Goyal, Ketan; Kawai, Ryoichi
As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.
Cold atoms in optical lattices a Hamiltonian ratchet
Monteiro, T S; Hutchings, N A C; Isherwood, M R
2002-01-01
We investigate a new type of quantum ratchet which may be realised by cold atoms in a double-well optical lattice which is pulsed with unequal periods. The classical dynamics is chaotic and we find the classical diffusion rate $D$ is asymmetric in momentum up to a finite time $t_r$. The quantum behaviour produces a corresponding asymmetry in the momentum distribution which is 'frozen-in' by Dynamical Localisation provided the break-time $t^* > t_r$. We conclude that the cold atom ratchets require $Db/ \\hbar \\sim 1$ where b is a small deviation from period-one pulses.
Quantum ratchets in dissipative chaotic systems.
Carlo, Gabriel G; Benenti, Giuliano; Casati, Giulio; Shepelyansky, Dima L
2005-04-29
Using the method of quantum trajectories, we study a quantum chaotic dissipative ratchet appearing for particles in a pulsed asymmetric potential in the presence of a dissipative environment. The system is characterized by directed transport emerging from a quantum strange attractor. This model exhibits, in the limit of small effective Planck constant, a transition from quantum to classical behavior, in agreement with the correspondence principle. We also discuss parameter values suitable for the implementation of the quantum ratchet effect with cold atoms in optical lattices.
Quantum Hamiltonian Complexity
2014-01-01
Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via s...
Initial state dependence of a quantum-resonance ratchet
Ni, Jiating; Dadras, Siamak; Borunda, Mario F; Wimberger, Sandro; Summy, Gil S
2016-01-01
We demonstrate quantum resonance ratchets created with Bose-Einstein condensates exposed to pulses of an off-resonant standing light wave. We show how some of the basic properties of the ratchets are controllable through the creation of different initial states of the system. In particular, our results prove that through an appropriate choice of initial state it is possible to reduce the extent to which the ratchet state changes with respect to time. We develop a simple theory to explain our results and indicate how ratchets might be used as part of a matter wave interferometer or quantum-random walk experiment.
Longhi, Stefano
2017-01-01
We consider wave transport phenomena in a PT -symmetric extension of the periodically kicked quantum rotator model and reveal that dynamical localization assists the unbroken PT phase. In the delocalized (quantum resonance) regime, PT symmetry is always in the broken phase and ratchet acceleration arises as a signature of unidirectional non-Hermitian transport. An optical implementation of the periodically kicked PT -symmetric Hamiltonian, based on transverse beam propagation in a passive optical resonator with combined phase and loss gratings, is suggested to visualize acceleration modes in fractional Talbot cavities.
Longhi, Stefano
2016-01-01
We consider wave transport phenomena in a $\\mathcal{PT}$-symmetric extension of the periodically-kicked quantum rotator model and reveal that dynamical localization assists the unbroken $\\mathcal{PT}$ phase. In the delocalized (quantum resonance) regime, $\\mathcal{PT}$ symmetry is always in the broken phase and ratchet acceleration arises as a signature of unidirectional non-Hermitian transport. An optical implementation of the periodically-kicked $\\mathcal{PT}$-symmetric Hamiltonian, based on transverse beam propagation in a passive optical resonator with combined phase and loss gratings, is suggested to visualize acceleration modes in fractional Talbot cavities.
Lissajous Rocking Ratchet: Realization in a Semiconductor Quantum Dot.
Platonov, Sergey; Kästner, Bernd; Schumacher, Hans W; Kohler, Sigmund; Ludwig, Stefan
2015-09-04
Breaking time-reversal symmetry (TRS) in the absence of a net bias can give rise to directed steady-state nonequilibrium transport phenomena such as ratchet effects. Here we present, theoretically and experimentally, the concept of a Lissajous rocking ratchet based on breaking TRS. Our system is a semiconductor quantum dot with periodically modulated dot-lead tunnel barriers. Broken TRS gives rise to single electron tunneling current. Its direction is fully controlled by exploring frequency and phase relations between the two barrier modulations. The concept of Lissajous ratchets can be realized in a large variety of different systems, including nanoelectrical, nanoelectromechanical, or superconducting circuits. It promises applications based on a detailed on-chip comparison of radio-frequency signals.
Quantum Jacobi fields in Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
Jacobi fields of classical solutions of a Hamiltonian mechanical system are quantized in the framework of vertical-extended Hamiltonian formalism. Quantum Jacobi fields characterize quantum transitions between classical solutions.
Driving Hamiltonian in a Quantum Search Problem
Oshima, K
2001-01-01
We examine the driving Hamiltonian in the analog analogue of Grover's algorithm by Farhi and Gutmann. For a quantum system with a given Hamiltonian $E|w> $ from an initial state $|s>$, the driving Hamiltonian $E^{\\prime}|s> < s|(E^{\\prime} \
Compressed quantum metrology for the Ising Hamiltonian
Boyajian, W. L.; Skotiniotis, M.; Dür, W.; Kraus, B.
2016-12-01
We show how quantum metrology protocols that seek to estimate the parameters of a Hamiltonian that exhibits a quantum phase transition can be efficiently simulated on an exponentially smaller quantum computer. Specifically, by exploiting the fact that the ground state of such a Hamiltonian changes drastically around its phase-transition point, we construct a suitable observable from which one can estimate the relevant parameters of the Hamiltonian with Heisenberg scaling precision. We then show how, for the one-dimensional Ising Hamiltonian with transverse magnetic field acting on N spins, such a metrology protocol can be efficiently simulated on an exponentially smaller quantum computer while maintaining the same Heisenberg scaling for the squared error, i.e., O (N-2) precision, and derive the explicit circuit that accomplishes the simulation.
Polysymplectic Hamiltonian formalism and some quantum outcomes
Giachetta, G; Sardanashvily, G
2004-01-01
Covariant (polysymplectic) Hamiltonian field theory is formulated as a particular Lagrangian theory on a polysymplectic phase space that enables one to quantize it in the framework of familiar quantum field theory.
Hamiltonian Quantum Cellular Automata in 1D
Nagaj, Daniel; Wocjan, Pawel
2008-01-01
We construct a simple translationally invariant, nearest-neighbor Hamiltonian on a chain of 10-dimensional qudits that makes it possible to realize universal quantum computing without any external control during the computational process. We only require the ability to prepare an initial computational basis state which encodes both the quantum circuit and its input. The computational process is then carried out by the autonomous Hamiltonian time evolution. After a time polynomially long in th...
Quantum ratchets, the orbital Josephson effect, and chaos in Bose-Einstein condensates
Carr, Lincoln D.; Heimsoth, Martin; Creffield, Charles E.; Sols, Fernando
2014-03-01
In a system of ac-driven condensed bosons we study a new type of Josephson effect occurring between states sharing the same region of space and the same internal atom structure. We first develop a technique to calculate the long-time dynamics of a driven interacting many-body system. For resonant frequencies, this dynamics can be shown to derive from an effective time-independent Hamiltonian which is expressed in terms of standard creation and annihilation operators. Within the subspace of resonant states, and if the undriven states are plane waves, a locally repulsive interaction between bosons translates into an effective attraction. We apply the method to study the effect of interactions on the coherent ratchet current of an asymmetrically driven boson system. We find a wealth of dynamical regimes which includes Rabi oscillations, self-trapping and chaotic behavior. In the latter case, a full quantum many-body calculation deviates from the mean-field results by predicting large quantum fluctuations of the relative particle number. Moreover, we find that chaos and entanglement, as defined by a variety of widely used and accepted measures, are overlapping but distinct notions. Funded by Spanish MINECO, the Ramon y Cajal program (CEC), the Comunidad de Madrid through Grant Microseres, the Heidelberg Center for Quantum Dynamics, and the NSF.
Information, disturbance and Hamiltonian quantum feedback control
Doherty, A C; Jungman, G; Doherty, Andrew C.; Jacobs, Kurt; Jungman, Gerard
2001-01-01
We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance which are distinct from those usually considered in quantum information theory. Using these concepts we identify an information trade-off in quantum feedback control.
An intuitive Hamiltonian for quantum search
Fenner, S A
2000-01-01
We present new intuition behind Grover's quantum search algorithm by means of a Hamiltonian. Given a black-box Boolean function f mapping strings of length n into {0,1} such that f(w) = 1 for exactly one string w, L. K. Grover describes a quantum algorithm that finds w in O(2^{n/2}) time. Farhi & Gutmann show that w can also be found in the same amount time by letting the quantum system evolve according to a simple Hamiltonian depending only on f. Their system evolves along a path far from that taken by Grover's original algorithm, however. The current paper presents an equally simple Hamiltonian matching Grover's algorithm step for step. The new Hamiltonian is similar in appearance from that of Farhi & Gutmann, but has some important differences, and provides new intuition for Grover's algorithm itself. This intuition both contrasts with and supplements other explanations of Grover's algorithm as a rotation in two dimensions, and suggests that the Hamiltonian-based approach to quantum algorithms can ...
Effective Hamiltonian approach to periodically perturbed quantum optical systems
Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl
2006-02-20
We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.
Optimal Hamiltonian Simulation by Quantum Signal Processing
Low, Guang Hao; Chuang, Isaac L.
2017-01-01
The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d -sparse Hamiltonian H ^ for time-interval t with error ɛ is O [t d ∥H ^ ∥max+log (1 /ɛ ) /log log (1 /ɛ ) ] , which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H ^ into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.
Quantum Hamiltonian complexity and the detectability lemma
Aharonov, Dorit; Landau, Zeph; Vazirani, Umesh
2010-01-01
Quantum Hamiltonian complexity studies computational complexity aspects of local Hamiltonians and ground states; these questions can be viewed as generalizations of classical computational complexity problems related to local constraint satisfaction (such as SAT), with the additional ingredient of multi-particle entanglement. This additional ingredient of course makes generalizations of celebrated theorems such as the PCP theorem from classical to the quantum domain highly non-trivial; it also raises entirely new questions such as bounds on entanglement and correlations in ground states, and in particular area laws. We propose a simple combinatorial tool that helps to handle such questions: it is a simplified, yet more general version of the detectability lemma introduced by us in the more restricted context on quantum gap amplification a year ago. Here, we argue that this lemma is applicable in much more general contexts. We use it to provide a simplified and more combinatorial proof of Hastings' 1D area law...
Mixing properties of stochastic quantum Hamiltonians
Onorati, E; Kliesch, M; Brown, W; Werner, A H; Eisert, J
2016-01-01
Random quantum processes play a central role both in the study of fundamental mixing processes in quantum mechanics related to equilibration, thermalisation and fast scrambling by black holes, as well as in quantum process design and quantum information theory. In this work, we present a framework describing the mixing properties of continuous-time unitary evolutions originating from local Hamiltonians having time-fluctuating terms, reflecting a Brownian motion on the unitary group. The induced stochastic time evolution is shown to converge to a unitary design. As a first main result, we present bounds to the mixing time. By developing tools in representation theory, we analytically derive an expression for a local k-th moment operator that is entirely independent of k, giving rise to approximate unitary k-designs and quantum tensor product expanders. As a second main result, we introduce tools for proving bounds on the rate of decoupling from an environment with random quantum processes. By tying the mathema...
Quantum Hamiltonian Identification from Measurement Time Traces
Zhang, Jun; Sarovar, Mohan
2014-08-01
Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.
Quantum ratchet effects induced by terahertz radiation in GaN-based two-dimensional structures
Weber, W.; Golub, L. E.; Danilov, S. N.; Karch, J.; Reitmaier, C.; Wittmann, B.; Bel' kov, V. V.; Ivchenko, E. L.; Kvon, Z. D.; Vinh, N. Q.; van der Meer, A. F. G.; Murdin, B.; Ganichev, S. D.
2008-01-01
Photogalvanic effects are observed and investigated in wurtzite (0001)-oriented GaN/AlGaN low-dimensional structures excited by terahertz radiation. The structures are shown to represent linear quantum ratchets. Experimental and theoretical analysis exhibits that the observed photocurrents are relat
Quantum ratchet effects induced by terahertz radiation in GaN-based two-dimensional structures
Weber, W.; Golub, L. E.; Danilov, S. N.; Karch, J.; Reitmaier, C.; Wittmann, B.; Bel'Kov, V. V.; Ivchenko, E. L.; Kvon, Z. D.; Vinh, N. Q.; van der Meer, A. F. G.; Murdin, B.; Ganichev, S. D.
2008-06-01
Photogalvanic effects are observed and investigated in wurtzite (0001)-oriented GaN/AlGaN low-dimensional structures excited by terahertz radiation. The structures are shown to represent linear quantum ratchets. Experimental and theoretical analysis exhibits that the observed photocurrents are related to the lack of an inversion center in the GaN-based heterojunctions.
A Quantum Algorithm for the Hamiltonian NAND Tree
Farhi, E; Gutmann, S
2007-01-01
We give a quantum algorithm for the NAND tree problem in the Hamiltonian oracle model. The algorithm uses a continuous time quantum walk with a run time proportional to sqrt(N)*sqrt(logN). We also show a lower bound of sqrt(N) for the NAND tree problem in the Hamiltonian oracle model.
New Hamiltonian constraint operator for loop quantum gravity
Jinsong Yang
2015-12-01
Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.
Entanglement Concentration with Quantum Non Demolition Hamiltonians
Tatham, Richard
2011-01-01
We devise and examine two procrustean entanglement concentration schemes using Quantum Non- Demolition (QND) interaction Hamiltonians in the continuous variable regime, applicable for light, for atomic ensembles or in a hybrid setting. We thus expand the standard entanglement distillation toolbox to the use of a much more general, versatile and experimentally feasible interaction class. The first protocol uses Gaussian ancillary modes and a non-Gaussian post-measurement, the second a non-Gaussian ancillary mode and a Gaussian post-measurement. We explicitly calculate the density matrix elements of the non-Gaussian mixed states resulting from these protocols using an elegant Wigner-function based method in a numerically efficient manner. We then quantify the entanglement increase calculating the Logarithmic Negativity of the output state and discuss and compare the performance of the protocols.
Entangled State Representation for Hamiltonian Operator of Quantum Pendulum
FANHong-Yi
2003-01-01
By virtue of the Einstein-Podolsky-Rosen entangled state, which is the common eigenvector of two panicles' relative coordinate and total momentum, we establish the bosonic operator version of the Hamiltonian for a quantum point-mass pendulum. The Hamiltonian displays the correct Schroedlnger equation in the entangled state representation.The corresponding Heisenberg operator equations which predict the angular momentum-angle uncertainty relation are derived. The quantum operator description of two quantum pendulums coupled by a spring is also derived.
Quantum System Identification: Hamiltonian Estimation using Spectral and Bayesian Analysis
Schirmer, S G
2009-01-01
Identifying the Hamiltonian of a quantum system from experimental data is considered. General limits on the identifiability of model parameters with limited experimental resources are investigated, and a specific Bayesian estimation procedure is proposed and evaluated for a model system where a-priori information about the Hamiltonian's structure is available.
Quantum simulation of a three-body interaction Hamiltonian on an NMR quantum computer
Tseng, C H; Sharf, Y; Knill, E H; Laflamme, R; Havel, T F; Cory, D G
2000-01-01
Extensions of average Hamiltonian theory to quantum computation permit the design of arbitrary Hamiltonians, allowing rotations throughout a large Hilbert space. In this way, the kinematics and dynamics of any quantum system may be simulated by a quantum computer. A basis mapping between the systems dictates the average Hamiltonian in the quantum computer needed to implement the desired Hamiltonian in the simulated system. The flexibility of the procedure is illustrated with NMR on 13-C labelled Alanine by creating the non-physical Hamiltonian ZZZ corresponding to a three body interaction.
Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer
Tseng, C. H. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Somaroo, S. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sharf, Y. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Knill, E. [Theoretical Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87455 (United States); Laflamme, R. [Theoretical Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87455 (United States); Havel, T. F. [BCMP Harvard Medical School, 240 Longwood Avenue, Boston Massachusetts 02115 (United States); Cory, D. G. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2000-01-01
Extensions of average Hamiltonian theory to quantum computation permit the design of arbitrary Hamiltonians, allowing rotations throughout a large Hilbert space. In this way, the kinematics and dynamics of any quantum system may be simulated by a quantum computer. A basis mapping between the systems dictates the average Hamiltonian in the quantum computer needed to implement the desired Hamiltonian in the simulated system. The flexibility of the procedure is illustrated with NMR on {sup 13}C labeled alanine by creating the nonphysical Hamiltonian {sigma}{sub z}{sigma}{sub z}{sigma}{sub z} corresponding to a three-body interaction. (c) 1999 The American Physical Society.
Elementary Quantum Gates Based on Intrinsic Interaction Hamiltonian
CHEN Jing; YU Chang-Shui; SONG He-Shan
2006-01-01
A kind of new operators, the generalized pseudo-spin operators are introduced and a universal intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental quantum gate U(θ) is constructed based on the universal Hamiltonian and shown that the roles of the new quantum gate U(θ) is equivalent, functionally, to the joint operation of Hadamard and C-Not gates.
Entangled State Representation for Hamiltonian Operator of Quantum Pendulum
FAN Hong-Yi
2003-01-01
By virtue of the Einstein-Podolsky-Rosen entangled state, which is the common eigenvector of two particles'relativecoordinate and total momentum, we establish the bosonic operator version of the Hamiltonian for a quantumpoint-mass pendulum. The Hamiltonian displays the correct Schrodinger equation in the entangled state representation.The corresponding Heisenberg operator equations which predict the angular momentum-angle uncertainty relation arederived. The quantum operator description of two quantum pendulums coupled by a spring is also derived.
Position-dependent mass quantum Hamiltonians: general approach and duality
Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.
2016-03-01
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.
Superfield Hamiltonian quantization in terms of quantum antibrackets
Batalin, Igor A.; Lavrov, Peter M.
2016-04-01
We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.
Superfield Hamiltonian quantization in terms of quantum antibrackets
Batalin, Igor A
2016-01-01
We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.
Indirect quantum tomography of quadratic Hamiltonians
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
An effective Hamiltonian approach to quantum random walk
Sarkar, Debajyoti; Paul, Niladri; Bhattacharya, Kaushik; Ghosh, Tarun Kanti
2017-03-01
In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltonians are generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, Sci. Rep. 3, 2829 (18)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.
Quantum control by means of hamiltonian structure manipulation.
Donovan, A; Beltrani, V; Rabitz, H
2011-04-28
A traditional quantum optimal control experiment begins with a specific physical system and seeks an optimal time-dependent field to steer the evolution towards a target observable value. In a more general framework, the Hamiltonian structure may also be manipulated when the material or molecular 'stockroom' is accessible as a part of the controls. The current work takes a step in this direction by considering the converse of the normal perspective to now start with a specific fixed field and employ the system's time-independent Hamiltonian structure as the control to identify an optimal form. The Hamiltonian structure control variables are taken as the system energies and transition dipole matrix elements. An analysis is presented of the Hamiltonian structure control landscape, defined by the observable as a function of the Hamiltonian structure. A proof of system controllability is provided, showing the existence of a Hamiltonian structure that yields an arbitrary unitary transformation when working with virtually any field. The landscape analysis shows that there are no suboptimal traps (i.e., local extrema) for controllable quantum systems when unconstrained structural controls are utilized to optimize a state-to-state transition probability. This analysis is corroborated by numerical simulations on model multilevel systems. The search effort to reach the top of the Hamiltonian structure landscape is found to be nearly invariant to system dimension. A control mechanism analysis is performed, showing a wide variety of behavior for different systems at the top of the Hamiltonian structure landscape. It is also shown that reducing the number of available Hamiltonian structure controls, thus constraining the system, does not always prevent reaching the landscape top. The results from this work lay a foundation for considering the laboratory implementation of optimal Hamiltonian structure manipulation for seeking the best control performance, especially with limited
Diagonal representation for a generic matrix valued quantum Hamiltonian
Gosselin, Pierre [Universite Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF UFR de Mathematiques, BP74, Saint Martin d' Heres Cedex (France); Mohrbach, Herve [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, ICPMB-FR CNRS 2843, Metz Cedex 3 (France)
2009-12-15
A general method to derive the diagonal representation for a generic matrix valued quantum Hamiltonian is proposed. In this approach new mathematical objects like non-commuting operators evolving with the Planck constant promoted as a running variable are introduced. This method leads to a formal compact expression for the diagonal Hamiltonian which can be expanded in a power series of the Planck constant. In particular, we provide an explicit expression for the diagonal representation of a generic Hamiltonian to the second order in the Planck constant. This result is applied, as a physical illustration, to Dirac electrons and neutrinos in external fields. (orig.)
An effective Hamiltonian approach to quantum random walk
DEBAJYOTI SARKAR; NILADRI PAUL; KAUSHIK BHATTACHARYA; TARUN KANTI GHOSH
2017-03-01
In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltoniansare generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, $\\it{Sci. Rep}$. 3, 2829 (2013)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.
Basis Optimization Renormalization Group for Quantum Hamiltonian
Sugihara, Takanori
2001-01-01
We find an algorithm of numerical renormalization group for spin chain models. The essence of this algorithm is orthogonal transformation of basis states, which is useful for reducing the number of relevant basis states to create effective Hamiltonian. We define two types of rotations and combine them to create appropriate orthogonal transformation.
On the modification of Hamiltonians' spectrum in gravitational quantum mechanics
Pedram, Pouria
2010-01-01
Different candidates of Quantum Gravity such as String Theory, Doubly Special Relativity, Loop Quantum Gravity and black hole physics all predict the existence of a minimum observable length or a maximum observable momentum which modifies the Heisenberg uncertainty principle. This modified version is usually called the Generalized (Gravitational) Uncertainty Principle (GUP) and changes all Hamiltonians in quantum mechanics. In this Letter, we use a recently proposed GUP which is consistent with String Theory, Doubly Special Relativity and black hole physics and predicts both a minimum measurable length and a maximum measurable momentum. This form of GUP results in two additional terms in any quantum mechanical Hamiltonian, proportional to $\\alpha p^3$ and $\\alpha^2 p^4$, respectively, where $\\alpha \\sim 1/M_{Pl}c$ is the GUP parameter. By considering both terms as perturbations, we study two quantum mechanical systems in the framework of the proposed GUP: a particle in a box and a simple harmonic oscillator. ...
Bose-Hubbard Hamiltonian: Quantum chaos approach
Kolovsky, Andrey R.
2016-03-01
We discuss applications of the theory of quantum chaos to one of the paradigm models of many-body quantum physics — the Bose-Hubbard (BH) model, which describes, in particular, interacting ultracold Bose atoms in an optical lattice. After preliminary, pure quantum analysis of the system we introduce the classical counterpart of the BH model and the governing semiclassical equations of motion. We analyze these equations for the problem of Bloch oscillations (BOs) of cold atoms where a number of experimental results are available. The paper is written for nonexperts and can be viewed as an introduction to the field.
Average quantum dynamics of closed systems over stochastic Hamiltonians
Yu, Li
2011-01-01
We develop a master equation formalism to describe the evolution of the average density matrix of a closed quantum system driven by a stochastic Hamiltonian. The average over random processes generally results in decoherence effects in closed system dynamics, in addition to the usual unitary evolution. We then show that, for an important class of problems in which the Hamiltonian is proportional to a Gaussian random process, the 2nd-order master equation yields exact dynamics. The general formalism is applied to study the examples of a two-level system, two atoms in a stochastic magnetic field and the heating of a trapped ion.
SPECTRAL CALCULATIONS OF HAMILTONIAN FOR A QUANTUM FRACTAL NETWORK
无
2000-01-01
A general formulation for the spectral calculations of the Hamiltonian operator of a Quantum Fractal Network(QFN) is presented. The QFN can be constructed by placing artificial neurons on each site of the fractal lattice. An artificial neuron may consist of a cell of a quantum cellular automaton or a quantum dot, which confines a single electron. The Coulomb interaction or the spin-spin interaction between neurons can be used to transmit signals and perform logic operations.The recursive formulas of the eigenvalues and eigenvectors between sub-lattices are obtained explicitly. As the application of the formulations,the eigenvalues and eigenvectors of the Hamiltonian operator for the Sierpinski gasket are calculated.
Hamiltonian identification through enhanced observability utilizing quantum control
Leghtas, Zaki; Rabitz, Herschel; Rouchon, Pierre
2011-01-01
This paper considers Hamiltonian identification for a controllable quantum system with non-degenerate transitions and a known initial state. We assume to have at our disposal a single scalar control input and the population measure of only one state at an (arbitrarily large) final time T. We prove that the quantum dipole moment matrix is locally observable in the following sense: for any two close but distinct dipole moment matrices, we construct discriminating controls giving two different measurements. Such discriminating controls are constructed to have three well defined temporal components, as inspired by Ramsey interferometry. This result suggests that what may appear at first to be very restrictive measurements are actually rich for identification, when combined with well designed discriminating controls, to uniquely identify the complete dipole moment of such systems. The assessment supports the employment of quantum control as a promising means to achieve high quality identification of a Hamiltonian.
Quantum Hamiltonian daemons: Unitary analogs of combustion engines
Thesing, Eike P.; Gilz, Lukas; Anglin, James R.
2017-07-01
Hamiltonian daemons have recently been defined classically as small, closed Hamiltonian systems which can exhibit secular energy transfer from high-frequency to low-frequency degrees of freedom (steady downconversion), analogous to the steady transfer of energy in a combustion engine from the high terahertz frequencies of molecular excitations to the low kilohertz frequencies of piston motion [L. Gilz, E. P. Thesing, and J. R. Anglin, Phys. Rev. E 94, 042127 (2016), 10.1103/PhysRevE.94.042127]. Classical daemons achieve downconversion within a small, closed system by exploiting nonlinear resonances; the adiabatic theorem permits their operation but imposes nontrivial limitations on their efficiency. Here we investigate a simple example of a quantum mechanical daemon. In the correspondence regime it obeys similar efficiency limits to its classical counterparts, but in the strongly quantum mechanical regime the daemon operates in an entirely different manner. It maintains an engine-like behavior in a distinctly quantum mechanical form: a weight is lifted at a steady average speed through a long sequence of quantum jumps in momentum, at each of which a quantum of fuel is consumed. The quantum daemon can cease downconversion at any time through nonadiabatic Landau-Zener transitions, and continuing operation of the quantum daemon is associated with steadily growing entanglement between fast and slow degrees of freedom.
Centro-symmetric Hamiltonians foster quantum transport
Walschaers, Mattia; Buchleitner, Andreas
2013-01-01
We propose a model for fast and highly efficient quantum transport of excitations, through finite, disordered systems. The presented mechanism is statistically robust against configurational changes which alter the realization of disorder. We finally discuss the potential relevance of our findings for excitation transport in photosynthetic light harvesting complexes.
Optimization of quantum Hamiltonian evolution: From two projection operators to local Hamiltonians
Patel, Apoorva; Priyadarsini, Anjani
Given a quantum Hamiltonian and its evolution time, the corresponding unitary evolution operator can be constructed in many different ways, corresponding to different trajectories between the desired end-points and different series expansions. A choice among these possibilities can then be made to obtain the best computational complexity and control over errors. It is shown how a construction based on Grover's algorithm scales linearly in time and logarithmically in the error bound, and is exponentially superior in error complexity to the scheme based on the straightforward application of the Lie-Trotter formula. The strategy is then extended first to simulation of any Hamiltonian that is a linear combination of two projection operators, and then to any local efficiently computable Hamiltonian. The key feature is to construct an evolution in terms of the largest possible steps instead of taking small time steps. Reflection operations and Chebyshev expansions are used to efficiently control the total error on the overall evolution, without worrying about discretization errors for individual steps. We also use a digital implementation of quantum states that makes linear algebra operations rather simple to perform.
Ohzeki, Masayuki
2017-01-01
Quantum annealing is a generic solver of the optimization problem that uses fictitious quantum fluctuation. Its simulation in classical computing is often performed using the quantum Monte Carlo simulation via the Suzuki–Trotter decomposition. However, the negative sign problem sometimes emerges in the simulation of quantum annealing with an elaborate driver Hamiltonian, since it belongs to a class of non-stoquastic Hamiltonians. In the present study, we propose an alternative way to avoid the negative sign problem involved in a particular class of the non-stoquastic Hamiltonians. To check the validity of the method, we demonstrate our method by applying it to a simple problem that includes the anti-ferromagnetic XX interaction, which is a typical instance of the non-stoquastic Hamiltonians. PMID:28112244
Interest rates in quantum finance: the Wilson expansion and Hamiltonian.
Baaquie, Belal E
2009-10-01
Interest rate instruments form a major component of the capital markets. The Libor market model (LMM) is the finance industry standard interest rate model for both Libor and Euribor, which are the most important interest rates. The quantum finance formulation of the Libor market model is given in this paper and leads to a key generalization: all the Libors, for different future times, are imperfectly correlated. A key difference between a forward interest rate model and the LMM lies in the fact that the LMM is calibrated directly from the observed market interest rates. The short distance Wilson expansion [Phys. Rev. 179, 1499 (1969)] of a Gaussian quantum field is shown to provide the generalization of Ito calculus; in particular, the Wilson expansion of the Gaussian quantum field A(t,x) driving the Libors yields a derivation of the Libor drift term that incorporates imperfect correlations of the different Libors. The logarithm of Libor phi(t,x) is defined and provides an efficient and compact representation of the quantum field theory of the Libor market model. The Lagrangian and Feynman path integrals of the Libor market model of interest rates are obtained, as well as a derivation given by its Hamiltonian. The Hamiltonian formulation of the martingale condition provides an exact solution for the nonlinear drift of the Libor market model. The quantum finance formulation of the LMM is shown to reduce to the industry standard Bruce-Gatarek-Musiela-Jamshidian model when the forward interest rates are taken to be exactly correlated.
Hamiltonian and physical Hilbert space in polymer quantum mechanics
Corichi, A; Zapata, R J A; Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2006-01-01
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested, Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so called polymer representation of the Heisenberg-Weyl (H-W) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed.
Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states.
Bonet-Luz, Esther; Tronci, Cesare
2016-05-01
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest's theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature.
Supersymmetric Descendants of Self-Adjointly Extended Quantum Mechanical Hamiltonians
Al-Hashimi, M H; Shalaby, A; Wiese, U -J
2013-01-01
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics
Passante, Roberto; Trapani, Camillo
2016-01-01
This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.
Hamiltonian formulation of generalized quantum dynamics——Quantum mechanical problem
吴宁; 阮图南
1997-01-01
The Hamiltonian formulation of the usual complex quantum mechanics in the theory of generalized quantum dynamics is discussed. After the total trace Lagrangian, total trace Hamiltonian and two kinds of Poisson brackets are introduced, both the equations of motion of some total trace functionals which are expressed by total trace Poisson brackets and the equations of motion of some operators which are expressed by the without-total-trace Poisson brackets are obtained. Then a set of basic equations of motion of the usual complex quantum mechanics are obtained, which are also expressed by the Poisson brackets and total trace Hamiltonian in the generalized quantum dynamics. The set of equations of motion are consistent with the corresponding Heisenberg equations.
Ajoy, Ashok; Cappellaro, Paola
2013-05-31
We propose a method for Hamiltonian engineering that requires no local control but only relies on collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information transport between two separated nodes of a large spin network. We engineer a spin chain with optimal couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost perfect quantum information transport at room temperature. The Hamiltonian engineering method can be made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with different topologies and interactions.
Quantum mechanics of non-Hamiltonian and dissipative systems
Tarasov, Vasily
2008-01-01
Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is self-contained and can be used by students without a previous course in modern mathematics and physics. The book describes the modern structure of the theory, and covers the fundamental results of last 15 years. The book has been recommended by Russian Ministry of Education as the textbook for graduate students and has been used for graduate student lectures from 1998 to 2006. Requires no preliminary knowledge of graduate and advanced mathematics Discusses the fundamental results of last 15 years in this theory Suitable for cours
Vladimirov, Igor G
2012-01-01
This paper extends the energy-based version of the stochastic linearization method, known for classical nonlinear systems, to open quantum systems with canonically commuting dynamic variables governed by quantum stochastic differential equations with non-quadratic Hamiltonians. The linearization proceeds by approximating the actual Hamiltonian of the quantum system by a quadratic function of its observables which corresponds to the Hamiltonian of a quantum harmonic oscillator. This approximation is carried out in a mean square optimal sense with respect to a Gaussian reference quantum state and leads to a self-consistent linearization procedure where the mean vector and quantum covariance matrix of the system observables evolve in time according to the effective linear dynamics. We demonstrate the proposed Hamiltonian-based Gaussian linearization for the quantum Duffing oscillator whose Hamiltonian is a quadro-quartic polynomial of the momentum and position operators. The results of the paper are applicable t...
On the quantum mechanics of bicomplex Hamiltonian system
Banerjee, Abhijit
2017-02-01
We investigate the Schrödinger equation in the framework of bicomplex numbers, which are pairs of complex numbers making up a commutative ring with zero-divisors. We propose an analytical method to solve bicomplex-version of Schrödinger equation corresponding to the systems of Hamiltonians of both hermitian (self-adjoint) and non-hermitian PT symmetric type. In our approach we extend the existing mathematical formulation of quantum system searching for the exact or quasi-exact solution for ground state energy eigenvalues and associated wave functions acting in bicomplex Hilbert space. The model concerning hermitian Hamiltonians is then applied to the problems of two bicomplex valued polynomial oscillators one involving x2 and another of isotonic type. The ground states and associated energy values for both the oscillators are found to be hyperbolic in nature. The model in connection to the unbroken PT symmetric Hamiltonians is then applied to illustrate the problems of complex and bicomplex valued shifted oscillators.
Frédéric Pierret
2016-01-01
Full Text Available We derive the Helmholtz theorem for nondifferentiable Hamiltonian systems in the framework of Cresson’s quantum calculus. Precisely, we give a theorem characterizing nondifferentiable equations, admitting a Hamiltonian formulation. Moreover, in the affirmative case, we give the associated Hamiltonian.
Barth, A. M.; Vagov, A.; Axt, V. M.
2016-09-01
We present a numerical path-integral iteration scheme for the low-dimensional reduced density matrix of a time-dependent quantum dissipative system. Our approach simultaneously accounts for the combined action of a microscopically modeled pure-dephasing-type coupling to a continuum of harmonic oscillators representing, e.g., phonons, and further environmental interactions inducing non-Hamiltonian dynamics in the inner system represented, e.g., by Lindblad-type dissipation or relaxation. Our formulation of the path-integral method allows for a numerically exact treatment of the coupling to the oscillator modes and moreover is general enough to provide a natural way to include Markovian processes that are sufficiently described by rate equations. We apply this new formalism to a model of a single semiconductor quantum dot which includes the coupling to longitudinal acoustic phonons for two cases: (a) external laser excitation taking into account a phenomenological radiative decay of the excited dot state and (b) a coupling of the quantum dot to a single mode of an optical cavity taking into account cavity photon losses.
Gapless modes of fractional quantum Hall edges: a Hamiltonian study
Nguyen, Hoang; Joglekar, Yogesh; Murthy, Ganpathy
2004-03-01
We study the collective modes of the fractional quantum Hall edge states using the Hamiltonian formalism [1]. In this theory, the composite fermions are fully interacting; the collective modes are obtained within a conserving approximation which respects the constraints [2]. We present the gapless edge-mode dispersions at 1/3 and 2/5 filling fractions of unreconstructed and reconstructed edges. The dispersions are found to be nonlinear due to the variation of the effective magnetic field on the composite fermions. The implications of our study to the tunneling experiments into the edge of a fractional quantum Hall system [3] are discussed*. 1. R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997). 2. G. Murthy, Phys. Rev. B 64, 195310 (2001). 3. A.M.Chang et. al., Phys. Rev. Lett. 86, 143 (2000). * Work supported by the NSF, Grant number DMR 031176.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Al-Hashimi, M.H., E-mail: hashimi@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Salman, M., E-mail: msalman@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Shalaby, A., E-mail: amshalab@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Physics Department, Faculty of Science, Mansoura University (Egypt); Wiese, U.-J., E-mail: wiese@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA (United States)
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.
