Hamiltonian light-front field theory and quantum chromodynamics
Perry, R J
1994-01-01
Light-front coordinates offer a scenario in which a constituent picture of hadron structure can emerge from QCD, after several difficulties are addressed. Field theoretic difficulties force us to introduce cutoffs that violate Lorentz covariance and gauge invariance, and a new renormalization group formalism based on a similarity transformation is used with coupling coherence to fix cuonterterms that restore these symmetries. The counterterms contain functions of longitudinal momentum fractions that severely complicate renormalization, but they also offer possible resolutions of apparent contradictions between the constituent picture and QCD. The similarity transformation and coupling coherence are applied to QED; and it is shown that the resultant Hamiltonian leads to standard lowest order bound state results, with the Coulomb interaction emerging naturally. The same techniques are applied to QCD and with physically motivated assumptions it is shown that a simple confinement mechanism appears. Bare `masses' ...
Nonperturbative light-front Hamiltonian methods
Hiller, J R
2016-01-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli--Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, $\\phi^4$ theory, ordinary Yukawa theory, supersymmetric Yang--Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations...
Nonperturbative light-front Hamiltonian methods
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
Hamiltonian light-front field theory within an AdS/QCD basis
Vary, J P; Li, Jun; Maris, P; Brodsky, S J; Harindranath, A; de Teramond, G F; Sternberg, P; Ng, E G; Yang, C
2009-01-01
Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and challenges that bridge particle physics and nuclear physics. Fundamental theories, such as Quantum Chromodynmamics (QCD) and Quantum Electrodynamics (QED) offer the promise of great predictive power spanning phenomena on all scales from the microscopic to cosmic scales, but new tools that do not rely exclusively on perturbation theory are required to make connection from one scale to the next. We outline recent theoretical and computational progress to build these bridges and provide illustrative results for nuclear structure and quantum field theory. As our framework we choose light-front gauge and a basis function representation with two-dimensional harmonic oscillator basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD model obtained from light-front holography.
Construction of Perturbatively Correct Light Front Hamiltonian for (2+1)-Dimensional Gauge Theory
Malyshev, M Yu; Zubov, R A; Franke, V A
2016-01-01
In this paper we consider (2+1)-dimensional SU(N)-symmetric gauge theory within light front perturbation theory, regularized by the method analogous to Pauli-Villars regularization. This enables us to construct correct renormalized light front Hamiltonian.
Transverse Lattice Approach to Light-Front Hamiltonian QCD
Dalley, S
1999-01-01
We describe a non-perturbative procedure for solving from first principles the light-front Hamiltonian problem of SU(N) pure gauge theory in D spacetime dimensions (D>2), based on enforcing Lorentz covariance of observables. A transverse lattice regulator and colour-dielectric link fields are employed, together with an associated effective potential. We argue that the light-front vacuum is necessarily trivial for large enough lattice spacing, and clarify why this leads to an Eguchi-Kawai dimensional reduction of observables to 1+1-dimensions in the infinite N limit. The procedure is then tested by explicit calculations for 2+1-dimensional SU(infinity) gauge theory, within a first approximation to the lattice effective potential. We identify a scaling trajectory which produces Lorentz covariant behaviour for the lightest glueballs. The predicted masses, in units of the measured string tension, are in agreement with recent results from conventional Euclidean lattice simulations. In addition, we obtain the poten...
Hamiltonian Light-Front Field Theory: Recent Progress and Tantalizing Prospects
Vary, James P
2011-01-01
Fundamental theories, such as Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD) promise great predictive power addressing phenomena over vast scales from the microscopic to cosmic scales. However, new non-perturbative tools are required for physics to span from one scale to the next. I outline recent theoretical and computational progress to build these bridges and provide illustrative results for Hamiltonian Light Front Field Theory. One key area is our development of basis function approaches that cast the theory as a Hamiltonian matrix problem while preserving a maximal set of symmetries. Regulating the theory with an external field that can be removed to obtain the continuum limit offers additional possibilities as seen in an application to the anomalous magnetic moment of the electron. Recent progress capitalizes on algorithm and computer developments for setting up and solving very large sparse matrix eigenvalue problems. Matrices with dimensions of 20 billion basis states are now solved on...
Light-front quantum chromodynamics: A framework for the analysis of hadron physics
Bakker, B. L.G.; Bassetto, A.; Brodsky, S. J.; Broniowski, W.; Dalley, S.; Frederico, T.; Glazek, S. D.; Hiller, J. R.; Ji, C. -R.; Karmanov, V.; Kulshreshtha, D.; Mathiot, J. -F.; Melnitchouk, W.; Miller, G. A.; Papavassiliou, J.; Polyzou, W. N.; Stefanis, N.; Vary, J. P.; Ilderton, A.; Heinzl, T.
2014-06-01
An outstanding goal of physics is to find solutions that describe hadrons in the theory of strong interactions, Quantum Chromodynamics (QCD). For this goal, the light-front Hamiltonian formulation of QCD (LFQCD) is a complementary approach to the well-established lattice gauge method. LFQCD offers access to the hadrons nonperturbative quark and gluon amplitudes, which are directly testable in experiments at forefront facilities. We present an overview of the promises and challenges of LFQCD in the context of unsolved issues in QCD that require broadened and accelerated investigation. We identify specific goals of this approach and address its quantifiable uncertainties.
Light-Front Quantum Chromodynamics: A framework for the analysis of hadron physics
Bakker, B L G; Brodsky, S J; Broniowski, W; Dalley, S; Frederico, T; Glazek, S D; Hiller, J R; Ji, C -R; Karmanov, V; Kulshreshtha, D; Mathiot, J -F; Melnitchouk, W; Miller, G A; Papavassiliou, J; Polyzou, W N; Stefanis, N G; Vary, J P; Ilderton, A; Heinzl, T
2013-01-01
An outstanding goal of physics is to find solutions that describe hadrons in the theory of strong interactions, Quantum Chromodynamics (QCD). For this goal, the light-front Hamiltonian formulation of QCD (LFQCD) is a complementary approach to the well-established lattice gauge method. LFQCD offers access to the hadrons' nonperturbative quark and gluon amplitudes, which are directly testable in experiments at existing and future facilities. We present an overview of the promises and challenges of LFQCD in the context of unsolved issues in QCD that require broadened and accelerated investigation. We identify specific goals of this approach and address its quantifiable uncertainties.
Pauli-Villars regularization in nonperturbative Hamiltonian approach on the light front
Malyshev, M. Yu., E-mail: mimalysh@yandex.ru; Paston, S. A.; Prokhvatilov, E. V.; Zubov, R. A.; Franke, V. A. [Saint Petersburg State University, Saint Petersburg (Russian Federation)
2016-01-22
The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar λφ{sup 4} field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.
Pauli-Villars Regularization in nonperturbative Hamiltonian approach on the Light Front
Malyshev, M Yu; Prokhvatilov, E V; Zubov, R A; Franke, V A
2015-01-01
The advantage of Pauli-Villars regularization in quantum field theory quantized on the light front is explained. Simple examples of scalar $\\lambda\\varphi^4$ field theory and Yukawa-type model are used. We give also an example of nonperturbative calculation in the theory with Pauli-Villars fields, using for that a model of anharmonic oscillator modified by inclusion of ghost variables playing the role similar to Pauli-Villars fields.
Fermions in light front transverse lattice quantum chromodynamics
Dipankar Chakrabarti; Asit K De; A Harindranath
2003-11-01
We brieﬂy describe motivations for studying transverse lattice QCD. Presence of constraint equation for fermion ﬁeld on the light front allows different methods to put fermions on a transverse lattice. We summarize our numerical investigation of two approaches using (a) forward and backward derivatives and (b) symmetric derivatives.
Kulshreshtha, Usha, E-mail: ushakulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics, Kirori Mal College, University of Delhi, 110007, Delhi (India); Kulshreshtha, Daya Shankar, E-mail: dskulsh@gmail.com [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States); Department of Physics and Astrophysics, University of Delhi, 110007, Delhi (India); Vary, James P., E-mail: jvary@iastate.edu [Department of Physics and Astronomy, Iowa State University, 50011, Ames, IA (United States)
2015-04-28
Recently Grinstein, Jora, and Polosa have studied a theory of large-N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe–Salpeter equation describing the discrete spectrum of quark–antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark–antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front ’t Hooft gauge.
Kulshreshtha, Usha [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics, Kirori Mal College, Delhi (India); Kulshreshtha, Daya Shankar [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States); University of Delhi, Department of Physics and Astrophysics, Delhi (India); Vary, James P. [Iowa State University, Department of Physics and Astronomy, Ames, IA (United States)
2015-04-01
Recently Grinstein, Jora, and Polosa have studied a theory of large- N scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of SU(N) and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front 't Hooft gauge. (orig.)
Modified Anti-de-Sitter Metric, Light-Front Quantized QCD, and Conformal Quantum Mechanics
Dosch, Hans Gunter; de Teramond, Guy F
2014-01-01
We briefly review the remarkable connections between light-front QCD, gravity in AdS space, and conformal quantum mechanics. We discuss, in particular, the group theoretical and geometrical aspects of the underlying one-dimensional quantum field theory. The resulting effective theory leads to a phenomenologically successful confining interaction potential in the relativistic light-front wave equation which incorporates relevant non-perturbative dynamical aspects of hadron physics.
Kulshreshtha, Usha; Vary, James P
2015-01-01
Recently Grinstein, Jora, and Polosa have studied a theory of large-$N$ scalar quantum chromodynamics in one-space one-time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of $SU(N)$ and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge-invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as ...
Brodsky, S J; de Teramond, G F; Dosch, H G
2015-01-01
A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter $\\kappa$ emerges. The actual value of the parameter $\\kappa$ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schr\\"odinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number $n$ and orbital angular momentum $L$. T...
Brodsky, Stanley J.; Deur, Alexandre; de Téramond, Guy F.; Dosch, Hans Günter
2015-11-01
A primary question in hadron physics is how the mass scale for hadrons consisting of light quarks, such as the proton, emerges from the QCD Lagrangian even in the limit of zero quark mass. If one requires the effective action which underlies the QCD Lagrangian to remain conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory, then a unique, color-confining potential with a mass parameter κ emerges. The actual value of the parameter κ is not set by the model - only ratios of hadron masses and other hadronic mass scales are predicted. The result is a nonperturbative, relativistic light-front quantum mechanical wave equation, the Light-Front Schrödinger Equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the identical slope in the radial quantum number n and orbital angular momentum L. The same light-front equations for mesons with spin J also can be derived from the holographic mapping to QCD (3+1) at fixed light-front time from the soft-wall model modification of AdS5 space with a specific dilaton profile. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. One can also extend the analysis to baryons using superconformal algebra - 2 × 2 supersymmetric representations of the conformal group. The resulting fermionic LF bound-state equations predict striking similarities between the meson and baryon spectra. In fact, the holographic QCD light-front Hamiltonians for the states on the meson and baryon trajectories are identical if one shifts the internal angular momenta of the meson (LM) and baryon (LB) by one unit: LM = LB + 1. We also show how the mass scale κ
Frederico, Tobias; Pace, Emanuele; Salme`, Giovanni
2010-01-01
The electromagnetic properties of the deuteron are investigated within a Light-Front Hamiltonian Dynamics framework, with a current operator that contains both one-body and two-body contributions. In this work, we are considering new two-body contributions, with a dynamical nature generated within a Yukawa model and a structure inspired by a recent analysis of the current operator, that acts on the three-dimensional valence component and fulfills the Ward-Takahashi identity. Preliminary results for the magnetic moment are shown.
Angular momentum conservation law in light-front quantum field theory
Chiu, Kelly Yu-Ju; Brodsky, Stanley J.; /SLAC /Stanford U.
2017-03-01
We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.
Quantum Hamiltonian Complexity
2014-01-01
Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via s...
Light Front Boson Model Propagation
Jorge Henrique Sales; Alfredo Takashi Suzuki
2011-01-01
stract The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ ＞ O. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena
Brodsky, S. J.; de Teramond, G. F.
2012-01-01
amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schrodinger equation which determines...
Brodsky, S J
2004-01-01
In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffr...
QCD Phenomenology and Light-Front Wavefunctions
Brodsky, Stanley J.
2001-11-21
A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, diffractive dissociation into jets, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wavefunctions is discussed. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-cone partition function, summed over exponentially weighted light-cone energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton scattering are affected by final-state rescattering, thus modifying their connection to light-front probability distributions. In particular, the shadowing of nuclear structure functions is due to destructive interference effects from leading-twist diffraction of the virtual photon, physics not included in the nuclear light-cone wavefunctions.
Quantum Jacobi fields in Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
Jacobi fields of classical solutions of a Hamiltonian mechanical system are quantized in the framework of vertical-extended Hamiltonian formalism. Quantum Jacobi fields characterize quantum transitions between classical solutions.
QCD and Light-Front Holography
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.
2010-10-27
The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number N. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable z of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is to a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors. The theory implements chiral symmetry in a novel way: the effects of chiral symmetry breaking increase as one goes toward large interquark separation, consistent with spectroscopic data, and the the hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. The soft-wall model also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function which agrees with the effective coupling {alpha}{sub g1} extracted from the Bjorken sum rule. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms. A new perspective on quark and gluon condensates is also reviewed.
Perspectives of Light-Front Quantum Field Theory Some New Results
Srivastava, P P
2000-01-01
Some basic topics in the light-front (LF) quantization of relativistic field theory are reviewed. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the micro- causality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent. In the context of the Dyson-Wick pertur- bation theory the relevant popagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes $x...
QCD on the Light-Front. A Systematic Approach to Hadron Physics
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter
2014-06-01
Light-front Hamiltonian theory, derived from the quantization of the QCD Lagrangian at fixed light-front time x + = x 0 + x 3, provides a rigorous frame-independent framework for solving nonperturbative QCD. The eigenvalues of the light-front QCD Hamiltonian H LF predict the hadronic mass spectrum, and the corresponding eigensolutions provide the light-front wavefunctions which describe hadron structure, providing a direct connection to the QCD Lagrangian. In the semiclassical approximation the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrödinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. Remarkably, the potential U has a unique form of a harmonic oscillator potential if one requires that the chiral QCD action remains conformally invariant. A mass gap and the color confinement scale also arises when one extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory. In the case of mesons, the valence Fock-state wavefunctions of H LF for zero quark mass satisfy a single-variable relativistic equation of motion in the invariant variable , which is conjugate to the invariant mass squared . The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter appears. The corresponding light-front Dirac equation provides a dynamical and spectroscopic model of nucleons. The same light-front equations arise from the holographic mapping of the soft-wall model modification of AdS5 space with a unique dilaton profile to QCD
Driving Hamiltonian in a Quantum Search Problem
Oshima, K
2001-01-01
We examine the driving Hamiltonian in the analog analogue of Grover's algorithm by Farhi and Gutmann. For a quantum system with a given Hamiltonian $E|w> $ from an initial state $|s>$, the driving Hamiltonian $E^{\\prime}|s> < s|(E^{\\prime} \
Brodsky, Stanley J; Deur, Alexandre; Dosch, Hans Günter
2014-01-01
The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential $U$ which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential $U$ has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number $n$ and orbital angular momentum $L$. Only one mass parameter $\\kappa$ appears. Light-front holography thus provides a precise relation between the bound-state ...
Path integral approach to two-dimensional QCD in the light-front frame
Gaete, P. (Instituto de Fisica, Universidade Federal do Rio de Janeiro, C.P. 68528, BR-21945, Rio de Janeiro (Brazil)); Gamboa, J. (Fachbereich 7 Physik, Universitaet Siegen, Siegen, D-57068 (Germany)); Schmidt, I. (Departamento de Fisica, Universidad Tecnica Federico Santa Maria, Casilla 110-V, Valparaiso (Chile))
1994-05-15
Two-dimensional quantum chromodynamics in the light-front frame is studied following Hamiltonian methods. The theory is quantized using the path integral formalism and an effective theory similar to the Nambu--Jona-Lasinio model is obtained. Confinement in two dimensions is derived by analyzing directly the constraints in the path integral.
Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse
Light-Front Holographic QCD and Color Confinement
Brodsky, Stanley J; Dosch, Hans Günter
2014-01-01
One of the most fundamental problems in Quantum Chromodynamics is to understand the origin of the mass scale which controls the range of color confinement and the hadronic spectrum. We show that a mass gap and a fundamental color confinement scale arise when one extends the formalism of de Alfaro, Fubini and Furlan to frame-independent light-front Hamiltonian theory. Remarkably, the resulting light-front potential has a unique form of a harmonic oscillator in the light-front invariant impact variable if one requires that the action remains conformally invariant. The result is a single-variable relativistic equation of motion for $q \\bar q$ bound states, a "Light-Front Shr\\"odinger Equation", analogous to the nonrelativistic radial Schr\\"odinger equation, which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number and orbital angular m...
Herrmann, Marc
2015-01-01
Background: The vacuum in the light-front representation of quantum field theory is trivial while vacuum in the equivalent canonical representation of the same theory is non-trivial. Purpose: Understand the relation between the vacuum in light-front and canonical representations of quantum field theory and the role of zero-modes in this relation. Method: Vacuua are defined as linear functionals on an algebra of field operators. The role of the algebra in the definition of the vacuum is exploited to understand this relation. Results: The vacuum functional can be extended from the light-front Fock algebra to an algebra of local observables. The extension to the algebra of local observables is responsible for the inequivalence. The extension defines a unitary mapping between the physical representation of the local algebra and a sub-algebra of the light-front Fock algebra. Conclusion: There is a unitary mapping from the physical representation of the algebra of local observables to a sub-algebra of the light-fro...
Compressed quantum metrology for the Ising Hamiltonian
Boyajian, W. L.; Skotiniotis, M.; Dür, W.; Kraus, B.
2016-12-01
We show how quantum metrology protocols that seek to estimate the parameters of a Hamiltonian that exhibits a quantum phase transition can be efficiently simulated on an exponentially smaller quantum computer. Specifically, by exploiting the fact that the ground state of such a Hamiltonian changes drastically around its phase-transition point, we construct a suitable observable from which one can estimate the relevant parameters of the Hamiltonian with Heisenberg scaling precision. We then show how, for the one-dimensional Ising Hamiltonian with transverse magnetic field acting on N spins, such a metrology protocol can be efficiently simulated on an exponentially smaller quantum computer while maintaining the same Heisenberg scaling for the squared error, i.e., O (N-2) precision, and derive the explicit circuit that accomplishes the simulation.
Polysymplectic Hamiltonian formalism and some quantum outcomes
Giachetta, G; Sardanashvily, G
2004-01-01
Covariant (polysymplectic) Hamiltonian field theory is formulated as a particular Lagrangian theory on a polysymplectic phase space that enables one to quantize it in the framework of familiar quantum field theory.
Hamiltonian Quantum Cellular Automata in 1D
Nagaj, Daniel; Wocjan, Pawel
2008-01-01
We construct a simple translationally invariant, nearest-neighbor Hamiltonian on a chain of 10-dimensional qudits that makes it possible to realize universal quantum computing without any external control during the computational process. We only require the ability to prepare an initial computational basis state which encodes both the quantum circuit and its input. The computational process is then carried out by the autonomous Hamiltonian time evolution. After a time polynomially long in th...
Light-Front Holography and the Light-Front Schrodinger Equation
Brodsky, Stanley J.; de Teramond, Guy
2012-08-15
One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.
Information, disturbance and Hamiltonian quantum feedback control
Doherty, A C; Jungman, G; Doherty, Andrew C.; Jacobs, Kurt; Jungman, Gerard
2001-01-01
We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance which are distinct from those usually considered in quantum information theory. Using these concepts we identify an information trade-off in quantum feedback control.
An intuitive Hamiltonian for quantum search
Fenner, S A
2000-01-01
We present new intuition behind Grover's quantum search algorithm by means of a Hamiltonian. Given a black-box Boolean function f mapping strings of length n into {0,1} such that f(w) = 1 for exactly one string w, L. K. Grover describes a quantum algorithm that finds w in O(2^{n/2}) time. Farhi & Gutmann show that w can also be found in the same amount time by letting the quantum system evolve according to a simple Hamiltonian depending only on f. Their system evolves along a path far from that taken by Grover's original algorithm, however. The current paper presents an equally simple Hamiltonian matching Grover's algorithm step for step. The new Hamiltonian is similar in appearance from that of Farhi & Gutmann, but has some important differences, and provides new intuition for Grover's algorithm itself. This intuition both contrasts with and supplements other explanations of Grover's algorithm as a rotation in two dimensions, and suggests that the Hamiltonian-based approach to quantum algorithms can ...
Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography
Brodsky, Stanley J; Dosch, Hans Günter; Lorcé, Cédric
2016-01-01
Superconformal algebra leads to remarkable connections between the masses of mesons and baryons of the same parity -- supersymmetric relations between the bosonic and fermionic bound states of QCD. Supercharges connect the mesonic eigenstates to their baryonic superpartners, where the mesons have internal angular momentum one unit higher than the baryons. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. An effective supersymmetric light-front Hamiltonian for hadrons composed of light quarks can be constructed by embedding superconformal quantum mechanics into AdS space. The breaking of conformal symmetry determines a unique quark-confining light-front potential for light hadrons including spin-spin interactions in agreement with the soft-wall AdS/QCD approach and light-front holography. The mass-squared of the light hadrons can be expressed as a frame-independent decomposition of contributions from the constituent kinetic energy, the confin...
Gauge Theories on the Light-Front
Brodsky, S J
2004-01-01
The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitary, and a trivial vacuum. The light-front Hamiltonian form of QCD provides an alternative to lattice gauge theory for the computation of nonperturbative quantities such as the hadronic spectrum and the corresponding eigenfunctions. In the case of the electroweak theory, spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field. Light-front quantization then leads to an elegant ghost-free theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions, as well as the Goldstone boson equivalence theorem.
Effective Hamiltonian approach to periodically perturbed quantum optical systems
Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl
2006-02-20
We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.
Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Southern Denmark U., CP3-Origins /Costa Rica U.
2011-01-10
AdS/QCD, the correspondence between theories in a dilaton-modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The result is a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. The hadron eigenstates generally have components with different orbital angular momentum; e.g., the proton eigenstate in AdS/QCD with massless quarks has L = 0 and L = 1 light-front Fock components with equal probability. Higher Fock states with extra quark-anti quark pairs also arise. The soft-wall model also predicts the form of the nonperturbative effective coupling and its {beta}-function. The AdS/QCD model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method to systematically include QCD interaction terms. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
Light-Front Quantization of Gauge Theories
Brodskey, Stanley
2002-12-01
Light-front wavefunctions provide a frame-independent representation of hadrons in terms of their physical quark and gluon degrees of freedom. The light-front Hamiltonian formalism provides new nonperturbative methods for obtaining the QCD spectrum and eigensolutions, including resolvant methods, variational techniques, and discretized light-front quantization. A new method for quantizing gauge theories in light-cone gauge using Dirac brackets to implement constraints is presented. In the case of the electroweak theory, this method of light-front quantization leads to a unitary and renormalizable theory of massive gauge particles, automatically incorporating the Lorentz and 't Hooft conditions as well as the Goldstone boson equivalence theorem. Spontaneous symmetry breaking is represented by the appearance of zero modes of the Higgs field leaving the light-front vacuum equal to the perturbative vacuum. I also discuss an ''event amplitude generator'' for automatically computing renormalized amplitudes in perturbation theory. The importance of final-state interactions for the interpretation of diffraction, shadowing, and single-spin asymmetries in inclusive reactions such as deep inelastic lepton-hadron scattering is emphasized.
Optimal Hamiltonian Simulation by Quantum Signal Processing
Low, Guang Hao; Chuang, Isaac L.
2017-01-01
The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d -sparse Hamiltonian H ^ for time-interval t with error ɛ is O [t d ∥H ^ ∥max+log (1 /ɛ ) /log log (1 /ɛ ) ] , which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H ^ into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.
Quantum Hamiltonian complexity and the detectability lemma
Aharonov, Dorit; Landau, Zeph; Vazirani, Umesh
2010-01-01
Quantum Hamiltonian complexity studies computational complexity aspects of local Hamiltonians and ground states; these questions can be viewed as generalizations of classical computational complexity problems related to local constraint satisfaction (such as SAT), with the additional ingredient of multi-particle entanglement. This additional ingredient of course makes generalizations of celebrated theorems such as the PCP theorem from classical to the quantum domain highly non-trivial; it also raises entirely new questions such as bounds on entanglement and correlations in ground states, and in particular area laws. We propose a simple combinatorial tool that helps to handle such questions: it is a simplified, yet more general version of the detectability lemma introduced by us in the more restricted context on quantum gap amplification a year ago. Here, we argue that this lemma is applicable in much more general contexts. We use it to provide a simplified and more combinatorial proof of Hastings' 1D area law...
Mixing properties of stochastic quantum Hamiltonians
Onorati, E; Kliesch, M; Brown, W; Werner, A H; Eisert, J
2016-01-01
Random quantum processes play a central role both in the study of fundamental mixing processes in quantum mechanics related to equilibration, thermalisation and fast scrambling by black holes, as well as in quantum process design and quantum information theory. In this work, we present a framework describing the mixing properties of continuous-time unitary evolutions originating from local Hamiltonians having time-fluctuating terms, reflecting a Brownian motion on the unitary group. The induced stochastic time evolution is shown to converge to a unitary design. As a first main result, we present bounds to the mixing time. By developing tools in representation theory, we analytically derive an expression for a local k-th moment operator that is entirely independent of k, giving rise to approximate unitary k-designs and quantum tensor product expanders. As a second main result, we introduce tools for proving bounds on the rate of decoupling from an environment with random quantum processes. By tying the mathema...
AdS/QCD, Light-Front Holography, and Sublimated Gluons
Brodsky, Stanley J
2011-01-01
Gauge/gravity duality leads to a simple, analytical, and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian. This approach, called "Light-Front Holography", successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schrodinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable zeta in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons -- the relativistic analogs of the Schrodinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence ...
Nonperturbative Pauli-Villars regularization of vacuum polarization in light-front QED
Chabysheva, S S
2010-01-01
We continue the development of a nonperturbative light-front Hamiltonian method for the solution of quantum field theories by considering the one-photon eigenstate of Lorentz-gauge QED. The photon state is computed nonperturbatively for a Fock basis with a bare photon state and electron-positron pair states. The calculation is regulated by the inclusion of Pauli-Villars (PV) fermions, with one flavor to make the integrals finite and a second flavor to guarantee a zero mass for the physical photon eigenstate. We compute in detail the constraints on the PV coupling strengths that this zero mass implies. As part of this analysis, we provide the complete Lorentz-gauge light-front QED Hamiltonian with two PV fermion flavors and two PV photon flavors, which will be useful for future work. The need for two PV photons was established previously; the need for two PV fermions is established here.
Quantum Hamiltonian Identification from Measurement Time Traces
Zhang, Jun; Sarovar, Mohan
2014-08-01
Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.
QCD and Light-Front Holography
Brodsky, Stanley J
2010-01-01
The soft-wall AdS/QCD model, modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics. The model predicts a zero-mass pion for zero-mass quarks and a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum $L$ of hadrons and the radial quantum number $N$. Light-Front Holography maps the amplitudes which are functions of the fifth dimension variable $z$ of anti-de Sitter space to a corresponding hadron theory quantized on the light front. The resulting Lorentz-invariant relativistic light-front wave equations are functions of an invariant impact variable $\\zeta$ which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. The result is a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryon light-quark bound states, which in turn predict the behavior of the pion and nucleon form factors...
Nonperturbative light-front QCD
Wilson, K G; Harindranath, A; Zhang, W M; Perry, R J; Glazek, S D
1994-01-01
In this work the determination of low-energy bound states in Quantum Chromodynamics is recast so that it is linked to a weak-coupling problem. This allows one to approach the solution with the same techniques which solve Quantum Electrodynamics: namely, a combination of weak-coupling diagrams and many-body quantum mechanics. The key to eliminating necessarily nonperturbative effects is the use of a bare Hamiltonian in which quarks and gluons have nonzero constituent masses rather than the zero masses of the current picture. The use of constituent masses cuts off the growth of the running coupling constant and makes it possible that the running coupling never leaves the perturbative domain. For stabilization purposes an artificial potential is added to the Hamiltonian, but with a coefficient that vanishes at the physical value of the coupling constant. The weak-coupling approach potentially reconciles the simplicity of the Constituent Quark Model with the complexities of Quantum Chromodynamics. The penalty for...
Light-Front Quantization and AdS/QCD: An Overview
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Stanford U., Phys. Dept.
2011-08-19
We give an overview of the light-front holographic approach to strongly coupled QCD, whereby a confining gauge theory, quantized on the light front, is mapped to a higher-dimensional anti de Sitter (AdS) space. The framework is guided by the AdS/CFT correspondence incorporating a gravitational background asymptotic to AdS space which encodes the salient properties of QCD, such as the ultraviolet conformal limit at the AdS boundary at z {yields} 0, as well as modifications of the geometry in the large z infrared region to describe confinement and linear Regge behavior. There are two equivalent procedures for deriving the AdS/QCD equations of motion: one can start from the Hamiltonian equation of motion in physical space time by studying the off-shell dynamics of the bound state wavefunctions as a function of the invariant mass of the constituents. To a first semiclassical approximation, where quantum loops and quark masses are not included, this leads to a light-front Hamiltonian equation which describes the bound state dynamics of light hadrons in terms of an invariant impact variable {zeta} which measures the separation of the partons within the hadron at equal light-front time. Alternatively, one can start from the gravity side by studying the propagation of hadronic modes in a fixed effective gravitational background. Both approaches are equivalent in the semiclassical approximation. This allows us to identify the holographic variable z in AdS space with the impact variable {zeta}. Light-front holography thus allows a precise mapping of transition amplitudes from AdS to physical space-time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role.
Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); de Teramond, Guy F. [Univ. of Costa Rica, San Pedro (Costa Rica); Deur, Alexandre P. [Jefferson La.b, Newport News, VA (United States); Dosch, Hans G. [Institut fur Theoretische Physik, Heidelberg (Germany)
2015-09-01
The valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a relativistic equation of motion with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to light front Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. Light-front holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. We also show how the mass scale κ underlying confinement and hadron masses determines the scale Λ_{{ovr MS}} controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The result is an effective coupling defined at all momenta. The predicted value Λ_{{ovr MS}}=0.328±0.034 GeV is in agreement with the world average 0.339±0.010 GeV. The analysis applies to any renormalization scheme.
A Quantum Algorithm for the Hamiltonian NAND Tree
Farhi, E; Gutmann, S
2007-01-01
We give a quantum algorithm for the NAND tree problem in the Hamiltonian oracle model. The algorithm uses a continuous time quantum walk with a run time proportional to sqrt(N)*sqrt(logN). We also show a lower bound of sqrt(N) for the NAND tree problem in the Hamiltonian oracle model.
Electron g-2 in Light-front Quantization
Xingbo Zhao
2014-10-01
Full Text Available Basis Light-front Quantization has been proposed as a nonperturbative framework for solving quantum field theory. We apply this approach to Quantum Electrodynamics and explicitly solve for the light-front wave function of a physical electron. Based on the resulting light-front wave function, we evaluate the electron anomalous magnetic moment. Nonperturbative mass renormalization is performed. Upon extrapolation to the infinite basis limit our numerical results agree with the Schwinger result obtained in perturbation theory to an accuracy of 0.06%.
New Hamiltonian constraint operator for loop quantum gravity
Jinsong Yang
2015-12-01
Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.
Entanglement Concentration with Quantum Non Demolition Hamiltonians
Tatham, Richard
2011-01-01
We devise and examine two procrustean entanglement concentration schemes using Quantum Non- Demolition (QND) interaction Hamiltonians in the continuous variable regime, applicable for light, for atomic ensembles or in a hybrid setting. We thus expand the standard entanglement distillation toolbox to the use of a much more general, versatile and experimentally feasible interaction class. The first protocol uses Gaussian ancillary modes and a non-Gaussian post-measurement, the second a non-Gaussian ancillary mode and a Gaussian post-measurement. We explicitly calculate the density matrix elements of the non-Gaussian mixed states resulting from these protocols using an elegant Wigner-function based method in a numerically efficient manner. We then quantify the entanglement increase calculating the Logarithmic Negativity of the output state and discuss and compare the performance of the protocols.
Light-Front quantization of field theory
Srivastava, P P
1996-01-01
Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.
Entangled State Representation for Hamiltonian Operator of Quantum Pendulum
FANHong-Yi
2003-01-01
By virtue of the Einstein-Podolsky-Rosen entangled state, which is the common eigenvector of two panicles' relative coordinate and total momentum, we establish the bosonic operator version of the Hamiltonian for a quantum point-mass pendulum. The Hamiltonian displays the correct Schroedlnger equation in the entangled state representation.The corresponding Heisenberg operator equations which predict the angular momentum-angle uncertainty relation are derived. The quantum operator description of two quantum pendulums coupled by a spring is also derived.
AdS/QCD, Light-Front Holography, and Sublimated Gluons
Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted from measurements of the Bjorken sum rule below Q{sup 2} < 1 GeV{sup 2}. This is consistent with a flux-tube interpretation of QCD where soft gluons with virtualities Q{sup 2} < 1 GeV{sup 2} are sublimated into a color-confining potential for quarks. We discuss a number of phenomenological hadronic properties which support this picture.
Spin-1 Particles with Light-Front Approach
de Melo, J P B C; Mello, Clayton S; Frederico, T
2015-01-01
For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the light-front quantum field theory have some problems, for example, the rotational symmetry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the $0\\to 0$ one carries zero mode contributions.
Spin-1 particles with light-front approach
de Melo J.P.B.C.
2014-06-01
Full Text Available For the vector sector, i.e, mesons with spin-1, the electromagnetic form factors and anothers observables are calculated with the light-front approach. However, the light-front quantum field theory have some problems, for example, the rotational symmetry breaking. We solve that problem added the zero modes contribuition to the matrix elements of the electromagnetic current, besides the valence contribuition. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the 0 → 0 one carries zero mode contributions.
Quantum System Identification: Hamiltonian Estimation using Spectral and Bayesian Analysis
Schirmer, S G
2009-01-01
Identifying the Hamiltonian of a quantum system from experimental data is considered. General limits on the identifiability of model parameters with limited experimental resources are investigated, and a specific Bayesian estimation procedure is proposed and evaluated for a model system where a-priori information about the Hamiltonian's structure is available.
Quantum simulation of a three-body interaction Hamiltonian on an NMR quantum computer
Tseng, C H; Sharf, Y; Knill, E H; Laflamme, R; Havel, T F; Cory, D G
2000-01-01
Extensions of average Hamiltonian theory to quantum computation permit the design of arbitrary Hamiltonians, allowing rotations throughout a large Hilbert space. In this way, the kinematics and dynamics of any quantum system may be simulated by a quantum computer. A basis mapping between the systems dictates the average Hamiltonian in the quantum computer needed to implement the desired Hamiltonian in the simulated system. The flexibility of the procedure is illustrated with NMR on 13-C labelled Alanine by creating the non-physical Hamiltonian ZZZ corresponding to a three body interaction.
Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer
Tseng, C. H. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Somaroo, S. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Sharf, Y. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Knill, E. [Theoretical Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87455 (United States); Laflamme, R. [Theoretical Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87455 (United States); Havel, T. F. [BCMP Harvard Medical School, 240 Longwood Avenue, Boston Massachusetts 02115 (United States); Cory, D. G. [Department of Nuclear Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2000-01-01
Extensions of average Hamiltonian theory to quantum computation permit the design of arbitrary Hamiltonians, allowing rotations throughout a large Hilbert space. In this way, the kinematics and dynamics of any quantum system may be simulated by a quantum computer. A basis mapping between the systems dictates the average Hamiltonian in the quantum computer needed to implement the desired Hamiltonian in the simulated system. The flexibility of the procedure is illustrated with NMR on {sup 13}C labeled alanine by creating the nonphysical Hamiltonian {sigma}{sub z}{sigma}{sub z}{sigma}{sub z} corresponding to a three-body interaction. (c) 1999 The American Physical Society.
Elementary Quantum Gates Based on Intrinsic Interaction Hamiltonian
CHEN Jing; YU Chang-Shui; SONG He-Shan
2006-01-01
A kind of new operators, the generalized pseudo-spin operators are introduced and a universal intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental quantum gate U(θ) is constructed based on the universal Hamiltonian and shown that the roles of the new quantum gate U(θ) is equivalent, functionally, to the joint operation of Hadamard and C-Not gates.
