Field Evaluation of Programmable Thermostats
Energy Technology Data Exchange (ETDEWEB)
Sachs, O. [Fraunhofer Center for Sustainable Energy Systems (CSE), Cambridge, MA (United States); Tiefenbeck, V. [Fraunhofer Center for Sustainable Energy Systems (CSE), Cambridge, MA (United States); Duvier, C. [Fraunhofer Center for Sustainable Energy Systems (CSE), Cambridge, MA (United States); Qin, A. [Fraunhofer Center for Sustainable Energy Systems (CSE), Cambridge, MA (United States); Cheney, K. [Fraunhofer Center for Sustainable Energy Systems (CSE), Cambridge, MA (United States); Akers, C. [Fraunhofer Center for Sustainable Energy Systems (CSE), Cambridge, MA (United States); Roth, K. [Fraunhofer Center for Sustainable Energy Systems (CSE), Cambridge, MA (United States)
2012-12-01
Prior research suggests that poor programmable thermostats usability may prevent their effective use to save energy. The Fraunhofer team hypothesized that home occupants with high-usability thermostats would be more likely to use them to save energy than people with a basic thermostats. In this report, the team discusses results of a project in which the team monitored and compared programmable thermostats with basic thermostats in an affordable housing apartment complex.
Texas traffic thermostat marketing package.
2013-04-01
The traffic thermostat decision tool is built to help guide the user through a logical, step-wise, process of examining potential changes to their Manage Lane/toll facility. : **NOTE: Project Title: Application of the Traffic Thermostat Framework. Ap...
Texas traffic thermostat software tool.
2013-04-01
The traffic thermostat decision tool is built to help guide the user through a logical, step-wise, process of examining potential changes to their Manage Lane/toll facility. : **NOTE: Project Title: Application of the Traffic Thermostat Framework. Ap...
Field Evaluation of Programmable Thermostats
Energy Technology Data Exchange (ETDEWEB)
Sachs, O.; Tiefenbeck, V.; Duvier, C.; Qin, A.; Cheney, K.; Akers, C.; Roth, K.
2012-12-01
Prior research suggests that poor programmable thermostats usability may prevent their effective use to save energy. We hypothesized that home occupants with a high-usability thermostats would be more likely to use them to save energy than people with a basic thermostat. We randomly installed a high-usability thermostat in half the 77 apartments of an affordable housing complex, installing a basic thermostat in the other half. During the heating season, we collected space temperature and furnace on-off data to evaluate occupant interaction with the thermostats, foremost nighttime setbacks. We found that thermostat usability did not influence energy-saving behaviors, finding no significant difference in temperature maintained among apartments with high- and low-usability thermostats.
Thermostatic Radiator Valve Evaluation
Energy Technology Data Exchange (ETDEWEB)
Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Ansanelli, Eric [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)
2015-01-01
A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.
Danfos: Thermostatic Radiator Valves
DEFF Research Database (Denmark)
Gregersen, Niels; Oliver, James; Hjorth, Poul G.
2000-01-01
This problem deals with modelling the flow through a typical Danfoss thermostatic radiator valve.Danfoss is able to employ Computational Fluid Dynamics (CFD) in calculations of the capacity of valves, but an experienced engineer can often by rules of thumb "guess" the capacity, with a precision...
International Nuclear Information System (INIS)
Krommes, J.A.
2000-01-01
The delta f simulation method is revisited. Statistical coarse-graining is used to rigorously derive the equation for the fluctuation delta f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance of the particle weights w grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or W-stat may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales in velocity space. The simplest W-stat can be implemented as a self-consistently determined, time-dependent damping applied to w. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics (NEMD) is pointed out, and the justification of W-stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short W-statted runs with large effective collisionality, and a numerical demonstration is given
Thermostatic Radiator Valve Evaluation
Energy Technology Data Exchange (ETDEWEB)
Dentz, J. [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States); Ansanelli, E. [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States)
2015-01-01
A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market. In this project, the ARIES team sought to better understand the current usage of TRVs by key market players in steam and hot water heating and to conduct limited experiments on the effectiveness of new and old TRVs as a means of controlling space temperatures and reducing heating fuel consumption. The project included a survey of industry professionals, a field experiment comparing old and new TRVs, and cost-benefit modeling analysis using BEopt™ (Building Energy Optimization software).
Introducing the ecobee smart thermostat
Energy Technology Data Exchange (ETDEWEB)
NONE
2009-07-01
This pamphlet described a thermostat system designed to help households conserve energy and reduce the environmental impacts related to home heating. Features of the ecobee smart thermostat include a weather button that provides the latest forecast for the specific region and a quick save button designed to automatically set the thermostat into an energy conservation mode. A details button provides customer access to all customized heating and cooling settings interfaced in list format. A programming feature assists customers in basic and advanced programming. A vacation setting is also provided to allow customers to save energy while on vacation. The ecobee system uses advanced furnace fan control, ventilator control, and automatic setback calculations. The thermostat system includes a full colour display and integrated web portal designed to allow remote access and provide tools for easily adapting to changing rate structures. Optional broadband connectivity allows real time delivery to customers. The pamphlet also included technical specifications. 1 tab., 9 figs.
ENERGY STAR Certified Smart Thermostats
U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 1.0 ENERGY STAR Program Requirements for Connected Thermostats that are effective as of...
Investigation of a chaotic thermostat
Morales, G. J.
2018-03-01
A numerical study is presented of a free particle interacting with a deterministic thermostat in which the usual friction force is supplemented with a fluctuating force that depends on the self-consistent damping coefficient associated with coupling to the heat bath. It is found that this addition results in a chaotic environment in which a particle self-heats from rest and moves in positive and negative directions, exhibiting a characteristic diffusive behavior. The frequency power spectrum of the dynamical quantities displays the exponential frequency dependence ubiquitous to chaotic dynamics. The velocity distribution function approximates a Maxwellian distribution, but it does show departures from perfect thermal equilibrium, while the distribution function for the damping coefficient shows a closer fit. The behavior for the classic Nosé-Hoover (NH) thermostat is compared to that of the enlarged Martyna-Klein-Tuckerman (MKT) model. Over a narrow amplitude range, the application of a constant external force results quantitatively in the Einstein relation for the NH thermostat, and for the MKT model it differs by a factor of 2.
How People Actually Use Thermostats
Energy Technology Data Exchange (ETDEWEB)
Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco
2010-08-15
Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.
Thermostat Interface and Usability: A Survey
Energy Technology Data Exchange (ETDEWEB)
Meier, Alan; Peffer, Therese; Pritoni, Marco; Aragon, Cecilia
2010-09-04
This report investigates the history of thermostats to better understand the context and legacy regarding the development of this important tool, as well as thermostats' relationships to heating, cooling, and other environmental controls. We analyze the architecture, interfaces, and modes of interaction used by different types of thermostats. For over sixty years, home thermostats have translated occupants' temperature preferences into heating and cooling system operations. In this position of an intermediary, the millions of residential thermostats control almost half of household energy use, which corresponds to about 10percent of the nation's total energy use. Thermostats are currently undergoing rapid development in response to emerging technologies, new consumer and utility demands, and declining manufacturing costs. Energy-efficient homes require more careful balancing of comfort, energy consumption, and health. At the same time, new capabilities will be added to thermostats, including scheduling, control of humidity and ventilation, responsiveness to dynamic electricity prices, and the ability to join communication networks inside homes. Recent studies have found that as many as 50percent of residential programmable thermostats are in permanent"hold" status. Other evaluations found that homes with programmable thermostats consumed more energy than those relying on manual thermostats. Occupants find thermostats cryptic and baffling to operate because manufacturers often rely on obscure, and sometimes even contradictory, terms, symbols, procedures, and icons. It appears that many people are unable to fully exploit even the basic features in today's programmable thermostats, such as setting heating and cooling schedules. It is important that people can easily, reliably, and confidently operate thermostats in their homes so as to remain comfortable while minimizing energy use.
Time step MOTA thermostat simulation
International Nuclear Information System (INIS)
Guthrie, G.L.
1978-09-01
The report details the logic, program layout, and operating procedures for the time-step MOTA (Materials Open Test Assembly) thermostat simulation program known as GYRD. It will enable prospective users to understand the operation of the program, run it, and interpret the results. The time-step simulation analysis was the approach chosen to determine the maximum value gain that could be used to minimize steady temperature offset without risking undamped thermal oscillations. The advantage of the GYRD program is that it directly shows hunting, ringing phenomenon, and similar events. Programs BITT and CYLB are faster, but do not directly show ringing time
Energy Technology Data Exchange (ETDEWEB)
Wu, F.; Song, D.; Sheng, K.; Wu, J. [Changcheng Institute of Metrology and Measurement, 100095, Beijing (China); Yi, X. [China National South Aviation industry CO., LTD., 412002, Hunan (China); Yu, Z. [Dalian Jinzhou Institute of Measurement and Testing, 116100, Liaoning (China)
2013-09-11
In this paper the authors report a newly developed Cesium Heat-Pipe Thermostat (Cs HPT) with the operation range of 400 °C to 800 °C. The working medium is cesium (Cs) of 99.98% purity and contains no radioisotope. A Cs filing device is developed which can prevent Cs being in contact with air. The structural material is stainless steel. A 5000 h test has been made to confirm the compatibility between cesium and stainless steel. The Cs HPT has several thermometer wells of 220mm depth with different diameters for different sizes of thermometers. The temperature uniformity of the Cs HPT is 0.06 °C to 0.20 °C. A precise temperature controller is used to ensure the temperature fluctuation within ±0.03 °C. The size of Cs HPT is 380mm×320mm×280mm with foot wheels for easy moving. The thermostat has been successfully used for the calibration of industrial platinum resistance thermometers and thermocouples.
RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES
Energy Technology Data Exchange (ETDEWEB)
Meier, Alan K.; Walker, Iain
2008-03-02
This report summarizes results of a literature review, a workshop, and many meetings with demand response and thermostat researchers and implementers. The information obtained from these resources was used to identify key issues of thermostat performance from both energy savings and peak demand perspectives. A research plan was developed to address these issues and activities have already begun to pursue the research agenda.
Isokinetic sampler; Amostrador isocinetico
Energy Technology Data Exchange (ETDEWEB)
Andrade, Luis Cesar C. de; Santos, Antonio Carlos dos [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil); Barrio, Lara B.A. del [AZ Armaturen do Brasil Ltda., Itatiba, SP (Brazil); Silva, Claudio B. da C. e; Silva, Ricardo R. da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas
2005-07-01
The Center of Research Leopoldo A. Miguez de Melo - CENPES - in association with AZ Armaturen Company do Brasil and TRANSPETRO developed and tested an Isokinetic sampler. This work presents the sampling principles and the results and performance of the tests realized in the 'Sitio de Testes de Atalaia' and in one of the terminals of bunker transfer of TRANSPETRO - 'Terminal Aquaviario da Baia de Guanabara'. In the 'Sitio de Testes' the products used were oil and water with BSW from 5% to 97% and in the terminal were tested samplings of bunker with ranges viscosities between (MF 180 to 380). (author)
Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.
2015-01-01
Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of
Large Scale Demand Response of Thermostatic Loads
DEFF Research Database (Denmark)
Totu, Luminita Cristiana
This study is concerned with large populations of residential thermostatic loads (e.g. refrigerators, air conditioning or heat pumps). The purpose is to gain control over the aggregate power consumption in order to provide balancing services for the electrical grid. Without affecting the temperat......This study is concerned with large populations of residential thermostatic loads (e.g. refrigerators, air conditioning or heat pumps). The purpose is to gain control over the aggregate power consumption in order to provide balancing services for the electrical grid. Without affecting....... The control architecture is defined by parsimonious communication requirements that also have a high level data privacy, and it furthermore guarantees a robust and secure local operation. Mathematical models are put forward, and the effectiveness is shown by numerical simulations. A case study of 10000...
The reliabilty of isokinetic strength measurement
Kadlec, Miroslav
2011-01-01
Title: Reliability of isometric and isokinetic strength testing in the knee flexion and extension Objectives: To compare the reliability of isometric and isokinetic testing of the knee strength in flexion and extension Methods: I used intraclass correlation coefficient and Pearson's correlation coefficient. Results: I have discovered that the reliability measured on isokinetic and isometric dynamometer is high. Furthermore the reliability of the maximum strength measurement was higher with-us...
Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
International Nuclear Information System (INIS)
Peggs, S.; Talman, R.
1987-01-01
As proton accelerators get larger, and include more magnets, the conventional tracking programs which simulate them run slower. The purpose of this paper is to describe a method, still under development, in which element-by-element tracking around one turn is replaced by a single man, which can be processed far faster. It is assumed for this method that a conventional program exists which can perform faithful tracking in the lattice under study for some hundreds of turns, with all lattice parameters held constant. An empirical map is then generated by comparison with the tracking program. A procedure has been outlined for determining an empirical Hamiltonian, which can represent motion through many nonlinear kicks, by taking data from a conventional tracking program. Though derived by an approximate method this Hamiltonian is analytic in form and can be subjected to further analysis of varying degrees of mathematical rigor. Even though the empirical procedure has only been described in one transverse dimension, there is good reason to hope that it can be extended to include two transverse dimensions, so that it can become a more practical tool in realistic cases
Room Thermostat with Servo Controlled by PIC Microcontroller
Directory of Open Access Journals (Sweden)
Jan Skapa
2013-01-01
Full Text Available This paper describes the design of room thermostat with Microchip PIC microcontroller. Thermostat is designated for two-pipe heating system. The microprocessor controls thermostatic valve via electric actuator with mechanical gear unit. The room thermostat uses for its activity measurements of air temperature in the room and calorimetric measurement of heat, which is served to the radiator. These features predestinate it mainly for underfloor heating regulation. The thermostat is designed to work in a network. Communication with heating system's central control unit is proceeded via RS485 bus with proprietary communication protocol. If the communication failure occurs the thermostat is able to work separately. The system uses its own real time clock circuit and memory with heating programs. These programs are able to cover the whole heating season. The method of position discontinuous PSD control is used in this equipment.
Efficient stochastic thermostatting of path integral molecular dynamics.
Ceriotti, Michele; Parrinello, Michele; Markland, Thomas E; Manolopoulos, David E
2010-09-28
The path integral molecular dynamics (PIMD) method provides a convenient way to compute the quantum mechanical structural and thermodynamic properties of condensed phase systems at the expense of introducing an additional set of high frequency normal modes on top of the physical vibrations of the system. Efficiently sampling such a wide range of frequencies provides a considerable thermostatting challenge. Here we introduce a simple stochastic path integral Langevin equation (PILE) thermostat which exploits an analytic knowledge of the free path integral normal mode frequencies. We also apply a recently developed colored noise thermostat based on a generalized Langevin equation (GLE), which automatically achieves a similar, frequency-optimized sampling. The sampling efficiencies of these thermostats are compared with that of the more conventional Nosé-Hoover chain (NHC) thermostat for a number of physically relevant properties of the liquid water and hydrogen-in-palladium systems. In nearly every case, the new PILE thermostat is found to perform just as well as the NHC thermostat while allowing for a computationally more efficient implementation. The GLE thermostat also proves to be very robust delivering a near-optimum sampling efficiency in all of the cases considered. We suspect that these simple stochastic thermostats will therefore find useful application in many future PIMD simulations.