Dridi, G; Julien, R; Hliwa, M; Joachim, C
2015-08-28
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.
Matrix elements of Lorentzian Hamiltonian constraint in loop quantum gravity
Alesci, Emanuele; Liegener, Klaus; Zipfel, Antonia
2013-10-01
The Hamiltonian constraint is the key element of the canonical formulation of loop quantum gravity (LQG) coding its dynamics. In Ashtekar-Barbero variables it naturally splits into the so-called Euclidean and Lorentzian parts. However, due to the high complexity of this operator, only the matrix elements of the Euclidean part have been considered so far. Here we evaluate the action of the full constraint, including the Lorentzian part. The computation requires heavy use of SU(2) recoupling theory and several tricky identities among n-j symbols are used to find the final result: these identities, together with the graphical calculus used to derive them, also simplify the Euclidean constraint and are of general interest in LQG computations.
Simulating Hamiltonians in Quantum Networks Efficient Schemes and Complexity Bounds
Wocjan, P; Janzing, D; Beth, T; Wocjan, Pawel; Roetteler, Martin; Janzing, Dominik; Beth, Thomas
2001-01-01
We address the problem of simulating pair-interaction Hamiltonians in n node quantum networks where the subsystems have arbitrary, possibly different, dimensions. We show that any pair-interaction can be used to simulate any other by applying sequences of appropriate local control sequences. Efficient schemes for decoupling and time reversal can be constructed from orthogonal arrays. Conditions on time optimal simulation are formulated in terms of spectral majorization of matrices characterizing the coupling parameters. Moreover, we consider a specific system of n harmonic oscillators with bilinear interaction. In this case, decoupling can efficiently be achieved using the combinatorial concept of difference schemes. For this type of interactions we present optimal schemes for inversion.
Harmonic bath averaged Hamiltonian: an efficient tool to capture quantum effects of large systems.
Yang, Yonggang; Liu, Xiaomeng; Meuwly, Markus; Xiao, Liantuan; Jia, Suotang
2012-11-26
Starting from a reaction path Hamiltonian, a suitably reduced harmonic bath averaged Hamiltonian is derived by averaging over all the normal mode coordinates. Generalization of the harmonic bath averaged Hamiltonian to any dimensions are performed and the feasibility to use a linear reaction path/surface are investigated and discussed. By use of a harmonic bath averaged Hamiltonian, the tunneling splitting and proton transfer dynamics of malonaldehyde is briefly discussed and shows that the harmonic bath averaged Hamiltonian is an efficient tool to capture quantum effects in larger systems.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.
A Class of Asymmetric Gapped Hamiltonians on Quantum Spin Chains and its Characterization II
Ogata, Yoshiko
2016-12-01
We give a characterization of the class of gapped Hamiltonians introduced in Part I (Ogata, A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015). The Hamiltonians in this class are given as MPS (Matrix product state) Hamiltonians. In Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), we list up properties of ground state structures of Hamiltonians in this class. In this Part II, we show the converse. Namely, if a (not necessarily MPS) Hamiltonian H satisfies five of the listed properties, there is a Hamiltonian H' from the class by Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), satisfying the following: The ground state spaces of the two Hamiltonians on the infinite interval coincide. The spectral projections onto the ground state space of H on each finite intervals are approximated by that of H' exponentially well, with respect to the interval size. The latter property has an application to the classification problem with open boundary conditions.
A Class of Asymmetric Gapped Hamiltonians on Quantum Spin Chains and its Characterization II
Ogata, Yoshiko
2016-06-01
We give a characterization of the class of gapped Hamiltonians introduced in Part I (Ogata, A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015). The Hamiltonians in this class are given as MPS (Matrix product state) Hamiltonians. In Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), we list up properties of ground state structures of Hamiltonians in this class. In this Part II, we show the converse. Namely, if a (not necessarily MPS) Hamiltonian H satisfies five of the listed properties, there is a Hamiltonian H' from the class by Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), satisfying the following: The ground state spaces of the two Hamiltonians on the infinite interval coincide. The spectral projections onto the ground state space of H on each finite intervals are approximated by that of H' exponentially well, with respect to the interval size. The latter property has an application to the classification problem with open boundary conditions.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
Pang, Shengshi; Jordan, Andrew N.
2017-01-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428
Multi-Hamiltonian structure of Lotka-Volterra and quantum Volterra models
Cronstroem, C. [Nordisk Inst. for Teoretisk Fysik (NORDITA), Copenhagen (Denmark); Noga, M. [Department of Theoretical Physics, Comenius University, Mlynska Dolina, Bratislava (Slovakia)
1995-07-10
We consider evolution equations of the Lotka-Volterra type, and elucidate especially their formulation as canonical Hamiltonian systems. The general conditions under which these equations admit several conserved quantities (multi-Hamiltonians) are analysed. A special case, which is related to the Liouville model on a lattice, is considered in detail, both as a classical and as a quantum system. (orig.).
Bosonic Operator Realization of Hamiltonian for a Superconducting Quantum Interference Device
FAN Hong-Yi
2004-01-01
Based on the appropriate bosonic phase operator diagonalized in the entangled state representation we construct the Hamiltonian operator model for a superconducting quantum interference device. The current operator and voltage operator equations are derived.
Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation.
Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter
2013-08-14
The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.
Quantum search on the two-dimensional lattice using the staggered model with Hamiltonians
Portugal, R.; Fernandes, T. D.
2017-04-01
Quantum search on the two-dimensional lattice with one marked vertex and cyclic boundary conditions is an important problem in the context of quantum algorithms with an interesting unfolding. It avails to test the ability of quantum walk models to provide efficient algorithms from the theoretical side and means to implement quantum walks in laboratories from the practical side. In this paper, we rigorously prove that the recent-proposed staggered quantum walk model provides an efficient quantum search on the two-dimensional lattice, if the reflection operators associated with the graph tessellations are used as Hamiltonians, which is an important theoretical result for validating the staggered model with Hamiltonians. Numerical results show that on the two-dimensional lattice staggered models without Hamiltonians are not as efficient as the one described in this paper and are, in fact, as slow as classical random-walk-based algorithms.
Quantum System Identification by Bayesian Analysis of Noisy Data: Beyond Hamiltonian Tomography
Schirmer, S G
2009-01-01
We consider how to characterize the dynamics of a quantum system from a restricted set of initial states and measurements using Bayesian analysis. Previous work has shown that Hamiltonian systems can be well estimated from analysis of noisy data. Here we show how to generalize this approach to systems with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the process for a range of three-level quantum systems. The results suggest that the Bayesian estimation of the frequencies and dephasing rates is generally highly accurate and the main source of errors are errors in the reconstructed Hamiltonian basis.
The Global versus Local Hamiltonian Description of Quantum Input-Output Theory
Gough, John
2015-06-01
The aim of this paper is to derive the global Hamiltonian form for a quantum system and bath, or more generally a quantum network with multiple quantum input field connections, based on the local descriptions. We give a new simple argument which shows that the global Hamiltonian for a single Markov component arises as the singular perturbation of the free translation operator. We show that the Fermi analogue takes an equivalent form provided the parity of the coefficients is correctly specified. This allows us to immediately extend the theory of quantum feedback networks to Fermi systems.
A family of affine quantum group invariant integrable extensions of the Hubbard Hamiltonian
Avakyan, A. [Erevanskij Fizicheskij Inst., Erevan (Armenia); Hakobyan, T. [Erevanskij Fizicheskij Inst., Erevan (Armenia); Sedrakyan, A. [Erevanskij Fizicheskij Inst., Erevan (Armenia)
1997-04-21
We construct a family of spin chain Hamiltonians, which have the affine quantum group symmetry U{sub q}g. Their eigenvalues coincide with the eigenvalues of the usual spin chain Hamiltonians, but have the degeneracy of levels, corresponding to the affine U{sub q}g. The space of states of these spin chains is formed by the tensor product of the fully reducible representations of the quantum group. The fermionic representations of the constructed spin chain Hamiltonians show that we have obtained new extensions of the Hubbard Hamiltonians. All of them are integrable and have the affine quantum group symmetry. The exact ground state of such type of model is presented, exhibiting superconducting behavior via the {eta}-pairing mechanism. (orig.).
A New Class of non-Hermitian Quantum Hamiltonians with PT Symmetry
Jones-Smith, Katherine
2009-01-01
In a remarkable development Bender and coworkers have shown that it is possible to formulate quantum mechanics consistently even if the Hamiltonian and other observables are not Hermitian. Their formulation, dubbed PT quantum mechanics, replaces hermiticity by another set of requirements, notably that the Hamiltonian should be invariant under the discrete symmetry PT, where P denotes parity and T denotes time reversal. All prior work has focused on the case that time reversal is even (T^2 = 1). We generalize the formalism to the case of odd time reversal (T^2 = -1). We discover an analogue of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism. Odd time reversal symmetry applies to fermionic systems including quarks and leptons and a plethora of models in nuclear, atomic and condensed matter physics. PT quantum mechanics makes it possible to enlarge the set of possible Hamiltonians that phy...
Ramezanpour, A.
2016-06-01
We study the inverse problem of constructing an appropriate Hamiltonian from a physically reasonable set of orthogonal wave functions for a quantum spin system. Usually, we are given a local Hamiltonian and our goal is to characterize the relevant wave functions and energies (the spectrum) of the system. Here, we take the opposite approach; starting from a reasonable collection of orthogonal wave functions, we try to characterize the associated parent Hamiltonians, to see how the wave functions and the energy values affect the structure of the parent Hamiltonian. Specifically, we obtain (quasi) local Hamiltonians by a complete set of (multilayer) product states and a local mapping of the energy values to the wave functions. On the other hand, a complete set of tree wave functions (having a tree structure) results to nonlocal Hamiltonians and operators which flip simultaneously all the spins in a single branch of the tree graph. We observe that even for a given set of basis states, the energy spectrum can significantly change the nature of interactions in the Hamiltonian. These effects can be exploited in a quantum engineering problem optimizing an objective functional of the Hamiltonian.
Trivial Low Energy States for Commuting Hamiltonians, and the Quantum PCP Conjecture
Hastings, M B
2012-01-01
We consider whether or not Hamiltonians which are sums of commuting projectors have "trivial" ground states which can be constructed by a local quantum circuit of bounded depth and range acting on a product state. While the toric code only has nontrivial ground states, commuting projector Hamiltonians which are sums of two-body interactions have trivial ground states. We define an "interaction complex" for a Hamiltonian, generalizing the interaction graph, and we show that if this complex can be continuously mapped to a 1-complex using a map with bounded diameter of pre-images then the Hamiltonian has a trivial ground state assuming one technical condition on the Hamiltonian (this condition holds for all stabilizer Hamiltonians, and we also prove the result for all Hamiltonians under an assumption on the 1-complex). While this includes cases considered by Ref., it also includes other Hamiltonians whose interaction complexes cannot be coarse-grained into the case of Ref. One motivation for this is the quantum ...
Rotationally Invariant Hamiltonians for Nuclear Spectra Based on Quantum Algebras
Bonatsos, D; Raychev, P P; Terziev, P A; Bonatsos, Dennis
2002-01-01
The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational nuclear spectra is explicitly proved and a connection of this Hamiltonian to the formalisms of Amal'sky and Harris is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITO) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced, and its connection to the Harris formalism is established. Numerical tests in a series of Th isotopes are provided.
Quantum Poincare Section of a Two-Dimensional hamiltonian in a Coherent State Representation
金迎新; 贺凯芬
2002-01-01
We study the quantum behaviour of a quasi-integrable Hamiltonian. The unperturbed Hamiltonian displays degeneracies of energy levels, which become avoided crossings under a nonintegrable perturbation. In this twodimensional system, the quantum Poincaré section plot is constructed in the coherent state representation with the restriction that the centres of the wavepackets are confined at the classical surface of constant energy. It is found that the quantum Poincaré section plot obtained in this way provides an evident counterpart of the classical system.
Partial dynamical symmetry in quantum Hamiltonians with higher-order terms
García-Ramos, J E; Van Isacker, P
2008-01-01
A generic procedure is proposed to construct many-body quantum Hamiltonians with partial dynamical symmetry. It is based on a tensor decomposition of the Hamiltonian and allows the construction of a hierarchy of interactions that have selected classes of solvable states. The method is illustrated in the SO(6) limit of the interacting boson model of atomic nuclei and applied to the nucleus $^{196}$Pt.
Partial dynamical symmetry in quantum Hamiltonians with higher-order terms.
García-Ramos, J E; Leviatan, A; Van Isacker, P
2009-03-20
A generic procedure is proposed to construct many-body quantum Hamiltonians with partial dynamical symmetry. It is based on a tensor decomposition of the Hamiltonian and allows the construction of a hierarchy of interactions that have selected classes of solvable states. The method is illustrated in the SO(6) limit of the interacting boson model of atomic nuclei and applied to the nucleus 196Pt.
An optimum Hamiltonian for non-Hermitian quantum evolution and the complex Bloch sphere
Nesterov, Alexander I., E-mail: nesterov@cencar.udg.m [Departamento de Fisica, CUCEI, Universidad de Guadalajara, Av. Revolucion 1500, Guadalajara, CP 44420, Jalisco (Mexico)
2009-09-28
For a quantum system governed by a non-Hermitian Hamiltonian, we studied the problem of obtaining an optimum Hamiltonian that generates nonunitary transformations of a given initial state into a certain final state in the smallest time tau. The analysis is based on the relationship between the states of the two-dimensional subspace of the Hilbert space spanned by the initial and final states and the points of the two-dimensional complex Bloch sphere.
Hamiltonian approach to GR. Pt. 2. Covariant theory of quantum gravity
Cremaschini, Claudio [Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics, Opava (Czech Republic)
2017-05-15
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of covariant quantum gravity (CQG-theory). The treatment is founded on the recently identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave function are realized in 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant. (orig.)
Quantum simulation of pairing Hamiltonians with nearest-neighbor-interacting qubits
Wang, Zhixin; Gu, Xiu; Wu, Lian-Ao; Liu, Yu-xi
2016-06-01
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement "quantum simulators." Quantum simulators are physical setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulating pairing Hamiltonians. The fidelity of the target states corresponding to each algorithm is numerically studied. We also compare algorithms designed for different types of experimentally available Hamiltonians and analyze their complexity. Furthermore, we design a measurement scheme to extract energy spectra from the simulators. Our simulation algorithms might be feasible with state-of-the-art technology in solid-state quantum devices.
(3+1)-Dimensional Quantum Mechanics from Monte Carlo Hamiltonian: Harmonic Oscillator
LUO Xiang-Qian; XU Hao; YANG Jie-Chao; WANG Yu-Li; CHANG Di; LIN Yin; Helmut Kroger
2001-01-01
In Lagrangian formulation, it is extremely difficult to compute the excited spectrum and wavefunctions ora quantum theory via Monte Carlo methods. Recently, we developed a Monte Carlo Hamiltonian method for investigating this hard problem and tested the algorithm in quantum-mechanical systems in 1+1 and 2t1 dimensions. In this paper we apply it to the study of thelow-energy quantum physics of the (3+1)-dimensional harmonic oscillator.``
Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.
Gosset, David; Terhal, Barbara M; Vershynina, Anna
2015-04-10
We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.
Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers
Frenkel, Edward
2016-01-01
We prove a system of relations in the Grothendieck ring of the category O of representations of the Borel subalgebra of an untwisted quantum affine algebra U_q(g^) introduced in [HJ]. This system was discovered in [MRV1, MRV2], where it was shown that solutions of this system can be attached to certain affine opers for the Langlands dual affine Kac-Moody algebra of g^, introduced in [FF5]. Together with the results of [BLZ3, BHK], which enable one to associate quantum g^-KdV Hamiltonians to representations from the category O, this provides strong evidence for the conjecture of [FF5] linking the spectra of quantum g^-KdV Hamiltonians and affine opers for the Langlands dual affine algebra. As a bonus, we obtain a direct and uniform proof of the Bethe Ansatz equations for a large class of quantum integrable models associated to arbitrary untwisted quantum affine algebras, under a mild genericity condition.
Unconstrained Hamiltonian formulation of low energy SU(3) Yang-Mills quantum theory
Pavel, Hans-Peter
2012-01-01
An unconstrained Hamiltonian formulation of the SU(3) Yang-Mills quantum mechanics of spatially constant fields is given using the method of minimal embedding of SU(2) into SU(3) by Kihlberg and Marnelius. Using a canonical transformation of the gluon fields to a new set of adapted coordinates (a non-standard type polar decomposition), which Abelianizes the Non-Abelian Gauss law constraints to be implemented, the corresponding unconstrained Hamiltonian and total angular momentum are derived. This reduces the colored spin-1 gluons to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields. The obtained unconstrained Hamiltonian is then rewritten into a form, which separates the rotational from the scalar degrees of freedom. It is shown that the chromomagnetic potential has classical zero-energy valleys for two arbitrarily large classical glueball fields, which are the unconstrained analogs of the well-known "constant Abelian fields". On the quantum level, practically all glueball excitation e...
Simulation of electronic structure Hamiltonians in a superconducting quantum computer architecture
Kaicher, Michael; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics, Haverford College, Haverford, Pennsylvania 19041 (United States)
2015-07-01
Quantum chemistry has become one of the most promising applications within the field of quantum computation. Simulating the electronic structure Hamiltonian (ESH) in the Bravyi-Kitaev (BK)-Basis to compute the ground state energies of atoms/molecules reduces the number of qubit operations needed to simulate a single fermionic operation to O(log(n)) as compared to O(n) in the Jordan-Wigner-Transformation. In this work we will present the details of the BK-Transformation, show an example of implementation in a superconducting quantum computer architecture and compare it to the most recent quantum chemistry algorithms suggesting a constant overhead.
Quantum phase transitions in an effective Hamiltonian: fast and slow systems
Sainz, I [School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum 229, SE-164 40 Kista (Sweden); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico); Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)], E-mail: klimov@cencar.udg.mx
2008-09-05
An effective Hamiltonian describing interaction between generic fast and slow systems is obtained in the strong interaction limit. The result is applied for studying the effect of quantum phase transition as a bifurcation of the ground state of the slow subsystem. Examples such as atom-field and atom-atom interactions are analyzed in detail.
Exploiting time-independent Hamiltonian structure as controls for manipulating quantum dynamics.
Beltrani, Vincent; Rabitz, Herschel
2012-09-07
The opportunities offered by utilizing time-independent Hamiltonian structure as controls are explored for manipulating quantum dynamics. Two scenarios are investigated using different manifestations of Hamiltonian structure to illustrate the generality of the concept. In scenario I, optimally shaped electrostatic potentials are generated to flexibly control electron scattering in a two-dimensional subsurface plane of a semiconductor. A simulation is performed showing the utility of optimally setting the individual voltages applied to a multi-pixel surface gate array in order to produce a spatially inhomogeneous potential within the subsurface scattering plane. The coherent constructive and destructive electron wave interferences are manipulated by optimally adjusting the potential shapes to alter the scattering patterns. In scenario II, molecular vibrational wave packets are controlled by means of optimally selecting the Hamiltonian structure in cooperation with an applied field. As an illustration of the concept, a collection (i.e., a level set) of dipole functions is identified where each member serves with the same applied electric field to produce the desired final transition probability. The level set algorithm additionally found Hamiltonian structure controls exhibiting desirable physical properties. The prospects of utilizing the applied field and Hamiltonian structure simultaneously as controls is also explored. The control scenarios I and II indicate the gains offered by algorithmically guided molecular or material discovery for manipulating quantum dynamics phenomenon.
Hamiltonian cosmological perturbation theory with loop quantum gravity corrections
Bojowald, M; Kagan, M; Singh, P; Skirzewski, A; Bojowald, Martin; Hern\\'andez, Hector H.; Kagan, Mikhail; Singh, Parampreet; Skirzewski, Aureliano
2006-01-01
Cosmological perturbation equations are derived systematically in a canonical scheme based on Ashtekar variables. A comparison with the covariant derivation and various subtleties in the calculation and choice of gauges are pointed out. Nevertheless, the treatment is more systematic when correction terms of canonical quantum gravity are to be included. This is done throughout the paper for one characteristic modification expected from loop quantum gravity.
Lopez-Moreno, Enrique; Grether, M; Velazquez, Victor, E-mail: elm@hp.fciencias.unam.mx [Facultad de Ciencias, Departamento de Fisica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, 04510 Mexico DF (Mexico)
2011-11-25
A general spin system with a nonaxially symmetric Hamiltonian containing J{sub x}, J{sub z}-linear and J{sub z}-quadratic terms, widely used in many-body fermionic and bosonic systems and in molecular magnetism, is considered for the variations of general parameters describing intensity interaction changes of each of its terms. For this model Hamiltonian, a semiclassical energy surface (ES) is obtained by means of the coherent-state formalism. An analysis of this ES function, based on catastrophe theory, determines the separatrix in the control parameter space of the system Hamiltonian: the loci of singularities representing semiclassical phase transitions. Here we show that distinct regions of qualitatively different spectrum structures, as well as a singular behavior of quantum states, are ruled by this separatrix: here we show that the separatrix not only describes ground-state singularities, which have been associated with quantum phase transitions, but also reveals the structure of the excited spectrum, distinguishing different quantum phases within the parameter space. Finally, we consider magnetic susceptibility and heat capacity of the system at finite temperature, in order to study thermal properties and thermodynamical phase transitions in the perspective of the separatrix of this Hamiltonian system. (paper)
Hamiltonian approach to the dynamics of Ehrenfest expectation values and Gaussian quantum states
Bonet-Luz, Esther
2015-01-01
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical operators are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest's theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the `Ehrenfest group'. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated to a semidirect-product subgroup of the Ehrenfest group, which is called the Jacobi group. This structure produces new energy-conserving terms in a class of Gaussian moment models (previously appeared in the chemical physics literature) that suffer from lack of energy conservation ...
Hamiltonian light-front field theory and quantum chromodynamics
Perry, R J
1994-01-01
Light-front coordinates offer a scenario in which a constituent picture of hadron structure can emerge from QCD, after several difficulties are addressed. Field theoretic difficulties force us to introduce cutoffs that violate Lorentz covariance and gauge invariance, and a new renormalization group formalism based on a similarity transformation is used with coupling coherence to fix cuonterterms that restore these symmetries. The counterterms contain functions of longitudinal momentum fractions that severely complicate renormalization, but they also offer possible resolutions of apparent contradictions between the constituent picture and QCD. The similarity transformation and coupling coherence are applied to QED; and it is shown that the resultant Hamiltonian leads to standard lowest order bound state results, with the Coulomb interaction emerging naturally. The same techniques are applied to QCD and with physically motivated assumptions it is shown that a simple confinement mechanism appears. Bare `masses' ...
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Moretti, Valter
2016-01-01
This work concerns some issues about the interplay of standard and geometric (Hamiltonian) approaches to finite-dimensional quantum mechanics, formulated in the projective space. Our analysis relies upon the notion and the properties of so-called frame functions, introduced by A.M. Gleason to prove his celebrated theorem. In particular, the problem of associating quantum state with positive Liouville densities is tackled from an axiomatic point of view, proving a theorem classifying all possible correspondences. A similar result is established for classical observables representing quantum ones. These correspondences turn out to be encoded in a one-parameter class and, in both cases, the classical objects representing quantum ones result to be frame functions. The requirements of $U(n)$ covariance and (convex) linearity play a central r\\^ole in the proof of those theorems. A new characterization of classical observables describing quantum observables is presented, together with a geometric description of the ...
Hamiltonian approach to GR - Part 2: covariant theory of quantum gravity
Cremaschini, Claudio
2016-01-01
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of Covariant Quantum-Gravity (CQG-theory). The treatment is founded on the recently-identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly-covariant Hamilton equations and the related Hamilton-Jacobi theory. As shown here the connection with CQG-theory is achieved via the classical GR Hamilton-Jacobi equation, leading to the realization of the CQG-wave equation in 4-scalar form for the corresponding CQG-state and wave-function. The new quantum wave equation exhibits well-known formal properties characteristic of quantum mechanics, including the validity of quantum hydrodynamic equations and suitably-generalized Heisenberg inequalities. In addition, it recovers the classical GR equations in the semiclassical limit, while admitting the possibility of developing further perturbative approximation schemes. Applications of the theory are po...
Solving Quantum-Nonautonomous System with Non-Hermitian Hamiltonians by Algebraic Method
WEI Lian-Fu; WANG Shun-Jin
2001-01-01
A convenient method to exactly solve the quantum-nonautonomous systems with non-Hermitian Hamiltonians is proposed. It is shown that a nonadiabatic complete biorthonormal set can be easily obtained by the gauge transformation method in which the algebraic structure of systems has been used. The nonunitary evolution operator is also found by choosing a special gauge function. All auxiliary parameters introduced in the present approach are only determined by some algebraic equations. The dynamics of two quantum-nonautonomous systems ruled by non-Hermitian Hamiltonians, including a two-photon ionization process involving two-state only and a mesoscopic RLC circuit with a source, are treated as the demonstration of our general approach.``
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Caticha, Ariel; Bartolomeo, Daniel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States); Reginatto, Marcel [Physicalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)
2015-01-13
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.
PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics
Fring, Andreas; Jones, Hugh; Znojil, Miloslav
2008-06-01
Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the
Interpolation approach to Hamiltonian-varying quantum systems and the adiabatic theorem
Pan, Yu; James, Matthew R. [Australian National University, Research School of Engineering, Canberra (Australia); Miao, Zibo [The University of Melbourne, Department of Electrical and Electronic Engineering, Melbourne (Australia); Amini, Nina H. [CNRS, Laboratoire des Signaux et Systemes (L2S) Supelec, Gif-Sur-Yvette (France); Ugrinovskii, Valery [University of New South Wales at ADFA, School of Engineering and Information Technology, Canberra (Australia)
2015-12-15
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure resembles the excitation energy or excess work performed in thermodynamics, which can be taken as the error of adiabatic approximation. We prove that under certain conditions, this error can be estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not linearly proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example in which the applicability of the adiabatic theorem is questionable. (orig.)
Chandrashekar, C M
2013-10-03
From the unitary operator used for implementing two-state discrete-time quantum walk on one-, two- and three- dimensional lattice we obtain a two-component Dirac-like Hamiltonian. In particular, using different pairs of Pauli basis as position translation states we obtain three different form of Hamiltonians for evolution on one-dimensional lattice. We extend this to two- and three-dimensional lattices using different Pauli basis states as position translation states for each dimension and show that the external coin operation, which is necessary for one-dimensional walk is not a necessary requirement for a walk on higher dimensions but can serve as an additional resource to control the dynamics. The two-component Hamiltonian we present here for quantum walk on different lattices can serve as a general framework to simulate, control, and study the dynamics of quantum systems governed by Dirac-like Hamiltonian.
Rarely clicking Muller's ratchets
Eule, Stephan; Metzger, Jakob
2013-03-01
In populations of finite size, weakly deleterious mutations can fix by chance. This phenomenon has been termed Muller's ratchet and one click of the ratchet refers to the loss of the fittest class of individuals with the fewest mutations. Despite the simplicity of the classical mathematical model of Muller's ratchet, surprisingly little is known in the biologically relevant regime where a click of the ratchet is a rare event. Here we show numerically that in this regime the rate of the ratchet strongly depends on the applied microscopic formulation (Wiright-Fisher/Moran) of the model, thus challenging the widely used diffusion approximation. Furthermore by employing a WKB-approximation in a simplified model, we obtain analytical results for the click rate, which agree well with the click rate of the full ratchet of the corresponding microscopical model.
Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach.
Lee, Myeong H; Troisi, Alessandro
2016-06-07
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.
Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.
Anderson, James S M; Ayers, Paul W
2011-11-17
The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.
Reptation quantum Monte Carlo algorithm for lattice Hamiltonians with a directed-update scheme.
Carleo, Giuseppe; Becca, Federico; Moroni, Saverio; Baroni, Stefano
2010-10-01
We provide an extension to lattice systems of the reptation quantum Monte Carlo algorithm, originally devised for continuous Hamiltonians. For systems affected by the sign problem, a method to systematically improve upon the so-called fixed-node approximation is also proposed. The generality of the method, which also takes advantage of a canonical worm algorithm scheme to measure off-diagonal observables, makes it applicable to a vast variety of quantum systems and eases the study of their ground-state and excited-state properties. As a case study, we investigate the quantum dynamics of the one-dimensional Heisenberg model and we provide accurate estimates of the ground-state energy of the two-dimensional fermionic Hubbard model.
An efficient matrix product operator representation of the quantum chemical Hamiltonian
Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch [ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Dolfi, Michele, E-mail: dolfim@phys.ethz.ch; Troyer, Matthias, E-mail: troyer@phys.ethz.ch [ETH Zürich, Institute of Theoretical Physics, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)
2015-12-28
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.
Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Schuch, Dieter [Institut für Theoretische Physik, JW Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Rosas-Ortiz, Oscar [Physics Department, Cinvestav, A. P. 14-740, 07000 México D. F. (Mexico)
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.
2017-02-01
We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.
A Hamiltonian theory of adaptive resolution simulations of classical and quantum models of nuclei
Kreis, Karsten; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello
2015-03-01
Quantum delocalization of atomic nuclei strongly affects the physical properties of low temperature systems, such as superfluid helium. However, also at room temperature nuclear quantum effects can play an important role for molecules composed by light atoms. An accurate modeling of these effects is possible making use of the Path Integral formulation of Quantum Mechanics. In simulations, this numerically expensive description can be restricted to a small region of space, while modeling the remaining atoms as classical particles. In this way the computational resources required can be significantly reduced. In the present talk we demonstrate the derivation of a Hamiltonian formulation for a bottom-up, theoretically solid coupling between a classical model and a Path Integral description of the same system. The coupling between the two models is established with the so-called Hamiltonian Adaptive Resolution Scheme, resulting in a fully adaptive setup in which molecules can freely diffuse across the classical and the Path Integral regions by smoothly switching their description on the fly. Finally, we show the validation of the approach by means of adaptive resolution simulations of low temperature parahydrogen. Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
Graphical calculus of volume, inverse volume and Hamiltonian operators in loop quantum gravity
Yang, Jinsong; Ma, Yongge
2017-04-01
To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in loop quantum gravity. In this paper, the graphical calculus based on the original Brink graphical method is applied to loop quantum gravity along the line of previous work. The graphical method provides a very powerful technique for simplifying complicated calculations. The closed formula of the volume operator and the actions of the Euclidean Hamiltonian constraint operator and the so-called inverse volume operator on spin-network states with trivalent vertices are derived via the graphical method. By employing suitable and non-ambiguous graphs to represent the action of operators as well as the spin-network states, we use the simple rules of transforming graphs to obtain the resulting formula. Comparing with the complicated algebraic derivation in some literature, our procedure is more concise, intuitive and visual. The resulting matrix elements of the volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin-network states. Our results indicate some corrections to the existing results for the Hamiltonian operator and inverse volume operator in the literature.
Graphical calculus of volume, inverse volume and Hamiltonian operators in loop quantum gravity
Yang, Jinsong [Guizhou University, Department of Physics, Guiyang (China); Academia Sinica, Institute of Physics, Taipei (China); Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)
2017-04-15
To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in loop quantum gravity. In this paper, the graphical calculus based on the original Brink graphical method is applied to loop quantum gravity along the line of previous work. The graphical method provides a very powerful technique for simplifying complicated calculations. The closed formula of the volume operator and the actions of the Euclidean Hamiltonian constraint operator and the so-called inverse volume operator on spin-network states with trivalent vertices are derived via the graphical method. By employing suitable and non-ambiguous graphs to represent the action of operators as well as the spin-network states, we use the simple rules of transforming graphs to obtain the resulting formula. Comparing with the complicated algebraic derivation in some literature, our procedure is more concise, intuitive and visual. The resulting matrix elements of the volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin-network states. Our results indicate some corrections to the existing results for the Hamiltonian operator and inverse volume operator in the literature. (orig.)
He, Lewei; Wang, Wen-Ge
2014-02-01
We study the problem of the basis of an open quantum system, under a quantum chaotic environment, which is preferred in view of its stationary reduced density matrix (RDM), that is, the basis in which the stationary RDM is diagonal. It is shown that, under an initial condition composed of sufficiently many energy eigenstates of the total system, such a basis is given by the eigenbasis of a renormalized self-Hamiltonian of the system, in the limit of large Hilbert space of the environment. Here, the renormalized self-Hamiltonian is given by the unperturbed self-Hamiltonian plus a certain average of the interaction Hamiltonian over the environmental degrees of freedom. Numerical simulations performed in two models, both with the kicked rotor as the environment, give results consistent with the above analytical predictions.
A transfer hamiltonian model for devices based on quantum dot arrays.
Illera, S; Prades, J D; Cirera, A; Cornet, A
2015-01-01
We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.
A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays
S. Illera
2015-01-01
Full Text Available We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.
The role of the Hamiltonian in the interpretation of quantum mechanics
Castagnino, M [CONICET-Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio. Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina); Lombardi, O [CONICET-Unversidad de Buenos Aires. Crisologo Larralde 3440, 1430, Buenos Aires (Argentina)], E-mail: mariocastagnino@citynet.net.ar, E-mail: olimpiafilo@arnet.com.ar
2008-08-15
In this paper we propose a new realist, non-collapse interpretation of quantum mechanics, which moves away from the prevailing trend in the subject by paying special attention to the physical relevance of the interpretation. In particular, our proposal endows the Hamiltonian of the system, systematically ignored in the traditional interpretations, with a central role: it distinguishes between systems and subsystems and is the main ingredient in the selection of the definite-valued observables. We show how this interpretation solves the measurement problem, both in the ideal and in the non-ideal version, and we argue for the physical relevance of the new definite-value assignment.
Biswas, P K; Gogonea, V
2005-10-22
We describe a regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical (QM)-molecular-mechanical (MM) calculations. To remedy the nonphysical QM/MM Coulomb interaction at short distances arising from a point electrostatic potential (ESP) charge of the MM atom and also to accommodate the effect of polarized MM atom in the coupling Hamiltonian, we propose a partial-wave expansion of the ESP charge and describe the effect of a s-wave expansion, extended over the covalent radius r(c), of the MM atom. The resulting potential describes that, at short distances, large scale cancellation of Coulomb interaction arises intrinsically from the localized expansion of the MM point charge and the potential self-consistently reduces to 1r(c) at zero distance providing a renormalization to the Coulomb energy near interatomic separations. Employing this renormalized Hamiltonian, we developed an interface between the Car-Parrinello molecular-dynamics program and the classical molecular-dynamics simulation program Groningen machine for chemical simulations. With this hybrid code we performed QM/MM calculations on water dimer, imidazole carbon monoxide (CO) complex, and imidazole-heme-CO complex with CO interacting with another imidazole. The QM/MM results are in excellent agreement with experimental data for the geometry of these complexes and other computational data found in literature.
