal specialist at this hospital. The grading of diabetic retinopathy from two methods was compared for an exact agreement. The average duration of single digital fundus image capture was 2 minutes. The average file size of each image was 750 kilobytes. The average duration of single image transmission to a reading center in Bangkok via satellite was 3 minutes; via a conventional telephone line was 8 minutes. Of all 150 patients, 130 were assessed for an agreement between dilated fundus examination and digital fundus images in diagnosis of diabetic retinopathy. The exact agreement was 0.87, the weighted kappa statistics was 0.74. The sensitivity of digital fundus images in detecting diabetic retinopathy was 80%, the specificity was 96%. For diabetic macular edema the exact agreement was 0.97, the weighted kappa was 0.43, the sensitivity was 43%, and the specificity was 100%. The image capture of the nonmydriatic digital fundus camera is suitable for screening of diabetic retinopathy and single-field digital fundus images are potentially acceptable tools for the screening. The real-time image transmission via telephone lines to remote reading center, however, may not be practical for routine diabetic retinopathy screening in rural areas.

  10. Image digitizer system for bubble chamber laser

    International Nuclear Information System (INIS)

    Haggerty, H.

    1986-01-01

    An IBM PC-based image digitizer system has been assembled to monitor the laser flash used for holography at the 15 foot bubble chamber. The hardware and the operating software are outlined. For an operational test of the system, an array of LEDs was flashed with a 10 microsecond pulse and the image was grabbed by one of the operating programs and processed

  11. Automatic analysis of quality of images from X-ray digital flat detectors

    International Nuclear Information System (INIS)

    Le Meur, Y.

    2009-04-01

    Since last decade, medical imaging has grown up with the development of new digital imaging techniques. In the field of X-ray radiography, new detectors replace progressively older techniques, based on film or x-ray intensifiers. These digital detectors offer a higher sensibility and reduced overall dimensions. This work has been prepared with Trixell, the world leading company in flat detectors for medical radiography. It deals with quality control on digital images stemming from these detectors. High quality standards of medical imaging impose a close analysis of the defects that can appear on the images. This work describes a complete process for quality analysis of such images. A particular focus is given on the detection task of the defects, thanks to methods well adapted to our context of spatially correlated defects in noise background. (author)

  12. Classification of radiolarian images with hand-crafted and deep features

    Science.gov (United States)

    Keçeli, Ali Seydi; Kaya, Aydın; Keçeli, Seda Uzunçimen

    2017-12-01

    Radiolarians are planktonic protozoa and are important biostratigraphic and paleoenvironmental indicators for paleogeographic reconstructions. Radiolarian paleontology still remains as a low cost and the one of the most convenient way to obtain dating of deep ocean sediments. Traditional methods for identifying radiolarians are time-consuming and cannot scale to the granularity or scope necessary for large-scale studies. Automated image classification will allow making these analyses promptly. In this study, a method for automatic radiolarian image classification is proposed on Scanning Electron Microscope (SEM) images of radiolarians to ease species identification of fossilized radiolarians. The proposed method uses both hand-crafted features like invariant moments, wavelet moments, Gabor features, basic morphological features and deep features obtained from a pre-trained Convolutional Neural Network (CNN). Feature selection is applied over deep features to reduce high dimensionality. Classification outcomes are analyzed to compare hand-crafted features, deep features, and their combinations. Results show that the deep features obtained from a pre-trained CNN are more discriminative comparing to hand-crafted ones. Additionally, feature selection utilizes to the computational cost of classification algorithms and have no negative effect on classification accuracy.

  13. Storage and retrieval of large digital images

    Science.gov (United States)

    Bradley, J.N.

    1998-01-20

    Image compression and viewing are implemented with (1) a method for performing DWT-based compression on a large digital image with a computer system possessing a two-level system of memory and (2) a method for selectively viewing areas of the image from its compressed representation at multiple resolutions and, if desired, in a client-server environment. The compression of a large digital image I(x,y) is accomplished by first defining a plurality of discrete tile image data subsets T{sub ij}(x,y) that, upon superposition, form the complete set of image data I(x,y). A seamless wavelet-based compression process is effected on I(x,y) that is comprised of successively inputting the tiles T{sub ij}(x,y) in a selected sequence to a DWT routine, and storing the resulting DWT coefficients in a first primary memory. These coefficients are periodically compressed and transferred to a secondary memory to maintain sufficient memory in the primary memory for data processing. The sequence of DWT operations on the tiles T{sub ij}(x,y) effectively calculates a seamless DWT of I(x,y). Data retrieval consists of specifying a resolution and a region of I(x,y) for display. The subset of stored DWT coefficients corresponding to each requested scene is determined and then decompressed for input to an inverse DWT, the output of which forms the image display. The repeated process whereby image views are specified may take the form an interaction with a computer pointing device on an image display from a previous retrieval. 6 figs.

  14. Digital Particle Image Velocimetry: Partial Image Error (PIE)

    International Nuclear Information System (INIS)

    Anandarajah, K; Hargrave, G K; Halliwell, N A

    2006-01-01

    This paper quantifies the errors due to partial imaging of seeding particles which occur at the edges of interrogation regions in Digital Particle Image Velocimetry (DPIV). Hitherto, in the scientific literature the effect of these partial images has been assumed to be negligible. The results show that the error is significant even at a commonly used interrogation region size of 32 x 32 pixels. If correlation of interrogation region sizes of 16 x 16 pixels and smaller is attempted, the error which occurs can preclude meaningful results being obtained. In order to reduce the error normalisation of the correlation peak values is necessary. The paper introduces Normalisation by Signal Strength (NSS) as the preferred means of normalisation for optimum accuracy. In addition, it is shown that NSS increases the dynamic range of DPIV

  15. Incidence of ischemic lesions in diffusion-weighted imaging after transbrachial digital subtraction angiography

    International Nuclear Information System (INIS)

    Aschenbach, R.; Majeed, A.; Eger, C.; Basche, S.; Kerl, J.M.; Vogl, T.J.

    2008-01-01

    Purpose: to evaluate the frequency of ischemia after transbrachial digital subtraction angiography under ambulant conditions using diffusion-weighted imaging. Materials and methods: 200 patients were included in a prospective study design and received transbrachial digital subtraction angiography under ambulant conditions. Before and after digital subtraction angiography, diffusion-weighted imaging of the brain was performed. Results: in our study population no new lesions were found in diffusion-weighted imaging after digital subtraction angiography during the 3-hour window after angiography. One new lesion was found 3 days after angiography as a late onset complication. Therefore, the frequency of neurological complications is at the level of the confidence interval of 0 - 1.5%. Conclusion: the transbrachial approach under ambulant conditions is a safe method for digital subtraction angiography resulting in a low rate of ischemic lesions in diffusion-weighted imaging. (orig.)

  16. Objective and Subjective Assessment of Digital Pathology Image Quality

    Directory of Open Access Journals (Sweden)

    Prarthana Shrestha

    2015-03-01

    Full Text Available The quality of an image produced by the Whole Slide Imaging (WSI scanners is of critical importance for using the image in clinical diagnosis. Therefore, it is very important to monitor and ensure the quality of images. Since subjective image quality assessments by pathologists are very time-consuming, expensive and difficult to reproduce, we propose a method for objective assessment based on clinically relevant and perceptual image parameters: sharpness, contrast, brightness, uniform illumination and color separation; derived from a survey of pathologists. We developed techniques to quantify the parameters based on content-dependent absolute pixel performance and to manipulate the parameters in a predefined range resulting in images with content-independent relative quality measures. The method does not require a prior reference model. A subjective assessment of the image quality is performed involving 69 pathologists and 372 images (including 12 optimal quality images and their distorted versions per parameter at 6 different levels. To address the inter-reader variability, a representative rating is determined as a one-tailed 95% confidence interval of the mean rating. The results of the subjective assessment support the validity of the proposed objective image quality assessment method to model the readers’ perception of image quality. The subjective assessment also provides thresholds for determining the acceptable level of objective quality per parameter. The images for both the subjective and objective quality assessment are based on the HercepTestTM slides scanned by the Philips Ultra Fast Scanners, developed at Philips Digital Pathology Solutions. However, the method is applicable also to other types of slides and scanners.

  17. [Digital imaging and robotics in endoscopic surgery].

    Science.gov (United States)

    Go, P M

    1998-05-23

    The introduction of endoscopical surgery has among other things influenced technical developments in surgery. Owing to digitalisation, major progress will be made in imaging and in the sophisticated technology sometimes called robotics. Digital storage makes the results of imaging diagnostics (e.g. the results of radiological examination) suitable for transmission via video conference systems for telediagnostic purposes. The availability of digital video technique renders possible the processing, storage and retrieval of moving images as well. During endoscopical operations use may be made of a robot arm which replaces the camera man. The arm does not grow tired and provides a stable image. The surgeon himself can operate or address the arm and it can remember fixed image positions to which it can return if ordered to do so. The next step is to carry out surgical manipulations via a robot arm. This may make operations more patient-friendly. A robot arm can also have remote control: telerobotics. At the Internet site of this journal a number of supplements to this article can be found, for instance three-dimensional (3D) illustrations (which is the purpose of the 3D spectacles enclosed with this issue) and a quiz (http:@appendix.niwi. knaw.nl).

  18. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Bryant, C.J.; Lincoln, A.D.; Tucker, P.A.; Swanton, S.W.

    1986-08-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described:- the Mark I and the Mark II. Both use a bidimensionally sensitive Multiwire proportional counter as the basic X-ray image transducer coupled to a digital microcomputer system. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multi-frame exposures. (author)

  19. Application of smart phone and supporting set for fundus imaging in primary hospital of rural area

    Directory of Open Access Journals (Sweden)

    Yong-Feng Jing

    2018-01-01

    Full Text Available AIM: To describe the application of smart phone and supporting set for acquiring fundus images with slitlamp examination and non-contact lens in primary hospital of the rural area. METHODS: The supporting set for smart phone was purchased from taobao and securely connected to the ocular lens of slitlamp microscopy. The fundus photos were imaged with assistance of non-contact slitlamp lens from Volk. RESULTS: High quality images of various retinal diseases could be successfully taken with smart phone and supporting set by slitlamp examination. The fundus images were send to patients with Wechat as medical records or used for telconsultant. CONCLUSION: High resolution smart phones are wildly used nowadays and supporting sets are very accessible; thus high quality of images could be obtained with minimal cost in rural hospitals. The digital fundus images will be beneficial for medical record and rapid diagnosis with telconsultant.

  20. Simple and robust image-based autofocusing for digital microscopy.

    Science.gov (United States)

    Yazdanfar, Siavash; Kenny, Kevin B; Tasimi, Krenar; Corwin, Alex D; Dixon, Elizabeth L; Filkins, Robert J

    2008-06-09

    A simple image-based autofocusing scheme for digital microscopy is demonstrated that uses as few as two intermediate images to bring the sample into focus. The algorithm is adapted to a commercial inverted microscope and used to automate brightfield and fluorescence imaging of histopathology tissue sections.

  1. Diagnostic imaging of the hand. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Schmitt, R.

    2004-01-01

    The second edition contains the following new features: Focus on cogenital, degenerative, inflammatory, tumourous, neurogenic and vascular diseases of the hands; new images of multiline spiral CT including 2D pictures and 3D reconstructions; new MRT images with examination protocols; synoptic presentation of all diseases according to their pathoanatomy, clinical symptoms, diagnostic imaging, differential diagnosis, therapeutic options; checklists for the doctor's everyday work. (orig.)

  2. A Novel Medical Image Watermarking in Three-dimensional Fourier Compressed Domain

    Directory of Open Access Journals (Sweden)

    Baoru Han

    2015-09-01

    Full Text Available Digital watermarking is a research hotspot in the field of image security, which is protected digital image copyright. In order to ensure medical image information security, a novel medical image digital watermarking algorithm in three-dimensional Fourier compressed domain is proposed. The novel medical image digital watermarking algorithm takes advantage of three-dimensional Fourier compressed domain characteristics, Legendre chaotic neural network encryption features and robust characteristics of differences hashing, which is a robust zero-watermarking algorithm. On one hand, the original watermarking image is encrypted in order to enhance security. It makes use of Legendre chaotic neural network implementation. On the other hand, the construction of zero-watermarking adopts differences hashing in three-dimensional Fourier compressed domain. The novel watermarking algorithm does not need to select a region of interest, can solve the problem of medical image content affected. The specific implementation of the algorithm and the experimental results are given in the paper. The simulation results testify that the novel algorithm possesses a desirable robustness to common attack and geometric attack.

  3. A Study on the Improvement of Digital Periapical Images using Image Interpolation Methods

    International Nuclear Information System (INIS)

    Song, Nam Kyu; Koh, Kwang Joon

    1998-01-01

    Image resampling is of particular interest in digital radiology. When resampling an image to a new set of coordinate, there appears blocking artifacts and image changes. To enhance image quality, interpolation algorithms have been used. Resampling is used to increase the number of points in an image to improve its appearance for display. The process of interpolation is fitting a continuous function to the discrete points in the digital image. The purpose of this study was to determine the effects of the seven interpolation functions when image resampling in digital periapical images. The images were obtained by Digora, CDR and scanning of Ektaspeed plus periapical radiograms on the dry skull and human subject. The subjects were exposed to intraoral X-ray machine at 60 kVp and 70 kVp with exposure time varying between 0.01 and 0.50 second. To determine which interpolation method would provide the better image, seven functions were compared ; (1) nearest neighbor (2) linear (3) non-linear (4) facet model (5) cubic convolution (6) cubic spline (7) gray segment expansion. And resampled images were compared in terms of SNR (Signal to Noise Ratio) and MTF (Modulation Transfer Function) coefficient value. The obtained results were as follows ; 1. The highest SNR value (75.96 dB) was obtained with cubic convolution method and the lowest SNR value (72.44 dB) was obtained with facet model method among seven interpolation methods. 2. There were significant differences of SNR values among CDR, Digora and film scan (P 0.05). 4. There were significant differences of MTF coefficient values between linear interpolation method and the other six interpolation methods (P<0.05). 5. The speed of computation time was the fastest with nearest neighbor method and the slowest with non-linear method. 6. The better image was obtained with cubic convolution, cubic spline and gray segment method in ROC analysis. 7. The better sharpness of edge was obtained with gray segment expansion method

  4. Micro-Structure Measurement and Imaging Based on Digital Holography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem [Chosun University, Gwangju (Korea, Republic of); Kee, Chang Doo [Chonnam National University, Gwangju (Korea, Republic of)

    2010-06-15

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  5. Micro-Structure Measurement and Imaging Based on Digital Holography

    International Nuclear Information System (INIS)

    Kim, Kyeong Suk; Jung, Hyun Chul; Chang, Ho Seob; Akhter, Naseem; Kee, Chang Doo

    2010-01-01

    Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated

  6. [Digital thoracic radiology: devices, image processing, limits].

    Science.gov (United States)

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing.

  7. Registration-based segmentation with articulated model from multipostural magnetic resonance images for hand bone motion animation.

    Science.gov (United States)

    Chen, Hsin-Chen; Jou, I-Ming; Wang, Chien-Kuo; Su, Fong-Chin; Sun, Yung-Nien

    2010-06-01

    The quantitative measurements of hand bones, including volume, surface, orientation, and position are essential in investigating hand kinematics. Moreover, within the measurement stage, bone segmentation is the most important step due to its certain influences on measuring accuracy. Since hand bones are small and tubular in shape, magnetic resonance (MR) imaging is prone to artifacts such as nonuniform intensity and fuzzy boundaries. Thus, greater detail is required for improving segmentation accuracy. The authors then propose using a novel registration-based method on an articulated hand model to segment hand bones from multipostural MR images. The proposed method consists of the model construction and registration-based segmentation stages. Given a reference postural image, the first stage requires construction of a drivable reference model characterized by hand bone shapes, intensity patterns, and articulated joint mechanism. By applying the reference model to the second stage, the authors initially design a model-based registration pursuant to intensity distribution similarity, MR bone intensity properties, and constraints of model geometry to align the reference model to target bone regions of the given postural image. The authors then refine the resulting surface to improve the superimposition between the registered reference model and target bone boundaries. For each subject, given a reference postural image, the proposed method can automatically segment all hand bones from all other postural images. Compared to the ground truth from two experts, the resulting surface image had an average margin of error within 1 mm (mm) only. In addition, the proposed method showed good agreement on the overlap of bone segmentations by dice similarity coefficient and also demonstrated better segmentation results than conventional methods. The proposed registration-based segmentation method can successfully overcome drawbacks caused by inherent artifacts in MR images and

  8. Minimal requirements of ACR-NEMA digital imaging and communication standards

    International Nuclear Information System (INIS)

    Wang, Y.; Horrii, S.; Lehr, J.