Paterakis, N.G.; Medeiros, M.F.; Catalao, J.P.S.; Siaraka, A.; Bakirtzis, A.G.; Erdinc, O.
2015-01-01
In this study, a home energy management system structure is developed in order to determine the optimal commitment of a smart-household. Two types of loads are explicitly modeled: non-thermostatically controllable (electric vehicle, shiftable appliances) and thermostatically controllable loads (air
Demand Response on domestic thermostatically controlled loads
DEFF Research Database (Denmark)
Lakshmanan, Venkatachalam
. For a safe and reliable operation of electric power systems, the balance between electricity generation and consumption has to be maintained. The conventional fossil fuel based power generation achieves this balance by adjusting the generation to follow the consumption. In the electric power system......Electricity has become an inevitable part of human life in present day world. In the past two centuries, the electric power system has undergone a lot of changes. Due to the awareness about the adverse impact of the fossil fuels, the power industry is adopting green and sustainable energy sources....... In general, the electricity consumers are classified as industrial, commercial and domestic. In this dissertation, only the thermostatically controlled loads (TCLs) in the domestic segment are considered for the demand response study. The study is funded by Danish Council for Strategic Research (DCSR...
Peltier battery thermostat for semiconductor detectors
International Nuclear Information System (INIS)
Caini, V.
1980-01-01
The description is given of a Peltier battery cooling thermostat for semiconductor detectors, whose sensing element is the detector itself. A signal proportional to the leakage current is amplified and compared with a chosen reference voltage. The difference, amplified and sensed, regulates the cooling current to the Peltier battery. Special mechanical devices speed up measurement-taking. The leakage current proved to be reducible to as little as 1/1000 of that at ambient temperature and the stabilization obtained is between +-5 nA (although between +-1 nA is also feasible). Hence it is possible to use very high load resistance preamplifiers to reduce noise and to improve stability and pulse height resolution in α spectroscopy, even with a detector unsuitable for work at very low temperatures. Other applications can be foreseen. (orig.)
Energy, Carbon-emission and Financial Savings from Thermostat Control
Energy Technology Data Exchange (ETDEWEB)
Blasing, T J [ORNL; Schroeder, Dana [University of Georgia, Athens, GA
2013-08-01
Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.
Hamiltonian Algorithm Sound Synthesis
大矢, 健一
2013-01-01
Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.
Energy Technology Data Exchange (ETDEWEB)
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)
2017-01-15
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Model predictive control for a thermostatic controlled system
DEFF Research Database (Denmark)
Shafiei, Seyed Ehsan; Rasmussen, Henrik; Stoustrup, Jakob
2013-01-01
This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff temperat......This paper proposes a model predictive control scheme to provide temperature set-points to thermostatic controlled cooling units in refrigeration systems. The control problem is formulated as a convex programming problem to minimize the overall operating cost of the system. The foodstuff...
Renormalization of Hamiltonian QCD
International Nuclear Information System (INIS)
Andrasi, A.; Taylor, John C.
2009-01-01
We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.
Magnetic field line Hamiltonian
International Nuclear Information System (INIS)
Boozer, A.H.
1984-03-01
The magnetic field line Hamiltonian and the associated canonical form for the magnetic field are important concepts both for understanding toroidal plasma physics and for practical calculations. A number of important properties of the canonical or Hamiltonian representation are derived and their importance is explained
DEFF Research Database (Denmark)
Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir
2007-01-01
The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...
Magnetic field line Hamiltonian
International Nuclear Information System (INIS)
Boozer, A.H.
1985-02-01
The basic properties of the Hamiltonian representation of magnetic fields in canonical form are reviewed. The theory of canonical magnetic perturbation theory is then developed and applied to the time evolution of a magnetic field embedded in a toroidal plasma. Finally, the extension of the energy principle to tearing modes, utilizing the magnetic field line Hamiltonian, is outlined
Modeling Populations of Thermostatic Loads with Switching Rate Actuation
DEFF Research Database (Denmark)
Totu, Luminita Cristiana; Wisniewski, Rafal; Leth, John-Josef
2015-01-01
We model thermostatic devices using a stochastic hybrid description, and introduce an external actuation mechanism that creates random switch events in the discrete dynamics. We then conjecture the form of the Fokker-Planck equation and successfully verify it numerically using Monte Carlo...... simulations. The actuation mechanism and subsequent modeling result are relevant for power system operation....
Design and Implementation of Frequency-responsive Thermostat Control
DEFF Research Database (Denmark)
Nyeng, Preben; Østergaard, Jacob; Togeby, Mikael
2010-01-01
properties and needs of each application, and on the other hand the requirements of the system operator. The control algorithms are implemented on a microcontroller unit that is interfaced with existing thermostats for each application. To validate the control algorithms and overall system design, a series...
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Garrido, L M; Pascual, P
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
Selected isokinetic tests in knee injury prevention
Directory of Open Access Journals (Sweden)
W Pilis
2010-03-01
Full Text Available Ensuing from isokinetic measurements, the conventional Hcon/Qcon ratio of muscle balance is used as an index for comparing proper relations between the values of strength of knee flexors and extensor muscle. Its abnormal values might indicate pathology of the musculotendinous complex. The aim of the study was to present the possibility of using this ratio as one of the objective identifiers enabling the assessment of knee injury risk in sports. All participants (n=48 were divided into 3 groups: group A (n=16, healthy competitors, group B (n=16, athletes with minor injuries, group C (n=16, competitors with serious injuries, depending on the degree of knee injury. All subjects performed an isokinetic test for knee extensors and flexors at angular velocities of 60°/s and 120°/s. Average peak torque (APT value of knee flexors and extensors, and the value of Hcon/Qcon ratio was analyzed. Both values were calculated in relation to body mass (Nm/kg. Bilateral comparison of isokinetic test parameters confirmed the decrease of quadriceps muscle strength values for the injured extremity in groups B and C. Statistically significant difference was noted for Hcon/Qcon ratio between group A and C, as well as B and C. Hence, the value of conventional Hcon/Qcon ratio can be used for the prevention of sports related injuries.
Combined effects of myofeedback and isokinetic training on hand ...
African Journals Online (AJOL)
Combined effects of myofeedback and isokinetic training on hand function in spastic hemiplegic children. ... Both groups received a designed physical therapy program with isokinetic training for the triceps brachii muscle for 60 min, in addition group B received myofeedback training. Results: The post treatment results ...
Renormalization of Hamiltonians
International Nuclear Information System (INIS)
Glazek, S.D.; Wilson, K.G.
1993-01-01
This paper presents a new renormalization procedure for Hamiltonians such as those of light-front field theory. The bare Hamiltonian with an arbitrarily large, but finite cutoff, is transformed by a specially chosen similarity transformation. The similarity transformation has two desirable features. First, the transformed Hamiltonian is band diagonal: in particular, all matrix elements vanish which would otherwise have caused transitions with big energy jumps, such as from a state of bounded energy to a state with an energy of the order of the cutoff. At the same time, neither the similarity transformation nor the transformed Hamiltonian, computed in perturbation theory, contain vanishing or near-vanishing energy denominators. Instead, energy differences in denominators can be replaced by energy sums for purposes of order of magnitude estimates needed to determine cutoff dependences. These two properties make it possible to determine relatively easily the list of counterterms needed to obtain finite low energy results (such as for eigenvalues). A simple model Hamiltonian is discussed to illustrate the method
Theory of collective Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Zhang Qingying
1982-02-01
Starting from the cranking model, we derive the nuclear collective Hamiltonian. We expand the total energy of the collective motion of the ground state of even--even nuclei in powers of the deformation parameter ..beta... In the first approximation, we only take the lowest-order non-vanished terms in the expansion. The collective Hamiltonian thus obtained rather differs from the A. Bohr's Hamiltonian obtained by the irrotational incompressible liquid drop model. If we neglect the coupling term between ..beta..-and ..gamma..-vibration, our Hamiltonian then has the same form as that of A. Bohr. But there is a difference between these collective parameters. Our collective parameters are determined by the state of motion of the nucleous in the nuclei. They are the microscopic expressions. On the contrary, A. Bohr's collective parameters are only the simple functions of the microscopic physical quantities (such as nuclear radius and surface tension, etc.), and independent of the state of motion of the nucleons in the nuclei. Furthermore, there exist the coupling term between ..beta..-and ..gamma..-vibration and the higher-order terms in our expansion. They can be treated as the perturbations. There are no such terms in A. Bohr's Hamiltonian. These perturbation terms will influence the rotational, vibrational spectra and the ..gamma..-transition process, etc.
Time dependent drift Hamiltonian
International Nuclear Information System (INIS)
Boozer, A.H.
1982-04-01
The motion of individual charged particles in a given magnetic and an electric fields is discussed. An idea of a guiding center distribution function f is introduced. The guiding center distribution function is connected to the asymptotic Hamiltonian through the drift kinetic equation. The general non-stochastic magnetic field can be written in a contravariant and a covariant forms. The drift Hamiltonian is proposed, and the canonical gyroradius is presented. The proposed drift Hamiltonian agrees with Alfven's drift velocity to lowest non-vanishing order in the gyroradius. The relation between the exact, time dependent equations of motion and the guiding center equation is clarified by a Lagrangian analysis. The deduced Lagrangian represents the drift motion. (Kato, T.)
Lagrangian and Hamiltonian dynamics
Mann, Peter
2018-01-01
An introductory textbook exploring the subject of Lagrangian and Hamiltonian dynamics, with a relaxed and self-contained setting. Lagrangian and Hamiltonian dynamics is the continuation of Newton's classical physics into new formalisms, each highlighting novel aspects of mechanics that gradually build in complexity to form the basis for almost all of theoretical physics. Lagrangian and Hamiltonian dynamics also acts as a gateway to more abstract concepts routed in differential geometry and field theories and can be used to introduce these subject areas to newcomers. Journeying in a self-contained manner from the very basics, through the fundamentals and onwards to the cutting edge of the subject, along the way the reader is supported by all the necessary background mathematics, fully worked examples, thoughtful and vibrant illustrations as well as an informal narrative and numerous fresh, modern and inter-disciplinary applications. The book contains some unusual topics for a classical mechanics textbook. Mo...
Effective magnetic Hamiltonians
Czech Academy of Sciences Publication Activity Database
Drchal, Václav; Kudrnovský, Josef; Turek, I.
2013-01-01
Roč. 26, č. 5 (2013), s. 1997-2000 ISSN 1557-1939 R&D Projects: GA ČR GA202/09/0775 Institutional support: RVO:68378271 Keywords : effective magnetic Hamiltonian * ab initio * magnetic structure Subject RIV: BE - Theoretical Physics Impact factor: 0.930, year: 2013
Dissipative systems and Bateman's Hamiltonian
International Nuclear Information System (INIS)
Pedrosa, I.A.; Baseia, B.
1983-01-01
It is shown, by using canonical transformations, that one can construct Bateman's Hamiltonian from a Hamiltonian for a conservative system and obtain a clear physical interpretation which explains the ambiguities emerging from its application to describe dissipative systems. (Author) [pt
Control for large scale demand response of thermostatic loads
DEFF Research Database (Denmark)
Totu, Luminita Cristiana; Leth, John; Wisniewski, Rafal
2013-01-01
appliances with on/off operation. The objective is to reduce the consumption peak of a group of loads composed of both flexible and inflexible units. The power flexible units are the thermostat-based appliances. We discuss a centralized, model predictive approach and a distributed structure with a randomized......Demand response is an important Smart Grid concept that aims at facilitating the integration of volatile energy resources into the electricity grid. This paper considers a residential demand response scenario and specifically looks into the problem of managing a large number thermostatbased...
Ratamess, Nicholas A; Beller, Noah A; Gonzalez, Adam M; Spatz, Gregory E; Hoffman, Jay R; Ross, Ryan E; Faigenbaum, Avery D; Kang, Jie
2016-03-01
The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM) strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT) or a non-exercising control group (CTL). The IRT group underwent 6 weeks of training (2 days per week) consisting of 5 sets of 6-10 repetitions at 75-85% of subjects' peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s(-1) [3-sec concentric (CON) and 3-sec eccentric (ECC) phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey's post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg), 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg), and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions) increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women. Key pointsMultiple-joint isokinetic resistance training increases dynamic maximal muscular strength, local muscular endurance, and maximal isokinetic strength in women.Multiple-joint isokinetic resistance training increased 1RM strength in the bench press (by
Ratamess, Nicholas A.; Beller, Noah A.; Gonzalez, Adam M.; Spatz, Gregory E.; Hoffman, Jay R.; Ross, Ryan E.; Faigenbaum, Avery D.; Kang, Jie
2016-01-01
The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM) strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT) or a non-exercising control group (CTL). The IRT group underwent 6 weeks of training (2 days per week) consisting of 5 sets of 6-10 repetitions at 75-85% of subjects’ peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s-1 [3-sec concentric (CON) and 3-sec eccentric (ECC) phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey’s post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg), 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg), and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions) increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women. Key points Multiple-joint isokinetic resistance training increases dynamic maximal muscular strength, local muscular endurance, and maximal isokinetic strength in women. Multiple-joint isokinetic resistance training increased 1RM strength in the bench press
Bountis, Tassos
2012-01-01
This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems. The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...
Isokinetic Testing in Evaluation Rehabilitation Outcome After ACL Reconstruction
Cvjetkovic, Dragana Dragicevic; Bijeljac, Sinisa; Palija, Stanislav; Talic, Goran; Radulovic, Tatjana Nozica; Kosanovic, Milkica Glogovac; Manojlovic, Slavko
2015-01-01
Introduction: Numerous rehab protocols have been used in rehabilitation after ACL reconstruction. Isokinetic testing is an objective way to evaluate dynamic stability of the knee joint that estimates the quality of rehabilitation outcome after ACL reconstruction. Our investigation goal was to show importance of isokinetic testing in evaluation thigh muscle strength in patients which underwent ACL reconstruction and rehabilitation protocol. Subjects and methods: In prospective study, we evalua...
Noncanonical Hamiltonian mechanics
International Nuclear Information System (INIS)
Litteljohn, R.G.