Yelnykov, O V
2005-01-01
This thesis addresses three topics: calculation of the invariant measure for the pure Yang-Mills configuration space in (3 + 1) dimensions, Hamiltonian analysis of the pure Chern-Simons theory on the noncommutative plane and noncommutative quantum mechanics in the presence of singular potentials. In Chapter 1 we consider a gauge-invariant Hamiltonian analysis for Yang-Mills theories in three spatial dimensions. The gauge potentials are parameterized in terms of a matrix variable which facilitates the elimination of the gauge degrees of freedom. We develop an approximate calculation of the volume element on the gauge-invariant configuration space. We also make a rough estimate of the ratio of 0++ glueball mass and the square root of string tension by comparison with (2 + 1)-dimensional Yang-Mills theory. In Chapter 2 the Hamiltonian analysis of the pure Chern- Simons theory on the noncommutative plane is performed. We use the techniques of geometric quantization to show that the classical reduced phase space o...
Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J Miguel
2013-05-21
We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the particles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet under the influence of a temperature gradient are analyzed in detail. We show the emergence of a strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situations where none of those mechanisms leads to rectification when acting individually. The combined rectification mechanisms may lead to bidirectional transport and to new routes to segregation phenomena. Confined Brownian ratchets could be used to control transport in mesostructures and to engineer new and more efficient devices for transport at the nanoscale.
Murthy, Ganpathy
2001-11-01
A microscopic Hamiltonian theory of the fractional quantum Hall effect developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite-tempertature properties in fractional quantum Hall states. Initially proposed as a small-q theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all q in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-q structure factor as ν-->12. Finally, a formalism capable of dealing with a nonuniform ground-state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.
Giusteri, Giulio G.; Mattiotti, Francesco; Celardo, G. Luca
2015-03-01
We investigate the validity of the non-Hermitian Hamiltonian approach in describing quantum transport in disordered tight-binding networks connected to external environments, acting as sinks. Usually, non-Hermitian terms are added, on a phenomenological basis, to such networks to summarize the effects of the coupling to the sinks. Here, we consider a paradigmatic model of open quantum network for which we derive a non-Hermitian effective model, discussing its limit of validity by a comparison with the analysis of the full Hermitian model. Specifically, we consider a ring of sites connected to a central one-dimensional lead. The lead acts as a sink that absorbs the excitation initially present in the ring. The coupling strength to the lead controls the opening of the ring system. This model has been widely discussed in literature in the context of light-harvesting systems. We analyze the effectiveness of the non-Hermitian description both in absence and in presence of static disorder on the ring. In both cases, the non-Hermitian model is valid when the energy range determined by the eigenvalues of the ring Hamiltonian is smaller than the energy band in the lead. Under such condition, we show that results about the interplay of opening and disorder, previously obtained within the non-Hermitian Hamiltonian approach, remain valid when the full Hermitian model in presence of disorder is considered. The results of our analysis can be extended to generic networks with sinks, leading to the conclusion that the non-Hermitian approach is valid when the energy dependence of the coupling to the external environments is sufficiently smooth in the energy range spanned by the eigenstates of the network.
Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.
Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao
2013-09-10
Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.
Aldaya, V.; Navarro-Salas, J.
1991-04-01
We introduce a highest weight type representation of the Rovelli-Smolin algebra of loop observables for quantum gravity. In terms of this representation, new solutions of the hamiltonian and diffeomorphism constraints are given. Assuming the locality of the quantum hamiltonian constraint we show that any functional depending on the generalized link class of the disjoint union of arbitrary simple loops is a solution. Finally we argue that this is the general solution in the irreducible representation space. On leave of absence from the Departamento de Fisica Teorica, Universidad de Valencia, and IFIC, Centro Mixto Universidad de Valencia - CSIC, Burjassot, Spain.
Herbert, J.M.
1997-02-01
Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.
New quantum number for the many-electron Dirac-Coulomb Hamiltonian
Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš
2016-11-01
By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.
Ab-initio Hamiltonian approach to light nuclei and to quantum field theory
J P Vary; H Honkanen; Jun Li; P Maris; A M Shirokov; S J Brodsky; A Harindranath; G F De Teramond; E G Ng; C Yang; M Sosonkina
2010-07-01
Nuclear structure physics is on the threshold of confronting several long-standing problems such as the origin of shell structure from basic nucleon–nucleon and three-nucleon interactions. At the same time those interactions are being developed with increasing contact to QCD, the underlying theory of the strong interactions, using effective field theory. The motivation is clear – QCD offers the promise of great predictive power spanning phenomena on multiple scales from quarks and gluons to nuclear structure. However, new tools that involve non-perturbative methods are required to build bridges from one scale to the next. We present an overview of recent theoretical and computational progress with a Hamiltonian approach to build these bridges and provide illustrative results for the nuclear structure of light nuclei and quantum field theory.
R S Kaushal
2009-08-01
Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted $\\mathcal{PT}$ symmetry in the studies of complex power potentials as a particular case of the present general framework in which two additional degrees of freedom are produced by extending each coordinate and momentum into complex planes. With a view to account for the subjective component of physical reality inherent in the collected data, e.g., using a Chevreul (hand-held) pendulum, a generalization of the Hamilton’s principle of least action is suggested.
Covariant Quantum Gravity with Continuous Quantum Geometry I: Covariant Hamiltonian Framework
Pilc, Marián
2016-01-01
The first part of the series is devoted to the formulation of the Einstein-Cartan Theory within the covariant hamiltonian framework. In the first section the general multisymplectic approach is revised and the notion of the d-jet bundles is introduced. Since the whole Standard Model Lagrangian (including gravity) can be written as the functional of the forms, the structure of the d-jet bundles is more appropriate for the covariant hamiltonian analysis than the standard jet bundle approach. The definition of the local covariant Poisson bracket on the space of covariant observables is recalled. The main goal of the work is to show that the gauge group of the Einstein-Cartan theory is given by the semidirect product of the local Lorentz group and the group of spacetime diffeomorphisms. Vanishing of the integral generators of the gauge group is equivalent to equations of motion of the Einstein-Cartan theory and the local covariant algebra generated by Noether's currents is closed Lie algebra.
Stability and Clustering for Lattice Many-Body Quantum Hamiltonians with Multiparticle Potentials
Faria da Veiga, Paulo A.; O'Carroll, Michael
2015-11-01
We analyze a quantum system of N identical spinless particles of mass m, in the lattice Z^d, given by a Hamiltonian H_N=T_N+V_N, with kinetic energy T_N≥ 0 and potential V_N=V_{N,2}+V_{N,3} composed of attractive pair and repulsive 3-body contact-potentials. This Hamiltonian is motivated by the desire to understand the stability of quantum field theories, with massive single particles and bound states in the energy-momentum spectrum, in terms of an approximate Hamiltonian for their N-particle sector. We determine the role of the potentials V_{N,2} and V_{N,3} on the physical stability of the system, such as to avoid a collapse of the N particles. Mathematically speaking, stability is associated with an N-linear lower bound for the infimum of the H_N spectrum, \\underline{σ }(H_N)≥ -cN, for c>0 independent of N. For V_{N,3}=0, H_N is unstable, and the system collapses. If V_{N,3}not =0, H_N is stable and, for strong enough repulsion, we obtain \\underline{σ }(H_N)≥ -c' N, where c'N is the energy of ( N/2) isolated bound pairs. This result is physically expected. A much less trivial result is that, as N varies, we show [ \\underline{σ }(V_N)/N ] has qualitatively the same behavior as the well-known curve for minus the nuclear binding energy per nucleon. Moreover, it turns out that there exists a saturation value N_s of N at and above which the system presents a clustering: the N particles distributed in two fragments and, besides lattice translations of particle positions, there is an energy degeneracy of all two fragments with particle numbers N_r and N_s-N_r, with N_r=1,ldots ,N_s-1.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
Supersymmetric quantum mechanics (SUSY-QM) is shown to provide a novel approach to the construction of the initial states for the imaginary time propagation method to determine the first and second excited state energies and wave functions for a two-dimensional system. In addition, we show that all calculations are carried out in sector one and none are performed with the tensor sector two Hamiltonian. Through our tensorial approach to multidimensional supersymmetric quantum mechanics, we utilize the correspondence between the eigenstates of the sector one and two Hamiltonians to construct appropriate initial sector one states from sector two states for the imaginary time propagation method. The imaginary time version of the time-dependent Schrödinger equation is integrated to obtain the first and second excited state energies and wave functions using the split operator method for a two-dimensional anharmonic oscillator system and a two-dimensional double well potential. The computational results indicate that we can obtain the first two excited state energies and wave functions even when a quantum system does not exhibit any symmetry. Moreover, instead of dealing with the increasing computational complexity resulting from computations in the tensor sector two Hamiltonian, this study presents a new supersymmetric approach to calculations of accurate excited state energies and wave functions by directly using the scalar sector one Hamiltonian.
Hamiltonian Theory of the Fractional Quantum Hall Effect: Effect of Landau Level Mixing
Murthy, Ganpathy; Shankar, R.
2002-01-01
We derive an effective hamiltonian in the Lowest Landau Level (LLL) that incorporates the effects of Landau-level mixing to all higher Landau levels to leading order in the ratio of interaction energy to the cyclotron energy. We then transcribe the hamiltonian to the composite fermion basis using our hamiltonian approach and compute the effect of LL mixing on transport gaps.
Stabilizing multicellularity through ratcheting
Libby, Eric; Conlin, Peter L.; Kerr, Ben; Ratcliff, William C.
2016-01-01
The evolutionary transition to multicellularity probably began with the formation of simple undifferentiated cellular groups. Such groups evolve readily in diverse lineages of extant unicellular taxa, suggesting that there are few genetic barriers to this first key step. This may act as a double-edged sword: labile transitions between unicellular and multicellular states may facilitate the evolution of simple multicellularity, but reversion to a unicellular state may inhibit the evolution of increased complexity. In this paper, we examine how multicellular adaptations can act as evolutionary ‘ratchets’, limiting the potential for reversion to unicellularity. We consider a nascent multicellular lineage growing in an environment that varies between favouring multicellularity and favouring unicellularity. The first type of ratcheting mutations increase cell-level fitness in a multicellular context but are costly in a single-celled context, reducing the fitness of revertants. The second type of ratcheting mutations directly decrease the probability that a mutation will result in reversion (either as a pleiotropic consequence or via direct modification of switch rates). We show that both types of ratcheting mutations act to stabilize the multicellular state. We also identify synergistic effects between the two types of ratcheting mutations in which the presence of one creates the selective conditions favouring the other. Ratcheting mutations may play a key role in diverse evolutionary transitions in individuality, sustaining selection on the new higher-level organism by constraining evolutionary reversion. This article is part of the themed issue ‘The major synthetic evolutionary transitions’. PMID:27431522
Paradoxical ratcheting in cornstarch
Shinbrot, Troy; Rutala, Matthew; Montessori, Andrea; Prestininzi, Pietro; Succi, Sauro
2015-10-01
In this paper, we demonstrate that vertically vibrating a plate in a cornstarch suspension causes the suspension to vigorously ratchet up the plate. We show that this is a necessary consequence of the fact that cornstarch in water is shear thickening: when the plate moves up it opposes gravity and so the fluid stiffens; when it moves down it works with gravity and so the fluid flows. This produces asymmetric ratcheting that opposes gravity. We find several unusual states that result in this simple experimental system, and we reproduce the essential effect in two different numerical simulations.
Jeong Ryeol Choi
2015-01-01
Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.
Orsucci, Davide [Scuola Normale Superiore, I-56126 Pisa (Italy); Burgarth, Daniel [Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Facchi, Paolo; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Nakazato, Hiromichi; Yuasa, Kazuya [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy)
2015-12-15
The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.
Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices
Habib, K. M. Masum; Sajjad, Redwan N.; Ghosh, Avik W.
2016-03-01
Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.
Time Averaged Quantum Dynamics and the Validity of the Effective Hamiltonian Model
Gamel, Omar
2010-01-01
We develop a technique for finding the dynamical evolution in time of an averaged density matrix. The result is an equation of evolution that includes an Effective Hamiltonian, as well as decoherence terms in Lindblad form. Applying the general equation to harmonic Hamiltonians, we confirm a previous formula for the Effective Hamiltonian together with a new decoherence term which should in general be included, and whose vanishing provides the criteria for validity of the Effective Hamiltonian approach. Finally, we apply the theory to examples of the AC Stark Shift and Three- Level Raman Transitions, recovering a new decoherence effect in the latter.
Faucheux, L. P.; Bourdieu, L. S.; Kaplan, P. D.; Libchaber, A. J.
1995-02-01
We present an optical realization of a thermal ratchet. Directed motion of Brownian particles in water is induced by modulating in time a spatially periodic but asymmetric optical potential. The net drift shows a maximum as a function of the modulation period. The experimental results agree with a simple theoretical model based on diffusion.
Janzing, D; Janzing, Dominik; Beth, Thomas
2001-01-01
Estimating the eigenvalues of a unitary transformation U by standard phase estimation requires the implementation of controlled-U-gates which are not available if U is only given as a black box. We show that a simple trick allows to measure eigenvalues of U\\otimes U^\\dagger even in this case. Running the algorithm several times allows therefore to estimate the autocorrelation function of the density of eigenstates of U. This can be applied to find periodicities in the energy spectrum of a quantum system with unknown Hamiltonian if it can be coupled to a quantum computer.
Asplund, Erik; Klüner, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.
Brownian ratchets from statistical physics to bio and nano-motors
Cubero, David
2016-01-01
Illustrating the development of Brownian ratchets, from their foundations, to their role in the description of life at the molecular scale and in the design of artificial nano-machinery, this text will appeal to both advanced graduates and researchers entering the field. Providing a self-contained introduction to Brownian ratchets, devices which rectify microscopic fluctuations, Part I avoids technicalities and sets out the broad range of physical systems where the concept of ratchets is relevant. Part II supplies a single source for a complete and modern theoretical analysis of ratchets in regimes such as classical vs quantum and stochastic vs deterministic, and in Part III readers are guided through experimental developments in different physical systems, each highlighting a specific unique feature of ratchets. The thorough and systematic approach to the topic ensures that this book provides a complete guide to Brownian ratchets for newcomers and established researchers in physics, biology and biochemistry.
Multi-hamiltonian structure of Lotka-Volterra and quantum Volterra models
Cronström, C; Cronström, C; Noga, M
1994-01-01
We consider evolution equations of the Lotka-Volterra type, and elucidate especially their formulation as canonical Hamiltonian systems. The general conditions under which these equations admit several conserved quantities (multi-Hamiltonians) are analysed. A special case, which is related to the Liouville model on a lattice, is considered in detail, both as aclassical and as aquantal system
Implementing Demons and Ratchets
Peter M. Orem
2017-01-01
Full Text Available Experimental results show that ratchets may be implemented in semiconductor and chemical systems, bypassing the second law and opening up huge gains in energy production. This paper summarizes or describes experiments and results on systems that effect demons and ratchets operating in chemical or electrical domains. One creates temperature differences that can be harvested by a heat engine. A second produces light with only heat input. A third produces harvestable electrical potential directly. These systems share creating particles in one location, destroying them in another and moving them between locations by diffusion (Brownian motion. All absorb ambient heat as they produce other energy forms. None requires an external hot and cold side. The economic and social impacts of these conversions of ambient heat to work are, of course, well-understood and huge. The experimental results beg for serious work on the chance that they are valid.
Mathematical Aspects of Quantum Systems with a Pseudo-Hermitian Hamiltonian
Bebiano, N.; da Providência, J.; da Providência, J. P.
2016-04-01
A non-self-adjoint bosonic Hamiltonian H possessing real eigenvalues is investigated. It is shown that the operator can be diagonalized by making use of pseudo-bosonic operators. The biorthogonal sets of eigenvectors for the Hamiltonian and its adjoint are explicitly constructed. The positive definite operator which connects both sets of eigenvectors is also given. The dynamics of the model is briefly analyzed.
Mandrà, Salvatore; Katzgraber, Helmut G
2016-01-01
We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground-state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians, which introduce transitions between all states with equal weights, are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.
Mochon, C
2006-01-01
Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this paper, including oracle interrogation and the problem of computing the XOR of the hidden bits. Both of these problems are related to the study of geodesics on spheres with non-round metrics. For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a simple lower bound is proven that shows the problems require a query time proportional to n, even in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to a modest improvement to the protocol of Farhi and Gutmann.
The $SW(3/2,2)$ superconformal algebra via a Quantum Hamiltonian Reduction of $osp(3|2)$
Díaz, Lázaro O Rodríguez
2016-01-01
We prove that the family of non-linear $W$-algebras $SW(3/2,2)$ which are extensions of the $N=1$ superconformal algebra by a primary supercurrent of conformal weight $2$ can be realized as a quantum Hamiltonian reduction of the Lie superalgebra $osp(3|2)$. In consequence we obtain an explicit free field realization of the algebra in terms of the screening operators. At central charge $c=12$ the $SW(3/2,2)$ superconformal algebra corresponds to the superconformal algebra associated to sigma models based on eight-dimensional manifolds with special holonomy $Spin(7)$, i.e., the Shatashvili-Vafa $Spin(7)$ superconformal algebra.
Liu, Rui; Xiong, Hongwei; Yang, Minghui
2012-11-07
An eight-dimensional quantum mechanical Hamiltonian has been proposed based on Palma and Clary's model in which the non-reacting CZ(3) group keeps a C(3v) symmetry in the X + YCZ(3) ↔ XY + CZ(3) reaction J. Palma and D. C. Clary [J. Chem. Phys. 112, 1859 (2000)]. By transforming the original cartesian coordinate system (x, s) into a scaled polar coordinate system (q, γ), the vibrational Hamiltonian of CZ(3) group is expressed in a simple form with a clear physical picture. This Hamiltonian is used to investigate the H + CH(4) → H(2) + CH(3) reaction on the Jordan-Gilbert potential energy surface. The total reaction probabilities are calculated for the initial ground state, and umbrella, bending, symmetric, and asymmetric stretching excited states of CH(4) with total angular momentum J = 0. The integral cross sections for the reaction are also studied for these initial vibrational states with a centrifugal-sudden approximation. The total integral cross sections for the asymmetric stretching vibrational excited state are in good agreement with the experimental observations. The results also showed the difference of dynamical behavior between reactions from symmetric and asymmetric stretching excited states. The thermal rate constants are calculated for the temperature range T = 250-2000 K and compared with the experimental and other theoretical results.
Torres-Herrera, E J; Santos, Lea F
2013-10-01
We explore the role of the initial state on the onset of thermalization in isolated quantum many-body systems after a quench. The initial state is an eigenstate of an initial Hamiltonian H(I) and it evolves according to a different final Hamiltonian H(F). If the initial state has a chaotic structure with respect to H(F), i.e., if it fills the energy shell ergodically, thermalization is certain to occur. This happens when H(I) is a full random matrix, because its states projected onto H(F), are fully delocalized. The results for the observables then agree with those obtained with thermal states at infinite temperature. However, finite real systems with few-body interactions, as the ones considered here, are deprived of fully extended eigenstates, even when described by a nonintegrable Hamiltonian. We examine how the initial state delocalizes as it gets closer to the middle of the spectrum of H(F), causing the observables to approach thermal averages, be the models integrable or chaotic. Our numerical studies are based on initial states with energies that cover the entire lower half of the spectrum of one-dimensional Heisenberg spin-1/2 systems.
Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.
2017-09-01
The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.
Quantum Simulation of Pairing Hamiltonians with Nearest-Neighbor Interacting Qubits
Wang, Zhixin; Gu, Xiu; Wu, Lian-Ao; Liu, Yu-xi
2014-01-01
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement "quantum simulators". Quantum simulators are physical setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulat...
Olsen, Seth
2012-01-01
We propose a single effective Hamiltonian to describe the low-energy electronic structure of a series of symmetric cationic diarylmethanes, which are all bridge-substituted derivatives of Michler's Hydrol Blue. Three-state diabatic Hamiltonians for the dyes are calculated using four-electron three-orbital state-averaged complete active space self-consistent field and multi-state multi-reference perturbation theory models. The approach takes advantage of an isolobal analogy that can be established between the orbitals spanning the active spaces of the different substituted dyes. The solutions of the chemical problem are expressed in a diabatic Hilbert space that is analogous to classical resonance models. The effective Hamiltonians for all dyes can be fit to a single functional form that depends on the mixing angle between a bridge-charged diabatic state and a superposition representing the canonical resonance. We find that the structure of the bridge-charged state changes in a regular fashion across the serie...
Asymptotic freedom in the front-form Hamiltonian for quantum chromodynamics of gluons
Gomez-Rocha, Maria
2015-01-01
Asymptotic freedom of gluons in QCD is obtained in the leading terms of their renormalized Hamiltonian in the Fock space, instead of considering virtual Green's functions or scattering amplitudes. Namely, we calculate the three-gluon interaction term in the front-form Hamiltonian for effective gluons in the Minkowski space-time using the renormalization group procedure for effective particles (RGPEP), with a new generator. The resulting three-gluon vertex is a function of the scale parameter, $s$, that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant, $g_\\lambda$, depending on the associated momentum scale $\\lambda = 1/s$, is calculated in the series expansion in powers of $g_0 = g_{\\lambda_0}$ up to the terms of third order, assuming some small value for $g_0$ at some large $\\lambda_0$. The result exhibits the same finite sensitivity to small-$x$ regularization as the one obtained in an earlier RGPEP calculation, but the new calculation is simpler...
Rotational ratchets with dipolar interactions.
Jäger, Sebastian; Klapp, Sabine H L
2012-12-01
We report results from a computer simulation study on the rotational ratchet effect in systems of magnetic particles interacting via dipolar interactions. The ratchet effect consists of directed rotations of the particles in an oscillating magnetic field, which lacks a net rotating component. Our investigations are based on Brownian dynamics simulations of such many-particle systems. We investigate the influence of both the random and deterministic contributions to the equations of motion on the ratchet effect. As a main result, we show that dipolar interactions can have an enhancing as well as a dampening effect on the ratchet behavior depending on the dipolar coupling strength of the system under consideration. The enhancement is shown to be caused by an increase in the effective field on a particle generated by neighboring magnetic particles, while the dampening is due to restricted rotational motion in the effective field. Moreover, we find a nontrivial influence of the short-range, repulsive interaction between the particles.
Ratcheted electrophoresis of Brownian particles
Kowalik, Mikołaj; Bishop, Kyle J. M.
2016-05-01
The realization of nanoscale machines requires efficient methods by which to rectify unbiased perturbations to perform useful functions in the presence of significant thermal noise. The performance of such Brownian motors often depends sensitively on their operating conditions—in particular, on the relative rates of diffusive and deterministic motions. In this letter, we present a type of Brownian motor that uses contact charge electrophoresis of a colloidal particle within a ratcheted channel to achieve directed transport or perform useful work against an applied load. We analyze the stochastic dynamics of this model ratchet to show that it functions under any operating condition—even in the limit of strong thermal noise and in contrast to existing ratchets. The theoretical results presented here suggest that ratcheted electrophoresis could provide a basis for electrochemically powered, nanoscale machines capable of transport and actuation of nanoscale components.
Transformation design and nonlinear Hamiltonians
Brougham, Thomas; Jex, Igor
2009-01-01
We study a class of nonlinear Hamiltonians, with applications in quantum optics. The interaction terms of these Hamiltonians are generated by taking a linear combination of powers of a simple `beam splitter' Hamiltonian. The entanglement properties of the eigenstates are studied. Finally, we show how to use this class of Hamiltonians to perform special tasks such as conditional state swapping, which can be used to generate optical cat states and to sort photons.
Competition and the Ratchet Effect
Charness, Gary; Kuhn, Peter; Villeval, Marie-Claire
2011-01-01
Working Paper GATE 2008-28; International audience; The 'ratchet effect' refers to a situation where a principal uses private information that is revealed by an agent's early actions to the agent's later disadvantage, in a context where binding multi-period contracts are not enforceable. In a simple, context-rich environment, we experimentally study the robustness of the ratchet effect to the introduction of ex post competition for principals or agents. While we do observe substantial and sig...
Anisimov, Victor M; Cavasotto, Claudio N
2011-06-23
To build the foundation for accurate quantum mechanical (QM) simulation of biomacromolecules in an aqueous environment, we undertook the optimization of the COnductor-like Screening MOdel (COSMO) atomic radii and atomic surface tension coefficients for different semiempirical Hamiltonians adhering to the same computational conditions recently followed in the simulation of biomolecular systems. This optimization was achieved by reproducing experimental hydration free energies of a set consisting of 507 neutral and 99 ionic molecules. The calculated hydration free energies were significantly improved by introducing a multiple atomic-type scheme that reflects different chemical environments. The nonpolar contribution was treated according to the scaled particle Claverie-Pierotti formalism. Separate radii and surface tension coefficient sets have been developed for AM1, PM3, PM5, and RM1 semiempirical Hamiltonians, with an average unsigned error for neutral molecules of 0.64, 0.66, 0.73, and 0.71 kcal/mol, respectively. Free energy calculation of each molecule took on average 0.5 s on a single processor. The new sets of parameters will enhance the quality of semiempirical QM calculations using COSMO in biomolecular systems. Overall, these results further extend the utility of QM methods to chemical and biological systems in the condensed phase.
Hamiltonian formulations of Yang-Mills quantum theory and the Gribov problem
Heinzl, T
1996-01-01
We review the status of quantising (non-abelian) gauge theories using different versions of a Hamiltonian formulation corresponding to Dirac's instant and front form of dynamics, respectively. In order to control infrared divergences we work in a finite spatial volume, chosing a torus geometry for convenience. We focus on the determination of the physical configuration space of gauge invariant variables via gauge fixing. This naturally leads us to the issue of the Gribov problem. We discuss it for different gauge choices, in particular finite volume modifications of the axial gauge. Conventional and light-front quantisation are compared and the differences pointed out.
Spectral and Quantum Dynamical Properties of the Weakly Coupled Fibonacci Hamiltonian
Damanik, David; Gorodetski, Anton
2010-01-01
We consider the spectrum of the Fibonacci Hamiltonian for small values of the coupling constant. It is known that this set is a Cantor set of zero Lebesgue measure. Here we study the limit, as the value of the coupling constant approaches zero, of its thickness and its Hausdorff dimension. We prove that the thickness tends to infinity and, consequently, the Hausdorff dimension of the spectrum tends to one. We also show that at small coupling, all gaps allowed by the gap labeling theorem are o...
Filippone, Michele; Brouwer, Piet W.
2016-12-01
Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a δ function in position space. Whereas the leading-order contribution to the tunneling current is independent of the way this δ function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the δ function in the tunneling Hamiltonian, one may also obtain a finite tunneling current by invoking the ultraviolet cutoffs in a field-theoretic description of the electrons in the one-dimensional conductor, a procedure that is often used in the literature. For the latter case, we show that standard ultraviolet cutoffs lead to different results for the tunneling current in fermionic and bosonized formulations of the theory, when going beyond leading order in the tunneling amplitude. We show how to recover the standard fermionic result using the formalism of functional bosonization and revisit the tunneling current to leading order in the interacting case.
Swenson, David W H; Levy, Tal; Cohen, Guy; Rabani, Eran; Miller, William H
2011-04-28
A semiclassical approach is developed for nonequilibrium quantum transport in molecular junctions. Following the early work of Miller and White [J. Chem. Phys. 84, 5059 (1986)], the many-electron Hamiltonian in second quantization is mapped onto a classical model that preserves the fermionic character of electrons. The resulting classical electronic Hamiltonian allows for real-time molecular dynamics simulations of the many-body problem from an uncorrelated initial state to the steady state. Comparisons with exact results generated for the resonant level model reveal that a semiclassical treatment of transport provides a quantitative description of the dynamics at all relevant timescales for a wide range of bias and gate potentials, and for different temperatures. The approach opens a door to treating nontrivial quantum transport problems that remain far from the reach of fully quantum methodologies.
Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
Tamás Fülöp
2007-11-01
Full Text Available For a class of singular potentials, including the Coulomb potential (in three and less dimensions and $V(x = g/x^2$ with the coefficient $g$ in a certain range ($x$ being a space coordinate in one or more dimensions, the corresponding Schrödinger operator is not automatically self-adjoint on its natural domain. Such operators admit more than one self-adjoint domain, and the spectrum and all physical consequences depend seriously on the self-adjoint version chosen. The article discusses how the self-adjoint domains can be identified in terms of a boundary condition for the asymptotic behaviour of the wave functions around the singularity, and what physical differences emerge for different self-adjoint versions of the Hamiltonian. The paper reviews and interprets known results, with the intention to provide a practical guide for all those interested in how to approach these ambiguous situations.
Sardar, Subhankar; Paul, Amit Kumar; Mondal, Padmabati; Sarkar, Biplab; Adhikari, Satrajit
2008-11-14
We are investigating the molecular dynamics of the butatriene cation after excitation from the ground state (X(2)B(2g)) to the first excited electronic state (A(2)B(2u)) by using the time-dependent discrete variable representation (TDDVR) method. The investigation is being carried out with a realistic 18-mode model Hamiltonian consisting of all the vibrational degrees of freedom of the butatriene molecule. First, we perform the simulation on a basic five mode model, and then by including additional thirteen modes as bath on the basic model. This sequential inclusion of bath modes demonstrates the effect of so called weak modes on the subsystem, where the calculations of energy and population transfer from the basic model to the bath quantify the same effect. The spectral profile obtained by using the TDDVR approach shows reasonably good agreement with the results calculated by the quantum mechanical approach/experimental measurement. It appears that the TDDVR approach for those large systems where quantum mechanical description is needed in a restricted region, is a good compromise between accuracy and speed.
Path Integrals and Hamiltonians
Baaquie, Belal E.
2014-03-01
1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.
Baykara, N. A. [Marmara University, Faculty of Sciences and Letters, Mathematics Department, Göztepe Campus, 34730, Istanbul (Turkey)
2015-12-31
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.
Hamiltonian Truncation Study of Supersymmetric Quantum Mechanics: S-Matrix and Metastable States
Balthazar, Bruno; Yin, Xi
2016-01-01
We implement the Rayleigh-Ritz method in supersymmetric quantum mechanics with flat directions, and extract the S-matrix and metastable resonances. The effectiveness of the method is demonstrated in two strongly coupled systems: an N=1 toy supermembrane model, and an N=4 model with a U(1) gauge multiplet and a charged chiral multiplet.
Theory of slightly fluctuating ratchets
Rozenbaum, V. M.; Shapochkina, I. V.; Lin, S. H.; Trakhtenberg, L. I.
2017-04-01
We consider a Brownian particle moving in a slightly fluctuating potential. Using the perturbation theory on small potential fluctuations, we derive a general analytical expression for the average particle velocity valid for both flashing and rocking ratchets with arbitrary, stochastic or deterministic, time dependence of potential energy fluctuations. The result is determined by the Green's function for diffusion in the time-independent part of the potential and by the features of correlations in the fluctuating part of the potential. The generality of the result allows describing complex ratchet systems with competing characteristic times; these systems are exemplified by the model of a Brownian photomotor with relaxation processes of finite duration.
Hamiltonian finite-temperature quantum field theory from its vacuum on partially compactified space
Reinhardt, Hugo
2016-01-01
The partition function of a relativistic invariant quantum field theory is expressed by its vacuum energy calculated on a spatial manifold with one dimension compactified to a 1-sphere $S^1 (\\beta)$, whose circumference $\\beta$ represents the inverse temperature. Explicit expressions for the usual energy density and pressure in terms of the energy density on the partially compactified spatial manifold $\\mathbb{R}^2 \\times S^1 (\\beta)$ are derived. To make the resulting expressions mathematically well-defined a Poisson resummation of the Matsubara sums as well as an analytic continuation in the chemical potential are required. The new approach to finite-temperature quantum field theories is advantageous in a Hamilton formulation since it does not require the usual thermal averages with the density operator. Instead, the whole finite-temperature behaviour is encoded in the vacuum wave functional on the spatial manifold $\\mathbb{R}^2 \\times S^1 (\\beta)$. We illustrate this approach by calculating the pressure of...
Biswas, P K; Gogonea, Valentin
2008-10-21
We present an ab initio polarizable representation of classical molecular mechanics (MM) atoms by employing an angular momentum-based expansion scheme of the point charges into partial wave orbitals. The charge density represented by these orbitals can be fully polarized, and for hybrid quantum-mechanical-molecular-mechanical (QM/MM) calculations, mutual polarization within the QM/MM Hamiltonian can be obtained. We present the mathematical formulation and the analytical expressions for the energy and forces pertaining to the method. We further develop a variational scheme to appropriately determine the expansion coefficients and then validate the method by considering polarizations of ions by the QM system employing the hybrid GROMACS-CPMD QM/MM program. Finally, we present a simpler prescription for adding isotropic polarizability to MM atoms in a QM/MM simulation. Employing this simpler scheme, we present QM/MM energy minimization results for the classic case of a water dimer and a hydrogen sulfide dimer. Also, we present single-point QM/MM results with and without the polarization to study the change in the ionization potential of tetrahydrobiopterin (BH(4)) in water and the change in the interaction energy of solvated BH(4) (described by MM) with the P(450) heme described by QM. The model can be employed for the development of an extensive classical polarizable force-field.
Thompson, J. D.; McClarty, P. A.; Prabhakaran, D.; Cabrera, I.; Guidi, T.; Coldea, R.
2017-08-01
The frustrated pyrochlore magnet Yb2 Ti2 O7 has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.
Exploring the Hamiltonian inversion landscape.
Donovan, Ashley; Rabitz, Herschel
2014-08-07
The identification of quantum system Hamiltonians through the use of experimental data remains an important research goal. Seeking a Hamiltonian that is consistent with experimental measurements constitutes an excursion over a Hamiltonian inversion landscape, which is the quality of reproducing the data as a function of the Hamiltonian parameters. Recent theoretical work showed that with sufficient experimental data there should be local convexity about the true Hamiltonian on the landscape. The present paper builds on this result and performs simulations to test whether such convexity is observed. A gradient-based Hamiltonian search algorithm is incorporated into an inversion routine as a means to explore the local inversion landscape. The simulations consider idealized noise-free as well as noise-ridden experimental data. The results suggest that a sizable convex domain exists about the true Hamiltonian, even with a modest amount of experimental data and in the presence of a reasonable level of noise.
Prosen, T
1995-01-01
The recently developed quantum surface of section method is applied to a search for extremely high-lying energy levels in a simple but generic Hamiltonian system between integrability and chaos, namely the semiseparable 2-dim oscillator. Using the stretch of 13,445 consecutive levels with the sequential number around 1.8\\cdot 10^7 (eighteen million) we have clearly demonstrated the validity of the semiclassical Berry-Robnik level spacing distribution while at 1000 times smaller sequential quantum numbers we find the very persistent quasi universal phenomenon of power-law level repulsion which is globally very well described by the Brody distribution.
Running Couplings in Hamiltonians
Glazek, S D
2000-01-01
We describe key elements of the perturbative similarity renormalization group procedure for Hamiltonians using two, third-order examples: phi^3 interaction term in the Hamiltonian of scalar field theory in 6 dimensions and triple-gluon vertex counterterm in the Hamiltonian of QCD in 4 dimensions. These examples provide insight into asymptotic freedom in Hamiltonian approach to quantum field theory. The renormalization group procedure also suggests how one may obtain ultraviolet-finite effective Schrödinger equations that correspond to the asymptotically free theories, including transition from quark and gluon to hadronic degrees of freedom in case of strong interactions. The dynamics is invariant under boosts and allows simultaneous analysis of bound state structure in the rest and infinite momentum frames.
New Variables for Classical and Quantum Gravity in all Dimensions I. Hamiltonian Analysis
Bodendorfer, Norbert; Thurn, Andreas
2011-01-01
Loop Quantum Gravity heavily relies on a connection formulation of General Relativity such that 1. the connection Poisson commutes with itself and 2. the corresponding gauge group is compact. This can be achieved starting from the Palatini or Holst action when imposing the time gauge. Unfortunately, this method is restricted to D+1 = 4 spacetime dimensions. However, interesting String theories and Supergravity theories require higher dimensions and it would therefore be desirable to have higher dimensional Supergravity loop quantisations at one's disposal in order to compare these approaches. In this series of papers, we take first steps towards this goal. The present first paper develops a classical canonical platform for a higher dimensional connection formulation of the purely gravitational sector. The new ingredient is a different extension of the ADM phase space than the one used in LQG, which does not require the time gauge and which generalises to any dimension D > 1. The result is a Yang-Mills theory ...