Entangled State Representation for Hamiltonian Operator of Quantum Pendulum
FAN Hong-Yi
2003-01-01
By virtue of the Einstein-Podolsky-Rosen entangled state, which is the common eigenvector of two particles'relativecoordinate and total momentum, we establish the bosonic operator version of the Hamiltonian for a quantumpoint-mass pendulum. The Hamiltonian displays the correct Schrodinger equation in the entangled state representation.The corresponding Heisenberg operator equations which predict the angular momentum-angle uncertainty relation arederived. The quantum operator description of two quantum pendulums coupled by a spring is also derived.
Light-Front Holography and Non-Perturbative QCD
Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.
2009-12-09
The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n + L + S = 2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.
Position-dependent mass quantum Hamiltonians: general approach and duality
Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.
2016-03-01
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.
Basis Light-Front Quantization: Recent Progress and Future Prospects
Vary, James P.; Adhikari, Lekha; Chen, Guangyao; Li, Yang; Maris, Pieter; Zhao, Xingbo
2016-08-01
Light-front Hamiltonian field theory has advanced to the stage of becoming a viable non-perturbative method for solving forefront problems in strong interaction physics. Physics drivers include hadron mass spectroscopy, generalized parton distribution functions, spin structures of the hadrons, inelastic structure functions, hadronization, particle production by strong external time-dependent fields in relativistic heavy ion collisions, and many more. We review selected recent results and future prospects with basis light-front quantization that include fermion-antifermion bound states in QCD, fermion motion in a strong time-dependent external field and a novel non-perturbative renormalization scheme.
Light Front Fermion Model Propagation
Jorge Henrique Sales; Alfredo Takashi Suzuki
2013-01-01
In this work we consider the propagation of two fermion fields interacting with each other by the exchange of intermediate scalar bosons in the light front.We obtain the corrections up to fourth order in the coupling constant using hierarchical equations in order to obtain the bound state equation (Bethe-Salpeter equation).
Superfield Hamiltonian quantization in terms of quantum antibrackets
Batalin, Igor A.; Lavrov, Peter M.
2016-04-01
We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.
Superfield Hamiltonian quantization in terms of quantum antibrackets
Batalin, Igor A
2016-01-01
We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.
Indirect quantum tomography of quadratic Hamiltonians
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
An effective Hamiltonian approach to quantum random walk
Sarkar, Debajyoti; Paul, Niladri; Bhattacharya, Kaushik; Ghosh, Tarun Kanti
2017-03-01
In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltonians are generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, Sci. Rep. 3, 2829 (18)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.
Light-Front Dynamics and the 3He Spectral Function
Pace, Emanuele; Kaptari, Leonid; Rinaldi, Matteo; Salme', Giovanni; Scopetta, Sergio
2016-01-01
Two topics are presented. The first one is a novel approach for a Poincare' covariant description of nuclear dynamics based on light-front Hamiltonian dynamics. The key quantity is the light-front spectral function, where both normalization and momentum sum rule can be satisfied at the same time. Preliminary results are discussed for an initial analysis of the role of relativity in the EMC effect in 3He. A second issue, very challenging, is considered in a non-relativistic framework, namely a distorted spin-dependent spectral function for 3He in order to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off polarized 3He. The generalization of the analysis within the light-front dynamics is outlined.
Sector-dependent versus standard renormalization of Pauli-Villars-regulated light-front QED
Chabysheva, S S
2009-01-01
We consider quantum electrodynamics quantized on the light front in Feynman gauge and regulated in the ultraviolet by the inclusion of massive, negative-metric Pauli--Villars (PV) particles in the Lagrangian. The eigenstate of the electron is approximated by a Fock-state expansion truncated to include one photon. The Fock-state wave functions are computed from the fundamental Hamiltonian eigenvalue problem and used to calculate the anomalous magnetic moment. Two methods of renormalization are considered: a sector-dependent renormalization, where the bare parameters of the Lagrangian are allowed to depend on the Fock sectors between which the particular Hamiltonian term acts, and a standard renormalization, where the bare parameters are the same for all sectors. Both methods are shown to require some care with respect to ultraviolet divergences; neither method can allow all PV masses to be taken to infinity. In addition, the sector-dependent approach suffers from an infrared divergence that requires a nonzero ...
Quantum control by means of hamiltonian structure manipulation.
Donovan, A; Beltrani, V; Rabitz, H
2011-04-28
A traditional quantum optimal control experiment begins with a specific physical system and seeks an optimal time-dependent field to steer the evolution towards a target observable value. In a more general framework, the Hamiltonian structure may also be manipulated when the material or molecular 'stockroom' is accessible as a part of the controls. The current work takes a step in this direction by considering the converse of the normal perspective to now start with a specific fixed field and employ the system's time-independent Hamiltonian structure as the control to identify an optimal form. The Hamiltonian structure control variables are taken as the system energies and transition dipole matrix elements. An analysis is presented of the Hamiltonian structure control landscape, defined by the observable as a function of the Hamiltonian structure. A proof of system controllability is provided, showing the existence of a Hamiltonian structure that yields an arbitrary unitary transformation when working with virtually any field. The landscape analysis shows that there are no suboptimal traps (i.e., local extrema) for controllable quantum systems when unconstrained structural controls are utilized to optimize a state-to-state transition probability. This analysis is corroborated by numerical simulations on model multilevel systems. The search effort to reach the top of the Hamiltonian structure landscape is found to be nearly invariant to system dimension. A control mechanism analysis is performed, showing a wide variety of behavior for different systems at the top of the Hamiltonian structure landscape. It is also shown that reducing the number of available Hamiltonian structure controls, thus constraining the system, does not always prevent reaching the landscape top. The results from this work lay a foundation for considering the laboratory implementation of optimal Hamiltonian structure manipulation for seeking the best control performance, especially with limited
Diagonal representation for a generic matrix valued quantum Hamiltonian
Gosselin, Pierre [Universite Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF UFR de Mathematiques, BP74, Saint Martin d' Heres Cedex (France); Mohrbach, Herve [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, ICPMB-FR CNRS 2843, Metz Cedex 3 (France)
2009-12-15
A general method to derive the diagonal representation for a generic matrix valued quantum Hamiltonian is proposed. In this approach new mathematical objects like non-commuting operators evolving with the Planck constant promoted as a running variable are introduced. This method leads to a formal compact expression for the diagonal Hamiltonian which can be expanded in a power series of the Planck constant. In particular, we provide an explicit expression for the diagonal representation of a generic Hamiltonian to the second order in the Planck constant. This result is applied, as a physical illustration, to Dirac electrons and neutrinos in external fields. (orig.)
An effective Hamiltonian approach to quantum random walk
DEBAJYOTI SARKAR; NILADRI PAUL; KAUSHIK BHATTACHARYA; TARUN KANTI GHOSH
2017-03-01
In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltoniansare generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, $\\it{Sci. Rep}$. 3, 2829 (2013)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.
Basis Optimization Renormalization Group for Quantum Hamiltonian
Sugihara, Takanori
2001-01-01
We find an algorithm of numerical renormalization group for spin chain models. The essence of this algorithm is orthogonal transformation of basis states, which is useful for reducing the number of relevant basis states to create effective Hamiltonian. We define two types of rotations and combine them to create appropriate orthogonal transformation.
On the modification of Hamiltonians' spectrum in gravitational quantum mechanics
Pedram, Pouria
2010-01-01
Different candidates of Quantum Gravity such as String Theory, Doubly Special Relativity, Loop Quantum Gravity and black hole physics all predict the existence of a minimum observable length or a maximum observable momentum which modifies the Heisenberg uncertainty principle. This modified version is usually called the Generalized (Gravitational) Uncertainty Principle (GUP) and changes all Hamiltonians in quantum mechanics. In this Letter, we use a recently proposed GUP which is consistent with String Theory, Doubly Special Relativity and black hole physics and predicts both a minimum measurable length and a maximum measurable momentum. This form of GUP results in two additional terms in any quantum mechanical Hamiltonian, proportional to $\\alpha p^3$ and $\\alpha^2 p^4$, respectively, where $\\alpha \\sim 1/M_{Pl}c$ is the GUP parameter. By considering both terms as perturbations, we study two quantum mechanical systems in the framework of the proposed GUP: a particle in a box and a simple harmonic oscillator. ...
Light-front variational approach to scalar field theories
Bartnik, E.A.; Gl-dash-barazek, S.
1989-02-15
We present a variational method of estimating the ground-state energy for quantum field theories on the light front in an arbitrary number of dimensions. For scalar fields, variational parameters are the constant background field and the boson mass. In this case our method is equivalent to the standard equal-time approach.
Bose-Hubbard Hamiltonian: Quantum chaos approach
Kolovsky, Andrey R.
2016-03-01
We discuss applications of the theory of quantum chaos to one of the paradigm models of many-body quantum physics — the Bose-Hubbard (BH) model, which describes, in particular, interacting ultracold Bose atoms in an optical lattice. After preliminary, pure quantum analysis of the system we introduce the classical counterpart of the BH model and the governing semiclassical equations of motion. We analyze these equations for the problem of Bloch oscillations (BOs) of cold atoms where a number of experimental results are available. The paper is written for nonexperts and can be viewed as an introduction to the field.
Average quantum dynamics of closed systems over stochastic Hamiltonians
Yu, Li
2011-01-01
We develop a master equation formalism to describe the evolution of the average density matrix of a closed quantum system driven by a stochastic Hamiltonian. The average over random processes generally results in decoherence effects in closed system dynamics, in addition to the usual unitary evolution. We then show that, for an important class of problems in which the Hamiltonian is proportional to a Gaussian random process, the 2nd-order master equation yields exact dynamics. The general formalism is applied to study the examples of a two-level system, two atoms in a stochastic magnetic field and the heating of a trapped ion.
SPECTRAL CALCULATIONS OF HAMILTONIAN FOR A QUANTUM FRACTAL NETWORK
无
2000-01-01
A general formulation for the spectral calculations of the Hamiltonian operator of a Quantum Fractal Network(QFN) is presented. The QFN can be constructed by placing artificial neurons on each site of the fractal lattice. An artificial neuron may consist of a cell of a quantum cellular automaton or a quantum dot, which confines a single electron. The Coulomb interaction or the spin-spin interaction between neurons can be used to transmit signals and perform logic operations.The recursive formulas of the eigenvalues and eigenvectors between sub-lattices are obtained explicitly. As the application of the formulations,the eigenvalues and eigenvectors of the Hamiltonian operator for the Sierpinski gasket are calculated.
Hamiltonian identification through enhanced observability utilizing quantum control
Leghtas, Zaki; Rabitz, Herschel; Rouchon, Pierre
2011-01-01
This paper considers Hamiltonian identification for a controllable quantum system with non-degenerate transitions and a known initial state. We assume to have at our disposal a single scalar control input and the population measure of only one state at an (arbitrarily large) final time T. We prove that the quantum dipole moment matrix is locally observable in the following sense: for any two close but distinct dipole moment matrices, we construct discriminating controls giving two different measurements. Such discriminating controls are constructed to have three well defined temporal components, as inspired by Ramsey interferometry. This result suggests that what may appear at first to be very restrictive measurements are actually rich for identification, when combined with well designed discriminating controls, to uniquely identify the complete dipole moment of such systems. The assessment supports the employment of quantum control as a promising means to achieve high quality identification of a Hamiltonian.
On quark-antiquark approximation in light front QCD with zero gluon modes
Zubov, Roman; Prokhvatilov, Evgeni [Saint Petersburg State University, Saint Petersburg, Russia. e-mail: roman.zubov@hep.phys.spbu.ru, evgeni.prokhvat@pobox.spbu.ru (Russian Federation)
2016-01-22
We consider a transition to the light front Hamiltonian from theories quantized on spacelike planes approaching to the light front. In this approach we preserve the dynamics of zero mode present in the theories near the light front. We make the limit transition differently for zero and nonzero modes. This leads to the appearance of some phenomenological parameter which can be used to describe vacuum effects. Also we use a lattice gauge invariant regularization in transverse coordinate space. As an illustration of our scheme we consider the quark-antiquark bound states problem in 2+1 dimensions. We construct basis states in the light front Fock space and provide detailed computations of the Hamiltonian matrix in this basis. These steps allow us to construct the matrix eigenvalue equation. In conclusion we discuss the nuances of obtained results.
Quantum Hamiltonian daemons: Unitary analogs of combustion engines
Thesing, Eike P.; Gilz, Lukas; Anglin, James R.
2017-07-01
Hamiltonian daemons have recently been defined classically as small, closed Hamiltonian systems which can exhibit secular energy transfer from high-frequency to low-frequency degrees of freedom (steady downconversion), analogous to the steady transfer of energy in a combustion engine from the high terahertz frequencies of molecular excitations to the low kilohertz frequencies of piston motion [L. Gilz, E. P. Thesing, and J. R. Anglin, Phys. Rev. E 94, 042127 (2016), 10.1103/PhysRevE.94.042127]. Classical daemons achieve downconversion within a small, closed system by exploiting nonlinear resonances; the adiabatic theorem permits their operation but imposes nontrivial limitations on their efficiency. Here we investigate a simple example of a quantum mechanical daemon. In the correspondence regime it obeys similar efficiency limits to its classical counterparts, but in the strongly quantum mechanical regime the daemon operates in an entirely different manner. It maintains an engine-like behavior in a distinctly quantum mechanical form: a weight is lifted at a steady average speed through a long sequence of quantum jumps in momentum, at each of which a quantum of fuel is consumed. The quantum daemon can cease downconversion at any time through nonadiabatic Landau-Zener transitions, and continuing operation of the quantum daemon is associated with steadily growing entanglement between fast and slow degrees of freedom.
Centro-symmetric Hamiltonians foster quantum transport
Walschaers, Mattia; Buchleitner, Andreas
2013-01-01
We propose a model for fast and highly efficient quantum transport of excitations, through finite, disordered systems. The presented mechanism is statistically robust against configurational changes which alter the realization of disorder. We finally discuss the potential relevance of our findings for excitation transport in photosynthetic light harvesting complexes.
Optimization of quantum Hamiltonian evolution: From two projection operators to local Hamiltonians
Patel, Apoorva; Priyadarsini, Anjani
Given a quantum Hamiltonian and its evolution time, the corresponding unitary evolution operator can be constructed in many different ways, corresponding to different trajectories between the desired end-points and different series expansions. A choice among these possibilities can then be made to obtain the best computational complexity and control over errors. It is shown how a construction based on Grover's algorithm scales linearly in time and logarithmically in the error bound, and is exponentially superior in error complexity to the scheme based on the straightforward application of the Lie-Trotter formula. The strategy is then extended first to simulation of any Hamiltonian that is a linear combination of two projection operators, and then to any local efficiently computable Hamiltonian. The key feature is to construct an evolution in terms of the largest possible steps instead of taking small time steps. Reflection operations and Chebyshev expansions are used to efficiently control the total error on the overall evolution, without worrying about discretization errors for individual steps. We also use a digital implementation of quantum states that makes linear algebra operations rather simple to perform.
Ohzeki, Masayuki
2017-01-01
Quantum annealing is a generic solver of the optimization problem that uses fictitious quantum fluctuation. Its simulation in classical computing is often performed using the quantum Monte Carlo simulation via the Suzuki–Trotter decomposition. However, the negative sign problem sometimes emerges in the simulation of quantum annealing with an elaborate driver Hamiltonian, since it belongs to a class of non-stoquastic Hamiltonians. In the present study, we propose an alternative way to avoid the negative sign problem involved in a particular class of the non-stoquastic Hamiltonians. To check the validity of the method, we demonstrate our method by applying it to a simple problem that includes the anti-ferromagnetic XX interaction, which is a typical instance of the non-stoquastic Hamiltonians. PMID:28112244
Interest rates in quantum finance: the Wilson expansion and Hamiltonian.
Baaquie, Belal E
2009-10-01
Interest rate instruments form a major component of the capital markets. The Libor market model (LMM) is the finance industry standard interest rate model for both Libor and Euribor, which are the most important interest rates. The quantum finance formulation of the Libor market model is given in this paper and leads to a key generalization: all the Libors, for different future times, are imperfectly correlated. A key difference between a forward interest rate model and the LMM lies in the fact that the LMM is calibrated directly from the observed market interest rates. The short distance Wilson expansion [Phys. Rev. 179, 1499 (1969)] of a Gaussian quantum field is shown to provide the generalization of Ito calculus; in particular, the Wilson expansion of the Gaussian quantum field A(t,x) driving the Libors yields a derivation of the Libor drift term that incorporates imperfect correlations of the different Libors. The logarithm of Libor phi(t,x) is defined and provides an efficient and compact representation of the quantum field theory of the Libor market model. The Lagrangian and Feynman path integrals of the Libor market model of interest rates are obtained, as well as a derivation given by its Hamiltonian. The Hamiltonian formulation of the martingale condition provides an exact solution for the nonlinear drift of the Libor market model. The quantum finance formulation of the LMM is shown to reduce to the industry standard Bruce-Gatarek-Musiela-Jamshidian model when the forward interest rates are taken to be exactly correlated.
Hamiltonian and physical Hilbert space in polymer quantum mechanics
Corichi, A; Zapata, R J A; Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose A.
2006-01-01
In this paper, a version of polymer quantum mechanics, which is inspired by loop quantum gravity, is considered and shown to be equivalent, in a precise sense, to the standard, experimentally tested, Schroedinger quantum mechanics. The kinematical cornerstone of our framework is the so called polymer representation of the Heisenberg-Weyl (H-W) algebra, which is the starting point of the construction. The dynamics is constructed as a continuum limit of effective theories characterized by a scale, and requires a renormalization of the inner product. The result is a physical Hilbert space in which the continuum Hamiltonian can be represented and that is unitarily equivalent to the Schroedinger representation of quantum mechanics. As a concrete implementation of our formalism, the simple harmonic oscillator is fully developed.
Light-front analysis of the Casimir effect
Chabysheva, Sophia S
2013-01-01
The Casimir force between conducting plates at rest in an inertial frame is usually computed in equal-time quantization, the natural choice for the given boundary conditions. We show that the well-known result obtained in this way can also be obtained in light-front quantization. This differs from a light-front analysis where the plates are at "rest" in an infinite momentum frame, rather than an inertial frame; in that case, as shown by Lenz and Steinbacher, the result does not agree with the standard result. As is usually done, the analysis is simplified by working with a scalar field and periodic boundary conditions, in place of the complexity of quantum electrodynamics. The two key ingredients are a careful implementation of the boundary conditions, following the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density. The analysis demonstrates that the physics of the effect is independent of the coordinate choice...
Hadronic Light-Front Wavefunctions and QCD Phenomenology
Brodsky, Stanley J.
2001-02-02
A fundamental goal in QCD is to understand the non-perturbative structure of hadrons at the amplitude level--not just the single-particle flavor, momentum, and helicity distributions of the quark constituents, but also the multi-quark, gluonic, and hidden-color correlations intrinsic to hadronic and nuclear wavefunctions. A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wavefunctions is discussed. A new type of jet production reaction, ''self-resolving diffractive interactions'' can provide direct information on the light-front wavefunctions of hadrons in terms of their quark and gluon degrees of freedom as well as the composition of nuclei in terms of their nucleon and mesonic degrees of freedom.
Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states.
Bonet-Luz, Esther; Tronci, Cesare
2016-05-01
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest's theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature.
Supersymmetric Descendants of Self-Adjointly Extended Quantum Mechanical Hamiltonians
Al-Hashimi, M H; Shalaby, A; Wiese, U -J
2013-01-01
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
Electromagnetic form factors for spin-1 particles with the light-front
Mello, Clayton S. [Laboratório de Física Teórica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, São Paulo (Brazil); Departamento de Física, Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, São Paulo (Brazil); Nunes da Silva, Anacé; Melo, J.P.B.C. de [Laboratório de Física Teórica e Computacional (LFTC), Universidade Cruzeiro do Sul, 01506-000, São Paulo (Brazil); Frederico, T. [Departamento de Física, Instituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, São Paulo (Brazil)
2014-06-15
This work is dedicate to investigate the spin-1 electromagnetic form factors with the light-front quantum field theory approach. All prescriptions with the light-front approach are contamined by the zero-modes contribuitions to the electromagnetic matrix elements of the electromagnetic current with the plus component of the current; however, the Inna Grach prescriptions it is immune for the zero modes contribuitions. We show numerically the contribution of zero-modes for the electromagnetic current in the case of the vector particles in the light-front quantum field theory. Also the electromagnetic observables, like electromagnetic form factors, radius and the decay constant are presented.
15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics
Passante, Roberto; Trapani, Camillo
2016-01-01
This book presents the Proceedings of the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics, held in Palermo, Italy, from 18 to 23 May 2015. Non-Hermitian operators, and non-Hermitian Hamiltonians in particular, have recently received considerable attention from both the mathematics and physics communities. There has been a growing interest in non-Hermitian Hamiltonians in quantum physics since the discovery that PT-symmetric Hamiltonians can have a real spectrum and thus a physical relevance. The main subjects considered in this book include: PT-symmetry in quantum physics, PT-optics, Spectral singularities and spectral techniques, Indefinite-metric theories, Open quantum systems, Krein space methods, and Biorthogonal systems and applications. The book also provides a summary of recent advances in pseudo-Hermitian Hamiltonians and PT-symmetric Hamiltonians, as well as their applications in quantum physics and in the theory of open quantum systems.
Hamiltonian formulation of generalized quantum dynamics——Quantum mechanical problem
吴宁; 阮图南
1997-01-01
The Hamiltonian formulation of the usual complex quantum mechanics in the theory of generalized quantum dynamics is discussed. After the total trace Lagrangian, total trace Hamiltonian and two kinds of Poisson brackets are introduced, both the equations of motion of some total trace functionals which are expressed by total trace Poisson brackets and the equations of motion of some operators which are expressed by the without-total-trace Poisson brackets are obtained. Then a set of basic equations of motion of the usual complex quantum mechanics are obtained, which are also expressed by the Poisson brackets and total trace Hamiltonian in the generalized quantum dynamics. The set of equations of motion are consistent with the corresponding Heisenberg equations.
Applications of AdS/QCD and Light-Front Holography to Baryon Physics
Brodsky, Stanley J.; /SLAC; de Teramond, Guy F.; /Costa Rica U.
2011-08-22
The correspondence between theories in anti-de Sitter space and field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. These equations, for both mesons and baryons, give a very good representation of the observed hadronic spectrum, including a zero mass pion. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The meson and baryon wavefunctions derived from light-front holography and AdS/QCD also have remarkable phenomenological features, including predictions for the electromagnetic form factors and decay constants. The approach can be systematically improved using light-front Hamiltonian methods. Some novel features of QCD for baryon physics are also discussed.
Ajoy, Ashok; Cappellaro, Paola
2013-05-31
We propose a method for Hamiltonian engineering that requires no local control but only relies on collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information transport between two separated nodes of a large spin network. We engineer a spin chain with optimal couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost perfect quantum information transport at room temperature. The Hamiltonian engineering method can be made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with different topologies and interactions.
Quantum mechanics of non-Hamiltonian and dissipative systems
Tarasov, Vasily
2008-01-01
Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is self-contained and can be used by students without a previous course in modern mathematics and physics. The book describes the modern structure of the theory, and covers the fundamental results of last 15 years. The book has been recommended by Russian Ministry of Education as the textbook for graduate students and has been used for graduate student lectures from 1998 to 2006. Requires no preliminary knowledge of graduate and advanced mathematics Discusses the fundamental results of last 15 years in this theory Suitable for cours
Vladimirov, Igor G
2012-01-01
This paper extends the energy-based version of the stochastic linearization method, known for classical nonlinear systems, to open quantum systems with canonically commuting dynamic variables governed by quantum stochastic differential equations with non-quadratic Hamiltonians. The linearization proceeds by approximating the actual Hamiltonian of the quantum system by a quadratic function of its observables which corresponds to the Hamiltonian of a quantum harmonic oscillator. This approximation is carried out in a mean square optimal sense with respect to a Gaussian reference quantum state and leads to a self-consistent linearization procedure where the mean vector and quantum covariance matrix of the system observables evolve in time according to the effective linear dynamics. We demonstrate the proposed Hamiltonian-based Gaussian linearization for the quantum Duffing oscillator whose Hamiltonian is a quadro-quartic polynomial of the momentum and position operators. The results of the paper are applicable t...
On the quantum mechanics of bicomplex Hamiltonian system
Banerjee, Abhijit
2017-02-01
We investigate the Schrödinger equation in the framework of bicomplex numbers, which are pairs of complex numbers making up a commutative ring with zero-divisors. We propose an analytical method to solve bicomplex-version of Schrödinger equation corresponding to the systems of Hamiltonians of both hermitian (self-adjoint) and non-hermitian PT symmetric type. In our approach we extend the existing mathematical formulation of quantum system searching for the exact or quasi-exact solution for ground state energy eigenvalues and associated wave functions acting in bicomplex Hilbert space. The model concerning hermitian Hamiltonians is then applied to the problems of two bicomplex valued polynomial oscillators one involving x2 and another of isotonic type. The ground states and associated energy values for both the oscillators are found to be hyperbolic in nature. The model in connection to the unbroken PT symmetric Hamiltonians is then applied to illustrate the problems of complex and bicomplex valued shifted oscillators.
Frédéric Pierret
2016-01-01
Full Text Available We derive the Helmholtz theorem for nondifferentiable Hamiltonian systems in the framework of Cresson’s quantum calculus. Precisely, we give a theorem characterizing nondifferentiable equations, admitting a Hamiltonian formulation. Moreover, in the affirmative case, we give the associated Hamiltonian.
Barth, A. M.; Vagov, A.; Axt, V. M.
2016-09-01
We present a numerical path-integral iteration scheme for the low-dimensional reduced density matrix of a time-dependent quantum dissipative system. Our approach simultaneously accounts for the combined action of a microscopically modeled pure-dephasing-type coupling to a continuum of harmonic oscillators representing, e.g., phonons, and further environmental interactions inducing non-Hamiltonian dynamics in the inner system represented, e.g., by Lindblad-type dissipation or relaxation. Our formulation of the path-integral method allows for a numerically exact treatment of the coupling to the oscillator modes and moreover is general enough to provide a natural way to include Markovian processes that are sufficiently described by rate equations. We apply this new formalism to a model of a single semiconductor quantum dot which includes the coupling to longitudinal acoustic phonons for two cases: (a) external laser excitation taking into account a phenomenological radiative decay of the excited dot state and (b) a coupling of the quantum dot to a single mode of an optical cavity taking into account cavity photon losses.
Hamiltonian formulations of Yang-Mills quantum theory and the Gribov problem
Heinzl, T
1996-01-01
We review the status of quantising (non-abelian) gauge theories using different versions of a Hamiltonian formulation corresponding to Dirac's instant and front form of dynamics, respectively. In order to control infrared divergences we work in a finite spatial volume, chosing a torus geometry for convenience. We focus on the determination of the physical configuration space of gauge invariant variables via gauge fixing. This naturally leads us to the issue of the Gribov problem. We discuss it for different gauge choices, in particular finite volume modifications of the axial gauge. Conventional and light-front quantisation are compared and the differences pointed out.
Gapless modes of fractional quantum Hall edges: a Hamiltonian study
Nguyen, Hoang; Joglekar, Yogesh; Murthy, Ganpathy
2004-03-01
We study the collective modes of the fractional quantum Hall edge states using the Hamiltonian formalism [1]. In this theory, the composite fermions are fully interacting; the collective modes are obtained within a conserving approximation which respects the constraints [2]. We present the gapless edge-mode dispersions at 1/3 and 2/5 filling fractions of unreconstructed and reconstructed edges. The dispersions are found to be nonlinear due to the variation of the effective magnetic field on the composite fermions. The implications of our study to the tunneling experiments into the edge of a fractional quantum Hall system [3] are discussed*. 1. R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997). 2. G. Murthy, Phys. Rev. B 64, 195310 (2001). 3. A.M.Chang et. al., Phys. Rev. Lett. 86, 143 (2000). * Work supported by the NSF, Grant number DMR 031176.
Revisiting the equivalence of light-front and covariant QED in the light-cone gauge
Mantovani, Luca; Pasquini, Barbara; Xiong, Xiaonu; Bacchetta, Alessandro
2016-12-01
We discuss the equivalence between light-front time-ordered-perturbation theory and covariant quantum field theory in light-front quantization, in the case of quantum electrodynamics at one-loop level. In particular, we review the one-loop calculation of the vertex correction, fermion self-energy and vacuum polarization. We apply the procedure of integration by residue over the light-front energy in the loop to show how the perturbative expansion in covariant terms can be reduced to a sum of propagating and instantaneous diagrams of light-front time-ordered perturbation theory. The detailed proof of equivalence between the two formulations of the theory resolves the controversial question on which form should be used for the gauge-field propagator in the light-cone gauge in the covariant approach.
Revisiting the equivalence of light-front and covariant QED in the light-cone gauge
Mantovani, Luca; Xiong, Xiaonu; Bacchetta, Alessandro
2016-01-01
We discuss the equivalence between light-front time-ordered-perturbation theory and covariant quantum ?eld theory in light-front quantization, in the case of quantum electrodynamics at one-loop level. In particular, we review the one-loop calculation of the vertex correction, fermion self-energy and vacuum polarization. We apply the procedure of integration by residue over the light-front energy in the loop to show how the perturbative expansion in covariant terms can be reduced to a sum of propagating and instantaneous diagrams of light-front time-ordered perturbation theory. The detailed proof of equivalence between the two formulations of the theory resolves the controversial question on which form should be used for the gauge-?eld propagator in the light-cone gauge in the covariant approach.
Del Dotto, Alessio; Salmè, Giovanni; Scopetta, Sergio
2016-01-01
Poincare' covariant definitions for the spin-dependent spectral function and for the momentum distributions within the light-front Hamiltonian dynamics are proposed for a three-fermion bound system, starting from the light-front wave function of the system. The adopted approach is based on the Bakamjian-Thomas construction of the Poincare' generators, that allows one to easily import the familiar and wide knowledge on the nuclear interaction into a light-front framework. The proposed formalism can find useful applications in refined nuclear calculations, like the ones needed for evaluating the EMC effect or the semi-inclusive deep inelastic cross sections with polarized nuclear targets, since remarkably the light-front unpolarized momentum distribution by definition fulfills both normalization and momentum sum rules. It is also shown a straightforward generalization of the definition of the light-front spectral function to an A-nucleon system.
Light-Front Quantization Approach to the Gauge Gravity Correspondence and Hadron Spectroscopy
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC
2010-05-26
We find a correspondence between semiclassical QCD quantized on the light-front and a dual gravity model in anti-de Sitter (AdS) space, thus providing an initial approximation to QCD in its strongly coupled regime. This correspondence - light-front holography - leads to a light-front Hamiltonian and relativistic bound-state wave equations that are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within hadrons at equal lightfront time. The eigenvalues of the resulting light-front Schrodinger and Dirac equations are consistent with the observed light meson and baryon spectrum, and the eigenmodes provide the light-front wavefunctions, the probability amplitudes describing the dynamics of the hadronic constituents. The light-front equations of motion, which are dual to an effective classical gravity theory, possess remarkable algebraic and integrability properties which are dictated by the underlying conformal properties of the theory. We extend the algebraic construction to include a confining potential while preserving the integrability of the mesonic and baryonic bound-state equations.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Al-Hashimi, M.H., E-mail: hashimi@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Salman, M., E-mail: msalman@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Shalaby, A., E-mail: amshalab@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Physics Department, Faculty of Science, Mansoura University (Egypt); Wiese, U.-J., E-mail: wiese@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA (United States)
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
The mathematics of a quantum Hamiltonian computing half adder Boolean logic gate.
Dridi, G; Julien, R; Hliwa, M; Joachim, C
2015-08-28
The mathematics behind the quantum Hamiltonian computing (QHC) approach of designing Boolean logic gates with a quantum system are given. Using the quantum eigenvalue repulsion effect, the QHC AND, NAND, OR, NOR, XOR, and NXOR Hamiltonian Boolean matrices are constructed. This is applied to the construction of a QHC half adder Hamiltonian matrix requiring only six quantum states to fullfil a half Boolean logical truth table. The QHC design rules open a nano-architectronic way of constructing Boolean logic gates inside a single molecule or atom by atom at the surface of a passivated semi-conductor.
Matrix elements of Lorentzian Hamiltonian constraint in loop quantum gravity
Alesci, Emanuele; Liegener, Klaus; Zipfel, Antonia
2013-10-01
The Hamiltonian constraint is the key element of the canonical formulation of loop quantum gravity (LQG) coding its dynamics. In Ashtekar-Barbero variables it naturally splits into the so-called Euclidean and Lorentzian parts. However, due to the high complexity of this operator, only the matrix elements of the Euclidean part have been considered so far. Here we evaluate the action of the full constraint, including the Lorentzian part. The computation requires heavy use of SU(2) recoupling theory and several tricky identities among n-j symbols are used to find the final result: these identities, together with the graphical calculus used to derive them, also simplify the Euclidean constraint and are of general interest in LQG computations.
Simulating Hamiltonians in Quantum Networks Efficient Schemes and Complexity Bounds
Wocjan, P; Janzing, D; Beth, T; Wocjan, Pawel; Roetteler, Martin; Janzing, Dominik; Beth, Thomas
2001-01-01
We address the problem of simulating pair-interaction Hamiltonians in n node quantum networks where the subsystems have arbitrary, possibly different, dimensions. We show that any pair-interaction can be used to simulate any other by applying sequences of appropriate local control sequences. Efficient schemes for decoupling and time reversal can be constructed from orthogonal arrays. Conditions on time optimal simulation are formulated in terms of spectral majorization of matrices characterizing the coupling parameters. Moreover, we consider a specific system of n harmonic oscillators with bilinear interaction. In this case, decoupling can efficiently be achieved using the combinatorial concept of difference schemes. For this type of interactions we present optimal schemes for inversion.
AdS/QCD and Light Front Holography: A New Approximation to QCD
Brodsky, Stanley J.; de Teramond, Guy
2010-02-15
The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M{sup 2} = 4{kappa}{sup 2}(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable {zeta}. The space-like pion form factor is also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time {tau}. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.
Harmonic bath averaged Hamiltonian: an efficient tool to capture quantum effects of large systems.
Yang, Yonggang; Liu, Xiaomeng; Meuwly, Markus; Xiao, Liantuan; Jia, Suotang
2012-11-26
Starting from a reaction path Hamiltonian, a suitably reduced harmonic bath averaged Hamiltonian is derived by averaging over all the normal mode coordinates. Generalization of the harmonic bath averaged Hamiltonian to any dimensions are performed and the feasibility to use a linear reaction path/surface are investigated and discussed. By use of a harmonic bath averaged Hamiltonian, the tunneling splitting and proton transfer dynamics of malonaldehyde is briefly discussed and shows that the harmonic bath averaged Hamiltonian is an efficient tool to capture quantum effects in larger systems.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.
New Results in Light-Front Phenomenology
Brodsky, S J
2004-01-01
The light-front quantization of gauge theories such as QCD in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a trivial vacuum. The freedom to choose the light-like quantization four-vector provides an explicitly covariant formulation of light-front quantization and can be used to determine the analytic structure of light-front wave functions and to define a kinematical definition of angular momentum. The AdS/CFT correspondence of large $N_C$ supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes. String/gauge duality also predicts the QCD power-law behavior of light-front Fock-state hadronic wavefunctions with arbitrary orbital angular momentum at high momentum transfer. The...
A Class of Asymmetric Gapped Hamiltonians on Quantum Spin Chains and its Characterization II
Ogata, Yoshiko
2016-12-01
We give a characterization of the class of gapped Hamiltonians introduced in Part I (Ogata, A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015). The Hamiltonians in this class are given as MPS (Matrix product state) Hamiltonians. In Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), we list up properties of ground state structures of Hamiltonians in this class. In this Part II, we show the converse. Namely, if a (not necessarily MPS) Hamiltonian H satisfies five of the listed properties, there is a Hamiltonian H' from the class by Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), satisfying the following: The ground state spaces of the two Hamiltonians on the infinite interval coincide. The spectral projections onto the ground state space of H on each finite intervals are approximated by that of H' exponentially well, with respect to the interval size. The latter property has an application to the classification problem with open boundary conditions.
A Class of Asymmetric Gapped Hamiltonians on Quantum Spin Chains and its Characterization II
Ogata, Yoshiko
2016-06-01
We give a characterization of the class of gapped Hamiltonians introduced in Part I (Ogata, A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015). The Hamiltonians in this class are given as MPS (Matrix product state) Hamiltonians. In Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), we list up properties of ground state structures of Hamiltonians in this class. In this Part II, we show the converse. Namely, if a (not necessarily MPS) Hamiltonian H satisfies five of the listed properties, there is a Hamiltonian H' from the class by Ogata (A class of asymmetric gapped Hamiltonians on quantum spin chains and its classification I, 2015), satisfying the following: The ground state spaces of the two Hamiltonians on the infinite interval coincide. The spectral projections onto the ground state space of H on each finite intervals are approximated by that of H' exponentially well, with respect to the interval size. The latter property has an application to the classification problem with open boundary conditions.
Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
Pang, Shengshi; Jordan, Andrew N.
2017-01-01
Quantum metrology has been studied for a wide range of systems with time-independent Hamiltonians. For systems with time-dependent Hamiltonians, however, due to the complexity of dynamics, little has been known about quantum metrology. Here we investigate quantum metrology with time-dependent Hamiltonians to bridge this gap. We obtain the optimal quantum Fisher information for parameters in time-dependent Hamiltonians, and show proper Hamiltonian control is generally necessary to optimize the Fisher information. We derive the optimal Hamiltonian control, which is generally adaptive, and the measurement scheme to attain the optimal Fisher information. In a minimal example of a qubit in a rotating magnetic field, we find a surprising result that the fundamental limit of T2 time scaling of quantum Fisher information can be broken with time-dependent Hamiltonians, which reaches T4 in estimating the rotation frequency of the field. We conclude by considering level crossings in the derivatives of the Hamiltonians, and point out additional control is necessary for that case. PMID:28276428
First order gravity on the light front
Alexandrov, Sergei
2014-01-01
We study the canonical structure of the real first order formulation of general relativity on a null foliation. We use a tetrad decomposition which allows to elegantly encode the nature of the foliation in the norm of a vector in the fibre bundle. The resulting constraint structure shows some peculiarities. In particular, the dynamical Einstein equations propagating the physical degrees of freedom appear in this formalism as second class tertiary constraints, which puts them on the same footing as the Hamiltonian constraint of the Ashtekar's connection formulation. We also provide a framework to address the issue of zero modes in gravity, in particular, to study the non-perturbative fate of the zero modes of the linearized theory. Our results give a new angle on the dynamics of general relativity and can be used to quantize null hypersurfaces in the formalism of loop quantum gravity or spin foams.
Meson/Baryon/Tetraquark Supersymmetry from Superconformal Algebra and Light-Front Holography
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter Lorcé, Cédric
Superconformal algebra leads to remarkable connections between the masses of mesons and baryons of the same parity - supersymmetric relations between the bosonic and fermionic bound states of QCD. Supercharges connect the mesonic eigenstates to their baryonic superpartners, where the mesons have internal angular momentum one unit higher than the baryons: LM = LB + 1. The dynamics of the superpartner hadrons also match; for example, the power-law fall-off of the form factors are the same for the mesonic and baryonic superpartners, in agreement with twist counting rules. An effective supersymmetric light-front Hamiltonian for hadrons composed of light quarks can be constructed by embedding superconformal quantum mechanics into AdS space. This procedure also generates a spin-spin interaction between the hadronic constituents. A specific breaking of conformal symmetry inside the graded algebra determines a unique quark-confining light-front potential for light hadrons in agreement with the soft-wall AdS/QCD approach and light-front holography. Only one mass parameter ? appears; it sets the confinement mass scale, a universal value for the slope of all Regge trajectories, the nonzero mass of the proton and other hadrons in the chiral limit, as well as the length scale which underlies their structure. The mass for the pion eigenstate vanishes in the chiral limit. When one includes the constituent quark masses using the Feynman-Hellman theorem, the predictions are consistent with the empirical features of the light-quark hadronic spectra. Our analysis can be consistently applied to the excitation spectra of the π, ρ, K, K* and ø meson families as well as to the N, Δ, Λ, Σ, Σ*, Ξ and Ξ* baryons. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass-squared of the light hadrons can be expressed in a universal and frame-independent decomposition of contributions from the constituent kinetic
Chen, Guangyao; Maris, Pieter; Tuchin, Kirill; Vary, James P
2016-01-01
Using the charmonium light-front wavefunctions obtained by diagonalizing an effective Hamiltonian with the one-gluon exchange interaction and a confining potential inspired by light-front holography in the basis light-front quantization formalism, we compute production of charmonium states in diffractive deep inelastic scattering and ultra-peripheral heavy ion collisions within the dipole picture. Our method allows us to predict yields of all excited charmonium and bottomonium states below the open flavor thresholds in high-energy deep inelastic scattering, proton-nucleus and ultra-peripheral heavy ion collisions. The obtained charmonium cross section is in reasonable agreement with experimental data at HERA, RHIC and LHC. We observe that the cross-section ratio $\\sigma_{\\Psi(2s)}/\\sigma_{J/\\Psi}$ reveals significant independence of model parameters.
Multi-Hamiltonian structure of Lotka-Volterra and quantum Volterra models
Cronstroem, C. [Nordisk Inst. for Teoretisk Fysik (NORDITA), Copenhagen (Denmark); Noga, M. [Department of Theoretical Physics, Comenius University, Mlynska Dolina, Bratislava (Slovakia)
1995-07-10
We consider evolution equations of the Lotka-Volterra type, and elucidate especially their formulation as canonical Hamiltonian systems. The general conditions under which these equations admit several conserved quantities (multi-Hamiltonians) are analysed. A special case, which is related to the Liouville model on a lattice, is considered in detail, both as a classical and as a quantum system. (orig.).
The Heisenberg Matrix Formulation of Quantum Field Theory
Brodsky, S J
2002-01-01
Heisenberg's matrix formulation of quantum mechanics can be generalized to relativistic systems by evolving in light-front time tau = t+z/c. The spectrum and wavefunctions of bound states, such as hadrons in quantum chromodynamics, can be obtained from matrix diagonalization of the light-front Hamiltonian on a finite dimensional light-front Fock basis defined using periodic boundary conditions in the light-front space coordinates. This method, discretized light-cone quantization (DLCQ), preserves the frame-independence of the front form even at finite resolution and particle number. Light-front quantization can also be used in the Hamiltonian form to construct an event generator for high energy physics reactions at the amplitude level. The light-front partition function, summed over exponentially-weighted light-front energies, has simple boost properties which may be useful for studies in heavy ion collisions. I also review recent work which shows that the structure functions measured in deep inelastic lepton...
Gauge/Gravity Duality and Strongly Coupled Light-Front Dynamics
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
We find a correspondence between semiclassical gauge theories quantized on the light-front and a dual gravity model in anti-de Sitter (AdS) space, thus providing an initial approximation to QCD in its strongly coupled regime. This correspondence - light-front holography - leads to a light-front Hamiltonian and relativistic bound-state wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. Light-front holography also allows a precise mapping of transition amplitudes from AdS to physical space-time. In contrast with the usual AdS/QCD framework, the internal structure of hadrons is explicitly introduced in the gauge/gravity correspondence and the angular momentum of the constituents plays a key role. We also discuss how to introduce higher Fock-states in the correspondence as well as their relevance for describing the detailed structure of space and time-like form factors.
Bosonic Operator Realization of Hamiltonian for a Superconducting Quantum Interference Device
FAN Hong-Yi
2004-01-01
Based on the appropriate bosonic phase operator diagonalized in the entangled state representation we construct the Hamiltonian operator model for a superconducting quantum interference device. The current operator and voltage operator equations are derived.
Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation.
Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter
2013-08-14
The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.
Quantum search on the two-dimensional lattice using the staggered model with Hamiltonians
Portugal, R.; Fernandes, T. D.
2017-04-01
Quantum search on the two-dimensional lattice with one marked vertex and cyclic boundary conditions is an important problem in the context of quantum algorithms with an interesting unfolding. It avails to test the ability of quantum walk models to provide efficient algorithms from the theoretical side and means to implement quantum walks in laboratories from the practical side. In this paper, we rigorously prove that the recent-proposed staggered quantum walk model provides an efficient quantum search on the two-dimensional lattice, if the reflection operators associated with the graph tessellations are used as Hamiltonians, which is an important theoretical result for validating the staggered model with Hamiltonians. Numerical results show that on the two-dimensional lattice staggered models without Hamiltonians are not as efficient as the one described in this paper and are, in fact, as slow as classical random-walk-based algorithms.
Quantum System Identification by Bayesian Analysis of Noisy Data: Beyond Hamiltonian Tomography
Schirmer, S G
2009-01-01
We consider how to characterize the dynamics of a quantum system from a restricted set of initial states and measurements using Bayesian analysis. Previous work has shown that Hamiltonian systems can be well estimated from analysis of noisy data. Here we show how to generalize this approach to systems with moderate dephasing in the eigenbasis of the Hamiltonian. We illustrate the process for a range of three-level quantum systems. The results suggest that the Bayesian estimation of the frequencies and dephasing rates is generally highly accurate and the main source of errors are errors in the reconstructed Hamiltonian basis.
The Global versus Local Hamiltonian Description of Quantum Input-Output Theory
Gough, John
2015-06-01
The aim of this paper is to derive the global Hamiltonian form for a quantum system and bath, or more generally a quantum network with multiple quantum input field connections, based on the local descriptions. We give a new simple argument which shows that the global Hamiltonian for a single Markov component arises as the singular perturbation of the free translation operator. We show that the Fermi analogue takes an equivalent form provided the parity of the coefficients is correctly specified. This allows us to immediately extend the theory of quantum feedback networks to Fermi systems.
A family of affine quantum group invariant integrable extensions of the Hubbard Hamiltonian
Avakyan, A. [Erevanskij Fizicheskij Inst., Erevan (Armenia); Hakobyan, T. [Erevanskij Fizicheskij Inst., Erevan (Armenia); Sedrakyan, A. [Erevanskij Fizicheskij Inst., Erevan (Armenia)
1997-04-21
We construct a family of spin chain Hamiltonians, which have the affine quantum group symmetry U{sub q}g. Their eigenvalues coincide with the eigenvalues of the usual spin chain Hamiltonians, but have the degeneracy of levels, corresponding to the affine U{sub q}g. The space of states of these spin chains is formed by the tensor product of the fully reducible representations of the quantum group. The fermionic representations of the constructed spin chain Hamiltonians show that we have obtained new extensions of the Hubbard Hamiltonians. All of them are integrable and have the affine quantum group symmetry. The exact ground state of such type of model is presented, exhibiting superconducting behavior via the {eta}-pairing mechanism. (orig.).
A New Class of non-Hermitian Quantum Hamiltonians with PT Symmetry
Jones-Smith, Katherine
2009-01-01
In a remarkable development Bender and coworkers have shown that it is possible to formulate quantum mechanics consistently even if the Hamiltonian and other observables are not Hermitian. Their formulation, dubbed PT quantum mechanics, replaces hermiticity by another set of requirements, notably that the Hamiltonian should be invariant under the discrete symmetry PT, where P denotes parity and T denotes time reversal. All prior work has focused on the case that time reversal is even (T^2 = 1). We generalize the formalism to the case of odd time reversal (T^2 = -1). We discover an analogue of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism. Odd time reversal symmetry applies to fermionic systems including quarks and leptons and a plethora of models in nuclear, atomic and condensed matter physics. PT quantum mechanics makes it possible to enlarge the set of possible Hamiltonians that phy...
Exclusive Rare B ( s, c) Decays in Light-Front Quark Model
Choi, Ho-Meoyng
2013-03-01
We investigate the exclusive rare {B_sto (K,η^{(')})(ν_{ell}bar{ν_{ell}}, ell^+ell^-)} and {B_cto D_{(s)}(ν_{ell}bar{ν_{ell}}, ell^+ell^-)} ( ℓ = e, μ, τ) decays within the standard model and the light-front quark model constrained by the variational principle for the QCD motivated effective Hamiltonian. The branching ratios and the longitudinal lepton polarization asymmetries are calculated and compared with other theoretical model predictions.
Light-Front Perturbation Without Spurious Singularities
Przeszowski, Jerzy A.; Dzimida-Chmielewska, Elżbieta; Żochowski, Jan
2016-07-01
A new form of the light front Feynman propagators is proposed. It contains no energy denominators. Instead the dependence on the longitudinal subinterval x^2_L = 2 x+ x- is explicit and a new formalism for doing the perturbative calculations is invented. These novel propagators are implemented for the one-loop effective potential and various 1-loop 2-point functions for a massive scalar field. The consistency with results for the standard covariant Feynman diagrams is obtained and no spurious singularities are encountered at all. Some remarks on the calculations with fermion and gauge fields in QED and QCD are added.
Ramezanpour, A.
2016-06-01
We study the inverse problem of constructing an appropriate Hamiltonian from a physically reasonable set of orthogonal wave functions for a quantum spin system. Usually, we are given a local Hamiltonian and our goal is to characterize the relevant wave functions and energies (the spectrum) of the system. Here, we take the opposite approach; starting from a reasonable collection of orthogonal wave functions, we try to characterize the associated parent Hamiltonians, to see how the wave functions and the energy values affect the structure of the parent Hamiltonian. Specifically, we obtain (quasi) local Hamiltonians by a complete set of (multilayer) product states and a local mapping of the energy values to the wave functions. On the other hand, a complete set of tree wave functions (having a tree structure) results to nonlocal Hamiltonians and operators which flip simultaneously all the spins in a single branch of the tree graph. We observe that even for a given set of basis states, the energy spectrum can significantly change the nature of interactions in the Hamiltonian. These effects can be exploited in a quantum engineering problem optimizing an objective functional of the Hamiltonian.
Trivial Low Energy States for Commuting Hamiltonians, and the Quantum PCP Conjecture
Hastings, M B
2012-01-01
We consider whether or not Hamiltonians which are sums of commuting projectors have "trivial" ground states which can be constructed by a local quantum circuit of bounded depth and range acting on a product state. While the toric code only has nontrivial ground states, commuting projector Hamiltonians which are sums of two-body interactions have trivial ground states. We define an "interaction complex" for a Hamiltonian, generalizing the interaction graph, and we show that if this complex can be continuously mapped to a 1-complex using a map with bounded diameter of pre-images then the Hamiltonian has a trivial ground state assuming one technical condition on the Hamiltonian (this condition holds for all stabilizer Hamiltonians, and we also prove the result for all Hamiltonians under an assumption on the 1-complex). While this includes cases considered by Ref., it also includes other Hamiltonians whose interaction complexes cannot be coarse-grained into the case of Ref. One motivation for this is the quantum ...
Rotationally Invariant Hamiltonians for Nuclear Spectra Based on Quantum Algebras
Bonatsos, D; Raychev, P P; Terziev, P A; Bonatsos, Dennis
2002-01-01
The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational nuclear spectra is explicitly proved and a connection of this Hamiltonian to the formalisms of Amal'sky and Harris is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITO) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced, and its connection to the Harris formalism is established. Numerical tests in a series of Th isotopes are provided.
Quantum Poincare Section of a Two-Dimensional hamiltonian in a Coherent State Representation
金迎新; 贺凯芬
2002-01-01
We study the quantum behaviour of a quasi-integrable Hamiltonian. The unperturbed Hamiltonian displays degeneracies of energy levels, which become avoided crossings under a nonintegrable perturbation. In this twodimensional system, the quantum Poincaré section plot is constructed in the coherent state representation with the restriction that the centres of the wavepackets are confined at the classical surface of constant energy. It is found that the quantum Poincaré section plot obtained in this way provides an evident counterpart of the classical system.
AdS/QCD and Applications of Light-Front Holography
Stanley J.Brodsky; Guy F.de Téramond; CAO Pu-Guang
2012-01-01
Light-front holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter（AdS） space and frame-independent light-front wavefunctions of hadrons in（3 ＋ 1）-dimensional physical space-time,thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD,a useful framework which describes the correspondence between theories in a modified AdS 5 background and confining field theories in physical space-time.To a first semiclassical approximation,where quantum loops and quark masses are not included,this approach leads to a single-variable light-front Schro¨dinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum.The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of the constituents within a hadron at equal light-front time.The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role.We give an overview of the light-front holographic approach to strongly coupled QCD.In particular,we study the photon-to-meson transition form factors（TFFs） FMγ（Q 2） for γ→ M using light-front holographic methods.The results for the TFFs for the η and η ＇ mesons are also presented.Some novel features of QCD are discussed,including the consequences of confinement for quark and gluon condensates.A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
AdS/QCD and Applications of Light-Front Holography
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.
2012-02-16
Light-Front Holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in 3 + 1 physical space-time, thus providing a compelling physical interpretation of the AdS/CFT correspondence principle and AdS/QCD, a useful framework which describes the correspondence between theories in a modified AdS5 background and confining field theories in physical space-time. To a first semiclassical approximation, where quantum loops and quark masses are not included, this approach leads to a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time. The internal structure of hadrons is explicitly introduced and the angular momentum of the constituents plays a key role. We give an overview of the light-front holographic approach to strongly coupled QCD. In particular, we study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The results for the TFFs for the {eta} and {eta}' mesons are also presented. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. A method for computing the hadronization of quark and gluon jets at the amplitude level is outlined.
Hadron spectroscopy and dynamics from light-front holography and conformal symmetry
de Téramond Guy F.
2014-06-01
Full Text Available To a first semiclassical approximation one can reduce the multi-parton light-front problem in QCD to an effective one-dimensional quantum field theory, which encodes the fundamental conformal symmetry of the classical QCD Lagrangian. This procedure leads to a relativistic light-front wave equation for arbitrary spin which incorporates essential spectroscopic and non-perturbative dynamical features of hadron physics. The mass scale for confinement and higher dimensional holographic mapping to AdS space are also emergent properties of this framework.
Partial dynamical symmetry in quantum Hamiltonians with higher-order terms
García-Ramos, J E; Van Isacker, P
2008-01-01
A generic procedure is proposed to construct many-body quantum Hamiltonians with partial dynamical symmetry. It is based on a tensor decomposition of the Hamiltonian and allows the construction of a hierarchy of interactions that have selected classes of solvable states. The method is illustrated in the SO(6) limit of the interacting boson model of atomic nuclei and applied to the nucleus $^{196}$Pt.
Partial dynamical symmetry in quantum Hamiltonians with higher-order terms.
García-Ramos, J E; Leviatan, A; Van Isacker, P
2009-03-20
A generic procedure is proposed to construct many-body quantum Hamiltonians with partial dynamical symmetry. It is based on a tensor decomposition of the Hamiltonian and allows the construction of a hierarchy of interactions that have selected classes of solvable states. The method is illustrated in the SO(6) limit of the interacting boson model of atomic nuclei and applied to the nucleus 196Pt.
An optimum Hamiltonian for non-Hermitian quantum evolution and the complex Bloch sphere
Nesterov, Alexander I., E-mail: nesterov@cencar.udg.m [Departamento de Fisica, CUCEI, Universidad de Guadalajara, Av. Revolucion 1500, Guadalajara, CP 44420, Jalisco (Mexico)
2009-09-28
For a quantum system governed by a non-Hermitian Hamiltonian, we studied the problem of obtaining an optimum Hamiltonian that generates nonunitary transformations of a given initial state into a certain final state in the smallest time tau. The analysis is based on the relationship between the states of the two-dimensional subspace of the Hilbert space spanned by the initial and final states and the points of the two-dimensional complex Bloch sphere.
Hamiltonian approach to GR. Pt. 2. Covariant theory of quantum gravity
Cremaschini, Claudio [Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics and Research Center for Theoretical Physics and Astrophysics, Opava (Czech Republic); Tessarotto, Massimo [University of Trieste, Department of Mathematics and Geosciences, Trieste (Italy); Faculty of Philosophy and Science, Silesian University in Opava, Institute of Physics, Opava (Czech Republic)
2017-05-15
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of covariant quantum gravity (CQG-theory). The treatment is founded on the recently identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly covariant Hamilton equations and the related Hamilton-Jacobi theory. The quantum Hamiltonian operator and the CQG-wave equation for the corresponding CQG-state and wave function are realized in 4-scalar form. The new quantum wave equation is shown to be equivalent to a set of quantum hydrodynamic equations which warrant the consistency with the classical GR Hamilton-Jacobi equation in the semiclassical limit. A perturbative approximation scheme is developed, which permits the adoption of the harmonic oscillator approximation for the treatment of the Hamiltonian potential. As an application of the theory, the stationary vacuum CQG-wave equation is studied, yielding a stationary equation for the CQG-state in terms of the 4-scalar invariant-energy eigenvalue associated with the corresponding approximate quantum Hamiltonian operator. The conditions for the existence of a discrete invariant-energy spectrum are pointed out. This yields a possible estimate for the graviton mass together with a new interpretation about the quantum origin of the cosmological constant. (orig.)
Quantum simulation of pairing Hamiltonians with nearest-neighbor-interacting qubits
Wang, Zhixin; Gu, Xiu; Wu, Lian-Ao; Liu, Yu-xi
2016-06-01
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement "quantum simulators." Quantum simulators are physical setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulating pairing Hamiltonians. The fidelity of the target states corresponding to each algorithm is numerically studied. We also compare algorithms designed for different types of experimentally available Hamiltonians and analyze their complexity. Furthermore, we design a measurement scheme to extract energy spectra from the simulators. Our simulation algorithms might be feasible with state-of-the-art technology in solid-state quantum devices.
(3+1)-Dimensional Quantum Mechanics from Monte Carlo Hamiltonian: Harmonic Oscillator
LUO Xiang-Qian; XU Hao; YANG Jie-Chao; WANG Yu-Li; CHANG Di; LIN Yin; Helmut Kroger
2001-01-01
In Lagrangian formulation, it is extremely difficult to compute the excited spectrum and wavefunctions ora quantum theory via Monte Carlo methods. Recently, we developed a Monte Carlo Hamiltonian method for investigating this hard problem and tested the algorithm in quantum-mechanical systems in 1+1 and 2t1 dimensions. In this paper we apply it to the study of thelow-energy quantum physics of the (3+1)-dimensional harmonic oscillator.``
Universal adiabatic quantum computation via the space-time circuit-to-Hamiltonian construction.
Gosset, David; Terhal, Barbara M; Vershynina, Anna
2015-04-10
We show how to perform universal adiabatic quantum computation using a Hamiltonian which describes a set of particles with local interactions on a two-dimensional grid. A single parameter in the Hamiltonian is adiabatically changed as a function of time to simulate the quantum circuit. We bound the eigenvalue gap above the unique ground state by mapping our model onto the ferromagnetic XXZ chain with kink boundary conditions; the gap of this spin chain was computed exactly by Koma and Nachtergaele using its q-deformed version of SU(2) symmetry. We also discuss a related time-independent Hamiltonian which was shown by Janzing to be capable of universal computation. We observe that in the limit of large system size, the time evolution is equivalent to the exactly solvable quantum walk on Young's lattice.
Spectra of quantum KdV Hamiltonians, Langlands duality, and affine opers
Frenkel, Edward
2016-01-01
We prove a system of relations in the Grothendieck ring of the category O of representations of the Borel subalgebra of an untwisted quantum affine algebra U_q(g^) introduced in [HJ]. This system was discovered in [MRV1, MRV2], where it was shown that solutions of this system can be attached to certain affine opers for the Langlands dual affine Kac-Moody algebra of g^, introduced in [FF5]. Together with the results of [BLZ3, BHK], which enable one to associate quantum g^-KdV Hamiltonians to representations from the category O, this provides strong evidence for the conjecture of [FF5] linking the spectra of quantum g^-KdV Hamiltonians and affine opers for the Langlands dual affine algebra. As a bonus, we obtain a direct and uniform proof of the Bethe Ansatz equations for a large class of quantum integrable models associated to arbitrary untwisted quantum affine algebras, under a mild genericity condition.
Novel Perspectives from Light-Front QCD, Super-Conformal Algebra, and Light-Front Holography
Brodsky, Stanley J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
Light-Front Quantization – Dirac’s “Front Form” – provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic LFWFs. One obtains new insights into the hadronic mass scale, the hadronic spectrum, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons. I also discuss evidence that the antishadowing of nuclear structure functions is nonuniversal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for the nuclear parton distribution functions.
Light-Front Holography and Gauge/Gravity Duality: The Light Meson and Baryon Spectra
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC
2009-12-09
Starting from the bound state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability amplitudes of the hadronic constituents at a given scale. An effective classical gravity description in a positive-sign dilaton background exp(+{kappa}{sup 2}z{sup 2}) is given for the phenomenologically successful soft-wall model which naturally encodes the internal structure of hadrons and their orbital angular momentum. Applications to the light meson and baryon spectrum are presented.
Unconstrained Hamiltonian formulation of low energy SU(3) Yang-Mills quantum theory
Pavel, Hans-Peter
2012-01-01
An unconstrained Hamiltonian formulation of the SU(3) Yang-Mills quantum mechanics of spatially constant fields is given using the method of minimal embedding of SU(2) into SU(3) by Kihlberg and Marnelius. Using a canonical transformation of the gluon fields to a new set of adapted coordinates (a non-standard type polar decomposition), which Abelianizes the Non-Abelian Gauss law constraints to be implemented, the corresponding unconstrained Hamiltonian and total angular momentum are derived. This reduces the colored spin-1 gluons to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields. The obtained unconstrained Hamiltonian is then rewritten into a form, which separates the rotational from the scalar degrees of freedom. It is shown that the chromomagnetic potential has classical zero-energy valleys for two arbitrarily large classical glueball fields, which are the unconstrained analogs of the well-known "constant Abelian fields". On the quantum level, practically all glueball excitation e...
Wick Rotation in the Light-Front
de Melo, J P B C J; Frederico, T
2008-01-01
We study the electroweak properties of pseudo-scalar mesons in the light and heavy-light sectors. In particular, we address the electromagnetic form factors and decay constants of the pion, kaon and D mesons. The structure of composite systems are given by the Bethe-Salpeter (BS) amplitude of a meson formed by a confined pair of constituent quark and antiquark, which in our work is written in terms of Pauli-Villars regulators. The analytical structure contains single poles in the complex momentum space. The BS amplitude takes into account poles due to the regulator parameters, while the quark-antiquark cut is avoided, implying in confined quarks with the property that the sum of the constituents masses can be larger than the mass of the meson. The one-loop expressions of the electroweak transition amplitudes are conveniently written in terms of light-front momentum. Technically, we introduce a Wick-rotation of he minus component of the momentum (k-minus) in the one-loop amplitudes allowing to avoid the cuts i...
Simulation of electronic structure Hamiltonians in a superconducting quantum computer architecture
Kaicher, Michael; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics, Haverford College, Haverford, Pennsylvania 19041 (United States)
2015-07-01
Quantum chemistry has become one of the most promising applications within the field of quantum computation. Simulating the electronic structure Hamiltonian (ESH) in the Bravyi-Kitaev (BK)-Basis to compute the ground state energies of atoms/molecules reduces the number of qubit operations needed to simulate a single fermionic operation to O(log(n)) as compared to O(n) in the Jordan-Wigner-Transformation. In this work we will present the details of the BK-Transformation, show an example of implementation in a superconducting quantum computer architecture and compare it to the most recent quantum chemistry algorithms suggesting a constant overhead.
Quantum phase transitions in an effective Hamiltonian: fast and slow systems
Sainz, I [School of Information and Communication Technology, Royal Institute of Technology (KTH), Electrum 229, SE-164 40 Kista (Sweden); Klimov, A B [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico); Roa, L [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)], E-mail: klimov@cencar.udg.mx
2008-09-05
An effective Hamiltonian describing interaction between generic fast and slow systems is obtained in the strong interaction limit. The result is applied for studying the effect of quantum phase transition as a bifurcation of the ground state of the slow subsystem. Examples such as atom-field and atom-atom interactions are analyzed in detail.
Exploiting time-independent Hamiltonian structure as controls for manipulating quantum dynamics.
Beltrani, Vincent; Rabitz, Herschel
2012-09-07
The opportunities offered by utilizing time-independent Hamiltonian structure as controls are explored for manipulating quantum dynamics. Two scenarios are investigated using different manifestations of Hamiltonian structure to illustrate the generality of the concept. In scenario I, optimally shaped electrostatic potentials are generated to flexibly control electron scattering in a two-dimensional subsurface plane of a semiconductor. A simulation is performed showing the utility of optimally setting the individual voltages applied to a multi-pixel surface gate array in order to produce a spatially inhomogeneous potential within the subsurface scattering plane. The coherent constructive and destructive electron wave interferences are manipulated by optimally adjusting the potential shapes to alter the scattering patterns. In scenario II, molecular vibrational wave packets are controlled by means of optimally selecting the Hamiltonian structure in cooperation with an applied field. As an illustration of the concept, a collection (i.e., a level set) of dipole functions is identified where each member serves with the same applied electric field to produce the desired final transition probability. The level set algorithm additionally found Hamiltonian structure controls exhibiting desirable physical properties. The prospects of utilizing the applied field and Hamiltonian structure simultaneously as controls is also explored. The control scenarios I and II indicate the gains offered by algorithmically guided molecular or material discovery for manipulating quantum dynamics phenomenon.
Hamiltonian cosmological perturbation theory with loop quantum gravity corrections
Bojowald, M; Kagan, M; Singh, P; Skirzewski, A; Bojowald, Martin; Hern\\'andez, Hector H.; Kagan, Mikhail; Singh, Parampreet; Skirzewski, Aureliano
2006-01-01
Cosmological perturbation equations are derived systematically in a canonical scheme based on Ashtekar variables. A comparison with the covariant derivation and various subtleties in the calculation and choice of gauges are pointed out. Nevertheless, the treatment is more systematic when correction terms of canonical quantum gravity are to be included. This is done throughout the paper for one characteristic modification expected from loop quantum gravity.
Lopez-Moreno, Enrique; Grether, M; Velazquez, Victor, E-mail: elm@hp.fciencias.unam.mx [Facultad de Ciencias, Departamento de Fisica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, 04510 Mexico DF (Mexico)
2011-11-25
A general spin system with a nonaxially symmetric Hamiltonian containing J{sub x}, J{sub z}-linear and J{sub z}-quadratic terms, widely used in many-body fermionic and bosonic systems and in molecular magnetism, is considered for the variations of general parameters describing intensity interaction changes of each of its terms. For this model Hamiltonian, a semiclassical energy surface (ES) is obtained by means of the coherent-state formalism. An analysis of this ES function, based on catastrophe theory, determines the separatrix in the control parameter space of the system Hamiltonian: the loci of singularities representing semiclassical phase transitions. Here we show that distinct regions of qualitatively different spectrum structures, as well as a singular behavior of quantum states, are ruled by this separatrix: here we show that the separatrix not only describes ground-state singularities, which have been associated with quantum phase transitions, but also reveals the structure of the excited spectrum, distinguishing different quantum phases within the parameter space. Finally, we consider magnetic susceptibility and heat capacity of the system at finite temperature, in order to study thermal properties and thermodynamical phase transitions in the perspective of the separatrix of this Hamiltonian system. (paper)
Hamiltonian approach to the dynamics of Ehrenfest expectation values and Gaussian quantum states
Bonet-Luz, Esther
2015-01-01
The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical operators are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest's theorem is shown to be Lie-Poisson for a semidirect-product Lie group, named the `Ehrenfest group'. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie-Poisson structure associated to a semidirect-product subgroup of the Ehrenfest group, which is called the Jacobi group. This structure produces new energy-conserving terms in a class of Gaussian moment models (previously appeared in the chemical physics literature) that suffer from lack of energy conservation ...
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Pion Form Factor in the Light-Front
Pacheco-Bicudo-Cabral de Melo, J
2004-01-01
The pion electromagnetic form factor is calculated with a light-front quark model. The "plus" and "minus" component of the electromagnetic current are used to calculate the electromagnetic form factor in the Breit frame with two models for the q\\bar{q} vertex. The light front constituent quark models describes very well hadronic wave function for pseudo-scalar and vector particles. Symmetry problems arinsing in the light-front approach are solved by the pole dislocation method. The results are compared with new experimental data and with other quark models.
The Casimir effect in light-front quantization
Hiller, J R
2014-01-01
We show that the standard result for the Casimir force between conducting plates at rest in an inertial frame can be computed in light-front quantization. This is not the same as light-front analyses where the plates are at "rest" in an infinite momentum frame. In that case, Lenz and Steinbacher have shown that the result does not agree with the standard result for plates at rest. The two important ingredients in the present analysis are a careful treatment of the boundary conditions, inspired by the work of Almeida et al. on oblique light-front coordinates, and computation of the ordinary energy density, rather than the light-front energy density.
Moretti, Valter
2016-01-01
This work concerns some issues about the interplay of standard and geometric (Hamiltonian) approaches to finite-dimensional quantum mechanics, formulated in the projective space. Our analysis relies upon the notion and the properties of so-called frame functions, introduced by A.M. Gleason to prove his celebrated theorem. In particular, the problem of associating quantum state with positive Liouville densities is tackled from an axiomatic point of view, proving a theorem classifying all possible correspondences. A similar result is established for classical observables representing quantum ones. These correspondences turn out to be encoded in a one-parameter class and, in both cases, the classical objects representing quantum ones result to be frame functions. The requirements of $U(n)$ covariance and (convex) linearity play a central r\\^ole in the proof of those theorems. A new characterization of classical observables describing quantum observables is presented, together with a geometric description of the ...
Hamiltonian approach to GR - Part 2: covariant theory of quantum gravity
Cremaschini, Claudio
2016-01-01
A non-perturbative quantum field theory of General Relativity is presented which leads to a new realization of the theory of Covariant Quantum-Gravity (CQG-theory). The treatment is founded on the recently-identified Hamiltonian structure associated with the classical space-time, i.e., the corresponding manifestly-covariant Hamilton equations and the related Hamilton-Jacobi theory. As shown here the connection with CQG-theory is achieved via the classical GR Hamilton-Jacobi equation, leading to the realization of the CQG-wave equation in 4-scalar form for the corresponding CQG-state and wave-function. The new quantum wave equation exhibits well-known formal properties characteristic of quantum mechanics, including the validity of quantum hydrodynamic equations and suitably-generalized Heisenberg inequalities. In addition, it recovers the classical GR equations in the semiclassical limit, while admitting the possibility of developing further perturbative approximation schemes. Applications of the theory are po...
Ward-Takahashi Identity on the Light-Front
Naus, H W L; Frederico, T
1998-01-01
The Ward-Takahashi identity, reflecting local gauge invariance, is perturbatively verified for a boson model in light front field theory. A careful integration over the light front energy, corresponding to exactly taking into account pair terms, which are the contributions of the zero longitudinal momentum mode, is crucial to obtain this result. Furthermore, the one-loop boson form factors are calculated for arbitrary off-shell momenta.
Solving Quantum-Nonautonomous System with Non-Hermitian Hamiltonians by Algebraic Method
WEI Lian-Fu; WANG Shun-Jin
2001-01-01
A convenient method to exactly solve the quantum-nonautonomous systems with non-Hermitian Hamiltonians is proposed. It is shown that a nonadiabatic complete biorthonormal set can be easily obtained by the gauge transformation method in which the algebraic structure of systems has been used. The nonunitary evolution operator is also found by choosing a special gauge function. All auxiliary parameters introduced in the present approach are only determined by some algebraic equations. The dynamics of two quantum-nonautonomous systems ruled by non-Hermitian Hamiltonians, including a two-photon ionization process involving two-state only and a mesoscopic RLC circuit with a source, are treated as the demonstration of our general approach.``
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Caticha, Ariel; Bartolomeo, Daniel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States); Reginatto, Marcel [Physicalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)
2015-01-13
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.
Supersymmetric Meson-Baryon Properties of QCD from Light-Front Holography and Superconformal Algebra
Brodsky, Stanley J
2016-01-01
A remarkable feature of QCD is that the mass scale which controls color confinement and hadron mass scales does not appear explicitly in the QCD Lagrangian. However, de Alfaro, Fubini, and Furlan have shown that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. Applying the same procedure to the light-front Hamiltonian leads to a unique confinement potential $\\kappa^4 \\zeta^2$ for mesons, where $\\zeta$ is the LF radial variable conjugate to the invariant mass. The same result, including spin terms, is obtained using light-front holography, the duality between the front form and AdS$_5,$ if one modifies the action by the dilaton $e^{\\kappa^2 z^2}$ in the fifth dimension $z$. Generalizing this procedure using superconformal algebra, leads to a unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric rel...