1986-01-01
Noncanonical variables in Hamiltonian mechanics were first used by Lagrange in 1808. In spite of this, most work in Hamiltonian mechanics has been carried out in canonical variables, up to this day. One reason for this is that noncanonical coordinates are seldom needed for mechanical problems based on Lagrangians of the form L = T - V, where T is the kinetic energy and V is the potential energy. Of course, such Lagrangians arise naturally in celestial mechanics, and as a result they form the paradigms of nineteenth-century mechanics and have become enshrined in all the mechanics textbooks. Certain features of modern problems, however, lead to the use of noncanonical coordinates. Among these are issues of gauge invariance and singular Lagrange a Poisson structures. In addition, certain problems, like the flow of magnetic-field lines in physical space, are naturally formulated in terms of noncanonical coordinates. None of these features is present in the nineteenth-century paradigms of mechanics, but they do arise in problems involving particle motion in the presence of magnetic fields. For example, the motion of a particle in an electromagnetic wave is an important one in plasma physics, but the usual Hamiltonian formulation is gauge dependent. For this problem, noncanonical approaches based on Lagrangians in phase space lead to powerful computational techniques which are gauge invariant. In the limit of strong magnetic fields, particle motion becomes 'guiding-center motion'. Guiding-center motion is also best understood in terms of noncanonical coordinates. Finally the flow of magnetic-field lines through physical space is a Hamiltonian system which is best understood with noncanonical coordinates. No doubt many more systems will arise in the future for which these noncanonical techniques can be applied. (author)
Instability in Hamiltonian systems
Directory of Open Access Journals (Sweden)
A. Pumarino
2005-11-01
Besides proving the existence of Arnold diffusion for a new family of three degrees of freedom Hamiltonian systems, another goal of this book is not only to show how Arnold-like results can be extended to substantially larger sets of parameters, but also how to obtain effective estimates on the splitting of separatrices size when the frequency of the perturbation belongs to open real sets.
Discrete variational Hamiltonian mechanics
International Nuclear Information System (INIS)
Lall, S; West, M
2006-01-01
The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms
Approximate symmetries of Hamiltonians
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Isokinetic Testing in Evaluation Rehabilitation Outcome After ACL Reconstruction.
Cvjetkovic, Dragana Dragicevic; Bijeljac, Sinisa; Palija, Stanislav; Talic, Goran; Radulovic, Tatjana Nozica; Kosanovic, Milkica Glogovac; Manojlovic, Slavko
2015-02-01
Numerous rehab protocols have been used in rehabilitation after ACL reconstruction. Isokinetic testing is an objective way to evaluate dynamic stability of the knee joint that estimates the quality of rehabilitation outcome after ACL reconstruction. Our investigation goal was to show importance of isokinetic testing in evaluation thigh muscle strength in patients which underwent ACL reconstruction and rehabilitation protocol. In prospective study, we evaluated 40 subjects which were divided into two groups. Experimental group consisted of 20 recreational males which underwent ACL reconstruction with hamstring tendon and rehabilitation protocol 6 months before isokinetic testing. Control group (20 subjects) consisted of healthy recreational males. In all subjects knee muscle testing was performed on a Biodex System 4 Pro isokinetic dynamo-meter et velocities of 60°/s and 180°/s. We followed average peak torque to body weight (PT/BW) and classic H/Q ratio. In statistical analysis Student's T test was used. There were statistically significant differences between groups in all evaluated parameters except of the mean value of PT/BW of the quadriceps et velocity of 60°/s (p>0.05). Isokinetic testing of dynamic stabilizers of the knee is need in diagnostic and treatment thigh muscle imbalance. We believe that isokinetic testing is an objective parameter for return to sport activities after ACL reconstruction.
Economic MPC based on LPV model for thermostatically controlled loads
DEFF Research Database (Denmark)
Zemtsov, Nikita; Hlava, Jaroslav; Frantsuzova, Galina
2017-01-01
Rapid increase of the renewable energy share in electricity production requires optimization and flexibility of the power consumption side. Thermostatically controlled loads (TCLs) have a large potential for regulation service provision. Economic model predictive control (MPC) is an advanced...... control method which can be used to syncronize the power consumption with undispatchable renewable electricity production. Thermal behavior of TCLs can be described by linear models based on energy balance of the system. In some cases, parameters of the model may be time-varying. In this work, we present...... a modified economic MPC based on linear parameter-varying model. In particular, we provide an exact transformation from a standard economic MPC formulation to a linear program. We assume that the variables influencing the model parameters are known (predictable) for the prediction horizon of the controller...
International Nuclear Information System (INIS)
Prokhorov, L.V.
1982-01-01
Problems related to consideration of operator nonpermutability in Hamiltonian path integral (HPI) are considered in the review. Integrals are investigated using trajectories in configuration space (nonrelativistic quantum mechanics). Problems related to trajectory integrals in HPI phase space are discussed: the problem of operator nonpermutability consideration (extra terms problem) and corresponding equivalence rules; ambiguity of HPI usual recording; transition to curvilinear coordinates. Problem of quantization of dynamical systems with couplings has been studied. As in the case of canonical transformations, quantization of the systems with couplings of the first kind requires the consideration of extra terms
Testing the effect of defaults on the thermostat settings of OECD employees
International Nuclear Information System (INIS)
Brown, Zachary; Johnstone, Nick; Haščič, Ivan; Vong, Laura; Barascud, Francis
2013-01-01
We describe a randomized controlled experiment in which the default settings on office thermostats in an OECD office building were manipulated during the winter heating season, and employees' chosen thermostat setting observed over a 6-week period. Using difference-in-differences, panel, and censored regression models (to control for maximum allowable thermostat settings), we find that a 1 °C decrease in the default caused a reduction in the chosen setting by 0.38 °C, on average. Sixty-five percent of this effect could be attributed to office occupant behavior (p-value = 0.044). The difference-in-differences models show that small decreases in the default (1°) led to a greater reduction in chosen settings than large decreases (2°). We also find that office occupants who were more apt to adjust their thermostats prior to the intervention were less susceptible to the default. We conclude that this kind of intervention can increase building-level energy efficiency, and discuss potential explanations and broader policy implications of our findings. - Highlights: • We conduct a randomized controlled trial to test if thermostat defaults affect agent behavior. • Two treatments (schedules of default settings) were tested against a control for 6 weeks at OECD. • Small changes in defaults had a greater effect on chosen settings than larger changes in defaults. • Occupants who frequently changed their thermostats in baseline were less affected by defaults. • Thermostat defaults in office environments can be manipulated to increase energy efficiency
International Nuclear Information System (INIS)
Jepps, Owen G; Rondoni, Lamberto
2010-01-01
Deterministic 'thermostats' are mathematical tools used to model nonequilibrium steady states of fluids. The resulting dynamical systems correctly represent the transport properties of these fluids and are easily simulated on modern computers. More recently, the connection between such thermostats and entropy production has been exploited in the development of nonequilibrium fluid theories. The purpose and limitations of deterministic thermostats are discussed in the context of irreversible thermodynamics and the development of theories of nonequilibrium phenomena. We draw parallels between the development of such nonequilibrium theories and the development of notions of ergodicity in equilibrium theories. (topical review)
Robust online Hamiltonian learning
International Nuclear Information System (INIS)
Granade, Christopher E; Ferrie, Christopher; Wiebe, Nathan; Cory, D G
2012-01-01
In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer–Rao lower bound, certifying its own performance. (paper)
Chromatic roots and hamiltonian paths
DEFF Research Database (Denmark)
Thomassen, Carsten
2000-01-01
We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...
Energy Technology Data Exchange (ETDEWEB)
Rejc, Jure; Munih, Marko [University of Ljubljana, Ljubljana (Slovenia)
2017-05-15
A mechanical thermostat is a device that switches heating or cooling appliances on or off based on temperature. For this kind of use, electronic or mechanical switching concepts are applied. During the production of electrical contacts, several irregularities can occur leading to improper switching events of the thermostat electrical contacts. This paper presents a non-obstructive method based on the fact that when the switching event occurs it can be heard and felt by human senses. We performed several laboratory tests with two different methods. The first method includes thermostat switch sound signal analysis during the switching event. The second method is based on sampling of the accelerometer signal during the switching event. The results show that the sound analysis approach has great potential. The approach enables an accurate determination of the switching event even if the sampled signal carries also the switching event of the neighbour thermostat.
Deterministic time-reversible thermostats: chaos, ergodicity, and the zeroth law of thermodynamics
Patra, Puneet Kumar; Sprott, Julien Clinton; Hoover, William Graham; Griswold Hoover, Carol
2015-09-01
The relative stability and ergodicity of deterministic time-reversible thermostats, both singly and in coupled pairs, are assessed through their Lyapunov spectra. Five types of thermostat are coupled to one another through a single Hooke's-law harmonic spring. The resulting dynamics shows that three specific thermostat types, Hoover-Holian, Ju-Bulgac, and Martyna-Klein-Tuckerman, have very similar Lyapunov spectra in their equilibrium four-dimensional phase spaces and when coupled in equilibrium or nonequilibrium pairs. All three of these oscillator-based thermostats are shown to be ergodic, with smooth analytic Gaussian distributions in their extended phase spaces (coordinate, momentum, and two control variables). Evidently these three ergodic and time-reversible thermostat types are particularly useful as statistical-mechanical thermometers and thermostats. Each of them generates Gibbs' universal canonical distribution internally as well as for systems to which they are coupled. Thus they obey the zeroth law of thermodynamics, as a good heat bath should. They also provide dissipative heat flow with relatively small nonlinearity when two or more such temperature baths interact and provide useful deterministic replacements for the stochastic Langevin equation.
Smart Thermostats: An Experimental Facility to Test Their Capabilities and Savings Potential
Directory of Open Access Journals (Sweden)
Sergio Bustamante
2017-08-01
Full Text Available The European Commission has explained how heating and cooling in buildings and industry account for half of the energy consumption of the EU. Several studies explain how to achieve an energy saving at home, and the use of smart thermostats will help to reduce energy consumption while increasing the efficiency of households. In this article, a comparative evaluation was carried out between four smart thermostats that are now on the market, whose characteristics vary in terms of price, precision of measurements and set temperature, algorithms, etc. A thermal test chamber was designed and constructed from a refrigerator, a thermal blanket, a Raspberry Pi and the necessary electronic components for its control and data collection. From the tests carried out in the thermal chamber, data on the operation of the four thermostats such as the maintenance and the anticipation of the setpoint temperature, were obtained. It was necessary to run the system enough times for each thermostat to memorize the housing characteristics, such as its inertia and its thermal insulation. This would also allow for the generation of a better algorithm to regulate the temperature, which would create a lower oscillation with respect to the setpoint temperature. The learning of the thermostats was not demonstrated and for the anticipation mode it was seen that the thermostats failed to improve or learn in this aspect, as they did not improve the start-up times of the heating system, with the consequent increase in energy consumption.
Directory of Open Access Journals (Sweden)
Nicholas A. Ratamess, Noah A. Beller, Adam M. Gonzalez, Gregory E. Spatz, Jay R. Hoffman, Ryan E. Ross, Avery D. Faigenbaum, Jie Kang
2016-03-01
Full Text Available The transfer of training effects of multiple-joint isokinetic resistance training to dynamic exercise performance remain poorly understood. Thus, the purpose of the present study was to investigate the magnitude of isokinetic and dynamic one repetition-maximum (1RM strength and local muscular endurance increases after 6 weeks of multiple-joint isokinetic resistance training. Seventeen women were randomly assigned to either an isokinetic resistance training group (IRT or a non-exercising control group (CTL. The IRT group underwent 6 weeks of training (2 days per week consisting of 5 sets of 6-10 repetitions at 75-85% of subjects’ peak strength for the isokinetic chest press and seated row exercises at an average linear velocity of 0.15 m s-1 [3-sec concentric (CON and 3-sec eccentric (ECC phases]. Peak CON and ECC force during the chest press and row, 1RM bench press and bent-over row, and maximum number of modified push-ups were assessed pre and post training. A 2 x 2 analysis of variance with repeated measures and Tukey’s post hoc tests were used for data analysis. The results showed that 1RM bench press (from 38.6 ± 6.7 to 43.0 ± 5.9 kg, 1RM bent-over row (from 40.4 ± 7.7 to 45.5 ± 7.5 kg, and the maximal number of modified push-ups (from 39.5 ± 13.6 to 55.3 ± 13.1 repetitions increased significantly only in the IRT group. Peak isokinetic CON and ECC force in the chest press and row significantly increased in the IRT group. No differences were shown in the CTL group for any measure. These data indicate 6 weeks of multiple-joint isokinetic resistance training increases dynamic muscle strength and local muscular endurance performance in addition to specific isokinetic strength gains in women.
A partial Hamiltonian approach for current value Hamiltonian systems
Naz, R.; Mahomed, F. M.; Chaudhry, Azam
2014-10-01
We develop a partial Hamiltonian framework to obtain reductions and closed-form solutions via first integrals of current value Hamiltonian systems of ordinary differential equations (ODEs). The approach is algorithmic and applies to many state and costate variables of the current value Hamiltonian. However, we apply the method to models with one control, one state and one costate variable to illustrate its effectiveness. The current value Hamiltonian systems arise in economic growth theory and other economic models. We explain our approach with the help of a simple illustrative example and then apply it to two widely used economic growth models: the Ramsey model with a constant relative risk aversion (CRRA) utility function and Cobb Douglas technology and a one-sector AK model of endogenous growth are considered. We show that our newly developed systematic approach can be used to deduce results given in the literature and also to find new solutions.
Enthalpy-entropy compensation and the isokinetic temperature in ...
Indian Academy of Sciences (India)
Enthalpy-entropy compensation supposes that differences in activation enthalpy delta-H-++ for different reactions (or, typically inbiochemistry, the same reaction catalysed by enzymes obtained from different species) may be compensated for bydifferences in activation entropy delta-S-++. At the isokinetic temperature the ...
Isokinetic hamstring and quadriceps muscle strength profiles of elite ...
African Journals Online (AJOL)
Football players are at risk of lower limb injuries, specifically hamstring muscle strains and ACL injuries due to muscle imbalances. This was a descriptive study assessing the isokinetic hamstring and quadriceps muscle strength and endurance in 28 elite, male, South African football players. Muscle strength was tested at 60 ...
Combined effects of myofeedback and isokinetic training on hand ...
African Journals Online (AJOL)
Khaled A. Olama
2012-04-25
Apr 25, 2012 ... Subjects and methods: Thirty spastic hemiplegic children from both sexes ranging in age from ... physical therapy program with isokinetic training for the triceps brachii muscle for 60 min, in ... The Egyptian Journal of Medical Human Genetics ... than a third of all cases of CP, and the resulting impairments.
Thoracic posture, shoulder muscle activation patterns and isokinetic ...
African Journals Online (AJOL)
Background. Shoulder injuries are the most severe injuries in rugby union players, accounting for almost 20% of injuries related to the sport and resulting in lost playing hours. Objective. To profile the thoracic posture, scapular muscle activation patterns and rotator cuff muscle isokinetic strength of semi-professional
Posture and isokinetic shoulder strength in female water polo players
African Journals Online (AJOL)
Background: Being overhead athletes, water polo players can present with muscular imbalances of the shoulder, between the internal rotators (IR) and external rotators (ER), leading to changes in posture and an increased risk of injury. Objectives: To assess posture and isokinetic shoulder strength of female club-level ...
Influence of visual feedback on knee extensor isokinetic concentric ...
African Journals Online (AJOL)
Isokinetic normative data can be invaluable in identifying an individual's strengths and weaknesses, and thus lead to a more effective use of the individual's time to minimise or overcome his weaknesses while maintaining or improving existing strength. However, visual feedback (VF) may significantly affect the result of ...
The reliability of data produced by isokinetic dynamometry (IKD) of ...