Cohen, Doron
2000-08-01
We make the first steps toward a generic theory for energy spreading and quantum dissipation. The Wall formula for the calculation of friction in nuclear physics and the Drude formula for the calculation of conductivity in mesoscopic physics can be regarded as two special results of the general formulation. We assume a time-dependent Hamiltonian H(Q, P; x(t)) with x(t)=Vt, where V is slow in a classical sense. The rate-of-change V is not necessarily slow in the quantum-mechanical sense. The dynamical variables (Q, P) may represent some "bath" which is being parametrically driven by x. This bath may consist of just a few degrees of freedom, but it is assumed to be classically chaotic. In the case of either the Wall or Drude formula, the dynamical variables (Q, P) may represent a single particle. In any case, dissipation means an irreversible systematic growth of the (average) energy. It is associated with the stochastic spreading of energy across levels. The latter can be characterized by a transition probability kernel Pt(n ∣ m), where n and m are level indices. This kernel is the main object of the present study. In the classical limit, due to the (assumed) chaotic nature of the dynamics, the second moment of Pt(n ∣ m) exhibits a crossover from ballistic to diffusive behavior. In order to capture this crossover within quantum mechanics, a proper theory for the quantal Pt(n ∣ m) should be constructed. We define the V regimes where either perturbation theory or semiclassical considerations are applicable in order to establish this crossover. In the limit ℏ→0 perturbation theory does not apply but semiclassical considerations can be used in order to argue that there is detailed correspondence, during the crossover time, between the quantal and the classical Pt(n ∣ m). In the perturbative regime there is a lack of such correspondence. Namely, Pt(n ∣ m) is characterized by a perturbative core-tail structure that persists during the crossover time. In
ZHANGLi; Hong-Jing; CHENChuan-Yu
2003-01-01
By using determinant method as in our recent work, the IO phonon modes, the orthogonal relation for polarization vector, electron-IO phonon F~6hlich interaction Hamiltonian, the dispersion relation, and the electron-phonon coupling function in an arbitrary layer-number quantum well system have been derived and investigated within the framework of dielectric continuum approximation. Numerical calculation on seven-layer AlxGal-xAs/GaAs systems have been performed. Via the numerical results in this work and previous works, the general characters of the IO phonon modes in an n-layer coupling quantum well system were concluded and summarized. This work can be regarded as a generalization of previous works on IO phonon modes in some fLxed layer-number quantum well systems, and it provides a uniform method to investittate the effects of IO phonons on the multi-layer coupling quantum well systems.
Proposal for a Chaotic Ratchet Using Cold Atoms in Optical Lattices
Monteiro, T. S.; Dando, P. A.; Hutchings, N. A.; Isherwood, M. R.
2002-10-01
We investigate a new type of quantum ratchet which may be realized by cold atoms in a double-well optical lattice, pulsed with unequal periods. The classical dynamics is chaotic and we find the classical diffusion rate D is asymmetric in momentum up to a finite time tr. The quantum behavior produces a corresponding asymmetry in the momentum distribution which is ``frozen-in'' by dynamical localization provided the break time t*>=tr. We conclude that the cold atom ratchets require Db/ℏ~1, where b is a small deviation from period-one pulses.
Analytical solution for the Feynman ratchet.
Pesz, Karol; Gabryś, Barbara J; Bartkiewicz, Stanisław J
2002-12-01
A search for an analytical, closed form solution of the Fokker-Planck equation with periodic, asymmetric potentials (ratchets) is presented. It is found that logarithmic-type potential functions (related to "entropic" ratchets) allow for an approximate solution within a certain range of parameters. An expression for the net current is calculated and it is shown that the efficiency of the rocked entropic ratchet is always low.
Harmonic ratcheting for fast acceleration
Cook, N.; Brennan, J. M.; Peggs, S.
2014-04-01
A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.
Bonatsos, D; Raychev, P P; Terziev, P A; Bonatsos, Dennis
2003-01-01
The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational molecular spectra is explicitly proved and a connection of this Hamiltonian to the formalism of Amal'sky is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITOs) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved and a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced. Numerical tests against an experimental rotational band of HF are provided.
Ratchet due to broken friction symmetry
Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth
2002-01-01
A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must...
Capillary droplets on Leidenfrost micro-ratchets
Marin, Alvaro G; Römer, Gertwillem R B E; Pathiraj, B; Veld, Albertus Huis in 't; Lohse, Detlef
2012-01-01
Leidenfrost ratchets are structures with the ability of transporting liquid droplets when heated over the critical Leidenfrost temperature. Once this temperature is reached, the droplet levitates over the surface and moves in the direction marked by the slope of the ratchet at terminal velocities around 10 cm/s. Here we provide new experiments with micron-sized ratchets, which have been produced with picosecond pulse laser ablation. In the following work, we use a simple method to measure the thrust driving droplets of capillary size over the micro-ratchets. The mechanism responsible for the force acting on the drop on superheated ratchets has been recently under debate. We extend the recently proposed 'viscous mechanism' proposed by Dupeaux et al. [Europhys. Lett., 96, 58001 (2011)] to capillary droplets and find good agreement with our measurements.
Zieliński, M.
2012-09-01
A method for inclusion of strain into the tight-binding Hamiltonian is presented. This approach bridges from bulk strain to the atomistic language of bond lengths and angles, and features a diagonal parameters shift in a form suitable for atomistic calculation of million atom nanosystems with a small number of empirical parameters. I illustrate this method by calculating electronic and optical properties of self-assembled InAs/(InP,GaAs) lens-shaped quantum dots. A very different structure of confined quantum dots states is shown, depending on the matrix material and inclusion of strain effects. Results are compared with the well-established empirical pseudopotential method, and reasonable agreement is found.
Hamiltonian monodromy as lattice defect
Zhilinskii, B.
2003-01-01
The analogy between monodromy in dynamical (Hamiltonian) systems and defects in crystal lattices is used in order to formulate some general conjectures about possible types of qualitative features of quantum systems which can be interpreted as a manifestation of classical monodromy in quantum finite particle (molecular) problems.
Construction of thermal ratchet structural test facility
Lee, Hyeong Yeon; Kim, J. B.; Yoo, B
2000-12-01
The objective of this study is to setup the thermal ratchet test facility to validate the NONSTA code that is under development for the inelastic structure analysis and to characterize the thermal ratchet behavior through structural thermal ratchet test. Thermal ratchet phenomenon, a progressive inelastic deformation can occur in the liquid metal reactor operating at high temperature above 500 deg C due to the moving temperature distribution along the axial direction as the hot free surface moves up and down due to the cyclic heat-up and cool-down of reactor operation. Thermal ratchet can cause a severe damage to the reactor structure. The structural ratchet test was performed and the test results were compared with those of the analysis using Chaboche constitutive model. The fabrication of the ratchet test facility was completed in 1/4 of 2000, the performance test was carried out in the second quarter of 2000, the noise reduction of thermocouples, measurements by laser displacement sensor with data acquisition system was carried out in the third quarter and the test results compared with those of the inelastic structure analysis in the forth quarter of 2000, which showed reasonable agreement with those of the tests.
The performance of organic electronic ratchets
Erik M. Roeling
2012-03-01
Full Text Available Organic electronic ratchets rectify time-correlated external driving forces, giving output powers that can drive electronic circuitry. In this work their performance characteristics are investigated using numerical modeling and measurements. It is shown how the characteristic parameters of the time–varying asymmetric potential like length scales and amplitude, as well as the density and mobility of the charge carriers in the device influence the performance characteristics. Various ratchet efficiencies and their relations are discussed. With all settings close to optimum, a ratchet with charge displacement and power efficiencies close to 50% and 7% respectively is obtained.
Ratcheting up the ratchet: on the evolution of cumulative culture.
Tennie, Claudio; Call, Josep; Tomasello, Michael
2009-08-27
Some researchers have claimed that chimpanzee and human culture rest on homologous cognitive and learning mechanisms. While clearly there are some homologous mechanisms, we argue here that there are some different mechanisms at work as well. Chimpanzee cultural traditions represent behavioural biases of different populations, all within the species' existing cognitive repertoire (what we call the 'zone of latent solutions') that are generated by founder effects, individual learning and mostly product-oriented (rather than process-oriented) copying. Human culture, in contrast, has the distinctive characteristic that it accumulates modifications over time (what we call the 'ratchet effect'). This difference results from the facts that (i) human social learning is more oriented towards process than product and (ii) unique forms of human cooperation lead to active teaching, social motivations for conformity and normative sanctions against non-conformity. Together, these unique processes of social learning and cooperation lead to humans' unique form of cumulative cultural evolution.
Capacitively coupled nano conductors. Ratchet currents and exchange fluctuation relations
Hussein, Robert; Kohler, Sigmund [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain)
2015-10-15
We investigate electron transport in two quantum circuits with mutual Coulomb interaction. The first circuit is a double quantum dot connected to two electron reservoirs, while the second one is a quantum point contact in the weak tunneling limit. The coupling is such that an electron in the first circuit enhances the barrier of the point contact and, thus, reduces its conductivity. While such setups are frequently used as charge monitors, we focus on two different aspects. First, we derive transport coefficients which have recently been employed for testing generalized equilibrium conditions known as exchange fluctuation relations. These formally exact relations allow us to test the consistency of our master equation approach. Second, a biased point contact entails noise on the DQD and induces non-equilibrium phenomena such as a ratchet current. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.
2015-01-01
Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of lik
Paradoxical ratcheting in cornstarch suspensions
Shinbrot, Troy; Siu, Theo; Rutala, Matthew
2014-11-01
Cornstarch suspensions are well known to exhibit strong shear thickening, and we show as a result that they must - and do - climb vertically vibrating rods and plates. This occurs because when the rod moves upward, it shears the suspension against gravity, and so the fluid stiffens, but when the rod moves downward, the suspension moves with gravity, and so the fluid is more compliant. This causes the fluid to be dragged up by the upstroke more than it is dragged down by the downstroke, effectively ratcheting the fluid up the rod every cycle. We show experimentally and computationally that this effect is paradoxically caused by gravity - and so goes away when gravity is removed - and we show that the suspension can be made to balance on the uphill side of an inclined rod in an analog of the inverted ``Kapitza pendulum,'' closely related to the recent report by Ramachandran & Nosonovsky, Soft Matter 10, 4633 (2014).
Muller's ratchet with compensatory mutations
Pfaffelhuber, Peter; Wakolbinger, Anton
2011-01-01
We consider an infinite dimensional system of stochastic differential equations which describes the evolution of type frequencies in a large population. Random reproduction is modeled by a Wright-Fisher noise whose inverse diffusion coefficient $N$ corresponds to the total population size. The type of an individual is the number $k$ of deleterious mutations it carries. We assume that fitness of individuals carrying $k$ mutations is decreased by $\\alpha k$ for some $\\alpha >0$. Along the individual lines of descent, (new) mutations accumulate at rate $\\lambda$ per generation, and each of these mutations has a small probability $\\gamma$ per generation to disappear. While the case $\\gamma =0 $ is known as (the Fleming-Viot version of) {\\em Muller's ratchet}, the case $\\gamma > 0$ is referred to as that of {\\em compensatory mutations} in the biological literature. In the former case ($\\gamma=0$), an ever increasing number of mutations is accumulated over time, while in the latter ($\\gamma > 0$) this is prevented ...
Mastromatteo, Michael; Jackson, Bret
2013-11-21
Electronic structure methods based on density functional theory are used to construct a reaction path Hamiltonian for CH4 dissociation on the Ni(100) and Ni(111) surfaces. Both quantum and quasi-classical trajectory approaches are used to compute dissociative sticking probabilities, including all molecular degrees of freedom and the effects of lattice motion. Both approaches show a large enhancement in sticking when the incident molecule is vibrationally excited, and both can reproduce the mode specificity observed in experiments. However, the quasi-classical calculations significantly overestimate the ground state dissociative sticking at all energies, and the magnitude of the enhancement in sticking with vibrational excitation is much smaller than that computed using the quantum approach or observed in the experiments. The origin of this behavior is an unphysical flow of zero point energy from the nine normal vibrational modes into the reaction coordinate, giving large values for reaction at energies below the activation energy. Perturbative assumptions made in the quantum studies are shown to be accurate at all energies studied.
Damanik, David
2008-01-01
We develop further the approach to upper and lower bounds in quantum dynamics via complex analysis methods which was introduced by us in a sequence of earlier papers. Here we derive upper bounds for non-time averaged outside probabilities and moments of the position operator from lower bounds for transfer matrices at complex energies. Moreover, for the time-averaged transport exponents, we present improved lower bounds in the special case of the Fibonacci Hamiltonian. These bounds lead to an optimal description of the time-averaged spreading rate of the fast part of the wavepacket in the large coupling limit. This provides the first example which demonstrates that the time-averaged spreading rates may exceed the upper box-counting dimension of the spectrum.
Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.
2015-11-01
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the
Feedback control in a coupled Brownian ratchet
Gao Tian-Fu; Liu Feng-Shan; Chen Jin-Can
2012-01-01
On the basis of the double-well ratchet potential which can be calculated theoretically and implemented experimentally,the influences of the time delay,the coupling constant,and the asymmetric parameter of the potential on the performance of a delayed feedback ratchet consisting of two Brownian particles coupled mutually with a linear elastic force are investigated.The centre-of-mass velocity of two coupled Brownian particles.the average effective diffusion coefficient,and the Pe number are calculated.It is found that the parameters are affected by not only the time delay and coupling constant but also the asymmetric parameter of the double-well ratchet potential.It is also found that the enhancement of the current may be obtained by varying the coupling constant of the system for the weak coupling case.It is expected that the results obtained here may be observed in some physical and biological systems.
Spinor-Like Hamiltonian for Maxwellian Optics
Kulyabov D.S.
2016-01-01
Conclusions. For Maxwell equations in the Dirac-like form we can expand research methods by means of quantum field theory. In this form, the connection between the Hamiltonians of geometric, beam and Maxwellian optics is clearly visible.
Farberovich, Oleg V. [School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Voronezh State University, Voronezh 394000 (Russian Federation); Mazalova, Victoria L., E-mail: mazalova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Soldatov, Alexander V. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation)
2015-11-15
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J{sub ij} of the nanosystem Ni{sub 7}–Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni{sub 7}-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy
Time-Shift Invariance Determines the Functional Shape of the Current in Dissipative Rocking Ratchets
José A. Cuesta
2013-11-01
Full Text Available Ratchets are devices that are able to rectify an otherwise oscillatory behavior by exploiting an asymmetry of the system. In rocking ratchets, the asymmetry is induced through a proper choice of external forces and modulations of nonlinear symmetric potentials. The ratchet currents thus obtained in systems as different as semiconductors, Josephson junctions, optical lattices, or ferrofluids show a set of universal features. A satisfactory explanation for them has challenged theorists for decades, and so far, we still lack a general theory of this phenomenon. Here, we provide such a theory by exploring—through functional analysis—the constraints that the simple assumption of time-shift invariance of the ratchet current imposes on its dependence on the external drivings. Because the derivation is based on so general a principle, the resulting expression is valid irrespective of the details and the nature of the physical systems to which it is applied, and of whether they are classical, quantum, or stochastic. The theory also explains deviations observed from universality under special conditions and allows us to make predictions of phenomena not yet observed in any experiment or simulation.
Cooperative rectification in confined Brownian ratchets.
Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubí, J Miguel
2012-01-01
We analyze the rectified motion of a Brownian particle in a confined environment. We show the emergence of strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may develop even in situations where separately the ratchet and the geometric restrictions do not give rise to particle motion. The combined rectification effects can lead to bidirectional transport depending on particle size, resulting in a different route for segregation. The reported mechanism can be used to control transport in mesostructures and nanodevices in which particles move in a reduced space.
Brownian ratchets in physics and biology
Bier, Martin
1997-06-01
Thirty years ago Feynman et al. presented a paradox in the Lectures on Physics: an imagined device could let Brownian motion do work by allowing it in one direction and blocking it in the opposite direction. In the chapter Feynman et al. eventually show that such ratcheting can only be achieved if there is, in compliance with the basic conservation laws, some energy input from an external source. Now that technology is going into ever smaller dimensions, ratcheting Brownian motion seems to be a real possibility in nanotechnological applications. Furthermore, Brownian motion plays an essential role in the action of motor proteins (individual molecules that convert chemical energy into motion).
Ratchet device with broken friction symmetry
Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth
2002-01-01
An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which is in ac......An experimental setup (gadget) has been made for demonstration of a ratchet mechanism induced by broken symmetry of a dependence of dry friction on external forcing. This gadget converts longitudinal oscillating or fluctuating motion into a unidirectional rotation, the direction of which...
Ratcheting Behavior of a Titanium-Stabilized Interstitial Free Steel
De, P. S.; Chakraborti, P. C.; Bhattacharya, B.; Shome, M.; Bhattacharjee, D.
2013-05-01
Engineering stress-control ratcheting behavior of a titanium-stabilized interstitial free steel has been studied under different combinations of mean stress and stress amplitude at a stress rate of 250 MPa s-1. Tests have been done up to 29.80 pct true ratcheting strain evolution in the specimens at three maximum stress levels. It is observed that this amount of ratcheting strain is more than the uniform tensile strain at a strain rate of 10-3 s-1 and evolves without showing tensile instability of the specimens. In the process of ratcheting strain evolution at constant maximum stresses, the effect of increasing stress amplitude is found to be more than that of increasing the mean stress component. Further, the constant maximum stress ratcheting test results reveal that the number of cycles ( N) required for 29.80 pct. true ratcheting strain evolution exponentially increases with increase of stress ratio ( R). Post-ratcheting tensile test results showing increase of strength and linear decrease in ductility with increasing R at different constant maximum stresses indicate that stress parameters used during ratcheting tests influence the size of the dislocation cell structure of the steel even with the same amount of ratcheting strain evolution. It is postulated that during ratcheting fatigue, damage becomes greater with the increase of R for any fixed amount of ratcheting strain evolution at constant maximum stress.
Introduction to thermodynamics of spin models in the Hamiltonian limit
Berche, B; Berche, Bertrand; Lopez, Alexander
2006-01-01
A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian, and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices.
Partha Goswami
2010-01-01
Full Text Available We investigate a chiral d-density wave (CDDW mean field model Hamiltonian in the momentum space suitable for the hole-doped cuprates, such as YBCO, in the pseudogap phase to obtain the Fermi surface (FS topologies, including the anisotropy parameter(́ and the elastic scattering by disorder potential (|0|. For ́=0, with the chemical potential =−0.27 eV for 10% doping level and |0|≥|| (where ||=0.25 eV is the first neighbor hopping, at zero/non-zero magnetic field (, the FS on the first Brillouin zone is found to correspond to electron pockets around antinodal regions and barely visible patches around nodal regions. For ́≠0, we find Pomeranchuk distortion of FS. We next relate our findings regarding FS to the magneto-quantum oscillations in the electronic specific heat. Since the nodal quasiparticle energy values for =0 are found to be greater than for |0|≥||, the origin of the oscillations for nonzero corresponds to the Fermi pockets around antinodal regions. The oscillations are shown to take place in the weak disorder regime (|0|=0.25eV only.
Stability of Frustration-Free Hamiltonians
Michalakis, Spyridon
2011-01-01
We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. We present a necessary and sufficient condition for stability, which we call "Local Topological Quantum Order" and show that this condition implies an area law for the entanglement entropy of the groundstate subspace. This result extends previous work by Bravyi et al., on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. We conclude with a list of open problems relevant to spectral gaps and topological quantum order.
Criticality-induced universality in ratchets
Chacon, Ricardo, E-mail: rchacon@unex.e [Departamento de Fisica Aplicada, Escuela de IngenierIas Industriales, Universidad de Extremadura, Apartado Postal 382, E-06071 Badajoz (Spain)
2010-08-13
Conclusive mathematical arguments are presented supporting the ratchet conjecture (Chacon 2007 J. Phys. A: Math. Theor. 40 F413), i.e. the existence of a universal force waveform which optimally enhances directed transport by symmetry breaking. Specifically, such a particular waveform is shown to be unique for both temporal and spatial biharmonic forces, and general (non-perturbative) laws providing the dependence of the strength of directed transport on the force parameters are deduced for these forces. The theory explains previous results for a great diversity of systems subjected to such biharmonic forces and provides a universal quantitative criterion to optimize any application of the ratchet effect induced by symmetry breaking of temporal and spatial biharmonic forces. (fast track communication)
Pearls are self-organized natural ratchets.
Cartwright, Julyan H E; Checa, Antonio G; Rousseau, Marthe
2013-07-02
Pearls, the most flawless and highly prized of them, are perhaps the most perfectly spherical macroscopic bodies in the biological world. How are they so round? Why are other pearls solids of revolution (off-round, drop, ringed pearl), and yet others have no symmetry (baroque pearls)? We observe that with a spherical pearl the growth fronts of nacre are spirals and target patterns distributed across its surface, and that this is true for a baroque pearl, too, but that in pearls with rotational symmetry spirals and target patterns are found only in the vicinity of the poles; elsewhere the growth fronts are arrayed in ratchet fashion around the equator. We argue that pearl rotation is a self-organized phenomenon caused and sustained by physical forces from the growth fronts, and that rotating pearls are an example--perhaps unique--of a natural ratchet.
Wave propelled ratchets and drifting rafts
2008-01-01
Several droplets, bouncing on a vertically vibrated liquid bath, can form various types of bound states, their interaction being due to the waves emitted by their bouncing. Though they associate droplets which are individually motionless, we show that these bound states are self- propelled when the droplets are of uneven size. The driving force is linked to the assymetry of the emitted surface waves. The direction of this ratchet-like displacement can be reversed, by varying the amplitude of ...
Discrete Hamiltonian for General Relativity
Ziprick, Jonathan
2015-01-01
Beginning from canonical general relativity written in terms of Ashtekar variables, we derive a discrete phase space with a physical Hamiltonian for gravity. The key idea is to define the gravitational fields within a complex of three-dimensional cells such that the dynamics is completely described by discrete boundary variables, and the full theory is recovered in the continuum limit. Canonical quantization is attainable within the loop quantum gravity framework, and we believe this will lead to a promising candidate for quantum gravity.
On Hamiltonians Generating Optimal-Speed Evolutions
2008-01-01
We present a simple derivation of the formula for the Hamiltonian operator(s) that achieve the fastest possible unitary evolution between given initial and final states. We discuss how this formula is modified in pseudo-Hermitian quantum mechanics and provide an explicit expression for the most general optimal-speed quasi-Hermitian Hamiltonian. Our approach allows for an explicit description of the metric- (inner product-) dependence of the lower bound on the travel time and the universality ...
Nonperturbative embedding for highly nonlocal Hamiltonians
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.
On a general Heisenberg exchange effective Hamiltonian
Blanco, J.A.; Prida Pidal, V.M. [Dept. de Fisica, Oviedo Univ. (Spain)
1995-07-01
A general Heisenberg exchange effective Hamiltonian is deduced in a straightforward way from the elemental quantum mechanical principles for the case of magnetic ions with non-orbital degeneracy in a crystalline lattice. Expressions for the high order direct exchange coupling constants or parameters are presented. The meaning of this effective Hamiltonian is important because extracting information from the Heisenberg Hamiltonian is a difficult task and is however taken as the starting point for many quite profound investigations of magnetism in solids and therefore could play an important role in an introductory course to solid state physics. (author)
Noise-Enabled Optical Ratchets
León-Montiel, Roberto de J
2016-01-01
In this work we demonstrate single microparticle transport enabled by noise in a one dimensional optical lattice with periodic symmetric potentials and a small constant external force. The one dimensional lattice is implemented by six focused beams with holographic optical tweezers, where a microparticle is trapped in three dimensions. Transport initiates when dynamical disorder is added to the diffracted laser power at each trap ($\\pm 30\\%$) at a fixed frequency (0 to 35 Hz), while the direction of motion is set by the constant external force. We find that transport is only achieved within a narrow noise frequency range, which is consistent with simulations, and the predicted behavior and observations of noise-induced energy transport in quantum and classical systems. To our knowledge this is the first direct observation of noise-assisted transport in a colloidal system.
Hamiltonian Algorithm Sound Synthesis
大矢, 健一
2013-01-01
Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)
2017-01-15
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Anisotropy in the Ratchet Growth of PBX 9502
Schwarz, Ricardo Blum [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Liu, Cheng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Thompson, Darla Graff [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-12
TATB-based compactions and composites are known to undergo “ratchet growth”, an irreversible volume increase that occurs upon heating or cooling of a specimen. Ratchet growth likely arises because the coefficient of thermal expansion of the TATB crystals is strongly anisotropic, but the exact mechanism is not well-understood. TATB crystals in solid, plastic-bonded, explosive PBX 9502 parts can have a preferred crystallographic orientation (texture) caused by the compaction process. As a result, the irreversible strain associated with PBX 9502 ratchet growth is anisotropic. The present paper relates the magnitude of ratchet growth to the crystalline anisotropy of the TATB crystals. The crystalline anisotropy is measured by x-ray diffraction and the ratchet growth is measured by a digital image-correlation technique.
Directed transport in classical and quantum chaotic billiards
Acevedo, W; Dittrich, T [Departamento de Fisica, Universidad Nacional de Colombia, and CeiBA, Complejidad, Bogota DC (Colombia)], E-mail: jwacevedov@unal.edu.co, E-mail: tdittrich@unal.edu.co
2009-01-30
We construct an autonomous chaotic Hamiltonian ratchet as a channel billiard subdivided by equidistant walls attached perpendicularly to one side of the channel, leaving an opening on the opposite side. A static homogeneous magnetic field penetrating the billiard breaks time-reversal invariance and renders the classical motion partially chaotic. We show that the classical dynamics exhibits directed transport, owing to the asymmetric distribution of regular regions in phase space. The billiard is quantized by a numerical method based on a finite-element algorithm combined with the Landau gauge and the Bloch formalism for periodic potentials. We discuss features of the billiard eigenstates such as node lines and vortices in the probability flow. Evidence for directed quantum transport, inherited from the corresponding features of the classical dynamics, is presented in terms of level-velocity statistics.
Model I - V curves and figures of merit of underdamped deterministic Josephson ratchets
Goldobin, E.; Menditto, R.; Koelle, D.; Kleiner, R.
2016-09-01
We propose simple models for the current-voltage characteristics of typical Josephson ratchets. We consider the case of a ratchet working against a constant applied counter force and derive analytical expressions for the key characteristics of such a ratchet: rectification curve, stopping force, input and output powers, and rectification efficiency. Optimization of the ratchet performance is discussed.
Optimal control of ratchets without spatial asymmetry
Chacon, Ricardo [Departamento de Fisica Aplicada, Escuela de IngenierIas Industriales, Universidad de Extremadura, Apartado Postal 382, E-06071 Badajoz (Spain)
2007-06-01
This work presents the following conjecture: to optimally enhance directed transport by symmetry breaking of temporal forces there exists a particular force waveform which allows us to deduce simple scaling laws from a quantitative interpretation of Curie's principle. These scaling laws explain in a general setting previous results for a great diversity of systems subjected to a standard biharmonic force and provide a quantitative criterion to optimize the application of the ratchet effect induced by symmetry breaking of temporal forces. Mathematical arguments justifying this conjecture are discussed. (fast track communication)
Elias-Miro, Joan; Vitale, Lorenzo G.
Hamiltonian Truncation (a.k.a. Truncated Spectrum Approach) is an efficient numerical technique to solve strongly coupled QFTs in d=2 spacetime dimensions. Further theoretical developments are needed to increase its accuracy and the range of applicability. With this goal in mind, here we present a new variant of Hamiltonian Truncation which exhibits smaller dependence on the UV cutoff than other existing implementations, and yields more accurate spectra. The key idea for achieving this consists in integrating out exactly a certain class of high energy states, which corresponds to performing renormalization at the cubic order in the interaction strength. We test the new method on the strongly coupled two-dimensional quartic scalar theory. Our work will also be useful for the future goal of extending Hamiltonian Truncation to higher dimensions d >= 3.
Steering Multiple Reverse Current into Unidirectional Current in Deterministic Ratchets
韦笃取; 罗晓曙; 覃英华
2011-01-01
Recent investigations have shown that with varying the amplitude of the external force, the deterministic ratchets exhibit multiple current reversals, which are undesirable in certain circumstances. To control the multiple reverse current to unidirectional current, an adaptive control law is presented inspired from the relation between multiple reversaJs current and the chaos-periodic/quasiperiodic transition of the transport velocity. The designed controller can stabilize the transport velocity of ratchets to steady state and suppress any chaos-periodic/quasiperiodic transition, namely, the stable transport in ratchets is achieved, which makes the current sign unchanged.
Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir;
2007-01-01
The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...... results in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions....
Monte Carlo Hamiltonian: Linear Potentials
LUO Xiang-Qian; LIU Jin-Jiang; HUANG Chun-Qing; JIANG Jun-Qin; Helmut KROGER
2002-01-01
We further study the validity of the Monte Carlo Hamiltonian method. The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach, is its capability to study the excited states. Weconsider two quantum mechanical models: a symmetric one V(x) = |x|/2; and an asymmetric one V(x) = ∞, forx ＜ 0 and V(x) = x, for x ≥ 0. The results for the spectrum, wave functions and thermodynamical observables are inagreement with the analytical or Runge-Kutta calculations.
Spin filtering on a ring with Rashba hamiltonian
Harmer, M.
2007-01-01
We consider a quantum graph consisting of a ring with Rashba hamiltonian and an arbitrary number of semi-infinite wires attached. We describe the scattering matrix for this system and investigate spin filtering for a three terminal device.
Spin filtering on a ring with Rashba hamiltonian
Harmer, M
2006-01-01
We consider a quantum graph consisting of a ring with Rashba hamiltonian and an arbitrary number of semi-infinite wires attached. We describe the scattering matrix for this system and investigate spin filtering for a three terminal device.
Cliffordized NAC supersymmetry and PT-symmetric Hamiltonians
Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: toppan@cbpf.br
2007-07-01
It is shown that non-anti commutative supersymmetry can be described through a Cliffordization of the superspace fermionic coordinates. A NAC supersymmetric quantum mechanical model is shown to be a PT-symmetric Hamiltonian. (author)
Finding room for antilinear terms in the Hamiltonian
Eisele, Michael
2012-01-01
Although the Hamiltonian in quantum physics has to be a linear operator, it is possible to make quantum systems behave as if their Hamiltonians contained antilinear (i.e., semilinear or conjugate-linear) terms. For any given quantum system, another system can be constructed that is physically equivalent to the original one. It can be designed, despite the Wightman reconstruction theorem, so that antilinear operators in the original system become linear operators in the new system. Under certain conditions, these operators can then be added to the new Hamiltonian. The new quantum system has some unconventional features, a hidden degeneracy of the vacuum and a subtle distinction between the Hamiltonian and the observable of energy, but the physical equivalence guarantees that its states evolve like those in the original system and that corresponding measurements produce the same results. The same construction can be used to make time-reversal linear.
Molecular Motors: Power Strokes Outperform Brownian Ratchets.
Wagoner, Jason A; Dill, Ken A
2016-07-07
Molecular motors convert chemical energy (typically from ATP hydrolysis) to directed motion and mechanical work. Their actions are often described in terms of "Power Stroke" (PS) and "Brownian Ratchet" (BR) mechanisms. Here, we use a transition-state model and stochastic thermodynamics to describe a range of mechanisms ranging from PS to BR. We incorporate this model into Hill's diagrammatic method to develop a comprehensive model of motor processivity that is simple but sufficiently general to capture the full range of behavior observed for molecular motors. We demonstrate that, under all conditions, PS motors are faster, more powerful, and more efficient at constant velocity than BR motors. We show that these differences are very large for simple motors but become inconsequential for complex motors with additional kinetic barrier steps.
Wave propelled ratchets and drifting rafts
Eddi, A.; Terwagne, D.; Fort, E.; Couder, Y.
2008-05-01
Several droplets, bouncing on a vertically vibrated liquid bath, can form various types of bound states, their interaction being due to the waves emitted by their bouncing. Though they associate droplets which are individually motionless, we show that these bound states are self-propelled when the droplets are of uneven size. The driving force is linked to the assymetry of the emitted surface waves. The direction of this ratchet-like displacement can be reversed, by varying the amplitude of forcing. This direction reversal occurs when the bouncing of one of the drops becomes sub-harmonic. As a generalization, a larger number of bouncing droplets form crystalline rafts which are also shown to drift or rotate when assymetrical.
Submicrometric 2D ratchet effect in magnetic domain wall motion
Castán-Guerrero, C., E-mail: ccastan@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)
2014-12-15
Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.
Brownian motion and gambling: from ratchets to paradoxical games
Parrondo, J M R
2014-01-01
Two losing gambling games, when alternated in a periodic or random fashion, can produce a winning game. This paradox has been inspired by certain physical systems capable of rectifying fluctuations: the so-called Brownian ratchets. In this paper we review this paradox, from Brownian ratchets to the most recent studies on collective games, providing some intuitive explanations of the unexpected phenomena that we will find along the way.
Polymer deformation in Brownian ratchets: theory and molecular dynamics simulations.
Kenward, Martin; Slater, Gary W
2008-11-01
We examine polymers in the presence of an applied asymmetric sawtooth (ratchet) potential which is periodically switched on and off, using molecular dynamics (MD) simulations with an explicit Lennard-Jones solvent. We show that the distribution of the center of mass for a polymer in a ratchet is relatively wide for potential well depths U0 on the order of several kBT. The application of the ratchet potential also deforms the polymer chains. With increasing U0 the Flory exponent varies from that for a free three-dimensional (3D) chain, nu=35 (U0=0), to that corresponding to a 2D compressed (pancake-shaped) polymer with a value of nu=34 for moderate U0. This has the added effect of decreasing a polymer's diffusion coefficient from its 3D value D3D to that of a pancaked-shaped polymer moving parallel to its minor axis D2D. The result is that a polymer then has a time-dependent diffusion coefficient D(t) during the ratchet off time. We further show that this suggests a different method to operate a ratchet, where the off time of the ratchet, toff, is defined in terms of the relaxation time of the polymer, tauR. We also derive a modified version of the Bader ratchet model [Bader, Proc. Natl. Acad. Sci. U.S.A. 96, 13165 (1999)] which accounts for this deformation and we present a simple expression to describe the time dependent diffusion coefficient D(t). Using this model we then illustrate that polymer deformation can be used to modulate polymer migration in a ratchet potential.
Ratchet effect on a relativistic particle driven by external forces
Quintero, Niurka R [Departamento de Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, Calle Virgen de Africa 7, E-41011 Sevilla (Spain); Alvarez-Nodarse, Renato [Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Sevilla, Apdo 1160, E-41080 Sevilla (Spain); Cuesta, Jose A, E-mail: niurka@us.es, E-mail: ran@us.es, E-mail: cuesta@math.uc3m.es [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes, Madrid (Spain)
2011-10-21
We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)
Maxwell's Optics Symplectic Hamiltonian
Kulyabov, D S; Sevastyanov, L A
2015-01-01
The Hamiltonian formalism is extremely elegant and convenient to mechanics problems. However, its application to the classical field theories is a difficult task. In fact, you can set one to one correspondence between the Lagrangian and Hamiltonian in the case of hyperregular Lagrangian. It is impossible to do the same in gauge-invariant field theories. In the case of irregular Lagrangian the Dirac Hamiltonian formalism with constraints is usually used, and this leads to a number of certain difficulties. The paper proposes a reformulation of the problem to the case of a field without sources. This allows to use a symplectic Hamiltonian formalism. The proposed formalism will be used by the authors in the future to justify the methods of vector bundles (Hamiltonian bundles) in transformation optics.