PREFACE: 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics
Fring, Andreas; Jones, Hugh; Znojil, Miloslav
2008-06-01
Attempts to understand the quantum mechanics of non-Hermitian Hamiltonian systems can be traced back to the early days, one example being Heisenberg's endeavour to formulate a consistent model involving an indefinite metric. Over the years non-Hermitian Hamiltonians whose spectra were believed to be real have appeared from time to time in the literature, for instance in the study of strong interactions at high energies via Regge models, in condensed matter physics in the context of the XXZ-spin chain, in interacting boson models in nuclear physics, in integrable quantum field theories as Toda field theories with complex coupling constants, and also very recently in a field theoretical scenario in the quantization procedure of strings on an AdS5 x S5 background. Concrete experimental realizations of these types of systems in the form of optical lattices have been proposed in 2007. In the area of mathematical physics similar non-systematic results appeared sporadically over the years. However, intensive and more systematic investigation of these types of non- Hermitian Hamiltonians with real eigenvalue spectra only began about ten years ago, when the surprising discovery was made that a large class of one-particle systems perturbed by a simple non-Hermitian potential term possesses a real energy spectrum. Since then regular international workshops devoted to this theme have taken place. This special issue is centred around the 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics held in July 2007 at City University London. All the contributions contain significant new results or alternatively provide a survey of the state of the art of the subject or a critical assessment of the present understanding of the topic and a discussion of open problems. Original contributions from non-participants were also invited. Meanwhile many interesting results have been obtained and consensus has been reached on various central conceptual issues in the
Light-front representation of chiral dynamics with Delta isobar and large-N_c relations
Granados, C
2016-01-01
Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Delta isobars and implement relations based on the large-N_c limit of QCD. We derive the wave function overlap formulas for the Delta contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguit...
Interpolation approach to Hamiltonian-varying quantum systems and the adiabatic theorem
Pan, Yu; James, Matthew R. [Australian National University, Research School of Engineering, Canberra (Australia); Miao, Zibo [The University of Melbourne, Department of Electrical and Electronic Engineering, Melbourne (Australia); Amini, Nina H. [CNRS, Laboratoire des Signaux et Systemes (L2S) Supelec, Gif-Sur-Yvette (France); Ugrinovskii, Valery [University of New South Wales at ADFA, School of Engineering and Information Technology, Canberra (Australia)
2015-12-15
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. In this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure resembles the excitation energy or excess work performed in thermodynamics, which can be taken as the error of adiabatic approximation. We prove that under certain conditions, this error can be estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not linearly proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example in which the applicability of the adiabatic theorem is questionable. (orig.)
Chandrashekar, C M
2013-10-03
From the unitary operator used for implementing two-state discrete-time quantum walk on one-, two- and three- dimensional lattice we obtain a two-component Dirac-like Hamiltonian. In particular, using different pairs of Pauli basis as position translation states we obtain three different form of Hamiltonians for evolution on one-dimensional lattice. We extend this to two- and three-dimensional lattices using different Pauli basis states as position translation states for each dimension and show that the external coin operation, which is necessary for one-dimensional walk is not a necessary requirement for a walk on higher dimensions but can serve as an additional resource to control the dynamics. The two-component Hamiltonian we present here for quantum walk on different lattices can serve as a general framework to simulate, control, and study the dynamics of quantum systems governed by Dirac-like Hamiltonian.
Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach.
Lee, Myeong H; Troisi, Alessandro
2016-06-07
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems.
Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.
Anderson, James S M; Ayers, Paul W
2011-11-17
The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.
Reptation quantum Monte Carlo algorithm for lattice Hamiltonians with a directed-update scheme.
Carleo, Giuseppe; Becca, Federico; Moroni, Saverio; Baroni, Stefano
2010-10-01
We provide an extension to lattice systems of the reptation quantum Monte Carlo algorithm, originally devised for continuous Hamiltonians. For systems affected by the sign problem, a method to systematically improve upon the so-called fixed-node approximation is also proposed. The generality of the method, which also takes advantage of a canonical worm algorithm scheme to measure off-diagonal observables, makes it applicable to a vast variety of quantum systems and eases the study of their ground-state and excited-state properties. As a case study, we investigate the quantum dynamics of the one-dimensional Heisenberg model and we provide accurate estimates of the ground-state energy of the two-dimensional fermionic Hubbard model.
An efficient matrix product operator representation of the quantum chemical Hamiltonian
Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch [ETH Zürich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Dolfi, Michele, E-mail: dolfim@phys.ethz.ch; Troyer, Matthias, E-mail: troyer@phys.ethz.ch [ETH Zürich, Institute of Theoretical Physics, Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland)
2015-12-28
We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.
Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Schuch, Dieter [Institut für Theoretische Physik, JW Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México DF (Mexico); Rosas-Ortiz, Oscar [Physics Department, Cinvestav, A. P. 14-740, 07000 México D. F. (Mexico)
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
Covariance of Light-Front Models Pair Current
Pacheco-Bicudo-Cabral de Melo, J; Naus, H W L; Sauer, P U
1999-01-01
We compute the "+" component of the electromagnetic current of a composite spin-one two-fermion system for vanishing momentum transfer component $q^+=q^0+q^3$. In particular, we extract the nonvanishing pair production amplitude on the light-front. It is a consequence of the longitudinal zero momentum mode, contributing to the light-front current in the Breit-frame. The covariance of the current is violated, if such pair terms are not included in its matrix elements. We illustrate our discussion with some numerical examples.
Mandrà, Salvatore; Zhu, Zheng; Katzgraber, Helmut G.
2017-02-01
We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated with a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009), 10.1088/1367-2630/11/7/073021]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.
A Hamiltonian theory of adaptive resolution simulations of classical and quantum models of nuclei
Kreis, Karsten; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello
2015-03-01
Quantum delocalization of atomic nuclei strongly affects the physical properties of low temperature systems, such as superfluid helium. However, also at room temperature nuclear quantum effects can play an important role for molecules composed by light atoms. An accurate modeling of these effects is possible making use of the Path Integral formulation of Quantum Mechanics. In simulations, this numerically expensive description can be restricted to a small region of space, while modeling the remaining atoms as classical particles. In this way the computational resources required can be significantly reduced. In the present talk we demonstrate the derivation of a Hamiltonian formulation for a bottom-up, theoretically solid coupling between a classical model and a Path Integral description of the same system. The coupling between the two models is established with the so-called Hamiltonian Adaptive Resolution Scheme, resulting in a fully adaptive setup in which molecules can freely diffuse across the classical and the Path Integral regions by smoothly switching their description on the fly. Finally, we show the validation of the approach by means of adaptive resolution simulations of low temperature parahydrogen. Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany.
Graphical calculus of volume, inverse volume and Hamiltonian operators in loop quantum gravity
Yang, Jinsong; Ma, Yongge
2017-04-01
To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in loop quantum gravity. In this paper, the graphical calculus based on the original Brink graphical method is applied to loop quantum gravity along the line of previous work. The graphical method provides a very powerful technique for simplifying complicated calculations. The closed formula of the volume operator and the actions of the Euclidean Hamiltonian constraint operator and the so-called inverse volume operator on spin-network states with trivalent vertices are derived via the graphical method. By employing suitable and non-ambiguous graphs to represent the action of operators as well as the spin-network states, we use the simple rules of transforming graphs to obtain the resulting formula. Comparing with the complicated algebraic derivation in some literature, our procedure is more concise, intuitive and visual. The resulting matrix elements of the volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin-network states. Our results indicate some corrections to the existing results for the Hamiltonian operator and inverse volume operator in the literature.
Graphical calculus of volume, inverse volume and Hamiltonian operators in loop quantum gravity
Yang, Jinsong [Guizhou University, Department of Physics, Guiyang (China); Academia Sinica, Institute of Physics, Taipei (China); Ma, Yongge [Beijing Normal University, Department of Physics, Beijing (China)
2017-04-15
To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in loop quantum gravity. In this paper, the graphical calculus based on the original Brink graphical method is applied to loop quantum gravity along the line of previous work. The graphical method provides a very powerful technique for simplifying complicated calculations. The closed formula of the volume operator and the actions of the Euclidean Hamiltonian constraint operator and the so-called inverse volume operator on spin-network states with trivalent vertices are derived via the graphical method. By employing suitable and non-ambiguous graphs to represent the action of operators as well as the spin-network states, we use the simple rules of transforming graphs to obtain the resulting formula. Comparing with the complicated algebraic derivation in some literature, our procedure is more concise, intuitive and visual. The resulting matrix elements of the volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin-network states. Our results indicate some corrections to the existing results for the Hamiltonian operator and inverse volume operator in the literature. (orig.)
He, Lewei; Wang, Wen-Ge
2014-02-01
We study the problem of the basis of an open quantum system, under a quantum chaotic environment, which is preferred in view of its stationary reduced density matrix (RDM), that is, the basis in which the stationary RDM is diagonal. It is shown that, under an initial condition composed of sufficiently many energy eigenstates of the total system, such a basis is given by the eigenbasis of a renormalized self-Hamiltonian of the system, in the limit of large Hilbert space of the environment. Here, the renormalized self-Hamiltonian is given by the unperturbed self-Hamiltonian plus a certain average of the interaction Hamiltonian over the environmental degrees of freedom. Numerical simulations performed in two models, both with the kicked rotor as the environment, give results consistent with the above analytical predictions.
A transfer hamiltonian model for devices based on quantum dot arrays.
Illera, S; Prades, J D; Cirera, A; Cornet, A
2015-01-01
We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.
A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays
S. Illera
2015-01-01
Full Text Available We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.
The role of the Hamiltonian in the interpretation of quantum mechanics
Castagnino, M [CONICET-Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio. Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina); Lombardi, O [CONICET-Unversidad de Buenos Aires. Crisologo Larralde 3440, 1430, Buenos Aires (Argentina)], E-mail: mariocastagnino@citynet.net.ar, E-mail: olimpiafilo@arnet.com.ar
2008-08-15
In this paper we propose a new realist, non-collapse interpretation of quantum mechanics, which moves away from the prevailing trend in the subject by paying special attention to the physical relevance of the interpretation. In particular, our proposal endows the Hamiltonian of the system, systematically ignored in the traditional interpretations, with a central role: it distinguishes between systems and subsystems and is the main ingredient in the selection of the definite-valued observables. We show how this interpretation solves the measurement problem, both in the ideal and in the non-ideal version, and we argue for the physical relevance of the new definite-value assignment.
Biswas, P K; Gogonea, V
2005-10-22
We describe a regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical (QM)-molecular-mechanical (MM) calculations. To remedy the nonphysical QM/MM Coulomb interaction at short distances arising from a point electrostatic potential (ESP) charge of the MM atom and also to accommodate the effect of polarized MM atom in the coupling Hamiltonian, we propose a partial-wave expansion of the ESP charge and describe the effect of a s-wave expansion, extended over the covalent radius r(c), of the MM atom. The resulting potential describes that, at short distances, large scale cancellation of Coulomb interaction arises intrinsically from the localized expansion of the MM point charge and the potential self-consistently reduces to 1r(c) at zero distance providing a renormalization to the Coulomb energy near interatomic separations. Employing this renormalized Hamiltonian, we developed an interface between the Car-Parrinello molecular-dynamics program and the classical molecular-dynamics simulation program Groningen machine for chemical simulations. With this hybrid code we performed QM/MM calculations on water dimer, imidazole carbon monoxide (CO) complex, and imidazole-heme-CO complex with CO interacting with another imidazole. The QM/MM results are in excellent agreement with experimental data for the geometry of these complexes and other computational data found in literature.
Yelnykov, O V
2005-01-01
This thesis addresses three topics: calculation of the invariant measure for the pure Yang-Mills configuration space in (3 + 1) dimensions, Hamiltonian analysis of the pure Chern-Simons theory on the noncommutative plane and noncommutative quantum mechanics in the presence of singular potentials. In Chapter 1 we consider a gauge-invariant Hamiltonian analysis for Yang-Mills theories in three spatial dimensions. The gauge potentials are parameterized in terms of a matrix variable which facilitates the elimination of the gauge degrees of freedom. We develop an approximate calculation of the volume element on the gauge-invariant configuration space. We also make a rough estimate of the ratio of 0++ glueball mass and the square root of string tension by comparison with (2 + 1)-dimensional Yang-Mills theory. In Chapter 2 the Hamiltonian analysis of the pure Chern- Simons theory on the noncommutative plane is performed. We use the techniques of geometric quantization to show that the classical reduced phase space o...
Spin structure of the nucleon on the light front
Lorcé, Cédric
2014-01-01
We briefly review the spin structure of the nucleon and show that it is best thought in the light-front formulation. We discuss in particular the longitudinal and transverse spin sum rules, the proper definition of canonical orbital angular momentum and the spin-orbit correlation.
Chiral Boson Theory on the Light-Front
Srivastava, P P
1999-01-01
The {\\it front form} framework for describing the quantized theory of chiral boson is discussed. It avoids the conflict with the requirement of the principle of microcausality as is found in the conventional equal- time treatment. The discussion of the Floreanini-Jackiw model and its modified version for describing the chiral boson becomes very transparent on the light-front.
Covariance of light-front models: pair current
Melo, J.P.B.C. de; Frederico, T.; Naus, H.W.L.; Sauer, P.U.
1999-01-01
We compute the + component, i.e., j+ = j0 + j3, of the electromagnetic current of a composite spin-one two-fermion system for vanishing momentum transfer component q+ = q0 + q3. In particular, we extract the nonvanishing pair production amplitude on the light-front. It is a consequence of the longit
Kim, V T; Pivovarov, G B; Vary, J P; Kim, Victor T.; Matveev, Victor A.; Pivovarov, Grigorii B.; Vary, James P.
2001-01-01
Without a gauge fixing, canonical variables for the light-front SU(2) gluodynamics are determined. The Gauss law is written in terms of the canonical variables. The system is qualified as a generalized dynamical system with first class constraints. Abeliazation is a specific feature of the formulation (most of the canonical variables transform nontrivially only under the action of an Abelian subgroup of the gauge transformations). At finite volume, a discrete spectrum of the light-front Hamiltonian $P_+$ is obtained in the sector of vanishing $P_-$. We obtain, therefore, a quantized form of the classical solutions previously known as non-Abelian plane waves. Then, considering the infinite volume limit, we find that the presence of the mass gap depends on the way the infinite volume limit is taken, which may suggest the presence of different ``phases'' of the infinite volume theory.
Murthy, Ganpathy
2001-11-01
A microscopic Hamiltonian theory of the fractional quantum Hall effect developed by Shankar and the present author based on the fermionic Chern-Simons approach has recently been quite successful in calculating gaps and finite-tempertature properties in fractional quantum Hall states. Initially proposed as a small-q theory, it was subsequently extended by Shankar to form an algebraically consistent theory for all q in the lowest Landau level. Such a theory is amenable to a conserving approximation in which the constraints have vanishing correlators and decouple from physical response functions. Properties of the incompressible fractions are explored in this conserving approximation, including the magnetoexciton dispersions and the evolution of the small-q structure factor as ν-->12. Finally, a formalism capable of dealing with a nonuniform ground-state charge density is developed and used to show how the correct fractional value of the quasiparticle charge emerges from the theory.
Brodsky, S. J.
2017-07-01
A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The
Giusteri, Giulio G.; Mattiotti, Francesco; Celardo, G. Luca
2015-03-01
We investigate the validity of the non-Hermitian Hamiltonian approach in describing quantum transport in disordered tight-binding networks connected to external environments, acting as sinks. Usually, non-Hermitian terms are added, on a phenomenological basis, to such networks to summarize the effects of the coupling to the sinks. Here, we consider a paradigmatic model of open quantum network for which we derive a non-Hermitian effective model, discussing its limit of validity by a comparison with the analysis of the full Hermitian model. Specifically, we consider a ring of sites connected to a central one-dimensional lead. The lead acts as a sink that absorbs the excitation initially present in the ring. The coupling strength to the lead controls the opening of the ring system. This model has been widely discussed in literature in the context of light-harvesting systems. We analyze the effectiveness of the non-Hermitian description both in absence and in presence of static disorder on the ring. In both cases, the non-Hermitian model is valid when the energy range determined by the eigenvalues of the ring Hamiltonian is smaller than the energy band in the lead. Under such condition, we show that results about the interplay of opening and disorder, previously obtained within the non-Hermitian Hamiltonian approach, remain valid when the full Hermitian model in presence of disorder is considered. The results of our analysis can be extended to generic networks with sinks, leading to the conclusion that the non-Hermitian approach is valid when the energy dependence of the coupling to the external environments is sufficiently smooth in the energy range spanned by the eigenstates of the network.
A Riccati type PDE for light-front higher helicity vertices
Bengtsson, Anders K H
2014-01-01
This paper is based on a curious observation about an equation related to the tracelessness constraints of higher spin gauge fields. The equation also occurs in the theory of continuous spin representations of the Poincar\\'e group. Expressed in an oscillator basis for the higher spin fields, the equation becomes a non-linear partial differential operator of the Riccati type acting on the vertex functions. The consequences of the equation for the cubic vertex is investigated in the light-front formulation of higher spin theory. The classical vertex is completely fixed but there is room for off-shell quantum corrections.
Imaging dynamical chiral-symmetry breaking: pion wave function on the light front.
Chang, Lei; Cloët, I C; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C
2013-03-29
We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.
Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.
Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao
2013-09-10
Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.
Two-dimensional light-front $\\phi^4$ theory in a symmetric polynomial basis
Burkardt, M; Hiller, J R
2016-01-01
We study the lowest-mass eigenstates of $\\phi^4_{1+1}$ theory with both odd and even numbers of constituents. The calculation is carried out as a diagonalization of the light-front Hamiltonian in a Fock-space representation. In each Fock sector a fully symmetric polynomial basis is used to represent the Fock wave function. Convergence is investigated with respect to the number of basis polynomials in each sector and with respect to the number of sectors. The dependence of the spectrum on the coupling strength is used to estimate the critical coupling for the positive-mass-squared case. An apparent discrepancy with equal-time calculations of the critical coupling is resolved by an appropriate mass renormalization.
Aldaya, V.; Navarro-Salas, J.
1991-04-01
We introduce a highest weight type representation of the Rovelli-Smolin algebra of loop observables for quantum gravity. In terms of this representation, new solutions of the hamiltonian and diffeomorphism constraints are given. Assuming the locality of the quantum hamiltonian constraint we show that any functional depending on the generalized link class of the disjoint union of arbitrary simple loops is a solution. Finally we argue that this is the general solution in the irreducible representation space. On leave of absence from the Departamento de Fisica Teorica, Universidad de Valencia, and IFIC, Centro Mixto Universidad de Valencia - CSIC, Burjassot, Spain.
Light-front representation of chiral dynamics with Δ isobar and large- N c relations
Granados, C.; Weiss, C.
2016-06-01
Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O( M π - 1 ) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations based on the large- N c limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of π N and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct N c -scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. The methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.
Herbert, J.M.
1997-02-01
Perturbation theory has long been utilized by quantum chemists as a method for approximating solutions to the Schroedinger equation. Perturbation treatments represent a system`s energy as a power series in which each additional term further corrects the total energy; it is therefore convenient to have an explicit formula for the nth-order energy correction term. If all perturbations are collected into a single Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schroedinger perturbation theory and a power series expansion of the Hamiltonian.
Nucleon parton distributions in a light-front quark model
Gutsche, Thomas [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Lyubovitskij, Valery E. [Universitaet Tuebingen, Institut fuer Theoretische Physik, Kepler Center for Astro and Particle Physics, Tuebingen (Germany); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Tomsk Polytechnic University, Laboratory of Particle Physics, Mathematical Physics Department, Tomsk (Russian Federation); Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile); Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Departamento de Fisica y Centro Cientifico Tecnologico de Valparaiso (CCTVal), Valparaiso (Chile)
2017-02-15
Continuing our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity-independent and the helicity-dependent parton distributions, analytically matching the results of global fits at the initial scale μ∝ 1 GeV; they also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions q{sub v}(x) and δq{sub v}(x). Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN). (orig.)
Nucleon parton distributions in a light-front quark model
Gutsche, Thomas; Schmidt, Ivan
2016-01-01
Continuing with our analysis of parton distributions in the nucleon, we extend our light-front quark model in order to obtain both the helicity independent and helicity dependent parton distributions, analytically matching the results of global fits at the initial scale $\\mu \\sim 1$ GeV, and which also contain the correct Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution. We also calculate the transverse parton, Wigner and Husimi distributions from a unified point of view, using our light-front wave functions and expressing them in terms of the parton distributions $q_v(x)$ and $\\delta q_v(x)$. Our results are very relevant for the current and future program of the COMPASS experiment at SPS (CERN).
Why pair production cures covariance in the light-front?
Sales, J H O
2005-01-01
We show that the light-front vacuum is not trivial, and the Fock space for positive energy quanta solutions is not complete. As an example of this non triviality we have calculated the electromagnetic current for scalar bosons in the background field method were the covariance is restored through considering the complete Fock space of solutions. We also show thus that the method of "dislocating the integration pole" is nothing more than a particular case of this, so that such an "ad hoc" prescription can be dispensed altogether if we deal with the whole Fock space. In this work we construct the electromagnetic current operator for a system composed of two free bosons. The technique employed to deduce these operators is through the definition of global propagators in the light front when a background electromagnetic field acts on one of the particles.
Spin effects in the pion holographic light-front wavefunction
Ahmady, Mohammad; Sandapen, Ruben
2016-01-01
We account for dynamical spin effects in the holographic light-front wavefunction of the pion in order to predict its mean charge radius, decay constant, spacelike electromagnetic form factor, twist-2 Distribution Amplitude and the photon-to-pion transition form factor. Using a universal fundamental AdS/QCD scale of 523 MeV and a constituent quark mass of 330 MeV, we find a remarkable improvement in describing all observables.
The 3He spectral function in light-front dynamics
Rinaldi Matteo
2016-01-01
Full Text Available A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincaré covariant framework within the light-front dynamics is outlined.
The 3He spectral function in light-front dynamics
Rinaldi, Matteo; Kaptari, Leonid; Pace, Emanuele; Salmè, Giovanni; Scopetta, Sergio
2016-01-01
A distorted spin-dependent spectral function for 3He is considered for the extraction of the transverse-momentum dependent parton distributions in the neutron from semi-inclusive deep inelastic electron scattering off polarized 3He at finite momentum transfers, where final state interactions are taken into account. The generalization of the analysis to a Poincar\\'e covariant framework within the light-front dynamics is outlined.
Light-Front Spin-1 Model: Parameters Dependence
Mello, Clayton S; de Melo, J P B C; Frederico, T
2015-01-01
We study the structure of the $\\rho$-meson within a light-front model with constituent quark degrees of freedom. We calculate electroweak static observables: magnetic and quadrupole moments, decay constant and charge radius. The prescription used to compute the electroweak quantities is free of zero modes, which makes the calculation implicitly covariant. We compare the results of our model with other ones found in the literature. Our model parameters give a decay constant close to the experimental one.
On the gravity dual of the light-front vacuum
Garolera, Blai
2016-01-01
Building on a previous conjecture, we argue that the holographic dual of the light-front vacuum state of a superconformal field theory quantized in the front form of dynamics contains the Kaigorodov spacetime, which is nothing but a pp-wave propagating in AdS. Evidence in favor of this conjecture is presented. In particular we verify the matching of global symmetries and discuss the contribution of the zero mode sector in both sides of the correspondence.
New quantum number for the many-electron Dirac-Coulomb Hamiltonian
Komorovsky, Stanislav; Repisky, Michal; Bučinský, Lukáš
2016-11-01
By breaking the spin symmetry in the relativistic domain, a powerful tool in physical sciences was lost. In this work, we examine an alternative of spin symmetry for systems described by the many-electron Dirac-Coulomb Hamiltonian. We show that the square of many-electron operator K+, defined as a sum of individual single-electron time-reversal (TR) operators, is a linear Hermitian operator which commutes with the Dirac-Coulomb Hamiltonian in a finite Fock subspace. In contrast to the square of a standard unitary many-electron TR operator K , the K+2 has a rich eigenspectrum having potential to substitute spin symmetry in the relativistic domain. We demonstrate that K+ is connected to K through an exponential mapping, in the same way as spin operators are mapped to the spin rotational group. Consequently, we call K+ the generator of the many-electron TR symmetry. By diagonalizing the operator K+2 in the basis of Kramers-restricted Slater determinants, we introduce the relativistic variant of configuration state functions (CSF), denoted as Kramers CSF. A new quantum number associated with K+2 has potential to be used in many areas, for instance, (a) to design effective spin Hamiltonians for electron spin resonance spectroscopy of heavy-element containing systems; (b) to increase efficiency of methods for the solution of many-electron problems in relativistic computational chemistry and physics; (c) to define Kramers contamination in unrestricted density functional and Hartree-Fock theory as a relativistic analog of the spin contamination in the nonrelativistic domain.
Ab-initio Hamiltonian approach to light nuclei and to quantum field theory
J P Vary; H Honkanen; Jun Li; P Maris; A M Shirokov; S J Brodsky; A Harindranath; G F De Teramond; E G Ng; C Yang; M Sosonkina
2010-07-01
Nuclear structure physics is on the threshold of confronting several long-standing problems such as the origin of shell structure from basic nucleon–nucleon and three-nucleon interactions. At the same time those interactions are being developed with increasing contact to QCD, the underlying theory of the strong interactions, using effective field theory. The motivation is clear – QCD offers the promise of great predictive power spanning phenomena on multiple scales from quarks and gluons to nuclear structure. However, new tools that involve non-perturbative methods are required to build bridges from one scale to the next. We present an overview of recent theoretical and computational progress with a Hamiltonian approach to build these bridges and provide illustrative results for the nuclear structure of light nuclei and quantum field theory.
R S Kaushal
2009-08-01
Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted $\\mathcal{PT}$ symmetry in the studies of complex power potentials as a particular case of the present general framework in which two additional degrees of freedom are produced by extending each coordinate and momentum into complex planes. With a view to account for the subjective component of physical reality inherent in the collected data, e.g., using a Chevreul (hand-held) pendulum, a generalization of the Hamilton’s principle of least action is suggested.
Covariant Quantum Gravity with Continuous Quantum Geometry I: Covariant Hamiltonian Framework
Pilc, Marián
2016-01-01
The first part of the series is devoted to the formulation of the Einstein-Cartan Theory within the covariant hamiltonian framework. In the first section the general multisymplectic approach is revised and the notion of the d-jet bundles is introduced. Since the whole Standard Model Lagrangian (including gravity) can be written as the functional of the forms, the structure of the d-jet bundles is more appropriate for the covariant hamiltonian analysis than the standard jet bundle approach. The definition of the local covariant Poisson bracket on the space of covariant observables is recalled. The main goal of the work is to show that the gauge group of the Einstein-Cartan theory is given by the semidirect product of the local Lorentz group and the group of spacetime diffeomorphisms. Vanishing of the integral generators of the gauge group is equivalent to equations of motion of the Einstein-Cartan theory and the local covariant algebra generated by Noether's currents is closed Lie algebra.
Stability and Clustering for Lattice Many-Body Quantum Hamiltonians with Multiparticle Potentials
Faria da Veiga, Paulo A.; O'Carroll, Michael
2015-11-01
We analyze a quantum system of N identical spinless particles of mass m, in the lattice Z^d, given by a Hamiltonian H_N=T_N+V_N, with kinetic energy T_N≥ 0 and potential V_N=V_{N,2}+V_{N,3} composed of attractive pair and repulsive 3-body contact-potentials. This Hamiltonian is motivated by the desire to understand the stability of quantum field theories, with massive single particles and bound states in the energy-momentum spectrum, in terms of an approximate Hamiltonian for their N-particle sector. We determine the role of the potentials V_{N,2} and V_{N,3} on the physical stability of the system, such as to avoid a collapse of the N particles. Mathematically speaking, stability is associated with an N-linear lower bound for the infimum of the H_N spectrum, \\underline{σ }(H_N)≥ -cN, for c>0 independent of N. For V_{N,3}=0, H_N is unstable, and the system collapses. If V_{N,3}not =0, H_N is stable and, for strong enough repulsion, we obtain \\underline{σ }(H_N)≥ -c' N, where c'N is the energy of ( N/2) isolated bound pairs. This result is physically expected. A much less trivial result is that, as N varies, we show [ \\underline{σ }(V_N)/N ] has qualitatively the same behavior as the well-known curve for minus the nuclear binding energy per nucleon. Moreover, it turns out that there exists a saturation value N_s of N at and above which the system presents a clustering: the N particles distributed in two fragments and, besides lattice translations of particle positions, there is an energy degeneracy of all two fragments with particle numbers N_r and N_s-N_r, with N_r=1,ldots ,N_s-1.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
Supersymmetric quantum mechanics (SUSY-QM) is shown to provide a novel approach to the construction of the initial states for the imaginary time propagation method to determine the first and second excited state energies and wave functions for a two-dimensional system. In addition, we show that all calculations are carried out in sector one and none are performed with the tensor sector two Hamiltonian. Through our tensorial approach to multidimensional supersymmetric quantum mechanics, we utilize the correspondence between the eigenstates of the sector one and two Hamiltonians to construct appropriate initial sector one states from sector two states for the imaginary time propagation method. The imaginary time version of the time-dependent Schrödinger equation is integrated to obtain the first and second excited state energies and wave functions using the split operator method for a two-dimensional anharmonic oscillator system and a two-dimensional double well potential. The computational results indicate that we can obtain the first two excited state energies and wave functions even when a quantum system does not exhibit any symmetry. Moreover, instead of dealing with the increasing computational complexity resulting from computations in the tensor sector two Hamiltonian, this study presents a new supersymmetric approach to calculations of accurate excited state energies and wave functions by directly using the scalar sector one Hamiltonian.
Meson Transition Form Factors in Light-Front Holographic QCD
Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.
2011-06-22
We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.
Meson Transition Form Factors in Light-Front Holographic QCD
Brodsky, Stanley J.; /SLAC; Cao, Fu-Guang; /Massey U.; de Teramond, Guy F.; /Costa Rica U.
2011-06-22
We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.
Hamiltonian Theory of the Fractional Quantum Hall Effect: Effect of Landau Level Mixing
Murthy, Ganpathy; Shankar, R.
2002-01-01
We derive an effective hamiltonian in the Lowest Landau Level (LLL) that incorporates the effects of Landau-level mixing to all higher Landau levels to leading order in the ratio of interaction energy to the cyclotron energy. We then transcribe the hamiltonian to the composite fermion basis using our hamiltonian approach and compute the effect of LL mixing on transport gaps.
Pairs in the light-front and covariance
Pacheco-Bicudo-Cabral de Melo, J; Frederico, T; Sauer, P U
1998-01-01
The electromagnetic current of bound systems in the light-front is constructed in the Breit-Frame, in the limit of momentum transfer $q^+=(q^0+q^3)$ vanishing. In this limit, the pair creation term survives and it is responsible for the covariance of the current. The pair creation term is computed for the $j^+$ current of a spin one composite particle in the Breit-frame. The rotational symmetry of $j^+$ is violated if the pair term is not considered.
Pion in the Medium with a Light-Front Model
de Melo, J P B C; Frederico, Tobias
2015-01-01
The pion properties in symmetric nuclear matter are investigated with the Quark-Meson Coupling (QMC) Model plus the light-front constituent quark model~(LFCQM). The LFCQM has been quite successful in describing the properties of pseudoscalar mesons in vacuum, such as the electromagnetic elastic form factors, electromagnetic radii, and decay constants. We study the pion properties in symmetric nuclear matter with the in-medium input recalculated through the QMC model, which provides the in-medium modification of the LFCQM.
A light front quark-diquark model for the nucleons
Maji, Tanmay
2016-01-01
We present a quark-diquark model for the nucleons where the light front wave functions are constructed from the soft-wall AdS/QCD prediction. The model is consistent with quark counting rule and Drell-Yan-West relation. The model reproduces the scale evolution of unpolarized PDF of proton for a wide range of energy scale. Helicity and transversity distributions for the proton predicted in this model agree with phenomenological fits. The axial and tensor charges are also shown to agree with the experimental data. The model can be used to evaluate distributions like GPDS, TMDs etc. and their scale evolutions.
Jeong Ryeol Choi
2015-01-01
Full Text Available An adiabatic invariant, which is a conserved quantity, is useful for studying quantum and classical properties of dynamical systems. Adiabatic invariants for time-dependent superconducting qubit-oscillator systems and resonators are investigated using the Liouville-von Neumann equation. At first, we derive an invariant for a simple superconducting qubit-oscillator through the introduction of its reduced Hamiltonian. Afterwards, an adiabatic invariant for a nanomechanical resonator linearly interfaced with a superconducting circuit, via a coupling with a time-dependent strength, is evaluated using the technique of unitary transformation. The accuracy of conservation for such invariant quantities is represented in detail. Based on the results of our developments in this paper, perturbation theory is applicable to the research of quantum characteristics of more complicated qubit systems that are described by a time-dependent Hamiltonian involving nonlinear terms.
Orsucci, Davide [Scuola Normale Superiore, I-56126 Pisa (Italy); Burgarth, Daniel [Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Facchi, Paolo; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Nakazato, Hiromichi; Yuasa, Kazuya [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy)
2015-12-15
The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.
Modified Dirac Hamiltonian for efficient quantum mechanical simulations of micron sized devices
Habib, K. M. Masum; Sajjad, Redwan N.; Ghosh, Avik W.
2016-03-01
Representing massless Dirac fermions on a spatial lattice poses a potential challenge known as the Fermion Doubling problem. Addition of a quadratic term to the Dirac Hamiltonian provides a possible way to circumvent this problem. We show that the modified Hamiltonian with the additional term results in a very small Hamiltonian matrix when discretized on a real space square lattice. The resulting Hamiltonian matrix is considerably more efficient for numerical simulations without sacrificing on accuracy and is several orders of magnitude faster than the atomistic tight binding model. Using this Hamiltonian and the non-equilibrium Green's function formalism, we show several transport phenomena in graphene, such as magnetic focusing, chiral tunneling in the ballistic limit, and conductivity in the diffusive limit in micron sized graphene devices. The modified Hamiltonian can be used for any system with massless Dirac fermions such as Topological Insulators, opening up a simulation domain that is not readily accessible otherwise.
A Riccati type PDE for light-front higher helicity vertices
Bengtsson, Anders K. H.
2014-09-01
This paper is based on a curious observation about an equation related to the tracelessness constraints of higher spin gauge fields. A similar equation also occurs in the theory of continuous spin representations of the Poincaré group. Expressed in an oscillator basis for the higher spin fields, the equation becomes a non-linear partial differential operator of the Riccati type acting on the vertex functions. The consequences of the equation for the cubic vertex is investigated in the light-front formulation of higher spin theory. The vertex is fixed by the PDE up to a set of terms that can be considered as boundary data for the PDE. These terms can serve as off-shell quantum corrections.
Time Averaged Quantum Dynamics and the Validity of the Effective Hamiltonian Model
Gamel, Omar
2010-01-01
We develop a technique for finding the dynamical evolution in time of an averaged density matrix. The result is an equation of evolution that includes an Effective Hamiltonian, as well as decoherence terms in Lindblad form. Applying the general equation to harmonic Hamiltonians, we confirm a previous formula for the Effective Hamiltonian together with a new decoherence term which should in general be included, and whose vanishing provides the criteria for validity of the Effective Hamiltonian approach. Finally, we apply the theory to examples of the AC Stark Shift and Three- Level Raman Transitions, recovering a new decoherence effect in the latter.
Janzing, D; Janzing, Dominik; Beth, Thomas
2001-01-01
Estimating the eigenvalues of a unitary transformation U by standard phase estimation requires the implementation of controlled-U-gates which are not available if U is only given as a black box. We show that a simple trick allows to measure eigenvalues of U\\otimes U^\\dagger even in this case. Running the algorithm several times allows therefore to estimate the autocorrelation function of the density of eigenstates of U. This can be applied to find periodicities in the energy spectrum of a quantum system with unknown Hamiltonian if it can be coupled to a quantum computer.
Double parton distributions in Light-Front constituent quark models
Rinaldi, Matteo; Traini, Marco; Vento, Vicente
2014-01-01
Double parton distribution functions (dPDF), accessible in high energy proton-proton and proton nucleus collisions, encode information on how partons inside a proton are correlated among each other and could represent a tool to explore the 3D proton structure. In recent papers, double parton correlations have been studied in the valence quark region, by means of constituent quark models. This framework allows to understand clearly the dynamical origin of the correlations and to establish which, among the features of the results, are model independent. Recent relevant results, obtained in a relativistic light-front scheme, able to overcome some drawbacks of previous calculations, such as the poor support, will be presented. Peculiar transverse momentum correlations, generated by the correct treatment of the boosts, are obtained. The role of spin correlations will be also shown. In this covariant approach, the symmetries of the dPDFs are unambiguously reproduced. The study of the QCD evolution of the model resu...
Gluon Wavefunctions and Amplitudes on the Light-Front
Cruz-Santiago, Christian A
2013-01-01
We investigate the tree level multi-gluon components of the gluon light cone wavefunctions in the light cone gauge keeping the exact kinematics of the gluon emissions. We focus on the components with all helicities identical to the helicity of the incoming gluon. The recurrence relations for the gluon wavefunctions are derived. In the case when the virtuality of the incoming gluon is neglected the exact form of the multi-gluon wavefunction as well as the fragmentation function is obtained. Furthermore we analyze the 2 to N tree-level gluon scattering in the framework of light-front perturbation theory and we demonstrate that the amplitude for this process can be obtained from the 1 to N+1 gluon wavefunction. Finally, we demonstrate that our results for selected helicity configurations are equivalent to the Parke-Taylor amplitudes.