    1986-01-01

    The American College of Radiology-National Electrical Manufacturers Association (ACR-NEMA) Digital Imaging and Communication Standards were formally adopted in December 1985. They are intended to facilitate management and communication of digital image information regardless of source, format, or device manufacturer; to promote the development and expansion of radiologic imaging and communication systems that can also interface with other systems of hospital information; and to allow the creation of diagnostic information databases that can be interrogated by a wide variety of devices distributed geographically. The Standards specify the hardware interface, a minimum set of software commands, and a consistent set of data formats for communication across the interface between an imaging device and a network interface unit or another imaging device

  9. Digitalization of the radiological image. A new philosophy of the radiological imagery: the high resolution of the contrasts

    International Nuclear Information System (INIS)

    Schmidt, R.

    1983-01-01

    Three cases of digitalization are to be considered: static digitalization of the conventional radiographic image; static digitalization of the calculated image, like tomodensitometric images; dynamic digitalization of television images [fr

  10. Least Square Support Vector Machine Classifier vs a Logistic Regression Classifier on the Recognition of Numeric Digits

    Directory of Open Access Journals (Sweden)

    Danilo A. López-Sarmiento

    2013-11-01

    Full Text Available In this paper is compared the performance of a multi-class least squares support vector machine (LSSVM mc versus a multi-class logistic regression classifier to problem of recognizing the numeric digits (0-9 handwritten. To develop the comparison was used a data set consisting of 5000 images of handwritten numeric digits (500 images for each number from 0-9, each image of 20 x 20 pixels. The inputs to each of the systems were vectors of 400 dimensions corresponding to each image (not done feature extraction. Both classifiers used OneVsAll strategy to enable multi-classification and a random cross-validation function for the process of minimizing the cost function. The metrics of comparison were precision and training time under the same computational conditions. Both techniques evaluated showed a precision above 95 %, with LS-SVM slightly more accurate. However the computational cost if we found a marked difference: LS-SVM training requires time 16.42 % less than that required by the logistic regression model based on the same low computational conditions.

  11. Myelopathy hand in cervical radiculopathy

    International Nuclear Information System (INIS)

    Hosono, Noboru; Mukai, Yoshihiro; Takenaka, Shota; Fuji, Takeshi; Sakaura, Hironobu; Miwa, Toshitada; Makino, Takahiro

    2010-01-01

    The so-called 'myelopathy hand', or characteristic finger paralysis, often recognized in cervical compression myelopathy, has been considered a unique manifestation of cervical myelopathy. We used our original grip and release test, a 15-second test in which finger motion is captured with a digital camera, to investigate whether cervical radiculopathy has the same characteristics as myelopathy hand. Thirty patients with pure radiculopathy, id est (i.e.), who had radiating arm pain and evidence of corresponding nerve root impingement on X-ray images or MRI scans, but did not have spinal cord compression, served as the subjects. In contrast to other radiculopathies, C7 radiculopathy was manifested by a significant reduction in the number of finger motion cycles on the affected side in comparison with the unaffected side, the same as in myelopathy hand. Uncoordinated finger motion was significantly more frequent on the affected side in C6 radiculopathy than on the unaffected side. These findings contradict the conventional notion that myelopathy hand is a unique manifestation of cervical myelopathy, but some radiculopathies manifested the same kinds of finger paralysis observed in myelopathy hand. (author)

  12. Image Format Conversion to DICOM and Lookup Table Conversion to Presentation Value of the Japanese Society of Radiological Technology (JSRT) Standard Digital Image Database.

    Science.gov (United States)

    Yanagita, Satoshi; Imahana, Masato; Suwa, Kazuaki; Sugimura, Hitomi; Nishiki, Masayuki

    2016-01-01

    Japanese Society of Radiological Technology (JSRT) standard digital image database contains many useful cases of chest X-ray images, and has been used in many state-of-the-art researches. However, the pixel values of all the images are simply digitized as relative density values by utilizing a scanned film digitizer. As a result, the pixel values are completely different from the standardized display system input value of digital imaging and communications in medicine (DICOM), called presentation value (P-value), which can maintain a visual consistency when observing images using different display luminance. Therefore, we converted all the images from JSRT standard digital image database to DICOM format followed by the conversion of the pixel values to P-value using an original program developed by ourselves. Consequently, JSRT standard digital image database has been modified so that the visual consistency of images is maintained among different luminance displays.

  13. A Non-symmetric Digital Image Secure Communication Scheme Based on Generalized Chaos Synchronization System

    International Nuclear Information System (INIS)

    Zhang Xiaohong; Min Lequan

    2005-01-01

    Based on a generalized chaos synchronization system and a discrete Sinai map, a non-symmetric true color (RGB) digital image secure communication scheme is proposed. The scheme first changes an ordinary RGB digital image with 8 bits into unrecognizable disorder codes and then transforms the disorder codes into an RGB digital image with 16 bits for transmitting. A receiver uses a non-symmetric key to verify the authentication of the received data origin, and decrypts the ciphertext. The scheme can encrypt and decrypt most formatted digital RGB images recognized by computers, and recover the plaintext almost without any errors. The scheme is suitable to be applied in network image communications. The analysis of the key space, sensitivity of key parameters, and correlation of encrypted images imply that this scheme has sound security.

  14. NAIP Digital Ortho Photo Image 2010

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set contains imagery from the National Agriculture Imagery Program (NAIP). NAIP acquires digital ortho imagery during the agricultural growing seasons in...

  15. Noise equalization for detection of microcalcification clusters in direct digital mammogram images.

    NARCIS (Netherlands)

    McLoughlin, K.J.; Bones, P.J.; Karssemeijer, N.

    2004-01-01

    Equalizing image noise is shown to be an important step in the automatic detection of microcalcifications in digital mammography. This study extends a well established film-screen noise equalization scheme developed by Veldkamp et al. for application to full-field digital mammogram (FFDM) images. A

  16. Adaptive Digital Watermarking Scheme Based on Support Vector Machines and Optimized Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoyi Zhou

    2018-01-01

    Full Text Available Digital watermarking is an effective solution to the problem of copyright protection, thus maintaining the security of digital products in the network. An improved scheme to increase the robustness of embedded information on the basis of discrete cosine transform (DCT domain is proposed in this study. The embedding process consisted of two main procedures. Firstly, the embedding intensity with support vector machines (SVMs was adaptively strengthened by training 1600 image blocks which are of different texture and luminance. Secondly, the embedding position with the optimized genetic algorithm (GA was selected. To optimize GA, the best individual in the first place of each generation directly went into the next generation, and the best individual in the second position participated in the crossover and the mutation process. The transparency reaches 40.5 when GA’s generation number is 200. A case study was conducted on a 256 × 256 standard Lena image with the proposed method. After various attacks (such as cropping, JPEG compression, Gaussian low-pass filtering (3,0.5, histogram equalization, and contrast increasing (0.5,0.6 on the watermarked image, the extracted watermark was compared with the original one. Results demonstrate that the watermark can be effectively recovered after these attacks. Even though the algorithm is weak against rotation attacks, it provides high quality in imperceptibility and robustness and hence it is a successful candidate for implementing novel image watermarking scheme meeting real timelines.

  17. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    Science.gov (United States)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  18. Lipase production in solid-state fermentation monitoring biomass growth of aspergillus niger using digital image processing.

    Science.gov (United States)

    Dutra, Júlio C V; da C Terzi, Selma; Bevilaqua, Juliana Vaz; Damaso, Mônica C T; Couri, Sônia; Langone, Marta A P; Senna, Lilian F

    2008-03-01

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  19. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results

    Energy Technology Data Exchange (ETDEWEB)

    Chenot, J; Melodelima, D; N' Djin, W A; Souchon, Remi; Rivoire, M; Chapelon, J Y, E-mail: jeremy.chenot@inserm.f [Inserm, U556, Lyon, F-69003 (France)

    2010-06-07

    The use of hand-held ultrasound strain imaging for the intra-operative real-time visualization of HIFU (high-intensity focused ultrasound) ablations produced in the liver by a toroidal transducer was investigated. A linear 12 MHz ultrasound imaging probe was used to obtain radiofrequency signals. Using a fast cross-correlation algorithm, strain images were calculated and displayed at 60 frames s{sup -1}, allowing the use of hand-held strain imaging intra-operatively. Fourteen HIFU lesions were produced in four pigs. Intra-operative strain imaging of HIFU ablations in the liver was feasible owing to the high frame rate. The correlation between dimensions measured on gross pathology and dimensions measured on B-mode images and on strain images were R = 0.72 and R = 0.94 respectively. The contrast between ablated and non-ablated tissue was significantly higher (p < 0.05) in the strain images (22 dB) than in the B-mode images (9 dB). Strain images allowed equivalent or improved definition of ablated regions when compared with B-mode images. Real-time intra-operative hand-held strain imaging seems to be a promising complement to conventional B-mode imaging for the guidance of HIFU ablations produced in the liver during an open procedure. These results support that hand-held strain imaging outperforms conventional B-mode ultrasound and could potentially be used for the assessment of thermal therapies.

  20. Improvement of viewing-zone angle and image quality of digital holograms

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Takanori, E-mail: nom@sys.wakayama-u.ac.j [Faculty of Systems Enigneering, Wakayama Univesity, 930 Sakaedani, Wakayama, 640-8510 (Japan)

    2010-02-01

    The method to improve of a viewing-zone angle and an image quality of a digital hologram is presented. A number of digital holograms of a central object are recorded from the position on the circumference. The holograms are used for a hologram synthesis to improve the image quality from whole viewing-zone angle. The synthesis is achieved by a correlation between a hologram and numerically propagated holograms. The large-sized synthesized digital hologram has a wide viewing-zone angle and less speckles. Some experimental results are shown to confirm the proposed method.

  1. Inselect: Automating the Digitization of Natural History Collections.

    Directory of Open Access Journals (Sweden)

    Lawrence N Hudson

    Full Text Available The world's natural history collections constitute an enormous evidence base for scientific research on the natural world. To facilitate these studies and improve access to collections, many organisations are embarking on major programmes of digitization. This requires automated approaches to mass-digitization that support rapid imaging of specimens and associated data capture, in order to process the tens of millions of specimens common to most natural history collections. In this paper we present Inselect-a modular, easy-to-use, cross-platform suite of open-source software tools that supports the semi-automated processing of specimen images generated by natural history digitization programmes. The software is made up of a Windows, Mac OS X, and Linux desktop application, together with command-line tools that are designed for unattended operation on batches of images. Blending image visualisation algorithms that automatically recognise specimens together with workflows to support post-processing tasks such as barcode reading, label transcription and metadata capture, Inselect fills a critical gap to increase the rate of specimen digitization.

  2. FOOT ROT DISEASE IDENTIFICATION FOR VELLAIKODI VARIETY OF BETELVINE PLANTS USING DIGITAL IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    J. Vijayakumar

    2012-11-01

    Full Text Available Betelvine plants are infected variety of diseases in the complete plantation without any premature warning of the diseases. The aim of this paper is to detection of foot rot disease in the vellaikodi variety of betelvine plants using digital image processing techniques. The digital images of the uninfected or normal betelvine leaves and the digital images of the infected in foot rot diseased betelvine leaves at different stages are collected from different Betelvine plants using a high resolution digital camera and collected betelvine images are stored with JPEG format. The digital images of the betelvine leaves analyses are done using the image processing toolbox in MATLAB which gives the normal patterns of the digital images. Using RGB encoding process, the RGB components of the betelvine leaves are separated. The mean and median values for all sample leaves are computed and calculated values are stored in the system. The mean and median values of test leaves are computed and compared with the stored values. As the result of this comparison, it is identified whether test leaves are affected by foot rot disease or not. Finally this analysis helps to recognize the foot rot disease can be identified before it spreads to entire crop.

  3. Fisheye image rectification using spherical and digital distortion models

    Science.gov (United States)

    Li, Xin; Pi, Yingdong; Jia, Yanling; Yang, Yuhui; Chen, Zhiyong; Hou, Wenguang

    2018-02-01

    Fisheye cameras have been widely used in many applications including close range visual navigation and observation and cyber city reconstruction because its field of view is much larger than that of a common pinhole camera. This means that a fisheye camera can capture more information than a pinhole camera in the same scenario. However, the fisheye image contains serious distortion, which may cause trouble for human observers in recognizing the objects within. Therefore, in most practical applications, the fisheye image should be rectified to a pinhole perspective projection image to conform to human cognitive habits. The traditional mathematical model-based methods cannot effectively remove the distortion, but the digital distortion model can reduce the image resolution to some extent. Considering these defects, this paper proposes a new method that combines the physical spherical model and the digital distortion model. The distortion of fisheye images can be effectively removed according to the proposed approach. Many experiments validate its feasibility and effectiveness.

  4. Reliability-guided digital image correlation for image deformation measurement

    International Nuclear Information System (INIS)

    Pan Bing

    2009-01-01

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness

  5. Image and Dose Simulation in Support of New Imaging Modalities

    International Nuclear Information System (INIS)

    Kuruvilla Verghese

    2002-01-01

    This report summarizes the highlights of the research performed under the 2-year NEER grant from the Department of Energy. The primary outcome of the work was a new Monte Carlo code, MCMIS-DS, for Monte Carlo for Mammography Image Simulation including Differential Sampling. The code was written to generate simulated images and dose distributions from two different new digital x-ray imaging modalities, namely, synchrotron imaging (SI) and a slot geometry digital mammography system called Fisher Senoscan. A differential sampling scheme was added to the code to generate multiple images that included variations in the parameters of the measurement system and the object in a single execution of the code. The code is to serve multiple purposes; (1) to answer questions regarding the contribution of scattered photons to images, (2) for use in design optimization studies, and (3) to do up to second-order perturbation studies to assess the effects of design parameter variations and/or physical parameters of the object (the breast) without having to re-run the code for each set of varied parameters. The accuracy and fidelity of the code were validated by a large variety of benchmark studies using published data and also using experimental results from mammography phantoms on both imaging modalities

  6. Two digital X-ray imaging systems for applications in X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Flesher, A.C.; Tucker, P.A.; Swanton, S.W.

    1987-01-01

    Two digital X-ray imaging systems developed at the Rutherford Appleton Laboratory are described: the Mark I and the Mark II. Both use a bidimensionally sensitive multiwire proportional counter (MWPC) as the basic X-ray image transducer coupled, in the case of the Mark I to a Digital LSI 11-23 microcomputer system via CAMAC, and in the case of the Mark II to a Digital LSI 11-73 microcomputer system via custom-built data acquisition hardware mounted directly on the Q-bus of the microcomputer. The Mark I system provides the advantages of high speed, high sensitivity digital imaging directly into the computer with the potential for software control of the sample orientation and environment. The Mark II system adds the novel features of signal averaging and multiframe exposures. The dedicated digital memories have a resolution of 512x512 pixels of 16 bits, matching well to the spatial resolution of the xenon-filled MWPC (0.5 mm fwhm over an aperture of 200 mm x 200 mm). A 512x512x4 bit video graphics system displays the images in grey scales or colour. (orig.)

  7. Operational digital image processing within the Bureau of Land Management

    International Nuclear Information System (INIS)

    Work, E.A.; Story, M.