African Journals Online (AJOL)
To investigate the feasibility of using isolated knee performance to measure the f-v profile of human muscle in vivo, we were using isokinetic dynamometry (IKD) technique that span the entire f-v profile of skeletal muscle. With institutional ethics approval, eleven healthy males (mean ± SD: age, 24.9 ± 3.1 years; body mass, ...
Isokinetic Leg Strength and Power in Elite Handball Players
González-Ravé, José M.; Juárez, Daniel; Rubio-Arias, Jacobo A.; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier
2014-01-01
Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players. PMID:25114749
Isokinetic leg strength and power in elite handball players.
González-Ravé, José M; Juárez, Daniel; Rubio-Arias, Jacobo A; Clemente-Suarez, Vicente J; Martinez-Valencia, María A; Abian-Vicen, Javier
2014-06-28
Isokinetic strength evaluation of the knee flexion and extension in concentric mode of contraction is an important part of the comprehensive evaluation of athletes. The aims of this study were to evaluate the isokinetic knee peak torque in both the extension and flexion movement in the dominant and non-dominant leg, and the relationship with jumping performance. Twelve elite male handball players from the top Spanish handball division voluntary participated in the study (age 27.68 ± 4.12 years; body mass 92.89 ± 12.34 kg; body height 1.90 ± 0.05 m). The knee extensor and flexor muscle peak torque of each leg were concentrically measured at 60º/s and 180º/s with an isokinetic dynamometer. The Squat Jump and Countermovement Jump were performed on a force platform to determine power and vertical jump height. Non-significant differences were observed between legs in the isokinetic knee extension (dominant= 2.91 ± 0.53 Nm/kg vs non-dominant = 2.70 ± 0.47 Nm/kg at 60º/s; dominant = 1.90 ± 0.31 Nm/kg vs non-dominant = 1.83 ± 0.29 Nm/kg at 180º/s) and flexion peak torques (dominant = 1.76 ± 0.29 Nm/kg vs non-dominant = 1.72 ± 0.39 Nm/kg at 60º/s; dominant = 1.30 ± 0.23 Nm/kg vs non-dominant = 1.27 ± 0.35 Nm/kg at 180º/s). Low and non-significant correlation coefficients were found between the isokinetic peak torques and vertical jumping performance (SJ = 31.21 ± 4.32 cm; CMJ = 35.89 ± 4.20 cm). Similar isokinetic strength was observed between the legs; therefore, no relationship was found between the isokinetic knee flexion and extension peak torques as well as vertical jumping performance in elite handball players.
Alternative Hamiltonian representation for gravity
Energy Technology Data Exchange (ETDEWEB)
Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)
2007-11-15
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.
Alternative Hamiltonian representation for gravity
International Nuclear Information System (INIS)
Rosas-RodrIguez, R
2007-01-01
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity
Equivalent electricity storage capacity of domestic thermostatically controlled loads
International Nuclear Information System (INIS)
Sossan, Fabrizio
2017-01-01
A method to quantify the equivalent storage capacity inherent the operation of thermostatically controlled loads (TCLs) is developed. Equivalent storage capacity is defined as the amount of power and electricity consumption which can be deferred or anticipated in time with respect to the baseline consumption (i.e. when no demand side event occurs) without violating temperature limits. The analysis is carried out for 4 common domestic TCLs: an electric space heating system, freezer, fridge, and electric water heater. They are simulated by applying grey-box thermal models identified from measurements. They describe the heat transfer of the considered TCLs as a function of the electric power consumption and environment conditions. To represent typical TCLs operating conditions, Monte Carlo simulations are developed, where models inputs and parameters are sampled from relevant statistical distributions. The analysis provides a way to compare flexible demand against competitive storage technologies. It is intended as a tool for system planners to assess the TCLs potential to support electrical grid operation. In the paper, a comparison of the storage capacity per unit of capital investment cost is performed considering the selected TCLs and two grid-connected battery storage systems (a 720 kVA/500 kWh lithium-ion unit and 15 kVA/120 kWh Vanadium flow redox) is performed. - Highlights: • The equivalent storage capacity of domestic TCLs is quantified • A comparison with battery-based storage technologies is performed • We derive metrics for system planners to plan storage in power system networks • Rule-of-thumb cost indicators for flexible demand and battery-based storage
Scattering theory for Stark Hamiltonians
International Nuclear Information System (INIS)
Jensen, Arne
1994-01-01
An introduction to the spectral and scattering theory for Schroedinger operators is given. An abstract short range scattering theory is developed. It is applied to perturbations of the Laplacian. Particular attention is paid to the study of Stark Hamiltonians. The main result is an explanation of the discrepancy between the classical and the quantum scattering theory for one-dimensional Stark Hamiltonians. (author). 47 refs
Hamiltonian description of the ideal fluid
International Nuclear Information System (INIS)
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems
A Microwave Thermostatic Reactor for Processing Liquid Materials Based on a Heat-Exchanger.
Zhou, Yongqiang; Zhang, Chun; Xie, Tian; Hong, Tao; Zhu, Huacheng; Yang, Yang; Liu, Changjun; Huang, Kama
2017-10-08
Microwaves have been widely used in the treatment of different materials. However, the existing adjustable power thermostatic reactors cannot be used to analyze materials characteristics under microwave effects. In this paper, a microwave thermostatic chemical reactor for processing liquid materials is proposed, by controlling the velocity of coolant based on PLC (programmable logic controller) in different liquid under different constant electric field intensity. A nonpolar coolant (Polydimethylsiloxane), which is completely microwave transparent, is employed to cool the liquid materials. Experiments are performed to measure the liquid temperature using optical fibers, the results show that the precision of temperature control is at the range of ±0.5 °C. Compared with the adjustable power thermostatic control system, the effect of electric field changes on material properties are avoided and it also can be used to detect the properties of liquid materials and special microwave effects.
Isokinetic evaluation of knee muscles in soccer players: discriminant analysis
Directory of Open Access Journals (Sweden)
Bruno Fles Mazuquin
2015-10-01
Full Text Available ABSTRACTIntroduction:Muscle activity in soccer players can be measured by isokinetic dynamometer, which is a reliable tool for assessing human performance.Objectives:To perform isokinetic analyses and to determine which variables differentiate the under-17 (U17 soccer category from the professional (PRO.Methods:Thirty four players were assessed (n=17 for each category. The isokinetic variables used for the knee extension-flexion analysis were: peak torque (Nm, total work (J, average power (W, angle of peak torque (deg., agonist/ antagonist ratio (%, measured for three velocities (60°/s, 120°/s and 300°/s, with each series containing five repetitions. Three Wilks' Lambda discriminant analyses were performed, to identify which variables were more significant for the definition of each of the categories.Results:The discriminative variables at 60°/s in the PRO category were: extension peak torque, flexion total work, extension average power and agonist/antagonist ratio; and for the U17s were: extension total work, flexion peak torque and flexion average power. At 120°/s for the PRO category the discriminant variables were: flexion peak torque and extension average power; for the U17s they were: extension total work and flexion average power. Finally at 300°/s, the variables found in the PRO and U17 categories respectively were: extension average power and extension total work.Conclusion:Isokinetic variables for flexion and extension knee muscles were able to significantly discriminate between PRO and U17 soccer players.
First principles of Hamiltonian medicine.
Crespi, Bernard; Foster, Kevin; Úbeda, Francisco
2014-05-19
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
Variational identities and Hamiltonian structures
International Nuclear Information System (INIS)
Ma Wenxiu
2010-01-01
This report is concerned with Hamiltonian structures of classical and super soliton hierarchies. In the classical case, basic tools are variational identities associated with continuous and discrete matrix spectral problems, targeted to soliton equations derived from zero curvature equations over general Lie algebras, both semisimple and non-semisimple. In the super case, a supertrace identity is presented for constructing Hamiltonian structures of super soliton equations associated with Lie superalgebras. We illustrate the general theories by the KdV hierarchy, the Volterra lattice hierarchy, the super AKNS hierarchy, and two hierarchies of dark KdV equations and dark Volterra lattices. The resulting Hamiltonian structures show the commutativity of each hierarchy discussed and thus the existence of infinitely many commuting symmetries and conservation laws.
Dynamical decoupling of unbounded Hamiltonians
Arenz, Christian; Burgarth, Daniel; Facchi, Paolo; Hillier, Robin
2018-03-01
We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, is known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modeled with unbounded interactions; hence, here, we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and we provide both physically and mathematically motivated examples.
End users heat energy savings using thermostat regulation valves radiators, v. 16(64)
International Nuclear Information System (INIS)
Jakimovska, Emilija Misheva; Potsev, Eftim
2008-01-01
Billing the used heat energy offers the opportunity to motivate end users to use the heat energy rationally and to save the energy. Installing the thermostat valves on the radiators it is possible frequently to regulate the room temperature and to use the heat gains, obtaining comfortable climate in the apartments and saving the energy. Thermostat valves give the possibility to use the heat energy rationally and save the energy, and these way and users can regulate the heat energy consumption according to their own level of thermal comfort. (Author)
End users heat energy savings using thermostat regulation valves radiators, v. 16(63)
International Nuclear Information System (INIS)
Jakimovska, Emilija Misheva; Potsev, Eftim
2008-01-01
Billing the used heat energy offers the opportunity to motivate end users to use the heat energy rationally and to save the energy. Installing the thermostat valves on the radiators it is possible frequently to regulate the room temperature and to use the heat gains, obtaining comfortable climate in the apartments and saving the energy. Thermostat valves give the possibility to use the heat energy rationally and save the energy, and these way and users can regulate the heat energy consumption according to their own level of thermal comfort. (Author)
An Inductive Water Thermostat Using On‐Off Triac Control and Platinum Sensing
DEFF Research Database (Denmark)
Diamond, Joseph M.
1971-01-01
An on‐off thermostat is described using novel means for heating, sensing, and triac control. Heating is performed by sending the water through a coil of silver tubing which forms the short‐circuited secondary winding of a transformer. This arrangement permits extremely good insulation, which...... was essential in the medical application (a dialysis water thermostat) for which it was designed; its quick response also contributes to the excellent regulation achieved with simple on‐off control. Sensing is provided by a very low resistance platinum coil in direct contact with the water, thus providing quick...
Invariant metrics for Hamiltonian systems
International Nuclear Information System (INIS)
Rangarajan, G.; Dragt, A.J.; Neri, F.
1991-05-01
In this paper, invariant metrics are constructed for Hamiltonian systems. These metrics give rise to norms on the space of homeogeneous polynomials of phase-space variables. For an accelerator lattice described by a Hamiltonian, these norms characterize the nonlinear content of the lattice. Therefore, the performance of the lattice can be improved by minimizing the norm as a function of parameters describing the beam-line elements in the lattice. A four-fold increase in the dynamic aperture of a model FODO cell is obtained using this procedure. 7 refs
INTERSESSION RELIABILITY OF UPPER EXTREMITY ISOKINETIC PUSH-PULL TESTING.
Riemann, Bryan L; Davis, Sarah E; Huet, Kevin; Davies, George J
2016-02-01
Based on the frequency pushing and pulling patterns are used in functional activities, there is a need to establish an objective method of quantifying the muscle performance characteristics associated with these motions, particularly during the later stages of rehabilitation as criteria for discharge. While isokinetic assessment offers an approach to quantifying muscle performance, little is known about closed kinetic chain (CKC) isokinetic testing of the upper extremity (UE). To determine the intersession reliability of isokinetic upper extremity measurement of pushing and pulling peak force and average power at slow (0.24 m/s), medium (0.43 m/s) and fast (0.61 m/s) velocities in healthy young adults. The secondary purpose was to compare pushing and pulling peak force (PF) and average power (AP) between the upper extremity limbs (dominant, non-dominant) across the three velocities. Twenty-four physically active men and women completed a test-retest (>96 hours) protocol in order to establish isokinetic UE CKC reliability of PF and AP during five maximal push and pull repetitions at three velocities. Both limb and speed orders were randomized between subjects. High test-retest relative reliability using intraclass correlation coefficients (ICC2, 1) were revealed for PF (.91-.97) and AP (.85-.95) across velocities, limbs and directions. PF typical error (% coefficient of variation) ranged from 6.1% to 11.3% while AP ranged from 9.9% to 26.7%. PF decreased significantly (p pushing were significantly greater than pulling at all velocities, however the push-pull differences in PF became less as velocity increased. There were no significant differences identified between the dominant and nondominant limbs. Isokinetically derived UE CKC push-pull PF and AP are reliable measures. The lack of limb differences in healthy normal participants suggests that clinicians can consider bilateral comparisons when interpreting test performance. The increase in pushing PF and
Derivation of Hamiltonians for accelerators
Energy Technology Data Exchange (ETDEWEB)
Symon, K.R.
1997-09-12
In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.
Hamiltonian cycles in polyhedral maps
Indian Academy of Sciences (India)
We present a necessary and sufficient condition for existence of a contractible, non-separating and non-contractible separating Hamiltonian cycle in the edge graph of polyhedral maps on surfaces.We also present algorithms to construct such cycles whenever it exists where one of them is linear time and another is ...
Maslov index for Hamiltonian systems
Directory of Open Access Journals (Sweden)
Alessandro Portaluri
2008-01-01
Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.
Hamiltonian formulation of the supermembrane
International Nuclear Information System (INIS)
Bergshoeff, E.; Sezgin, E.; Tanii, Y.
1987-06-01
The Hamiltonian formulation of the supermembrane theory in eleven dimensions is given. The covariant split of the first and second class constraints is exhibited, and their Dirac brackets are computed. Gauge conditions are imposed in such a way that the reparametrizations of the membrane with divergence free 2-vectors are unfixed. (author). 10 refs
Relativistic non-Hamiltonian mechanics
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2010-01-01
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.
DEFF Research Database (Denmark)
Moura, Scott; Ruiz, Victor; Bendtsen, Jan Dimon
2013-01-01
This paper focuses on developing a partial differential equation (PDE)-based model and parameter identification scheme for heterogeneous populations of thermostatically controlled loads (TCLs). First, a coupled two-state hyperbolic PDE model for homogenous TCL populations is derived. This model i...
Joost van Hoof; P.W.J.J. van der Wielen; E. van der Blom; O.W.W. Nuijten; L. Hornstra
2014-01-01
Legislation in the Netherlands requires routine analysis of drinking water samples for cultivable Legionella species from high-priority installations. A field study was conducted to investigate the presence of Legionella species in thermostatic shower mixer taps. Water samples and the interior of
DEFF Research Database (Denmark)
Langmaack, Lasse Nicolai; Knudsen, Hans-Jørgen Høgaard
2006-01-01
The bulb of a thermostatic expansion valve (TXV) is basically a temperature-pressure converter. It senses the temperature at the outlet of the evaporator, and the substance in the bulb (charge) generates the corresponding saturation pressure inside the bulb. The aim of the work presented in this ...
DEFF Research Database (Denmark)
Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.
2014-01-01
In radiator thermostat applications, DEAP (Dielectric Electro Active Polymer) actuator tends to be a good candidate to replace the conventional self-actuating or step motor based actuator due to its intrinsic advantages. The capacitive property and high voltage (HV) driving demand of DEAP actuator...
Mathematical Modeling of Constrained Hamiltonian Systems
Schaft, A.J. van der; Maschke, B.M.