Light front quark-diquark model for the nucleons
Maji, Tanmay; Chakrabarti, Dipankar
2016-11-01
We present a quark-diquark model for the nucleons where the light front wave functions are constructed from the soft-wall AdS/QCD prediction. The model is consistent with the quark counting rule and Drell-Yan-West relation. The scale evolution of unpolarized parton distribution functions (PDFs) of protons is simulated by making the parameters in the PDF scale dependent. The evolution of the PDFs are reproduced for a wide range of evolution scale. Helicity and transversity distributions for the proton predicted in this model agree with phenomenological fits. The axial and tensor charges are also shown to agree with the experimental data. The model can be used to evaluate distributions like generalized parton distributions, transverse momentum dependent distributions, etc., and their scale evolutions.
Brodsky, Stanley J.; de Teramond, Guy F.
2008-02-04
The AdS/CFT correspondence between string theory in AdS space and conformal field theories in physical space-time leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. The AdS/CFT correspondence also provides insights into the inherently nonperturbative aspects of QCD such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection leads to AdS/CFT predictions for the analytic form of the frame-independent light-front wavefunctions (LFWFs) of mesons and baryons, the fundamental entities which encode hadron properties. The LFWFs in turn predict decay constants and spin correlations, as well as dynamical quantities such as form factors, structure functions, generalized parton distributions, and exclusive scattering amplitudes. Relativistic light-front equations in ordinary space-time are found which reproduce the results obtained using the fifth-dimensional theory and have remarkable algebraic structures and integrability properties. As specific examples we describe the behavior of the pion form factor in the space and time-like regions and determine the Dirac nucleon form factors in the space-like region. An extension to nonzero quark mass is used to determine hadronic distribution amplitudes of all mesons, heavy and light. We compare our results with the moments of the distribution amplitudes which have recently been computed from lattice gauge theory.
Asplund, Erik; Klüner, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.
Flow equations in the light-front QCD mass gap and confinement
Gubankova, E
2000-01-01
The light-front QCD is studied using the method of flow equations. Solving the light-front gluon gap equation, the effective gluon mass is generated dynamically. The effective interaction between static quark and antiquark, generated through elimination of the quark-gluon minimal coupling by flow equations, has the Coulomb, $1/q^2$, and confining, $1/q^4$, singular behavior. Elimination of the quark-gluon coupling at small gluon momenta is governed by the cutoff dependent, dynamical gluon mass, which makes this elimination possible and provides such an enhancement at $q\\sim 0$. The cutoff, which regulates small light-front $x$ divergences, sets up a scale for the dynamical gluon mass and the string tension in the $q\\bar{q}$-potential. The mechanism of confimenemet in the light-front frame is suggested, based on the singular nature of the light-front gauge along the light-front $x$-axis.
Multi-hamiltonian structure of Lotka-Volterra and quantum Volterra models
Cronström, C; Cronström, C; Noga, M
1994-01-01
We consider evolution equations of the Lotka-Volterra type, and elucidate especially their formulation as canonical Hamiltonian systems. The general conditions under which these equations admit several conserved quantities (multi-Hamiltonians) are analysed. A special case, which is related to the Liouville model on a lattice, is considered in detail, both as aclassical and as aquantal system
Recursion relations and scattering amplitudes in the light-front formalism
Cruz-Santiago, Christian A
2013-01-01
The fragmentation functions and scattering amplitudes are investigated in the framework of light-front perturbation theory. It is demonstrated that, the factorization property of the fragmentation functions implies the recursion relations for the off-shell scattering amplitudes which are light-front analogs of the Berends-Giele relations. These recursion relations on the light-front can be solved exactly by induction and it is shown that the expressions for the off-shell light-front amplitudes are represented as a linear combinations of the on-shell amplitudes. By putting external particles on-shell we recover the scattering amplitudes previously derived in the literature.
Non-perturbative Calculation of the Positronium Mass Spectrum in Basis Light-Front Quantization
Wiecki, Paul; Zhao, Xingbo; Maris, Pieter; Vary, James P
2015-01-01
We report on recent improvements to our non-perturbative calculation of the positronium spectrum. Our Hamiltonian is a two-body effective interaction which incorporates one-photon exchange terms, but neglects fermion self-energy effects. This effective Hamiltonian is diagonalized numerically in a harmonic oscillator basis at strong coupling ($\\alpha=0.3$) to obtain the mass eigenvalues. We find that the mass spectrum compares favorably to the Bohr spectrum of non-relativistic quantum mechanics evaluated at this unphysical coupling.
Mathematical Aspects of Quantum Systems with a Pseudo-Hermitian Hamiltonian
Bebiano, N.; da Providência, J.; da Providência, J. P.
2016-04-01
A non-self-adjoint bosonic Hamiltonian H possessing real eigenvalues is investigated. It is shown that the operator can be diagonalized by making use of pseudo-bosonic operators. The biorthogonal sets of eigenvectors for the Hamiltonian and its adjoint are explicitly constructed. The positive definite operator which connects both sets of eigenvectors is also given. The dynamics of the model is briefly analyzed.
Double parton correlations in Light-Front constituent quark models
Rinaldi Matteo
2015-01-01
Full Text Available Double parton distribution functions (dPDF represent a tool to explore the 3D proton structure. They can be measured in high energy proton-proton and proton nucleus collisions and encode information on how partons inside a proton are correlated among each other. dPFDs are studied here in the valence quark region, by means of a constituent quark model, where two particle correlations are present without any additional prescription. This framework allows to understand the dynamical origin of the correlations and to clarify which, among the features of the results, are model independent. Use will be made of a relativistic light-front scheme, able to overcome some drawbacks of the previous calculation. Transverse momentum correlations, due to the exact treatment of the boosts, are predicted and analyzed. The role of spin correlations is also shown. Due to the covariance of the approach, some symmetries of the dPDFs are seen unambigously. For the valence sector, also the study of the QCD evolution of the model results, which can be performed safely thanks to the property of good support, has been also completed.
Light-front Quantized Field Theory Some New Results
Srivastava, P P
1999-01-01
A review is made on some recent studies which support the point of view that the relativistic field theory quantized on the light-front (LF) is more transparent compared to the conventional equal-time one. The discussion may be of relevance in the context of the quantization of gravitation theory. The LF quantization is argued to be equally appropriate as the conventional equal-time one. The description on the LF of the spontaneous symmetry breaking and the (tree level) Higgs mechanism, the emergence of the $\\theta$-vacua in the Schwinger model, the absence of such vacua in the Chiral SM, the BRS-BFT quantization of the latter on the LF are among the topics discussed. Comments on the irrelevance, in the quantized theory, of the fact that the hyperplanes $x^{\\pm}=0$ constitute characteristic surfaces of the hyperbolic partial differential equation are also made. The LF theory quantized on, say, the $x^{+}=const.$ hyperplanes seems to already contain in it the information on the equal-$x^{-}$ commutators as wel...
AdS/QCD and Applications of Light-Front Holography
Brodsky, S. J.; Cao, F. G.; de Teramond, G. F.
2012-01-01
Light-front holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in (3+1)-dimensional physical space-time, thus providing a compelling physical interpretation of the AdS/...
Mandrà, Salvatore; Katzgraber, Helmut G
2016-01-01
We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground-state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians, which introduce transitions between all states with equal weights, are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.
Brodsky, Stanley J.; de Téramond, Guy F.; Deur, Alexandre; Dosch, Hans Günter
2015-09-01
The valence Fock-state wavefunctions of the light-front (LF) QCD Hamiltonian satisfy a relativistic equation of motion, analogous to the nonrelativistic radial Schrödinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. If one requires that the effective action which underlies the QCD Lagrangian remains conformally invariant and extends the formalism of de Alfaro, Fubini and Furlan to LF Hamiltonian theory, the potential U has a unique form of a harmonic oscillator potential, and a mass gap arises. The result is a nonperturbative relativistic LF quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter κ appears. The corresponding LF Dirac equation provides a dynamical and spectroscopic model of nucleons. The same LF equations arise from the holographic mapping of the soft-wall model modification of AdS5 space with a unique dilaton profile to QCD (3+1) at fixed LF time. LF holography thus provides a precise relation between the bound-state amplitudes in the fifth dimension of Anti-de Sitter (AdS) space and the boost-invariant LFWFs describing the internal structure of hadrons in physical space-time. We also show how the mass scale underlying confinement and the masses of light-quark hadrons determines the scale controlling the evolution of the perturbative QCD coupling. The relation between scales is obtained by matching the nonperturbative dynamics, as described by an effective conformal theory mapped to the LF and its embedding in AdS space, to the perturbative QCD regime computed to four-loop order. The data for the effective coupling defined from the Bjorken sum rule are remarkably consistent with the
Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD
Brodsky, Stanley J
2016-01-01
Light-Front Quantization provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-front wavefunctions. One obtains new insights into the hadronic spectrum, light-front wavefunctions, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography -- the duality between the front form and AdS$_5$, the space of isometries of the conformal group. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons of the same parity. The mass scale $\\kappa$ underlying confinement and hadron masses can be connected to the parameter $\\Lambda_{\\overline {MS}}$ in the QCD running coupling by matching the nonperturbative dynamics, as described by the effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The...
Mochon, C
2006-01-01
Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this paper, including oracle interrogation and the problem of computing the XOR of the hidden bits. Both of these problems are related to the study of geodesics on spheres with non-round metrics. For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a simple lower bound is proven that shows the problems require a query time proportional to n, even in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to a modest improvement to the protocol of Farhi and Gutmann.
The $SW(3/2,2)$ superconformal algebra via a Quantum Hamiltonian Reduction of $osp(3|2)$
Díaz, Lázaro O Rodríguez
2016-01-01
We prove that the family of non-linear $W$-algebras $SW(3/2,2)$ which are extensions of the $N=1$ superconformal algebra by a primary supercurrent of conformal weight $2$ can be realized as a quantum Hamiltonian reduction of the Lie superalgebra $osp(3|2)$. In consequence we obtain an explicit free field realization of the algebra in terms of the screening operators. At central charge $c=12$ the $SW(3/2,2)$ superconformal algebra corresponds to the superconformal algebra associated to sigma models based on eight-dimensional manifolds with special holonomy $Spin(7)$, i.e., the Shatashvili-Vafa $Spin(7)$ superconformal algebra.
Liu, Rui; Xiong, Hongwei; Yang, Minghui
2012-11-07
An eight-dimensional quantum mechanical Hamiltonian has been proposed based on Palma and Clary's model in which the non-reacting CZ(3) group keeps a C(3v) symmetry in the X + YCZ(3) ↔ XY + CZ(3) reaction J. Palma and D. C. Clary [J. Chem. Phys. 112, 1859 (2000)]. By transforming the original cartesian coordinate system (x, s) into a scaled polar coordinate system (q, γ), the vibrational Hamiltonian of CZ(3) group is expressed in a simple form with a clear physical picture. This Hamiltonian is used to investigate the H + CH(4) → H(2) + CH(3) reaction on the Jordan-Gilbert potential energy surface. The total reaction probabilities are calculated for the initial ground state, and umbrella, bending, symmetric, and asymmetric stretching excited states of CH(4) with total angular momentum J = 0. The integral cross sections for the reaction are also studied for these initial vibrational states with a centrifugal-sudden approximation. The total integral cross sections for the asymmetric stretching vibrational excited state are in good agreement with the experimental observations. The results also showed the difference of dynamical behavior between reactions from symmetric and asymmetric stretching excited states. The thermal rate constants are calculated for the temperature range T = 250-2000 K and compared with the experimental and other theoretical results.
Torres-Herrera, E J; Santos, Lea F
2013-10-01
We explore the role of the initial state on the onset of thermalization in isolated quantum many-body systems after a quench. The initial state is an eigenstate of an initial Hamiltonian H(I) and it evolves according to a different final Hamiltonian H(F). If the initial state has a chaotic structure with respect to H(F), i.e., if it fills the energy shell ergodically, thermalization is certain to occur. This happens when H(I) is a full random matrix, because its states projected onto H(F), are fully delocalized. The results for the observables then agree with those obtained with thermal states at infinite temperature. However, finite real systems with few-body interactions, as the ones considered here, are deprived of fully extended eigenstates, even when described by a nonintegrable Hamiltonian. We examine how the initial state delocalizes as it gets closer to the middle of the spectrum of H(F), causing the observables to approach thermal averages, be the models integrable or chaotic. Our numerical studies are based on initial states with energies that cover the entire lower half of the spectrum of one-dimensional Heisenberg spin-1/2 systems.
Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.
2017-09-01
The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.
Quantum Simulation of Pairing Hamiltonians with Nearest-Neighbor Interacting Qubits
Wang, Zhixin; Gu, Xiu; Wu, Lian-Ao; Liu, Yu-xi
2014-01-01
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement "quantum simulators". Quantum simulators are physical setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulat...
The Higgs oscillator on the hyperbolic plane and Light-Front Holography
Pallares-Rivera, A
2014-01-01
The Light Front Holographic (LFH) wave equation, which is the conformal scalar equation on the plane, is revisited from the perspective of the supersymmetric quantum mechanics, and attention is drawn to the fact that it naturally emerges in the small hyperbolic angle approximation to the "curved" Higgs oscillator on the hyperbolic plane, i.e. on the upper part of the two-dimensional hyperboloid of two sheets, H_{+R}^2, a space of constant negative curvature, (-1/R^2). Such occurs because the particle dynamics under consideration reduces to the one dimensional Schroedinger equation with the second hyperbolic Poeschl-Teller potential, whose flat-space (small-angle) limit equals the conformally invariant inverse square distance plus harmonic oscillator interaction, on which LFH is based. In consequence, energies and wave functions of the LFH spectrum can be approached by the solutions of the Higgs oscillator on the hyperbolic plane in employing its curvature and the potential strength as fitting parameters. Also...
Nucleon-generalized parton distributions in the light-front quark model
Neetika Sharma
2016-02-01
We calculate the generalized parton distributions (GPDs) for the up- and downquarks in nucleon using the effective light-front wavefunction. The results obtained for GPDs in momentum and impact parameter space are comparable with phenomenological parametrization methods.
Olsen, Seth
2012-01-01
We propose a single effective Hamiltonian to describe the low-energy electronic structure of a series of symmetric cationic diarylmethanes, which are all bridge-substituted derivatives of Michler's Hydrol Blue. Three-state diabatic Hamiltonians for the dyes are calculated using four-electron three-orbital state-averaged complete active space self-consistent field and multi-state multi-reference perturbation theory models. The approach takes advantage of an isolobal analogy that can be established between the orbitals spanning the active spaces of the different substituted dyes. The solutions of the chemical problem are expressed in a diabatic Hilbert space that is analogous to classical resonance models. The effective Hamiltonians for all dyes can be fit to a single functional form that depends on the mixing angle between a bridge-charged diabatic state and a superposition representing the canonical resonance. We find that the structure of the bridge-charged state changes in a regular fashion across the serie...
Asymptotic freedom in the front-form Hamiltonian for quantum chromodynamics of gluons
Gomez-Rocha, Maria
2015-01-01
Asymptotic freedom of gluons in QCD is obtained in the leading terms of their renormalized Hamiltonian in the Fock space, instead of considering virtual Green's functions or scattering amplitudes. Namely, we calculate the three-gluon interaction term in the front-form Hamiltonian for effective gluons in the Minkowski space-time using the renormalization group procedure for effective particles (RGPEP), with a new generator. The resulting three-gluon vertex is a function of the scale parameter, $s$, that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant, $g_\\lambda$, depending on the associated momentum scale $\\lambda = 1/s$, is calculated in the series expansion in powers of $g_0 = g_{\\lambda_0}$ up to the terms of third order, assuming some small value for $g_0$ at some large $\\lambda_0$. The result exhibits the same finite sensitivity to small-$x$ regularization as the one obtained in an earlier RGPEP calculation, but the new calculation is simpler...
New effective treatment of the light-front nonvalence contribution in timelike exclusive processes
Ji, C R; Ji, Chueng-Ryong; Choi, Ho-Meoyng
2001-01-01
We discuss a necessary nonvalence contribution in timelike exclusive processes. Following a Schwinger-Dyson type of approach, we relate the nonvalence contribution to an ordinary light-front wave function that has been extensively tested in the spacelike exclusive processes. A complicate four-body energy denominator is exactly cancelled in summing the light-front time-ordered amplitudes. Applying our method to $K_{\\ell3}$ and $D^0\\to K^- \\ell^+ \
Light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions
Wells, J.C. [Oak Ridge National Lab., TN (United States). Center for Computational Sciences; Segev, B. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States). Inst. for Theoretical Atomic and Molecular Physics
1998-03-01
The authors solve, in an ultrarelativistic limit, the time-dependent Dirac equation describing electron-positron pair production in peripheral relativistic heavy ion collisions using light front variables and a light-fronts representation, obtaining nonperturbative results for the free pair-creation amplitudes in the collider frame. Their result reproduces the result of second-order perturbation theory in the small charge limit while nonperturbative effects arise for realistic charges of the ions.
Transformation design and nonlinear Hamiltonians
Brougham, Thomas; Jex, Igor
2009-01-01
We study a class of nonlinear Hamiltonians, with applications in quantum optics. The interaction terms of these Hamiltonians are generated by taking a linear combination of powers of a simple `beam splitter' Hamiltonian. The entanglement properties of the eigenstates are studied. Finally, we show how to use this class of Hamiltonians to perform special tasks such as conditional state swapping, which can be used to generate optical cat states and to sort photons.
Anisimov, Victor M; Cavasotto, Claudio N
2011-06-23
To build the foundation for accurate quantum mechanical (QM) simulation of biomacromolecules in an aqueous environment, we undertook the optimization of the COnductor-like Screening MOdel (COSMO) atomic radii and atomic surface tension coefficients for different semiempirical Hamiltonians adhering to the same computational conditions recently followed in the simulation of biomolecular systems. This optimization was achieved by reproducing experimental hydration free energies of a set consisting of 507 neutral and 99 ionic molecules. The calculated hydration free energies were significantly improved by introducing a multiple atomic-type scheme that reflects different chemical environments. The nonpolar contribution was treated according to the scaled particle Claverie-Pierotti formalism. Separate radii and surface tension coefficient sets have been developed for AM1, PM3, PM5, and RM1 semiempirical Hamiltonians, with an average unsigned error for neutral molecules of 0.64, 0.66, 0.73, and 0.71 kcal/mol, respectively. Free energy calculation of each molecule took on average 0.5 s on a single processor. The new sets of parameters will enhance the quality of semiempirical QM calculations using COSMO in biomolecular systems. Overall, these results further extend the utility of QM methods to chemical and biological systems in the condensed phase.
Spectral and Quantum Dynamical Properties of the Weakly Coupled Fibonacci Hamiltonian
Damanik, David; Gorodetski, Anton
2010-01-01
We consider the spectrum of the Fibonacci Hamiltonian for small values of the coupling constant. It is known that this set is a Cantor set of zero Lebesgue measure. Here we study the limit, as the value of the coupling constant approaches zero, of its thickness and its Hausdorff dimension. We prove that the thickness tends to infinity and, consequently, the Hausdorff dimension of the spectrum tends to one. We also show that at small coupling, all gaps allowed by the gap labeling theorem are o...
Filippone, Michele; Brouwer, Piet W.
2016-12-01
Tunneling between a point contact and a one-dimensional wire is usually described with the help of a tunneling Hamiltonian that contains a δ function in position space. Whereas the leading-order contribution to the tunneling current is independent of the way this δ function is regularized, higher-order corrections with respect to the tunneling amplitude are known to depend on the regularization. Instead of regularizing the δ function in the tunneling Hamiltonian, one may also obtain a finite tunneling current by invoking the ultraviolet cutoffs in a field-theoretic description of the electrons in the one-dimensional conductor, a procedure that is often used in the literature. For the latter case, we show that standard ultraviolet cutoffs lead to different results for the tunneling current in fermionic and bosonized formulations of the theory, when going beyond leading order in the tunneling amplitude. We show how to recover the standard fermionic result using the formalism of functional bosonization and revisit the tunneling current to leading order in the interacting case.
Swenson, David W H; Levy, Tal; Cohen, Guy; Rabani, Eran; Miller, William H
2011-04-28
A semiclassical approach is developed for nonequilibrium quantum transport in molecular junctions. Following the early work of Miller and White [J. Chem. Phys. 84, 5059 (1986)], the many-electron Hamiltonian in second quantization is mapped onto a classical model that preserves the fermionic character of electrons. The resulting classical electronic Hamiltonian allows for real-time molecular dynamics simulations of the many-body problem from an uncorrelated initial state to the steady state. Comparisons with exact results generated for the resonant level model reveal that a semiclassical treatment of transport provides a quantitative description of the dynamics at all relevant timescales for a wide range of bias and gate potentials, and for different temperatures. The approach opens a door to treating nontrivial quantum transport problems that remain far from the reach of fully quantum methodologies.
Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
Tamás Fülöp
2007-11-01
Full Text Available For a class of singular potentials, including the Coulomb potential (in three and less dimensions and $V(x = g/x^2$ with the coefficient $g$ in a certain range ($x$ being a space coordinate in one or more dimensions, the corresponding Schrödinger operator is not automatically self-adjoint on its natural domain. Such operators admit more than one self-adjoint domain, and the spectrum and all physical consequences depend seriously on the self-adjoint version chosen. The article discusses how the self-adjoint domains can be identified in terms of a boundary condition for the asymptotic behaviour of the wave functions around the singularity, and what physical differences emerge for different self-adjoint versions of the Hamiltonian. The paper reviews and interprets known results, with the intention to provide a practical guide for all those interested in how to approach these ambiguous situations.
Sardar, Subhankar; Paul, Amit Kumar; Mondal, Padmabati; Sarkar, Biplab; Adhikari, Satrajit
2008-11-14
We are investigating the molecular dynamics of the butatriene cation after excitation from the ground state (X(2)B(2g)) to the first excited electronic state (A(2)B(2u)) by using the time-dependent discrete variable representation (TDDVR) method. The investigation is being carried out with a realistic 18-mode model Hamiltonian consisting of all the vibrational degrees of freedom of the butatriene molecule. First, we perform the simulation on a basic five mode model, and then by including additional thirteen modes as bath on the basic model. This sequential inclusion of bath modes demonstrates the effect of so called weak modes on the subsystem, where the calculations of energy and population transfer from the basic model to the bath quantify the same effect. The spectral profile obtained by using the TDDVR approach shows reasonably good agreement with the results calculated by the quantum mechanical approach/experimental measurement. It appears that the TDDVR approach for those large systems where quantum mechanical description is needed in a restricted region, is a good compromise between accuracy and speed.
Path Integrals and Hamiltonians
Baaquie, Belal E.
2014-03-01
1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.
Baykara, N. A. [Marmara University, Faculty of Sciences and Letters, Mathematics Department, Göztepe Campus, 34730, Istanbul (Turkey)
2015-12-31
Recent studies on quantum evolutionary problems in Demiralp’s group have arrived at a stage where the construction of an expectation value formula for a given algebraic function operator depending on only position operator becomes possible. It has also been shown that this formula turns into an algebraic recursion amongst some finite number of consecutive elements in a set of expectation values of an appropriately chosen basis set over the natural number powers of the position operator as long as the function under consideration and the system Hamiltonian are both autonomous. This recursion corresponds to a denumerable infinite number of algebraic equations whose solutions can or can not be obtained analytically. This idea is not completely original. There are many recursive relations amongst the expectation values of the natural number powers of position operator. However, those recursions may not be always efficient to get the system energy values and especially the eigenstate wavefunctions. The present approach is somehow improved and generalized form of those expansions. We focus on this issue for a specific system where the Hamiltonian is defined on the coordinate of a curved space instead of the Cartesian one.
Isovector meson-exchange currents in the light-front dynamics
Desplanques, B. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Karmanov, V.A. [Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires; Mathiot, J.F. [Division de Physique Theorique, Institut de Physique Nucleaire, F-91406 Orsay Cedex (France)
1995-07-17
In the light-front dynamics, there is no pair term that plays the role of the dominant isovector pion exchange current. This current gives rise to the large and experimentally observed contribution to the deuteron electrodisintegration cross-section near threshold for pseudo-scalar {pi}NN coupling. We show analytically that in leading 1/m order the amplitude in the light-front dynamics coincides, however, with the one given by the pair term. At high Q{sup 2}, it consists of two equal parts. One comes from extra components of the deuteron and final state relativistic wave functions. The other results from the contact NN{pi}{gamma} interaction which appears in the light-front dynamics. This provides a transparent link between relativistic and non-relativistic approaches. ((orig.)).
Light-front representation of chiral dynamics in peripheral transverse densities
Granados, C
2015-01-01
The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances $b = O(M_\\pi^{-1})$ the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantiz...
Light-front projection of spin-1 electromagnetic current and zero-modes
Melo, J.P.B.C. de [Laboratorio de Fisica Teorica e Computacao Cientifica - LFTC, Universidade Cruzeiro do Sul, 01506-000 Sao Paulo, SP (Brazil); Frederico, T., E-mail: tobias@ita.br [Instituto Tecnologico de Aeronautica, DCTA, 12.228-900 Sao Jose dos Campos, SP (Brazil)
2012-02-14
The issue of the contribution of zero-modes to the light-front projection of the electromagnetic current of phenomenological models of vector particles vertices is addressed in the Drell-Yan frame. Our analytical model of the Bethe-Salpeter amplitude of a spin-1 fermion-antifermion composite state gives a physically motivated light-front wave function symmetric by the exchange of the fermion and antifermion, as in the {rho}-meson case. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the 0{yields}0 one carries zero-mode contributions. Our derivation generalizes to symmetric models, important for applications, the above conclusion found for a simplified non-symmetrical form of the spin-1 Bethe-Salpeter amplitude with photon-fermion point-like coupling and also for a smeared fermion-photon vertex model.
Light-Front projection of spin-1 electromagnetic current and zero-modes
de Melo, J P B C; 10.1016/j.physletb.2012.01.021
2012-01-01
The issue of the contribution of zero-modes to the light-front projection of the electromagnetic current of phenomenological models of vector particles vertices is addressed in the Drell-Yan frame. Our analytical model of the Bethe-Salpeter amplitude of a spin-1 fermion-antifermion composite state gives a physically motivated light-front wave function symmetric by the exchange of the fermion and antifermion, as in the $\\rho$-meson case. We found that among the four independent matrix elements of the plus component in the light-front helicity basis only the $0\\to 0$ one carries zero mode contributions. Our derivation generalizes to symmetric models, important for applications, the above conclusion found for a simplified non-symmetrical form of the spin-1 Bethe-Salpeter amplitude with photon-fermion point-like coupling and also for a smeared fermion-photon vertex model.
Hamiltonian Truncation Study of Supersymmetric Quantum Mechanics: S-Matrix and Metastable States
Balthazar, Bruno; Yin, Xi
2016-01-01
We implement the Rayleigh-Ritz method in supersymmetric quantum mechanics with flat directions, and extract the S-matrix and metastable resonances. The effectiveness of the method is demonstrated in two strongly coupled systems: an N=1 toy supermembrane model, and an N=4 model with a U(1) gauge multiplet and a charged chiral multiplet.
Hamiltonian finite-temperature quantum field theory from its vacuum on partially compactified space
Reinhardt, Hugo
2016-01-01
The partition function of a relativistic invariant quantum field theory is expressed by its vacuum energy calculated on a spatial manifold with one dimension compactified to a 1-sphere $S^1 (\\beta)$, whose circumference $\\beta$ represents the inverse temperature. Explicit expressions for the usual energy density and pressure in terms of the energy density on the partially compactified spatial manifold $\\mathbb{R}^2 \\times S^1 (\\beta)$ are derived. To make the resulting expressions mathematically well-defined a Poisson resummation of the Matsubara sums as well as an analytic continuation in the chemical potential are required. The new approach to finite-temperature quantum field theories is advantageous in a Hamilton formulation since it does not require the usual thermal averages with the density operator. Instead, the whole finite-temperature behaviour is encoded in the vacuum wave functional on the spatial manifold $\\mathbb{R}^2 \\times S^1 (\\beta)$. We illustrate this approach by calculating the pressure of...
Biswas, P K; Gogonea, Valentin
2008-10-21
We present an ab initio polarizable representation of classical molecular mechanics (MM) atoms by employing an angular momentum-based expansion scheme of the point charges into partial wave orbitals. The charge density represented by these orbitals can be fully polarized, and for hybrid quantum-mechanical-molecular-mechanical (QM/MM) calculations, mutual polarization within the QM/MM Hamiltonian can be obtained. We present the mathematical formulation and the analytical expressions for the energy and forces pertaining to the method. We further develop a variational scheme to appropriately determine the expansion coefficients and then validate the method by considering polarizations of ions by the QM system employing the hybrid GROMACS-CPMD QM/MM program. Finally, we present a simpler prescription for adding isotropic polarizability to MM atoms in a QM/MM simulation. Employing this simpler scheme, we present QM/MM energy minimization results for the classic case of a water dimer and a hydrogen sulfide dimer. Also, we present single-point QM/MM results with and without the polarization to study the change in the ionization potential of tetrahydrobiopterin (BH(4)) in water and the change in the interaction energy of solvated BH(4) (described by MM) with the P(450) heme described by QM. The model can be employed for the development of an extensive classical polarizable force-field.
Thompson, J. D.; McClarty, P. A.; Prabhakaran, D.; Cabrera, I.; Guidi, T.; Coldea, R.
2017-08-01
The frustrated pyrochlore magnet Yb2 Ti2 O7 has the remarkable property that it orders magnetically but has no propagating magnons over wide regions of the Brillouin zone. Here we use inelastic neutron scattering to follow how the spectrum evolves in cubic-axis magnetic fields. At high fields we observe, in addition to dispersive magnons, a two-magnon continuum, which grows in intensity upon reducing the field and overlaps with the one-magnon states at intermediate fields leading to strong renormalization of the dispersion relations, and magnon decays. Using heat capacity measurements we find that the low- and high-field regions are smoothly connected with no sharp phase transition, with the spin gap increasing monotonically in field. Through fits to an extensive data set of dispersion relations combined with magnetization measurements, we reevaluate the spin Hamiltonian, finding dominant quantum exchange terms, which we propose are responsible for the anomalously strong fluctuations and quasiparticle breakdown effects observed at low fields.
Light-Front Quark Model Analysis of Meson-Photon Transition Form Factor
Choi, Ho-Meoyng
2016-01-01
We discuss $(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma$ transition form factors using the light-front quark model. Our discussion includes the analysis of the mixing angles for $\\eta-\\eta'$. Our results for $Q^2 F_{(\\pi^0,\\eta,\\eta')\\to\\gamma^*\\gamma}(Q^2)$ show scaling behavior for high $Q^2$ consistent with pQCD predictions.
Exploring the Hamiltonian inversion landscape.
Donovan, Ashley; Rabitz, Herschel
2014-08-07
The identification of quantum system Hamiltonians through the use of experimental data remains an important research goal. Seeking a Hamiltonian that is consistent with experimental measurements constitutes an excursion over a Hamiltonian inversion landscape, which is the quality of reproducing the data as a function of the Hamiltonian parameters. Recent theoretical work showed that with sufficient experimental data there should be local convexity about the true Hamiltonian on the landscape. The present paper builds on this result and performs simulations to test whether such convexity is observed. A gradient-based Hamiltonian search algorithm is incorporated into an inversion routine as a means to explore the local inversion landscape. The simulations consider idealized noise-free as well as noise-ridden experimental data. The results suggest that a sizable convex domain exists about the true Hamiltonian, even with a modest amount of experimental data and in the presence of a reasonable level of noise.
Prosen, T
1995-01-01
The recently developed quantum surface of section method is applied to a search for extremely high-lying energy levels in a simple but generic Hamiltonian system between integrability and chaos, namely the semiseparable 2-dim oscillator. Using the stretch of 13,445 consecutive levels with the sequential number around 1.8\\cdot 10^7 (eighteen million) we have clearly demonstrated the validity of the semiclassical Berry-Robnik level spacing distribution while at 1000 times smaller sequential quantum numbers we find the very persistent quasi universal phenomenon of power-law level repulsion which is globally very well described by the Brody distribution.
Running Couplings in Hamiltonians
Glazek, S D
2000-01-01
We describe key elements of the perturbative similarity renormalization group procedure for Hamiltonians using two, third-order examples: phi^3 interaction term in the Hamiltonian of scalar field theory in 6 dimensions and triple-gluon vertex counterterm in the Hamiltonian of QCD in 4 dimensions. These examples provide insight into asymptotic freedom in Hamiltonian approach to quantum field theory. The renormalization group procedure also suggests how one may obtain ultraviolet-finite effective Schrödinger equations that correspond to the asymptotically free theories, including transition from quark and gluon to hadronic degrees of freedom in case of strong interactions. The dynamics is invariant under boosts and allows simultaneous analysis of bound state structure in the rest and infinite momentum frames.
New Variables for Classical and Quantum Gravity in all Dimensions I. Hamiltonian Analysis
Bodendorfer, Norbert; Thurn, Andreas
2011-01-01
Loop Quantum Gravity heavily relies on a connection formulation of General Relativity such that 1. the connection Poisson commutes with itself and 2. the corresponding gauge group is compact. This can be achieved starting from the Palatini or Holst action when imposing the time gauge. Unfortunately, this method is restricted to D+1 = 4 spacetime dimensions. However, interesting String theories and Supergravity theories require higher dimensions and it would therefore be desirable to have higher dimensional Supergravity loop quantisations at one's disposal in order to compare these approaches. In this series of papers, we take first steps towards this goal. The present first paper develops a classical canonical platform for a higher dimensional connection formulation of the purely gravitational sector. The new ingredient is a different extension of the ADM phase space than the one used in LQG, which does not require the time gauge and which generalises to any dimension D > 1. The result is a Yang-Mills theory ...
Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD
Brodsky, Stanley J.
2016-08-01
Light-Front Quantization—Dirac's "Front Form"—provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-front wavefunctions. One obtains new insights into the hadronic spectrum, light-front wavefunctions, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography—the duality between the front form and AdS5, the space of isometries of the conformal group. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons of the same parity. The mass scale {κ} underlying confinement and hadron masses can be connected to the parameter {Λ_{overline {MS}}} in the QCD running coupling by matching the nonperturbative dynamics, as described by the effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The result is an effective coupling defined at all momenta. This matching of the high and low momentum transfer regimes determines a scale Q 0 which sets the interface between perturbative and nonperturbative hadron dynamics. The use of Q 0 to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the causal, frame-independent front form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with the momentum and other sum rules for nuclear parton distribution functions.
Cohen, Doron
2000-08-01
We make the first steps toward a generic theory for energy spreading and quantum dissipation. The Wall formula for the calculation of friction in nuclear physics and the Drude formula for the calculation of conductivity in mesoscopic physics can be regarded as two special results of the general formulation. We assume a time-dependent Hamiltonian H(Q, P; x(t)) with x(t)=Vt, where V is slow in a classical sense. The rate-of-change V is not necessarily slow in the quantum-mechanical sense. The dynamical variables (Q, P) may represent some "bath" which is being parametrically driven by x. This bath may consist of just a few degrees of freedom, but it is assumed to be classically chaotic. In the case of either the Wall or Drude formula, the dynamical variables (Q, P) may represent a single particle. In any case, dissipation means an irreversible systematic growth of the (average) energy. It is associated with the stochastic spreading of energy across levels. The latter can be characterized by a transition probability kernel Pt(n ∣ m), where n and m are level indices. This kernel is the main object of the present study. In the classical limit, due to the (assumed) chaotic nature of the dynamics, the second moment of Pt(n ∣ m) exhibits a crossover from ballistic to diffusive behavior. In order to capture this crossover within quantum mechanics, a proper theory for the quantal Pt(n ∣ m) should be constructed. We define the V regimes where either perturbation theory or semiclassical considerations are applicable in order to establish this crossover. In the limit ℏ→0 perturbation theory does not apply but semiclassical considerations can be used in order to argue that there is detailed correspondence, during the crossover time, between the quantal and the classical Pt(n ∣ m). In the perturbative regime there is a lack of such correspondence. Namely, Pt(n ∣ m) is characterized by a perturbative core-tail structure that persists during the crossover time. In
ZHANGLi; Hong-Jing; CHENChuan-Yu
2003-01-01
By using determinant method as in our recent work, the IO phonon modes, the orthogonal relation for polarization vector, electron-IO phonon F~6hlich interaction Hamiltonian, the dispersion relation, and the electron-phonon coupling function in an arbitrary layer-number quantum well system have been derived and investigated within the framework of dielectric continuum approximation. Numerical calculation on seven-layer AlxGal-xAs/GaAs systems have been performed. Via the numerical results in this work and previous works, the general characters of the IO phonon modes in an n-layer coupling quantum well system were concluded and summarized. This work can be regarded as a generalization of previous works on IO phonon modes in some fLxed layer-number quantum well systems, and it provides a uniform method to investittate the effects of IO phonons on the multi-layer coupling quantum well systems.