    1991-01-01

    An overview of the use of operational digital image processing at the U.S. Bureau of Land Management (BLM) is presented. The BLM digital image analysis facility for the processing and analysis of aerial photography and satellite data is described, and its role within the Bureau's operational structure is explained. Attention is given to examples of BLM digital data analysis projects that have utilized Landsat (MSS and TM), NOAA-AVHRR, or SPOT data. These projects include: landcover mapping to assist land use planning or special projects; monitoring of wilderness units to detect unauthorized activities; stratification aid for detailed field inventories; identification/quantification of unauthorized use (agricultural and mineral trespass); and fire fuels mapping and updates. 3 refs

  8. Use of film digitizers to assist radiology image management

    Science.gov (United States)

    Honeyman-Buck, Janice C.; Frost, Meryll M.; Staab, Edward V.

    1996-05-01

    The purpose of this development effort was to evaluate the possibility of using digital technologies to solve image management problems in the Department of Radiology at the University of Florida. The three problem areas investigated were local interpretation of images produced in remote locations, distribution of images to areas outside of radiology, and film handling. In all cases the use of a laser film digitizer interfaced to an existing Picture Archiving and Communication System (PACS) was investigated as a solution to the problem. In each case the volume of studies involved were evaluated to estimate the impact of the solution on the network, archive, and workstations. Communications were stressed in the analysis of the needs for all image transmission. The operational aspects of the solution were examined to determine the needs for training, service, and maintenance. The remote sites requiring local interpretation included were a rural hospital needing coverage for after hours studies, the University of Florida student infirmary, and the emergency room. Distribution of images to the intensive care units was studied to improve image access and patient care. Handling of films originating from remote sites and those requiring urgent reporting were evaluated to improve management functions. The results of our analysis and the decisions that were made based on the analysis are described below. In the cases where systems were installed, a description of the system and its integration into the PACS system is included. For all three problem areas, although we could move images via a digitizer to the archive and a workstation, there was no way to inform the radiologist that a study needed attention. In the case of outside films, the patient did not always have a medical record number that matched one in our Radiology Information Systems (RIS). In order to incorporate all studies for a patient, we needed common locations for orders, reports, and images. RIS orders

  9. Development of a digital panoramic X-ray imaging system of adaptive image layers for dental applications

    International Nuclear Information System (INIS)

    Choi, S.I.; Park, Y.O.; Cho, H.S.; Oh, J.E.; Cho, H.M.; Hong, D.K.; Lee, M.S.; Yang, Y.J.; Je, U.K.; Kim, D.S.; Lee, H.K.

    2011-01-01

    As a continuation of our digital radiographic sensor R and D, we have developed a prototyped digital panoramic X-ray imaging system for dental applications. The imaging system consists of a slit-collimated X-ray generator with a 0.4 mm focal spot size and a 3.5 mm Al filtration, a linear-array typed CMOS imager with a 48x48 μm 2 pixel size and a 128 (in the scan direction)x3072 (in the vertical direction) pixel format, a series of microstep motors for the precise motion control of the imaging system, and the designed sequences for the motion control and pixel readout required to make a specific plane of interest (POI) to be focused. With the several test phantoms we designed, we obtained useful digital panoramic X-ray images by moving the X-ray generator and the CMOS imager along a continuously sliding rotational center. In this study, we demonstrated that the prototype system can be applicable to any shaped POI or multi-POIs simultaneously to be focused, provided that adequate sequences for motion control and pixel readout are designed. We expect that the imaging system will be useful for our ongoing applications of dental panoramic radiography and nondestructive testing.

  10. Comparison of JPEG and wavelet compression on intraoral digital radiographic images

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    2004-01-01

    To determine the proper image compression method and ratio without image quality degradation in intraoral digital radiographic images, comparing the discrete cosine transform (DCT)-based JPEG with the wavelet-based JPEG 2000 algorithm. Thirty extracted sound teeth and thirty extracted teeth with occlusal caries were used for this study. Twenty plaster blocks were made with three teeth each. They were radiographically exposed using CDR sensors (Schick Inc., Long Island, USA). Digital images were compressed to JPEG format, using Adobe Photoshop v. 7.0 and JPEG 2000 format using Jasper program with compression ratios of 5 : 1, 9 : 1, 14 : 1, 28 : 1 each. To evaluate the lesion detectability, receiver operating characteristic (ROC) analysis was performed by the three oral and maxillofacial radiologists. To evaluate the image quality, all the compressed images were assessed subjectively using 5 grades, in comparison to the original uncompressed images. Compressed images up to compression ratio of 14: 1 in JPEG and 28 : 1 in JPEG 2000 showed nearly the same the lesion detectability as the original images. In the subjective assessment of image quality, images up to compression ratio of 9 : 1 in JPEG and 14 : 1 in JPEG 2000 showed minute mean paired differences from the original images. The results showed that the clinically acceptable compression ratios were up to 9 : 1 for JPEG and 14 : 1 for JPEG 2000. The wavelet-based JPEG 2000 is a better compression method, comparing to DCT-based JPEG for intraoral digital radiographic images.

  11. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    Science.gov (United States)

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  12. Information quantity in a pixel of digital image

    OpenAIRE

    Kharinov, M.

    2014-01-01

    The paper is devoted to the problem of integer-valued estimating of information quantity in a pixel of digital image. The definition of an integer estimation of information quantity based on constructing of the certain binary hierarchy of pixel clusters is proposed. The methods for constructing hierarchies of clusters and generating of hierarchical sequences of image approximations that minimally differ from the image by a standard deviation are developed. Experimental results on integer-valu...

  13. Improved Method of Detection Falsification Results the Digital Image in Conditions of Attacks

    Directory of Open Access Journals (Sweden)

    Kobozeva A.A.

    2016-08-01

    Full Text Available The modern level of information technologies development has led to unheard ease embodiments hitherto unauthorized modifications of digital content. At the moment, very important question is the effective expert examination of authenticity of digital images, video, audio, development of the methods for identification and localization of violations of their integrity using these contents for purposes other than entertainment. Present paper deals with the improvement of the detection method of the cloning results in digital images - one of the most frequently used in the software tools falsification realized in all modern graphics editors. The method is intended for clone detection areas and pre-image in terms of additional disturbing influences in the image after the cloning operation for "masking" of the results, which complicates the search process. The improvement is aimed at reducing the number of "false alarms", when the area of the clone / pre-image detected in the original image or the localization of the identified areas do not correspond to the real clone and pre-image. The proposed improvement, based on analysis of different sizes per-pixel image blocks with the least difference from each other, has made it possible efficient functioning of the method, regardless of the specificity of the analyzed digital image.

  14. Diagnostic accuracy of artificially induced vertical root fractures: a comparison of direct digital periapical images with conventional periapical images

    International Nuclear Information System (INIS)

    Lee, Ji Un; Kwon, Ki Jeong; Koh, Kwang Joon

    2004-01-01

    To compare the diagnostic accuracy for the detection of root fractures in CMOS-based digital periapical images with conventional film-based periapical images. Sixty extracted single-root human teeth with closed apices were prepared endodontically and divided into two groups; artificially induced vertical root fracture group and control group. All radiographs were obtained using the paralleling technique. The radiographs were examined by 4 observers three times within a 4 week interval. Receiver operating characteristic (ROC) analysis was carried out using data obtained from four observers. Intra- and inter-examiner agreements were computed using kappa analysis. The area under the ROC curve (Az) was used as an indicator of the diagnostic accuracy of the imaging system. Az values were as follows: direct-digital images; 0.93, film-based images; 0.92, and inverted digital images; 0.91. There was no significant difference between imaging modalities(P<0.05). The kappa value of inter-observer agreement was 0.42(range:0.28-0.60) and intra-observer agreement was 0.57(range:0.44-0.75). There is no statistical difference in diagnostic accuracy for the detection of vertical root fractures between digital periapical images and conventional periapical images. The results indicate that the CMOS sensor is a good image detector for the evaluation of vertical root fractures.

  15. Hand-arm vibration syndrome: A rarely seen diagnosis.

    Science.gov (United States)

    Campbell, Rebecca A; Janko, Matthew R; Hacker, Robert I

    2017-06-01

    Hand-arm vibration syndrome (HAVS) is a collection of sensory, vascular, and musculoskeletal symptoms caused by repetitive trauma from vibration. This case report demonstrates how to diagnose HAVS on the basis of history, physical examination, and vascular imaging and its treatment options. A 41-year-old man who regularly used vibrating tools presented with nonhealing wounds on his right thumb and third digit. Arteriography revealed occlusions of multiple arteries in his hand with formation of collaterals. We diagnosed HAVS, and his wounds healed after several weeks with appropriate treatment. HAVS is a debilitating condition with often irreversible vascular damage, requiring early diagnosis and treatment.

  16. Hand-arm vibration syndrome: A rarely seen diagnosis

    Directory of Open Access Journals (Sweden)

    Rebecca A. Campbell, BA

    2017-06-01

    Full Text Available Hand-arm vibration syndrome (HAVS is a collection of sensory, vascular, and musculoskeletal symptoms caused by repetitive trauma from vibration. This case report demonstrates how to diagnose HAVS on the basis of history, physical examination, and vascular imaging and its treatment options. A 41-year-old man who regularly used vibrating tools presented with nonhealing wounds on his right thumb and third digit. Arteriography revealed occlusions of multiple arteries in his hand with formation of collaterals. We diagnosed HAVS, and his wounds healed after several weeks with appropriate treatment. HAVS is a debilitating condition with often irreversible vascular damage, requiring early diagnosis and treatment.

  17. Reevaluation of JPEG image compression to digitalized gastrointestinal endoscopic color images: a pilot study

    Science.gov (United States)

    Kim, Christopher Y.

    1999-05-01

    Endoscopic images p lay an important role in describing many gastrointestinal (GI) disorders. The field of radiology has been on the leading edge of creating, archiving and transmitting digital images. With the advent of digital videoendoscopy, endoscopists now have the ability to generate images for storage and transmission. X-rays can be compressed 30-40X without appreciable decline in quality. We reported results of a pilot study using JPEG compression of 24-bit color endoscopic images. For that study, the result indicated that adequate compression ratios vary according to the lesion and that images could be compressed to between 31- and 99-fold smaller than the original size without an appreciable decline in quality. The purpose of this study was to expand upon the methodology of the previous sty with an eye towards application for the WWW, a medium which would expand both clinical and educational purposes of color medical imags. The results indicate that endoscopists are able to tolerate very significant compression of endoscopic images without loss of clinical image quality. This finding suggests that even 1 MB color images can be compressed to well under 30KB, which is considered a maximal tolerable image size for downloading on the WWW.

  18. Measuring digit lengths with 3D digital stereophotogrammetry: A comparison across methods.

    Science.gov (United States)

    Gremba, Allison; Weinberg, Seth M

    2018-05-09

    We compared digital 3D stereophotogrammetry to more traditional measurement methods (direct anthropometry and 2D scanning) to capture digit lengths and ratios. The length of the second and fourth digits was measured by each method and the second-to-fourth ratio was calculated. For each digit measurement, intraobserver agreement was calculated for each of the three collection methods. Further, measurements from the three methods were compared directly to one another. Agreement statistics included the intraclass correlation coefficient (ICC) and technical error of measurement (TEM). Intraobserver agreement statistics for the digit length measurements were high for all three methods; ICC values exceeded 0.97 and TEM values were below 1 mm. For digit ratio, intraobserver agreement was also acceptable for all methods, with direct anthropometry exhibiting lower agreement (ICC = 0.87) compared to indirect methods. For the comparison across methods, the overall agreement was high for digit length measurements (ICC values ranging from 0.93 to 0.98; TEM values below 2 mm). For digit ratios, high agreement was observed between the two indirect methods (ICC = 0.93), whereas indirect methods showed lower agreement when compared to direct anthropometry (ICC < 0.75). Digit measurements and derived ratios from 3D stereophotogrammetry showed high intraobserver agreement (similar to more traditional methods) suggesting that landmarks could be placed reliably on 3D hand surface images. While digit length measurements were found to be comparable across all three methods, ratios derived from direct anthropometry tended to be higher than those calculated indirectly from 2D or 3D images. © 2018 Wiley Periodicals, Inc.

  19. A digital imaging teaching file by using the internet, HTML and personal computers

    International Nuclear Information System (INIS)

    Chun, Tong Jin; Jeon, Eun Ju; Baek, Ho Gil; Kang, Eun Joo; Baik, Seung Kug; Choi, Han Yong; Kim, Bong Ki

    1996-01-01

    A film-based teaching file takes up space and the need to search through such a file places limits on the extent to which it is likely to be used. Furthermore it is not easy for doctors in a medium-sized hospital to experience a variety of cases, and so for these reasons we created an easy-to-use digital imaging teaching file with HTML(Hypertext Markup Language) and downloaded images via World Wide Web(WWW) services on the Internet. This was suitable for use by computer novices. We used WWW internet services as a resource for various images and three different IMB-PC compatible computers(386DX, 486DX-II, and Pentium) in downloading the images and in developing a digitalized teaching file. These computers were connected with the Internet through a high speed dial-up modem(28.8Kbps) and to navigate the Internet. Twinsock and Netscape were used. 3.0, Korean word processing software, was used to create HTML(Hypertext Markup Language) files and the downloaded images were linked to the HTML files. In this way, a digital imaging teaching file program was created. Access to a Web service via the Internet required a high speed computer(at least 486DX II with 8MB RAM) for comfortabel use; this also ensured that the quality of downloaded images was not degraded during downloading and that these were good enough to use as a teaching file. The time needed to retrieve the text and related images depends on the size of the file, the speed of the network, and the network traffic at the time of connection. For computer novices, a digital image teaching file using HTML is easy to use. Our method of creating a digital imaging teaching file by using Internet and HTML would be easy to create and radiologists with little computer experience who want to study various digital radiologic imaging cases would find it easy to use

  20. Estimation of color modification in digital images by CFA pattern change.

    Science.gov (United States)

    Choi, Chang-Hee; Lee, Hae-Yeoun; Lee, Heung-Kyu

    2013-03-10

    Extensive studies have been carried out for detecting image forgery such as copy-move, re-sampling, blurring, and contrast enhancement. Although color modification is a common forgery technique, there is no reported forensic method for detecting this type of manipulation. In this paper, we propose a novel algorithm for estimating color modification in images acquired from digital cameras when the images are modified. Most commercial digital cameras are equipped with a color filter array (CFA) for acquiring the color information of each pixel. As a result, the images acquired from such digital cameras include a trace from the CFA pattern. This pattern is composed of the basic red green blue (RGB) colors, and it is changed when color modification is carried out on the image. We designed an advanced intermediate value counting method for measuring the change in the CFA pattern and estimating the extent of color modification. The proposed method is verified experimentally by using 10,366 test images. The results confirmed the ability of the proposed method to estimate color modification with high accuracy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Thermal error analysis and compensation for digital image/volume correlation

    Science.gov (United States)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  2. An automated digital imaging system for environmental monitoring applications

    Science.gov (United States)

    Bogle, Rian; Velasco, Miguel; Vogel, John

    2013-01-01

    Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.

  3. Fat-suppressed MR images of both hands obtained using CHESS can be improved by rice pads

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Susumu, E-mail: smoyari@yahoo.co.jp [Ishikawa Clinic, 46-1 Shimokamo-Umenoki-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-0851 (Japan); Miki, Yukio [Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Kamishima, Tamotsu [Department of Biomedical Sciences and Engineering, Hokkaido University Graduate School of Health Science, North-12 West-5 Kita-ku, Sapporo 060-0812 (Japan); Kanagaki, Mitsunori [Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507 (Japan); Yokobayashi, Tsuneo; Ishikawa, Mitsunori [Ishikawa Clinic, 46-1 Shimokamo-Umenoki-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-0851 (Japan)

    2012-09-15

    When chemical shift selective (CHESS) imaging is used with magnetic resonance imaging (MRI) for simultaneous imaging of both hands for the evaluation of rheumatoid arthritis, the fat suppression effect is poor. We investigated whether these fat-suppressed images using CHESS could be improved with the use of rice pads. T1-weighted images were obtained with CHESS and the same imaging parameters were used with and without rice pads on the coronal plane of both hands in 10 healthy volunteers. Patients were placed in a prone position with both hands extended overhead. The fat-suppression effect was classified into four categories and scored for both sets of images, and visual assessments were made by one radiologist and one radiologic technologist. The evaluation score was 1.1 for the images made without rice pads, and 3.2 for the images made with rice pads. The fat suppression effect was thus significantly better in the images made using rice pads (P < 0.0001). Lingering fat signals disappeared almost completely in images of both hands using CHESS with rice pads, and it was confirmed that the images were improved and had good fat suppression. More accurate evaluation of inflammatory sites that occur in rheumatoid arthritis may thus be possible, promising better diagnostic accuracy.