1995-01-01
Network modelling of unconstrained energy conserving physical systems leads to an intrinsic generalized Hamiltonian formulation of the dynamics. Constrained energy conserving physical systems are directly modelled as implicit Hamiltonian systems with regard to a generalized Dirac structure on the
Geometric Hamiltonian structures and perturbation theory
International Nuclear Information System (INIS)
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging
Notch filters for port-Hamiltonian systems
Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.
2012-01-01
In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
The Hamiltonian of QED. Zero mode
International Nuclear Information System (INIS)
Zastavenko, L.G.
1990-01-01
We start with the standard QED Lagrangian. New derivation of the spinor QED Hamiltonian is given. We have taken into account the zero mode. Our derivation is faultless from the point of view of gauge invariance. It gives important corrections to the standard QED Hamiltonian. Our derivation of the Hamiltonian can be generalized to the case of QCD. 5 refs
THE EFFECT OF CREATINE SUPPLEMENTATION ON ATHLETE ISOKINETIC PERFORMANCE
Erkan Faruk ŞİRİN; Suzan YALÇIN
2009-01-01
The purpose of this study is to find the effects of Creatin Monohydrate (CrH2O) on athlete performance (isokinetic power measured as a total workout) used as an ergojenic aid in long-term (6 weeks) supplementation. There are 38 participants willing to join to the study. Their ages are between 20 and 27. All of them are choosed from active athletes. From the findings of this study; all the participants’ in the creatin group have increased the total workout production in all cycles of isokineti...
Hamiltonian PDEs and Frobenius manifolds
International Nuclear Information System (INIS)
Dubrovin, Boris A
2008-01-01
In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.
Hamiltonian PDEs and Frobenius manifolds
Energy Technology Data Exchange (ETDEWEB)
Dubrovin, Boris A [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2008-12-31
In the first part of this paper the theory of Frobenius manifolds is applied to the problem of classification of Hamiltonian systems of partial differential equations depending on a small parameter. Also developed is a deformation theory of integrable hierarchies including the subclass of integrable hierarchies of topological type. Many well-known examples of integrable hierarchies, such as the Korteweg-de Vries, non-linear Schroedinger, Toda, Boussinesq equations, and so on, belong to this subclass that also contains new integrable hierarchies. Some of these new integrable hierarchies may be important for applications. Properties of the solutions to these equations are studied in the second part. Consideration is given to the comparative study of the local properties of perturbed and unperturbed solutions near a point of gradient catastrophe. A Universality Conjecture is formulated describing the various types of critical behaviour of solutions to perturbed Hamiltonian systems near the point of gradient catastrophe of the unperturbed solution.
Weak KAM for commuting Hamiltonians
International Nuclear Information System (INIS)
Zavidovique, M
2010-01-01
For two commuting Tonelli Hamiltonians, we recover the commutation of the Lax–Oleinik semi-groups, a result of Barles and Tourin (2001 Indiana Univ. Math. J. 50 1523–44), using a direct geometrical method (Stoke's theorem). We also obtain a 'generalization' of a theorem of Maderna (2002 Bull. Soc. Math. France 130 493–506). More precisely, we prove that if the phase space is the cotangent of a compact manifold then the weak KAM solutions (or viscosity solutions of the critical stationary Hamilton–Jacobi equation) for G and for H are the same. As a corollary we obtain the equality of the Aubry sets and of the Peierls barrier. This is also related to works of Sorrentino (2009 On the Integrability of Tonelli Hamiltonians Preprint) and Bernard (2007 Duke Math. J. 136 401–20)
Hamiltonian dynamics of extended objects
Capovilla, R.; Guven, J.; Rojas, E.
2004-12-01
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.
A Hamiltonian approach to Thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
Hamiltonian description of bubble dynamics
International Nuclear Information System (INIS)
Maksimov, A. O.
2008-01-01
The dynamics of a nonspherical bubble in a liquid is described within the Hamiltonian formalism. Primary attention is focused on the introduction of the canonical variables into the computational algorithm. The expansion of the Dirichlet-Neumann operator in powers of the displacement of a bubble wall from an equilibrium position is obtained in the explicit form. The first three terms (more specifically, the second-, third-, and fourth-order terms) in the expansion of the Hamiltonian in powers of the canonical variables are determined. These terms describe the spectrum and interaction of three essentially different modes, i.e., monopole oscillations (pulsations), dipole oscillations (translational motions), and surface oscillations. The cubic nonlinearity is analyzed for the problem associated with the generation of Faraday ripples on the wall of a bubble in an acoustic field. The possibility of decay processes occurring in the course of interaction of surface oscillations for the first fifteen (experimentally observed) modes is investigated.
Hamiltonian dynamics of extended objects
International Nuclear Information System (INIS)
Capovilla, R; Guven, J; Rojas, E
2004-01-01
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations
Hamiltonian dynamics of extended objects
Energy Technology Data Exchange (ETDEWEB)
Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)
2004-12-07
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.
A Hamiltonian approach to Thermodynamics
International Nuclear Information System (INIS)
Baldiotti, M.C.; Fresneda, R.; Molina, C.
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
On the domain of the Nelson Hamiltonian
Griesemer, M.; Wünsch, A.
2018-04-01
The Nelson Hamiltonian is unitarily equivalent to a Hamiltonian defined through a closed, semibounded quadratic form, the unitary transformation being explicitly known and due to Gross. In this paper, we study the mapping properties of the Gross-transform in order to characterize the regularity properties of vectors in the form domain of the Nelson Hamiltonian. Since the operator domain is a subset of the form domain, our results apply to vectors in the domain of the Hamiltonian as well. This work is a continuation of our previous work on the Fröhlich Hamiltonian.
Hamiltonian systems in accelerator physics
International Nuclear Information System (INIS)
Laslett, L.J.
1985-06-01
General features of the design of annular particle accelerators or storage rings are outlined and the Hamiltonian character of individual-ion motion is indicated. Examples of phase plots are presented, for the motion in one spatial degree of freedom, of an ion subject to a periodic nonlinear focusing force. A canonical transformation describing coupled nonlinear motion also is given, and alternative types of graphical display are suggested for the investigation of long-term stability in such cases. 7 figs
Contact symmetries and Hamiltonian thermodynamics
International Nuclear Information System (INIS)
Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.
2015-01-01
It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production
Generic Local Hamiltonians are Gapless
Movassagh, Ramis
2017-12-01
We prove that generic quantum local Hamiltonians are gapless. In fact, we prove that there is a continuous density of states above the ground state. The Hamiltonian can be on a lattice in any spatial dimension or on a graph with a bounded maximum vertex degree. The type of interactions allowed for include translational invariance in a disorder (i.e., probabilistic) sense with some assumptions on the local distributions. Examples include many-body localization and random spin models. We calculate the scaling of the gap with the system's size when the local terms are distributed according to a Gaussian β orthogonal random matrix ensemble. As a corollary, there exist finite size partitions with respect to which the ground state is arbitrarily close to a product state. When the local eigenvalue distribution is discrete, in addition to the lack of an energy gap in the limit, we prove that the ground state has finite size degeneracies. The proofs are simple and constructive. This work excludes the important class of truly translationally invariant Hamiltonians where the local terms are all equal.
Hamiltonian dynamics of preferential attachment
International Nuclear Information System (INIS)
Zuev, Konstantin; Papadopoulos, Fragkiskos; Krioukov, Dmitri
2016-01-01
Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment (PA), known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton’s equations. We derive the explicit form of the Hamiltonian that governs network growth in PA. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by PA is nearly identical to the ensemble of random graphs with scale-free degree distributions. In other words, PA generates nothing but random graphs with power-law degree distribution. The extension of the developed canonical formalism for network analysis to richer geometric network models with non-degenerate groups of symmetries may eventually lead to a system of equations describing network dynamics at small scales. (paper)
International Nuclear Information System (INIS)
Vega G, J.D.
1994-01-01
In this work, metallic coatings of nickel was made over carbon steel using two different electrolytic solutions: The Watts's bath and the nickel sulfamate bath, using a pulse variable current. The method use was the traditional method, its means a thermostatic cell and one movable anode, which is a few know technique nowadays, it allow realize depositions away from any laboratory or special workshop, it has the advantage to be a portable dispositive. At last of all the electro depositions the coatings quality was valuable by them physical properties like: adhesion, hardness, wrinkled and thickness. The best results was obtain by the Nickel sulfamate bath and movable anode, less in the thickness, which has higher on the thermostatic cell. The variable current was obtain by a Pulse Generator and a Cathodic galvanometer. (Author)
Evaluating functions of positive-definite matrices using colored-noise thermostats
Nava, Marco; Ceriotti, Michele; Dryzun, Chaim; Parrinello, Michele
2014-02-01
Many applications in computational science require computing the elements of a function of a large matrix. A commonly used approach is based on the the evaluation of the eigenvalue decomposition, a task that, in general, involves a computing time that scales with the cube of the size of the matrix. We present here a method that can be used to evaluate the elements of a function of a positive-definite matrix with a scaling that is linear for sparse matrices and quadratic in the general case. This methodology is based on the properties of the dynamics of a multidimensional harmonic potential coupled with colored-noise, generalized Langevin equation thermostats. This "f-thermostat" approach allows us to calculate directly elements of functions of a positive-definite matrix by carefully tailoring the properties of the stochastic dynamics. We demonstrate the scaling and the accuracy of this approach for both dense and sparse problems and compare the results with other established methodologies.
Wijaya Sunu, Putu; Made Rasta, I.; Anakottapary, Daud Simon; Made Suarta, I.; Cipta Santosa, I. D. M.
2018-01-01
The aims of this study to compares the performance characteristics of a water chiller air conditioning simulation equipped with thermostatic expansion valve (TEV) with those of a capillary tube. Water chiller system filled with the same charge of refrigerant. Comparative analyses were performed based on coefficient of performance (COP) and performance parameter of the refrigeration system, carried out at medium cooling load level with the ambient temperature of 29-31°C, constant compressor speed and fixed chilled water volume flowrate at 15 lpm. It was shown that the TEV system showed better energy consumption compared to that of capillary tube. From the coefficient of performance perspective, the thermostatic expansion valve system showed higher COP (± 21.4%) compared to that of capillary tube system.
Design and Modelling of Thermostatically Controlled Loads as Frequency Controlled Reserve
DEFF Research Database (Denmark)
Xu, Zhao; Østergaard, Jacob; Togeby, Mikael
2007-01-01
Using demand as frequency controlled reserve (DFR) is beneficial to power systems in many aspects. To study the impacts of this technology on power system operation, control logics and simulation models of relevant loads should be carefully developed. Two advanced control logics for using demand...... frequency, is developed. The developed simulation model is able to represent a variety of aggregated thermostatically controlled loads, such as heaters or refrigerators. Uncertainties including customer behaviours and ambient temperature variation are also modelled. Preliminary simulation results...
Burger, Eric M.; Moura, Scott J.
2015-01-01
A fundamental requirement of the electric power system is to maintain a continuous and instantaneous balance between generation and load. The intermittency and uncertainty introduced by renewable energy generation requires the expansion of ancillary power system services to maintain such a balance. In this paper, we examine the potential of thermostatically controlled loads (TCLs), such as refrigerators and electric water heaters, to provide generation following services in real-time energy m...
How the Invisible Hand is Supposed to Adjust the Natural Thermostat: A Guide for the Perplexed
Storm, Servaas
2016-01-01
Mainstream climate economics takes global warming seriously, but perplexingly concludes that the optimal economic policy is to almost do nothing about it. This conclusion can be traced to just a few “normative” assumptions, over which there exists fundamental disagreement amongst economists. This paper explores two axes of this disagreement. The first axis (“market vs. regulation”) measures faith in the invisible hand to adjust the natural thermostat. The second axis expresses differences in ...
Quantum Oscillator in the Thermostat as a Model in the Thermodynamics of Open Quantum Systems
Sukhanov, Aleksander
2005-01-01
The quantum oscillator in the thermostat is considered as the model of an open quantum system. Our analysis will be heavily founded on the use of the Schroedinger generalized uncertainties relations (SUR). Our first aim is to demonstrate that for the quantum oscillator the state of thermal equilibrium belongs to the correlated coherent states (CCS), which imply the saturation of SUR at any temperature. The obtained results open the perspective for the search of some statistical theory, which ...
Hamiltonian Chaos and Fractional Dynamics
International Nuclear Information System (INIS)
Combescure, M
2005-01-01
This book provides an introduction and discussion of the main issues in the current understanding of classical Hamiltonian chaos, and of its fractional space-time structure. It also develops the most complex and open problems in this context, and provides a set of possible applications of these notions to some fundamental questions of dynamics: complexity and entropy of systems, foundation of classical statistical physics on the basis of chaos theory, and so on. Starting with an introduction of the basic principles of the Hamiltonian theory of chaos, the book covers many topics that can be found elsewhere in the literature, but which are collected here for the readers' convenience. In the last three parts, the author develops topics which are not typically included in the standard textbooks; among them are: - the failure of the traditional description of chaotic dynamics in terms of diffusion equations; - he fractional kinematics, its foundation and renormalization group analysis; - 'pseudo-chaos', i.e. kinetics of systems with weak mixing and zero Lyapunov exponents; - directional complexity and entropy. The purpose of this book is to provide researchers and students in physics, mathematics and engineering with an overview of many aspects of chaos and fractality in Hamiltonian dynamical systems. In my opinion it achieves this aim, at least provided researchers and students (mainly those involved in mathematical physics) can complement this reading with comprehensive material from more specialized sources which are provided as references and 'further reading'. Each section contains introductory pedagogical material, often illustrated by figures coming from several numerical simulations which give the feeling of what's going on, and thus is very useful to the reader who is not very familiar with the topics presented. Some problems are included at the end of most sections to help the reader to go deeper into the subject. My one regret is that the book does not
Coherent states for quadratic Hamiltonians
International Nuclear Information System (INIS)
Contreras-Astorga, Alonso; Fernandez C, David J; Velazquez, Mercedes
2011-01-01
The coherent states for a set of quadratic Hamiltonians in the trap regime are constructed. A matrix technique which allows us to directly identify the creation and annihilation operators will be presented. Then, the coherent states as simultaneous eigenstates of the annihilation operators will be derived, and will be compared with those attained through the displacement operator method. The corresponding wavefunction will be found, and a general procedure for obtaining several mean values involving the canonical operators in these states will be described. The results will be illustrated through the asymmetric Penning trap.
Perturbation theory of effective Hamiltonians
International Nuclear Information System (INIS)
Brandow, B.H.
1975-01-01
This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)
Integrable and nonintegrable Hamiltonian systems
International Nuclear Information System (INIS)
Percival, I.