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Garrido, L. M.; Pascual, P.
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
Perturbation Theory for Parent Hamiltonians of Matrix Product States
Szehr, Oleg; Wolf, Michael M.
2015-05-01
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).
Estimation of a general time-dependent Hamiltonian for a single qubit.
de Clercq, L E; Oswald, R; Flühmann, C; Keitch, B; Kienzler, D; Lo, H-Y; Marinelli, M; Nadlinger, D; Negnevitsky, V; Home, J P
2016-04-14
The Hamiltonian of a closed quantum system governs its complete time evolution. While Hamiltonians with time-variation in a single basis can be recovered using a variety of methods, for more general Hamiltonians the presence of non-commuting terms complicates the reconstruction. Here using a single trapped ion, we propose and experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. We measure the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. The initially unknown Hamiltonian arises from transporting an ion through a static laser beam. Hamiltonian estimation allows us to estimate the spatial beam intensity profile and the ion velocity as a function of time. The estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high-operational fidelities in quantum control.
Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces
Li, Q; Francois, M M; Hu, A J
2015-01-01
In this paper, the self-propelled motion of Leidenfrost droplets on ratchet surfaces is numerically investigated with a thermal multiphase lattice Boltzmann model with liquid-vapor phase change. The capability of the model for simulating evaporation is validated via the D2 law. Using the model, we first study the performances of Leidenfrost droplets on horizontal ratchet surfaces. It is numerically shown that the motion of self-propelled Leidenfrost droplets on ratchet surfaces is owing to the asymmetry of the ratchets and the vapor flows beneath the droplets. It is found that the Leidenfrost droplets move in the direction toward the slowly inclined side from the ratchet peaks, which agrees with the direction of droplet motion in experiments [Linke et al., Phys. Rev. Lett., 2006, 96, 154502]. Moreover, the influences of the ratchet aspect ratio are investigated. For the considered ratchet surfaces, a critical value of the ratchet aspect ratio is approximately found, which corresponds to the maximum droplet mo...
Gravitational surface Hamiltonian and entropy quantization
Ashish Bakshi
2017-02-01
Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Gravitational surface Hamiltonian and entropy quantization
Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav
2017-02-01
The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Covariant Hamiltonian field theory
Giachetta, G; Sardanashvily, G
1999-01-01
We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.
Asymptotic properties of certain diffusion ratchets with locally negative drift
Depperschmidt, Andrej
2012-01-01
We consider two reflecting diffusion processes $(X_t)_{t \\ge 0}$ with a moving reflection boundary given by a non-decreasing pure jump Markov process $(R_t)_{t \\ge 0}$. Between the jumps of the reflection boundary the diffusion part behaves as a reflecting Brownian motion with negative drift or as a reflecting Ornstein-Uhlenbeck process. In both cases at rate $\\gamma(X_t -R_t)$ for some $\\gamma \\ge 0$ the reflection boundary jumps to a new value chosen uniformly in $[R_{t-},X_t]$. Since after each jump of the reflection boundary the diffusions are reflected at a higher level we call the processes Brownian ratchet and Ornstein-Uhlenbeck ratchet. Such diffusion ratchets are biologically motivated by passive protein transport across membranes. The processes considered here are generalisations of the Brownian ratchet (without drift) studied in (Depperschmidt and Pfaffelhuber, 2010). For both processes we prove a law of large numbers, in particular each of the ratchets moves to infinity at a positive speed which c...
Nanoscale magnetic ratchets based on shape anisotropy
Cui, Jizhai; Keller, Scott M.; Liang, Cheng-Yen; Carman, Gregory P.; Lynch, Christopher S.
2017-02-01
Controlling magnetization using piezoelectric strain through the magnetoelectric effect offers several orders of magnitude reduction in energy consumption for spintronic applications. However strain is a uniaxial effect and, unlike directional magnetic field or spin-polarized current, cannot induce a full 180° reorientation of the magnetization vector when acting alone. We have engineered novel ‘peanut’ and ‘cat-eye’ shaped nanomagnets on piezoelectric substrates that undergo repeated deterministic 180° magnetization rotations in response to individual electric-field-induced strain pulses by breaking the uniaxial symmetry using shape anisotropy. This behavior can be likened to a magnetic ratchet, advancing magnetization clockwise with each piezostrain trigger. The results were validated using micromagnetics implemented in a multiphysics finite elements code to simulate the engineered spatial and temporal magnetic behavior. The engineering principles start from a target device function and proceed to the identification of shapes that produce the desired function. This approach opens a broad design space for next generation magnetoelectric spintronic devices.
Design of Quantum Algorithms Using Physics Tools
2014-06-02
spin chains, the development of a novel quantum money scheme, a study of quantum interactive proof systems , research on Hamiltonians on graphs...in the Hamiltonians . The states of a quantum spin chain are naturally represented in the Matrix Product States (MPS) framework. Using imaginary time...worked on a wide range of topics with some common themes related by the study of quantum Hamiltonians . Ground state properties of Hamiltonians and the
Near-Field, On-Chip Optical Brownian Ratchets.
Wu, Shao-Hua; Huang, Ningfeng; Jaquay, Eric; Povinelli, Michelle L
2016-08-10
Nanoparticles in aqueous solution are subject to collisions with solvent molecules, resulting in random, Brownian motion. By breaking the spatiotemporal symmetry of the system, the motion can be rectified. In nature, Brownian ratchets leverage thermal fluctuations to provide directional motion of proteins and enzymes. In man-made systems, Brownian ratchets have been used for nanoparticle sorting and manipulation. Implementations based on optical traps provide a high degree of tunability along with precise spatiotemporal control. Here, we demonstrate an optical Brownian ratchet based on the near-field traps of an asymmetrically patterned photonic crystal. The system yields over 25 times greater trap stiffness than conventional optical tweezers. Our technique opens up new possibilities for particle manipulation in a microfluidic, lab-on-chip environment.
Hamiltonian tomography of photonic lattices
Ma, Ruichao; Owens, Clai; LaChapelle, Aman; Schuster, David I.; Simon, Jonathan
2017-06-01
In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites α and β may be obtained directly from Sα β(ω ) , the (suitably normalized) two-port measurement between sites α and β at frequency ω . This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.
Deterministic Smoluchowski-Feynman ratchets driven by chaotic noise.
Chew, Lock Yue
2012-01-01
We have elucidated the effect of statistical asymmetry on the directed current in Smoluchowski-Feynman ratchets driven by chaotic noise. Based on the inhomogeneous Smoluchowski equation and its generalized version, we arrive at analytical expressions of the directed current that includes a source term. The source term indicates that statistical asymmetry can drive the system further away from thermodynamic equilibrium, as exemplified by the constant flashing, the state-dependent, and the tilted deterministic Smoluchowski-Feynman ratchets, with the consequence of an enhancement in the directed current.
Thermo-mechanical ratcheting in jointed rock masses
Pasten, C.
2015-09-01
Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.
Self-propelled Janus particles in a ratchet: Numerical simulations
Ghosh, Pulak Kumar; Marchesoni, Fabio; Nori, Franco
2013-01-01
Brownian transport of self-propelled overdamped microswimmers (like Janus particles) in a two-dimensional periodically compartmentalized channel is numerically investigated for different compartment geometries, boundary collisional dynamics, and particle rotational diffusion. The resulting time-correlated active Brownian motion is subject to rectification in the presence of spatial asymmetry. We prove that ratcheting of Janus particles can be orders of magnitude stronger than for ordinary thermal potential ratchets and thus experimentally accessible. In particular, autonomous pumping of a large mixture of passive particles can be induced by just adding a small fraction of Janus particles.
Motional dispersions and ratchet effect in inertial systems
W L Reenbohn; S Saikia; R Roy; Mangal C Mahato
2008-08-01
We obtain ratchet effect in inertial structureless systems in symmetric periodic potentials where the asymmetry comes from the non-uniform friction offered by the medium and driven by symmetric periodic forces. In the adiabatic limit the calculations are done by extending the matrix continued fraction method and also by numerically solving the appropriate Langevin equation. For finite frequency field drive the ratchet effect is obtained only numerically. In the transient time scales the system shows dispersionless behaviour as reported earlier when a constant force is applied. In the periodic drive case the dispersion behaviour is more complex. In this brief communication we report some of the results of our work.
Unusual "ratchet syndrome": spontaneous lead retraction after a generator exchange.
Ejima, Koichiro; Shoda, Morio; Yashiro, Bun; Yoshida, Kentaro; Nuki, Toshiaki; Kato, Ken; Manaka, Tetsuyuki; Hagiwara, Nobuhisa
2014-07-01
A 72-year-old female with idiopathic dilated cardiomyopathy underwent a generator exchange for a cardiac resynchronization therapy defibrillator with a full-pocket capsulectomy. The lead position after the operation was identical to that before the operation on the chest X-ray. After 4 months, a subacute exacerbation of her heart failure was caused by cardiac resynchronization therapy failure due to a dislodgement of the left ventricular lead. An aggressive adhesiotomy of the connective tissue around the leads made it possible for the lead to retract by a ratchet-like movement through the suture sleeve, so-called "ratchet syndrome", after the generator exchange.
Hamiltonian hierarchy and the Hulthen potential
Gönül, B
2000-01-01
We deal with the Hamiltonian hierarchy problem of the Hulth\\'{e}n potential within the frame of the supersymmetric quantum mechanics and find that the associated superymmetric partner potentials simulate the effect of the centrifugal barrier. Incorporating the supersymmetric solutions and using the first-order perturbation theory we obtain an expression for the energy levels of theHulth\\'{e}n potential which gives satisfactory values for the non-zero angular momentum states.
Monte Carlo Hamiltonian:Inverse Potential
LUO Xiang-Qian; CHENG Xiao-Ni; Helmut KR(O)GER
2004-01-01
The Monte Carlo Hamiltonian method developed recently allows to investigate the ground state and low-lying excited states of a quantum system,using Monte Carlo(MC)algorithm with importance sampling.However,conventional MC algorithm has some difficulties when applied to inverse potentials.We propose to use effective potential and extrapolation method to solve the problem.We present examples from the hydrogen system.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENG Daizhan; XI Zairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonian realizatiou. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural outpnt. Then some conditions for an affine nonlinear system to have a Hamiltonian realization arc given.For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENGDaizhan; XIZairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonican realization.Firest,it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization.Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output.Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given.some conditions for an affine nonlinear system to have a Hamiltonian realization are given.For generalized outputs,the conditions of the feedback,keeping Hamiltonian,are discussed.Finally,the admissible feedback controls for generalized Hamiltonian systems are considered.
Applications of Noether conservation theorem to Hamiltonian systems
Mouchet, Amaury
2016-09-01
The Noether theorem connecting symmetries and conservation laws can be applied directly in a Hamiltonian framework without using any intermediate Lagrangian formulation. This requires a careful discussion about the invariance of the boundary conditions under a canonical transformation and this paper proposes to address this issue. Then, the unified treatment of Hamiltonian systems offered by Noether's approach is illustrated on several examples, including classical field theory and quantum dynamics.
Applications of Noether conservation theorem to Hamiltonian systems
Mouchet, Amaury
2016-01-01
The Noether theorem connecting symmetries and conservation laws can be applied directly in a Hamiltonian framework without using any intermediate Lagrangian formulation. This requires a careful discussion about the invariance of the boundary conditions under a canonical transformation and this paper proposes to address this issue. Then, the unified treatment of Hamiltonian systems offered by Noether's approach is illustrated on several examples, including classical field theory and quantum dynamics.
An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator
Masterov, Ivan
2015-01-01
Ostrogradsky's method allows one to construct Hamiltonian formulation for a higher derivative system. An application of this approach to the Pais-Uhlenbeck oscillator yields the Hamiltonian which is unbounded from below. This leads to the ghost problem in quantum theory. In order to avoid this nasty feature, the technique previously developed in [Acta Phys. Polon. B 36 (2005) 2115] is used to construct an alternative Hamiltonian formulation for the multidimensional Pais-Uhlenbeck oscillator of arbitrary even order with distinct frequencies of oscillation. This construction is also generalized to the case of an N=2 supersymmetric Pais-Uhlenbeck oscillator.
An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator
Masterov, Ivan
2016-01-01
Ostrogradsky's method allows one to construct Hamiltonian formulation for a higher derivative system. An application of this approach to the Pais-Uhlenbeck oscillator yields the Hamiltonian which is unbounded from below. This leads to the ghost problem in quantum theory. In order to avoid this nasty feature, the technique previously developed in [7] is used to construct an alternative Hamiltonian formulation for the multidimensional Pais-Uhlenbeck oscillator of arbitrary even order with distinct frequencies of oscillation. This construction is also generalized to the case of an N = 2 supersymmetric Pais-Uhlenbeck oscillator.
Entangling capacities of noisy non-local Hamiltonians
Bandyopadhyay, S; Bandyopadhyay, Somshubhro; Lidar, Daniel A.
2003-01-01
We show that intrinsic Gaussian fluctuations in system control parameters impose limits on the ability of non-local (exchange) Hamiltonians to generate entanglement in the presence of mixed initial states. We find three equivalence classes. For the Ising and XYZ models there are qualitatively distinct sharp entanglement-generation transitions, while the class of Heisenberg, XY, and XXZ Hamiltonians is capable of generating entanglement for any finite noise level. Our findings imply that exchange Hamiltonians are surprisingly robust in their ability to generate entanglement in the presence of noise, thus potentially reducing the need for quantum error correction.
Performance Estimation for Two-Dimensional Brownian Rotary Ratchet Systems
Tutu, Hiroki; Horita, Takehiko; Ouchi, Katsuya
2015-04-01
Within the context of the Brownian ratchet model, a molecular rotary system that can perform unidirectional rotations induced by linearly polarized ac fields and produce positive work under loads was studied. The model is based on the Langevin equation for a particle in a two-dimensional (2D) three-tooth ratchet potential of threefold symmetry. The performance of the system is characterized by the coercive torque, i.e., the strength of the load competing with the torque induced by the ac driving field, and the energy efficiency in force conversion from the driving field to the torque. We propose a master equation for coarse-grained states, which takes into account the boundary motion between states, and develop a kinetic description to estimate the mean angular momentum (MAM) and powers relevant to the energy balance equation. The framework of analysis incorporates several 2D characteristics and is applicable to a wide class of models of smooth 2D ratchet potential. We confirm that the obtained expressions for MAM, power, and efficiency of the model can enable us to predict qualitative behaviors. We also discuss the usefulness of the torque/power relationship for experimental analyses, and propose a characteristic for 2D ratchet systems.
PBX 9502 ratchet growth experiments on a dilatometer
Thompson, Darla Graff [Los Alamos National Laboratory; Brown, Geoff W [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Hagelberg, Stephanie [Los Alamos National Laboratory
2009-01-01
A Netzsch dilatometer has been used to probe the ratchet growth response of TATB-containing PBX 9502. Preliminary data are presented, showing test reproducibility and examining possible effects of density and/or the specific sequencing of different thermal ranges. We have also shown effects of thermal ramp rate on the test data, likely due to thermal equilibrium of the specimen environment.
Shock initiation experiments on ratchet grown PBX 9502
Gustavsen, Richard L [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory; Olinger, Barton W [Los Alamos National Laboratory; Deluca, Racci [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Pierce, Timothy H [Los Alamos National Laboratory; Sanchez, Nathaniel J [Los Alamos National Laboratory
2010-01-01
This study compares the shock initiation behavior of PBX 9502 pressed to less than nominal density (nominal density is 1.890 {+-} 0.005 g/cm{sup 3}) with PBX 9502 pressed to nominal density and then ''ratchet grown'' to low density. PBX 9502 is an insensitive plastic bonded explosive consisting of 95 weight % dry-aminated tri-amino-tri-nitro-benzene (TATB) and 5 weight % Kel-F 800 plastic binder. ''Ratchet growth'' - an irreversible increase in specific volume - occurs when an explosive based on TATB is temperature cycled. The design of our study is as follows: PBX 9502, all from the same lot, received the following four treatments. Samples in the first group were pressed to less than nominal density. These were not ratchet grown and used as a baseline. Samples in the second group were pressed to nominal density and then ratchet grown by temperature cycling 30 times between -54 C and +80 C. Samples in the final group were pressed to nominal density and cut into 100 mm by 25.4 mm diameter cylinders. During thermal cycling the cylinders were axially constrained by a 100 psi load. Samples for shock initiation experiments were cut perpendicular (disks) and parallel (slabs) to the axial load. The four sample groups can be summarized with the terms pressed low, ratchet grown/no load, axial load/disks, and axial load/slabs. All samples were shock initiated with nearly identical inputs in plate impact experiments carried out on a gas gun. Wave profiles were measured after propagation through 3, 4, 5, and 6 mm of explosive. Side by side comparison of wave profiles from different samples is used as a measure of relative sensitivity. All reduced density samples were more shock sensitive than nominal density PBX 9502. Differences in shock sensitivity between ratchet grown and pressed to low density PBX 9502 were small, but the low density pressings are slightly more sensitive than the ratchet grown samples.
Efficiency at maximum power of a discrete feedback ratchet
Jarillo, Javier; Tangarife, Tomás; Cao, Francisco J.
2016-01-01
Efficiency at maximum power is found to be of the same order for a feedback ratchet and for its open-loop counterpart. However, feedback increases the output power up to a factor of five. This increase in output power is due to the increase in energy input and the effective entropy reduction obtained as a consequence of feedback. Optimal efficiency at maximum power is reached for time intervals between feedback actions two orders of magnitude smaller than the characteristic time of diffusion over a ratchet period length. The efficiency is computed consistently taking into account the correlation between the control actions. We consider a feedback control protocol for a discrete feedback flashing ratchet, which works against an external load. We maximize the power output optimizing the parameters of the ratchet, the controller, and the external load. The maximum power output is found to be upper bounded, so the attainable extracted power is limited. After, we compute an upper bound for the efficiency of this isothermal feedback ratchet at maximum power output. We make this computation applying recent developments of the thermodynamics of feedback-controlled systems, which give an equation to compute the entropy reduction due to information. However, this equation requires the computation of the probability of each of the possible sequences of the controller's actions. This computation becomes involved when the sequence of the controller's actions is non-Markovian, as is the case in most feedback ratchets. We here introduce an alternative procedure to set strong bounds to the entropy reduction in order to compute its value. In this procedure the bounds are evaluated in a quasi-Markovian limit, which emerge when there are big differences between the stationary probabilities of the system states. These big differences are an effect of the potential strength, which minimizes the departures from the Markovianicity of the sequence of control actions, allowing also to
Baaquie, Belal E.
2007-09-01
Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.
Remarks on hamiltonian digraphs
Gutin, Gregory; Yeo, Anders
2001-01-01
This note is motivated by A.Kemnitz and B.Greger, Congr. Numer. 130 (1998)127-131. We show that the main result of the paper by Kemnitz and Greger is an easy consequence of the characterization of hamiltonian out-locally semicomplete digraphs by Bang-Jensen, Huang, and Prisner, J. Combin. Theory...... of Fan's su#cient condition [5] for an undirected graph to be hamiltonian. In this note we give another, more striking, example of this kind, which disproves a conjecture from [6]. We also show that the main result of [6] 1 is an easy consequence of the characterization of hamiltonian out......-tournaments by Bang-Jensen, Huang and Prisner [4]. For further information and references on hamiltonian digraphs, see e.g. the chapter on hamiltonicity in [1] as well as recent survey papers [2, 8]. We use the standard terminology and notation on digraphs as described in [1]. A digraph D has vertex set V (D) and arc...
Microscopic plasma Hamiltonian
Peng, Y.-K. M.
1974-01-01
A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.
Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist
Castro, P.G., E-mail: pgcastro@cbpf.b [Universidade Federal de Juiz de Fora (DM/ICE/UFJF), Juiz de Fora, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Matematica; Kullock, R.; Toppan, F., E-mail: ricardokl@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)
A systematic construction of completely integrable Hamiltonians from coalgebras
Ballesteros, A; Ballesteros, Angel; Ragnisco, Orlando
1998-01-01
A universal algorithm to construct N-particle (classical and quantum) completely integrable Hamiltonian systems from representations of coalgebras with Casimir element is presented. In particular, this construction shows that quantum deformations can be interpreted as generating structures for integrable deformations of Hamiltonian systems with coalgebra symmetry. In order to illustrate this general method, the $so(2,1)$ algebra and the oscillator algebra $h_4$ are used to derive new classical integrable systems including a generalization of Gaudin-Calogero systems and oscillator chains. Quantum deformations are then used to obtain some explicit integrable deformations of the previous long-range interacting systems and a (non-coboundary) deformation of the $(1+1)$ Poincaré algebra is shown to provide a new Ruijsenaars-Schneider-like Hamiltonian.
Harvesting dissipated energy with a mesoscopic ratchet.
Roche, B; Roulleau, P; Jullien, T; Jompol, Y; Farrer, I; Ritchie, D A; Glattli, D C
2015-04-01
The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.
Bountis, Tassos
2012-01-01
This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems. The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...
Wieland, Wolfgang M
2013-01-01
This paper presents a Hamiltonian formulation of spinfoam-gravity, which leads to a straight-forward canonical quantisation. To begin with, we derive a continuum action adapted to the simplicial decomposition. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise. In the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may indeed miss an additional constraint. Next, we canonically quantise. Transition amplitudes match the EPRL (Engle--Pereira--Rovelli--Livine) model, the only difference being the additional torsional constraint affecting the vertex amplitude.
Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates
Reichhardt, C.; Ray, D.; Olson Reichhardt, C. J.
2015-07-01
We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized. Skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.
Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices.
Miyake, Hirokazu; Siviloglou, Georgios A; Kennedy, Colin J; Burton, William Cody; Ketterle, Wolfgang
2013-11-01
We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients. This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band structure of this Hamiltonian should display Hofstadter's butterfly. For fermions, this scheme should realize the quantum Hall effect and chiral edge states.
Nonperturbative light-front Hamiltonian methods
Hiller, J R
2016-01-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli--Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, $\\phi^4$ theory, ordinary Yukawa theory, supersymmetric Yang--Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations...
Nonperturbative light-front Hamiltonian methods
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
Ratcheting fatigue behavior of Zircaloy-2 at room temperature
Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil
2016-08-01
Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.
Directed transport in a ratchet with internal and chemical freedoms
Dittrich, T., E-mail: tdittrich@unal.edu.co [Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. (Colombia); CeiBA-Complejidad, Bogota D.C. (Colombia); Naranjo, N.A. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. (Colombia); CeiBA-Complejidad, Bogota D.C. (Colombia)
2010-10-05
Graphical abstract: Directed currents in a ratchet including a chemical freedom that provides energy input and an internal freedom modeled as a functional mode of a motor molecule show a direct relation to the structure of the underlying attaractor, limit cycle or chaotic, as reflected in their dependence on the coupling between external and chemical degrees of freedom. - Abstract: We consider mechanisms of directed current in a ratchet model comprising, besides the external freedom where transport occurs, a chemical freedom that replaces the familiar external driving by an autonomous dynamics providing energy input, and an internal freedom representing a functional mode of a motor molecule. The dependence of the current on various parameters is studied in numerical simulations of our model. In particular, we point out the role of the internal freedom as a buffer between energy input and output of mechanical work that allows a temporary storage of injected energy and can contribute to the efficiency of current generation.
Two-dimensional optical thermal ratchets based on Fibonacci spirals.
Xiao, Ke; Roichman, Yael; Grier, David G
2011-07-01
An ensemble of symmetric potential energy wells arranged at the vertices of a Fibonacci spiral can serve as the basis for an irreducibly two-dimensional thermal ratchet. Periodic rotation of the potential energy landscape through a three-step cycle drives trapped Brownian particles along spiral trajectories through the pattern. Which spiral is selected depends on the angular displacement at each step, with transitions between selected spirals arising at rational proportions of the golden angle. Fibonacci spiral ratchets therefore display an exceptionally rich range of transport properties, including inhomogeneous states in which different parts of the pattern induce motion in different directions. Both the radial and angular components of these trajectories can undergo flux reversal as a function of the scale of the pattern or the rate of rotation.
Clarification of strain limits considering the ratcheting fatigue strength of 316FR steel
Isobe, Nobuhiro [Hitachi Ltd. (Japan)], E-mail: nobuhiro.isobe.jk@hitachi.com; Sukekawa, Masayuki [Hitachi Ltd. (Japan); Nakayama, Yasunari [Kawasaki Heavy Industries Ltd. (Japan); Date, Shingo; Ohtani, Tomomi [Mitsubishi Heavy Industries Ltd. (Japan); Takahashi, Yukio [Central Research Institute of Electric Power Industry (Japan); Kasahara, Naoto [Japan Atomic Energy Agency (Japan); Shibamoto, Hiroshi; Nagashima, Hideaki; Inoue, Kazuhiko [Japan Atomic Power Company (Japan)
2008-02-15
The effect of ratcheting on fatigue strength was investigated in order to rationalize the strain limit as a design criterion of commercialized fast reactor systems. Ratcheting fatigue tests were conducted at 550 deg. Duration of the ratchet straining was set for a certain number of strain cycles taking the loading condition of fast reactors into account, and the number of cycles for strain accumulation was defined as the ratchet-expired cycle. Fatigue lives decrease as the accumulated strain by ratcheting increases. Mean stress increased during the ratcheting cycle and its maximum value depended on the accumulated strain and the ratchet-expired cycle. Fatigue life reduction was negligible when the maximum mean stress was less than 25 MPa, corresponding to an accumulated strain of 2.2%. Accumulated strain is limited to 2% in the present design guidelines and this strain limit is considered effective to avoid reducing fatigue life by ratcheting. Microcrack growth behaviors were also investigated in these tests in order to discuss the life reduction mechanisms in ratcheting conditions.
Stochastic transport of interacting particles in periodically driven ratchets
Savel'Ev, Sergey; Marchesoni, Fabio; Nori, Franco
2004-12-01
An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential U(x+l)=U(x) is studied in terms of an infinite set of coupled partial differential equations describing the time evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy of equations can be replaced by a nonlinear integro-differential Fokker-Planck equation. This is applicable when the distance a between particles is much less than the interaction length λ , i.e., a particle interacts with many others, resulting in averaging out fluctuations. The equation obtained in the mean-field approximation is applied to an ensemble of locally (a≪λ≪l) interacting (either repelling or attracting) particles placed in an asymmetric one-dimensional substrate potential, either with an oscillating temperature (temperature rachet) or driven by an ac force (rocked ratchet). In both cases we focus on the high-frequency limit. For the temperature ratchet, we find that the net current is typically suppressed (or can even be inverted) with increasing density of the repelling particles. In contrast, the net current through a rocked ratchet can be enhanced by increasing the density of the repelling particles. In the case of attracting particles, our perturbation technique is valid up to a critical value of the particle density, above which a finite fraction of the particles starts condensing in a liquidlike state near the substrate minima. The dependence of the net transport current on the particle density and the interparticle potential is analyzed in detail for different values of the ratchet parameters.
Fluctuation theorem for the flashing ratchet model of molecular motors
Lacoste, D.; Mallick, K.
2009-08-01
Molecular motors convert chemical energy derived from the hydrolysis of adenosine triphosphate (ATP) into mechanical energy. A well-studied model of a molecular motor is the flashing ratchet model. We show that this model exhibits a fluctuation relation known as the Gallavotti-Cohen symmetry. Our study highlights the fact that the symmetry is present only if the chemical and mechanical degrees of freedom are both included in the description.
Ratchet Baryogenesis with an Analogy to the Forced Pendulum
Bamba, Kazuharu; Sugamoto, Akio; Takeuchi, Tatsu; Yamashita, Kimiko
2016-01-01
A new scenario of baryogenesis, via the ratchet mechanism, is proposed based on an analogy to a forced pendulum. The oscillation of the inflaton field, of the Starobinsky type, in the reheating epoch after inflation plays the role of the driving force, while the phase $\\theta$ of a scalar baryon field (a complex field with a baryon number) plays the role of the angle of the pendulum, or of the molecular motor in the case of a biological ratchet. If the inflaton and the scalar baryon couple, the behavior of the angle $\\theta$ can be analogous to that of the forced pendulum. If the oscillation of the driven force is adjusted to the pendulum's motion, a directed rotation of the pendulum is obtained with a non-vanishing value of $\\dot{\\theta}$, which can realize successful baryogenesis, since $\\dot{\\theta}$ is proportional to the baryon number density. In the ratchet model of molecular motors, the driven force is supplied by chemical reactions, while in our scenario this role is played by the inflaton during the ...
Abrams, D.; Williams, C.
1999-01-01
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.
Flow Equations for the Hénon-Heiles Hamiltonian
Cremers, D; Cremers, Daniel; Mielke, Andreas
1998-01-01
The Henon-Heiles Hamiltonian was introduced in 1964 as a mathematical model to describe the chaotic motion of stars in a galaxy. By canonically transforming the classical Hamiltonian to a Birkhoff-Gustavson normalform Delos and Swimm obtained a discrete quantum mechanical energy spectrum. The aim of the present work is to first quantize the classical Hamiltonian and to then diagonalize it using different variants of flow equations, a method of continuous unitary transformations introduced by Wegner in 1994. The results of the diagonalization via flow equations are comparable to those obtained by the classical transformation. In the case of commensurate frequencies the transformation turns out to be less lengthy. In addition, the dynamics of the quantum mechanical system are analyzed on the basis of the transformed observables.
Cluster expansion for ground states of local Hamiltonians
Bastianello, Alvise; Sotiriadis, Spyros
2016-08-01
A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Cluster expansion for ground states of local Hamiltonians
Alvise Bastianello
2016-08-01
Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Cluster expansion for ground states of local Hamiltonians
Bastianello, Alvise, E-mail: abastia@sissa.it [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Sotiriadis, Spyros [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Institut de Mathématiques de Marseille (I2M), Aix Marseille Université, CNRS, Centrale Marseille, UMR 7373, 39, rue F. Joliot Curie, 13453, Marseille (France); University of Roma Tre, Department of Mathematics and Physics, L.go S.L. Murialdo 1, 00146 Roma (Italy)
2016-08-15
A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Proton radius puzzle in Hamiltonian dynamics
Glazek, Stanislaw D
2014-01-01
Relativistic lepton-proton bound-state eigenvalue equations for Hamiltonians derived from quantum field theory using second-order renormalization group procedure for effective particles, are reducible to two-body Schroedinger eigenvalue equations with the effective Coulomb potential that exhibits a tiny sensitivity to the characteristic momentum-scale of the bound system. The scale dependence is shown to be relevant to the theoretical interpretation of precisely measured lepton-proton bound-state energy levels in terms of a 4 percent difference between the proton radii in muon-proton and electron-proton bound states.
Linear representation of energy-dependent Hamiltonians
Znojil, Miloslav
2004-05-01
Quantum mechanics abounds in models with Hamiltonian operators which are energy-dependent. A linearization of the underlying Schrödinger equation with H= H( E) is proposed here via an introduction of a doublet of separate energy-independent representatives K and L of the respective right and left action of H( E). Both these new operators are non-Hermitian so that our formalism admits a natural extension to non-Hermitian initial H( E)s. Its applicability may range from pragmatic phenomenology and variational calculations (where all the subspace-projected effective operators depend on energy by construction) up to perturbation theory and quasi-exact constructions.
Dyson--Schwinger Approach to Hamiltonian QCD
Campagnari, Davide R; Huber, Markus Q; Vastag, Peter; Ebadati, Ehsan
2016-01-01
Dyson--Schwinger equations are an established, powerful non-perturbative tool for QCD. In the Hamiltonian formulation of a quantum field theory they can be used to perform variational calculations with non-Gaussian wave functionals. By means of the DSEs the various $n$-point functions, needed in expectation values of observables like the Hamilton operator, can be thus expressed in terms of the variational kernels of our trial ansatz. Equations of motion for these variational kernels are derived by minimizing the energy density and solved numerically.
The quantization of the Rabi Hamiltonian
Vandaele, Eva R. J.; Arvanitidis, Athanasios; Ceulemans, Arnout
2017-03-01
The Rabi Hamiltonian addresses the proverbial paradigmatic case of a two-level fermionic system coupled to a single bosonic mode. It is expressed by a system of two coupled first-order differential equations in the complex field, which may be rewritten in a canonical form under the Birkhoff transformation. The transformation gives rise to leapfrog recurrence relations, from which the eigenvalues and eigenvectors could be obtained. The interesting feature of this approach is that it generates integer quantum numbers, which rationalize the spectrum by relating the solutions to the Juddian baselines. The relationship with Braak’s integrability claim (Braak 2011 Phys. Rev. Lett. 107 100401) is discussed.
Nonabelian N=2 Superstrings: Hamiltonian Structure
Isaev, A P
2009-01-01
We examine the Hamiltonian structure of nonabelian N=2 superstrings models which are the supergroup manifold extensions of N=2 Green-Schwarz superstring. We find the Kac-Moody and Virasoro type superalgebras of the relevant constraints and present elements of the corresponding quantum theory. A comparison with the type IIA Green-Schwarz superstring moving in a general curved 10-d supergravity background is also given. We find that nonabelian superstrings (for d=10) present a particular case of this general system corresponding to a special choices of the background.
Subsystem's dynamics under random Hamiltonian evolution
Vinayak,
2011-01-01
We study time evolution of a subsystem's density matrix under a unitary evolution, generated by a sufficiently complex, say quantum chaotic, Hamiltonian. We exactly calculate all coherences, purity and fluctuations. The reduced density matrix is described in terms of a noncentral correlated Wishart ensemble. Our description accounts for a transition from an arbitrary initial state towards a random state at large times, enabling us to determine the convergence time after which random states are reached. We identify and describe a number of other interesting features, like a series of collisions between the largest eigenvalue and the bulk, accompanied by a phase transition in its distribution function.
Exact Invariants for a Time-Dependent Hamiltonian System
LUO Xiao-Bing
2009-01-01
We have a classical look for a quantum system which is exactly solvable. We construct the invariant manifolds analytically, and then apply the semiclassical quantization rules in a final step to compute the quasienergies. The invariant is obtained by performing a canonical transformation of the initially time-dependent Hamiltonian to a time-independent one. The correspondence between classical and quantum mechanics is elucidated.
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
Periodic Hamiltonian hierarchies and non-uniqueness of superpotentials
PARTHA MANDAL; ABHIJIT BANERJEE
2017-01-01
In this article, a family of periodic quantum Hamiltonians, that is subject to a closure condition is considered. In the context of the factorization method, we address the question of non-uniqueness of the governing superpotentials and study an alternative factorization to generate new hierarchies of potentials.
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
Redesign of the DFT/MRCI Hamiltonian.
Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M
2016-01-21
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.
29 CFR 1926.305 - Jacks-lever and ratchet, screw, and hydraulic.
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Jacks-lever and ratchet, screw, and hydraulic. 1926.305... Power § 1926.305 Jacks—lever and ratchet, screw, and hydraulic. (a) General requirements. (1) The... secured at once. (ii) Hydraulic jacks exposed to freezing temperatures shall be supplied with an...
When a local Hamiltonian must be frustration-free.