  4. Fat-suppressed MR images of both hands obtained using CHESS can be improved by rice pads

    International Nuclear Information System (INIS)

    Moriya, Susumu; Miki, Yukio; Kamishima, Tamotsu; Kanagaki, Mitsunori; Yokobayashi, Tsuneo; Ishikawa, Mitsunori

    2012-01-01

    When chemical shift selective (CHESS) imaging is used with magnetic resonance imaging (MRI) for simultaneous imaging of both hands for the evaluation of rheumatoid arthritis, the fat suppression effect is poor. We investigated whether these fat-suppressed images using CHESS could be improved with the use of rice pads. T1-weighted images were obtained with CHESS and the same imaging parameters were used with and without rice pads on the coronal plane of both hands in 10 healthy volunteers. Patients were placed in a prone position with both hands extended overhead. The fat-suppression effect was classified into four categories and scored for both sets of images, and visual assessments were made by one radiologist and one radiologic technologist. The evaluation score was 1.1 for the images made without rice pads, and 3.2 for the images made with rice pads. The fat suppression effect was thus significantly better in the images made using rice pads (P < 0.0001). Lingering fat signals disappeared almost completely in images of both hands using CHESS with rice pads, and it was confirmed that the images were improved and had good fat suppression. More accurate evaluation of inflammatory sites that occur in rheumatoid arthritis may thus be possible, promising better diagnostic accuracy

  5. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    Science.gov (United States)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  6. From Digital Imaging to Computer Image Analysis of Fine Art

    Science.gov (United States)

    Stork, David G.

    An expanding range of techniques from computer vision, pattern recognition, image analysis, and computer graphics are being applied to problems in the history of art. The success of these efforts is enabled by the growing corpus of high-resolution multi-spectral digital images of art (primarily paintings and drawings), sophisticated computer vision methods, and most importantly the engagement of some art scholars who bring questions that may be addressed through computer methods. This paper outlines some general problem areas and opportunities in this new inter-disciplinary research program.

  7. Digital image analyser for autoradiography

    International Nuclear Information System (INIS)

    Muth, R.A.; Plotnick, J.

    1985-01-01

    The most critical parameter in quantitative autoradiography for assay of tissue concentrations of tracers is the ability to obtain precise and accurate measurements of optical density of the images. Existing high precision systems for image analysis, rotating drum densitometers, are expensive, suffer from mechanical problems and are slow. More moderately priced and reliable video camera based systems are available, but their outputs generally do not have the uniformity and stability necessary for high resolution quantitative autoradiography. The authors have designed and constructed an image analyser optimized for quantitative single and multiple tracer autoradiography which the authors refer to as a memory-mapped charged-coupled device scanner (MM-CCD). The input is from a linear array of CCD's which is used to optically scan the autoradiograph. Images are digitized into 512 x 512 picture elements with 256 gray levels and the data is stored in buffer video memory in less than two seconds. Images can then be transferred to RAM memory by direct memory-mapping for further processing. Arterial blood curve data and optical density-calibrated standards data can be entered and the optical density images can be converted automatically to tracer concentration or functional images. In double tracer studies, images produced from both exposures can be stored and processed in RAM to yield ''pure'' individual tracer concentration or functional images. Any processed image can be transmitted back to the buffer memory to be viewed on a monitor and processed for region of interest analysis

  8. A comparison between conventional radiography and digitized image accuracy in proximal caries detection

    Directory of Open Access Journals (Sweden)

    Pangnoosh M

    2003-08-01

    Full Text Available Statement of Problem: Computer Sciences, in radiology, like other fields, is of high importance. It should"nalso be noted that the accuracy of the technique and work conditions affects the radiographs information"nconsiderably. There for, in order to get more accurate diagnostic information, it seems necessary to investigate"ndifferent digitized radiographic techniques and to compare them with the conventional technique."nPurpose: The aim of this study was to compare the accuracy of conventional and digitized radiographic"nimages by three digitization techniques in proximal caries detection."nMaterial and Methods: In this research study, sixty extracted human canines, premolars and molars were"nmounted in blocks and imaged on E-Kodak film, similar to bitewing radiographs. Ten bitewing radiographs"nwere then scanned at 600 d.p.i with flat bed scanner and a digital camera, then digitized at 300 d.p.i with"nanother digital camera. The digitized images were displayed randomly on a high-resolution monitor. Six"nobservers assessed the caries status of 120 proximal surfaces by conventional and digitized images. The"nobserver's scores were compared with the results of the macroscopic examination. Reliability of each"ntechnique was calculated. Data were analyzed using chi-square and ANOVA tests."nResults: No significant differences were detected between different techniques in intact proximal surfaces and"nenamel caries diagnosis. However, digital techniques were more sensitive in dentin caries detection (P<0.05."nConclusions: When conventional film images are digitized, medium resolution (300 d.p.i seems to be"nsufficient. At this resolution the file size is decreased and there is no significant loss of the information"nnecessary for caries diagnosis.

  9. Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display.

    Science.gov (United States)

    Mori, Yutaka; Nomura, Takanori

    2013-06-01

    In holographic displays, it is undesirable to observe the speckle noises with the reconstructed images. A method for improvement of reconstructed image quality by synthesizing low-coherence digital holograms is proposed. It is possible to obtain speckleless reconstruction of holograms due to low-coherence digital holography. An image sensor records low-coherence digital holograms, and the holograms are synthesized by computational calculation. Two approaches, the threshold-processing and the picking-a-peak methods, are proposed in order to reduce random noise of low-coherence digital holograms. The reconstructed image quality by the proposed methods is compared with the case of high-coherence digital holography. Quantitative evaluation is given to confirm the proposed methods. In addition, the visual evaluation by 15 people is also shown.

  10. Real-time digital x-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.

    1982-01-01

    The invention provides a method of producing visible difference images derived from an X-ray image of an anatomical subject, comprising the steps of directing X-rays through the anatomical subject for producing an image, converting the image into television fields comprising trains of on-going video signals, digitally storing and integrating the on-going video signals over a time interval corresponding to several successive television fields and thereby producing stored and integrated video signals, recovering the video signals from storage and producing integrated video signals, producing video difference signals by performing a subtraction between the integrated video signals and the on-going video signals outside the time interval, and converting the difference signals into visible television difference images representing on-going changes in the X-ray image

  11. An experimental study on the readability of the digital images in the furcal bone defects

    International Nuclear Information System (INIS)

    Oh, Bong Hyeon; Hwang, Eui Hwan; Lee, Sang Rae

    1995-01-01

    The aim of this study was to evaluate and compare observer performance between conventional radiographs and their digitized images for the detection of bone loss in the bifurcation of mandibular first molar. One dried human mandible with minimal periodontal bone loss around the first molar was selected and serially enlarged 27 step defects were prepared in the bifurcation area. The mandible was radiographed with exposure time of 0.12, 0.20, 0.25, 0.32, 0.40, 0.64 seconds, after each successive step in the preperation and all radiographs were digitized with IBM-PC/32 bit-Dx compatible, video camera (VM-S8200, Hitachi Co., Japan), and color monitor (Multisync 3D, NEC, Japan). Sylvia Image Capture Board for the ADC (analog to digital converter) was used. The following results obtained: 1. In the conventional radiographs, the mean score of the readability was higher at the condition of exposure time with 0.32 second. Also, as the size of artificial lesion was increased, the readability of radiographs was elevated (p<0.05). 2. In the digital images, the mean score of the readability was higher at the condition of exposure time with 0.40 second. Also, as the size of artificial lesion was increased, the readability of digital images was elevated (p<0.05). 3. At the same exposure time, the mean scores of readability were mostly higher in the digitized images. As the exposure time was increased, the digital images were superior to radiographs in readability. 4. As the size of lesion was changed, the digital images were superior to radiographs in detecting small lesion. 5. The coefficient of variation of mean score has no significant difference between digital images and radiographs.

  12. Screen-film versus digital radiography of sacroiliac joints: Evaluation of image quality and dose to patients

    International Nuclear Information System (INIS)

    Jablanovic, D.; Ciraj-Bjelac, O.; Damjanov, N.; Seric, S.; Radak-Perovic, M.; Arandjic, D.; Maksimovic, R.

    2013-01-01

    The purpose of this paper is to evaluate the image quality and dose to patients in the radiography of sacroiliac joints and to perform a clinical comparative study of digital and conventional screen-film radiography. Routine radiography of sacroiliac joint was performed in 60 patients using digital and screen-film radiography. The visibility of five anatomical regions and the overall image quality were rated by experienced radiologists. Patient dose assessment in terms of entrance surface air kerma (ESAK) was performed. The digital system showed slightly improved visualisation of specific anatomical structures. Overall image quality was significantly better in the digital when compared with the screen-film imaging system. The average ESAK was 2.4 mGy in screen-film and 3.6 mGy in digital radiography. The digital radiography provided equal or better visibility of anatomical details and overall image quality, but on higher dose levels. Therefore, the practice on digital systems must be optimised. (authors)

  13. Factors to consider in the transition to digital radiological imaging.

    LENUS (Irish Health Repository)

    MacDonald, David

    2009-02-01

    The dentist considering adopting digital radiological technology should consider more than the type of detector with which to capture the image. He\\/she should also consider the mode of display, image enhancement, radiation dose reduction, how the image can be stored long term, and infection control.

  14. CANDID: Comparison algorithm for navigating digital image databases

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, P.M.; Cannon, T.M.

    1994-02-21

    In this paper, we propose a method for calculating the similarity between two digital images. A global signature describing the texture, shape, or color content is first computed for every image stored in a database, and a normalized distance between probability density functions of feature vectors is used to match signatures. This method can be used to retrieve images from a database that are similar to an example target image. This algorithm is applied to the problem of search and retrieval for database containing pulmonary CT imagery, and experimental results are provided.

  15. Digital imaging in diagnostic radiology. Image quality - radiation exposure

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1996-01-01

    The publication contains the 37 lectures of the symposium on digital imaging in diagnostic radiology, held in November 1995 at Kloster Seeon, as well as contributions enhancing the information presented in the lectures. The publication reflects the state of the art in this subject field, discusses future trends and gives recommendations and information relating to current practice in radiology. In-depth information is given about R and D activities for the digitalisation of X-ray pictures and the image quality required to meet the purposes of modern diagnostics. Further aspects encompass radiological protection and dose optimization as well as optimization of examination methods. (vhe) [de

  16. Screen film vs full-field digital mammography: image quality, detectability and characterization of lesions

    International Nuclear Information System (INIS)

    Obenauer, S.; Luftner-Nagel, S.; Heyden, D. von; Baum, F.; Grabbe, E.; Munzel, U.

    2002-01-01

    The objective of this study was to compare screen-film mammography (SFM) to full-field digital mammography (FFDM) regarding image quality as well as detectability and characterization of lesions using equivalent images of the same patient acquired with both systems. Two mammography units were used, one with a screen-film system (Senographe DMR) and the other with a digital detector (Senographe 2000D, both GEMS). Screen-film and digital mammograms were performed on 55 patients with cytologically or histologically proven tumors on the same day. Together with these, 75 digital mammograms of patients without tumor and the corresponding previous screen-film mammograms not older than 1.5 years were reviewed by three observers in a random order. Contrast, exposure, and the presence of artifacts were evaluated. Different details, such as the skin, the retromamillary region, and the parenchymal structures, were judged according to a three-point ranking scale. Finally, the detectability of microcalcifications and lesions were compared and correlated to histology. Image contrast was judged to be good in 76%, satisfactory in 20%, and unsatisfactory in 4% of screen-film mammograms. Digital mammograms were judged to be good in 99% and unsatisfactory in 1% of cases. Improper exposure of screen-film system occurred in 18% (10% overexposed and 8% underexposed). Digital mammograms were improperly exposed in 4% of all cases but were of acceptable quality after post-processing. Artifacts, most of them of no significance, were found in 78% of screen-film and in none of the digital mammograms. Different anatomical regions, such as the skin, the retromamillary region, and dense parenchymal areas, were better visualized in digital than in screen-film mammography. All malignant tumors were seen by the three radiologists; however, digital mammograms allowed a better characterization of these lesions to the Breast Imaging Reporting and Data System (BI-RADSZZZ;) categories (FFDM better than

  17. A report on digital image processing and analysis

    International Nuclear Information System (INIS)

    Singh, B.; Alex, J.; Haridasan, G.

    1989-01-01

    This report presents developments in software, connected with digital image processing and analysis in the Centre. In image processing, one resorts to either alteration of grey level values so as to enhance features in the image or resorts to transform domain operations for restoration or filtering. Typical transform domain operations like Karhunen-Loeve transforms are statistical in nature and are used for a good registration of images or template - matching. Image analysis procedures segment grey level images into images contained within selectable windows, for the purpose of estimating geometrical features in the image, like area, perimeter, projections etc. In short, in image processing both the input and output are images, whereas in image analyses, the input is an image whereas the output is a set of numbers and graphs. (author). 19 refs

  18. A novel method for detecting light source for digital images forensic

    Science.gov (United States)

    Roy, A. K.; Mitra, S. K.; Agrawal, R.

    2011-06-01

    Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.

  19. A digital fluoroscopic imaging system for verification during external beam radiotherapy

    International Nuclear Information System (INIS)

    Takai, Michikatsu

    1990-01-01

    A digital fluoroscopic (DF) imaging system has been constructed to obtain portal images for verification during external beam radiotherapy. The imaging device consists of a fluorescent screen viewed by a highly sensitive video camera through a mirror. The video signal is digitized and processed by an image processor which is linked on-line with a host microcomputer. The image quality of the DF system was compared with that of film for portal images of the Burger phantom and the Alderson anthropomorphic phantom using 10 MV X-rays. Contrast resolution of the DF image integrated for 8.5 sec. was superior to the film resolution, while spatial resolution was slightly inferior. The DF image of the Alderson phantom processed by the adaptive histogram equalization was better in showing anatomical landmarks than the film portal image. The DF image integrated for 1 sec. which is used for movie mode can show patient movement during treatment. (author)

  20. Digital Data Processing of Images | Lotter | South African Medical ...

    African Journals Online (AJOL)

    Digital data processing was investigated to perform image processing. Image smoothing and restoration were explored and promising results obtained. The use of the computer, not only as a data management device, but as an important tool to render quantitative information, was illustrated by lung function determination.

  1. Digital Imaging Analysis for the Study of Endotoxin-Induced Mitochondrial Ultrastructure Injury

    Directory of Open Access Journals (Sweden)

    Mandar S. Joshi

    2000-01-01

    Full Text Available Primary defects in mitochondrial function have been implicated in over 100 diverse diseases. In situ, mitochondria possess unique and well-defined morphology in normal healthy cells, but diseases linked to defective mitochondrial function are characterized by the presence of morphologically abnormal and swollen mitochondria with distorted cristae. In situ study of mitochondrial morphology is established as an indicator of mitochondrial health but thus far assessments have been via subjective evaluations by trained observers using discontinuous scoring systems. Here we investigated the value of digital imaging analysis to provide for unbiased, reproducible, and convenient evaluations of mitochondrial ultrastructure. Electron photomicrographs of ileal mucosal mitochondria were investigated using a scoring system previously described by us, and also analyzed digitally by using six digital parameters which define size, shape, and electron density characteristics of over 700 individual mitochondria. Statistically significant changes in mitochondrial morphology were detected in LPS treated animals relative to vehicle control using both the subjective scoring system and digital imaging parameters (p < 0:05. However, the imaging approach provided convenient and high throughput capabilities and was easily automated to remove investigator influences. These results illustrate significant changes in ileal mucosal mitochondrial ultrastructure during sepsis and demonstrate the value of digital imaging technology for routine assessments in this setting.