1986-01-01
Traditionally Hamiltonian systems with a finite number of degrees of freedom have been divided into those with few degrees of freedom which were supposed to exhibit some kind of regular ordered motions and those with large numbers of degrees of freedom for which the methods of statistical mechanics should be used. The last few decades have seen a complete change of view. The change of view affects almost all the practical applications, particularly in mathematical physics, which has been dominated for many decades by linear mathematics, coming from quantum theory. The authors consider how this change of view affects some specific applications of dynamics and also the relation between dynamical theory and applications
A thermostatted kinetic theory model for event-driven pedestrian dynamics
Bianca, Carlo; Mogno, Caterina
2018-06-01
This paper is devoted to the modeling of the pedestrian dynamics by means of the thermostatted kinetic theory. Specifically the microscopic interactions among pedestrians and an external force field are modeled for simulating the evacuation of pedestrians from a metro station. The fundamentals of the stochastic game theory and the thermostatted kinetic theory are coupled for the derivation of a specific mathematical model which depicts the time evolution of the distribution of pedestrians at different exits of a metro station. The perturbation theory is employed in order to establish the stability analysis of the nonequilibrium stationary states in the case of a metro station consisting of two exits. A general sensitivity analysis on the initial conditions, the magnitude of the external force field and the number of exits is presented by means of numerical simulations which, in particular, show how the asymptotic distribution and the convergence time are affected by the presence of an external force field. The results show how, in evacuation conditions, the interaction dynamics among pedestrians can be negligible with respect to the external force. The important role of the thermostat term in allowing the reaching of the nonequilibrium stationary state is stressed out. Research perspectives are underlined at the end of paper, in particular for what concerns the derivation of frameworks that take into account the definition of local external actions and the introduction of the space and velocity dynamics.
Zhang, Zhijun; Liu, Xinzijian; Chen, Zifei; Zheng, Haifeng; Yan, Kangyu; Liu, Jian
2017-07-01
We show a unified second-order scheme for constructing simple, robust, and accurate algorithms for typical thermostats for configurational sampling for the canonical ensemble. When Langevin dynamics is used, the scheme leads to the BAOAB algorithm that has been recently investigated. We show that the scheme is also useful for other types of thermostats, such as the Andersen thermostat and Nosé-Hoover chain, regardless of whether the thermostat is deterministic or stochastic. In addition to analytical analysis, two 1-dimensional models and three typical real molecular systems that range from the gas phase, clusters, to the condensed phase are used in numerical examples for demonstration. Accuracy may be increased by an order of magnitude for estimating coordinate-dependent properties in molecular dynamics (when the same time interval is used), irrespective of which type of thermostat is applied. The scheme is especially useful for path integral molecular dynamics because it consistently improves the efficiency for evaluating all thermodynamic properties for any type of thermostat.
Perspective: Quantum Hamiltonians for optical interactions
Andrews, David L.; Jones, Garth A.; Salam, A.; Woolley, R. Guy
2018-01-01
The multipolar Hamiltonian of quantum electrodynamics is extensively employed in chemical and optical physics to treat rigorously the interaction of electromagnetic fields with matter. It is also widely used to evaluate intermolecular interactions. The multipolar version of the Hamiltonian is commonly obtained by carrying out a unitary transformation of the Coulomb gauge Hamiltonian that goes by the name of Power-Zienau-Woolley (PZW). Not only does the formulation provide excellent agreement with experiment, and versatility in its predictive ability, but also superior physical insight. Recently, the foundations and validity of the PZW Hamiltonian have been questioned, raising a concern over issues of gauge transformation and invariance, and whether observable quantities obtained from unitarily equivalent Hamiltonians are identical. Here, an in-depth analysis of theoretical foundations clarifies the issues and enables misconceptions to be identified. Claims of non-physicality are refuted: the PZW transformation and ensuing Hamiltonian are shown to rest on solid physical principles and secure theoretical ground.
Generalized oscillator representations for Calogero Hamiltonians
International Nuclear Information System (INIS)
Tyutin, I V; Voronov, B L
2013-01-01
This paper is a natural continuation of the previous paper (Gitman et al 2011 J. Phys. A: Math. Theor. 44 425204), where oscillator representations for nonnegative Calogero Hamiltonians with coupling constant α ⩾ − 1/4 were constructed. In this paper, we present generalized oscillator representations for all Calogero Hamiltonians with α ⩾ − 1/4. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian. (comment)
Hamiltonian formulation of reduced magnetohydrodynamics
International Nuclear Information System (INIS)
Morrison, P.J.; Hazeltine, R.D.
1983-07-01
Reduced magnetohydrodynamics (RMHD) has become a principal tool for understanding nonlinear processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD turbulence have been useful, the model's impressive ability to simulate tokamak fluid behavior has been revealed primarily by numerical solution. The present work describes a new analytical approach, not restricted to turbulent regimes, based on Hamiltonian field theory. It is shown that the nonlinear (ideal) RMHD system, in both its high-beta and low-beta versions, can be expressed in Hanmiltonian form. Thus a Poisson bracket, [ , ], is constructed such that each RMHD field quantitity, xi/sub i/, evolves according to xi/sub i/ = [xi/sub i/,H], where H is the total field energy. The new formulation makes RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical version of the Poisson bracket, which requires the introduction of additional fields, leads to a nonlinear variational principle for time-dependent RMHD
General technique to produce isochronous Hamiltonians
International Nuclear Information System (INIS)
Calogero, F; Leyvraz, F
2007-01-01
We introduce a new technique-characterized by an arbitrary positive constant Ω, with which we associate the period T = 2π/Ω-to 'Ω-modify' a Hamiltonian so that the new Hamiltonian thereby obtained is entirely isochronous, namely it yields motions all of which (except possibly for a lower dimensional set of singular motions) are periodic with the same fixed period T in all their degrees of freedom. This technique transforms real autonomous Hamiltonians into Ω-modified Hamiltonians which are also real and autonomous, and it is widely applicable, for instance, to the most general many-body problem characterized by Newtonian equations of motion ('acceleration equal force') provided it is translation invariant. The Ω-modified Hamiltonians are of course not translation invariant, but for Ω = 0 they reduce (up to marginal changes) to the unmodified Hamiltonians they were obtained from. Hence, when this technique is applied to translation-invariant Hamiltonians yielding, in their center-of-mass systems, chaotic motions with a natural time scale much smaller than T, the corresponding Ω-modified Hamiltonians shall display a chaotic behavior for quite some time before the isochronous character of the motions takes over. We moreover show that the quantized versions of these Ω-modified Hamiltonians feature equispaced spectra
Collective Hamiltonians for dipole giant resonances
International Nuclear Information System (INIS)
Weiss, L.I.
1991-07-01
The collective hamiltonian for the Giant Dipole resonance (GDR), in the Goldhaber-Teller-Model, is analytically constructed using the semiclassical and generator coordinates method. Initially a conveniently parametrized set of many body wave functions and a microscopic hamiltonian, the Skyrme hamiltonian - are used. These collective Hamiltonians are applied to the investigation of the GDR, in He 4 , O 16 and Ca 40 nuclei. Also the energies and spectra of the GDR are obtained in these nuclei. The two sets of results are compared, and the zero point energy effects analysed. (author)
Canonical transformations and hamiltonian path integrals
International Nuclear Information System (INIS)
Prokhorov, L.V.
1982-01-01
Behaviour of the Hamiltonian path integrals under canonical transformations produced by a generator, is investigated. An exact form is determined for the kernel of the unitary operator realizing the corresponding quantum transformation. Equivalence rules are found (the Hamiltonian formalism, one-dimensional case) enabling one to exclude non-standard terms from the action. It is shown that the Hamiltonian path integral changes its form under cononical transformations: in the transformed expression besides the classical Hamiltonian function there appear some non-classical terms
Noncanonical Hamiltonian methods in plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1981-11-01
A Hamiltonian approach to plasma dynamics has numerous advantages over equivalent formulations which ignore the underlying Hamiltonian structure. In addition to achieving a deeper understanding of processes, Hamiltonian methods yield concise expressions (such as the Kubo form for linear susceptibility), greatly shorten the length of calculations, expose relationships (such as between the ponderomotive Hamiltonian and the linear susceptibility), determine invariants in terms of symmetry operations, and cover situations of great generality. In addition, they yield the Poincare invariants, in particular Liouville volume and adiabatic actions
Isokinetic Strength Profile of Elite Female Handball Players
Directory of Open Access Journals (Sweden)
Xaverova Zuzana
2015-12-01
Full Text Available Systematic assessment of muscle strength of the lower extremities throughout the annual training cycle in athletes is crucial from a performance perspective for the optimization of the training process, as well as a health perspective with regard to injury prevention. The main aim of the present study was to determine isokinetic muscle strength of the knee flexors and extensors in female handball players at the beginning of a preparatory period and to assess whether there were any differences between players of different performance levels. The performance level was expressed by means of membership of the Women’s Junior National Handball Team (JNT, n=8 or the Women’s National Handball Team (NT, n=9. The isokinetic peak torque during concentric and eccentric single-joint knee flexion and extension was measured at angular velocities of 60, 180, 240°/s (concentric and 60°/s (eccentric. The Mann- Whitney test showed no significant differences in the peak torques or ipsilateral ratios between the two groups. The bilateral force deficit (BFD for concentric extension at 240°/s was significantly higher in the JNT compared with the NT (p=0.04; d=1.02. However, the results of individual evaluation show that the BFD was more frequent in the NT in most measurements. A high BFD was evident in the eccentric mode in both groups highlighting a need for particular strengthening. With regard to low strength ratios a prevention programme should be suggested for both observed groups of professional female handball players to reduce the risk of injury.
Isokinetic Strength Profile of Elite Female Handball Players.
Xaverova, Zuzana; Dirnberger, Johannes; Lehnert, Michal; Belka, Jan; Wagner, Herbert; Orechovska, Karolina
2015-12-22
Systematic assessment of muscle strength of the lower extremities throughout the annual training cycle in athletes is crucial from a performance perspective for the optimization of the training process, as well as a health perspective with regard to injury prevention. The main aim of the present study was to determine isokinetic muscle strength of the knee flexors and extensors in female handball players at the beginning of a preparatory period and to assess whether there were any differences between players of different performance levels. The performance level was expressed by means of membership of the Women's Junior National Handball Team (JNT, n=8) or the Women's National Handball Team (NT, n=9). The isokinetic peak torque during concentric and eccentric single-joint knee flexion and extension was measured at angular velocities of 60, 180, 240°/s (concentric) and 60°/s (eccentric). The Mann-Whitney test showed no significant differences in the peak torques or ipsilateral ratios between the two groups. The bilateral force deficit (BFD) for concentric extension at 240°/s was significantly higher in the JNT compared with the NT (p=0.04; d=1.02). However, the results of individual evaluation show that the BFD was more frequent in the NT in most measurements. A high BFD was evident in the eccentric mode in both groups highlighting a need for particular strengthening. With regard to low strength ratios a prevention programme should be suggested for both observed groups of professional female handball players to reduce the risk of injury.
Shoulder rotator isokinetic strength profile in young swimmers
Directory of Open Access Journals (Sweden)
Nuno Miguel Prazeres Batalha
2012-08-01
Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n5p545 Considering that some studies suggest that shoulder rotators muscle imbalances are related to joint pain and injury, and that there are no normative data for young swimmers, the aim of this study was: i to describe the muscle balance, fatigue and isokinetic strength profile of the shoulder rotators in young swimmers; ii to compare the results between swimmers and a group of young non-practitioners; iii to contribute to the acquisition of normative data of unilateral ratios of shoulder rotators. We evaluated the shoulder rotators concentric strength and unilateral ratios (ratio between torque of external and internal rotators of 60 swimmers (age: 14.55 ± 0.5 years old; body mass: 61.16 ± 7.08 kg and 60 non-practitioners (age: 14.62 ± 0.49 years old; body mass: 60.22 ± 10.01 kg. The evaluation was performed in the sitting position (90° abduction and elbow flexion at 60º.s-1 and 180º.s-1 angular speeds using an isokinetic dynamometer (Biodex System 3. The results of the fatigue ratios revealed no differences between the groups. Swimmers showed unilateral ratios of 73.39 ± 17.26% in the dominant limb (DL and 77.89 ± 15,23% in the non-dominant limb (NDL for assessments at 60º.s-1. At 180º.s-1, ratios were 74.77± 13.99% for DL and 70.11 ± 14.57% for NDL. Swimmers presented greater muscle imbalance, and differed from non-practitioners in the ability to produce power with the internal rotators, which was significantly higher in the former group.
Identity of the SU(3) model phenomenological hamiltonian and the hamiltonian of nonaxial rotator
International Nuclear Information System (INIS)
Filippov, G.F.; Avramenko, V.I.; Sokolov, A.M.
1984-01-01
Interpretation of nonspheric atomic nuclei spectra on the basis of phenomenological hamiltonians of SU(3) model showed satisfactory agreement of simulation calculations with experimental data. Meanwhile physical sense of phenomenological hamiltonians was not yet discussed. It is shown that phenomenological hamiltonians of SU(3) model are reduced to hamiltonian of nonaxial rotator but with additional items of the third and fourth powers angular momentum operator of rotator
Hamiltonian closures in fluid models for plasmas
Tassi, Emanuele
2017-11-01
This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and
Directory of Open Access Journals (Sweden)
Rodrigo de Azevedo Franke
2014-09-01
Full Text Available Vastus lateralis (VL and vastus medialis (VM are frequently targeted in conditioning/rehabilitation programs due to their role in patellar stabilization during knee extension. This study assessed neural and muscular adaptations in these two muscles after an isokinetic eccentric training program. Twenty healthy men underwent a four-week control period followed by a 12-week period of isokinetic eccentric training. Ultrasound evaluations of VL and VM muscle thickness at rest and electromyographic evaluations during maximal isometric tests were used to assess the morphological and neural properties, respectively. No morphological and neural changes were found throughout the control period, whereas both muscles showed significant increases in thickness (VL = 6.9%; p .05 post-training. Isokinetic eccentric training produces neural and greater morphological adaptations in VM compared to VL, which shows that synergistic muscles respond differently to an eccentric isokinetic strength training program
Hamiltonian analysis of Plebanski theory
International Nuclear Information System (INIS)
Buffenoir, E; Henneaux, M; Noui, K; Roche, Ph
2004-01-01
We study the Hamiltonian formulation of Plebanski theory in both the Euclidean and Lorentzian cases. A careful analysis of the constraints shows that the system is non-regular, i.e., the rank of the Dirac matrix is non-constant on the non-reduced phase space. We identify the gravitational and topological sectors which are regular subspaces of the non-reduced phase space. The theory can be restricted to the regular subspace which contains the gravitational sector. We explicitly identify first- and second-class constraints in this case. We compute the determinant of the Dirac matrix and the natural measure for the path integral of the Plebanski theory (restricted to the gravitational sector). This measure is the analogue of the Leutwyler-Fradkin-Vilkovisky measure of quantum gravity
Quantum Statistical Operator and Classically Chaotic Hamiltonian ...
African Journals Online (AJOL)
Quantum Statistical Operator and Classically Chaotic Hamiltonian System. ... Journal of the Nigerian Association of Mathematical Physics ... In a Hamiltonian system von Neumann Statistical Operator is used to tease out the quantum consequence of (classical) chaos engendered by the nonlinear coupling of system to its ...