Sattath, Or; Morampudi, Siddhardh C; Laumann, Chris R; Moessner, Roderich
2016-06-07
A broad range of quantum optimization problems can be phrased as the question of whether a specific system has a ground state at zero energy, i.e., whether its Hamiltonian is frustration-free. Frustration-free Hamiltonians, in turn, play a central role for constructing and understanding new phases of matter in quantum many-body physics. Unfortunately, determining whether this is the case is known to be a complexity-theoretically intractable problem. This makes it highly desirable to search for efficient heuristics and algorithms to, at least, partially answer this question. Here we prove a general criterion-a sufficient condition-under which a local Hamiltonian is guaranteed to be frustration-free by lifting Shearer's theorem from classical probability theory to the quantum world. Remarkably, evaluating this condition proceeds via a fully classical analysis of a hardcore lattice gas at negative fugacity on the Hamiltonian's interaction graph, which, as a statistical mechanics problem, is of interest in its own right. We concretely apply this criterion to local Hamiltonians on various regular lattices, while bringing to bear the tools of spin glass physics that permit us to obtain new bounds on the satisfiable to unsatisfiable transition in random quantum satisfiability. We are then led to natural conjectures for when such bounds will be tight, as well as to a novel notion of universality for these computer science problems. Besides providing concrete algorithms leading to detailed and quantitative insights, this work underscores the power of marrying classical statistical mechanics with quantum computation and complexity theory.
阳劲松; Ding You; 马永革
2011-01-01
Loop quantum cosmology in the Hamiltonian constraint quantization has certain arbitrariness, therefore need to test some important properties of loop quantum cosmology, Such as quantum rebound, effective description, and whether this quantization arbitrary related. In this paper we consider the gravity contact intensity quantization of a typical arbitrariness, constructed a choice of Hamiltonian constraint operator, and through the semiclassical analysis proves that this operator has the correct classical limit, then obtained the high order quantum modified effective Hamiltonian constraint. In the mass less scalar field coupled spatial flat Friedmann cosmology model is effective in the classical theory, the big bang singularity was replaced by quantum rebound, and quantum gravity effects are likely to make the expansion of the universe is collapsing. The important properties of visible ring quantum cosmology was independent the quantized random.%圈量子宇宙学中哈密顿约束的量子化有一定的任意性，因此需要检验圈量子宇宙学的一些重要性质，如量子反弹、有效描述等，是否与这种量子化任意性有关。文章考虑了引力联络的场强的量子化中产生的一种典型的任意性，构造了一个可供选择的哈密顿约束算符，并通过半经典分析证明了该算符有正确的经典极限，进而得到了含高阶量子修正的有效哈密顿约束。在这个与无质量标量场耦合的空间平坦的Friedmann宇宙学模型的有效理论中，经典大爆炸奇点被量子反弹所取代，并且量子引力效应极有可能使膨胀的宇宙塌缩回来。可见圈量子宇宙学的上述重要性质与这种量子化任意性无关。
Chromatic roots and hamiltonian paths
Thomassen, Carsten
2000-01-01
We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...
The rovibrational Hamiltonian for ammonia-like molecules.
Makarewicz, Jan; Skalozub, Alexander
2002-03-01
A new exact quantum mechanical rovibrational Hamiltonian operator for ammonia-like molecules is derived. The Hamiltonian is constructed in a molecular system of axes, such that its z' axis makes a trisection of the pyramidal angle formed by three bond vectors with the vertex on the central atom. The introduced set of the internal rovibrational coordinates is adapted to facilitate a convenient description of the inversion motion. These internal coordinates and the molecular axis system have a remarkable property, namely, the internal vibrational angular momentum of the molecule equals zero. This property significantly reduces the Coriolis coupling and simplifies the form of the Hamiltonian. The correctness of this Hamiltonian is proved by a numerical procedure. The orthogonal Radau vectors allowing us to define a similar molecular axis system and the internal coordinates are considered. The Hamiltonian for the Radau parameterization takes a form simple enough to carry out effectively variational calculations of the molecular rovibrational states. Under the appropriate choice of the variational basis functions, the Hamiltonian matrix elements are fully factorizable and do not have any singularities. A convenient method of symmetrization of the basis functions is proposed.
Regional Atmospheric Transport Code for Hanford Emission Tracking, Version 2(RATCHET2)
Ramsdell, James V.; Rishel, Jeremy P.
2006-07-01
This manual describes the atmospheric model and computer code for the Atmospheric Transport Module within SAC. The Atmospheric Transport Module, called RATCHET2, calculates the time-integrated air concentration and surface deposition of airborne contaminants to the soil. The RATCHET2 code is an adaptation of the Regional Atmospheric Transport Code for Hanford Emissions Tracking (RATCHET). The original RATCHET code was developed to perform the atmospheric transport for the Hanford Environmental Dose Reconstruction Project. Fundamentally, the two sets of codes are identical; no capabilities have been deleted from the original version of RATCHET. Most modifications are generally limited to revision of the run-specification file to streamline the simulation process for SAC.
Hamiltonian description of composite fermions: Magnetoexciton dispersions
Murthy, Ganpathy
1999-11-01
A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in fractional quantum hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=13, 25, and 37 gapped fractions, and find approximate agreement with numerical results. I also analyze the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 25 and 37, and it is shown that the spin-polarized 25 state, in contrast to the spin-polarized 13 state, cannot be described as a simple quantum ferromagnet.
Boundary Liouville Theory: Hamiltonian Description and Quantization
Harald Dorn
2007-01-01
Full Text Available The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in 2d Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr-Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator $e^varphi$ in terms of free field exponentials is constructed in the hyperbolic sector.
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G; Sardanashvily, G
2007-01-01
Integrals of motion of a Hamiltonian system need not be commutative. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as an abelian completely integrable Hamiltonian system.
Dirac Hamiltonian with superstrong Coulomb field
Voronov, B L; Tyutin, I V
2006-01-01
We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=137 based on the fact that the standard expression for energy eigenvalues yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is the nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamilt...
Criticism of Feynman's analysis of the ratchet as an engine
Parrondo, Juan M. R.; Español, Pep
1996-09-01
The well-known discussion on an engine consisting of a ratchet and a pawl in [R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1963), Vol. 1, pp. 46.1-46.9] is shown to contain some misguided aspects: Since the engine is simultaneously in contact with reservoirs at different temperatures, it can never work in a reversible way. As a consequence, the engine can never achieve the efficiency of a Carnot cycle, not even in the limit of zero power (infinitely slow motion), in contradiction with the conclusion reached in the Lectures.
Entropic Ratchet transport of interacting active Brownian particles
Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)
2014-11-21
Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.
Directed transport in a ratchet with internal and chemical freedoms
Dittrich, Thomas
2010-01-01
We consider mechanisms of directed transport in a ratchet model comprising, besides the external freedom where transport occurs, a chemical freedom that replaces the familiar external driving by an autonomous dynamics providing energy input, and an internal freedom representing a functional mode of a motor molecule. The dependence of the current on various parameters is studied in numerical simulations of our model. In particular, we point out the role of the internal freedom as a buffer between energy input and output of mechanical work that allows a temporary storage of injected energy and can contribute to the efficiency of current generation.
Local-TQO and Stability of Frustration-Free Hamiltonians
Pytel, Justyna; Michalakis, Spyridon
2012-02-01
The attention of the condensed matter and mathematical physics communities has recently focused on Hamiltonians with low-energy sectors exhibiting some form of topological order. In our work [1], we present a generalization of the result of Bravyi et al. [2,3] on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. In particular, the commutativity condition can be removed: We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. Also, we will discuss the ``Local Topological Quantum Order'' and ``Local-Gap'' conditions sufficient for proving stability. [4pt] [1] S. Michalakis and J. Pytel, Stability of Frustration-Free Hamiltonians. arXiv:1109.1588 (2011).[0pt] [2] S. Bravyi and M.B. Hastings, A short proof of stability of topological order under local perturbations. arXiv:1001.4363. [0pt] [3] S. Bravyi, M.B. Hastings, and S. Michalakis, Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010).
Dual partitioning for effective Hamiltonians to avoid intruders
Ten-no, Seiichiro
2015-01-01
We present a new Hamiltonian partitioning which converges an arbitrary number of states of interest in the effective Hamiltonian to the full configuration interaction limits simultaneously. This feature is quite useful for the recently developed model space quantum Monte Carlo. A dual partitioning (DP) technique is introduced to avoid the intruder state problem present in the previous eigenvalue independent partitioning of Coope. The new approach is computationally efficient and applicable to general excited states involving conical intersections. We present a preliminary application of the method to model systems to investigate the performance.
Nonclassical degrees of freedom in the Riemann Hamiltonian.
Srednicki, Mark
2011-09-02
The Hilbert-Pólya conjecture states that the imaginary parts of the zeros of the Riemann zeta function are eigenvalues of a quantum Hamiltonian. If so, conjectures by Katz and Sarnak put this Hamiltonian in the Altland-Zirnbauer universality class C. This implies that the system must have a nonclassical two-valued degree of freedom. In such a system, the dominant primitive periodic orbits contribute to the density of states with a phase factor of -1. This resolves a previously mysterious sign problem with the oscillatory contributions to the density of the Riemann zeros.
Decoherence control: A feedback mechanism based on hamiltonian tracking
Katz, G; Kosloff, R; Katz, Gil; Ratner, Mark; Kosloff, Ronnie
2006-01-01
Enviroment - caused dissipation disrupts the hamiltonian evolution of all quantum systems not fully isolated from any bath. We propose and examine a feedback-control scheme to eliminate such dissipation, by tracking the free hamiltonian evolution. We determine a driving-field that maximizes the projection of the actual molecular system onto the freely propagated one. The evolution of a model two level system in a dephasing bath is followed, and the driving field that overcomes the decoherence is calculated. An implementation of the scheme in the laboratory using feedback control is suggested.
Interpreting Quantum Discord in Quantum Metrology
Girolami, Davide
2015-01-01
Multipartite quantum systems show properties which do not admit a classical explanation. In particular, even nonentangled states can enjoy a kind of quantum correlations called quantum discord. I discuss some recent results on the role of quantum discord in metrology. Given an interferometric phase estimation protocol where the Hamiltonian is initially unknown to the experimentalist, the quantum discord of the probe state quantifies the minimum precision of the estimation. This provides a phy...
Biamonte, J D; Whitfield, J D; Fitzsimons, J; Aspuru-Guzik, A
2010-01-01
In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be error resistant, easily controllable, and built using existing technology. Moving away from gate-model and projective measurement based implementations of quantum computing may offer a less resource-intensive, and consequently a more feasible solution. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-body interaction terms, using sparse Hamiltonians with at most three-body interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes...
On the Reaction Path Hamiltonian
孙家钟; 李泽生
1994-01-01
A vector-fiber bundle structure of the reaction path Hamiltonian, which has been introduced by Miller, Handy and Adams, is explored with respect to molecular vibrations orthogonal to the reaction path. The symmetry of the fiber bundle is characterized by the real orthogonal group O(3N- 7) for the dynamical system with N atoms. Under the action of group O(3N- 7). the kinetic energy of the reaction path Hamiltonian is left invariant. Furthermore , the invariant behaviour of the Hamiltonian vector fields is investigated.
Nonlinear metrology with a quantum interface
Napolitano, M.; Mitchell, M. W.
2009-01-01
We describe nonlinear quantum atom-light interfaces and nonlinear quantum metrology in the collective continuous variable formalism. We develop a nonlinear effective Hamiltonian in terms of spin and polarization collective variables and show that model Hamiltonians of interest for nonlinear quantum metrology can be produced in $^{87}$Rb ensembles. With these Hamiltonians, metrologically relevant atomic properties, e.g. the collective spin, can be measured better than the "Heisenberg limit" $\\...
Reverse engineering of a Hamiltonian by designing the evolution operators.
Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Huang, Bi-Hua; Xia, Yan; Song, Jie
2016-07-22
We propose an effective and flexible scheme for reverse engineering of a Hamiltonian by designing the evolution operators to eliminate the terms of Hamiltonian which are hard to be realized in practice. Different from transitionless quantum driving (TQD), the present scheme is focus on only one or parts of moving states in a D-dimension (D ≥ 3) system. The numerical simulation shows that the present scheme not only contains the results of TQD, but also has more free parameters, which make this scheme more flexible. An example is given by using this scheme to realize the population transfer for a Rydberg atom. The influences of various decoherence processes are discussed by numerical simulation and the result shows that the scheme is fast and robust against the decoherence and operational imperfection. Therefore, this scheme may be used to construct a Hamiltonian which can be realized in experiments.
Normal-ordered second-quantized Hamiltonian for molecular vibrations.
Hirata, So; Hermes, Matthew R
2014-11-14
A normal-ordered second-quantized form of the Hamiltonian is derived for quantum dynamics in a bound potential energy surface expressed as a Taylor series in an arbitrary set of orthogonal, delocalized coordinates centered at an arbitrary geometry. The constant, first-, and second-order excitation amplitudes of this Hamiltonian are identified as the ground-state energy, gradients, and frequencies, respectively, of the size-extensive vibrational self-consistent field (XVSCF) method or the self-consistent phonon method. They display the well-defined size dependence of V(1-n/2), where V is the volume and n is the number of coordinates associated with the amplitudes. It is used to rapidly derive the equations of XVSCF and vibrational many-body perturbation methods with the Møller-Plesset partitioning of the Hamiltonian.
Multiaxial ratcheting of 20 carbon steel: Macroscopic experiments and microscopic observations
Dong, Yawei [State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Kang, Guozheng, E-mail: guozhengkang@yahoo.com.cn [State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Liu, Yujie; Jiang, Han [School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)
2013-09-15
The multiaxial ratcheting behaviors of polycrystalline 20 ordinary carbon steel were investigated at room temperature. The macroscopic experimental results showed that the studied multiaxial ratcheting depends greatly on the mean stress, stress amplitude and loading path. The axial ratcheting strain increased with the increase of applied mean stress and stress amplitude. Apparent additional hardening was observed in the non-proportionally multiaxial cyclic loading. The multiaxial ratcheting of 20 carbon steel was lower than the corresponding uniaxial one and varies with different loading paths. Dislocation patterns and their evolutions of the multiaxial ratcheting of different loading paths were then investigated using transmission electron microscopy. The obtained images showed that, with the increasing number of loading cycles, the dislocation patterns evolved from dislocation lines and networks to dislocation tangles, walls and cells. After certain cycles, sub-grains were formed because of the re-arrangement of dislocations in the walls of cells and inside the cells since the cross slip of dislocations can be easily activated for the 20 carbon steel, a kind of body-centered cubic metal. The dislocation evolution of the multiaxial ratcheting is much quicker than that of the uniaxial one. With the reference to the uniaxial one of 20 carbon steel, the macroscopic multiaxial ratcheting behaviors can be qualitatively correlated with the microscopic observation of the dislocation patterns and their evolution. - Highlights: • Multiaxial loading hardly changes the cyclic stable feature of 20 carbon steel. • Multiaxial ratcheting of 20 carbon steel depends greatly on the load path. • Dislocation patterns evolve quicker in the multiaxial case. • The stabilized dislocation pattern is sub-grain, rather than the dislocation cell. • Sub-grains formed after certain cycles make the stable ratcheting strain rate large.
Kuramoto dynamics in Hamiltonian systems.
Witthaut, Dirk; Timme, Marc
2014-09-01
The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds. We show that locking of the phase of one oscillator on a Kuramoto manifold to the average phase emerges where the transverse Hamiltonian action dynamics of that specific oscillator becomes unstable. Moreover, the inverse participation ratio of the Hamiltonian dynamics perturbed off the manifold indicates the global synchronization transition point for finite N more precisely than the standard Kuramoto order parameter. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics.
Continuum Hamiltonian Hopf Bifurcation II
Hagstrom, G I
2013-01-01
Building on the development of [MOR13], bifurcation of unstable modes that emerge from continuous spectra in a class of infinite-dimensional noncanonical Hamiltonian systems is investigated. Of main interest is a bifurcation termed the continuum Hamiltonian Hopf (CHH) bifurcation, which is an infinite-dimensional analog of the usual Hamiltonian Hopf (HH) bifurcation. Necessary notions pertaining to spectra, structural stability, signature of the continuous spectra, and normal forms are described. The theory developed is applicable to a wide class of 2+1 noncanonical Hamiltonian matter models, but the specific example of the Vlasov-Poisson system linearized about homogeneous (spatially independent) equilibria is treated in detail. For this example, structural (in)stability is established in an appropriate functional analytic setting, and two kinds of bifurcations are considered, one at infinite and one at finite wavenumber. After defining and describing the notion of dynamical accessibility, Kre\\u{i}n-like the...
Hamiltonian Structure of PI Hierarchy
Kanehisa Takasaki
2007-03-01
Full Text Available The string equation of type (2,2g+1 may be thought of as a higher order analogue of the first Painlevé equation that corresponds to the case of g = 1. For g > 1, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called the PI hierarchy. This hierarchy gives an isomonodromic analogue of the well known Mumford system. The Hamiltonian structure of the Lax equations can be formulated by the same Poisson structure as the Mumford system. A set of Darboux coordinates, which have been used for the Mumford system, can be introduced in this hierarchy as well. The equations of motion in these Darboux coordinates turn out to take a Hamiltonian form, but the Hamiltonians are different from the Hamiltonians of the Lax equations (except for the lowest one that corresponds to the string equation itself.
Alternative Hamiltonian representation for gravity
Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)
2007-11-15
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.
Hamiltonian analysis of interacting fluids
Banerjee, Rabin; Mitra, Arpan Krishna [S. N. Bose National Centre for Basic Sciences, Kolkata (India); Ghosh, Subir [Indian Statistical Institute, Kolkata (India)
2015-05-15
Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary roles of the canonical (Noether) stress tensor and the symmetric one obtained by metric variation are discussed. (orig.)
When are vector fields hamiltonian?
Crehan, P
1994-01-01
Dynamical systems can be quantised only if they are Hamiltonian. This prompts the question from which our talk gets its title. We show how the simple predator-prey equation and the damped harmonic oscillator can be considered to be Hamiltonian with respect to an infinite number of non-standard Poisson brackets. This raises some interesting questions about the nature of quantisation. Questions which are valid even for flows which possess a canonical structure.
VISCO-PLASTIC CONSTITUTIVE MODEL FOR UNIAXIAL AND MULTIAXIAL RATCHETING AT ELEVATED TEMPERATURES
G.Z.Kang; Q.Gao; J.Zhang
2004-01-01
Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room and elevated temperatures within the framework of unified visco-plasticity. In the model, the temperature dependence of the ratcheting was emphasized, and the dynamic strain aging occurred in the temperature range of 400-600C for the material was taken into account particularly. Finally, the prediction capability of the developed model was checked by comparing to the corresponding experimental results.
Ratcheting deformation of advanced 316 steel under creep-plasticity condition
Kawashima, Fumiko; Ishikawa, Akiyoshi; Asada, Yasuhide [Tokai Univ., Tokyo (Japan). Dept. of Mechanical Engineering
1998-11-01
Tension-torsion biaxial ratcheting tests have been conducted with Advanced 316 Steel (316FR Steel) at 650 C under a cyclic strain rate of 10{sup -3} to 10{sup -5} s{sup -1}. Accumulation of ratcheting strain has been measured. Accumulated ratchet strain has shown to be much larger than predicted based on a usual method of the linear superposition of strains due to creep and plasticity. The result shows there observed the creep-plasticity interaction in the observation. (orig.)
Interchange graphs and the Hamiltonian cycle polytope
Sierksma, G
1998-01-01
This paper answers the (non)adjacency question for the whole spectrum of Hamiltonian cycles on the Hamiltonian cycle polytope (HC-polytope), also called the symmetric traveling salesman polytope, namely from Hamiltonian cycles that differ in only two edges through Hamiltonian cycles that are edge di
When a local Hamiltonian must be frustration-free
Sattath, Or; Morampudi, Siddhardh C.; Laumann, Chris R.; Moessner, Roderich
2016-06-01
A broad range of quantum optimization problems can be phrased as the question of whether a specific system has a ground state at zero energy, i.e., whether its Hamiltonian is frustration-free. Frustration-free Hamiltonians, in turn, play a central role for constructing and understanding new phases of matter in quantum many-body physics. Unfortunately, determining whether this is the case is known to be a complexity-theoretically intractable problem. This makes it highly desirable to search for efficient heuristics and algorithms to, at least, partially answer this question. Here we prove a general criterion—a sufficient condition—under which a local Hamiltonian is guaranteed to be frustration-free by lifting Shearer’s theorem from classical probability theory to the quantum world. Remarkably, evaluating this condition proceeds via a fully classical analysis of a hardcore lattice gas at negative fugacity on the Hamiltonian’s interaction graph, which, as a statistical mechanics problem, is of interest in its own right. We concretely apply this criterion to local Hamiltonians on various regular lattices, while bringing to bear the tools of spin glass physics that permit us to obtain new bounds on the satisfiable to unsatisfiable transition in random quantum satisfiability. We are then led to natural conjectures for when such bounds will be tight, as well as to a novel notion of universality for these computer science problems. Besides providing concrete algorithms leading to detailed and quantitative insights, this work underscores the power of marrying classical statistical mechanics with quantum computation and complexity theory.
Hamiltonian description of the ideal fluid
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Mean Mobility and Rotation Number in Time-inhomogenous Brownian Ratchets
张雪娟
2004-01-01
@@ Recently, Brownian ratchets have attracted considerable attention due to their abitlity to realize a unidirectional transport only throught the use of a proper asymmetry and thermal noise fluctuation, for recent review, see[1,2].
无
2001-01-01
An experimental study was carried out on the strain cycliccharacteristics and ratcheting of 316Lstainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tensioncompression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting.
Ratcheting Behavior of a Non-conventional Stainless Steel and Associated Microstructural Variations
Sahu, Lopamudra; Mishra, Awanish Kumar; Dutta, Krishna
2014-11-01
Ratcheting fatigue behavior of a non-conventional stainless steel X12CrMnNiN17-7-5 has been investigated with varying combinations of mean stress (σm) and stress amplitude (σa) at room temperature using a servo-hydraulic universal testing machine. X-ray diffraction profile analysis has been carried out for assessing possible martensitic phase transformation in the steel subjected to ratcheting deformation. The results indicate that ratcheting strain as well as volume fraction of martensite increases with increasing σm and/or σa; the phenomenon of strain accumulation is considered to be governed by the associated mechanics of cyclic loading, increased plastic damage as well as martensitic transformation. A correlation between strain produced by ratcheting deformation and martensitic transformation has been established.
Microfluidic ratchets: from bacterial separation to sperm guidance
Condat, Carlos; Berdakin, Ivan; Marconi, Veronica; Guidobaldi, Alejandro; Giojalas, Laura; Silhanek, Alejandro; Jeyaram, Yogesh; Moshchalkov, Victor; Venken, Lyn; Vanderleyden, Jozef
2013-03-01
It has been shown that a suitably built asymmetric microdevice can be used to separate and select self-propelled microorganisms. The efficiency of this rectification effect depends on the detailed dynamics of the individual microorganism. In the case of run-and-tumble bacteria we show that the distribution of run lengths and the partial preservation of run orientation memory through a tumble are important factors when computing the rectification efficiency. In addition, we show that this ratchet effect can be used to separate or concentrate sperm cells. Using a simple phenomenological model we optimize the geometry of the confining habitat in order to accumulate the cells. Both swimming strategy and swimmer size should be taken into account to optimize the design of a micro-patterned architecture for a device that can be used for effective physical bacterial separation or sperm guidance. We acknowledge support from UNC, MINCyT and CONICET, Argentina, and FWO and KUL, Belgium.
Optimisation of geometrical ratchets for spin-current amplification
Abdullah, Ranjdar M. [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Vick, Andrew J. [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); Department of Physics, University of York, York YO10 5DD (United Kingdom); Murphy, Benedict A. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Hirohata, Atsufumi, E-mail: atsufumi.hirohata@york.ac.uk [Department of Electronics, University of York, Heslington, York YO10 5DD (United Kingdom); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan)
2015-05-07
A two-dimensional model is used to study the geometrical effects of a nonmagnetic (NM) nanowire upon a spin-polarised electron current in a lateral spin-valve structure. We found that the implemented ratchet shapes at the centre of the NM have a crucial effect on the diffusive rate for up- and down-spin electrons along the wire, which leads to the amplification of non-local spin-current signals. By using our simple model, the geometries have been optimised. The calculated spin-current signals are in good qualitative agreement with our recent experimental results [Abdullah et al., J. Phys. D: Appl. Phys. 47, 482001(FTC) (2014)]. Our model may be very useful to evaluate such a geometrical effect on spin-polarised electron transport.
Thermal ratchets driven by Poissonian white shot noise
Czernik, T.; Kula, J.; Łuczka, J.; Häautnggi, P.
1997-04-01
We investigate the overdamped transport of Brownian particles that are placed in spatially periodic potentials (without and with reflection symmetry) that are subjected to both Poissonian white shot noise and thermal, i.e., Gaussian, white equilibrium fluctuations. The probability current of the output process, which is shown to obey a second-order ordinary differential equation, is analyzed. The limit of strong Poissonian white shot noise is studied analytically; the resulting current is given in closed form in terms of two quadratures. For general forms of the periodic potential we present asymptotic expansions in terms of the ratio between the thermal and the shot noise intensity. Analytic results are presented for the class of piecewise linear, sawtoothlike ratchet potentials. Under specific conditions, the current exhibits a distinctive nonmonotonic dependence on such parameters as temperature and/or asymmetry of the periodic potential.
A DNA ring acting as a thermal ratchet.
Kulić, Igor M; Thaokar, Rochish; Schiessel, Helmut
2005-11-30
Several DNA nanomotors have been recently constructed in laboratories worldwide. These machines are, however, relatively slow and do not perform continuous rotations. We have recently proposed a rotary DNA nanomachine that shows a continuous rotation with a frequency of 10(2)-10(4) Hz. This motor is a closed DNA ring whose elastic features are tuned such that it can be externally driven via e.g. periodic temperature changes. As a result, the twirling ring propels itself through the fluid with a speed of tens of nanometres up to a few microns per second. The current paper gives a more detailed presentation of this motor and provides a derivation of the low- and high-frequency asymptotic behaviour of thermal ratchets in general.
Brownian Ratchets in Biophysics: from Diffusing Phospholipids to Polymerizing Actin Filaments
van Oudenaarden, Alexander
2000-03-01
In the 'Feynman Lectures on Physics' Feynman introduces a mechanical ratchet and pawl subjected to thermal fluctuations to demonstrate the impossibility to violate the second law of thermodynamics. Since this introduction the Brownian ratchet has evolved from Gedanken experiments to real experiments in the interdisciplinary sciences such as biophysics and biochemistry. In this symposium I will present two experiments in which the concept Brownian ratchet is of key importance. The first experiment addresses a so-called geometrical Brownian ratchet [1]. This ratchet consists of a two-dimensional microfabricated periodic array of asymmetric diffusion barriers. As an experimental realization of a two-dimensional fluid of Brownian particles, a bilayer of phospholipid molecules is used. I will demonstrate that the geometrical Brownian ratchet can be used as a molecular sieve to separate mixtures of membrane molecules without the need to extract them from the membrane. In the second experiment I explore the spontaneous symmetry breaking of polymerizing actin networks [2]. Small submicron size beads coated uniformly with a protein that catalyzes actin polymerization, are initially surrounded by a symmetrical cloud of actin filaments. This symmetry can be broken spontaneously after which the beads undergo directional motion with constant velocity. I will present a simple stochastic theory, in which each filament is modeled as an elastic Brownian ratchet that qualitatively reproduces the experimental results. The presence of the bead couples the dynamics of different filaments which results in a complex collective system of interacting Brownian ratchets that exhibits an emergent symmetry breaking behavior. [1] A. van Oudenaarden and S. G. Boxer, Science 285, 1046 (1999). [2] A. van Oudenaarden and J. A. Theriot, Nature Cell Biology 1, 493 (1999).
Stochastic Resonance and Ratchets: Two Closely Related Phenomena in Brownian Motors
钱敏; 王彦; 张雪娟
2003-01-01
Ratchet effect as well as the phenomenon of stochastic resonance (SR) is investigated in a simple flashing ratchet model. Numerical simulations show that both the power spectrum amplitude and the mean mobility of the system vary non-monotonically in similar manners with increasing the noise intensity and both reach their highest point nearly at the same noise level. We point out that the consistency of these two phenomena are just due to the existence of circular flux in non-equilibrium state.
Quantum Adiabatic Evolution Algorithms with Different Paths
Farhi, E; Gutmann, S; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam
2002-01-01
In quantum adiabatic evolution algorithms, the quantum computer follows the ground state of a slowly varying Hamiltonian. The ground state of the initial Hamiltonian is easy to construct; the ground state of the final Hamiltonian encodes the solution of the computational problem. These algorithms have generally been studied in the case where the "straight line" path from initial to final Hamiltonian is taken. But there is no reason not to try paths involving terms that are not linear combinations of the initial and final Hamiltonians. We give several proposals for randomly generating new paths. Using one of these proposals, we convert an algorithmic failure into a success.
Can vocal conditioning trigger a semiotic ratchet in marmosets?
Turesson, Hjalmar K; Ribeiro, Sidarta
2015-01-01
The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders.
Can vocal conditioning trigger a semiotic ratchet in marmosets?
Hjalmar Kosmos Turesson
2015-10-01
Full Text Available The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing and symbolic (referential signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet. We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols. To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus. The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders.
Effective Hamiltonian of strained graphene.
Linnik, T L
2012-05-23
Based on the symmetry properties of the graphene lattice, we derive the effective Hamiltonian of graphene under spatially nonuniform acoustic and optical strains. Comparison with the published results of the first-principles calculations allows us to determine the values of some Hamiltonian parameters, and suggests the validity of the derived Hamiltonian for acoustical strain up to 10%. The results are generalized for the case of graphene with broken plane reflection symmetry, which corresponds, for example, to the case of graphene placed on a substrate. Here, essential modifications to the Hamiltonian give rise, in particular, to the gap opening in the spectrum in the presence of the out-of-plane component of optical strain, which is shown to be due to the lifting of the sublattice symmetry. The developed effective Hamiltonian can be used as a convenient tool for analysis of a variety of strain-related effects, including electron-phonon interaction or pseudo-magnetic fields induced by the nonuniform strain.
Singh, Parampreet
2015-01-01
The problem of obtaining canonical Hamiltonian structures from the equations of motion is studied in the context of the spatially flat Friedmann-Robertson-Walker models. Modifications to Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on its sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy condition, or more attractive than in the classical theory. Canonical structure of the modified theories is determined demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. Both of the repulsive modifications are found to yield singularity avoidance. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse trigonometric function of Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum ...
Kinetic theory of non-hamiltonian statistical ensembles
A.V.Zhukov
2006-01-01
Full Text Available A nonequilibrium statistical operator method is developed for ensembles of particles obeying non-Hamiltonian equations of motion in classical phase space. The main consequences of non-zero compressibility of phase space are examined in terms of time-dependent dynamic quantities. The generalized transport equations involve the phase-space compressibility in a non-trivial way. Our results are useful in molecular dynamics simulation studies as well as nonequilibrium or quasiclassical approximations of quantum-classical dynamics.
Hamiltonian hierarchy and the Hulthén potential
Gönül, B.; Özer, O.; Cançelik, Y.; Koçak, M.
2000-10-01
We deal with the Hamiltonian hierarchy problem of the Hulthén potential within the frame of the supersymmetric quantum mechanics and find that the associated supersymmetric partner potentials simulate the effect of the centrifugal barrier. Incorporating the supersymmetric solutions and using the first-order perturbation theory we obtain an expression for the energy levels of the Hulthén potential which gives satisfactory values for the non-zero angular momentum states.
Mathematical justification of the Aharonov-Bohm hamiltonian
de Oliveira, Cesar R
2008-01-01
It is presented, in the framework of nonrelativistic quantum mechanics, a justification of the usual Aharonov-Bohm hamiltonian (with solenoid of radius greater than zero). This is obtained by way of increasing sequences of finitely long solenoids together with a natural impermeability procedure; further, both limits commute. Such rigorous limits are in the strong resolvent sense and in both $\\R^2$ and $\\R^3$ spaces.
Monte Carlo methods in continuous time for lattice Hamiltonians
Huffman, Emilie
2016-01-01
We solve a variety of sign problems for models in lattice field theory using the Hamiltonian formulation, including Yukawa models and simple lattice gauge theories. The solutions emerge naturally in continuous time and use the dual representation for the bosonic fields. These solutions allow us to construct quantum Monte Carlo methods for these problems. The methods could provide an alternative approach to understanding non-perturbative dynamics of some lattice field theories.
Kepler Problem in Hamiltonian Formulation Discussed from Topological Viewpoint
XU Gong-Ou; XU Ming-Jie; YANG Ya-Tian
2005-01-01
@@ The Kepler problem in Hamiltonian formulation is discussed from a topological viewpoint. Topological properties for a set of cases designated with conserved quantities l, e and E(l, e) (0 ≤ e ＜ 1) are expressed with actionangle variables. The involved canonical transformations are all carried out with classical Poisson brackets. Thus it is possible to extend such a formulation to corresponding quantum-mechanical study under quasi-classical conditions.
Hamiltonian Dynamics of Preferential Attachment
Zuev, Konstantin; Krioukov, Dmitri
2015-01-01
Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment, known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton's equations. We derive the explicit form of the Hamiltonian that governs network growth in preferential attachment. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by preferential attachment is nearly identical to the ensemble of random graphs with scale-free degree d...
The electronic Hamiltonian for cuprates
Annett, James F.; Mcmahan, A. K.; Martin, Richard M.
1991-01-01
A realistic many-body Hamiltonian for the cuprate superconductors should include both copper d and oxygen p states, hopping matrix elements between them, and Coulomb energies, both on-site and inter-site. We have developed a novel computational scheme for deriving the relevant parameters ab initio from a constrained occupation local density functional. The scheme includes numerical calculation of appropriate Wannier functions for the copper and oxygen states. Explicit parameter values are given for La2CuO4. These parameters are generally consistent with other estimates and with the observed superexchange energy. Secondly, we address whether this complicated multi-band Hamiltonian can be reduced to a simpler one with fewer basis states per unit cell. We propose a mapping onto a new two-band effective Hamiltonian with one copper d and one oxygen p derived state per unit cell. This mapping takes into account the large oxygen-oxygen hopping given by the ab initio calculations.
First principles of Hamiltonian medicine.
Crespi, Bernard; Foster, Kevin; Úbeda, Francisco
2014-05-19
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
Runtime of unstructured search with a faulty Hamiltonian oracle
Temme, Kristan
2014-08-01
We show that it is impossible to obtain a quantum speedup for a faulty Hamiltonian oracle. The effect of dephasing noise to this continuous-time oracle model has first been investigated by Shenvi, Brown, and Whaley [Phys. Rev. A 68, 052313 (2003)., 10.1103/PhysRevA.68.052313]. The authors consider a faulty oracle described by a continuous-time master equation that acts as dephasing noise in the basis determined by the marked item. The analysis focuses on the implementation with a particular driving Hamiltonian. A universal lower bound for this oracle model, which rules out a better performance with a different driving Hamiltonian, has so far been lacking. Here, we derive an adversary-type lower bound which shows that the evolution time T has to be at least in the order of N, i.e., the size of the search space, when the error rate of the oracle is constant. This means that quadratic quantum speedup vanishes and the runtime assumes again the classical scaling. For the standard quantum oracle model this result was first proven by Regev and Schiff [in Automata, Languages and Programming, Lecture Notes in Computer Science Vol. 5125 (Springer, Berlin, 2008), pp. 773-781]. Here, we extend this result to the continuous-time setting.
Unified Hamiltonian for conducting polymers
Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi
2011-11-01
Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.