  2. Crack Length Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    1990-01-01

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better then that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  3. Digital Image Processing Technique for Breast Cancer Detection

    Science.gov (United States)

    Guzmán-Cabrera, R.; Guzmán-Sepúlveda, J. R.; Torres-Cisneros, M.; May-Arrioja, D. A.; Ruiz-Pinales, J.; Ibarra-Manzano, O. G.; Aviña-Cervantes, G.; Parada, A. González

    2013-09-01

    Breast cancer is the most common cause of death in women and the second leading cause of cancer deaths worldwide. Primary prevention in the early stages of the disease becomes complex as the causes remain almost unknown. However, some typical signatures of this disease, such as masses and microcalcifications appearing on mammograms, can be used to improve early diagnostic techniques, which is critical for women’s quality of life. X-ray mammography is the main test used for screening and early diagnosis, and its analysis and processing are the keys to improving breast cancer prognosis. As masses and benign glandular tissue typically appear with low contrast and often very blurred, several computer-aided diagnosis schemes have been developed to support radiologists and internists in their diagnosis. In this article, an approach is proposed to effectively analyze digital mammograms based on texture segmentation for the detection of early stage tumors. The proposed algorithm was tested over several images taken from the digital database for screening mammography for cancer research and diagnosis, and it was found to be absolutely suitable to distinguish masses and microcalcifications from the background tissue using morphological operators and then extract them through machine learning techniques and a clustering algorithm for intensity-based segmentation.

  4. Usefulness of a Small-Field Digital Mammographic Imaging System Using Parabolic Polycapillary Optics as a Diagnostic Imaging Tool: a Preliminary Study

    International Nuclear Information System (INIS)

    Chon, Kwon Su; Park, Jeong Gon; Son, Hyun Hwa; Kang, Sung Hoon; Park, Seong Hoon; Kim, Hye Won; Kim, Hun Soo; Yoon, Kwon Ha

    2009-01-01

    To evaluate the efficacy for spatial resolution and radiation dose of a small-field digital mammographic imaging system using parabolic polycapillary optics. We developed a small-field digital mammographic imaging system composed of a CCD (charge coupled device) detector and an Xray source coupled with parabolic polycapillary optics. The spatial resolution and radiation dose according to various filters were evaluated for a small-field digital mammographic imaging system. The images of a test standard phantom and breast cancer tissue sample were obtained. The small-field digital mammographic imaging system had spatial resolutions of 12 lp/mm with molybdenum and rhodium filters with a 25-μm thickness. With a thicker molybdenum filter (100 μm thick), the system had a higher spatial resolution of 11 lp/mm and contrast of 0.48. The radiation dose for a rhodium filter with a 25-μm thickness was 0.13 mGy within a 10-mm-diameter local field. A larger field image greater than 10 mm in diameter could be obtained by scanning an object. On the small-field mammographic imaging system, microcalcifications of breast cancer tissue were clearly observed. A small-field digital mammographic imaging system with parabolic polycapillary optics may be a useful diagnostic tool for providing high-resolution imaging with a low radiation dose for examination of local volumes of breast tissue

  5. Usefulness of a Small-Field Digital Mammographic Imaging System Using Parabolic Polycapillary Optics as a Diagnostic Imaging Tool: a Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Chon, Kwon Su [Catholic University of Daegu, Daegu (Korea, Republic of); Park, Jeong Gon; Son, Hyun Hwa; Kang, Sung Hoon; Park, Seong Hoon; Kim, Hye Won; Kim, Hun Soo; Yoon, Kwon Ha [Wonkwang University, Iksan (Korea, Republic of)

    2009-12-15

    To evaluate the efficacy for spatial resolution and radiation dose of a small-field digital mammographic imaging system using parabolic polycapillary optics. We developed a small-field digital mammographic imaging system composed of a CCD (charge coupled device) detector and an Xray source coupled with parabolic polycapillary optics. The spatial resolution and radiation dose according to various filters were evaluated for a small-field digital mammographic imaging system. The images of a test standard phantom and breast cancer tissue sample were obtained. The small-field digital mammographic imaging system had spatial resolutions of 12 lp/mm with molybdenum and rhodium filters with a 25-{mu}m thickness. With a thicker molybdenum filter (100 {mu}m thick), the system had a higher spatial resolution of 11 lp/mm and contrast of 0.48. The radiation dose for a rhodium filter with a 25-{mu}m thickness was 0.13 mGy within a 10-mm-diameter local field. A larger field image greater than 10 mm in diameter could be obtained by scanning an object. On the small-field mammographic imaging system, microcalcifications of breast cancer tissue were clearly observed. A small-field digital mammographic imaging system with parabolic polycapillary optics may be a useful diagnostic tool for providing high-resolution imaging with a low radiation dose for examination of local volumes of breast tissue.

  6. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  7. Negative Stimulus-Response Compatibility Observed with a Briefly Displayed Image of a Hand

    Science.gov (United States)

    Vainio, Lari

    2011-01-01

    Manual responses can be primed by viewing an image of a hand. The left-right identity of the viewed hand reflexively facilitates responses of the hand that corresponds to the identity. Previous research also suggests that when the response activation is triggered by an arrow, which is backward-masked and presented briefly, the activation manifests…

  8. Digital-Networked Images as Personal Acts of Political Expression: New Categories for Meaning Formation

    Directory of Open Access Journals (Sweden)

    Mona Kasra

    2017-12-01

    Full Text Available This article examines the growing use of digital-networked images, specifically online self-portraits or “selfies”, as deliberate and personal acts of political expression and the ways in which meaning evolves and expands from their presence on the Internet. To understand the role of digital-networked images as a site for engaging in a personal and connective “visual” action that leads to formation of transient communities, the author analyzes the nude self-portrait of the young Egyptian woman Aliaa Magda Elmahdy, which during the Egyptian uprisings in 2011 drew attention across social media. As an object of analysis this image is a prime example of the use of digital-networked images in temporally intentional distribution, and as an instance of political enactment unique to this era. This article also explains the concept of participatory narratives as an ongoing process of meaning formation in the digital-networked image, shaped by the fluidity of the multiple and immediate textual narratives, visual derivatives, re-appropriation, and remixes contributed by other interested viewers. The online circulation of digital-networked images in fact culminates in a flow of ever-changing and overarching narratives, broadening the contextual scope around which images are traditionally viewed.

  9. Ultra-high performance, solid-state, autoradiographic image digitization and analysis system

    International Nuclear Information System (INIS)

    Lear, J.L.; Pratt, J.P.; Ackermann, R.F.; Plotnick, J.; Rumley, S.

    1990-01-01

    We developed a Macintosh II-based, charge-coupled device (CCD), image digitization and analysis system for high-speed, high-resolution quantification of autoradiographic image data. A linear CCD array with 3,500 elements was attached to a precision drive assembly and mounted behind a high-uniformity lens. The drive assembly was used to sweep the array perpendicularly to its axis so that an entire 20 x 25-cm autoradiographic image-containing film could be digitized into 256 gray levels at 50-microns resolution in less than 30 sec. The scanner was interfaced to a Macintosh II computer through a specially constructed NuBus circuit board and software was developed for autoradiographic data analysis. The system was evaluated by scanning individual films multiple times, then measuring the variability of the digital data between the different scans. Image data were found to be virtually noise free. The coefficient of variation averaged less than 1%, a value significantly exceeding the accuracy of both high-speed, low-resolution, video camera (VC) systems and low-speed, high-resolution, rotating drum densitometers (RDD). Thus, the CCD scanner-Macintosh computer analysis system offers the advantage over VC systems of the ability to digitize entire films containing many autoradiograms, but with much greater speed and accuracy than achievable with RDD scanners

  10. Digital image processing in NDT : Application to industrial radiography

    International Nuclear Information System (INIS)

    Aguirre, J.; Gonzales, C.; Pereira, D.

    1988-01-01

    Digital image processing techniques are applied to image enhancement discontinuity detection and characterization is radiographic test. Processing is performed mainly by image histogram modification, edge enhancement, texture and user interactive segmentation. Implementation was achieved in a microcomputer with video image capture system. Results are compared with those obtained through more specialized equipment main frame computers and high precision mechanical scanning digitisers. Procedures are intended as a precious stage for automatic defect detection

  11. Orthoscopic real-image display of digital holograms.

    Science.gov (United States)

    Makowski, P L; Kozacki, T; Zaperty, W

    2017-10-01

    We present a practical solution for the long-standing problem of depth inversion in real-image holographic display of digital holograms. It relies on a field lens inserted in front of the spatial light modulator device addressed by a properly processed hologram. The processing algorithm accounts for pixel size and wavelength mismatch between capture and display devices in a way that prevents image deformation. Complete images of large dimensions are observable from one position with a naked eye. We demonstrate the method experimentally on a 10-cm-long 3D object using a single full-HD spatial light modulator, but it can supplement most holographic displays designed to form a real image, including circular wide angle configurations.

  12. IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING

    Science.gov (United States)

    Roth, D. J.

    1994-01-01

    IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.

  13. Digital imaging improves upright stereotactic core biopsy of mammographic microcalcifications

    International Nuclear Information System (INIS)

    Whitlock, J.P.L.; Evans, A.J.; Burrell, H.C.; Pinder, S.E.; Ellis, I.O.; Blamey, R.W.; Wilson, A.R.M.

    2000-01-01

    AIM: This comparative study was carried out to assess the effect of using digital images compared to conventional film-screen mammography on the accuracy of core biopsy of microcalcifications using upright stereotactic equipment. MATERIALS AND METHODS: The biopsy results from a consecutive series of 104 upright stereotactic 14-gauge core biopsies performed with conventional X-ray (Group A) were compared with 40 biopsies carried out using stereotaxis with digital imaging (Group B). In all cases specimen radiography was performed and analysed for the presence of calcifications. Pathological correlation was then carried out with needle and surgical histology. RESULTS: The use of digital add-on equipment increased the radiographic calcification retrieval rate from 55 to 85% (P < 0.005). The absolute sensitivity of core biopsy in pure ductal carcinoma in situ (DCIS) cases rose from 34 to 69% (P < 0.03), with the complete sensitivity increasing from 52 to 94% (P < 0.005). For DCIS with or without an invasive component the absolute sensitivity rose from 41 to 67% (P = 0.052), while the complete sensitivity was 59% before and 86% after the introduction of digital imaging (P < 0.04). CONCLUSION: Digital equipment improves the performance of upright stereotactic core biopsy of microcalcifications, giving a significantly increased success rate in accurately obtaining calcifications. This leads to an improvement in absolute and complete sensitivity of core biopsy when diagnosing DCIS. Whitlock, J.P.L. (2000)

  14. Postural stability when walking and exposed to lateral oscillatory motion: benefits from hand supports.

    Science.gov (United States)

    Ayık, Hatice Müjde; Griffin, Michael J

    2015-01-01

    While walking on a treadmill, 20 subjects experienced lateral oscillations: frequencies from 0.5 to 2 Hz and velocities from 0.05 to 0.16 m s(- 1) rms. Postural stability was indicated by ratings of 'discomfort or difficulty in walking', the movement of the centre of pressure beneath the feet and lateral forces applied to a hand support. Hand support improved postural stability with all frequencies and all velocities of oscillatory motion: the lateral velocity of the centre of pressure reduced by 30-50% when using support throughout motion, by 20-30% when instructed to use the support only when required and by 15% during normal walking without oscillation. Improvements in stability, and the forces applied to the hand support, were independent of support height when used continuously throughout motion. When support was used only when required, subjects preferred to hold it 118-134 cm above the surface supporting the feet.

  15. Using digital watermarking to enhance security in wireless medical image transmission.

    Science.gov (United States)

    Giakoumaki, Aggeliki; Perakis, Konstantinos; Banitsas, Konstantinos; Giokas, Konstantinos; Tachakra, Sapal; Koutsouris, Dimitris

    2010-04-01

    During the last few years, wireless networks have been increasingly used both inside hospitals and in patients' homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.

  16. 1-Million droplet array with wide-field fluorescence imaging for digital PCR.

    Science.gov (United States)

    Hatch, Andrew C; Fisher, Jeffrey S; Tovar, Armando R; Hsieh, Albert T; Lin, Robert; Pentoney, Stephen L; Yang, David L; Lee, Abraham P

    2011-11-21

    Digital droplet reactors are useful as chemical and biological containers to discretize reagents into picolitre or nanolitre volumes for analysis of single cells, organisms, or molecules. However, most DNA based assays require processing of samples on the order of tens of microlitres and contain as few as one to as many as millions of fragments to be detected. Presented in this work is a droplet microfluidic platform and fluorescence imaging setup designed to better meet the needs of the high-throughput and high-dynamic-range by integrating multiple high-throughput droplet processing schemes on the chip. The design is capable of generating over 1-million, monodisperse, 50 picolitre droplets in 2-7 minutes that then self-assemble into high density 3-dimensional sphere packing configurations in a large viewing chamber for visualization and analysis. This device then undergoes on-chip polymerase chain reaction (PCR) amplification and fluorescence detection to digitally quantify the sample's nucleic acid contents. Wide-field fluorescence images are captured using a low cost 21-megapixel digital camera and macro-lens with an 8-12 cm(2) field-of-view at 1× to 0.85× magnification, respectively. We demonstrate both end-point and real-time imaging ability to perform on-chip quantitative digital PCR analysis of the entire droplet array. Compared to previous work, this highly integrated design yields a 100-fold increase in the number of on-chip digitized reactors with simultaneous fluorescence imaging for digital PCR based assays.

  17. Using optical full-field measurement based on digital image correlation to measure strain on a tree subjected to mechanical load

    Czech Academy of Sciences Publication Activity Database

    Sebera, V.; Praus, L.; Tippner, J.; Kunecký, Jiří; Čepela, J.; Wimmer, R.

    2014-01-01

    Roč. 28, č. 4 (2014), s. 1173-1184 ISSN 0931-1890 Institutional support: RVO:68378297 Keywords : digital image correlation * tree biomechanics * strain * pulling test * arboriculture * nondestructive Subject RIV: JJ - Other Materials Impact factor: 1.651, year: 2014

  18. Affordable, Accessible, Immediate: Capture Stunning Images with Digital Infrared Photography

    Science.gov (United States)

    Snyder, Mark

    2011-01-01

    Technology educators who teach digital photography should consider incorporating an infrared (IR) photography component into their program. This is an area where digital photography offers significant benefits. Either type of IR imaging is very interesting to explore, but traditional film-based IR photography is difficult and expensive. In…

  19. An Open Source Low-Cost Automatic System for Image-Based 3d Digitization

    Science.gov (United States)

    Menna, F.; Nocerino, E.; Morabito, D.; Farella, E. M.; Perini, M.; Remondino, F.

    2017-11-01

    3D digitization of heritage artefacts, reverse engineering of industrial components or rapid prototyping-driven design are key topics today. Indeed, millions of archaeological finds all over the world need to be surveyed in 3D either to allow convenient investigations by researchers or because they are inaccessible to visitors and scientists or, unfortunately, because they are seriously endangered by wars and terrorist attacks. On the other hand, in case of industrial and design components there is often the need of deformation analyses or physical replicas starting from reality-based 3D digitisations. The paper is aligned with these needs and presents the realization of the ORION (arduinO Raspberry pI rOtating table for image based 3D recostructioN) prototype system, with its hardware and software components, providing critical insights about its modular design. ORION is an image-based 3D reconstruction system based on automated photogrammetric acquisitions and processing. The system is being developed under a collaborative educational project between FBK Trento, the University of Trento and internship programs with high school in the Trentino province (Italy).

  20. Digital watermark

    Directory of Open Access Journals (Sweden)

    Jasna Maver

    2000-01-01

    Full Text Available The huge amount of multimedia contents available on the World-Wide-Web is beginning to raise the question of their protection. Digital watermarking is a technique which can serve various purposes, including intellectual property protection, authentication and integrity verification, as well as visible or invisible content labelling of multimedia content. Due to the diversity of digital watermarking applicability, there are many different techniques, which can be categorised according to different criteria. A digital watermark can be categorised as visible or invisible and as robust or fragile. In contrast to the visible watermark where a visible pattern or image is embedded into the original image, the invisible watermark does not change the visual appearance of the image. The existence of such a watermark can be determined only through a watermark ex¬traction or detection algorithm. The robust watermark is used for copyright protection, while the fragile watermark is designed for authentication and integrity verification of multimedia content. A watermark must be detectable or extractable to be useful. In some watermarking schemes, a watermark can be extracted in its exact form, in other cases, we can detect only whether a specific given watermarking signal is present in an image. Digital libraries, through which cultural institutions will make multimedia contents available, should support a wide range of service models for intellectual property protection, where digital watermarking may play an important role.