Interpolating Helicity Spinors Between the Instant Form and the Light-front Form
Li, Ziyue; Ji, Chueng-Ryong
2015-01-01
We discuss the helicity spinors interpolating between the instant form dynamics (IFD) and the front form dynamics, or the light-front dynamics (LFD), and present the interpolating helicity amplitudes as well as their squares for the scattering of two fermions, and the annihilation of fermion and anti-fermion. We parametrize the interpolation between the two dynamics, IFD and LFD, by an interpolation angle and derive not only the generalized helicity spinors in the $(0,J)\\oplus(J,0)$ chiral representation that links naturally the two typical IFD vs. LFD helicity spinors but also the generalized Melosh transformation that relates these generalized helicity spinors to the usual Dirac spinors. Analyzing the directions of the particle momentum and spin with the variation of the interpolation angle, we inspect the whole landscape of the generalized helicity intermediating between the usual Jacob-Wick helicity in the IFD and the light-front helicity in the LFD. Our analysis clarifies the characteristic difference of...
A Light-Front approach to the $^3$He spectral function
Scopetta, Sergio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni
2014-01-01
The analysis of semi-inclusive deep inelastic electron scattering off polarized $^3$He at finite momentum transfers, aimed at the extraction of the quark transverse-momentum distributions in the neutron, requires the use of a distorted spin-dependent spectral function for $^3$He, which takes care of the final state interaction effects. This quantity is introduced in the non-relativistic case, and its generalization in a Poincar\\'e covariant framework, in plane wave impulse approximation for the moment being, is outlined. Studying the light-front spin-dependent spectral function for a J=1/2 system, such as the nucleon, it is found that, within the light-front dynamics with a fixed number of constituents and in the valence approximation, only three of the six leading twist T-even transverse-momentum distributions are independent.
Calculation of the Isgur-Wise function from a light-front constituent quark model
Simula, S
1996-01-01
The space-like elastic form factor of heavy-light pseudoscalar mesons is investigated within a light-front constituent quark model in order to evaluate the Isgur-Wise form factor. The relativistic composition of the constituent quark spins is properly taken into account using the Melosh rotations, and various heavy-meson wave function are considered, including the eigenfunctions of an effective light-front mass operator reproducing meson mass spectra. It is shown that in a wide range of values of the recoil the Isgur-Wise form factor exhibits a moderate dependence upon the choice of the heavy-meson wave function and is mainly governed by the effects of the confinement scale.
$\\pi^0\\to\\gamma^*\\gamma$ transition form factor within Light Front Quark Model
Lih, Chong-Chung
2012-01-01
We study the transition form factor of $\\pi^0\\to\\gamma^* \\gamma$ as a function of the momentum transfer $Q^2$ within the light-front quark model (LFQM). We compare our result with the experimental data by BaBar as well as other calculations based on the LFQM in the literature. We show that our predicted form factor fits well with the experimental data, particularly those at the large $Q^2$ region.
Study of pesudoscalar transition form factors within light front quark model
Geng, Chao-Qiang
2012-01-01
We study the transition form factors of the pesudoscalar mesons ($\\pi,\\eta$ and $\\eta^{\\prime}$) as functions of the momentum transfer $Q^2$ within the light-front quark model. We compare our results with the recent experimental data by CELLO, CLEO, BaBar and Belle. By considering the possible uncertainties from the quark masses, we illustrate that our predicted form factors can fit with all the data, including those at the large $Q^2$ regions.
In-Medium Pion Valence Distributions in a Light-Front Model
de Melo, J P B C; Ahmed, I
2016-01-01
Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valence distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
Electromagnetic structure and weak decay of meson K in a light-front QCD-inspired
Pereira, Fabiano P; Frederico, T; Tomio, Lauro
2007-01-01
The kaon electromagnetic (e.m.) form factor is reviewed considering a light-front constituent quark model. In this approach, it is discussed the relevance of the quark-antiquark pair terms for the full covariance of the e.m. current. It is also verified, by considering a QCD dynamical model, that a good agreement with experimental data can be obtained for the kaon weak decay constant once a probability of about 80% of the valence component is taken into account.
Nonperturbative Strange Sea in Proton Using Wave Functions Inspired by Light Front Holography
Vega, Alfredo; Schmidt, Ivan; Gutsche, Thomas; Lyubovitskij, Valery E.
2017-03-01
We use different light-front wave functions (two inspired by the AdS/QCD formalism), together with a model of the nucleon in terms of meson-baryon fluctuations to calculate the nonperturbative (intrinsic) contribution to the s(x) - bar{s}(x) asymmetry of the proton sea. The holographic wave functions for an arbitrary number of constituents, recently derived by us, give results quite close to known parametrizations that appear in the literature.
Solutions of Bethe-Salpeter and Light-Front equations with cross-ladder kernel
Carbonell, J
2005-01-01
By method developed in our previous paper we solve the Bethe-Salpeter (BS) equation for the kernel given by sum of ladder and cross-ladder exchanges. We solve also corresponding equation in light-front dynamics (LFD), where we add the time-ordered stretched boxes. Cross-ladder contribution is large and attractive, whereas the influence of stretched boxes is negligible. Both approaches -- BS and LFD -- give very close results.
Bonatsos, D; Raychev, P P; Terziev, P A; Bonatsos, Dennis
2003-01-01
The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational molecular spectra is explicitly proved and a connection of this Hamiltonian to the formalism of Amal'sky is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITOs) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved and a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced. Numerical tests against an experimental rotational band of HF are provided.
Revisiting radiative decays of $1^{+-}$ heavy quarkonia in the covariant light-front approach
Shi, Yan-Liang
2016-01-01
We revisit the calculation of the width for the radiative decay of a $1^{+-}$ heavy $Q \\bar Q$ meson via the channel $1^{+-} \\to 0^{-+} +\\gamma$ in the covariant light-front quark model. We carry out the reduction of the light-front amplitude in the non-relativistic limit, explicitly computing the leading and next-to-leading order relativistic corrections. This shows the consistency of the light-front approach with the non-relativistic formula for this electric dipole transition. Furthermore, the theoretical uncertainty in the predicted width is studied as a function of the inputs for the heavy quark mass and wavefunction structure parameter. We analyze the specific decays $h_{c}(1P) \\to \\eta_{c}(1S) + \\gamma$ and $h_{b}(1P) \\to \\eta_{b}(1S) + \\gamma$. We compare our results with experimental data and with other theoretical predictions from calculations based on non-relativistic models and their extensions to include relativistic effects, finding reasonable agreement.
The vacuum structure of light-front $\\phi^{4}_{1+1}$-theory
Heinzl, T; Werner, E; Zellermann, B
1995-01-01
We discuss the vacuum structure of \\phi^4-theory in 1+1 dimensions quantised on the light-front x^+ =0. To this end, one has to solve a non-linear, operator-valued constraint equation. It expresses that mode of the field operator having longitudinal light-front momentum equal to zero, as a function of all the other modes in the theory. We analyse whether this zero mode can lead to a non-vanishing vacuum expectation value of the field \\phi and thus to spontaneous symmetry breaking. In perturbation theory, we get no symmetry breaking. If we solve the constraint, however, non-perturbatively, within a mean-field type Fock ansatz, the situation changes: while the vacuum state itself remains trivial, we find a non-vanishing vacuum expectation value above a critical coupling. Exactly the same result is obtained within a light-front Tamm-Dancoff approximation, if the renormalisation is done in the correct way.
Revisiting radiative decays of 1{sup +-} heavy quarkonia in the covariant light-front approach
Shi, Yan-Liang [Stony Brook University, C. N. Yang Institute for Theoretical Physics, Stony Brook, NY (United States)
2017-04-15
We revisit the calculation of the width for the radiative decay of a 1{sup +-} heavy Q anti Q meson via the channel 1{sup +-} → 0{sup -+}+γ in the covariant light-front quark model. We carry out the reduction of the light-front amplitude in the non-relativistic limit, explicitly computing the leading and next-to-leading order relativistic corrections. This shows the consistency of the light-front approach with the non-relativistic formula for this electric dipole transition. Furthermore, the theoretical uncertainty in the predicted width is studied as a function of the inputs for the heavy-quark mass and wave function structure parameter. We analyze the specific decays h{sub c}(1P) → η{sub c}(1S) + γ and h{sub b}(1P) → η{sub b}(1S) + γ. We compare our results with experimental data and with other theoretical predictions from calculations based on non-relativistic models and their extensions to include relativistic effects, finding reasonable agreement. (orig.)
Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines
Cruz-Santiago, C.; Kotko, P.; Staśto, A. M.
2015-06-01
We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a correspondence between the light-front methods for the computation of the off-shell amplitudes and the approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous terms in the light-front graphs.
Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines
Cruz-Santiago, C; Stasto, A
2015-01-01
We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a correspondence between the light-front methods for the computation of the off-shell amplitudes and the approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous terms in the light-front graphs.
Recursion relations for multi-gluon off-shell amplitudes on the light-front and Wilson lines
C. Cruz-Santiago
2015-06-01
Full Text Available We analyze the off-shell scattering amplitudes in the framework of the light-front perturbation theory. It is shown that the previously derived recursion relation between tree level off-shell amplitudes in this formalism actually resums whole classes of graphs into a Wilson line. More precisely, we establish a correspondence between the light-front methods for the computation of the off-shell amplitudes and the approach which makes use of the matrix elements of straight infinite Wilson lines, which are manifestly gauge invariant objects. Furthermore, since it is needed to explicitly verify the gauge invariance of light-front amplitudes, it is demonstrated that the Ward identities in this framework need additional instantaneous terms in the light-front graphs.
Suisso, E F; Frederico, T
2003-01-01
The ground state masses and binding energies of the nucleon, $\\Lambda^0$, $\\Lambda^+_c$, $\\Lambda^0_b$ are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the $Qqq$ composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.
Zieliński, M.
2012-09-01
A method for inclusion of strain into the tight-binding Hamiltonian is presented. This approach bridges from bulk strain to the atomistic language of bond lengths and angles, and features a diagonal parameters shift in a form suitable for atomistic calculation of million atom nanosystems with a small number of empirical parameters. I illustrate this method by calculating electronic and optical properties of self-assembled InAs/(InP,GaAs) lens-shaped quantum dots. A very different structure of confined quantum dots states is shown, depending on the matrix material and inclusion of strain effects. Results are compared with the well-established empirical pseudopotential method, and reasonable agreement is found.
Hamiltonian monodromy as lattice defect
Zhilinskii, B.
2003-01-01
The analogy between monodromy in dynamical (Hamiltonian) systems and defects in crystal lattices is used in order to formulate some general conjectures about possible types of qualitative features of quantum systems which can be interpreted as a manifestation of classical monodromy in quantum finite particle (molecular) problems.
Parametrization of the Transverse Momentum Dependent Light-Front Correlator for Gluons
Cotogno, Sabrina
2017-03-01
We study the transverse momentum dependent light-front correlator for gluons. At the operator level this is expressed as a matrix element containing nonlocal field strength operators and gauge links bridging the nonlocality. We parametrize the leading (twist-2) gluon-gluon correlator in terms of transverse momentum dependent distribution functions for unpolarized, vector and tensor polarized targets (the latter being relevant for spin-1 targets). For a tensor polarized target there are eleven functions among which two are time reversal odd. We discuss bounds on some functions which might become useful for future applications.
Eletroweak Form Factors in the Light-Front for Spin-1 Particles
de Melo, J P B C; 10.1007/s00601-011-0295-9
2012-01-01
The contribution of the light-front valence wave function to the electromagnetic current of spin-1 composite particles is not enough to warranty the proper transformation of the current under rotations. The naive derivation of the plus component of the current in the Drell-Yan-West frame within an analytical and covariant model of the vertex leads to the violation of the rotational symmetry. Computing the form-factors in a quasi Drell-Yan-West frame $q^+\\rightarrow 0$, we were able to separate out in an analytical form the contributions from Z-diagrams or zero modes using the instant-form cartesian polarization basis.
Form Factors and Generalized Parton Distributions in Basis Light-Front Quantization
Adhikari, Lekha; Zhao, Xingbo; Maris, Pieter; Vary, James P; El-Hady, Alaa Abd
2016-01-01
We calculate the elastic form factors and the Generalized Parton Distributions (GPDs) for four low-lying bound states of a demonstration fermion-antifermion system, strong coupling positronium ($e \\bar{e}$), using Basis Light-Front Quantization (BLFQ). Using this approach, we also calculate the impact-parameter dependent GPDs $q(x, {\\vec b_\\perp})$ to visualize the fermion density in the transverse plane (${\\vec b_\\perp}$). We compare selected results with corresponding quantities in the non-relativistic limit to reveal relativistic effects. Our results establish the foundation within BLFQ for investigating the form factors and the GPDs for hadronic systems.
In-medium rho-meson properties in a light-front approach
de Melo, J P B C
2016-01-01
Properties of \\r{ho}-meson in symmetric nuclear matter are investigated within a light-front constituent quark model (LFCQM), using the in-medium input calculated by the quark-meson coupling (QMC) model. The LFCQM used here was previously applied in vacuum to calculate the \\r{ho}-meson electromagnetic properties, namely, charge G 0 , magnetic G 1 , and quadrupole G 2 form factors, as well as the electromagnetic radius and decay constant. We predict the in-medium modifications of the \\r{ho}-meson electromagnetic form factors in symmetric nuclear matter.
Light-Front Model of Transition Form-Factors in Heavy Meson Decay
de Melo, J P B C
2010-01-01
Electroweak transition form factors of heavy meson decays are important ingredients in the extraction of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements from experimental data. In this work, within a light-front framework, we calculate electroweak transition form factor for the semileptonic decay of $D$ mesons into a pion or a kaon. The model results underestimate in both cases the new data of CLEO for the larger momentum transfers accessible in the experiment. We discuss possible reasons for that in order to improve the model.
Light-Front Dynamics Of Massive Vector Chern-Simons Gravity
Aragone, C; Khoudeir, A
1993-01-01
We present a second order gravity action which consists of ordinary Einstein action augmented by a first-order, vector like, Chern-Simons quasi topological term. This theory is ghost-free and propagates a pure spin-2 mode. It is diffeomorphism invariant, although its local Lorentz invariance has been spontaneuosly broken. We perform the light-front (LF) analysis for both the linearized system and the exact curved model. In constrast to the 2+1 canonical analysis, in the quasi LF coordinates the differential constraints can be solved. Its solution is presented here.
Antiparticle Contribution in the Cross Ladder Diagram for Two Boson Propagation in the Light-front
Sales, J. H. O.; Suzuki, A.T.
2005-01-01
In the light-front milieu, there is an implicit assumption that the vacuum is trivial. By this " triviality " is meant that the Fock space of solutions for equations of motion is sectorized in two, one of positive energy k- and the other of negative one corresponding respectively to positive and negative momentum k+. It is assumed that only one of the Fock space sector is enough to give a complete description of the solutions, but in this work we consider an example where we demonstrate that ...
Quark-gluon double parton distributions in the light-front dressed quark model
Kasemets, Tomas
2016-01-01
We study parton distributions for two partons, a quark and a gluon, in the light-front dressed quark model, with focus on correlations between the two partons. The model calculation leads to sizable spin-spin and spin-kinematic correlations of interest for studies of double parton scattering (DPS) in high-energy collisions. In particular, we find that the transverse dependence of the double parton distributions (DPDs) does not factorize within the model. The results gives insight to the strengths of correlations in different kinematical regions, which can help in constructing input DPDs in cross section calculations.
Radiative decays of $1^{++}$ heavy mesons in the covariant light-front approach
Shi, Yan-Liang
2016-01-01
We calculate the predicted width for the radiative decay of a $1^{++}$ heavy meson via the channel $1^{++} \\to 1^{--} +\\gamma$ in the covariant light-front quark model. Specifically, we compute the decay widths for $\\chi_{c1}(1P) \\to J/\\psi + \\gamma$ and $\\chi_{b1}(nP) \\to \\Upsilon(n'S) + \\gamma$. The results are compared with experimental data and with predictions from calculations based on nonrelativistic models and their extensions to include relativistic effects.
Vector and tensor meson decay constants in light-front quark model
Geng, Chao-Qiang; Xia, Chuanhui
2016-01-01
We study the decay constants ($f_M$) of the vector ($D^{*}$, $D^{*}_{s}$, $B^{*}$, $B^{*}_{s}$, $B^{*}_{c}$) and tensor ($D_{2}^{*}$, $D_{s2}^{*}$, $B^{*}_{2}$, $B^{*}_{s2}$) mesons in the light front quark model. With the known pseudoscalar meson decay constants of $f_D$, $f_{D_s}$, $f_B$, $f_{B_s}$, and $f_{B_c}$ as the input parameters to determine the light-front meson wave functions, we obtain that $f_{D^{*}, D^{*}_{s}, B^{*},B^{*}_s,B^{*}_c} = (252.0^{+13.8}_{-11.6}$, $318.3^{+15.3}_{-12.6}$ , $201.9^{+43.2}_{-41.4}$, $244.2\\pm7.0$, $473.4\\pm18.2$) and $(264.9^{+10.2}_{-9.5}$, $330.9^{+9.9}_{-9.0}$, $220.2^{+49.1}_{-46.2}$, $265.7\\pm8.0$, $487.6\\pm19.2$) MeV with Gaussian and power-law wave functions, respectively, while $f_{D_{2}^{*},D_{s2}^{*},B^{*}_{2},B^{*}_{s2}}$=($143.6^{+24.9}_{-21.8}$, $209.5^{+29.1}_{-24.2}$, $80.9^{+33.8}_{-27.7}$, $109.7^{+15.7}_{-15.0}$) MeV with only Gaussian wave functions.
Mesonic Form Factors and the Isgur-Wise Function on the Light-Front
Cheng, H Y; Hwang, C W; Cheng, Hai-Yang; Cheung, Chi-Yee; Hwang, Chien-Wen
1997-01-01
Within the light-front framework, form factors for $P\\to P$ and $P\\to V$ transitions ($P$: pseudoscalar meson, $V$: vector meson) due to the valence-quark configuration are calculated directly in the entire physical range of momentum transfer. The behavior of form factors in the infinite quark mass limit are examined to see if the requirements of heavy-quark symmetry are fulfilled. We find that the Bauer-Stech-Wirbel type of light-front wave function fails to give a correct normalization for the Isgur-Wise function at zero recoil in $P\\to V$ transition. Some of the $P\\to V$ form factors are found to depend on the recoiling direction of the daughter mesons relative to their parents. Thus, the inclusion of the non-valence configuration arising from quark-pair creation is mandatory in order to ensure that the physical form factors are independent of the recoiling direction. The main feature of the non-valence contribution is discussed.
Symmetric multivariate polynomials as a basis for three-boson light-front wave functions.
Chabysheva, Sophia S; Elliott, Blair; Hiller, John R
2013-12-01
We develop a polynomial basis to be used in numerical calculations of light-front Fock-space wave functions. Such wave functions typically depend on longitudinal momentum fractions that sum to unity. For three particles, this constraint limits the two remaining independent momentum fractions to a triangle, for which the three momentum fractions act as barycentric coordinates. For three identical bosons, the wave function must be symmetric with respect to all three momentum fractions. Therefore, as a basis, we construct polynomials in two variables on a triangle that are symmetric with respect to the interchange of any two barycentric coordinates. We find that, through the fifth order, the polynomial is unique at each order, and, in general, these polynomials can be constructed from products of powers of the second- and third-order polynomials. The use of such a basis is illustrated in a calculation of a light-front wave function in two-dimensional ϕ(4) theory; the polynomial basis performs much better than the plane-wave basis used in discrete light-cone quantization.
The Epstein-Glaser causal approach to the Light-Front QED$_{4}$. I: Free theory
Bufalo, R; Soto, D E
2014-01-01
In this work we present the study of light-front field theories in the realm of axiomatic theory. It is known that when one uses the light-cone gauge pathological poles $\\left( k^{+}\\right) ^{-n}$ arises, demanding a prescription to be employed in order to tame these ill-defined poles and to have correct Feynman integrals due to the lack of Wick rotation in such theories. In order to shed a new light on this long standing problem we present here a discussion based on the use rigorous mathematical machinery of distributions combined with physical concepts, such as causality, to show how to deal with these singular propagators in a general fashion without making use of any prescription. The first step of our development will consist in showing how analytic representation for propagators arises by requiring general physical properties in the framework of Wightman's formalism. From that we shall determine the equal-time (anti)commutation relations in the light-front form for the scalar, fermionic fields and for t...
Light-front Nambu--Jona-Lasinio model at finite temperature and density
Strauss, S; Beyer, M
2009-01-01
In recent years light-front quantisation has been extended to allow for a consistent treatment of systems at finite temperature and density. This is in particular interesting for an investigation of the processes in nuclear matter under extreme condition as occurring, e.g., during a heavy ion collision. Utilising a Dyson expansion to the N-point Green functions at finite temperature and density we focus on the occurrence of pionic and scalar diquark dynamics in quark matter and compute the masses and the Mott dissociation using a separable t-matrix approach. For the scalar quark-quark correlation we determine the critical temperature of colour superconductivity using the Thouless criterion. On the same footing the properties of the nucleon in a medium of quark matter are computed within a Faddeev approach. Critical lines for nucleon breakup are given. Presently, we use a light-front Nambu--Jona-Lasinio model that allows us to compare these results of this novel approach to the more traditional instant form ap...
Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.
2015-01-01
Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of lik
The Epstein–Glaser causal approach to the light-front QED{sub 4}. II: Vacuum polarization tensor
Bufalo, R., E-mail: rodrigo.bufalo@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki (Finland); Instituto de Física Teórica (IFT/UNESP), UNESP - São Paulo State University, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 São Paulo, SP (Brazil); Pimentel, B.M., E-mail: pimentel@ift.unesp.br [Instituto de Física Teórica (IFT/UNESP), UNESP - São Paulo State University, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 São Paulo, SP (Brazil); Soto, D.E., E-mail: danielsb@ift.unesp.br [Instituto de Física Teórica (IFT/UNESP), UNESP - São Paulo State University, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 São Paulo, SP (Brazil)
2014-12-15
In this work we show how to construct the one-loop vacuum polarization for light-front QED{sub 4} in the framework of the perturbative causal theory. Usually, in the canonical approach, it is considered for the fermionic propagator the so-called instantaneous term, but it is known in the literature that this term is controversial because it can be omitted by computational reasons; for instance, by compensation or vanishing by dimensional regularization. In this work we propose a solution to this paradox. First, in the Epstein–Glaser causal theory, it is shown that the fermionic propagator does not have instantaneous term, and with this propagator we calculate the one-loop vacuum polarization, from this calculation it follows the same result as those obtained by the standard approach, but without reclaiming any extra assumptions. Moreover, since the perturbative causal theory is defined in the distributional framework, we can also show the reason behind our obtaining the same result whether we consider or not the instantaneous fermionic propagator term. - Highlights: • We develop the Epstein–Glaser causal approach for light-front field theory. • We evaluate in detail the vacuum polarization at one-loop for the light-front QED. • We discuss the subtle issues of the Instantaneous part of the fermionic propagator in the light-front. • We evaluate the vacuum polarization at one-loop for the light-front QED with the Instantaneous fermionic part.
Mastromatteo, Michael; Jackson, Bret
2013-11-21
Electronic structure methods based on density functional theory are used to construct a reaction path Hamiltonian for CH4 dissociation on the Ni(100) and Ni(111) surfaces. Both quantum and quasi-classical trajectory approaches are used to compute dissociative sticking probabilities, including all molecular degrees of freedom and the effects of lattice motion. Both approaches show a large enhancement in sticking when the incident molecule is vibrationally excited, and both can reproduce the mode specificity observed in experiments. However, the quasi-classical calculations significantly overestimate the ground state dissociative sticking at all energies, and the magnitude of the enhancement in sticking with vibrational excitation is much smaller than that computed using the quantum approach or observed in the experiments. The origin of this behavior is an unphysical flow of zero point energy from the nine normal vibrational modes into the reaction coordinate, giving large values for reaction at energies below the activation energy. Perturbative assumptions made in the quantum studies are shown to be accurate at all energies studied.
Damanik, David
2008-01-01
We develop further the approach to upper and lower bounds in quantum dynamics via complex analysis methods which was introduced by us in a sequence of earlier papers. Here we derive upper bounds for non-time averaged outside probabilities and moments of the position operator from lower bounds for transfer matrices at complex energies. Moreover, for the time-averaged transport exponents, we present improved lower bounds in the special case of the Fibonacci Hamiltonian. These bounds lead to an optimal description of the time-averaged spreading rate of the fast part of the wavepacket in the large coupling limit. This provides the first example which demonstrates that the time-averaged spreading rates may exceed the upper box-counting dimension of the spectrum.
Form factors of $\\eta_c$ in light front quark model
Geng, Chao-Qiang
2013-01-01
We study the form factors of the $\\eta_c$ meson in the light-front quark model. We explicitly show that the transition form factor of $\\eta_c \\to \\gamma^* \\gamma$ as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of $\\eta_c$ is found to be $f_{\\eta_{c}}=230.5^{+52.2}_{-61.0}$ and $303.6^{+115.2}_{-116.4}$ MeV for $\\eta_c\\sim c\\bar{c}$ by using two $\\eta_c \\to \\gamma \\gamma$ decay widths of $5.3\\pm 0.5$ and $7.2\\pm2.1$ keV, given by Particle Data Group and Lattice QCD calculation, respectively.
Form factors of {eta}{sub c} in light-front quark model
Geng, Chao-Qiang [Chongqing University of Posts and Telecommunications, College of Mathematics and Physics, Chongqing (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Lih, Chong-Chung [Shu-Zen College of Medicine and Management, Department of Optometry, Kaohsiung Hsien (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); National Tsing Hua University, Department of Physics, Hsinchu (China)
2013-08-15
We study the form factors of the {eta}{sub c} meson in the light-front quark model. We explicitly show that the transition form factor of {eta}{sub c} {yields} {gamma}{sup *}{gamma} as a function of the momentum transfer is consistent with the experimental data by the BaBar collaboration, while the decay constant of {eta}{sub c} is found to be f{sub {eta}{sub c}} = 230.5{sup +52.2}{sub -61.0} and 303.6{sup +115.2}{sub -116.4} MeV for {eta}{sub c} {proportional_to} c anti c by using two {eta}{sub c} {yields} {gamma}{gamma} decay widths of 5.3 {+-} 0.5 and 7.2 {+-} 2.1 keV, given by Particle Data Group and Lattice QCD calculation, respectively. (orig.)
$\\Theta$-Vacua in the Light-Front Quantized Schwinger Model
Srivastava, P P
1996-01-01
The light-front (LF) quantization of the bosonized Schwinger model is discussed in the "continuum formulation". The proposal, successfully used earlier for describing the spontaneous symmetry breaking (SSB) on the LF, of separating first the scalar field into the dynamical condensate and the fluctuation fields before employing the "standard" Dirac method works here as well. The condensate variable, however, is now shown to be a q-number operator in contrast to the case of SSB where it was shown to be a c-number or a background field. The "condensate or Theta-vacua" emerge straightforwardly together with their continuum normalization which avoids the violation of the cluster decomposition property in the theory. Some topics on the "front form" theory are summarized in the Appendices and attention is drawn to the fact that "the theory quantized, say, at equal $x^{+}$ seems already to carry information on equal $x^{-}$ commutators as well".
Basis of symmetric polynomials for many-boson light-front wave functions.
Chabysheva, Sophia S; Hiller, John R
2014-12-01
We provide an algorithm for the construction of orthonormal multivariate polynomials that are symmetric with respect to the interchange of any two coordinates on the unit hypercube and are constrained to the hyperplane where the sum of the coordinates is one. These polynomials form a basis for the expansion of bosonic light-front momentum-space wave functions, as functions of longitudinal momentum, where momentum conservation guarantees that the fractions are on the interval [0,1] and sum to one. This generalizes earlier work on three-boson wave functions to wave functions for arbitrarily many identical bosons. A simple application in two-dimensional ϕ(4) theory illustrates the use of these polynomials.
Parton Distribution in Pseudoscalar Mesons with a Light-Front Constituent Quark Model
de Melo, J P B C; Tsushima, Kazuo
2015-01-01
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms of the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions~(PDFs), we use both the conditions in the light-cone wave function, i.e., when $\\bar{s}$ quark is on-shell, and when $u$ quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses.
Some heavy vector and tensor meson decay constants in light-front quark model
Geng, Chao-Qiang [Chongqing Jiaotong University, College of Materials Science and Engineering, Chongqing (China); National Tsing Hua University, Department of Physics, Hsinchu (China); National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Lih, Chong-Chung [National Center for Theoretical Sciences, Physics Division, Hsinchu (China); Shu-Zen College of Medicine and Management, Department of Optometry, Kaohsiung Hsien (China); Xia, Chuanhui [Chongqing Jiaotong University, College of Materials Science and Engineering, Chongqing (China)
2016-06-15
We study the decay constants (f{sub M}) of the heavy vector (D{sup *}, D{sub s}{sup *}, B{sup *}, B{sub s}{sup *}, B{sub c}{sup *}) and tensor (D{sub 2}{sup *}, D{sub s2}{sup *}, B{sub 2}{sup *}, B{sub s2}{sup *}) mesons in the light-front quarkmodel.With the known pseudoscalar meson decay constants of f{sub D}, f{sub Ds}, f{sub B}, f{sub Bs}, and f{sub Bc} as the input parameters to determine the light-front meson wave functions, we obtain f{sub D{sup *},D{sub s{sup *}B{sup *}B{sub s{sup *},B{sub c{sup *}}}}} = (252.0{sub -11.6}{sup +13.8}, 318.3{sub -12.6}{sup +15.3}, 201.9{sub -41.4}{sup +43.2}, 244.2 ± 7.0, 473.4 ± 18.2) and (264.9{sub -9.5}{sup +10.2}, 330.9{sub -9.0}{sup +9.9}, 220.2{sub -46.2}{sup +49.1}, 265.7 ± 8.0, 487.6 ± 19.2) MeV with Gaussian and power-law wave functions, respectively, while we have f{sub D{sub 2{sup *},D{sub s{sub 2{sup *}B{sub 2{sup *}B{sub s{sub 2{sup *}}}}}}}} = (143.6{sub -21.8}{sup +24.9}, 209.5{sub -24.2}{sup +29.1}, 80.9{sub -27.7}{sup +33.8}, 109.7{sub -15.0}{sup +15.7}) MeV with only Gaussian wave functions. (orig.)
Sufian, Raza Sabbir; de Téramond, Guy F.; Brodsky, Stanley J.; Deur, Alexandre; Dosch, Hans Günter
2017-01-01
We present a comprehensive analysis of the spacelike nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front (LF) holographic QCD (LFHQCD) We show that the inclusion of the higher Fock components |q q q q q ¯ ⟩ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD results for the proton and neutron form factors at any momentum transfer range, including asymptotic predictions, and show that our results agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30% in the proton and about 40% in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The free parameters needed to describe the experimental nucleon form factors are very few: two parameters for the probabilities of higher Fock states for the spin-flip form factor and a phenomenological parameter r , required to account for possible SU(6) spin-flavor symmetry breaking effects in the neutron, whereas the Pauli form factors are normalized to the experimental values of the anomalous magnetic moments. The covariant spin structure for the Dirac and Pauli nucleon form factors prescribed by AdS5 semiclassical gravity incorporates the correct twist scaling behavior from hard scattering and also leads to vector dominance at low energy.
Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.
2015-11-01
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the
Frederico, T; Pasquini, B; Salme', G
2009-01-01
The generalized parton distributions of the pion are studied within different light-front approaches for the quark-hadron and quark-photon vertices, exploring different kinematical regions in both the valence and non-valence sector. Moments of the generalized parton distributions which enter the definition of generalized form factors are also compared with recent lattice calculations.
Nonperturbative renormalization group in light-front three-dimensional real scalar model
Sugihara, T; Sugihara, Takanori; Yahiro, Masanobu
1997-01-01
The three-dimensional real scalar model, in which the $Z_2$ symmetry spontaneously breaks, is renormalized in a nonperturbative manner based on the Tamm-Dancoff truncation of the Fock space. A critical line is calculated by diagonalizing the Hamiltonian regularized with basis functions. In the broken phase the canonical Hamiltonian is tachyonic, so the field is shifted as running mass and coupling so that the mass of the ground state vanishes. The marginal ($\\phi^6$) coupling dependence of the critical line is weak.
Spinor-Like Hamiltonian for Maxwellian Optics
Kulyabov D.S.
2016-01-01
Conclusions. For Maxwell equations in the Dirac-like form we can expand research methods by means of quantum field theory. In this form, the connection between the Hamiltonians of geometric, beam and Maxwellian optics is clearly visible.
Farberovich, Oleg V. [School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Voronezh State University, Voronezh 394000 (Russian Federation); Mazalova, Victoria L., E-mail: mazalova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Soldatov, Alexander V. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation)
2015-11-15
We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J{sub ij} of the nanosystem Ni{sub 7}–Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni{sub 7}-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy
Variational Mass Perturbation Theory for Light-Front Bound-State Equations
Harada, K; Stern, C; Harada, Koji; Heinzl, Thomas; Stern, Christian
1998-01-01
We investigate the mesonic light-front bound-state equations of the 't Hooft and Schwinger model in the two-particle, i.e. valence sector, for small fermion mass. We perform a high precision determination of the mass and light-cone wave function of the lowest lying meson by combining fermion mass perturbation theory with a variational approach. All calculations are done entirely in the fermionic representation without using any bosonization scheme. In a step-by-step procedure we enlarge the space of variational parameters. For the first two steps, the results are obtained analytically. Beyond that we use computer algebraic and numerical methods. We achieve good convergence so that the calculation of the meson mass squared can be extended to third order in the fermion mass. Within the numerical treatment we include higher Fock states up to six particles. Our results are consistent with all previous numerical investigations, in particular lattice calculations. For the massive Schwinger model, we find a small di...
Pseudoscalar mesons with symmetric bound state vertex functions on the light front
Yabusaki, George H S; Paracha, M Ali; de Melo, J P B C; El-Bennich, Bruno
2015-01-01
We study the electromagnetic form factors, decay constants and charge radii of the pion and kaon within the framework of light-front field theory formalism where we use an ansatz for the quark-meson interaction bound-state function which is symmetric under exchange of quark and antiquark momentum. The above mentioned observables are evaluated for the $+$ component of the electromagnetic current, $J^+$, in the Breit frame. We also check the invariance of these observables in other frames, whereby both the valance and the non-valence contributions have to be taken into account, and study the sensitivity of the electromagnetic form factors and charge radius to the model's parameters; namely, the quark masses, $m_u=m_d$, $m_{\\bar s}$, and the regulator mass, $m_R$. It is found that after a fine tuning of the regulator mass, i.e. $m_R=0.6$ GeV, the model is suitable to fit the available experimental data within the theoretical uncertainties of both the pion and kaon.
Semi-dileptonic decays of the light vector mesons in Light Front Quark Model
Geng, Chao-Qiang
2014-01-01
We study the transition form factors of the light vector to pseudoscalar mesons as functions of the momentum transfer $q^2$ within the light-front quark model. With these form factors, we calculate the decay branching ratios of all possible modes for $V\\to P\\ell^+\\ell^-$ ($V=\\omega$ and $\\phi$, $P=\\pi^0$, $\\eta$ and $\\eta^{\\prime}$ and $\\ell=e$ and $\\mu$). We find that our numerical results fit with the data, such as those of $\\omega \\to \\pi^0 \\ell^+\\ell^-$ and $\\phi\\to \\pi^0 e^+e^-$ by NA60 and $\\phi \\to\\eta e^+e^-$ by SND. We also predict that the branching ratios of $\\phi \\to \\pi^0 \\mu^+\\mu^-$, $\\omega\\to \\eta e^+e^-$, $\\omega\\to \\eta \\mu^+\\mu^-$, $\\phi\\to \\eta \\mu^+\\mu^-$ and $\\phi\\to \\eta^{\\prime} e^+e^-$ to be aroud $3.48\\times 10^{-6}$, $3.22\\times 10^{-6}$, $1.81\\times 10^{-9}$, $6.86\\times 10^{-6}$ $2.97\\times 10^{-7}$, respectively.