Hamiltonian systems as selfdual equations
2008-01-01
Hamiltonian systems with various time boundary conditions are formulated as absolute minima of newly devised non-negative action func-tionals obtained by a generalization of Bogomolnyi's trick of 'completing squares'. Reminiscent of the selfdual Yang-Mills equations, they are not derived from the fact that they are critical points (i.e., from the correspond- ing Euler-Lagrange equations) but from being zeroes of the corresponding non-negative Lagrangians. A general method for resolving such variational problems is also described and applied to the construction of periodic solutions for Hamiltonian systems, but also to study certain Lagrangian intersections.
Xu, S.; Cui, J.; Kawa, D.; Shek, G.K.; Scarth, D.A. [Kinectrics Inc., Toronto, Ontario (Canada)
2006-07-01
The flaw evaluation procedure for Delayed Hydride Cracking (DHC) initiation currently provided in the CSA Standard N285.8 was developed for hydride ratcheting conditions, in which flaw-tip hydrides do not completely dissolve at peak temperature. Test results have shown that hydrided regions formed under non-ratcheting conditions, in which flaw-tip hydrides completely dissolve at peak temperature, have significantly higher resistance to cracking than those formed under ratcheting conditions. This paper presents some preliminary work on the development of a procedure for the evaluation of DHC initiation for flaws under hydride non-ratcheting conditions. (author)
Duality quantum algorithm efficiently simulates open quantum systems
Shi-Jie Wei; Dong Ruan; Gui-Lu Long
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the op...
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions
Lloyd, Seth; Terhal, Barbara M.
2016-02-01
We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent two-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.
Adiabatic quantum gates and Boolean functions
Andrecut, M; Ali, M K [Department of Physics, University of Lethbridge, Lethbridge, AB, T1K 3M4 (Canada)
2004-06-25
We discuss the logical implementation of quantum gates and Boolean functions in the framework of quantum adiabatic method, which uses the language of ground states, spectral gaps and Hamiltonians instead of the standard unitary transformation language. (letter to the editor)
Liu, Jian
2017-01-01
We introduce the isomorphism between an multi-state Hamiltonian and the second-quantized many-electron Hamiltonian (with only 1-electron interactions). This suggests that all methods developed for the former can be employed for the latter, and vice versa. The resonant level (Landauer) model for nonequilibrium quantum transport is used as a proof-of-concept example. Such as the classical mapping models for the multi-state Hamiltonian proposed in our previous work [J. Liu, J. Chem. Phys. 145, 204105 (2016)] lead to exact results for this model problem. We further demonstrate how these methods can also be applied to the second-quantized many-electron Hamiltonian even when 2-electron interactions are included.
Liu, Jian
2016-01-01
We introduce the isomorphism between the multi-state Hamiltonian and the second-quantized many-electron Hamiltonian (with only 1-electron interactions). This suggests that all methods developed for the former can be employed for the latter, and vice versa. The resonant level (Landauer) model for nonequilibrium quantum transport is used as a proof-of-concept example. Such as the classical mapping models for the multi-state Hamiltonian proposed in our previous work [J. Chem. Phys. (submitted)] lead to exact results for this model problem. We further demonstrate how these methods can also be applied to the second-quantized many-electron Hamiltonian even when 2-electron interactions are included.
Skurnick, Ronald; Davi, Charles; Skurnick, Mia
2005-01-01
Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…
Maslov index for Hamiltonian systems
Alessandro Portaluri
2008-01-01
Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.
Dynamical stability of Hamiltonian systems
无
2000-01-01
Dynamical stability has become the center of study on Hamiltonian system. In this article we intro-duce the recent development in some areas closely related to this topic, such as the KAM theory, Mather theory, Arnolddiffusion and non-singular collision of n-body problem.
Derivation of Hamiltonians for accelerators
Symon, K.R.
1997-09-12
In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.
Time-reversible Hamiltonian systems
Schaft, Arjan van der
1982-01-01
It is shown that transfer matrices satisfying G(-s) = G(s) = G^T(-s) have a minimal Hamiltonian realization with an energy which is the sum of potential and kinetic energy, yielding the time reversibility of the equations. Furthermore connections are made with an associated gradient system. The
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
On third order integrable vector Hamiltonian equations
Meshkov, A. G.; Sokolov, V. V.
2017-03-01
A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.
Hamiltonian realizations of nonlinear adjoint operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2002-01-01
This paper addresses the issue of state-space realizations for nonlinear adjoint operators. In particular, the relationships between nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are established. Then, characterizations of the adjoints of control
Hamiltonian Realizations of Nonlinear Adjoint Operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2000-01-01
This paper addresses state-space realizations for nonlinear adjoint operators. In particular the relationship among nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are clarified. The characterization of controllability, observability and Hankel ope
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Mangiarotti, L. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Sardanashvily, G. [Department of Theoretical Physics, Moscow State University, 117234 Moscow (Russian Federation)]. E-mail: gennadi.sardanashvily@unicam.it
2007-02-26
Integrals of motion of a Hamiltonian system need not commute. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as the Abelian one.
Hamiltonian structure of propagation equations for ultrashort optical pulses
Amiranashvili, Sh.; Demircan, A.
2010-07-01
A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves, arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics is effectively tested by examining the conservation laws.
Evolutionary approach for determining first-principles hamiltonians.
Hart, Gus L W; Blum, Volker; Walorski, Michael J; Zunger, Alex
2005-05-01
Modern condensed-matter theory from first principles is highly successful when applied to materials of given structure-type or restricted unit-cell size. But this approach is limited where large cells or searches over millions of structure types become necessary. To treat these with first-principles accuracy, one 'coarse-grains' the many-particle Schrodinger equation into 'model hamiltonians' whose variables are configurational order parameters (atomic positions, spin and so on), connected by a few 'interaction parameters' obtained from a microscopic theory. But to construct a truly quantitative model hamiltonian, one must know just which types of interaction parameters to use, from possibly 10(6)-10(8) alternative selections. Here we show how genetic algorithms, mimicking biological evolution ('survival of the fittest'), can be used to distil reliable model hamiltonian parameters from a database of first-principles calculations. We demonstrate this for a classic dilemma in solid-state physics, structural inorganic chemistry and metallurgy: how to predict the stable crystal structure of a compound given only its composition. The selection of leading parameters based on a genetic algorithm is general and easily applied to construct any other type of complex model hamiltonian from direct quantum-mechanical results.
Maireche Abdelmadjid
2015-01-01
In present search, we have studied the effect of the both non commutativity of three dimensional space and phase on the Schrödinger equation with companied Harmonic oscillator potential and it’s inverse, know by isotopic Harmonic oscillator plus inverse quadratic (h.p.i.) potential, we shown that the Hermitian NC Hamiltonian formed anisotropic operator and described many physics phenomena’s, we have also derived the exact degenerated spectrum for studied potential in the first order of two in...
Port-Hamiltonian systems: an introductory survey
Schaft, van der Arjan; Sanz-Sole, M.; Soria, J.; Varona, J.L.; Verdera, J.
2006-01-01
The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian
New sufficient conditions for Hamiltonian paths.
Rahman, M Sohel; Kaykobad, M; Firoz, Jesun Sahariar
2014-01-01
A Hamiltonian path in a graph is a path involving all the vertices of the graph. In this paper, we revisit the famous Hamiltonian path problem and present new sufficient conditions for the existence of a Hamiltonian path in a graph.
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Geometric Hamiltonian structures and perturbation theory
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.
Efficient unitary designs with nearly time-independent Hamiltonian dynamics
Nakata, Yoshifumi; Koashi, Masato; Winter, Andreas
2016-01-01
We provide new constructions of unitary $t$-designs for general $t$ on one qudit and $N$ qubits, and propose a design Hamiltonian, a random Hamiltonian of which dynamics always forms a unitary design after a threshold time, as a basic framework to investigate randomising time evolution in quantum many-body systems. The new constructions are based on recently proposed schemes of repeating random unitaires diagonal in mutually unbiased bases. We first show that, if a pair of the bases satisfies a certain condition, the process on one qudit approximately forms a unitary $t$-design after $O(t)$ repetitions. We then construct quantum circuits on $N$ qubits that achieve unitary $t$-designs for $t = o(N^{1/2})$ using $O(t N^2)$ gates, improving the previous result using $O(t^{10}N^2)$ gates in terms of $t$. Based on these results, we present a design Hamiltonian with periodically changing two-local spin-glass-type interactions, leading to fast and relatively natural realisations of unitary designs in complex many-bo...
Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets.
Aono, M; Kasai, S; Kim, S-J; Wakabayashi, M; Miwa, H; Naruse, M
2015-06-12
In this study, we extracted the essential spatiotemporal dynamics that allow an amoeboid organism to solve a computationally demanding problem and adapt to its environment, thereby proposing a nature-inspired nanoarchitectonic computing system, which we implemented using a network of nanowire devices called 'electrical Brownian ratchets (EBRs)'. By utilizing the fluctuations generated from thermal energy in nanowire devices, we used our system to solve the satisfiability problem, which is a highly complex combinatorial problem related to a wide variety of practical applications. We evaluated the dependency of the solution search speed on its exploration parameter, which characterizes the fluctuation intensity of EBRs, using a simulation model of our system called 'AmoebaSAT-Brownian'. We found that AmoebaSAT-Brownian enhanced the solution searching speed dramatically when we imposed some constraints on the fluctuations in its time series and it outperformed a well-known stochastic local search method. These results suggest a new computing paradigm, which may allow high-speed problem solving to be implemented by interacting nanoscale devices with low power consumption.
Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets
Aono, M.; Kasai, S.; Kim, S.-J.; Wakabayashi, M.; Miwa, H.; Naruse, M.
2015-06-01
In this study, we extracted the essential spatiotemporal dynamics that allow an amoeboid organism to solve a computationally demanding problem and adapt to its environment, thereby proposing a nature-inspired nanoarchitectonic computing system, which we implemented using a network of nanowire devices called ‘electrical Brownian ratchets (EBRs)’. By utilizing the fluctuations generated from thermal energy in nanowire devices, we used our system to solve the satisfiability problem, which is a highly complex combinatorial problem related to a wide variety of practical applications. We evaluated the dependency of the solution search speed on its exploration parameter, which characterizes the fluctuation intensity of EBRs, using a simulation model of our system called ‘AmoebaSAT-Brownian’. We found that AmoebaSAT-Brownian enhanced the solution searching speed dramatically when we imposed some constraints on the fluctuations in its time series and it outperformed a well-known stochastic local search method. These results suggest a new computing paradigm, which may allow high-speed problem solving to be implemented by interacting nanoscale devices with low power consumption.
Harmonic Ratcheting for Ferrite Tuned RF Acceleration of Charged Particles
Cook, Nathan; Brennan, Mike
2013-04-01
One of the most persistent difficulties in the design of RF cavities for acceleration of charged particles is the rapid and efficient acceleration of particles over a large range of frequencies. From medical synchrotrons to accelerator driven systems, there is a strong need for fast acceleration of protons and light ions over hundreds of MeV. Conventionally, this is a costly undertaking, requiring specially designed ferrite loaded cavities to be tuned over a large range of frequencies. Ferromagnetic materials allow for the precise adjustment of cavity resonant frequency, but rapid changes in the frequency as well as operation outside material specific frequency ranges result in significant Q-loss to the cavity. This leads to a considerable increase in power required and is thus undesirable for regular operation. We introduce an acceleration scheme known as harmonic ratcheting which can be used to reduce the cavity frequency range needed for accelerating an ion beam in a synchrotron. In particular, this scheme addresses the need for high rep. rate machines for applications such as radiation therapy in which low beam intensity is needed. We demonstrate with simulations the type of ramps achievable using this technique and consider its advantages over h=1 acceleration schemes.
Modified Feynman ratchet with velocity-dependent fluctuations
Jack Denur
2004-03-01
Full Text Available Abstract: The randomness of Brownian motion at thermodynamic equilibrium can be spontaneously broken by velocity-dependence of fluctuations, i.e., by dependence of values or probability distributions of fluctuating properties on Brownian-motional velocity. Such randomness-breaking can spontaneously obtain via interaction between Brownian-motional Doppler effects --- which manifest the required velocity-dependence --- and system geometrical asymmetry. A non random walk is thereby spontaneously superposed on Brownian motion, resulting in a systematic net drift velocity despite thermodynamic equilibrium. The time evolution of this systematic net drift velocity --- and of velocity probability density, force, and power output --- is derived for a velocity-dependent modification of Feynman's ratchet. We show that said spontaneous randomness-breaking, and consequent systematic net drift velocity, imply: bias from the Maxwellian of the system's velocity probability density, the force that tends to accelerate it, and its power output. Maximization, especially of power output, is discussed. Uncompensated decreases in total entropy, challenging the second law of thermodynamics, are thereby implied.
Renormalized Effective QCD Hamiltonian Gluonic Sector
Robertson, D G; Szczepaniak, A P; Ji, C R; Cotanch, S R
1999-01-01
Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.
Intertwining operators for non-self-adjoint Hamiltonians and bicoherent states
Bagarello, F.
2016-10-01
This paper is devoted to the construction of what we will call exactly solvable models, i.e., of quantum mechanical systems described by an Hamiltonian H whose eigenvalues and eigenvectors can be explicitly constructed out of some minimal ingredients. In particular, motivated by PT-quantum mechanics, we will not insist on any self-adjointness feature of the Hamiltonians considered in our construction. We also introduce the so-called bicoherent states, we analyze some of their properties and we show how they can be used for quantizing a system. Some examples, both in finite and in infinite-dimensional Hilbert spaces, are discussed.
Hamiltonian dynamics of extended objects
Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)
2004-12-07
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.
Lowest Eigenvalues of Random Hamiltonians
Shen, J J; Arima, A; Yoshinaga, N
2008-01-01
In this paper we present results of the lowest eigenvalues of random Hamiltonians for both fermion and boson systems. We show that an empirical formula of evaluating the lowest eigenvalues of random Hamiltonians in terms of energy centroids and widths of eigenvalues are applicable to many different systems (except for $d$ boson systems). We improve the accuracy of the formula by adding moments higher than two. We suggest another new formula to evaluate the lowest eigenvalues for random matrices with large dimensions (20-5000). These empirical formulas are shown to be applicable not only to the evaluation of the lowest energy but also to the evaluation of excited energies of systems under random two-body interactions.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael; Guzmán, María José
2016-11-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and Misner algebra of general relativity is recovered as a subalgebra.
On Hamiltonian formulation of cosmologies
K D Krori; S Dutta
2000-03-01
Novello et al [1,2] have shown that it is possible to ﬁnd a pair of canonically conjugate variables (written in terms of gauge-invariant variables) so as to obtain a Hamiltonian that describes the dynamics of a cosmological system. This opens up the way to the usual technique of quantization. Elbaz et al [4] have applied this method to the Hamiltonian formulation of FRW cosmological equations. This note presents a generalization of this approach to a variety of cosmologies. A general Schrödinger wave equation has been derived and exact solutions have been worked out for the stiff matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution.
A Hamiltonian approach to Thermodynamics
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael
2016-01-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR) is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudo-inverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms, and the (local) Lorentz transformations of the vielbein. In particular, the ADM algebra of general relativity is recovered as a sub-algebra.
Hamiltonian mechanics of stochastic acceleration.
Burby, J W; Zhmoginov, A I; Qin, H
2013-11-08
We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
Hamiltonian chaos and fractional dynamics
Zaslavsky, George M
2008-01-01
The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image ...
Local temperatures and local terms in modular Hamiltonians
Arias, Raul; Casini, Horacio; Huerta, Marina
2016-01-01
We show there are analogues to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show important restrictions arise from relative entropy inequalities and causal propagation between Cauchy surfaces. These suggest a large amount of universality for local temperatures, specially the ones affecting null directions. For regions with any number of intervals in two space-time dimensions the local temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue this term might be universal, with a coefficient that is the same for any theory, and check analytically and numerically this is the case for free massive scalar and Dirac fields. In dimensions $d\\ge 3$ the local terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from the stress tensor. For a free scalar field we classify the structure of...
Quadratic time dependent Hamiltonians and separation of variables
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
Effective Hamiltonian and unitarity of the S matrix.
Rotter, I
2003-07-01
The properties of open quantum systems are described well by an effective Hamiltonian H that consists of two parts: the Hamiltonian H of the closed system with discrete eigenstates and the coupling matrix W between discrete states and continuum. The eigenvalues of H determine the poles of the S matrix. The coupling matrix elements W(cc')(k) between the eigenstates k of H and the continuum may be very different from the coupling matrix elements W(cc')(k) between the eigenstates of H and the continuum. Due to the unitarity of the S matrix, the W(cc')(k) depend on energy in a nontrivial manner. This conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighborhood of, respectively, avoided level crossings in the complex plane and double poles of the S matrix are given.
RG-Whitham dynamics and complex Hamiltonian systems
A. Gorsky
2015-06-01
Full Text Available Inspired by the Seiberg–Witten exact solution, we consider some aspects of the Hamiltonian dynamics with the complexified phase space focusing at the renormalization group (RG-like Whitham behavior. We show that at the Argyres–Douglas (AD point the number of degrees of freedom in Hamiltonian system effectively reduces and argue that anomalous dimensions at AD point coincide with the Berry indexes in classical mechanics. In the framework of Whitham dynamics AD point turns out to be a fixed point. We demonstrate that recently discovered Dunne–Ünsal relation in quantum mechanics relevant for the exact quantization condition exactly coincides with the Whitham equation of motion in the Ω-deformed theory.
Diagonalization of the XXZ Hamiltonian by Vertex Operators
Davies, B; Jimbo, M; Miwa, T; Nakayashiki, A; Davies, Brian; Foda, Omar; Jimbo, Michio; Miwa, Tetsuji; Nakayashiki, Atsushi
1993-01-01
We diagonalize the anti-ferroelectric XXZ-Hamiltonian directly in the thermodynamic limit, where the model becomes invariant under the action of affine U_q( sl(2) ). Our method is based on the representation theory of quantum affine algebras, the related vertex operators and KZ equation, and thereby bypasses the usual process of starting from a finite lattice, taking the thermodynamic limit and filling the Dirac sea. From recent results on the algebraic structure of the corner transfer matrix of the model, we obtain the vacuum vector of the Hamiltonian. The rest of the eigenvectors are obtained by applying the vertex operators, which act as particle creation operators in the space of eigenvectors. We check the agreement of our results with those obtained using the Bethe Ansatz in a number of cases, and with others obtained in the scaling limit --- the $su(2)$-invariant Thirring model.
无
2002-01-01
An experimental study was carried out on the strain cyclic characteristics and ratcheting of U71Mn rail steel subjectedto non-proportional multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled circular load path. The ratcheting was investigated for the stress-controlled multiaxial circular, ellipticaland rhombic load paths with different mean stresses, stress amplitudes and their histories. The experiment showsthat U71Mn rail steel features the cyclic non-hardening/softening, and its strain cyclic characteristics depend greatlyon the strain amplitude but slightly on its history. However, the ratcheting of U71Mn rail steel depends greatly notonly on the values of mean stress and stress amplitude, but also on their histories. In the meantime, the shape ofload path and its history also apparently influence the ratcheting. The ratcheting changes with the different loadingpaths.
Controllability of Quantum Systems
Schirmer, S G; Solomon, A I
2003-01-01
An overview and synthesis of results and criteria for open-loop controllability of Hamiltonian quantum systems obtained using Lie group and Lie algebra techniques is presented. Negative results for open-loop controllability of dissipative systems are discussed, and the superiority of closed-loop (feedback) control for quantum systems is established.
Transport coefficients for a confined Brownian ratchet operating between two heat reservoirs
Ryabov, A.; Holubec, V.; Yaghoubi, M. H.; Varga, M.; Foulaadvand, M. E.; Chvosta, P.
2016-09-01
We discuss two-dimensional diffusion of a Brownian particle confined to a periodic asymmetric channel with soft walls modeled by a parabolic potential. In the channel, the particle experiences different thermal noise intensities, or temperatures, in the transversal and longitudinal directions. The model is inspired by the famous Feynman’s ratchet and pawl. Although the standard Fick-Jacobs approximation predicts correctly the effective diffusion coefficient, it fails to capture the ratchet effect. Deriving a correction, which breaks the local detailed balance with the transversal noise source, we obtain a correct mean velocity of the particle and a stationary probability density in the potential unit cell. The derived results are exact for small channel width. Yet, we check by exact numerical calculation that they qualitatively describe the ratchet effect observed for an arbitrary width of the channel.
Crossed ratchet effects on magnetic domain walls: geometry and transverse field effects
Alija, A; Hierro-Rodriguez, A; Perez-Junquera, A; Alameda, J M; Martin, J I; Velez, M, E-mail: mvelez@uniovi.es [Dept. Fisica, Universidad de Oviedo-CINN, 33007 Oviedo (Spain)
2011-08-17
Domain wall propagation across a 2D array of asymmetric holes is strongly dependent on the domain wall configuration: i.e. on whether the wall is flat or kinked. This results in interesting crossed ratchet and asymmetric accommodation effects that have been studied as a function of geometry and transverse field. Micromagnetic simulations have shown that the observation of crossed ratchet effects is easier for arrow than for triangular holes due to a larger field range in which kink propagation is the preferred mode for domain wall motion. Also, it has been found that dc transverse fields can produce a significant enhancement of the easy axis asymmetric accommodation and, also, that ac transverse fields can be rectified by the crossed ratchet potential.
Uniaxial Time-Dependent Ratcheting of SS304 Stainless Steel at High Temperatures
KANG Guo-zheng; ZHANG Juan; SUN Ya-fang; KAN Qian-hua
2007-01-01
The uniaxial time-dependent strain cyclic behaviors and ratcheting of SS304 stainless steel were studied at high temperatures (350 ℃ and 700 ℃). The effects of straining and stressing rates, holding time at the peak and/or valley of each cycle in addition to ambient temperature on the cyclic softening/hardening behavior and ratcheting of the material were discussed. It can be seen from experimental results that the material presents remarkable time dependence at 700 ℃, and the ratcheting strain depends greatly on the stressing rate, holding time and ambient temperature. Some significant conclusions are obtained, which are useful to build a constitutive model describing the time-dependent cyclic deformation of the material.
Constitutive Model for Multiaxial Ratcheting Predictions of Cyclic Softening Weld Metal
GAO Hong; CHEN Xu; JIAO Rong
2005-01-01
A series of fully reversed axial, torsional strain-controlled cyclic tests and two multiaxial ratcheting tests were conducted on weld metal specimens using an Instron8521 tension-torsional servo-controlled testing machine. The weld metal showed clear cyclic softening under axial, torsional and multiaxial loading. A modified kinematic hardening rule was proposed in which a multiaxial-loading-dependent parameter incorporated the radial evanescence term of the Burlet-Cailletaud mode with the Ohno-Wang kinematic hardening rule to predict the multiaxial ratcheting effects. The introduction of yield stress evolved with accumulated plasticity strain enables the model to predict cyclic plasticity behavior of cyclic softening or cyclic hardening materials. Thus modified model considers the isotropic hardening as well as kinematic hardening of yield surface, and it can present description of plasticity behavior and ratcheting of cyclic softening and cyclic hardening materials well under multiaxial loading.
Ratcheting induced cyclic softening behaviour of 42CrMo4 steel
Kreethi, R.; Mondal, A. K.; Dutta, K.
2015-02-01
Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.
A model for DNA helicase mechanism based on a flashing ratchet
Garai, Ashok; Chowdhury, Debashish
2007-01-01
Helicases are molecular motors that consume energy supplied by chemical reactions to unwind double-stranded nucleic acids (like DNA and RNA) and to translocate along one of the single-strands. Motivated by the recent claims, based on experimental observations on the helicase NS3 of hepatitis C virus (HCV), that monomeric helicases are governed by a Brownian ratchet mechanism, here we develope a quantitative model. Our Brownian ratchet model, which is a somewhat new reformulation of the Betterton-J\\"ulicher theory of helicases, is generic two-state model and is applicable to all helicases which follow the Brownian ratchet mechanism. We illustrate the predictive power of the model by calculating some experimentally testable motor properties of a few monomeric helicases. Speficically, we predict the speed of unwinding of the double-stranded DNA and fluctuations around the average drift of the helicase. Our predictions are in excellent quantitative agreement with the corresponding experimental data.
Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters
Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.
2016-02-01
The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of
Matrix product states for Hamiltonian lattice gauge theories
Buyens, Boye; Haegeman, Jutho; Verstraete, Frank
2014-01-01
Over the last decade tensor network states (TNS) have emerged as a powerful tool for the study of quantum many body systems. The matrix product states (MPS) are one particular case of TNS and are used for the simulation of 1+1 dimensional systems. In [1] we considered the MPS formalism for the simulation of the Hamiltonian lattice gauge formulation of 1+1 dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model. We deduced the ground state and lowest lying excitations. Furthermore, we performed a full quantum real-time simulation for a quench with a uniform background electric field. In this proceeding we continue our work on the Schwinger model. We demonstrate the advantage of working with gauge invariant MPS by comparing with MPS simulations on the full Hilbert space, that includes numerous non-physical gauge variant states. Furthermore, we compute the chiral condensate and recover the predicted UV-divergent behavior.
The quantum mechanics of cosmology.
Hartle, James B.
The following sections are included: * INTRODUCTION * POST-EVERETT QUANTUM MECHANICS * Probability * Probabilities in general * Probabilities in Quantum Mechanics * Decoherent Histories * Fine and Coarse Grained Histories * Decohering Sets of Coarse Grained Histories * No Moment by Moment Definition of Decoherence * Prediction, Retrodiction, and History * Prediction and Retrodiction * The Reconstruction of History * Branches (Illustrated by a Pure ρ) * Sets of Histories with the Same Probabilities * The Origins of Decoherence in Our Universe * On What Does Decoherence Depend? * Two Slit Model * The Caldeira-Leggett Oscillator Model * The Evolution of Reduced Density Matrices * Towards a Classical Domain * The Branch Dependence of Decoherence * Measurement * The Ideal Measurement Model and the Copenhagen Approximation to Quantum Mechanics * Approximate Probabilities Again * Complex Adaptive Systems * Open Questions * GENERALIZED QUANTUM MECHANICS * General Features * Hamiltonian Quantum Mechanics * Sum-Over-Histories Quantum Mechanics for Theories with a Time * Differences and Equivalences between Hamiltonian and Sum-Over-Histories Quantum Mechanics for Theories with a Time * Classical Physics and the Classical Limit of Quantum Mechanics * Generalizations of Hamiltonian Quantum Mechanics * TIME IN QUANTUM MECHANICS * Observables on Spacetime Regions * The Arrow of Time in Quantum Mechanics * Topology in Time * The Generality of Sum Over Histories Quantum Mechanics * THE QUANTUM MECHANICS OF SPACETIME * The Problem of Time * General Covariance and Time in Hamiltonian Quantum Mechanics * The "Marvelous Moment" * A Quantum Mechanics for Spacetime * What we Need * Sum-Over-Histories Quantum Mechanics for Theories Without a Time * Sum-Over-Spacetime-Histories Quantum Mechanics * Extensions and Contractions * The Construction of Sums Over Spacetime Histories * Some Open Questions * PRACTICAL QUANTUM COSMOLOGY * The Semiclassical Regime * The Semiclassical Approximation
张素英
2012-01-01
Numerical methods of nonlinear Hamiltonian systems are constructed in the interaction picture of quantum mechanics. Firstly the original system is transformed to interaction picture of quantum mechanics. This reduces the problem to a system of ordinary differential equations in time. Subsequently,the modified system is integrated in time and then transformed back to the initial representation of the state vector. Varies discrete schemes can be obtained based on different integration methods. The methods in this paper can also be used to solve multi-component Bose-Einstein condensate problem.%文章在量子力学的相互作用绘景中给出了非线性哈密顿系统离散格式的构造方法.首先将原非线性哈密顿问题变换至相互作用绘景,导出一个含时的常微分方程系统,离散该常微分方程并变换回原系统的态矢即可得到原问题的离散格式.基于不同的常微分方程数值方法,可得到原系统不同的离散格式.该方法还可以有效地求解多组分的Bose-Einstein凝聚态物理问题.
Samsonov, Boris F
2013-04-28
One of the simplest non-Hermitian Hamiltonians, first proposed by Schwartz in 1960, that may possess a spectral singularity is analysed from the point of view of the non-Hermitian generalization of quantum mechanics. It is shown that the η operator, being a second-order differential operator, has supersymmetric structure. Asymptotic behaviour of the eigenfunctions of a Hermitian Hamiltonian equivalent to the given non-Hermitian one is found. As a result, the corresponding scattering matrix and cross section are given explicitly. It is demonstrated that the possible presence of a spectral singularity in the spectrum of the non-Hermitian Hamiltonian may be detected as a resonance in the scattering cross section of its Hermitian counterpart. Nevertheless, just at the singular point, the equivalent Hermitian Hamiltonian becomes undetermined.
Moll, Nikolaj; Fuhrer, Andreas; Staar, Peter; Tavernelli, Ivano
2016-07-01
Quantum chemistry simulations on a quantum computer suffer from the overhead needed for encoding the Fermionic problem in a system of qubits. By exploiting the block diagonality of a Fermionic Hamiltonian, we show that the number of required qubits can be reduced while the number of terms in the Hamiltonian will increase. All operations for this reduction can be performed in operator space. The scheme is conceived as a pre-computational step that would be performed prior to the actual quantum simulation. We apply this scheme to reduce the number of qubits necessary to simulate both the Hamiltonian of the two-site Fermi-Hubbard model and the hydrogen molecule. Both quantum systems can then be simulated with a two-qubit quantum computer. Despite the increase in the number of Hamiltonian terms, the scheme still remains a useful tool to reduce the dimensionality of specific quantum systems for quantum simulators with a limited number of resources.
Hypothesis testing with open quantum systems.
Mølmer, Klaus
2015-01-30
Using a quantum circuit model we derive the maximal ability to distinguish which of several candidate Hamiltonians describe an open quantum system. This theory, in particular, provides the maximum information retrievable from continuous quantum measurement records, available when a quantum system is perturbatively coupled to a broadband quantized environment.
Precision Quantum Control and Error-Suppressing Quantum Firmware for Robust Quantum Computing
2014-09-24
Dynamical decoupling sequence construction as a filter-design problem, Journal of Physics B: Atomic, Molecular and Optical Physics, (08 2011... Hamiltonian quantum simulation with bounded-strength controls,”, New Journal of Physics, (04 2014): 0. doi: 3 Number of Papers published in peer...Programmable quantum simulation by dynamic Hamiltonian engineering,”, New Journal of Physics, (08 2014): 0. doi: K.Khodjasteh, J.Sastrawan, D
Quantum bouncer with dissipation
Lopez, G.; Gonzalez, G. [Departamento de Fisica de la Universidad de Guadalajara, AP 4-137, 44410 Guadalajara, Jalisco (Mexico)
2006-07-01
Effects on the spectra of the quantum bouncer due to dissipation are given when a linear o quadratic dissipation in the velocity of the particle is taken into account. Classical constants of motion and Hamiltonians are deduced for these systems and their quantized eigenvalues are estimated through perturbation theory. Differences were found comparing the eigenvalues of the constants of motion and the eigenvalues of the Hamiltonians. The cases when the dissipation parameters go to zero are compared with the non dissipative cases. (Author)
Hamiltonian and action principle formalisms for spin-1/2 magnetohydrodynamics
Lingam, M., E-mail: manasvi@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)
2015-02-15
A Hamiltonian and Action Principle formulation of spin-1/2 magnetohydrodynamics is presented via a first-principles derivation of the underlying Lagrangian, and the associated Hamiltonian. The derivation invokes the notion of “frozen-in” constraints, symmetry breaking, and similarities with Ginzburg-Landau theory to arrive at the relevant terms in the Hamiltonian. The model thus obtained includes the effects of spin and other quantum corrections and is shown to be in full agreement with existent models in the literature. It is also indicated how two-fluid effects, gyroviscosity, and anisotropic pressure can be included in the model, in addition to incorporating higher-order (nonlinear) quantum spin corrections. An interesting analogy with the theory of liquid crystals is also highlighted.
LOCALIZATION THEOREM ON HAMILTONIAN GRAPHS
无
2000-01-01
Let G be a 2-connected graph of order n( 3).If I(u,v) S(u,v) or max {d(u),d(v)} n/2 for any two vertices u,v at distance two in an induced subgraph K1,3 or P3 of G,then G is hamiltonian.Here I(u,v) = ｜N(u)∩ N(v)｜,S(u,v) denotes thenumber of edges of maximum star containing u,v as an induced subgraph in G.
Chasing Hamiltonian structure in gyrokinetic theory
Burby, J W
2015-01-01
Hamiltonian structure is pursued and uncovered in collisional and collisionless gyrokinetic theory. A new Hamiltonian formulation of collisionless electromagnetic theory is presented that is ideally suited to implementation on modern supercomputers. The method used to uncover this structure is described in detail and applied to a number of examples, where several well-known plasma models are endowed with a Hamiltonian structure for the first time. The first energy- and momentum-conserving formulation of full-F collisional gyrokinetics is presented. In an effort to understand the theoretical underpinnings of this result at a deeper level, a \\emph{stochastic} Hamiltonian modeling approach is presented and applied to pitch angle scattering. Interestingly, the collision operator produced by the Hamiltonian approach is equal to the Lorentz operator plus higher-order terms, but does not exactly conserve energy. Conversely, the classical Lorentz collision operator is provably not Hamiltonian in the stochastic sense.
Quantum criticality from Fisher information
Song, Hongting; Luo, Shunlong; Fu, Shuangshuang
2017-04-01
Quantum phase transition is primarily characterized by a qualitative sudden change in the ground state of a quantum system when an external or internal parameter of the Hamiltonian is continuously varied. Investigating quantum criticality using information-theoretic methods has generated fruitful results. Quantum correlations and fidelity have been exploited to characterize the quantum critical phenomena. In this work, we employ quantum Fisher information to study quantum criticality. The singular or extremal point of the quantum Fisher information is adopted as the estimated thermal critical point. By a significant model constructed in Quan et al. (Phys Rev Lett 96: 140604, 2006), the effectiveness of this method is illustrated explicitly.
Modular Hamiltonian for Excited States in Conformal Field Theory.
Lashkari, Nima
2016-07-22
We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the Z_{n} replica symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.
Modular Hamiltonian of Excited States in Conformal Field Theory
Lashkari, Nima
2015-01-01
We present a novel replica trick that computes the relative entropy of two arbitrary states in conformal field theory. Our replica trick is based on the analytic continuation of partition functions that break the replica Z_n symmetry. It provides a method for computing arbitrary matrix elements of the modular Hamiltonian corresponding to excited states in terms of correlation functions. We show that the quantum Fisher information in vacuum can be expressed in terms of two-point functions on the replica geometry. We perform sample calculations in two-dimensional conformal field theories.
Stochastic averaging of quasi-Hamiltonian systems
朱位秋
1996-01-01
A stochastic averaging method is proposed for quasi-Hamiltonian systems (Hamiltonian systems with light dampings subject to weakly stochastic excitations). Various versions of the method, depending on whether the associated Hamiltonian systems are integrable or nonintegrable, resonant or nonresonant, are discussed. It is pointed out that the standard stochastic averaging method and the stochastic averaging method of energy envelope are special cases of the stochastic averaging method of quasi-Hamiltonian systems and that the results obtained by this method for several examples prove its effectiveness.