  1. Feasibility of digital imaging to characterize earth materials : part 1.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  2. Feasibility of digital imaging to characterize earth materials : part 4.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  3. Feasibility of digital imaging to characterize earth materials : part 5.

    Science.gov (United States)

    2012-05-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  4. Feasibility of digital imaging to characterize earth materials : part 3.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  5. Feasibility of digital imaging to characterize earth materials : part 2.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  6. Feasibility of digital imaging to characterize earth materials : part 6.

    Science.gov (United States)

    2012-06-06

    This study demonstrated the feasibility of digital imaging to characterize earth materials. Two rapid, relatively low cost image-based methods were developed for determining the grain size distribution of soils and aggregates. The first method, calle...

  7. The method for objective evaluation of the intensity of radial bone lesions in rheumatoid arthritis using digital image analysis

    International Nuclear Information System (INIS)

    Zielinski, K.W.; Krekora, K.

    2004-01-01

    The semiquantitative methods used in everyday diagnostic practice for scoring the intensity of bone lesions in rheumatoid arthritis are susceptible to a subjective error. The paper describes the original algorithm for an image analysis as a method for quantitative and objective evaluation of the intensity of radiological lesions in rheumatoid arthritis. 75 plain radiograms of the hand of patients diagnosed with rheumatoid arthritis, in various stages of bone pathology, were evaluated. The analysis focused on the signs of pathological rebuilding of the affected bone, especially in the distal epiphysis of the radial bone. The plain radiograms of the hand were digitally analysed based on the modified method, formerly used for quantitative assessment of bone trabeculation. The method allowed us to objectively verify various scoring systems of radiograms widely used in rheumatological diagnosis. (author)

  8. Remote Sensing Digital Image Analysis An Introduction

    CERN Document Server

    Richards, John A

    2013-01-01

    Remote Sensing Digital Image Analysis provides the non-specialist with a treatment of the quantitative analysis of satellite and aircraft derived remotely sensed data. Since the first edition of the book there have been significant developments in the algorithms used for the processing and analysis of remote sensing imagery; nevertheless many of the fundamentals have substantially remained the same.  This new edition presents material that has retained value since those early days, along with new techniques that can be incorporated into an operational framework for the analysis of remote sensing data. The book is designed as a teaching text for the senior undergraduate and postgraduate student, and as a fundamental treatment for those engaged in research using digital image processing in remote sensing.  The presentation level is for the mathematical non-specialist.  Since the very great number of operational users of remote sensing come from the earth sciences communities, the text is pitched at a leve...

  9. Test Targets 2.0 and Digital Imaging

    Directory of Open Access Journals (Sweden)

    Robert Chung

    2003-04-01

    Full Text Available Current color management systems, based on a modular approach, enable color portability and mass customization of digital images for print. Because of the non-specific nature of the workflow, implementation of ICC-based color management becomes the responsibility of the user. As such the performance of ICC-based CMS is often unknown and has caused much confusion and slow adoption in the printing and publishing industries. To demonstrate how ICC-based color management can be implemented in a number of workflows, this paper describes a project, called Test Targets 2.0. A description of the test targets and how they were used for device calibration, device profiling, and color imaging applications under different workflows, e.g., from scanner to press, or digital camera to press, are introduced. Color management should work equally well for color matching applications. Thus, a continuation of the project focuses on device gamut and profile accuracy assessment.

  10. Curiosity's Mars Hand Lens Imager (MAHLI): Inital Observations and Activities

    Science.gov (United States)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Robinson, M. L.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Bean, K. M.; Beegle, L. W.; hide

    2013-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.

  11. Some computer applications and digital image processing in nuclear medicine

    International Nuclear Information System (INIS)

    Lowinger, T.

    1981-01-01

    Methods of digital image processing are applied to problems in nuclear medicine imaging. The symmetry properties of central nervous system lesions are exploited in an attempt to determine the three-dimensional radioisotope density distribution within the lesions. An algorithm developed by astronomers at the end of the 19th century to determine the distribution of matter in globular clusters is applied to tumors. This algorithm permits the emission-computed-tomographic reconstruction of spherical lesions from a single view. The three-dimensional radioisotope distribution derived by the application of the algorithm can be used to characterize the lesions. The applicability to nuclear medicine images of ten edge detection methods in general usage in digital image processing were evaluated. A general model of image formation by scintillation cameras is developed. The model assumes that objects to be imaged are composed of a finite set of points. The validity of the model has been verified by its ability to duplicate experimental results. Practical applications of this work involve quantitative assessment of the distribution of radipharmaceuticals under clinical situations and the study of image processing algorithms

  12. Hands-on guide for 3D image creation for geological purposes

    Science.gov (United States)

    Frehner, Marcel; Tisato, Nicola

    2013-04-01

    Geological structures in outcrops or hand specimens are inherently three dimensional (3D), and therefore better understandable if viewed in 3D. While 3D models can easily be created, manipulated, and looked at from all sides on the computer screen (e.g., using photogrammetry or laser scanning data), 3D visualizations for publications or conference posters are much more challenging as they have to live in a 2D-world (i.e., on a sheet of paper). Perspective 2D visualizations of 3D models do not fully transmit the "feeling and depth of the third dimension" to the audience; but this feeling is desirable for a better examination and understanding in 3D of the structure under consideration. One of the very few possibilities to generate real 3D images, which work on a 2D display, is by using so-called stereoscopic images. Stereoscopic images are two images of the same object recorded from two slightly offset viewpoints. Special glasses and techniques have to be used to make sure that one image is seen only by one eye, and the other image is seen by the other eye, which together lead to the "3D effect". Geoscientists are often familiar with such 3D images. For example, geomorphologists traditionally view stereographic orthophotos by employing a mirror-steroscope. Nowadays, petroleum-geoscientists examine high-resolution 3D seismic data sets in special 3D visualization rooms. One of the methods for generating and viewing a stereoscopic image, which does not require a high-tech viewing device, is to create a so-called anaglyph. The principle is to overlay two images saturated in red and cyan, respectively. The two images are then viewed through red-cyan-stereoscopic glasses. This method is simple and cost-effective, but has some drawbacks in preserving colors accurately. A similar method is used in 3D movies, where polarized light or shuttering techniques are used to separate the left from the right image, which allows preserving the original colors. The advantage of red

  13. Digital image sequence processing, compression, and analysis

    CERN Document Server

    Reed, Todd R

    2004-01-01

    IntroductionTodd R. ReedCONTENT-BASED IMAGE SEQUENCE REPRESENTATIONPedro M. Q. Aguiar, Radu S. Jasinschi, José M. F. Moura, andCharnchai PluempitiwiriyawejTHE COMPUTATION OF MOTIONChristoph Stiller, Sören Kammel, Jan Horn, and Thao DangMOTION ANALYSIS AND DISPLACEMENT ESTIMATION IN THE FREQUENCY DOMAINLuca Lucchese and Guido Maria CortelazzoQUALITY OF SERVICE ASSESSMENT IN NEW GENERATION WIRELESS VIDEO COMMUNICATIONSGaetano GiuntaERROR CONCEALMENT IN DIGITAL VIDEOFrancesco G.B. De NataleIMAGE SEQUENCE RESTORATION: A WIDER PERSPECTIVEAnil KokaramVIDEO SUMMARIZATIONCuneyt M. Taskiran and Edward

  14. Digital Image Forensics There is More to a Picture than Meets the Eye

    CERN Document Server

    Memon, Nasir

    2013-01-01

    Photographic imagery has come a long way from the pinhole cameras of the nineteenth century. Digital imagery, and its applications, develops in tandem with contemporary society’s sophisticated literacy of this subtle medium. This book examines the ways in which digital images have become ever more ubiquitous as legal and medical evidence, just as they have become our primary source of news and have replaced paper-based financial documentation. Crucially, the contributions also analyze the very profound problems which have arisen alongside the digital image, issues of veracity and progeny that demand systematic and detailed response: It looks real, but is it? What camera captured it? Has it been doctored or subtly altered? Attempting to provide answers to these slippery issues, the book covers how digital images are created, processed and stored before moving on to set out the latest techniques for forensically examining images, and finally addressing practical issues such as courtroom admissibility. In an e...

  15. Information Seeking Behavior in Digital Image Collections: A Cognitive Approach

    Science.gov (United States)

    Matusiak, Krystyna K.

    2006-01-01

    Presents the results of a qualitative study that focuses on search patterns of college students and community users interacting with a digital image collection. The study finds a distinct difference between the two groups of users and examines the role of mental models in information seeking behavior in digital libraries.

  16. A Versatile Image Processor For Digital Diagnostic Imaging And Its Application In Computed Radiography

    Science.gov (United States)

    Blume, H.; Alexandru, R.; Applegate, R.; Giordano, T.; Kamiya, K.; Kresina, R.

    1986-06-01

    In a digital diagnostic imaging department, the majority of operations for handling and processing of images can be grouped into a small set of basic operations, such as image data buffering and storage, image processing and analysis, image display, image data transmission and image data compression. These operations occur in almost all nodes of the diagnostic imaging communications network of the department. An image processor architecture was developed in which each of these functions has been mapped into hardware and software modules. The modular approach has advantages in terms of economics, service, expandability and upgradeability. The architectural design is based on the principles of hierarchical functionality, distributed and parallel processing and aims at real time response. Parallel processing and real time response is facilitated in part by a dual bus system: a VME control bus and a high speed image data bus, consisting of 8 independent parallel 16-bit busses, capable of handling combined up to 144 MBytes/sec. The presented image processor is versatile enough to meet the video rate processing needs of digital subtraction angiography, the large pixel matrix processing requirements of static projection radiography, or the broad range of manipulation and display needs of a multi-modality diagnostic work station. Several hardware modules are described in detail. For illustrating the capabilities of the image processor, processed 2000 x 2000 pixel computed radiographs are shown and estimated computation times for executing the processing opera-tions are presented.

  17. Curiosity's Mars Hand Lens Imager (MAHLI) Investigation

    Science.gov (United States)

    Edgett, Kenneth S.; Yingst, R. Aileen; Ravine, Michael A.; Caplinger, Michael A.; Maki, Justin N.; Ghaemi, F. Tony; Schaffner, Jacob A.; Bell, James F.; Edwards, Laurence J.; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sullivan, Robert J.; Sumner, Dawn Y.; Thomas, Peter C.; Jensen, Elsa H.; Simmonds, John J.; Sengstacken, Aaron J.; Wilson, Reg G.; Goetz, Walter

    2012-01-01

    The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) investigation will use a 2-megapixel color camera with a focusable macro lens aboard the rover, Curiosity, to investigate the stratigraphy and grain-scale texture, structure, mineralogy, and morphology of geologic materials in northwestern Gale crater. Of particular interest is the stratigraphic record of a ?5 km thick layered rock sequence exposed on the slopes of Aeolis Mons (also known as Mount Sharp). The instrument consists of three parts, a camera head mounted on the turret at the end of a robotic arm, an electronics and data storage assembly located inside the rover body, and a calibration target mounted on the robotic arm shoulder azimuth actuator housing. MAHLI can acquire in-focus images at working distances from ?2.1 cm to infinity. At the minimum working distance, image pixel scale is ?14 μm per pixel and very coarse silt grains can be resolved. At the working distance of the Mars Exploration Rover Microscopic Imager cameras aboard Spirit and Opportunity, MAHLI?s resolution is comparable at ?30 μm per pixel. Onboard capabilities include autofocus, auto-exposure, sub-framing, video imaging, Bayer pattern color interpolation, lossy and lossless compression, focus merging of up to 8 focus stack images, white light and longwave ultraviolet (365 nm) illumination of nearby subjects, and 8 gigabytes of non-volatile memory data storage.

  18. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    Science.gov (United States)

    Lasker, Joseph M.

    Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing

  19. Digital training platform for interpreting radiographic images of the chest.

    Science.gov (United States)

    McLaughlin, L; Woznitza, N; Cairns, A; McFadden, S L; Bond, R; Hughes, C M; Elsayed, A; Finlay, D; McConnell, J

    2018-05-01

    Time delays and errors exist which lead to delays in patient care and misdiagnosis. Reporting clinicians follow guidance to form their own search strategy. However, little research has tested these training guides. With the use of eye tracking technology and expert input we developed a digital training platform to be used in chest image interpretation learning. Two sections of a digital training platform were planned and developed; A) a search strategy training tool to assist reporters during their interpretation of images, and B) an educational tool to communicate the search strategies of expert viewers to trainees by using eye tracking technology. A digital training platform for use in chest image interpretation was created based on evidence within the literature, expert input and two search strategies previously used in clinical practice. Images and diagrams, aiding translation of the platform content, were incorporated where possible. The platform is structured to allow the chest image interpretation process to be clear, concise and methodical. A search strategy was incorporated within the tool to investigate its use, with the possibility that it could be recommended as an evidence based approach for use by reporting clinicians. Eye tracking, a checklist and voice recordings have been combined to form a multi-dimensional learning tool, which has never been used in chest image interpretation learning before. The training platform for use in chest image interpretation learning has been designed, created and digitised. Future work will establish the efficacy of the developed approaches. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  20. Is screening with digital imaging using one retinal view adequate?

    Science.gov (United States)

    Herbert, H M; Jordan, K; Flanagan, D W

    2003-05-01

    To compare the detection of diabetic retinopathy from digital images with slit-lamp biomicroscopy, and to determine whether British Diabetic Association (BDA) screening criteria are attained (>80% sensitivity, >95% specificity, &fashion. A single 45 degrees fundus image was obtained using the nonmydriatic digital camera. Each patient subsequently underwent slit-lamp biomicroscopy and diabetic retinopathy grading by a consultant ophthalmologist. Diabetic retinopathy and maculopathy was graded according to the Early Treatment of Diabetic Retinopathy Study. A total of 145 patients (288 eyes) were identified for screening. Of these, 26% of eyes had diabetic retinopathy, and eight eyes (3%) had sight-threatening diabetic retinopathy requiring treatment. The sensitivity for detection of any diabetic retinopathy was 38% and the specificity 95%. There was a 4% technical failure rate. There were 42/288 false negatives and 10/288 false positives. Of the 42 false negatives, 18 represented diabetic maculopathy, 20 represented peripheral diabetic retinopathy and four eyes had both macular and peripheral changes. Three eyes in the false-negative group (1% of total eyes) had sight-threatening retinopathy. There was good concordance between the two consultants (79% agreement on slit-lamp biomicroscopy and 84% on digital image interpretation). The specificity value and technical failure rate compare favourably with BDA guidelines. The low sensitivity for detection of any retinopathy reflects failure to detect minimal maculopathy and retinopathy outside the 45 degrees image. This could be improved by an additional nasal image and careful evaluation of macular images with a low threshold for slit-lamp biomicroscopy if image quality is poor.

  1. Digital literacy of youth and young adults with intellectual disability predicted by support needs and social maturity.

    Science.gov (United States)

    Seok, Soonhwa; DaCosta, Boaventura

    2017-01-01

    This study investigated relationships between digital propensity and support needs as well as predictors of digital propensity in the context of support intensity, age, gender, and social maturity. A total of 118 special education teachers rated the support intensity, digital propensity, and social maturity of 352 students with intellectual disability. Leveraging the Digital Propensity Index, Supports Intensity Scale, and the Social Maturity Scale, descriptive statistics, correlations, multiple regressions, and regression analyses were employed. The findings revealed significant relationships between digital propensity and support needs. In addition, significant predictors of digital propensity were found with regard to support intensity, age, gender, and social maturity.