A Direct Method of Hamiltonian Structure
International Nuclear Information System (INIS)
Li Qi; Chen Dengyuan; Su Shuhua
2011-01-01
A direct method of constructing the Hamiltonian structure of the soliton hierarchy with self-consistent sources is proposed through computing the functional derivative under some constraints. The Hamiltonian functional is related with the conservation densities of the corresponding hierarchy. Three examples and their two reductions are given. (general)
Port Hamiltonian modeling of Power Networks
van Schaik, F.; van der Schaft, Abraham; Scherpen, Jacquelien M.A.; Zonetti, Daniele; Ortega, R
2012-01-01
In this talk a full nonlinear model for the power network in port–Hamiltonian framework is derived to study its stability properties. For this we use the modularity approach i.e., we first derive the models of individual components in power network as port-Hamiltonian systems and then we combine all
Hamiltonian representation of divergence-free fields
International Nuclear Information System (INIS)
Boozer, A.H.
1984-11-01
Globally divergence-free fields, such as the magnetic field and the vorticity, can be described by a two degree of freedom Hamiltonian. The Hamiltonian function provides a complete topological description of the field lines. The formulation also separates the dissipative and inertial time scale evolution of the magnetic and the vorticity fields
Hamiltonian structure of linearly extended Virasoro algebra
International Nuclear Information System (INIS)
Arakelyan, T.A.; Savvidi, G.K.
1991-01-01
The Hamiltonian structure of linearly extended Virasoro algebra which admits free bosonic field representation is described. An example of a non-trivial extension is found. The hierarchy of integrable non-linear equations corresponding to this Hamiltonian structure is constructed. This hierarchy admits the Lax representation by matrix Lax operator of second order
Momentum and hamiltonian in complex action theory
DEFF Research Database (Denmark)
Nagao, Keiichi; Nielsen, Holger Frits Bech
2012-01-01
$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...
A parcel formulation for Hamiltonian layer models
Bokhove, Onno; Oliver, M.
Starting from the three-dimensional hydrostatic primitive equations, we derive Hamiltonian N-layer models with isentropic tropospheric and isentropic or isothermal stratospheric layers. Our construction employs a new parcel Hamiltonian formulation which describes the fluid as a continuum of
On Distributed Port-Hamiltonian Process Systems
Lopezlena, Ricardo; Scherpen, Jacquelien M.A.
2004-01-01
In this paper we use the term distributed port-Hamiltonian Process Systems (DPHPS) to refer to the result of merging the theory of distributed Port-Hamiltonian systems (DPHS) with the theory of process systems (PS). Such concept is useful for combining the systematic interconnection of PHS with the
Relativistic magnetohydrodynamics as a Hamiltonian system
International Nuclear Information System (INIS)
Holm, D.D.; Kupershmidt, A.
1985-01-01
The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr
Hamiltonian Cycles on Random Eulerian Triangulations
DEFF Research Database (Denmark)
Guitter, E.; Kristjansen, C.; Nielsen, Jakob Langgaard
1998-01-01
. Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case...
Almost periodic Hamiltonians: an algebraic approach
International Nuclear Information System (INIS)
Bellissard, J.
1981-07-01
We develop, by analogy with the study of periodic potential, an algebraic theory for almost periodic hamiltonians, leading to a generalized Bloch theorem. This gives rise to results concerning the spectral measures of these operators in terms of those of the corresponding Bloch hamiltonians
Nested Sampling with Constrained Hamiltonian Monte Carlo
Betancourt, M. J.
2010-01-01
Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.
Directory of Open Access Journals (Sweden)
Tuğba Kocahan
2017-09-01
Conclusion: It was shown that angular velocity is important in isokinetic training, and that training at high angular velocities provides strength increases at lower angular velocities, but would not increase strength at angular velocities above the training level. For this reason, it is thought that in the preparation of an isokinetic strength training protocol, angular velocities need to be taken into account. For any athlete, the force at the angular velocity required in her/his sports branch needs to be considered.
International Nuclear Information System (INIS)
Omelyan, Igor; Kovalenko, Andriy
2013-01-01
We develop efficient handling of solvation forces in the multiscale method of multiple time step molecular dynamics (MTS-MD) of a biomolecule steered by the solvation free energy (effective solvation forces) obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model complemented with the Kovalenko-Hirata closure approximation). To reduce the computational expenses, we calculate the effective solvation forces acting on the biomolecule by using advanced solvation force extrapolation (ASFE) at inner time steps while converging the 3D-RISM-KH integral equations only at large outer time steps. The idea of ASFE consists in developing a discrete non-Eckart rotational transformation of atomic coordinates that minimizes the distances between the atomic positions of the biomolecule at different time moments. The effective solvation forces for the biomolecule in a current conformation at an inner time step are then extrapolated in the transformed subspace of those at outer time steps by using a modified least square fit approach applied to a relatively small number of the best force-coordinate pairs. The latter are selected from an extended set collecting the effective solvation forces obtained from 3D-RISM-KH at outer time steps over a broad time interval. The MTS-MD integration with effective solvation forces obtained by converging 3D-RISM-KH at outer time steps and applying ASFE at inner time steps is stabilized by employing the optimized isokinetic Nosé-Hoover chain (OIN) ensemble. Compared to the previous extrapolation schemes used in combination with the Langevin thermostat, the ASFE approach substantially improves the accuracy of evaluation of effective solvation forces and in combination with the OIN thermostat enables a dramatic increase of outer time steps. We demonstrate on a fully flexible model of alanine dipeptide in aqueous solution that the MTS-MD/OIN/ASFE/3D-RISM-KH multiscale method of molecular dynamics
Development of modular thermostatic vapour-cooled current leads for cryogenic service
International Nuclear Information System (INIS)
Blessing, H.; Lebrun, P.
1983-01-01
Cryogenic current leads cooled by helium vapour have been developed, built and tested. Their construction, based on standard electrolytic copper braids crimped at the ends, is such as to provide flexible cold terminations and make possible a modular design. The warm terminations combine electrical insulation, leak-tightness and integrated thermostatic valves controlling lead temperature and avoiding thermal run-away or ice build-up. After giving a detailed description of their construction, this report presents results of performance and reliability tests made on prototype units. (orig.)
Nuclear quantum effects in solids using a colored-noise thermostat.
Ceriotti, Michele; Bussi, Giovanni; Parrinello, Michele
2009-07-17
We present a method, based on a non-Markovian Langevin equation, to include quantum corrections to the classical dynamics of ions in a quasiharmonic system. By properly fitting the correlation function of the noise, one can vary the fluctuations in positions and momenta as a function of the vibrational frequency, and fit them so as to reproduce the quantum-mechanical behavior, with minimal a priori knowledge of the details of the system. We discuss the application of the thermostat to diamond and to ice Ih. We find that results in agreement with path-integral methods can be obtained using only a fraction of the computational effort.
Thermal response of a Fermi-Pasta-Ulam chain with Andersen thermostats
D'Ambrosio, Federico; Baiesi, Marco
2017-11-01
The linear response to temperature variations is well characterised for equilibrium systems but a similar theory is not available, for example, for inertial heat conducting systems, whose paradigm is the Fermi-Pasta-Ulam (FPU) model driven by two different boundary temperatures. For models of inertial systems out of equilibrium, including relaxing systems, we show that Andersen thermostats are a natural tool for studying the thermal response. We derive a fluctuation-response relation that allows to predict thermal expansion coefficients or the heat capacitance in nonequilibrium regimes. Simulations of the FPU chain of oscillators suggest that estimates of susceptibilities obtained with our relation are better than those obtained via a small perturbation.
Demand Response of Thermostatic Loads by Optimized Switching-Fraction Broadcast
DEFF Research Database (Denmark)
Totu, Luminita Cristiana; Wisniewski, Rafal
2014-01-01
Demand response is an important Smart Grid concept that aims at facilitating the integration of volatile energy resources into the electricity grid. This paper considers the problem of managing large populations of thermostat-based devices with on/off operation. The objective is to enable demand...... Method is used to spatially discretize these equations. Next, a broadcast strategy with two switching-fraction signals is proposed for actuating the population. This is applied in an open-loop scenario for tracking a power reference by running an optimization with a multilinear objective....
International Nuclear Information System (INIS)
Perfumo, Cristian; Kofman, Ernesto; Braslavsky, Julio H.; Ward, John K.
2012-01-01
Highlights: ► Characterisation of power response of a population of air conditioners. ► Implementation of demand side management on a group of air conditioners. ► Design of a controller for the power output of a group of air conditioners. ► Quantification of comfort impact of demand side management. - Abstract: Large groups of electrical loads can be controlled as a single entity to reduce their aggregate power demand in the electricity network. This approach, known as load management (LM) or demand response, offers an alternative to the traditional paradigm in the electricity market, where matching supply and demand is achieved solely by regulating how much generation is dispatched. Thermostatically controlled loads (TCLs), such as air conditioners (ACs) and fridges, are particularly suitable for LM, which can be implemented using feedback control techniques to regulate their aggregate power. To achieve high performance, such feedback control techniques require an accurate mathematical model of the TCL aggregate dynamics. Although such models have been developed, they appear too complex to be effectively used in control design. In this paper we develop a mathematical model aimed at the design of a model-based feedback control strategy. The proposed model analytically characterises the aggregate power response of a population of ACs to a simultaneous step change in temperature set points. Based on this model, we then derive, and completely parametrise in terms of the ACs ensemble properties, a reduced-order mathematical model to design an internal-model controller that regulates aggregate power by broadcasting temperature set-point offset changes. The proposed controller achieves high LM performance provided the ACs are equipped with high resolution thermostats. With coarser resolution thermostats, which are typical in present commercial and residential ACs, performance deteriorates significantly. This limitation is overcome by subdividing the population
Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe
2015-01-01
Objective: To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Methods: Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening traini...
The LISST-SL streamlined isokinetic suspended-sediment profiler
Gray, John R.; Agrawal, Yogesh C.; Pottsmith, H. Charles
2004-01-01
The new manually deployed Laser In Situ Scattering Transmissometer-StreamLined profiler (LISST-SL) represents a major technological advance for suspended-sediment measurements in rivers. The LISST-SL is being designed to provide real-time data on sediment concentrations and particle-size distributions. A pressure sensor and current meter provide real-time depth and ambient velocity data, respectively. The velocity data are also used to control pumpage across an internal laser so that the intake velocity is constantly adjusted to match the ambient stream velocity. Such isokinetic withdrawal is necessary for obtaining representative sedimentary measurements in streamflow, and ensures compliance with established practices. The velocity and sediment-concentration data are used to compute fluxes for up to 32 particle-size classes at points, verticals, or in the entire stream cross section. All data are stored internally, as well as transmitted via a 2-wire conductor to the operator using a specially developed communication protocol. The LISST-SL's performance will be measured and compared to published sedimentological accuracy criteria, and a performance summary will be placed on-line.
Indirect quantum tomography of quadratic Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
Single-particle dynamics - Hamiltonian formulation
International Nuclear Information System (INIS)
Montague, B.W.
1977-01-01
In this paper the Hamiltonian formalism is applied to the linear theory of accelerator dynamics. The reasons for the introduction of this method rather than the more straightforward use of second order differential equations of motion are briefly discussed. An outline of Lagrangian and Hamiltonian formalism is given, some properties of the Hamiltonian are discussed and canonical transformations are illustrated. The methods are demonstrated using elementary examples such as the simple pendulum and the procedures adopted to handle specific problems in accelerator theory are indicated. (B.D.)
Incomplete Dirac reduction of constrained Hamiltonian systems
Energy Technology Data Exchange (ETDEWEB)
Chandre, C., E-mail: chandre@cpt.univ-mrs.fr
2015-10-15
First-class constraints constitute a potential obstacle to the computation of a Poisson bracket in Dirac’s theory of constrained Hamiltonian systems. Using the pseudoinverse instead of the inverse of the matrix defined by the Poisson brackets between the constraints, we show that a Dirac–Poisson bracket can be constructed, even if it corresponds to an incomplete reduction of the original Hamiltonian system. The uniqueness of Dirac brackets is discussed. The relevance of this procedure for infinite dimensional Hamiltonian systems is exemplified.
Quantum entangling power of adiabatically connected Hamiltonians
International Nuclear Information System (INIS)
Hamma, Alioscia; Zanardi, Paolo
2004-01-01
The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bipartite quantum state space. When the different Hamiltonians in the family fall in the same adiabatic class, one can manipulate entanglement by moving through energy eigenstates corresponding to different values of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general dxd quantum systems, and specific two-qubit examples are studied
Quantum Hamiltonian Physics with Supercomputers
International Nuclear Information System (INIS)
Vary, James P.
2014-01-01
The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed
Quantum Hamiltonian Physics with Supercomputers
Energy Technology Data Exchange (ETDEWEB)
Vary, James P.
2014-06-15
The vision of solving the nuclear many-body problem in a Hamiltonian framework with fundamental interactions tied to QCD via Chiral Perturbation Theory is gaining support. The goals are to preserve the predictive power of the underlying theory, to test fundamental symmetries with the nucleus as laboratory and to develop new understandings of the full range of complex quantum phenomena. Advances in theoretical frameworks (renormalization and many-body methods) as well as in computational resources (new algorithms and leadership-class parallel computers) signal a new generation of theory and simulations that will yield profound insights into the origins of nuclear shell structure, collective phenomena and complex reaction dynamics. Fundamental discovery opportunities also exist in such areas as physics beyond the Standard Model of Elementary Particles, the transition between hadronic and quark–gluon dominated dynamics in nuclei and signals that characterize dark matter. I will review some recent achievements and present ambitious consensus plans along with their challenges for a coming decade of research that will build new links between theory, simulations and experiment. Opportunities for graduate students to embark upon careers in the fast developing field of supercomputer simulations is also discussed.
Isokinetic Extension Strength Is Associated With Single-Leg Vertical Jump Height.
Fischer, Felix; Blank, Cornelia; Dünnwald, Tobias; Gföller, Peter; Herbst, Elmar; Hoser, Christian; Fink, Christian
2017-11-01
Isokinetic strength testing is an important tool in the evaluation of the physical capacities of athletes as well as for decision making regarding return to sports after anterior cruciate ligament (ACL) reconstruction in both athletes and the lay population. However, isokinetic testing is time consuming and requires special testing equipment. A single-jump test, regardless of leg dominance, may provide information regarding knee extension strength through the use of correlation analysis of jump height and peak torque of isokinetic muscle strength. Cross-sectional study; Level of evidence, 3. A total of 169 patients who underwent ACL reconstruction were included in this study. Isokinetic testing was performed on the injured and noninjured legs. Additionally, a single-leg countermovement jump was performed to assess jump height using a jump accelerometer sensor. Extension strength values were used to assess the association between isokinetic muscle strength and jump height. The sample consisted of 60 female (mean age, 20.8 ± 8.3 years; mean weight, 61.7 ± 6.5 kg; mean height, 167.7 ± 5.3 cm) and 109 male (mean age, 23.2 ± 7.7 years; mean weight, 74.6 ± 10.2 kg; mean height, 179.9 ± 6.9 cm) patients. Bivariate correlation analysis showed an association ( r = 0.56, P jump height and isokinetic extension strength on the noninvolved side as well as an association ( r = 0.52, P jump height (beta = 0.49, P jump height having the strongest impact (beta = 0.49, P jump height. The study population encompassed various backgrounds, skill levels, and activity profiles, which might have affected the outcome. Even after controlling for age and sex, isokinetic strength was still moderately associated with jump height. Therefore, the jump technique and type of sport should be considered in future research.