Non-Perturbative QCD Coupling and Beta Function from Light Front Holography
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab
2010-05-26
The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).
Introduction to thermodynamics of spin models in the Hamiltonian limit
Berche, B; Berche, Bertrand; Lopez, Alexander
2006-01-01
A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian, and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices.
Choi, Ho-Meoyng
2014-01-01
We discuss the light-front zero-mode issue in the light-front quark model prediction of the twist-3 distribution amplitude of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD.
Partha Goswami
2010-01-01
Full Text Available We investigate a chiral d-density wave (CDDW mean field model Hamiltonian in the momentum space suitable for the hole-doped cuprates, such as YBCO, in the pseudogap phase to obtain the Fermi surface (FS topologies, including the anisotropy parameter(́ and the elastic scattering by disorder potential (|0|. For ́=0, with the chemical potential =−0.27 eV for 10% doping level and |0|≥|| (where ||=0.25 eV is the first neighbor hopping, at zero/non-zero magnetic field (, the FS on the first Brillouin zone is found to correspond to electron pockets around antinodal regions and barely visible patches around nodal regions. For ́≠0, we find Pomeranchuk distortion of FS. We next relate our findings regarding FS to the magneto-quantum oscillations in the electronic specific heat. Since the nodal quasiparticle energy values for =0 are found to be greater than for |0|≥||, the origin of the oscillations for nonzero corresponds to the Fermi pockets around antinodal regions. The oscillations are shown to take place in the weak disorder regime (|0|=0.25eV only.
Aznauryan, I G
2012-01-01
We utilize a light-front relativistic quark model (LF RQM) to predict the 3q core contribution to the electroexcitation amplitudes for the Delta(1232)P33, N(1440)P11, N(1520)D13, and N(1535)S11 up to Q2= 12GeV2. The parameters of the model have been specified via description of the nucleon electromagnetic form factors in the approach that combines 3q and pion-cloud contributions in the LF dynamics.
Stability of Frustration-Free Hamiltonians
Michalakis, Spyridon
2011-01-01
We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. We present a necessary and sufficient condition for stability, which we call "Local Topological Quantum Order" and show that this condition implies an area law for the entanglement entropy of the groundstate subspace. This result extends previous work by Bravyi et al., on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. We conclude with a list of open problems relevant to spectral gaps and topological quantum order.
Discrete Hamiltonian for General Relativity
Ziprick, Jonathan
2015-01-01
Beginning from canonical general relativity written in terms of Ashtekar variables, we derive a discrete phase space with a physical Hamiltonian for gravity. The key idea is to define the gravitational fields within a complex of three-dimensional cells such that the dynamics is completely described by discrete boundary variables, and the full theory is recovered in the continuum limit. Canonical quantization is attainable within the loop quantum gravity framework, and we believe this will lead to a promising candidate for quantum gravity.
On Hamiltonians Generating Optimal-Speed Evolutions
2008-01-01
We present a simple derivation of the formula for the Hamiltonian operator(s) that achieve the fastest possible unitary evolution between given initial and final states. We discuss how this formula is modified in pseudo-Hermitian quantum mechanics and provide an explicit expression for the most general optimal-speed quasi-Hermitian Hamiltonian. Our approach allows for an explicit description of the metric- (inner product-) dependence of the lower bound on the travel time and the universality ...
Nonperturbative embedding for highly nonlocal Hamiltonians
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.
On a general Heisenberg exchange effective Hamiltonian
Blanco, J.A.; Prida Pidal, V.M. [Dept. de Fisica, Oviedo Univ. (Spain)
1995-07-01
A general Heisenberg exchange effective Hamiltonian is deduced in a straightforward way from the elemental quantum mechanical principles for the case of magnetic ions with non-orbital degeneracy in a crystalline lattice. Expressions for the high order direct exchange coupling constants or parameters are presented. The meaning of this effective Hamiltonian is important because extracting information from the Heisenberg Hamiltonian is a difficult task and is however taken as the starting point for many quite profound investigations of magnetism in solids and therefore could play an important role in an introductory course to solid state physics. (author)
Light-Front \\varvec{φ ^4_{1+1}} Theory Using a Many-Boson Symmetric-Polynomial Basis
Chabysheva, S. S.
2016-08-01
We extend earlier work on fully symmetric polynomials for three-boson wave functions to arbitrarily many bosons and apply these to a light-front analysis of the low-mass eigenstates of φ ^4 theory in 1+1 dimensions. The basis-function approach allows the resolution in each Fock sector to be independently optimized, which can be more efficient than the preset discrete Fock states in DLCQ. We obtain an estimate of the critical coupling for symmetry breaking in the positive mass-squared case.
Oshima, K
2001-01-01
Spontaneous symmetry breaking in (1+1)-dimensional $\\phi^{4}$ theory is studied with discretized light-front quantization. Taking effects of non-diagonal interactions into account, the first few terms of the commutation relations $[a_{0},a_{n}]$ are recalculated in the $\\hbar$ expansion. Our result of the critical coupling is still consistent with the equal-time result $22\\mu^{2}/\\hbar \\le \\lambda_{\\rm{cr}} \\le 55.5\\mu^{2}/\\hbar$. We also have examined effects of regarding the ratio of the bare coupling constant to a renormalized mass as an independent parameter in the $\\hbar$ expansion.
Electromagnetic structure and weak decay of pseudoscalar mesons in a light-front QCD-inspired model
Salcedo, L A M; Hadj-Michef, D; Frederico, T
2006-01-01
We study the scaling of the $^3S_1-^1S_0$ meson mass splitting and the pseudoscalar weak decay constants with the mass of the meson, as seen in the available experimental data. We use an effective light-front QCD-inspired dynamical model regulated at short-distances to describe the valence component of the pseudoscalar mesons. The experimentally known values of the mass splittings, decay constants (from global lattice-QCD averages) and the pion charge form factor up to 4 [GeV/c]$^2$ are reasonably described by the model
Study of u and d quark form factors in light front wave function with N{sup 2}LO approximation
Reza Shojaei, Mohammad [Shahrood University of Technology, Department of Physics, Shahrood (Iran, Islamic Republic of)
2016-04-15
In this paper, we have calculated the Dirac and Pauli form factors for u and d quark with light front quark model in N{sup 2}LO approximation for MSTW2008 quark function distributions. By using this approximation we found the parameters of Dirac and Pauli form factors, and then we calculated the form factors function as Q{sup 2}. By comparing with experimental data we concluded that F{sub 1}(Q{sup 2}) and F{sub 2}(Q{sup 2}) are in good agreement with the experimental data. (orig.)
Hamiltonian Algorithm Sound Synthesis
大矢, 健一
2013-01-01
Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)
2017-01-15
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Sufian, Raza Sabbir; Brodsky, Stanley J; Deur, Alexandre; Dosch, Hans Günter
2016-01-01
We present a comprehensive analysis of the nucleon electromagnetic form factors and their flavor decomposition within the framework of light-front holographic QCD. We show that the inclusion of the higher Fock components $|qqqq\\bar{q}>$ has a significant effect on the spin-flip elastic Pauli form factor and almost zero effect on the spin-conserving Dirac form factor. We present light-front holographic QCD predictions of proton and neutron form factors in the momentum transfer range of $0\\leq Q^2 \\leq 20\\, \\text{GeV}^2$ and show that these predictions agree with the available experimental data with high accuracy. In order to correctly describe the Pauli form factor we need an admixture of a five quark state of about 30$\\%$ in the proton and about 40$\\%$ in the neutron. We also extract the nucleon charge and magnetic radii and perform a flavor decomposition of the nucleon electromagnetic form factors. The number of free parameters needed to describe the experimental nucleon form factors in the space-like domain...
Choi, Ho-Meoyng
2014-01-01
We discuss the link between the chiral symmetry of QCD and the numerical results of the light-front quark model (LFQM), analyzing both the two-point and three-point functions of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD. The two-point and three-point functions are exemplified in this work by the twist-2 and twist-3 distribution amplitudes of a pseudoscalar meson and the pion elastic form factor, respectively. The present analysis of the pseudoscalar meson commensurates with the previous analysis of the vector meson two-point function and fortifies our observation that the light-front quark model with effective degrees of freedom represented by the constituent quark and antiquark may provide the view of effective zero-mode cloud around the quark and antiquark inside the meson. Consequently, the constituents dressed by the zero-mode cloud may be expected to satisfy the chiral symmetry of QCD. Our results appear consistent with this expectation...
Elias-Miro, Joan; Vitale, Lorenzo G.
Hamiltonian Truncation (a.k.a. Truncated Spectrum Approach) is an efficient numerical technique to solve strongly coupled QFTs in d=2 spacetime dimensions. Further theoretical developments are needed to increase its accuracy and the range of applicability. With this goal in mind, here we present a new variant of Hamiltonian Truncation which exhibits smaller dependence on the UV cutoff than other existing implementations, and yields more accurate spectra. The key idea for achieving this consists in integrating out exactly a certain class of high energy states, which corresponds to performing renormalization at the cubic order in the interaction strength. We test the new method on the strongly coupled two-dimensional quartic scalar theory. Our work will also be useful for the future goal of extending Hamiltonian Truncation to higher dimensions d >= 3.
Thermodynamical properties of QED in 1+1 dimensions within light front dynamics
Strauss, S
2008-01-01
We investigate thermodynamical properties of quantum electrodynamics in 1+1 dimensions. Discrete light cone quantization is used to compute the partition function of the canonical ensemble and the thermodynamical potential. The potential is evaluated for different system sizes and coupling strengths. We perform the continuum limit and the thermodynamical limit and present basic thermodynamical quantities as a function of temperature for the interacting system. A more accurate estimation of low lying bound state masses at non-perturbative coupling strength are determined due to the higher harmonic resolution.The results are compared to the idealized cases. The results are compared to the idealized cases.
Double parton scattering: A study of the effective cross section within a Light-Front quark model
Matteo Rinaldi
2016-01-01
Full Text Available We present a calculation of the effective cross section σeff, an important ingredient in the description of double parton scattering in proton–proton collisions. Our theoretical approach makes use of a Light-Front quark model as a framework to calculate the double parton distribution functions at low-resolution scale. QCD evolution is implemented to reach the experimental scale. The obtained values of σeff in the valence region are consistent with the present experimental scenario, in particular with the sets of data which include the same kinematical range. However the result of the complete calculation shows a dependence of σeff on xi, a feature not easily seen in the available data, probably because of their low accuracy. Measurements of σeff in restricted xi regions are addressed to obtain indications on double parton correlations, a novel and interesting aspect of the three dimensional structure of the nucleon.
Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir;
2007-01-01
The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...... results in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions....
Monte Carlo Hamiltonian: Linear Potentials
LUO Xiang-Qian; LIU Jin-Jiang; HUANG Chun-Qing; JIANG Jun-Qin; Helmut KROGER
2002-01-01
We further study the validity of the Monte Carlo Hamiltonian method. The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach, is its capability to study the excited states. Weconsider two quantum mechanical models: a symmetric one V(x) = |x|/2; and an asymmetric one V(x) = ∞, forx ＜ 0 and V(x) = x, for x ≥ 0. The results for the spectrum, wave functions and thermodynamical observables are inagreement with the analytical or Runge-Kutta calculations.
Spin filtering on a ring with Rashba hamiltonian
Harmer, M.
2007-01-01
We consider a quantum graph consisting of a ring with Rashba hamiltonian and an arbitrary number of semi-infinite wires attached. We describe the scattering matrix for this system and investigate spin filtering for a three terminal device.
Spin filtering on a ring with Rashba hamiltonian
Harmer, M
2006-01-01
We consider a quantum graph consisting of a ring with Rashba hamiltonian and an arbitrary number of semi-infinite wires attached. We describe the scattering matrix for this system and investigate spin filtering for a three terminal device.
Cliffordized NAC supersymmetry and PT-symmetric Hamiltonians
Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: toppan@cbpf.br
2007-07-01
It is shown that non-anti commutative supersymmetry can be described through a Cliffordization of the superspace fermionic coordinates. A NAC supersymmetric quantum mechanical model is shown to be a PT-symmetric Hamiltonian. (author)
Finding room for antilinear terms in the Hamiltonian
Eisele, Michael
2012-01-01
Although the Hamiltonian in quantum physics has to be a linear operator, it is possible to make quantum systems behave as if their Hamiltonians contained antilinear (i.e., semilinear or conjugate-linear) terms. For any given quantum system, another system can be constructed that is physically equivalent to the original one. It can be designed, despite the Wightman reconstruction theorem, so that antilinear operators in the original system become linear operators in the new system. Under certain conditions, these operators can then be added to the new Hamiltonian. The new quantum system has some unconventional features, a hidden degeneracy of the vacuum and a subtle distinction between the Hamiltonian and the observable of energy, but the physical equivalence guarantees that its states evolve like those in the original system and that corresponding measurements produce the same results. The same construction can be used to make time-reversal linear.
Sharma, Neetika [Indian Institute of Science Education and Research Mohali, Mohali (India)
2016-04-15
We incorporate the perturbative evolution effects in the generalized parton distributions (GPDs) calculated in effective light-front quark model for the nucleon. The perturbative effects enter into formalism through the evolution of GPDs according to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-like (DGLAP) equation. We obtain the evolved GPDs in the momentum space and transverse impact parameter space. We observe that combining the light-front quark model with the perturbative evolution effects, give the effective model for studying the phenomenological GPDs. (orig.)
Maxwell's Optics Symplectic Hamiltonian
Kulyabov, D S; Sevastyanov, L A
2015-01-01
The Hamiltonian formalism is extremely elegant and convenient to mechanics problems. However, its application to the classical field theories is a difficult task. In fact, you can set one to one correspondence between the Lagrangian and Hamiltonian in the case of hyperregular Lagrangian. It is impossible to do the same in gauge-invariant field theories. In the case of irregular Lagrangian the Dirac Hamiltonian formalism with constraints is usually used, and this leads to a number of certain difficulties. The paper proposes a reformulation of the problem to the case of a field without sources. This allows to use a symplectic Hamiltonian formalism. The proposed formalism will be used by the authors in the future to justify the methods of vector bundles (Hamiltonian bundles) in transformation optics.
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Garrido, L. M.; Pascual, P.
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
Perturbation Theory for Parent Hamiltonians of Matrix Product States
Szehr, Oleg; Wolf, Michael M.
2015-05-01
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).
Estimation of a general time-dependent Hamiltonian for a single qubit.
de Clercq, L E; Oswald, R; Flühmann, C; Keitch, B; Kienzler, D; Lo, H-Y; Marinelli, M; Nadlinger, D; Negnevitsky, V; Home, J P
2016-04-14
The Hamiltonian of a closed quantum system governs its complete time evolution. While Hamiltonians with time-variation in a single basis can be recovered using a variety of methods, for more general Hamiltonians the presence of non-commuting terms complicates the reconstruction. Here using a single trapped ion, we propose and experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. We measure the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. The initially unknown Hamiltonian arises from transporting an ion through a static laser beam. Hamiltonian estimation allows us to estimate the spatial beam intensity profile and the ion velocity as a function of time. The estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high-operational fidelities in quantum control.
Gravitational surface Hamiltonian and entropy quantization
Ashish Bakshi
2017-02-01
Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Gravitational surface Hamiltonian and entropy quantization
Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav
2017-02-01
The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Covariant Hamiltonian field theory
Giachetta, G; Sardanashvily, G
1999-01-01
We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.
Design of Quantum Algorithms Using Physics Tools
2014-06-02
spin chains, the development of a novel quantum money scheme, a study of quantum interactive proof systems , research on Hamiltonians on graphs...in the Hamiltonians . The states of a quantum spin chain are naturally represented in the Matrix Product States (MPS) framework. Using imaginary time...worked on a wide range of topics with some common themes related by the study of quantum Hamiltonians . Ground state properties of Hamiltonians and the
Hamiltonian tomography of photonic lattices
Ma, Ruichao; Owens, Clai; LaChapelle, Aman; Schuster, David I.; Simon, Jonathan
2017-06-01
In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites α and β may be obtained directly from Sα β(ω ) , the (suitably normalized) two-port measurement between sites α and β at frequency ω . This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.
Hamiltonian hierarchy and the Hulthen potential
Gönül, B
2000-01-01
We deal with the Hamiltonian hierarchy problem of the Hulth\\'{e}n potential within the frame of the supersymmetric quantum mechanics and find that the associated superymmetric partner potentials simulate the effect of the centrifugal barrier. Incorporating the supersymmetric solutions and using the first-order perturbation theory we obtain an expression for the energy levels of theHulth\\'{e}n potential which gives satisfactory values for the non-zero angular momentum states.
Monte Carlo Hamiltonian:Inverse Potential
LUO Xiang-Qian; CHENG Xiao-Ni; Helmut KR(O)GER
2004-01-01
The Monte Carlo Hamiltonian method developed recently allows to investigate the ground state and low-lying excited states of a quantum system,using Monte Carlo(MC)algorithm with importance sampling.However,conventional MC algorithm has some difficulties when applied to inverse potentials.We propose to use effective potential and extrapolation method to solve the problem.We present examples from the hydrogen system.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENG Daizhan; XI Zairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonian realizatiou. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural outpnt. Then some conditions for an affine nonlinear system to have a Hamiltonian realization arc given.For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENGDaizhan; XIZairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonican realization.Firest,it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization.Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output.Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given.some conditions for an affine nonlinear system to have a Hamiltonian realization are given.For generalized outputs,the conditions of the feedback,keeping Hamiltonian,are discussed.Finally,the admissible feedback controls for generalized Hamiltonian systems are considered.
Applications of Noether conservation theorem to Hamiltonian systems
Mouchet, Amaury
2016-09-01
The Noether theorem connecting symmetries and conservation laws can be applied directly in a Hamiltonian framework without using any intermediate Lagrangian formulation. This requires a careful discussion about the invariance of the boundary conditions under a canonical transformation and this paper proposes to address this issue. Then, the unified treatment of Hamiltonian systems offered by Noether's approach is illustrated on several examples, including classical field theory and quantum dynamics.
Applications of Noether conservation theorem to Hamiltonian systems
Mouchet, Amaury
2016-01-01
The Noether theorem connecting symmetries and conservation laws can be applied directly in a Hamiltonian framework without using any intermediate Lagrangian formulation. This requires a careful discussion about the invariance of the boundary conditions under a canonical transformation and this paper proposes to address this issue. Then, the unified treatment of Hamiltonian systems offered by Noether's approach is illustrated on several examples, including classical field theory and quantum dynamics.
An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator
Masterov, Ivan
2015-01-01
Ostrogradsky's method allows one to construct Hamiltonian formulation for a higher derivative system. An application of this approach to the Pais-Uhlenbeck oscillator yields the Hamiltonian which is unbounded from below. This leads to the ghost problem in quantum theory. In order to avoid this nasty feature, the technique previously developed in [Acta Phys. Polon. B 36 (2005) 2115] is used to construct an alternative Hamiltonian formulation for the multidimensional Pais-Uhlenbeck oscillator of arbitrary even order with distinct frequencies of oscillation. This construction is also generalized to the case of an N=2 supersymmetric Pais-Uhlenbeck oscillator.
An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator
Masterov, Ivan
2016-01-01
Ostrogradsky's method allows one to construct Hamiltonian formulation for a higher derivative system. An application of this approach to the Pais-Uhlenbeck oscillator yields the Hamiltonian which is unbounded from below. This leads to the ghost problem in quantum theory. In order to avoid this nasty feature, the technique previously developed in [7] is used to construct an alternative Hamiltonian formulation for the multidimensional Pais-Uhlenbeck oscillator of arbitrary even order with distinct frequencies of oscillation. This construction is also generalized to the case of an N = 2 supersymmetric Pais-Uhlenbeck oscillator.
Entangling capacities of noisy non-local Hamiltonians
Bandyopadhyay, S; Bandyopadhyay, Somshubhro; Lidar, Daniel A.
2003-01-01
We show that intrinsic Gaussian fluctuations in system control parameters impose limits on the ability of non-local (exchange) Hamiltonians to generate entanglement in the presence of mixed initial states. We find three equivalence classes. For the Ising and XYZ models there are qualitatively distinct sharp entanglement-generation transitions, while the class of Heisenberg, XY, and XXZ Hamiltonians is capable of generating entanglement for any finite noise level. Our findings imply that exchange Hamiltonians are surprisingly robust in their ability to generate entanglement in the presence of noise, thus potentially reducing the need for quantum error correction.
Baaquie, Belal E.
2007-09-01
Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.
Remarks on hamiltonian digraphs
Gutin, Gregory; Yeo, Anders
2001-01-01
This note is motivated by A.Kemnitz and B.Greger, Congr. Numer. 130 (1998)127-131. We show that the main result of the paper by Kemnitz and Greger is an easy consequence of the characterization of hamiltonian out-locally semicomplete digraphs by Bang-Jensen, Huang, and Prisner, J. Combin. Theory...... of Fan's su#cient condition [5] for an undirected graph to be hamiltonian. In this note we give another, more striking, example of this kind, which disproves a conjecture from [6]. We also show that the main result of [6] 1 is an easy consequence of the characterization of hamiltonian out......-tournaments by Bang-Jensen, Huang and Prisner [4]. For further information and references on hamiltonian digraphs, see e.g. the chapter on hamiltonicity in [1] as well as recent survey papers [2, 8]. We use the standard terminology and notation on digraphs as described in [1]. A digraph D has vertex set V (D) and arc...
Microscopic plasma Hamiltonian
Peng, Y.-K. M.
1974-01-01
A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.
Snyder noncommutativity and pseudo-Hermitian Hamiltonians from a Jordanian twist
Castro, P.G., E-mail: pgcastro@cbpf.b [Universidade Federal de Juiz de Fora (DM/ICE/UFJF), Juiz de Fora, MG (Brazil). Inst. de Ciencias Exatas. Dept. de Matematica; Kullock, R.; Toppan, F., E-mail: ricardokl@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
Nonrelativistic quantum mechanics and conformal quantum mechanics are de- formed through a Jordanian twist. The deformed space coordinates satisfy the Snyder noncommutativity. The resulting deformed Hamiltonians are pseudo-Hermitian Hamiltonians of the type discussed by Mostafazadeh. The quantization scheme makes use of the so-called 'unfolded formalism' discussed in previous works. A Hopf algebra structure, compatible with the physical interpretation of the coproduct, is introduced for the Universal Enveloping Algebra of a suitably chosen dynamical Lie algebra (the Hamiltonian is contained among its generators). The multi-particle sector, uniquely determined by the deformed 2-particle Hamiltonian, is composed of bosonic particles. (author)
A systematic construction of completely integrable Hamiltonians from coalgebras
Ballesteros, A; Ballesteros, Angel; Ragnisco, Orlando
1998-01-01
A universal algorithm to construct N-particle (classical and quantum) completely integrable Hamiltonian systems from representations of coalgebras with Casimir element is presented. In particular, this construction shows that quantum deformations can be interpreted as generating structures for integrable deformations of Hamiltonian systems with coalgebra symmetry. In order to illustrate this general method, the $so(2,1)$ algebra and the oscillator algebra $h_4$ are used to derive new classical integrable systems including a generalization of Gaudin-Calogero systems and oscillator chains. Quantum deformations are then used to obtain some explicit integrable deformations of the previous long-range interacting systems and a (non-coboundary) deformation of the $(1+1)$ Poincaré algebra is shown to provide a new Ruijsenaars-Schneider-like Hamiltonian.
Bountis, Tassos
2012-01-01
This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems. The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...
Wieland, Wolfgang M
2013-01-01
This paper presents a Hamiltonian formulation of spinfoam-gravity, which leads to a straight-forward canonical quantisation. To begin with, we derive a continuum action adapted to the simplicial decomposition. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise. In the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may indeed miss an additional constraint. Next, we canonically quantise. Transition amplitudes match the EPRL (Engle--Pereira--Rovelli--Livine) model, the only difference being the additional torsional constraint affecting the vertex amplitude.
Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices.
Miyake, Hirokazu; Siviloglou, Georgios A; Kennedy, Colin J; Burton, William Cody; Ketterle, Wolfgang
2013-11-01
We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients. This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band structure of this Hamiltonian should display Hofstadter's butterfly. For fermions, this scheme should realize the quantum Hall effect and chiral edge states.
Abrams, D.; Williams, C.
1999-01-01
This thesis describes several new quantum algorithms. These include a polynomial time algorithm that uses a quantum fast Fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases for which all know classical algorithms require exponential time.
Flow Equations for the Hénon-Heiles Hamiltonian
Cremers, D; Cremers, Daniel; Mielke, Andreas
1998-01-01
The Henon-Heiles Hamiltonian was introduced in 1964 as a mathematical model to describe the chaotic motion of stars in a galaxy. By canonically transforming the classical Hamiltonian to a Birkhoff-Gustavson normalform Delos and Swimm obtained a discrete quantum mechanical energy spectrum. The aim of the present work is to first quantize the classical Hamiltonian and to then diagonalize it using different variants of flow equations, a method of continuous unitary transformations introduced by Wegner in 1994. The results of the diagonalization via flow equations are comparable to those obtained by the classical transformation. In the case of commensurate frequencies the transformation turns out to be less lengthy. In addition, the dynamics of the quantum mechanical system are analyzed on the basis of the transformed observables.
Cluster expansion for ground states of local Hamiltonians
Bastianello, Alvise; Sotiriadis, Spyros
2016-08-01
A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Cluster expansion for ground states of local Hamiltonians
Alvise Bastianello
2016-08-01
Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Cluster expansion for ground states of local Hamiltonians
Bastianello, Alvise, E-mail: abastia@sissa.it [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Sotiriadis, Spyros [SISSA, via Bonomea 265, 34136 Trieste (Italy); INFN, Sezione di Trieste (Italy); Institut de Mathématiques de Marseille (I2M), Aix Marseille Université, CNRS, Centrale Marseille, UMR 7373, 39, rue F. Joliot Curie, 13453, Marseille (France); University of Roma Tre, Department of Mathematics and Physics, L.go S.L. Murialdo 1, 00146 Roma (Italy)
2016-08-15
A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Proton radius puzzle in Hamiltonian dynamics
Glazek, Stanislaw D
2014-01-01
Relativistic lepton-proton bound-state eigenvalue equations for Hamiltonians derived from quantum field theory using second-order renormalization group procedure for effective particles, are reducible to two-body Schroedinger eigenvalue equations with the effective Coulomb potential that exhibits a tiny sensitivity to the characteristic momentum-scale of the bound system. The scale dependence is shown to be relevant to the theoretical interpretation of precisely measured lepton-proton bound-state energy levels in terms of a 4 percent difference between the proton radii in muon-proton and electron-proton bound states.
Linear representation of energy-dependent Hamiltonians
Znojil, Miloslav
2004-05-01
Quantum mechanics abounds in models with Hamiltonian operators which are energy-dependent. A linearization of the underlying Schrödinger equation with H= H( E) is proposed here via an introduction of a doublet of separate energy-independent representatives K and L of the respective right and left action of H( E). Both these new operators are non-Hermitian so that our formalism admits a natural extension to non-Hermitian initial H( E)s. Its applicability may range from pragmatic phenomenology and variational calculations (where all the subspace-projected effective operators depend on energy by construction) up to perturbation theory and quasi-exact constructions.
Dyson--Schwinger Approach to Hamiltonian QCD
Campagnari, Davide R; Huber, Markus Q; Vastag, Peter; Ebadati, Ehsan
2016-01-01
Dyson--Schwinger equations are an established, powerful non-perturbative tool for QCD. In the Hamiltonian formulation of a quantum field theory they can be used to perform variational calculations with non-Gaussian wave functionals. By means of the DSEs the various $n$-point functions, needed in expectation values of observables like the Hamilton operator, can be thus expressed in terms of the variational kernels of our trial ansatz. Equations of motion for these variational kernels are derived by minimizing the energy density and solved numerically.
The quantization of the Rabi Hamiltonian
Vandaele, Eva R. J.; Arvanitidis, Athanasios; Ceulemans, Arnout
2017-03-01
The Rabi Hamiltonian addresses the proverbial paradigmatic case of a two-level fermionic system coupled to a single bosonic mode. It is expressed by a system of two coupled first-order differential equations in the complex field, which may be rewritten in a canonical form under the Birkhoff transformation. The transformation gives rise to leapfrog recurrence relations, from which the eigenvalues and eigenvectors could be obtained. The interesting feature of this approach is that it generates integer quantum numbers, which rationalize the spectrum by relating the solutions to the Juddian baselines. The relationship with Braak’s integrability claim (Braak 2011 Phys. Rev. Lett. 107 100401) is discussed.
Nonabelian N=2 Superstrings: Hamiltonian Structure
Isaev, A P
2009-01-01
We examine the Hamiltonian structure of nonabelian N=2 superstrings models which are the supergroup manifold extensions of N=2 Green-Schwarz superstring. We find the Kac-Moody and Virasoro type superalgebras of the relevant constraints and present elements of the corresponding quantum theory. A comparison with the type IIA Green-Schwarz superstring moving in a general curved 10-d supergravity background is also given. We find that nonabelian superstrings (for d=10) present a particular case of this general system corresponding to a special choices of the background.
Subsystem's dynamics under random Hamiltonian evolution
Vinayak,
2011-01-01
We study time evolution of a subsystem's density matrix under a unitary evolution, generated by a sufficiently complex, say quantum chaotic, Hamiltonian. We exactly calculate all coherences, purity and fluctuations. The reduced density matrix is described in terms of a noncentral correlated Wishart ensemble. Our description accounts for a transition from an arbitrary initial state towards a random state at large times, enabling us to determine the convergence time after which random states are reached. We identify and describe a number of other interesting features, like a series of collisions between the largest eigenvalue and the bulk, accompanied by a phase transition in its distribution function.
Exact Invariants for a Time-Dependent Hamiltonian System
LUO Xiao-Bing
2009-01-01
We have a classical look for a quantum system which is exactly solvable. We construct the invariant manifolds analytically, and then apply the semiclassical quantization rules in a final step to compute the quasienergies. The invariant is obtained by performing a canonical transformation of the initially time-dependent Hamiltonian to a time-independent one. The correspondence between classical and quantum mechanics is elucidated.
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
Periodic Hamiltonian hierarchies and non-uniqueness of superpotentials
PARTHA MANDAL; ABHIJIT BANERJEE
2017-01-01
In this article, a family of periodic quantum Hamiltonians, that is subject to a closure condition is considered. In the context of the factorization method, we address the question of non-uniqueness of the governing superpotentials and study an alternative factorization to generate new hierarchies of potentials.
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
Redesign of the DFT/MRCI Hamiltonian.
Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M
2016-01-21
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.
When a local Hamiltonian must be frustration-free.
Sattath, Or; Morampudi, Siddhardh C; Laumann, Chris R; Moessner, Roderich
2016-06-07
A broad range of quantum optimization problems can be phrased as the question of whether a specific system has a ground state at zero energy, i.e., whether its Hamiltonian is frustration-free. Frustration-free Hamiltonians, in turn, play a central role for constructing and understanding new phases of matter in quantum many-body physics. Unfortunately, determining whether this is the case is known to be a complexity-theoretically intractable problem. This makes it highly desirable to search for efficient heuristics and algorithms to, at least, partially answer this question. Here we prove a general criterion-a sufficient condition-under which a local Hamiltonian is guaranteed to be frustration-free by lifting Shearer's theorem from classical probability theory to the quantum world. Remarkably, evaluating this condition proceeds via a fully classical analysis of a hardcore lattice gas at negative fugacity on the Hamiltonian's interaction graph, which, as a statistical mechanics problem, is of interest in its own right. We concretely apply this criterion to local Hamiltonians on various regular lattices, while bringing to bear the tools of spin glass physics that permit us to obtain new bounds on the satisfiable to unsatisfiable transition in random quantum satisfiability. We are then led to natural conjectures for when such bounds will be tight, as well as to a novel notion of universality for these computer science problems. Besides providing concrete algorithms leading to detailed and quantitative insights, this work underscores the power of marrying classical statistical mechanics with quantum computation and complexity theory.
阳劲松; Ding You; 马永革
2011-01-01
Loop quantum cosmology in the Hamiltonian constraint quantization has certain arbitrariness, therefore need to test some important properties of loop quantum cosmology, Such as quantum rebound, effective description, and whether this quantization arbitrary related. In this paper we consider the gravity contact intensity quantization of a typical arbitrariness, constructed a choice of Hamiltonian constraint operator, and through the semiclassical analysis proves that this operator has the correct classical limit, then obtained the high order quantum modified effective Hamiltonian constraint. In the mass less scalar field coupled spatial flat Friedmann cosmology model is effective in the classical theory, the big bang singularity was replaced by quantum rebound, and quantum gravity effects are likely to make the expansion of the universe is collapsing. The important properties of visible ring quantum cosmology was independent the quantized random.%圈量子宇宙学中哈密顿约束的量子化有一定的任意性，因此需要检验圈量子宇宙学的一些重要性质，如量子反弹、有效描述等，是否与这种量子化任意性有关。文章考虑了引力联络的场强的量子化中产生的一种典型的任意性，构造了一个可供选择的哈密顿约束算符，并通过半经典分析证明了该算符有正确的经典极限，进而得到了含高阶量子修正的有效哈密顿约束。在这个与无质量标量场耦合的空间平坦的Friedmann宇宙学模型的有效理论中，经典大爆炸奇点被量子反弹所取代，并且量子引力效应极有可能使膨胀的宇宙塌缩回来。可见圈量子宇宙学的上述重要性质与这种量子化任意性无关。
Chromatic roots and hamiltonian paths
Thomassen, Carsten
2000-01-01
We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...
The rovibrational Hamiltonian for ammonia-like molecules.
Makarewicz, Jan; Skalozub, Alexander
2002-03-01
A new exact quantum mechanical rovibrational Hamiltonian operator for ammonia-like molecules is derived. The Hamiltonian is constructed in a molecular system of axes, such that its z' axis makes a trisection of the pyramidal angle formed by three bond vectors with the vertex on the central atom. The introduced set of the internal rovibrational coordinates is adapted to facilitate a convenient description of the inversion motion. These internal coordinates and the molecular axis system have a remarkable property, namely, the internal vibrational angular momentum of the molecule equals zero. This property significantly reduces the Coriolis coupling and simplifies the form of the Hamiltonian. The correctness of this Hamiltonian is proved by a numerical procedure. The orthogonal Radau vectors allowing us to define a similar molecular axis system and the internal coordinates are considered. The Hamiltonian for the Radau parameterization takes a form simple enough to carry out effectively variational calculations of the molecular rovibrational states. Under the appropriate choice of the variational basis functions, the Hamiltonian matrix elements are fully factorizable and do not have any singularities. A convenient method of symmetrization of the basis functions is proposed.
Hamiltonian description of composite fermions: Magnetoexciton dispersions
Murthy, Ganpathy
1999-11-01
A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in fractional quantum hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=13, 25, and 37 gapped fractions, and find approximate agreement with numerical results. I also analyze the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 25 and 37, and it is shown that the spin-polarized 25 state, in contrast to the spin-polarized 13 state, cannot be described as a simple quantum ferromagnet.
Boundary Liouville Theory: Hamiltonian Description and Quantization
Harald Dorn
2007-01-01
Full Text Available The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in 2d Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr-Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator $e^varphi$ in terms of free field exponentials is constructed in the hyperbolic sector.
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G; Sardanashvily, G
2007-01-01
Integrals of motion of a Hamiltonian system need not be commutative. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as an abelian completely integrable Hamiltonian system.
Dirac Hamiltonian with superstrong Coulomb field
Voronov, B L; Tyutin, I V
2006-01-01
We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=137 based on the fact that the standard expression for energy eigenvalues yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is the nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamilt...
Pacheco-Bicudo-Cabral de Melo, J; Pace, E; Salmè, G
2006-01-01
The simultaneous investigation of the pion electromagnetic form factor in the space- and time-like regions within a light-front model allows one to address the issue of non-valence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector meson dominance (VMD) model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 $(GeV/c)^2$, while in time-like region the model produces reasonable results up to 10 $(GeV/c)^2$.
Beuf, Guillaume
2016-01-01
The one-loop QCD corrections to the light-front wave-function for the quark-antiquark Fock state inside a transverse or longitudinal off-shell photon are explicitly calculated, both in full momentum space and in mixed space (a.k.a. dipole space). These results provide one of the main contributions to virtual NLO corrections to many DIS observables (inclusive or not) in the dipole factorization formalism at low Bjorken x. In a follow-up article, these one-loop corrections are combined with earlier results on the wave-function for the quark-antiquark-gluon Fock state, in order to get the full set of NLO corrections to the DIS structure functions $F_2$ and $F_L$ in the dipole factorization formalism, valid at low Bjorken x.