  2. Imitative or Iconoclastic? How Young Children Use Ready-Made Images in Digital Art

    Science.gov (United States)

    Sakr, Mona; Connelly, Vincent; Wild, Mary

    2018-01-01

    Digital art-making tends to foreground the inclusion of ready-made images in children's art. While some lament children's use of such images, suggesting that they constrain creativity and expression, others have argued that ready-made digital materials offer children the opportunity to create innovative and potentially iconoclastic artefacts…

  3. Digital X-ray imager

    International Nuclear Information System (INIS)

    1998-01-01

    The global objective of this cooperation was to lower the cost and improve the quality of breast health care in the United States. We planned to achieve it by designing a very high performance digital radiography unit for breast surgical specimen radiography in the operating room. These technical goals needed to be achieved at reasonable manufacturing costs to enable MedOptics to achieve high market penetration at a profit. Responsibility for overall project execution rested with MedOptics. MedOptics fabricated and demonstrated hardware, and selected components and handled the overall integration. After completion of this CRADA, MedOptics worked with collaborators to demonstrate clinical performance and utility. Finally, the company marketed the device. LLNL convened a multi-directorate expert panel for an intensive review of MedOptics point design. A written brief of panel conclusions and recommendations was prepared. In addition, LLNL was responsible for: computationally simulating the effects of varying source voltage and filtering (predicting the required dynamic range for the detector); evaluating CsI:Tl, CdWO4 and scintillating glass as image converters; recommending image enhancement algorithms. The LLNL modeling results guided the design and experimental elements of the project. The Laboratory's unique array of sources and detectors was employed to resolve specific technical questions. Our image processing expertise was applied to the selection of enhancement tools for image display

  4. Avoiding twisted pixels: ethical guidelines for the appropriate use and manipulation of scientific digital images.

    Science.gov (United States)

    Cromey, Douglas W

    2010-12-01

    Digital imaging has provided scientists with new opportunities to acquire and manipulate data using techniques that were difficult or impossible to employ in the past. Because digital images are easier to manipulate than film images, new problems have emerged. One growing concern in the scientific community is that digital images are not being handled with sufficient care. The problem is twofold: (1) the very small, yet troubling, number of intentional falsifications that have been identified, and (2) the more common unintentional, inappropriate manipulation of images for publication. Journals and professional societies have begun to address the issue with specific digital imaging guidelines. Unfortunately, the guidelines provided often do not come with instructions to explain their importance. Thus they deal with what should or should not be done, but not the associated 'why' that is required for understanding the rules. This article proposes 12 guidelines for scientific digital image manipulation and discusses the technical reasons behind these guidelines. These guidelines can be incorporated into lab meetings and graduate student training in order to provoke discussion and begin to bring an end to the culture of "data beautification".

  5. Digital Airborne Photogrammetry—A New Tool for Quantitative Remote Sensing?—A State-of-the-Art Review On Radiometric Aspects of Digital Photogrammetric Images

    Directory of Open Access Journals (Sweden)

    Nikolaj Veje

    2009-09-01

    Full Text Available The transition from film imaging to digital imaging in photogrammetric data capture is opening interesting possibilities for photogrammetric processes. A great advantage of digital sensors is their radiometric potential. This article presents a state-of-the-art review on the radiometric aspects of digital photogrammetric images. The analysis is based on a literature research and a questionnaire submitted to various interest groups related to the photogrammetric process. An important contribution to this paper is a characterization of the photogrammetric image acquisition and image product generation systems. The questionnaire revealed many weaknesses in current processes, but the future prospects of radiometrically quantitative photogrammetry are promising.

  6. A Digital Tool Supporting Goal-Oriented Teaching in Classrooms

    DEFF Research Database (Denmark)

    Misfeldt, Morten; Bundsgaard, Jeppe; Slot, Marie Falkesgaard

    2015-01-01

    and objectives for their teaching; these form a challenge and a basis for developing a digital tool for mediating between curriculum and pedagogical practice. The motivation for revising the national curriculum and developing digital tools that support teaching is partly based on evidence that the previous...... national curriculum was not used to any particular extent by teachers (Danish Evaluation Institute 2012). Hence, the curriculum has been rebuilt based on recent trends in school development and curriculum research suggesting the importance of a competence framework, learning goals, and the aggregation...... of classroom data for efficient teaching (Earl and Fullan 2003). Learning goals are supposed to support the students’ pace and sense of progression, inform classroom decisions, structure teachers’ planning, and support the dialogue between teachers, students, and parents (Hattie 2009). Based on these concerns...

  7. Bone age assessment by digital images

    International Nuclear Information System (INIS)

    Silva, Ana Maria Marques da

    1996-01-01

    An algorithm which allows bone age assessment by digital radiological images was developed. For geometric parameters extraction, the phalangeal and metacarpal regions of interest are enhanced and segmented, through spatial and morphological filtering. This study is based on perimeter, length and area, from distal to proximal portions. The quantification of these parameters make possible comparison between chronological and skeletal age, using growth standard tables

  8. SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR

    Directory of Open Access Journals (Sweden)

    J. Hauser

    2017-10-01

    Full Text Available Spectral imaging (SI refers to the acquisition of the three-dimensional (3D spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI refers to the instantaneous acquisition (in a single shot of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL, weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser and (ii tailored compressed sensing (CS methods for digital processing of the diffused and dispersed (DD image recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color imaging using a monochromatic or gray-scale image sensor without color filter arrays.

  9. Cherenkov ring imaging using a television digitizer

    International Nuclear Information System (INIS)

    Charpak, G.; Peisert, A.; Sauli, F.; Cavestro, A.; Vascon, M.; Zanella, G.

    1981-01-01

    A Cherenkov ring imaging device using as photon detector a multistep spark chamber coupled to a television digitizer is described. Results of a test run using triethylamine as photo-ionizing vapour are presented, as well as preliminary results obtained with a new vapour having an extremely low ionization potential. (orig.)

  10. Enhanced digital library system that supports sustainable knowledge

    African Journals Online (AJOL)

    Enhanced digital library system that supports sustainable knowledge: A focus ... This research work provides a Web-Based University library, ability to access the ... and generates pins to authorize bonafide students and staff of the University.

  11. GrinLine identification using digital imaging and Adobe Photoshop.

    Science.gov (United States)

    Bollinger, Susan A; Brumit, Paula C; Schrader, Bruce A; Senn, David R

    2009-03-01

    The purpose of this study was to outline a method by which an antemortem photograph of a victim can be critically compared with a postmortem photograph in an effort to facilitate the identification process. Ten subjects, between 27 and 55 years old provided historical pictures of themselves exhibiting a broad smile showing anterior teeth to some extent (a grin). These photos were termed "antemortem" for the purpose of the study. A digital camera was used to take a current photo of each subject's grin. These photos represented the "postmortem" images. A single subject's "postmortem" photo set was randomly selected to be the "unknown victim." These combined data of the unknown and the 10 antemortem subjects were digitally stored and, using Adobe Photoshop software, the images were sized and oriented for comparative analysis. The goal was to devise a technique that could facilitate the accurate determination of which "antemortem" subject was the "unknown." The generation of antemortem digital overlays of the teeth visible in a grin and the comparison of those overlays to the images of the postmortem dentition is the foundation of the technique. The comparisons made using the GrinLine Identification Technique may assist medical examiners and coroners in making identifications or exclusions.

  12. Analysis of Shape Nonconformity between Embroidered Element and Its Digital Image

    Directory of Open Access Journals (Sweden)

    Svetlana RADAVIČIENĖ

    2014-04-01

    Full Text Available Embroidery technologies are widely applied for developing decorative elements of original design in garments, for integrating threads intended for protection into garments and other articles. Nonconformity of the shape and dimensions of the embroidered element with the designed digital image is influenced by properties of embroidery threads and fibres, by the filling type, density of stitches and other technological parameters. The objective of the paper is to explore the influence made by properties of fabrics and by the direction of stitches of the actual embroidered element on conformity of the shape with one of the designed digital image. For the research, embroidery threads of different purpose as well as three woven fabrics have been selected. For preparation of test samples, round digital images have been designed filling the embroidery area in different stitch directions. Analysis of the results of the investigations has demonstrated that the shape and dimensions of the embroidered element failed to conform to the shape and dimensions of the designed digital image in most cases. In certain cases, e.g. when the stitch direction goes towards the middle of the embroidered element, a defect, i. e. hole, is observed due to considerable concentration of stitches in the centre of the element.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.2911

  13. Quantification of image persistence in a digital angiography system

    International Nuclear Information System (INIS)

    Okkalides, D.P.; Raptou, P.D.

    1993-01-01

    Image persistence, as a characteristic of video imaging systems affecting the quality of fast moving fluoroscopic images, is shown to vary considerably. A simple quantitative method for measuring image persistence in a digital angiography system is presented, together with a series of image intensifier exposure-response curves. For the Saticon tube, used with the Siemens 3VA Digitron, it was found that persistence increased for low exposure rates and may increase to 31% at a 120 ms interval. In addition, a sharp increase in image persistence, from 8.3% to 33%, was observed within 18 months from installation of the system. (author)

  14. Standard digital reference images for investment steel castings for aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 The digital reference images provided in the adjunct to this standard illustrate various types and degrees of discontinuities occurring in thin-wall steel investment castings. Use of this standard for the specification or grading of castings requires procurement of the adjunct digital reference images which illustrate the discontinuity types and severity levels. They are intended to provide the following: 1.1.1 A guide enabling recognition of thin-wall steel casting discontinuities and their differentiation both as to type and degree through digital radiographic examination. 1.1.2 Example digital radiographic illustrations of discontinuities and a nomenclature for reference in acceptance standards, specifications and drawings. 1.2 Two illustration categories are covered as follows: 1.2.1 Graded—Six common discontinuity types each illustrated in eight degrees of progressively increasing severity. 1.2.2 Ungraded—Twelve single illustrations of additional discontinuity types and of patterns and imper...

  15. Digital filtering and reconstruction of coded aperture images

    International Nuclear Information System (INIS)

    Tobin, K.W. Jr.

    1987-01-01

    The real-time neutron radiography facility at the University of Virginia has been used for both transmission radiography and computed tomography. Recently, a coded aperture system has been developed to permit the extraction of three dimensional information from a low intensity field of radiation scattered by an extended object. Short wave-length radiations (e.g. neutrons) are not easily image because of the difficulties in achieving diffraction and refraction with a conventional lens imaging system. By using a coded aperture approach, an imaging system has been developed that records and reconstructs an object from an intensity distribution. This system has a signal-to-noise ratio that is proportional to the total open area of the aperture making it ideal for imaging with a limiting intensity radiation field. The main goal of this research was to develope and implement the digital methods and theory necessary for the reconstruction process. Several real-time video systems, attached to an Intellect-100 image processor, a DEC PDP-11 micro-computer, and a Convex-1 parallel processing mainframe were employed. This system, coupled with theoretical extensions and improvements, allowed for retrieval of information previously unobtainable by earlier optical methods. The effect of thermal noise, shot noise, and aperture related artifacts were examined so that new digital filtering techniques could be constructed and implemented. Results of image data filtering prior to and following the reconstruction process are reported. Improvements related to the different signal processing methods are emphasized. The application and advantages of this imaging technique to the field of non-destructive testing are also discussed

  16. Development of a Three-Dimensional Hand Model Using Three-Dimensional Stereophotogrammetry: Assessment of Image Reproducibility.

    Directory of Open Access Journals (Sweden)

    Inge A Hoevenaren

    Full Text Available Using three-dimensional (3D stereophotogrammetry precise images and reconstructions of the human body can be produced. Over the last few years, this technique is mainly being developed in the field of maxillofacial reconstructive surgery, creating fusion images with computed tomography (CT data for precise planning and prediction of treatment outcome. Though, in hand surgery 3D stereophotogrammetry is not yet being used in clinical settings.A total of 34 three-dimensional hand photographs were analyzed to investigate the reproducibility. For every individual, 3D photographs were captured at two different time points (baseline T0 and one week later T1. Using two different registration methods, the reproducibility of the methods was analyzed. Furthermore, the differences between 3D photos of men and women were compared in a distance map as a first clinical pilot testing our registration method.The absolute mean registration error for the complete hand was 1.46 mm. This reduced to an error of 0.56 mm isolating the region to the palm of the hand. When comparing hands of both sexes, it was seen that the male hand was larger (broader base and longer fingers than the female hand.This study shows that 3D stereophotogrammetry can produce reproducible images of the hand without harmful side effects for the patient, so proving to be a reliable method for soft tissue analysis. Its potential use in everyday practice of hand surgery needs to be further explored.

  17. A method for digital image registration using a mathematical programming technique

    Science.gov (United States)

    Yao, S. S.

    1973-01-01

    A new algorithm based on a nonlinear programming technique to correct the geometrical distortions of one digital image with respect to another is discussed. This algorithm promises to be superior to existing ones in that it is capable of treating localized differential scaling, translational and rotational errors over the whole image plane. A series of piece-wise 'rubber-sheet' approximations are used, constrained in such a manner that a smooth approximation over the entire image can be obtained. The theoretical derivation is included. The result of using the algorithm to register four channel S065 Apollo IX digitized photography over Imperial Valley, California, is discussed in detail.

  18. The study of image processing of parallel digital signal processor

    International Nuclear Information System (INIS)

    Liu Jie

    2000-01-01

    The author analyzes the basic characteristic of parallel DSP (digital signal processor) TMS320C80 and proposes related optimized image algorithm and the parallel processing method based on parallel DSP. The realtime for many image processing can be achieved in this way

  19. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    International Nuclear Information System (INIS)

    2015-01-01

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  20. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrations with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant 5R25NS

  1. Fingerprint Image Enhancement Based on Second Directional Derivative of the Digital Image

    Directory of Open Access Journals (Sweden)

    Onnia Vesa

    2002-01-01

    Full Text Available This paper presents a novel approach of fingerprint image enhancement that relies on detecting the fingerprint ridges as image regions where the second directional derivative of the digital image is positive. A facet model is used in order to approximate the derivatives at each image pixel based on the intensity values of pixels located in a certain neighborhood. We note that the size of this neighborhood has a critical role in achieving accurate enhancement results. Using neighborhoods of various sizes, the proposed algorithm determines several candidate binary representations of the input fingerprint pattern. Subsequently, an output binary ridge-map image is created by selecting image zones, from the available binary image candidates, according to a MAP selection rule. Two public domain collections of fingerprint images are used in order to objectively assess the performance of the proposed fingerprint image enhancement approach.

  2. Image quality of a Konica Regius 336 digital system in chest radiography

    International Nuclear Information System (INIS)

    Ostinelli, A.; Frigerio, M.; Monti, A.F.; Gelosa, S.; Tognoli, P.; Perniola, N.; Gozzi, G.

    2000-01-01

    Digital radiographic systems permit to optimize execution, depiction and storage of radiological images. Since a Regius 336 digital system (Konica Corp. Tokyo, Japan) devoted to chest radiography Department of S. Anna Hospital in Como, Italy, it was investigated its performance relative to image quality. Konica Regius 336 is a computed radiography system made of a phosphorescence detector plate which is scanned with an infrared semiconductor laser beam. The radiographic image obtained from the detector is subjected to image processing, which allows a stable output and the nonlinear curve typical of conventional radiographic systems. Image quality was assessed based on the following parameters: dose, contrast, noise and spatial resolution. As reference, it was assessed the same parameters on a Cronex 88 analogic chest-changer (DuPont Pharma, North Billerica, Mass, USA). The Regius 336 air kerma values were always higher than the analogic ones (about 10%), both with and without a chest phantom; noise was also greater than in analogic images, sometimes even doubled. The optical densities of a step wedge and the spatial resolution of the digital chest-changer are independent of the X-ray tube voltage consequent to broader optical latitude. Inversely, the analogic images of the wedges show great optical density variability as a function of the X-ray tube voltage (in a range of 2). The modulation transfer functions of the two systems have the same trend. The performance of the Konica Regius 336 is nearly equivalent to that of an analogic system. The main advantages of the digital system are a standard output, lower consumption of radiographic films, higher productiveness and better image quality standard level [it

  3. A Professional Learning Model Supporting Teachers to Integrate Digital Technologies

    Science.gov (United States)

    Sheffield, Rachel; Blackley, Susan; Moro, Paul

    2018-01-01

    Contemporary teachers have an obligation to support and scaffold students' learning in digital technologies and to do this in authentic contexts. In order for teachers to be successful in this, their own competency in digital technologies needs to be high, and their own 21st century learning skills of communication, collaboration, creativity and…

  4. Wavelet-based compression with ROI coding support for mobile access to DICOM images over heterogeneous radio networks.