Hamiltonian cosmology in bigravity and massive gravity
Soloviev, Vladimir O
2015-01-01
In the Hamiltonian language we provide a study of flat-space cosmology in bigravity and massive gravity constructed mostly with de Rham, Gabadadze, Tolley (dRGT) potential. It is demonstrated that the Hamiltonian methods are powerful not only in proving the absence of the Boulware-Deser ghost, but also in solving other problems. The purpose of this work is to give an introduction both to the Hamiltonian formalism and to the cosmology of bigravity. We sketch three roads to the Hamiltonian of bigravity with the dRGT potential: the metric, the tetrad and the minisuperspace approaches.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María; Głazek, Stanisław D.
2016-07-01
We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.
The wave function and minimum uncertainty function of the bound quadratic Hamiltonian system
Yeon, Kyu Hwang; Um, Chung IN; George, T. F.
1994-01-01
The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum mechanics. We have derived the invariant quantity with an auxiliary equation as the classical equation of motion. With the use of this invariant it can be determined whether or not the system is bound. In bound system we have evaluated the exact eigenfunction and minimum uncertainty function through unitary transformation.
Non-Hermitian Hamiltonians with a real spectrum and their physical applications
Ali Mostafazadeh
2009-08-01
We present an evaluation of some recent attempts to understand the role of pseudo-Hermitian and $\\mathcal{PT}$-symmetric Hamiltonians in modelling unitary quantum systems and elaborate on a particular physical phenomenon whose discovery originated in the study of complex scattering potentials.
Non-Hermitian Hamiltonians with a Real Spectrum and Their Physical Applications
Mostafazadeh, Ali
2009-01-01
We present an evaluation of some recent attempts at understanding the role of pseudo-Hermitian and PT-symmetric Hamiltonians in modeling unitary quantum systems and elaborate on a particular physical phenomenon whose discovery originated in the study of complex scattering potentials.
Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter
Cong, Iris; Cheng, Meng; Wang, Zhenghan
2017-07-01
We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.
Hamiltonian and Algebraic Theories of Gapped Boundaries in Topological Phases of Matter
Cong, Iris; Cheng, Meng; Wang, Zhenghan
2017-10-01
We present an exactly solvable lattice Hamiltonian to realize gapped boundaries of Kitaev's quantum double models for Dijkgraaf-Witten theories. We classify the elementary excitations on the boundary, and systematically describe the bulk-to-boundary condensation procedure. We also present the parallel algebraic/categorical structure of gapped boundaries.
Experimental adiabatic vortex ratchet effect in Nb films with asymmetric pinning trap
J E Villegas; N O nunez; M P Gonzalez; E M Gonalez; J L Vicent
2006-01-01
Nb films grown on top of an array of asymmetric pinning centers show a vortex ratchet effect. A net flow of vortices is induced when the vortex lattice is driven by fluctuating forces on an array of pinning centers without reflection symmetry. This effect occurs in the adiabatic regime and it could be mimiced only by reversible DC driven forces.
Loewe Laurence
2008-03-01
Full Text Available Abstract Background The Amazon molly (Poecilia formosa is a small unisexual fish that has been suspected of being threatened by extinction from the stochastic accumulation of slightly deleterious mutations that is caused by Muller's ratchet in non-recombining populations. However, no detailed quantification of the extent of this threat is available. Results Here we quantify genomic decay in this fish by using a simple model of Muller's ratchet with the most realistic parameter combinations available employing the evolution@home global computing system. We also describe simple extensions of the standard model of Muller's ratchet that allow us to deal with selfing diploids, triploids and mitotic recombination. We show that Muller's ratchet creates a threat of extinction for the Amazon molly for many biologically realistic parameter combinations. In most cases, extinction is expected to occur within a time frame that is less than previous estimates of the age of the species, leading to a genomic decay paradox. Conclusion How then does the Amazon molly survive? Several biological processes could individually or in combination solve this genomic decay paradox, including paternal leakage of undamaged DNA from sexual sister species, compensatory mutations and many others. More research is needed to quantify the contribution of these potential solutions towards the survival of the Amazon molly and other (ancient asexual species.
Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect
Mochizuki, M.; Yu, X.Z.; Seki, S.; Kanazawa, N.; Koshibae, W.; Zang, J.; Mostovoy, M.; Tokura, Y.; Nagaosa, N.
2014-01-01
Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding t
Double-lock ratchet mechanism revealing the role of SER-344 in FoF1 ATP synthase
Beke-Somfai, T.
2011-03-07
In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing to the complexity of this multisubunit enzyme. Based on quantum mechanical computations using recent high resolution X-ray structures, we propose that during ATP synthesis the enzyme first prepares the inorganic phosphate for the γP-OADP bond-forming step via a double-proton transfer. At this step, the highly conserved αS344 side chain plays a catalytic role. The reaction thereafter progresses through another transition state (TS) having a planar ion configuration to finally form ATP. These two TSs are concluded crucial for ATP synthesis. Using stepwise scans and several models of the nucleotide-bound active site, some of the most important conformational changes were traced toward direction of synthesis. Interestingly, as the active site geometry progresses toward the ATP-favoring tight binding site, at both of these TSs, a dramatic increase in barrier heights is observed for the reverse direction, i.e., hydrolysis of ATP. This change could indicate a "ratchet" mechanism for the enzyme to ensure efficacy of ATP synthesis by shifting residue conformation and thus locking access to the crucial TSs.
Unconstrained Hamiltonian formulation of low energy QCD
Pavel Hans-Peter
2014-04-01
Full Text Available Using a generalized polar decomposition of the gauge fields into gaugerotation and gauge-invariant parts, which Abelianises the Non-Abelian Gauss-law constraints to be implemented, a Hamiltonian formulation of QCD in terms of gauge invariant dynamical variables can be achieved. The exact implementation of the Gauss laws reduces the colored spin-1 gluons and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields and colorless Rarita-Schwinger fields respectively. The obtained physical Hamiltonian naturally admits a systematic strongcoupling expansion in powers of λ = g−2/3, equivalent to an expansion in the number of spatial derivatives. The leading-order term corresponds to non-interacting hybridglueballs, whose low-lying spectrum can be calculated with high accuracy by solving the Schrödinger-equation of the Dirac-Yang-Mills quantum mechanics of spatially constant fields (at the moment only for the 2-color case. The discrete glueball excitation spectrum shows a universal string-like behaviour with practically all excitation energy going in to the increase of the strengths of merely two fields, the “constant Abelian fields” corresponding to the zero-energy valleys of the chromomagnetic potential. Inclusion of the fermionic degrees of freedom significantly lowers the spectrum and allows for the study of the sigma meson. Higher-order terms in λ lead to interactions between the hybridglueballs and can be taken into account systematically using perturbation theory in λ, allowing for the study of IR-renormalisation and Lorentz invarianz. The existence of the generalized polar decomposition used, the position of the zeros of the corresponding Jacobian (Gribov horizons, and the ranges of the physical variables can be investigated by solving a system of algebraic equations. Its exact solution for the case of one spatial dimension and first numerical solutions for two and three spatial dimensions indicate
The addition of the lower level to spectrums of matrix and scalar components of d=2 SUSY Hamiltonian
Leble, S B
1998-01-01
Supersymmetrical quantum--mechanical system is consider in the case of d=2. The problem of addition of the lower level to spectrums of matrix and scalar components of d=2 SUSY Hamiltonian is investigated. It is shown that in the case, the level E=0 may be degenerate. The multi--dimensional scalar Hamiltonians with energy spectra coinciding up to finite number of discrete levels are constructed.
Quantum Discord for Investigating Quantum Correlations without Entanglement in Solids
Rong, Xing; Jin, Fangzhou; Geng, Jianpei; Feng, Pengbo; Xu, Nanyang; Wang, Ya; Ju, Chenyong; Shi, Mingjun; Du, Jiangfeng
2012-01-01
Quantum systems unfold diversified correlations which have no classical counterparts. These quantum correlations have various different facets. Quantum entanglement, as the most well known measure of quantum correlations, plays essential roles in quantum information processing. However, it has recently been pointed out that quantum entanglement cannot describe all the nonclassicality in the correlations. Thus the study of quantum correlations in separable states attracts widely attentions. Herein, we experimentally investigate the quantum correlations of separable thermal states in terms of quantum discord. The sudden change of quantum discord is observed, which captures ambiguously the critical point associated with the behavior of Hamiltonian. Our results display the potential applications of quantum correlations in studying the fundamental properties of quantum system, such as quantum criticality of non-zero temperature.
Implicit variational principle for contact Hamiltonian systems
Wang, Kaizhi; Wang, Lin; Yan, Jun
2017-02-01
We establish an implicit variational principle for the contact Hamiltonian systems generated by the Hamiltonian H(x, u, p) with respect to the contact 1-form α =\\text{d}u-p\\text{d}x under Tonelli and Lipschitz continuity conditions.
Some Graphs Containing Unique Hamiltonian Cycles
Lynch, Mark A. M.
2002-01-01
In this paper, two classes of graphs of arbitrary order are described which contain unique Hamiltonian cycles. All the graphs have mean vertex degree greater than one quarter the order of the graph. The Hamiltonian cycles are detailed, their uniqueness proved and simple rules for the construction of the adjacency matrix of the graphs are given.…
A parcel formulation for Hamiltonian layer models
Bokhove, O.; Oliver, M.
2009-01-01
Starting from the three-dimensional hydrostatic primitive equations, we derive Hamiltonian N-layer models with isentropic tropospheric and isentropic or isothermal stratospheric layers. Our construction employs a new parcel Hamiltonian formulation which describes the fluid as a continuum of Hamilton
Equivalence of Conformal Superalgebras to Hamiltonian Superoperators
Xiaoping Xu
2001-01-01
In this paper, we present a formal variational calculus of super functions in one real variable and find the conditions for a "matrix differential operator'' to be a Hamiltonian superoperator. Moreover, we prove that conformal superalgebras are equivalent to certain Hamiltonian superoperators.
ON THE STABILITY BOUNDARY OF HAMILTONIAN SYSTEMS
QI Zhao-hui(齐朝晖); Alexander P. Seyranian
2002-01-01
The criterion for the points in the parameter space being on the stability boundary of linear Hamiltonian system depending on arbitrary numbers of parameters was given, through the sensitivity analysis of eigenvalues and eigenvectors. The results show that multiple eigenvalues with Jordan chain take a very important role in the stability of Hamiltonian systems.
Hamiltonian for a restricted isoenergetic thermostat
Dettmann, C. P.
1999-01-01
Nonequilibrium molecular dynamics simulations often use mechanisms called thermostats to regulate the temperature. A Hamiltonian is presented for the case of the isoenergetic (constant internal energy) thermostat corresponding to a tunable isokinetic (constant kinetic energy) thermostat, for which a Hamiltonian has recently been given.
Normal Form for Families of Hamiltonian Systems
Zhi Guo WANG
2007-01-01
We consider perturbations of integrable Hamiltonian systems in the neighborhood of normally parabolic invariant tori. Using the techniques of KAM-theory we prove that there exists a canonical transformation that puts the Hamiltonian in normal form up to a remainder of weighted order 2d+1. And some dynamical consequences are obtained.
Bohr Hamiltonian with time-dependent potential
Naderi, L.; Hassanabadi, H.; Sobhani, H.
2016-04-01
In this paper, Bohr Hamiltonian has been studied with the time-dependent potential. Using the Lewis-Riesenfeld dynamical invariant method appropriate dynamical invariant for this Hamiltonian has been constructed and the exact time-dependent wave functions of such a system have been derived due to this dynamical invariant.
Infinite-dimensional Hamiltonian Lie superalgebras
无
2010-01-01
The natural filtration of the infinite-dimensional Hamiltonian Lie superalgebra over a field of positive characteristic is proved to be invariant under automorphisms by characterizing ad-nilpotent elements.We are thereby able to obtain an intrinsic characterization of the Hamiltonian Lie superalgebra and establish a property of the automorphisms of the Lie superalgebra.
Momentum and hamiltonian in complex action theory
Nagao, Keiichi; Nielsen, Holger Frits Bech
2012-01-01
$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...
Square conservation systems and Hamiltonian systems
王斌; 曾庆存; 季仲贞
1995-01-01
The internal and external relationships between the square conservation scheme and the symplectic scheme are revealed by a careful study on the interrelation between the square conservation system and the Hamiltonian system in the linear situation, thus laying a theoretical basis for the application and extension of symplectic schemes to square conservations systems, and of those schemes with quadratic conservation properties to Hamiltonian systems.
Brugnano, Luigi; Trigiante, Donato
2009-01-01
One main issue, when numerically integrating autonomous Hamiltonian systems, is the long-term conservation of some of its invariants, among which the Hamiltonian function itself. For example, it is well known that standard (even symplectic) methods can only exactly preserve quadratic Hamiltonians. In this paper, a new family of methods, called Hamiltonian Boundary Value Methods (HBVMs), is introduced and analyzed. HBVMs are able to exactly preserve, in the discrete solution, Hamiltonian functions of polynomial type of arbitrarily high degree. These methods turn out to be symmetric, perfectly $A$-stable, and can have arbitrarily high order. A few numerical tests confirm the theoretical results.
A Hamiltonian approach to Thermodynamics
Baldiotti, M C; Molina, C
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed ontop of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac's theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases.
Deformed Hamiltonian Floer theory, capacity estimates, and Calabi quasimorphisms
Usher, Michael
2010-01-01
We develop a family of deformations of the differential and of the pair-of-pants product on the Hamiltonian Floer complex of a symplectic manifold (M,\\omega) which upon passing to homology yields ring isomorphisms with the big quantum homology of M. By studying the properties of the resulting deformed version of the Oh-Schwarz spectral invariants, we obtain a Floer-theoretic interpretation of a result of Lu which bounds the Hofer-Zehnder capacity of M when M has a nonzero Gromov-Witten invariant with two point constraints, and we produce a new algebraic criterion for (M,\\omega) to admit a Calabi quasimorphism and a symplectic quasi-state. This latter criterion is found to hold whenever M has generically semisimple quantum homology in the sense considered by Dubrovin and Manin (this includes all compact toric M), and also whenever M is a point blowup of an arbitrary closed symplectic manifold.
A taste of Hamiltonian constraint in spin foam models
Bonzom, Valentin
2011-01-01
The asymptotics of some spin foam amplitudes for a quantum 4-simplex is known to display rapid oscillations whose frequency is the Regge action. In this note, we reformulate this result through a difference equation, asymptotically satisfied by these models, and whose semi-classical solutions are precisely the sine and the cosine of the Regge action. This equation is then interpreted as coming from the canonical quantization of a simple constraint in Regge calculus. This suggests to lift and generalize this constraint to the phase space of loop quantum gravity parametrized by twisted geometries. The result is a reformulation of the flat model for topological BF theory from the Hamiltonian perspective. The Wheeler-de-Witt equation in the spin network basis gives difference equations which are exactly recursion relations on the 15j-symbol. Moreover, the semi-classical limit is investigated using coherent states, and produces the expected results. It mimics the classical constraint with quantized areas, and for ...
Effective Hamiltonians for Complexes of Unstable Particles
Urbanowski, K
2014-01-01
Effective Hamiltonians governing the time evolution in a subspace of unstable states can be found using more or less accurate approximations. A convenient tool for deriving them is the evolution equation for a subspace of state space sometime called the Krolikowski-Rzewuski (KR) equation. KR equation results from the Schr\\"{o}dinger equation for the total system under considerations. We will discuss properties of approximate effective Hamiltonians derived using KR equation for $n$--particle, two particle and for one particle subspaces. In a general case these affective Hamiltonians depend on time $t$. We show that at times much longer than times at which the exponential decay take place the real part of the exact effective Hamiltonian for the one particle subsystem (that is the instantaneous energy) tends to the minimal energy of the total system when $t \\rightarrow \\infty$ whereas the imaginary part of this effective Hamiltonian tends to the zero as $t\\rightarrow \\infty$.
Lagrangian and Hamiltonian two-scale reduction
Giannoulis, Johannes; Mielke, Alexander
2008-01-01
Studying high-dimensional Hamiltonian systems with microstructure, it is an important and challenging problem to identify reduced macroscopic models that describe some effective dynamics on large spatial and temporal scales. This paper concerns the question how reasonable macroscopic Lagrangian and Hamiltonian structures can by derived from the microscopic system. In the first part we develop a general approach to this problem by considering non-canonical Hamiltonian structures on the tangent bundle. This approach can be applied to all Hamiltonian lattices (or Hamiltonian PDEs) and involves three building blocks: (i) the embedding of the microscopic system, (ii) an invertible two-scale transformation that encodes the underlying scaling of space and time, (iii) an elementary model reduction that is based on a Principle of Consistent Expansions. In the second part we exemplify the reduction approach and derive various reduced PDE models for the atomic chain. The reduced equations are either related to long wave...
Simulating sparse Hamiltonians with star decompositions
Childs, Andrew M
2010-01-01
We present an efficient algorithm for simulating the time evolution due to a sparse Hamiltonian. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian H acts, this algorithm uses (d^2(d+log* N)||H||)^{1+o(1)} queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d^4(log* N)||H||)^{1+o(1)}. To achieve this, we decompose a general sparse Hamiltonian into a small sum of Hamiltonians whose graphs of non-zero entries have the property that every connected component is a star, and efficiently simulate each of these pieces.
New Spin Physics in the Hamiltonian Theory of Composite Fermions
Murthy, Ganpathy
2001-03-01
The Hamiltonian theory of Composite Fermions, developed by R. Shankar and myself three years ago, has been successful in calculating a variety of physical properties in the gapped and gapless fractional quantum Hall states. In this talk, results will be presented on finite temperature magnetization, focusing on the ferromagnetic 1/3 state. A combination of Hartree-Fock (in terms of Composite Fermion variables) and a mapping to the Continuum Quantum Ferromagnet (solved in the large-N approximation) leads to theoretical predictions in very good agreement with experiments. Theoretical results will also be presented on a novel partialy polarized charge/spin density wave state at 2/5 which only occurs near the transition between the singlet and fully polarized states. The possible relevance of this state to recent experiments will be discussed. R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997): "Towards a Field Theory of Fractional Quantum Hall States" G. Murthy, to appear in Jour. Phys. Cond. Mat, cond-mat/0008259; "Finite Temperature Magnetism in Fractional Quantum Hall Systems: Composite Fermion Hartree-Fock and Beyond" G. Murthy, Phys. Rev. Lett. 84, 350 (2000): "Composite Fermion Hofstadter Problem: Partially Polarized Density Wave States in the 2/5 Fractional Quantum Hall Effect"
Quantum Mechanics in the Infrared
Radicevic, Djordje
2016-01-01
This paper presents an algebraic formulation of the renormalization group flow in quantum mechanics on flat target spaces. For any interacting quantum mechanical theory, the fixed point of this flow is a theory of classical probability, not a different effective quantum mechanics. Each energy eigenstate of the UV Hamiltonian flows to a probability distribution whose entropy is a natural diagnostic of quantum ergodicity of the original state. These conclusions are supported by various examples worked out in detail.
Lu, Dawei; Biamonte, Jacob D.; Li, Jun; Li, Hang; Johnson, Tomi H.; Bergholm, Ville; Faccin, Mauro; Zimborás, Zoltán; Laflamme, Raymond; Baugh, Jonathan; Lloyd, Seth
2016-04-01
Given its importance to many other areas of physics, from condensed-matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal theory, classifying Hamiltonians and quantum circuits as time symmetric or not in terms of the elements and geometries of their underlying networks. Many of the typical circuits of quantum information science are found to exhibit time asymmetry. Moreover, we show that time asymmetry in circuits can be controlled using local gates only and can simulate time asymmetry in Hamiltonian evolution. We experimentally implement a fundamental example in which controlled time-reversal asymmetry in a palindromic quantum circuit leads to near-perfect transport. Our results pave the way for using time-symmetry breaking to control coherent transport and imply that time asymmetry represents an omnipresent yet poorly understood effect in quantum information science.
Lu, DaWei; Li, Jun; Li, Hang; Johnson, Tomi H; Bergholm, Ville; Faccin, Mauro; Zimborás, Zoltán; Laflamme, Raymond; Baugh, Jonathan; Lloyd, Seth
2016-01-01
Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal theory, classifying Hamiltonians and quantum circuits as time-symmetric or not in terms of the elements and geometries of their underlying networks. Many of the typical circuits of quantum information science are found to exhibit time-asymmetry. Moreover, we show that time-asymmetry in circuits can be controlled using local gates only, and can simulate time-asymmetry in Hamiltonian evolution. We experimentally implement a fundamental example in which controlled time-reversal asymmetry in a palindromic quantum circuit leads to near-perfect transport. Our results pave the way for using time-symmetry breaking to control coherent transport, and imply that time-asymmetry represents an omnipresent yet poorly understood effect in quantum information science.
The Open Boundary Dynamical Elliptic Quantum Gaudin Model and Its Solution
ZHAO Shao-You; YUE Rui-Hong
2001-01-01
We construct the Hamiltonians of open elliptic quantum Gaudin model and show its relation with the open boundary elliptic quantum group. We define eigenstates of the model to be Bethe vectors with η = 0 of the boundary elliptic quantum group. Then, the Hamiltonian is exactly diagonalized by using the algebraic Bethe ansatz method.``
Hamiltonian theory of the FQHE edge: Collective modes
Nguyen, Hoang; Joglekar, Yogesh; Murthy, Ganpathy
2003-03-01
We study the collective modes of the fractional quantum Hall edge states using the Hamiltonian formalism [1]. While most theoretical approaches start with an effective bosonic theory [2] in which all fermions are integrated out (an exception is the approach based on Chern-Simons theory [3]), the Hamiltonian theory treats the composite fermions as fully interacting. We obtain the gapless edge-modes using a conserving approximation which respects the constraints [4]. The implications of our study to the tunneling experiments into the edge of a fractional quantum Hall system [5] are discussed. [1] R.Shankar and G.Murthy, Phys.Rev.Lett. 79, 4437 (1997). [2] X.-G.Wen, Phys.Rev.Lett. 64, 2206 (1990); D.-H.Lee and X.-G.Wen, cond-mat/9809160; A.Lopez and E.Fradkin, Phys.Rev.B 59, 15323 (1999); U. Zulicke and A.H.MacDonald, Phys.Rev.B 60, 1837 (1999); V.J.Goldman and E.V.Tsiper, Phys.Rev.Lett. 86, 5841 (2001); S.S.Mandal and J.K.Jain, Phys.Rev.Lett. 89, 096801 (2002). [3] L.S.Levitov, A.V.Shytov, and B.I.Halperin, Phys. Rev. B 64, 075322 (2001). [4] N. Read, Phys.Rev.B 58, 16262 (1998); G. Murthy, Phys.Rev.B 64, 195310 (2001). [5] A.M.Chang et.al., Phys.Rev.Lett. 86, 143 (2000).
Zhang, N.G.; Henley, C.L.; Rischel, C.;
2002-01-01
We study the low-lying eigenenergy clustering patterns of quantum antiferromagnets with p sublattices (in particular p = 4). We treat each sublattice as a large spin, and using second-order degenerate perturbation theory, we derive the effective (biquadratic) Hamiltonian coupling the p large spins....... In order to compare with exact diagonalizations, the Hamiltonian is explicitly written for a finite-size lattice, and it contains information on energies of excited states as well as the ground state. The result is applied to the face-centered-cubic Type-I antiferromagnet of spin 1/2, including second...
Hamiltonian of mean force and a damped harmonic oscillator in an anisotropic medium
Jafari, Marjan; Kheirandish, Fardin
2017-01-01
The quantum dynamics of a damped harmonic oscillator is investigated in the presence of an anisotropic heat bath. The medium is modeled by a continuum of three dimensional harmonic oscillators and anisotropic coupling is treated by introducing tensor coupling functions. Starting from a classical Lagrangian, the total system is quantized in the framework of the canonical quantization. Following the Fano technique, the Hamiltonian of the system is diagonalized in terms of creation and annihilation operators that are linear combinations of the basic dynamical variables. Using the diagonalized Hamiltonian, the mean force internal energy, free energy and entropy of the damped oscillator are calculated.
Unified description of hydrogen bonding by a two-state effective Hamiltonian
McKenzie, Ross H
2011-01-01
An effective Hamiltonian is considered for hydrogen bonding between two molecules due to the quantum mechanical interaction between the orbitals of the H-atom and the donor and acceptor atoms in the molecules. The Hamiltonian acts on two diabatic states and has a simple chemically motivated form for its matrix elements. The model gives insight into the "H-bond puzzle", describes different classes of bonds, and empirical correlations between the donor-acceptor distance $R$ and binding energies, bond lengths, and the softening of vibrational frequencies. A key prediction is the UV photo-dissociation of H-bonded complexes via an excited electronic state with an exalted vibrational frequency.
Minami, Kazuhiko
2016-02-01
It is shown that a solvable Hamiltonian can be obtained from a series of operators satisfying specific commutation relations. A transformation that diagonalize the Hamiltonian is obtained simultaneously. The two-dimensional Ising model with periodic interactions, the one-dimensional XY model with period 2, the transverse Ising chain, the one-dimensional Kitaev model and the cluster model, and other composite quantum spin chains are diagonalized following this procedure. The Jordan-Wigner transformation, the transformation from the Pauli spin operators to the Majorana fermion used by Shankar and Murthy, and the transformation introduced by Nambu, are special cases of this treatment.
XING Guan; WU Guo-Zhen
2001-01-01
A classical coset Hamiltonian is introduced for the system of one electron in multi-sites. By this Hamiltonian, thedynamical behaviour of the electronic motion can be readily simulated. The simulation reproduces the retardation of the electron density decay in a lattice with site energies randomly distributed － an analogy with Anderson localization. This algorithm is also applied to reproduce the Hammett equation which relates the reaction rate with the property of the substitutions in the organic chemical reactions. The advantages and shortcomings ofthis algorithm, as contrasted with traditional quantum methods such as the molecular orbital theory, are also discussed.
From physical principles to relativistic classical Hamiltonian and Lagrangian particle mechanics
Carcassi, Gabriele
2015-01-01
We show that classical particle mechanics (Hamiltonian and Lagrangian consistent with relativistic electromagnetism) can be derived from three fundamental assumptions: infinite reducibility, deterministic and reversible evolution, and kinematic equivalence. The core idea is that deterministic and reversible systems preserve the cardinality of a set of states, which puts considerable constraints on the equations of motion. This perspective links different concepts from different branches of math and physics (e.g. cardinality of a set, cotangent bundle for phase space, Hamiltonian flow, locally Minkowskian space-time manifold), providing new insights. The derivation strives to use definitions and mathematical concepts compatible with future extensions to field theories and quantum mechanics.
Falomir, H.; Pisani, P. A. G.; Vega, F.; Cárcamo, D.; Méndez, F.; Loewe, M.
2016-02-01
We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras {sl}(2,{{R}}) or su(2) according to the relation between the noncommutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.
Falomir, H; Vega, F; Cárcamo, D; Méndez, F; Loewe, M
2015-01-01
We study two-dimensional Hamiltonians in phase space with noncommutativity both in coordinates and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of noncommutative dynamical variables. We show that two quantum phases are possible, characterized by the Lie algebras $sl(2,\\mathbb{R})$ or $su(2)$ according to the relation between the noncommutativity parameters. From this perspective, we analyze the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential.
Geometric quantization of completely integrable Hamiltonian systems in the action-angle variables
Giachetta, G; Sardanashvily, G
2002-01-01
We provide geometric quantization of a completely integrable Hamiltonian system in the action-angle variables around an invariant torus. These variables enable one to choose the angle polarization which otherwise is not easily determined. It is spanned by almost-Hamiltonian vector fields of angle variables. The associated quantum algebra consists of functions affine in action coordinates. We show that this algebra has a continuum set of nonequivalent representations in the separable pre-Hilbert space of smooth complex functions on the torus. The spectrum of the action operators is obtained.
Universal Simulation of Hamiltonians Using a Finite Set of Control Operations
Wocjan, P; Janzing, D; Beth, T; Wocjan, Pawel; Roetteler, Martin; Janzing, Dominik; Beth, Thomas
2001-01-01
Any quantum system with a non-trivial Hamiltonian is able to simulate any other Hamiltonian evolution provided that a sufficiently large group of unitary control operations is available. We show that there exist finite groups with this property and present a sufficient condition in terms of group characters. We give examples of such groups in dimension 2 and 3. Furthermore, we show that it is possible to simulate an arbitrary bipartite interaction by a given one using such groups acting locally on the subsystems.
An integrable case of the p + ip pairing Hamiltonian interacting with its environment
Lukyanenko, Inna; Isaac, Phillip S.; Links, Jon
2016-02-01
We consider a generalization of the p + ip pairing Hamiltonian, with external interaction terms of a particular form. These terms allow for the exchange of particles between the system and its environment. As a result the {u}(1) symmetry associated with conservation of particle number, present in the p + ip Hamiltonian, is broken. Nonetheless the generalized model is integrable. We establish integrability using the boundary quantum inverse scattering method, with one of the reflection matrices chosen to be non-diagonal. We also derive the corresponding Bethe ansatz equations, the roots of which parametrize the exact solution for the energy spectrum.
On Complexity of the Quantum Ising Model
Bravyi, Sergey; Hastings, Matthew
2017-01-01
We study complexity of several problems related to the Transverse field Ising Model (TIM). First, we consider the problem of estimating the ground state energy known as the Local Hamiltonian Problem (LHP). It is shown that the LHP for TIM on degree-3 graphs is equivalent modulo polynomial reductions to the LHP for general k-local `stoquastic' Hamiltonians with any constant {k ≥ 2}. This result implies that estimating the ground state energy of TIM on degree-3 graphs is a complete problem for the complexity class {StoqMA} —an extension of the classical class {MA}. As a corollary, we complete the complexity classification of 2-local Hamiltonians with a fixed set of interactions proposed recently by Cubitt and Montanaro. Secondly, we study quantum annealing algorithms for finding ground states of classical spin Hamiltonians associated with hard optimization problems. We prove that the quantum annealing with TIM Hamiltonians is equivalent modulo polynomial reductions to the quantum annealing with a certain subclass of k-local stoquastic Hamiltonians. This subclass includes all Hamiltonians representable as a sum of a k-local diagonal Hamiltonian and a 2-local stoquastic Hamiltonian.
马春生; 田丰收; 孙洪波; 刘式墉
2000-01-01
The multi-well energy representation technique is developed for analyzing the valence band structures of strain-compensated multiple quantum well (SCQW) systems. Taking the energy eigenfunctions of both the heavy- and light-holes at the Γ point as the base vectors to set up the energy representation, we solve the Kohn-Luttinger Hamiltonian (KLM) equation in this representation, and obtain the quantized energy bands and the energy eigenvectors of both the heavy- and light-holes at the non- Γ points. By using this technique, the effects of the number of wells and the distance between wells on the valence band structures of SCQW systems can be analyzed efficiently, and the energy characteristic matrix obtained by this technique is much smaller than that of the k.p method, so the calculation can be performed more easily with a microcomputer.%本文提出一种多阱能量表象方法用来分析应变补偿多量子 阱的价带结构。这一方法是把应变补偿多量子阱的价带Γ点z方向重 轻空穴的能量本征函数作为基矢量建立能量表象，把非Γ点的重轻空 穴的能量本征函数按这些基矢量进行傅里叶级数展开，带入 Kohn-Luttinger Hamiltonian(KLM)方程中得到相应的能量特征矩阵， 进 而得到其非Γ点的重轻空穴的能量本征值和相应的本征矢。与k.p方法 相比，这一方法的优点在于能够有效地分析出阱数和阱间距离对应变 补偿多量子阱的能带结构产生的影响，并且所得的能量特征矩阵的阶 数要小得多，很容易在微机上进行运算。
Quantum signatures of chaos or quantum chaos?
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)
2016-11-15
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.
Lectures on Hamiltonian Dynamics : Theory and Applications
Benettin, Giancarlo; Kuksin, Sergei
2005-01-01
This volume collects three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.
Extended Hamiltonian approach to continuous tempering.
Gobbo, Gianpaolo; Leimkuhler, Benedict J
2015-06-01
We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.
EXISTENCE OF HAMILTONIAN κ-FACTOR
CAI Maocheng; FANG Qizhi; LI Yanjun
2004-01-01
A Hamiltonian k-factor is a k-factor containing a Hamiltonian cycle. An n/2-critical graph G is a simple graph of order n which satisfies δ(G) ≥ n/2 and δ(G - e) ＜ n/2for any edge e ∈ E(G). Let κ≥ 2 be an integer and G be an n/2-critical graph of even order n ≥ 8κ - 14. It is shown in this paper that for any given Hamiltonian cycle Cexcept that G - C consists of two components of odd orders when κ is odd, G has a k-factor containing C.
Orthogonal separable Hamiltonian systems on T2
无
2007-01-01
In this paper we characterize the Liouvillian integrable orthogonal separable Hamiltonian systems on T2 for a given metric, and prove that the Hamiltonian flow on any compact level hypersurface has zero topological entropy. Furthermore, by examples we show that the integrable Hamiltonian systems on T2 can have complicated dynamical phenomena. For instance they can have several families of invariant tori, each family is bounded by the homoclinic-loop-like cylinders and heteroclinic-loop-like cylinders. As we know, it is the first concrete example to present the families of invariant tori at the same time appearing in such a complicated way.
EXTENDED CASIMIR APPROACH TO CONTROLLED HAMILTONIAN SYSTEMS
Yuqian GUO; Daizhan CHENG
2006-01-01
In this paper, we first propose an extended Casimir method for energy-shaping. Then it is used to solve some control problems of Hamiltonian systems. To solve the H∞ control problem, the energy function of a Hamiltonian system is shaped to such a form that could be a candidate solution of HJI inequality. Next, the energy function is shaped as a candidate of control ISS-Lyapunov function, and then the input-to-state stabilization of port-controlled Hamiltonian systems is achieved. Some easily verifiable sufficient conditions are presented.
Minimal Realizations of Supersymmetry for Matrix Hamiltonians
Andrianov, Alexandr A
2014-01-01
The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of $2\\times2$ matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated.
Algebraic Hamiltonian for Vibrational Spectra of Stibine
HOU Xi-Wen
2004-01-01
@@ An algebraic Hamiltonian, which in a limit can be reduced to an extended local mode model by Law and Duncan,is proposed to describe both stretching and bending vibrational energy levels of polyatomic molecules, where Fermi resonances between the stretches and the bends are considered. The Hamiltonian is used to study the vibrational spectra of stibine (SbH3). A comparison with the extended local mode model is made. Results of fitting the experimental data show that the algebraic Hamiltonian reproduces the observed values better than the extended local mode model.
Hamiltonian and Lagrangian theory of viscoelasticity
Hanyga, A.; Seredyńska, M.
2008-03-01
The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
Dicycle Cover of Hamiltonian Oriented Graphs
Khalid A. Alsatami
2016-01-01
Full Text Available A dicycle cover of a digraph D is a family F of dicycles of D such that each arc of D lies in at least one dicycle in F. We investigate the problem of determining the upper bounds for the minimum number of dicycles which cover all arcs in a strong digraph. Best possible upper bounds of dicycle covers are obtained in a number of classes of digraphs including strong tournaments, Hamiltonian oriented graphs, Hamiltonian oriented complete bipartite graphs, and families of possibly non-Hamiltonian digraphs obtained from these digraphs via a sequence of 2-sum operations.
Improved Sufficient Conditions for Hamiltonian Properties
Bode Jens-P.
2015-05-01
Full Text Available In 1980 Bondy [2] proved that a (k+s-connected graph of order n ≥ 3 is traceable (s = −1 or Hamiltonian (s = 0 or Hamiltonian-connected (s = 1 if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1(n+s−1+1/2. It is shown in [1] that one can allow exceptional (k+ 1-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition.
Tempel, David G; Aspuru-Guzik, Alán
2012-01-01
We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.