$B_c\\to B_{sJ}$ form factors and $B_c$ decays into $B_{sJ}$ in covariant light-front approach
Shi, Yu-Ji; Zhao, Zhen-Xing
2016-01-01
We suggest to study the $B_{s}$ and its excitations $B_{sJ}$ in the $B_c$ decays. We calculate the $B_c\\to B_{sJ}$ and $B_c\\to B_{J}$ form factors within the covariant light-front quark model, where the $B_{sJ}$ and $B_{J}$ denotes an $s$-wave or $p$-wave $\\bar bs$ and $\\bar bd$ meson, respectively. The form factors at $q^2=0$ are directly computed while their $q^2$-distributions are obtained by the extrapolation. The derived form factors are then used to study semileptonic $B_c\\to (B_{sJ},B_{J})\\bar\\ell\
Local-TQO and Stability of Frustration-Free Hamiltonians
Pytel, Justyna; Michalakis, Spyridon
2012-02-01
The attention of the condensed matter and mathematical physics communities has recently focused on Hamiltonians with low-energy sectors exhibiting some form of topological order. In our work [1], we present a generalization of the result of Bravyi et al. [2,3] on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. In particular, the commutativity condition can be removed: We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. Also, we will discuss the ``Local Topological Quantum Order'' and ``Local-Gap'' conditions sufficient for proving stability. [4pt] [1] S. Michalakis and J. Pytel, Stability of Frustration-Free Hamiltonians. arXiv:1109.1588 (2011).[0pt] [2] S. Bravyi and M.B. Hastings, A short proof of stability of topological order under local perturbations. arXiv:1001.4363. [0pt] [3] S. Bravyi, M.B. Hastings, and S. Michalakis, Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010).
Dual partitioning for effective Hamiltonians to avoid intruders
Ten-no, Seiichiro
2015-01-01
We present a new Hamiltonian partitioning which converges an arbitrary number of states of interest in the effective Hamiltonian to the full configuration interaction limits simultaneously. This feature is quite useful for the recently developed model space quantum Monte Carlo. A dual partitioning (DP) technique is introduced to avoid the intruder state problem present in the previous eigenvalue independent partitioning of Coope. The new approach is computationally efficient and applicable to general excited states involving conical intersections. We present a preliminary application of the method to model systems to investigate the performance.
Nonclassical degrees of freedom in the Riemann Hamiltonian.
Srednicki, Mark
2011-09-02
The Hilbert-Pólya conjecture states that the imaginary parts of the zeros of the Riemann zeta function are eigenvalues of a quantum Hamiltonian. If so, conjectures by Katz and Sarnak put this Hamiltonian in the Altland-Zirnbauer universality class C. This implies that the system must have a nonclassical two-valued degree of freedom. In such a system, the dominant primitive periodic orbits contribute to the density of states with a phase factor of -1. This resolves a previously mysterious sign problem with the oscillatory contributions to the density of the Riemann zeros.
Decoherence control: A feedback mechanism based on hamiltonian tracking
Katz, G; Kosloff, R; Katz, Gil; Ratner, Mark; Kosloff, Ronnie
2006-01-01
Enviroment - caused dissipation disrupts the hamiltonian evolution of all quantum systems not fully isolated from any bath. We propose and examine a feedback-control scheme to eliminate such dissipation, by tracking the free hamiltonian evolution. We determine a driving-field that maximizes the projection of the actual molecular system onto the freely propagated one. The evolution of a model two level system in a dephasing bath is followed, and the driving field that overcomes the decoherence is calculated. An implementation of the scheme in the laboratory using feedback control is suggested.
Interpreting Quantum Discord in Quantum Metrology
Girolami, Davide
2015-01-01
Multipartite quantum systems show properties which do not admit a classical explanation. In particular, even nonentangled states can enjoy a kind of quantum correlations called quantum discord. I discuss some recent results on the role of quantum discord in metrology. Given an interferometric phase estimation protocol where the Hamiltonian is initially unknown to the experimentalist, the quantum discord of the probe state quantifies the minimum precision of the estimation. This provides a phy...
Biamonte, J D; Whitfield, J D; Fitzsimons, J; Aspuru-Guzik, A
2010-01-01
In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be error resistant, easily controllable, and built using existing technology. Moving away from gate-model and projective measurement based implementations of quantum computing may offer a less resource-intensive, and consequently a more feasible solution. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-body interaction terms, using sparse Hamiltonians with at most three-body interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes...
On the Reaction Path Hamiltonian
孙家钟; 李泽生
1994-01-01
A vector-fiber bundle structure of the reaction path Hamiltonian, which has been introduced by Miller, Handy and Adams, is explored with respect to molecular vibrations orthogonal to the reaction path. The symmetry of the fiber bundle is characterized by the real orthogonal group O(3N- 7) for the dynamical system with N atoms. Under the action of group O(3N- 7). the kinetic energy of the reaction path Hamiltonian is left invariant. Furthermore , the invariant behaviour of the Hamiltonian vector fields is investigated.
Nonlinear metrology with a quantum interface
Napolitano, M.; Mitchell, M. W.
2009-01-01
We describe nonlinear quantum atom-light interfaces and nonlinear quantum metrology in the collective continuous variable formalism. We develop a nonlinear effective Hamiltonian in terms of spin and polarization collective variables and show that model Hamiltonians of interest for nonlinear quantum metrology can be produced in $^{87}$Rb ensembles. With these Hamiltonians, metrologically relevant atomic properties, e.g. the collective spin, can be measured better than the "Heisenberg limit" $\\...
Reverse engineering of a Hamiltonian by designing the evolution operators.
Kang, Yi-Hao; Chen, Ye-Hong; Wu, Qi-Cheng; Huang, Bi-Hua; Xia, Yan; Song, Jie
2016-07-22
We propose an effective and flexible scheme for reverse engineering of a Hamiltonian by designing the evolution operators to eliminate the terms of Hamiltonian which are hard to be realized in practice. Different from transitionless quantum driving (TQD), the present scheme is focus on only one or parts of moving states in a D-dimension (D ≥ 3) system. The numerical simulation shows that the present scheme not only contains the results of TQD, but also has more free parameters, which make this scheme more flexible. An example is given by using this scheme to realize the population transfer for a Rydberg atom. The influences of various decoherence processes are discussed by numerical simulation and the result shows that the scheme is fast and robust against the decoherence and operational imperfection. Therefore, this scheme may be used to construct a Hamiltonian which can be realized in experiments.
Normal-ordered second-quantized Hamiltonian for molecular vibrations.
Hirata, So; Hermes, Matthew R
2014-11-14
A normal-ordered second-quantized form of the Hamiltonian is derived for quantum dynamics in a bound potential energy surface expressed as a Taylor series in an arbitrary set of orthogonal, delocalized coordinates centered at an arbitrary geometry. The constant, first-, and second-order excitation amplitudes of this Hamiltonian are identified as the ground-state energy, gradients, and frequencies, respectively, of the size-extensive vibrational self-consistent field (XVSCF) method or the self-consistent phonon method. They display the well-defined size dependence of V(1-n/2), where V is the volume and n is the number of coordinates associated with the amplitudes. It is used to rapidly derive the equations of XVSCF and vibrational many-body perturbation methods with the Møller-Plesset partitioning of the Hamiltonian.
Kuramoto dynamics in Hamiltonian systems.
Witthaut, Dirk; Timme, Marc
2014-09-01
The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds. We show that locking of the phase of one oscillator on a Kuramoto manifold to the average phase emerges where the transverse Hamiltonian action dynamics of that specific oscillator becomes unstable. Moreover, the inverse participation ratio of the Hamiltonian dynamics perturbed off the manifold indicates the global synchronization transition point for finite N more precisely than the standard Kuramoto order parameter. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics.
Continuum Hamiltonian Hopf Bifurcation II
Hagstrom, G I
2013-01-01
Building on the development of [MOR13], bifurcation of unstable modes that emerge from continuous spectra in a class of infinite-dimensional noncanonical Hamiltonian systems is investigated. Of main interest is a bifurcation termed the continuum Hamiltonian Hopf (CHH) bifurcation, which is an infinite-dimensional analog of the usual Hamiltonian Hopf (HH) bifurcation. Necessary notions pertaining to spectra, structural stability, signature of the continuous spectra, and normal forms are described. The theory developed is applicable to a wide class of 2+1 noncanonical Hamiltonian matter models, but the specific example of the Vlasov-Poisson system linearized about homogeneous (spatially independent) equilibria is treated in detail. For this example, structural (in)stability is established in an appropriate functional analytic setting, and two kinds of bifurcations are considered, one at infinite and one at finite wavenumber. After defining and describing the notion of dynamical accessibility, Kre\\u{i}n-like the...
Hamiltonian Structure of PI Hierarchy
Kanehisa Takasaki
2007-03-01
Full Text Available The string equation of type (2,2g+1 may be thought of as a higher order analogue of the first Painlevé equation that corresponds to the case of g = 1. For g > 1, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called the PI hierarchy. This hierarchy gives an isomonodromic analogue of the well known Mumford system. The Hamiltonian structure of the Lax equations can be formulated by the same Poisson structure as the Mumford system. A set of Darboux coordinates, which have been used for the Mumford system, can be introduced in this hierarchy as well. The equations of motion in these Darboux coordinates turn out to take a Hamiltonian form, but the Hamiltonians are different from the Hamiltonians of the Lax equations (except for the lowest one that corresponds to the string equation itself.
Alternative Hamiltonian representation for gravity
Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)
2007-11-15
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.
Hamiltonian analysis of interacting fluids
Banerjee, Rabin; Mitra, Arpan Krishna [S. N. Bose National Centre for Basic Sciences, Kolkata (India); Ghosh, Subir [Indian Statistical Institute, Kolkata (India)
2015-05-15
Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary roles of the canonical (Noether) stress tensor and the symmetric one obtained by metric variation are discussed. (orig.)
When are vector fields hamiltonian?
Crehan, P
1994-01-01
Dynamical systems can be quantised only if they are Hamiltonian. This prompts the question from which our talk gets its title. We show how the simple predator-prey equation and the damped harmonic oscillator can be considered to be Hamiltonian with respect to an infinite number of non-standard Poisson brackets. This raises some interesting questions about the nature of quantisation. Questions which are valid even for flows which possess a canonical structure.
Interchange graphs and the Hamiltonian cycle polytope
Sierksma, G
1998-01-01
This paper answers the (non)adjacency question for the whole spectrum of Hamiltonian cycles on the Hamiltonian cycle polytope (HC-polytope), also called the symmetric traveling salesman polytope, namely from Hamiltonian cycles that differ in only two edges through Hamiltonian cycles that are edge di
When a local Hamiltonian must be frustration-free
Sattath, Or; Morampudi, Siddhardh C.; Laumann, Chris R.; Moessner, Roderich
2016-06-01
A broad range of quantum optimization problems can be phrased as the question of whether a specific system has a ground state at zero energy, i.e., whether its Hamiltonian is frustration-free. Frustration-free Hamiltonians, in turn, play a central role for constructing and understanding new phases of matter in quantum many-body physics. Unfortunately, determining whether this is the case is known to be a complexity-theoretically intractable problem. This makes it highly desirable to search for efficient heuristics and algorithms to, at least, partially answer this question. Here we prove a general criterion—a sufficient condition—under which a local Hamiltonian is guaranteed to be frustration-free by lifting Shearer’s theorem from classical probability theory to the quantum world. Remarkably, evaluating this condition proceeds via a fully classical analysis of a hardcore lattice gas at negative fugacity on the Hamiltonian’s interaction graph, which, as a statistical mechanics problem, is of interest in its own right. We concretely apply this criterion to local Hamiltonians on various regular lattices, while bringing to bear the tools of spin glass physics that permit us to obtain new bounds on the satisfiable to unsatisfiable transition in random quantum satisfiability. We are then led to natural conjectures for when such bounds will be tight, as well as to a novel notion of universality for these computer science problems. Besides providing concrete algorithms leading to detailed and quantitative insights, this work underscores the power of marrying classical statistical mechanics with quantum computation and complexity theory.
Hamiltonian description of the ideal fluid
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.
Adiabatic quantum simulation of quantum chemistry.
Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán
2014-10-13
We show how to apply the quantum adiabatic algorithm directly to the quantum computation of molecular properties. We describe a procedure to map electronic structure Hamiltonians to 2-body qubit Hamiltonians with a small set of physically realizable couplings. By combining the Bravyi-Kitaev construction to map fermions to qubits with perturbative gadgets to reduce the Hamiltonian to 2-body, we obtain precision requirements on the coupling strengths and a number of ancilla qubits that scale polynomially in the problem size. Hence our mapping is efficient. The required set of controllable interactions includes only two types of interaction beyond the Ising interactions required to apply the quantum adiabatic algorithm to combinatorial optimization problems. Our mapping may also be of interest to chemists directly as it defines a dictionary from electronic structure to spin Hamiltonians with physical interactions.
Quantum Adiabatic Evolution Algorithms with Different Paths
Farhi, E; Gutmann, S; Farhi, Edward; Goldstone, Jeffrey; Gutmann, Sam
2002-01-01
In quantum adiabatic evolution algorithms, the quantum computer follows the ground state of a slowly varying Hamiltonian. The ground state of the initial Hamiltonian is easy to construct; the ground state of the final Hamiltonian encodes the solution of the computational problem. These algorithms have generally been studied in the case where the "straight line" path from initial to final Hamiltonian is taken. But there is no reason not to try paths involving terms that are not linear combinations of the initial and final Hamiltonians. We give several proposals for randomly generating new paths. Using one of these proposals, we convert an algorithmic failure into a success.
Effective Hamiltonian of strained graphene.
Linnik, T L
2012-05-23
Based on the symmetry properties of the graphene lattice, we derive the effective Hamiltonian of graphene under spatially nonuniform acoustic and optical strains. Comparison with the published results of the first-principles calculations allows us to determine the values of some Hamiltonian parameters, and suggests the validity of the derived Hamiltonian for acoustical strain up to 10%. The results are generalized for the case of graphene with broken plane reflection symmetry, which corresponds, for example, to the case of graphene placed on a substrate. Here, essential modifications to the Hamiltonian give rise, in particular, to the gap opening in the spectrum in the presence of the out-of-plane component of optical strain, which is shown to be due to the lifting of the sublattice symmetry. The developed effective Hamiltonian can be used as a convenient tool for analysis of a variety of strain-related effects, including electron-phonon interaction or pseudo-magnetic fields induced by the nonuniform strain.
Choi, Ho-Meoyng; Ryu, Hui-Young; Ji, Chueng-Ryong
2017-09-01
We investigate the (π0,η ,η')→γ*γ transitions both for the spacelike region and the timelike region using the light-front quark model (LFQM). In particular, we present the new direct method to explore the timelike region without resorting to mere analytic continuation from the spacelike region to the timelike region. Our direct calculation in timelike region shows the complete agreement not only with the analytic continuation result from the spacelike region but also with the result from the dispersion relation between the real and imaginary parts of the form factor. For the low energy regime, we compare our LFQM results of the transition form factors (TFFs) for the low timelike momentum transfer region and the slope parameters at q2=0 with the recent experimental data from the Dalitz decays of (π0,η ,η'). For the high energy regime, we incorporate the QCD factorization in our LFQM to examine the asymptotic behavior of TFFs both for the spacelike region and the timelike region. We compare our results with the available experimental data.
Singh, Parampreet
2015-01-01
The problem of obtaining canonical Hamiltonian structures from the equations of motion is studied in the context of the spatially flat Friedmann-Robertson-Walker models. Modifications to Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on its sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy condition, or more attractive than in the classical theory. Canonical structure of the modified theories is determined demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. Both of the repulsive modifications are found to yield singularity avoidance. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse trigonometric function of Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum ...
Kinetic theory of non-hamiltonian statistical ensembles
A.V.Zhukov
2006-01-01
Full Text Available A nonequilibrium statistical operator method is developed for ensembles of particles obeying non-Hamiltonian equations of motion in classical phase space. The main consequences of non-zero compressibility of phase space are examined in terms of time-dependent dynamic quantities. The generalized transport equations involve the phase-space compressibility in a non-trivial way. Our results are useful in molecular dynamics simulation studies as well as nonequilibrium or quasiclassical approximations of quantum-classical dynamics.
Hamiltonian hierarchy and the Hulthén potential
Gönül, B.; Özer, O.; Cançelik, Y.; Koçak, M.
2000-10-01
We deal with the Hamiltonian hierarchy problem of the Hulthén potential within the frame of the supersymmetric quantum mechanics and find that the associated supersymmetric partner potentials simulate the effect of the centrifugal barrier. Incorporating the supersymmetric solutions and using the first-order perturbation theory we obtain an expression for the energy levels of the Hulthén potential which gives satisfactory values for the non-zero angular momentum states.
Mathematical justification of the Aharonov-Bohm hamiltonian
de Oliveira, Cesar R
2008-01-01
It is presented, in the framework of nonrelativistic quantum mechanics, a justification of the usual Aharonov-Bohm hamiltonian (with solenoid of radius greater than zero). This is obtained by way of increasing sequences of finitely long solenoids together with a natural impermeability procedure; further, both limits commute. Such rigorous limits are in the strong resolvent sense and in both $\\R^2$ and $\\R^3$ spaces.
Monte Carlo methods in continuous time for lattice Hamiltonians
Huffman, Emilie
2016-01-01
We solve a variety of sign problems for models in lattice field theory using the Hamiltonian formulation, including Yukawa models and simple lattice gauge theories. The solutions emerge naturally in continuous time and use the dual representation for the bosonic fields. These solutions allow us to construct quantum Monte Carlo methods for these problems. The methods could provide an alternative approach to understanding non-perturbative dynamics of some lattice field theories.
Kepler Problem in Hamiltonian Formulation Discussed from Topological Viewpoint
XU Gong-Ou; XU Ming-Jie; YANG Ya-Tian
2005-01-01
@@ The Kepler problem in Hamiltonian formulation is discussed from a topological viewpoint. Topological properties for a set of cases designated with conserved quantities l, e and E(l, e) (0 ≤ e ＜ 1) are expressed with actionangle variables. The involved canonical transformations are all carried out with classical Poisson brackets. Thus it is possible to extend such a formulation to corresponding quantum-mechanical study under quasi-classical conditions.
Hamiltonian Dynamics of Preferential Attachment
Zuev, Konstantin; Krioukov, Dmitri
2015-01-01
Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment, known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton's equations. We derive the explicit form of the Hamiltonian that governs network growth in preferential attachment. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by preferential attachment is nearly identical to the ensemble of random graphs with scale-free degree d...
The electronic Hamiltonian for cuprates
Annett, James F.; Mcmahan, A. K.; Martin, Richard M.
1991-01-01
A realistic many-body Hamiltonian for the cuprate superconductors should include both copper d and oxygen p states, hopping matrix elements between them, and Coulomb energies, both on-site and inter-site. We have developed a novel computational scheme for deriving the relevant parameters ab initio from a constrained occupation local density functional. The scheme includes numerical calculation of appropriate Wannier functions for the copper and oxygen states. Explicit parameter values are given for La2CuO4. These parameters are generally consistent with other estimates and with the observed superexchange energy. Secondly, we address whether this complicated multi-band Hamiltonian can be reduced to a simpler one with fewer basis states per unit cell. We propose a mapping onto a new two-band effective Hamiltonian with one copper d and one oxygen p derived state per unit cell. This mapping takes into account the large oxygen-oxygen hopping given by the ab initio calculations.
Runtime of unstructured search with a faulty Hamiltonian oracle
Temme, Kristan
2014-08-01
We show that it is impossible to obtain a quantum speedup for a faulty Hamiltonian oracle. The effect of dephasing noise to this continuous-time oracle model has first been investigated by Shenvi, Brown, and Whaley [Phys. Rev. A 68, 052313 (2003)., 10.1103/PhysRevA.68.052313]. The authors consider a faulty oracle described by a continuous-time master equation that acts as dephasing noise in the basis determined by the marked item. The analysis focuses on the implementation with a particular driving Hamiltonian. A universal lower bound for this oracle model, which rules out a better performance with a different driving Hamiltonian, has so far been lacking. Here, we derive an adversary-type lower bound which shows that the evolution time T has to be at least in the order of N, i.e., the size of the search space, when the error rate of the oracle is constant. This means that quadratic quantum speedup vanishes and the runtime assumes again the classical scaling. For the standard quantum oracle model this result was first proven by Regev and Schiff [in Automata, Languages and Programming, Lecture Notes in Computer Science Vol. 5125 (Springer, Berlin, 2008), pp. 773-781]. Here, we extend this result to the continuous-time setting.
First principles of Hamiltonian medicine.
Crespi, Bernard; Foster, Kevin; Úbeda, Francisco
2014-05-19
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
Unified Hamiltonian for conducting polymers
Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi
2011-11-01
Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.
Hamiltonian systems as selfdual equations
2008-01-01
Hamiltonian systems with various time boundary conditions are formulated as absolute minima of newly devised non-negative action func-tionals obtained by a generalization of Bogomolnyi's trick of 'completing squares'. Reminiscent of the selfdual Yang-Mills equations, they are not derived from the fact that they are critical points (i.e., from the correspond- ing Euler-Lagrange equations) but from being zeroes of the corresponding non-negative Lagrangians. A general method for resolving such variational problems is also described and applied to the construction of periodic solutions for Hamiltonian systems, but also to study certain Lagrangian intersections.
Duality quantum algorithm efficiently simulates open quantum systems
Shi-Jie Wei; Dong Ruan; Gui-Lu Long
2016-01-01
Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the op...
Approximability of optimization problems through adiabatic quantum computation
Cruz-Santos, William
2014-01-01
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is l
Adiabatic and Hamiltonian computing on a 2D lattice with simple two-qubit interactions
Lloyd, Seth; Terhal, Barbara M.
2016-02-01
We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent two-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.
Adiabatic quantum gates and Boolean functions
Andrecut, M; Ali, M K [Department of Physics, University of Lethbridge, Lethbridge, AB, T1K 3M4 (Canada)
2004-06-25
We discuss the logical implementation of quantum gates and Boolean functions in the framework of quantum adiabatic method, which uses the language of ground states, spectral gaps and Hamiltonians instead of the standard unitary transformation language. (letter to the editor)
Liu, Jian
2017-01-01
We introduce the isomorphism between an multi-state Hamiltonian and the second-quantized many-electron Hamiltonian (with only 1-electron interactions). This suggests that all methods developed for the former can be employed for the latter, and vice versa. The resonant level (Landauer) model for nonequilibrium quantum transport is used as a proof-of-concept example. Such as the classical mapping models for the multi-state Hamiltonian proposed in our previous work [J. Liu, J. Chem. Phys. 145, 204105 (2016)] lead to exact results for this model problem. We further demonstrate how these methods can also be applied to the second-quantized many-electron Hamiltonian even when 2-electron interactions are included.
Liu, Jian
2016-01-01
We introduce the isomorphism between the multi-state Hamiltonian and the second-quantized many-electron Hamiltonian (with only 1-electron interactions). This suggests that all methods developed for the former can be employed for the latter, and vice versa. The resonant level (Landauer) model for nonequilibrium quantum transport is used as a proof-of-concept example. Such as the classical mapping models for the multi-state Hamiltonian proposed in our previous work [J. Chem. Phys. (submitted)] lead to exact results for this model problem. We further demonstrate how these methods can also be applied to the second-quantized many-electron Hamiltonian even when 2-electron interactions are included.
Skurnick, Ronald; Davi, Charles; Skurnick, Mia
2005-01-01
Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…
Maslov index for Hamiltonian systems
Alessandro Portaluri
2008-01-01
Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.
Dynamical stability of Hamiltonian systems
无
2000-01-01
Dynamical stability has become the center of study on Hamiltonian system. In this article we intro-duce the recent development in some areas closely related to this topic, such as the KAM theory, Mather theory, Arnolddiffusion and non-singular collision of n-body problem.
Derivation of Hamiltonians for accelerators
Symon, K.R.
1997-09-12
In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.
Time-reversible Hamiltonian systems
Schaft, Arjan van der
1982-01-01
It is shown that transfer matrices satisfying G(-s) = G(s) = G^T(-s) have a minimal Hamiltonian realization with an energy which is the sum of potential and kinetic energy, yielding the time reversibility of the equations. Furthermore connections are made with an associated gradient system. The
Al-Khalili, Jim
2003-01-01
In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.
J. D. Biamonte
2011-06-01
Full Text Available In his famous 1981 talk, Feynman proposed that unlike classical computers, which would presumably experience an exponential slowdown when simulating quantum phenomena, a universal quantum simulator would not. An ideal quantum simulator would be controllable, and built using existing technology. In some cases, moving away from gate-model-based implementations of quantum computing may offer a more feasible solution for particular experimental implementations. Here we consider an adiabatic quantum simulator which simulates the ground state properties of sparse Hamiltonians consisting of one- and two-local interaction terms, using sparse Hamiltonians with at most three-local interactions. Properties of such Hamiltonians can be well approximated with Hamiltonians containing only two-local terms. The register holding the simulated ground state is brought adiabatically into interaction with a probe qubit, followed by a single diabatic gate operation on the probe which then undergoes free evolution until measured. This allows one to recover e.g. the ground state energy of the Hamiltonian being simulated. Given a ground state, this scheme can be used to verify the QMA-complete problem LOCAL HAMILTONIAN, and is therefore likely more powerful than classical computing.
On third order integrable vector Hamiltonian equations
Meshkov, A. G.; Sokolov, V. V.
2017-03-01
A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.
Hamiltonian realizations of nonlinear adjoint operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2002-01-01
This paper addresses the issue of state-space realizations for nonlinear adjoint operators. In particular, the relationships between nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are established. Then, characterizations of the adjoints of control
Hamiltonian Realizations of Nonlinear Adjoint Operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2000-01-01
This paper addresses state-space realizations for nonlinear adjoint operators. In particular the relationship among nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are clarified. The characterization of controllability, observability and Hankel ope
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Mangiarotti, L. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Sardanashvily, G. [Department of Theoretical Physics, Moscow State University, 117234 Moscow (Russian Federation)]. E-mail: gennadi.sardanashvily@unicam.it
2007-02-26
Integrals of motion of a Hamiltonian system need not commute. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as the Abelian one.
Hamiltonian structure of propagation equations for ultrashort optical pulses
Amiranashvili, Sh.; Demircan, A.
2010-07-01
A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves, arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics is effectively tested by examining the conservation laws.
Evolutionary approach for determining first-principles hamiltonians.
Hart, Gus L W; Blum, Volker; Walorski, Michael J; Zunger, Alex
2005-05-01
Modern condensed-matter theory from first principles is highly successful when applied to materials of given structure-type or restricted unit-cell size. But this approach is limited where large cells or searches over millions of structure types become necessary. To treat these with first-principles accuracy, one 'coarse-grains' the many-particle Schrodinger equation into 'model hamiltonians' whose variables are configurational order parameters (atomic positions, spin and so on), connected by a few 'interaction parameters' obtained from a microscopic theory. But to construct a truly quantitative model hamiltonian, one must know just which types of interaction parameters to use, from possibly 10(6)-10(8) alternative selections. Here we show how genetic algorithms, mimicking biological evolution ('survival of the fittest'), can be used to distil reliable model hamiltonian parameters from a database of first-principles calculations. We demonstrate this for a classic dilemma in solid-state physics, structural inorganic chemistry and metallurgy: how to predict the stable crystal structure of a compound given only its composition. The selection of leading parameters based on a genetic algorithm is general and easily applied to construct any other type of complex model hamiltonian from direct quantum-mechanical results.
Maireche Abdelmadjid
2015-01-01
In present search, we have studied the effect of the both non commutativity of three dimensional space and phase on the Schrödinger equation with companied Harmonic oscillator potential and it’s inverse, know by isotopic Harmonic oscillator plus inverse quadratic (h.p.i.) potential, we shown that the Hermitian NC Hamiltonian formed anisotropic operator and described many physics phenomena’s, we have also derived the exact degenerated spectrum for studied potential in the first order of two in...
Port-Hamiltonian systems: an introductory survey
Schaft, van der Arjan; Sanz-Sole, M.; Soria, J.; Varona, J.L.; Verdera, J.
2006-01-01
The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian
New sufficient conditions for Hamiltonian paths.
Rahman, M Sohel; Kaykobad, M; Firoz, Jesun Sahariar
2014-01-01
A Hamiltonian path in a graph is a path involving all the vertices of the graph. In this paper, we revisit the famous Hamiltonian path problem and present new sufficient conditions for the existence of a Hamiltonian path in a graph.
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Geometric Hamiltonian structures and perturbation theory
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.
Efficient unitary designs with nearly time-independent Hamiltonian dynamics
Nakata, Yoshifumi; Koashi, Masato; Winter, Andreas
2016-01-01
We provide new constructions of unitary $t$-designs for general $t$ on one qudit and $N$ qubits, and propose a design Hamiltonian, a random Hamiltonian of which dynamics always forms a unitary design after a threshold time, as a basic framework to investigate randomising time evolution in quantum many-body systems. The new constructions are based on recently proposed schemes of repeating random unitaires diagonal in mutually unbiased bases. We first show that, if a pair of the bases satisfies a certain condition, the process on one qudit approximately forms a unitary $t$-design after $O(t)$ repetitions. We then construct quantum circuits on $N$ qubits that achieve unitary $t$-designs for $t = o(N^{1/2})$ using $O(t N^2)$ gates, improving the previous result using $O(t^{10}N^2)$ gates in terms of $t$. Based on these results, we present a design Hamiltonian with periodically changing two-local spin-glass-type interactions, leading to fast and relatively natural realisations of unitary designs in complex many-bo...
Renormalized Effective QCD Hamiltonian Gluonic Sector
Robertson, D G; Szczepaniak, A P; Ji, C R; Cotanch, S R
1999-01-01
Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.
Intertwining operators for non-self-adjoint Hamiltonians and bicoherent states
Bagarello, F.
2016-10-01
This paper is devoted to the construction of what we will call exactly solvable models, i.e., of quantum mechanical systems described by an Hamiltonian H whose eigenvalues and eigenvectors can be explicitly constructed out of some minimal ingredients. In particular, motivated by PT-quantum mechanics, we will not insist on any self-adjointness feature of the Hamiltonians considered in our construction. We also introduce the so-called bicoherent states, we analyze some of their properties and we show how they can be used for quantizing a system. Some examples, both in finite and in infinite-dimensional Hilbert spaces, are discussed.
Hamiltonian dynamics of extended objects
Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)
2004-12-07
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.
Lowest Eigenvalues of Random Hamiltonians
Shen, J J; Arima, A; Yoshinaga, N
2008-01-01
In this paper we present results of the lowest eigenvalues of random Hamiltonians for both fermion and boson systems. We show that an empirical formula of evaluating the lowest eigenvalues of random Hamiltonians in terms of energy centroids and widths of eigenvalues are applicable to many different systems (except for $d$ boson systems). We improve the accuracy of the formula by adding moments higher than two. We suggest another new formula to evaluate the lowest eigenvalues for random matrices with large dimensions (20-5000). These empirical formulas are shown to be applicable not only to the evaluation of the lowest energy but also to the evaluation of excited energies of systems under random two-body interactions.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael; Guzmán, María José
2016-11-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and Misner algebra of general relativity is recovered as a subalgebra.
On Hamiltonian formulation of cosmologies
K D Krori; S Dutta
2000-03-01
Novello et al [1,2] have shown that it is possible to ﬁnd a pair of canonically conjugate variables (written in terms of gauge-invariant variables) so as to obtain a Hamiltonian that describes the dynamics of a cosmological system. This opens up the way to the usual technique of quantization. Elbaz et al [4] have applied this method to the Hamiltonian formulation of FRW cosmological equations. This note presents a generalization of this approach to a variety of cosmologies. A general Schrödinger wave equation has been derived and exact solutions have been worked out for the stiff matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution.
A Hamiltonian approach to Thermodynamics
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael
2016-01-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR) is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudo-inverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms, and the (local) Lorentz transformations of the vielbein. In particular, the ADM algebra of general relativity is recovered as a sub-algebra.
Hamiltonian mechanics of stochastic acceleration.
Burby, J W; Zhmoginov, A I; Qin, H
2013-11-08
We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
Hamiltonian chaos and fractional dynamics
Zaslavsky, George M
2008-01-01
The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image ...
Local temperatures and local terms in modular Hamiltonians
Arias, Raul; Casini, Horacio; Huerta, Marina
2016-01-01
We show there are analogues to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show important restrictions arise from relative entropy inequalities and causal propagation between Cauchy surfaces. These suggest a large amount of universality for local temperatures, specially the ones affecting null directions. For regions with any number of intervals in two space-time dimensions the local temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue this term might be universal, with a coefficient that is the same for any theory, and check analytically and numerically this is the case for free massive scalar and Dirac fields. In dimensions $d\\ge 3$ the local terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from the stress tensor. For a free scalar field we classify the structure of...
Quadratic time dependent Hamiltonians and separation of variables
Anzaldo-Meneses, A.
2017-06-01
Time dependent quantum problems defined by quadratic Hamiltonians are solved using canonical transformations. The Green's function is obtained and a comparison with the classical Hamilton-Jacobi method leads to important geometrical insights like exterior differential systems, Monge cones and time dependent Gaussian metrics. The Wei-Norman approach is applied using unitary transformations defined in terms of generators of the associated Lie groups, here the semi-direct product of the Heisenberg group and the symplectic group. A new explicit relation for the unitary transformations is given in terms of a finite product of elementary transformations. The sequential application of adequate sets of unitary transformations leads naturally to a new separation of variables method for time dependent Hamiltonians, which is shown to be related to the Inönü-Wigner contraction of Lie groups. The new method allows also a better understanding of interacting particles or coupled modes and opens an alternative way to analyze topological phases in driven systems.
Effective Hamiltonian and unitarity of the S matrix.
Rotter, I
2003-07-01
The properties of open quantum systems are described well by an effective Hamiltonian H that consists of two parts: the Hamiltonian H of the closed system with discrete eigenstates and the coupling matrix W between discrete states and continuum. The eigenvalues of H determine the poles of the S matrix. The coupling matrix elements W(cc')(k) between the eigenstates k of H and the continuum may be very different from the coupling matrix elements W(cc')(k) between the eigenstates of H and the continuum. Due to the unitarity of the S matrix, the W(cc')(k) depend on energy in a nontrivial manner. This conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighborhood of, respectively, avoided level crossings in the complex plane and double poles of the S matrix are given.
RG-Whitham dynamics and complex Hamiltonian systems
A. Gorsky
2015-06-01
Full Text Available Inspired by the Seiberg–Witten exact solution, we consider some aspects of the Hamiltonian dynamics with the complexified phase space focusing at the renormalization group (RG-like Whitham behavior. We show that at the Argyres–Douglas (AD point the number of degrees of freedom in Hamiltonian system effectively reduces and argue that anomalous dimensions at AD point coincide with the Berry indexes in classical mechanics. In the framework of Whitham dynamics AD point turns out to be a fixed point. We demonstrate that recently discovered Dunne–Ünsal relation in quantum mechanics relevant for the exact quantization condition exactly coincides with the Whitham equation of motion in the Ω-deformed theory.
Diagonalization of the XXZ Hamiltonian by Vertex Operators
Davies, B; Jimbo, M; Miwa, T; Nakayashiki, A; Davies, Brian; Foda, Omar; Jimbo, Michio; Miwa, Tetsuji; Nakayashiki, Atsushi
1993-01-01
We diagonalize the anti-ferroelectric XXZ-Hamiltonian directly in the thermodynamic limit, where the model becomes invariant under the action of affine U_q( sl(2) ). Our method is based on the representation theory of quantum affine algebras, the related vertex operators and KZ equation, and thereby bypasses the usual process of starting from a finite lattice, taking the thermodynamic limit and filling the Dirac sea. From recent results on the algebraic structure of the corner transfer matrix of the model, we obtain the vacuum vector of the Hamiltonian. The rest of the eigenvectors are obtained by applying the vertex operators, which act as particle creation operators in the space of eigenvectors. We check the agreement of our results with those obtained using the Bethe Ansatz in a number of cases, and with others obtained in the scaling limit --- the $su(2)$-invariant Thirring model.
Controllability of Quantum Systems
Schirmer, S G; Solomon, A I
2003-01-01
An overview and synthesis of results and criteria for open-loop controllability of Hamiltonian quantum systems obtained using Lie group and Lie algebra techniques is presented. Negative results for open-loop controllability of dissipative systems are discussed, and the superiority of closed-loop (feedback) control for quantum systems is established.