    Science.gov (United States)

    Maglogiannis, Ilias; Doukas, Charalampos; Kormentzas, George; Pliakas, Thomas

    2009-07-01

    Most of the commercial medical image viewers do not provide scalability in image compression and/or region of interest (ROI) encoding/decoding. Furthermore, these viewers do not take into consideration the special requirements and needs of a heterogeneous radio setting that is constituted by different access technologies [e.g., general packet radio services (GPRS)/ universal mobile telecommunications system (UMTS), wireless local area network (WLAN), and digital video broadcasting (DVB-H)]. This paper discusses a medical application that contains a viewer for digital imaging and communications in medicine (DICOM) images as a core module. The proposed application enables scalable wavelet-based compression, retrieval, and decompression of DICOM medical images and also supports ROI coding/decoding. Furthermore, the presented application is appropriate for use by mobile devices activating in heterogeneous radio settings. In this context, performance issues regarding the usage of the proposed application in the case of a prototype heterogeneous system setup are also discussed.

  5. USRC: a new strategy for adding digital images to the medical school curriculum.

    Science.gov (United States)

    Pinelle, David; Burbridge, Brent; Kalra, Neil

    2012-10-01

    Many medical schools use learning management systems (LMSs) to give students access to online lecture notes, assignments, quizzes, and other learning resources. LMSs can also be used to provide access to digital radiology images, potentially improving preclinical teaching in anatomy, physiology, and pathology while also allowing students to develop interpretation skills that are important in clinical practice. However, it is unclear how radiology images can best be stored, imported, and displayed in an LMS. We developed University of Saskatchewan Radiology Courseware (USRC), a new web application that allows course designers to import images into pages linked to BlackBoard Learn, a popular LMS. Page content, including images, annotations, captions, and supporting text, are stored as teaching cases on a MIRC (Medical Imaging Resource Center) server. Course designers create cases in MIRC, and then create a corresponding page in BlackBoard by modifying an HTML template so that it holds the URL of a MIRC case. When a user visits the page in BlackBoard, the page requests content from the MIRC case, reformats the text for display in BlackBoard, and loads an image viewer plug-in that allows students to view and interact with the images stored in the case. The USRC technology can be used to reformat MIRC cases for presentation in any website or in any learning management system that supports custom pages written in HTML with embedded JavaScript.

  6. Panning artifacts in digital pathology images

    Science.gov (United States)

    Avanaki, Ali R. N.; Lanciault, Christian; Espig, Kathryn S.; Xthona, Albert; Kimpe, Tom R. L.

    2017-03-01

    In making a pathologic diagnosis, a pathologist uses cognitive processes: perception, attention, memory, and search (Pena and Andrade-Filho, 2009). Typically, this involves focus while panning from one region of a slide to another, using either a microscope in a traditional workflow or software program and display in a digital pathology workflow (DICOM Standard Committee, 2010). We theorize that during panning operation, the pathologist receives information important to diagnosis efficiency and/or correctness. As compared to an optical microscope, panning in a digital pathology image involves some visual artifacts due to the following: (i) the frame rate is finite; (ii) time varying visual signals are reconstructed using imperfect zero-order hold. Specifically, after pixel's digital drive is changed, it takes time for a pixel to emit the expected amount of light. Previous work suggests that 49% of navigation is conducted in low-power/overview with digital pathology (Molin et al., 2015), but the influence of display factors has not been measured. We conducted a reader study to establish a relationship between display frame rate, panel response time, and threshold panning speed (above which the artifacts become noticeable). Our results suggest visual tasks that involve tissue structure are more impacted by the simulated panning artifacts than those that only involve color (e.g., staining intensity estimation), and that the panning artifacts versus normalized panning speed has a peak behavior which is surprising and may change for a diagnostic task. This is work in progress and our final findings should be considered in designing future digital pathology systems.

  7. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    Science.gov (United States)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  8. High Res at High Speed: Automated Delivery of High-Resolution Images from Digital Library Collections

    Science.gov (United States)

    Westbrook, R. Niccole; Watkins, Sean

    2012-01-01

    As primary source materials in the library are digitized and made available online, the focus of related library services is shifting to include new and innovative methods of digital delivery via social media, digital storytelling, and community-based and consortial image repositories. Most images on the Web are not of sufficient quality for most…

  9. Remote sensing image fusion in the context of Digital Earth

    International Nuclear Information System (INIS)

    Pohl, C

    2014-01-01

    The increase in the number of operational Earth observation satellites gives remote sensing image fusion a new boost. As a powerful tool to integrate images from different sensors it enables multi-scale, multi-temporal and multi-source information extraction. Image fusion aims at providing results that cannot be obtained from a single data source alone. Instead it enables feature and information mining of higher reliability and availability. The process required to prepare remote sensing images for image fusion comprises most of the necessary steps to feed the database of Digital Earth. The virtual representation of the planet uses data and information that is referenced and corrected to suit interpretation and decision-making. The same pre-requisite is valid for image fusion, the outcome of which can directly flow into a geographical information system. The assessment and description of the quality of the results remains critical. Depending on the application and information to be extracted from multi-source images different approaches are necessary. This paper describes the process of image fusion based on a fusion and classification experiment, explains the necessary quality measures involved and shows with this example which criteria have to be considered if the results of image fusion are going to be used in Digital Earth

  10. A novel algorithm for fractional resizing of digital image in DCT domain

    Institute of Scientific and Technical Information of China (English)

    Wang Ci; Zhang Wenjun; Zheng Meng

    2005-01-01

    Fractional resizing of digital images is needed in various applications, such as displaying at different resolution depending on that of display device, building image index for an image database, and changing resolution according to the transmission channel bandwidth. With the wide use of JPEG and MPEG, almost all digital images are stored and transferred in DCT compressed format. Inorder to save the computation and memory cost, it is desirable to do resizing in DCT domain directly. This paper presents a fast and efficient method, which possesses the capability of fractional resizing in DCT domain. Experimental results confirm that this scheme can achieve significant computation cost reduction while maintain better quality.

  11. Multi-scale learning based segmentation of glands in digital colonrectal pathology images.

    Science.gov (United States)

    Gao, Yi; Liu, William; Arjun, Shipra; Zhu, Liangjia; Ratner, Vadim; Kurc, Tahsin; Saltz, Joel; Tannenbaum, Allen

    2016-02-01

    Digital histopathological images provide detailed spatial information of the tissue at micrometer resolution. Among the available contents in the pathology images, meso-scale information, such as the gland morphology, texture, and distribution, are useful diagnostic features. In this work, focusing on the colon-rectal cancer tissue samples, we propose a multi-scale learning based segmentation scheme for the glands in the colon-rectal digital pathology slides. The algorithm learns the gland and non-gland textures from a set of training images in various scales through a sparse dictionary representation. After the learning step, the dictionaries are used collectively to perform the classification and segmentation for the new image.

  12. Mammographic microcalcifications: Detection with xerography, screen-film, and digitized film display

    International Nuclear Information System (INIS)

    Smathers, R.L.; Bush, E.; Drace, J.; Stevens, M.; Sommer, F.G.; Brown, B.W.; Karras, B.

    1986-01-01

    Pulverized bone specks and aluminum oxide specks were measured by hand into sizes ranging from 0.2 mm to 1.0 mm and then arranged in clusters. These clusters were superimposed on a human breast tissue phantom, and xeromammograms and screen-film mammograms of the clusters were made. The screen-film mammograms were digitized using a high-resolution laser scanner and then displayed on cathode ray tube (CRT) monitors. Six radiologists independently counted the microcalcifications on the xeromammograms, the screen-film mammograms, and the digitized film mammograms. The xeromammograms were examined with a magnifying glass; the screen-film images were examined with a magnifying glass and by hot light; and the digitized-film images were examined by electronic magnification and image processing. The bone speck size that corresponded to a mean 50% detectability level for each technique was as follows: xeromammography, 0.550 mm; digitized film, 0.573 mm; and screen-film, 0.661 mm. We postulate that electronic magnification and image processing with edge enhancement can improve the capability of screen-film mammography to enhance the detection of microcalcifications

  13. Advanced techniques in digital mammographic images recognition

    International Nuclear Information System (INIS)

    Aliu, R. Azir

    2011-01-01

    Computer Aided Detection and Diagnosis is used in digital radiography as a second thought in the process of determining diagnoses, which reduces the percentage of wrong diagnoses of the established interpretation of mammographic images. The issues that are discussed in the dissertation are the analyses and improvement of advanced technologies in the field of artificial intelligence, more specifically in the field of machine learning for solving diagnostic problems and automatic detection of speculated lesions in digital mammograms. The developed of SVM-based ICAD system with cascade architecture for analyses and comparison mammographic images in both projections (CC and MLO) gives excellent result for detection and masses and microcalcifications. In order to develop a system with optimal performances of sensitivity, specificity and time complexity, a set of relevant characteristics need to be created which will show all the pathological regions that might be present in the mammographic image. The structure of the mammographic image, size and the large number of pathological structures in this area are the reason why the creation of a set of these features is necessary for the presentation of good indicators. These pathological structures are a real challenge today and the world of science is working in that direction. The doctoral dissertation showed that the system has optimal results, which are confirmed by experts, and institutions, which are dealing with these same issues. Also, the thesis presents a new approach for automatic identification of regions of interest in the mammographic image where regions of interest are automatically selected for further processing mammography in cases when the number of examined patients is higher. Out of 480 mammographic images downloaded from MIAS database and tested with ICAD system the author shows that, after separation and selection of relevant features of ICAD system the accuracy is 89.7% (96.4% for microcalcifications

  14. Evaluation of Teeth and Supporting Structures on Digital Radiograms using Interpolation Methods

    International Nuclear Information System (INIS)

    Koh, Kwang Joon; Chang, Kee Wan

    1999-01-01

    To determine the effect of interpolation functions when processing the digital periapical images. The digital images were obtained by Digora and CDR system on the dry skull and human subject. 3 oral radiologists evaluated the 3 portions of each processed image using 7 interpolation methods and ROC curves were obtained by trapezoidal methods. The highest Az value(0.96) was obtained with cubic spline method and the lowest Az value(0.03) was obtained with facet model method in Digora system. The highest Az value(0.79) was obtained with gray segment expansion method and the lowest Az value(0.07) was obtained with facet model method in CDR system. There was significant difference of Az value in original image between Digora and CDR system at alpha=0.05 level. There were significant differences of Az values between Digora and CDR images with cubic spline method, facet model method, linear interpolation method and non-linear interpolation method at alpha= 0.1 level.

  15. Development of digital image correlation method to analyse crack ...

    Indian Academy of Sciences (India)

    samples were performed to verify the performance of the digital image correlation method. ... development cannot be measured accurately. ..... Mendelson A 1983 Plasticity: Theory and application (USA: Krieger Publishing company Malabar,.

  16. Ultra-high-resolution photoelectronic digital radiographic imaging system for medicine

    International Nuclear Information System (INIS)

    Bamford, B.R.; Nudelman, S.; Quimette, D.R.; Ovitt, T.W.; Reisken, A.B.; Spackman, T.J.; Zaccheo, T.S.

    1989-01-01

    The authors report the development of a new type of digital radiographic imaging system for medicine. Unlike previous digital radiographic systems that could not match the spatial resolution of film-screen systems, this system has higher spatial resolution and wider dynamic range than film-screen-based systems. There are three components to the system: a microfocal spot x-ray tube, a camera consisting of a Tektronix TK-2048M 2048 x 2048 CCD image sensor in direct contact with a Kodak Min-R intensifying screen, and a Gould IP-9000 with 2048 x 2048 processing and display capabilities. The CCD image sensor is a large-area integrated circuit and is 55.3 mm x 55.3 mm. It has a linear dynamic range of 12 bits or 4,096 gray levels

  17. Bispectral methods of signal processing applications in radar, telecommunications and digital image restoration

    CERN Document Server

    Totsky, Alexander V; Kravchenko, Victor F

    2015-01-01

    By studying applications in radar, telecommunications and digital image restoration, this monograph discusses signal processing techniques based on bispectral methods. Improved robustness against different forms of noise as well as preservation of phase information render this method a valuable alternative to common power-spectrum analysis used in radar object recognition, digital wireless communications, and jitter removal in images.

  18. Enhancing the Teaching of Digital Processing of Remote Sensing Image Course through Geospatial Web Processing Services

    Science.gov (United States)

    di, L.; Deng, M.

    2010-12-01

    Remote sensing (RS) is an essential method to collect data for Earth science research. Huge amount of remote sensing data, most of them in the image form, have been acquired. Almost all geography departments in the world offer courses in digital processing of remote sensing images. Such courses place emphasis on how to digitally process large amount of multi-source images for solving real world problems. However, due to the diversity and complexity of RS images and the shortcomings of current data and processing infrastructure, obstacles for effectively teaching such courses still remain. The major obstacles include 1) difficulties in finding, accessing, integrating and using massive RS images by students and educators, and 2) inadequate processing functions and computing facilities for students to freely explore the massive data. Recent development in geospatial Web processing service systems, which make massive data, computing powers, and processing capabilities to average Internet users anywhere in the world, promises the removal of the obstacles. The GeoBrain system developed by CSISS is an example of such systems. All functions available in GRASS Open Source GIS have been implemented as Web services in GeoBrain. Petabytes of remote sensing images in NASA data centers, the USGS Landsat data archive, and NOAA CLASS are accessible transparently and processable through GeoBrain. The GeoBrain system is operated on a high performance cluster server with large disk storage and fast Internet connection. All GeoBrain capabilities can be accessed by any Internet-connected Web browser. Dozens of universities have used GeoBrain as an ideal platform to support data-intensive remote sensing education. This presentation gives a specific example of using GeoBrain geoprocessing services to enhance the teaching of GGS 588, Digital Remote Sensing taught at the Department of Geography and Geoinformation Science, George Mason University. The course uses the textbook "Introductory

  19. Digital image based numerical micromechanics of geocomposites with application to chemical grouting

    Czech Academy of Sciences Publication Activity Database

    Blaheta, Radim; Kohut, Roman; Kolcun, Alexej; Souček, Kamil; Staš, Lubomír; Vavro, Leona

    2015-01-01

    Roč. 77, July 2015 (2015), s. 77-88 ISSN 1365-1609 R&D Projects: GA ČR(CZ) GA105/09/1830; GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : geocomposites * upscaling * digital CT image based FEM * identification of material parameters Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.010, year: 2015 http://ac.els-cdn.com/S1365160915000623/1-s2.0-S1365160915000623-main.pdf?_tid=dbf3fe52-038b-11e5-95ad-00000aacb362&acdnat=1432633673_93d2764901fe77ac271ced952119f1aa

  20. Rethinking Over Textuality of Digital Image: A Methodological Proposal for Pleasant Reading on Digital Screens

    Directory of Open Access Journals (Sweden)

    Cristian Álvarez

    2009-12-01

    Full Text Available It sets out the necessity about thinking over the instructional function of image in digital world under the light of the new opportunities of a methodological proposal to read as a game. First, for this reason it exams the perceptions of García Canclini about the reading of university students, and its problems on the context of new technologies: accumulation of information versus weakening of reflection. To this situation it adds the no appreciation of visual images. Faced with this problematic situation, and with the aim of sketching out options, it analyzes two experiences about books: the “tasty” reading of texts (the “good reading”, and the potentialities presented in the essential characteristics of playing. So, it proposes a methodology shaped for five steps to read images on digital screen. Its aim is seizing the possibilities of “good reading” to expand the comprehension of the visual information perceived through the screen. The proposal puts the accent in the textuality of representational surface of an image. Also it brings the attentive visual route about in order to enable to identify both significant forms and spaces. This proposal is illustrated with examples.