Isokinetic Strength and Endurance Tests used Pre- and Post-Spaceflight: Test-Retest Reliability
Laughlin, Mitzi S.; Lee, Stuart M. C.; Loehr, James A.; Amonette, William E.
2009-01-01
To assess changes in muscular strength and endurance after microgravity exposure, NASA measures isokinetic strength and endurance across multiple sessions before and after long-duration space flight. Accurate interpretation of pre- and post-flight measures depends upon the reliability of each measure. The purpose of this study was to evaluate the test-retest reliability of the NASA International Space Station (ISS) isokinetic protocol. Twenty-four healthy subjects (12 M/12 F, 32.0 +/- 5.6 years) volunteered to participate. Isokinetic knee, ankle, and trunk flexion and extension strength as well as endurance of the knee flexors and extensors were measured using a Cybex NORM isokinetic dynamometer. The first weekly session was considered a familiarization session. Data were collected and analyzed for weeks 2-4. Repeated measures analysis of variance (alpha=0.05) was used to identify weekly differences in isokinetic measures. Test-retest reliability was evaluated by intraclass correlation coefficients (ICC) (3,1). No significant differences were found between weeks in any of the strength measures and the reliability of the strength measures were all considered excellent (ICC greater than 0.9), except for concentric ankle dorsi-flexion (ICC=0.67). Although a significant difference was noted in weekly endurance measures of knee extension (p less than 0.01), the reliability of endurance measure by week were considered excellent for knee flexion (ICC=0.97) and knee extension (ICC=0.96). Except for concentric ankle dorsi-flexion, the isokinetic strength and endurance measures are highly reliable when following the NASA ISS protocol. This protocol should allow accurate interpretation isokinetic data even with a small number of crew members.
Sekir, Ufuk; Yildiz, Yavuz; Hazneci, Bulent; Ors, Fatih; Aydin, Taner
2007-05-01
The purpose of this study was to investigate the effects of isokinetic exercise on strength, joint position sense and functionality in recreational athletes with functional ankle instability (FAI). Strength, proprioception and balance of 24 recreational athletes with unilateral FAI were evaluated by using isokinetic muscle strength measurement, ankle joint position sense and one leg standing test. The functional ability was evaluated using five different tests. These were; single limb hopping course (SLHC), one legged and triple legged hop for distance (OLHD-TLHD), and six and cross six meter hop for time (SMHT-CSMHT). Isokinetic peak torque of the ankle invertor and evertor muscles were assessed eccentrically and concentrically at test speeds of 120 degrees /s. Isokinetic exercise protocol was carried out at an angular velocity of 120 degrees /s. The exercise session was repeated three times a week and lasted after 6 weeks. At baseline, concentric invertor strength was found to be significantly lower in the functionally unstable ankles compared to the opposite healthy ankles (p 0.05). Ankle joint position sense in the injured ankles declined significantly from 2.35 +/- 1.16 to 1.33 +/- 0.62 degrees for 10 degrees of inversion angle (p isokinetic exercise. One leg standing test score decreased significantly from 15.17 +/- 8.50 to 11.79 +/- 7.81 in the injured ankles (p isokinetic exercise protocol, all of the worsened functional test scores in the injured ankles as compared to the opposite healthy ankles displayed a significant improvement (p isokinetic exercise program used in this study had a positive effect on these parameters.
van Dyk, N; Witvrouw, E; Bahr, R
2018-04-25
In elite sport, the use of strength testing to establish muscle function and performance is common. Traditionally, isokinetic strength tests have been used, measuring torque during concentric and eccentric muscle action. A device that measures eccentric hamstring muscle strength while performing the Nordic hamstring exercise is now also frequently used. The study aimed to investigate the variability of isokinetic muscle strength over time, for example, between seasons, and the relationship between isokinetic testing and the new Nordic hamstring exercise device. All teams (n = 18) eligible to compete in the premier football league in Qatar underwent a comprehensive strength assessment during their periodic health evaluation at Aspetar Orthopaedic and Sports Medicine Hospital in Qatar. Isokinetic strength was investigated for measurement error, and correlated to Nordic hamstring exercise strength. Of the 529 players included, 288 players had repeated tests with 1/2 seasons between test occasions. Variability (measurement error) between test occasions was substantial, as demonstrated by the measurement error (approximately 25 Nm, 15%), whether separated by 1 or 2 seasons. Considering hamstring injuries, the same pattern was observed among injured (n = 60) and uninjured (n = 228) players. A poor correlation (r = .35) was observed between peak isokinetic hamstring eccentric torque and Nordic hamstring exercise peak force. The strength imbalance between limbs calculated for both test modes was not correlated (r = .037). There is substantial intraindividual variability in all isokinetic test measures, whether separated by 1 or 2 seasons, irrespective of injury. Also, eccentric hamstring strength and limb-to-limb imbalance were poorly correlated between the isokinetic and Nordic hamstring exercise tests. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sindhikara, Daniel J; Kim, Seonah; Voter, Arthur F; Roitberg, Adrian E
2009-06-09
Molecular dynamics simulations starting from different initial conditions are commonly used to mimic the behavior of an experimental ensemble. We show in this article that when a Langevin thermostat is used to maintain constant temperature during such simulations, extreme care must be taken when choosing the random number seeds to prevent statistical correlation among the MD trajectories. While recent studies have shown that stochastically thermostatted trajectories evolving within a single potential basin with identical random number seeds tend to synchronize, we show that there is a synchronization effect even for complex, biologically relevant systems. We demonstrate this effect in simulations of alanine trimer and pentamer and in a simulation of a temperature-jump experiment for peptide folding of a 14-residue peptide. Even in replica-exchange simulations, in which the trajectories are at different temperatures, we find partial synchronization occurring when the same random number seed is employed. We explain this by extending the recent derivation of the synchronization effect for two trajectories in a harmonic well to the case in which the trajectories are at two different temperatures. Our results suggest several ways in which mishandling selection of a pseudorandom number generator initial seed can lead to corruption of simulation data. Simulators can fall into this trap in simple situations such as neglecting to specifically indicate different random seeds in either parallel or sequential restart simulations, utilizing a simulation package with a weak pseudorandom number generator, or using an advanced simulation algorithm that has not been programmed to distribute initial seeds.
Thermostatic system of sensor in NIR spectrometer based on PID control
Wang, Zhihong; Qiao, Liwei; Ji, Xufei
2016-11-01
Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.
Energy Technology Data Exchange (ETDEWEB)
Ahn, Byung-Cheon [Department of Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea); Song, Jae-Yeob [Graduate School, Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea)
2010-04-15
Computer simulations and experiments are carried out to research the control characteristics and heating performances for a radiant slab heating system with automatic thermostatic valves in residential apartments. An electrical equivalent R-C circuit is applied to analyze the unsteady heat transfer in the house. In addition, the radiant heat transfer between slabs, ceilings and walls in the room is evaluated by enclosure analysis method. Results of heating performance and control characteristics were determined from control methods such as automatic thermostatic valves, room air temperature-sensing method, water-temperature-sensing method, proportional control method, and On-Off control method. (author)
Jacobi fields of completely integrable Hamiltonian systems
International Nuclear Information System (INIS)
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.
2003-01-01
We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion
Quantum Hamiltonian reduction in superspace formalism
International Nuclear Information System (INIS)
Madsen, J.O.; Ragoucy, E.
1994-02-01
Recently the quantum Hamiltonian reduction was done in the case of general sl(2) embeddings into Lie algebras and superalgebras. The results are extended to the quantum Hamiltonian reduction of N=1 affine Lie superalgebras in the superspace formalism. It is shown that if we choose a gauge for the supersymmetry, and consider only certain equivalence classes of fields, then our quantum Hamiltonian reduction reduces to quantum Hamiltonian reduction of non-supersymmetric Lie superalgebras. The super energy-momentum tensor is constructed explicitly as well as all generators of spin 1 (and 1/2); thus all generators in the superconformal, quasi-superconformal and Z 2 *Z 2 superconformal algebras are constructed. (authors). 21 refs
Integrable Hamiltonian systems and spectral theory
Moser, J
1981-01-01
Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.
Spectral properties of almost-periodic Hamiltonians
International Nuclear Information System (INIS)
Lima, R.
1983-12-01
We give a description of some spectral properties of almost-periodic hamiltonians. We put the stress on some particular points of the proofs of the existence of absolutely continuous or pure point spectrum [fr
Air parcels and air particles: Hamiltonian dynamics
Bokhove, Onno; Lynch, Peter
We present a simple Hamiltonian formulation of the Euler equations for fluid flow in the Lagrangian framework. In contrast to the conventional formulation, which involves coupled partial differential equations, our "innovative'' mathematical formulation involves only ordinary differential equations
Discrete Hamiltonian evolution and quantum gravity
International Nuclear Information System (INIS)
Husain, Viqar; Winkler, Oliver
2004-01-01
We study constrained Hamiltonian systems by utilizing general forms of time discretization. We show that for explicit discretizations, the requirement of preserving the canonical Poisson bracket under discrete evolution imposes strong conditions on both allowable discretizations and Hamiltonians. These conditions permit time discretizations for a limited class of Hamiltonians, which does not include homogeneous cosmological models. We also present two general classes of implicit discretizations which preserve Poisson brackets for any Hamiltonian. Both types of discretizations generically do not preserve first class constraint algebras. Using this observation, we show that time discretization provides a complicated time gauge fixing for quantum gravity models, which may be compared with the alternative procedure of gauge fixing before discretization
Classical mechanics Hamiltonian and Lagrangian formalism
Deriglazov, Alexei
2016-01-01
This account of the fundamentals of Hamiltonian mechanics also covers related topics such as integral invariants and the Noether theorem. With just the elementary mathematical methods used for exposition, the book is suitable for novices as well as graduates.
Hamiltonian cycle problem and Markov chains
Borkar, Vivek S; Filar, Jerzy A; Nguyen, Giang T
2014-01-01
This book summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian cycle and the Travelling Salesman problems - into convex domains where continuum analysis can be carried out.
Variable Delay in port-Hamiltonian Telemanipulation
Secchi, C; Stramigioli, Stefano; Fantuzzi, C.
2006-01-01
In several applications involving bilateral telemanipulation, master and slave act at different power scales. In this paper a strategy for passively dealing with variable communication delay in scaled port-Hamiltonian based telemanipulation over packet switched networks is proposed.
On local Hamiltonians and dissipative systems
Energy Technology Data Exchange (ETDEWEB)
Castagnino, M. [CONICET-Institutos de Fisica Rosario y de Astronomia y Fisica del Espacio Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina); Gadella, M. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina) and Departamento de Fisica Teorica, Facultad de Ciencias c. Real de Burgos, s.n., 47011 Valladolid (Spain)]. E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Facultad de Ciencias Exactas, Ingenieria y Agrimensura UNR, Rosario (Argentina)
2006-11-15
We study a type of one-dimensional dynamical systems on the corresponding two-dimensional phase space. By using arguments related to the existence of integrating factors for Pfaff equations, we show that some one-dimensional non-Hamiltonian systems like dissipative systems, admit a Hamiltonian description by sectors on the phase plane. This picture is not uniquely defined and is coordinate dependent. A simple example is exhaustively discussed. The method, is not always applicable to systems with higher dimensions.
Generalized Hubbard Hamiltonian: renormalization group approach
International Nuclear Information System (INIS)
Cannas, S.A.; Tamarit, F.A.; Tsallis, C.
1991-01-01
We study a generalized Hubbard Hamiltonian which is closed within the framework of a Quantum Real Space Renormalization Group, which replaces the d-dimensional hypercubic lattice by a diamond-like lattice. The phase diagram of the generalized Hubbard Hamiltonian is analyzed for the half-filled band case in d = 2 and d = 3. Some evidence for superconductivity is presented. (author). 44 refs., 12 figs., 2 tabs
Yildiz, Y; Aydin, T; Sekir, U; Cetin, C; Ors, F; Alp Kalyon, T
2003-12-01
To investigate the effects of isokinetic exercise on pain and functional test scores of recreational athletes with chondromalacia patellae (CMP) and to examine the correlation between isokinetic parameters and functional tests or pain score. The functional ability of 30 recreational athletes with unilateral CMP was evaluated using six different tests. Pain scores were assessed during daily activities before and after the treatment protocol. Isokinetic exercise sessions were carried out at angular velocities of 60 degrees /s (25-90 degrees range of flexion) and 180 degrees /s (full range). These sessions were repeated three times a week for six weeks. Quadriceps and hamstring peak torque, total work, and endurance ratios had improved significantly after the treatment, as did the functional parameters and pain scores. There was a poor correlation between the extensor endurance ratio and one leg standing test. A moderate correlation between the visual analogue scale and the extensor endurance ratio or flexion endurance ratio was also found. The isokinetic exercise programme used in this study had a positive effect on muscle strength, pain score, and functional ability of knees with CMP. The improvement in the functional capacity did not correlate with the isokinetic parameters.
Effects of Motor Learning on Clinical Isokinetic Test Performance in Knee Osteoarthritis Patients
Directory of Open Access Journals (Sweden)
José Messias Rodrigues-da-Silva
Full Text Available OBJECTIVES: To analyze the effects of motor learning on knee extension-flexion isokinetic performance in knee osteoarthritis patients. METHODS: One hundred and thirty-six middle-aged and older sedentary individuals (111 women, 64.3±9.9 years with knee osteoarthritis (130 patients with bilateral and who had never performed isokinetic testing underwent two bilateral knee extension-flexion (concentric-concentric isokinetic evaluations (5 repetitions at 60°/sec. The tests were first performed on the dominant leg with 2 min of recovery between test, and following a standardized warm-up that included 3 submaximal isokinetic repetitions. The same procedure was repeated on the non-dominant leg. The peak torque, peak torque adjusted for the body weight, total work, coefficient of variation and agonist/antagonist ratio were compared between tests. RESULTS: Patients showed significant improvements in test 2 compared to test 1, including higher levels of peak torque, peak torque adjusted for body weight and total work, as well as lower coefficients of variation. The agonist/antagonist relationship did not significantly change between tests. No significant differences were found between the right and left legs for all variables. CONCLUSION: The results suggest that performing two tests with a short recovery (2 min between them could be used to reduce motor learning effects on clinical isokinetic testing of the knee joint in knee osteoarthritis patients.
Efficacy of isokinetic exercise on functional capacity and pain in patellofemoral pain syndrome.
Alaca, Ridvan; Yilmaz, Bilge; Goktepe, A Salim; Mohur, Haydar; Kalyon, Tunc Alp
2002-11-01
To assess the effect of an isokinetic exercise program on symptoms and functions of patients with patellofemoral pain syndrome. A total of 22 consecutive patients with the complaint of anterior knee pain who met the inclusion criteria were recruited to assess the efficacy of isokinetic exercise on functional capacity, isokinetic parameters, and pain scores in patients with patellofemoral pain syndrome. A total of 37 knees were examined. Six-meter hopping, three-step hopping, and single-limb hopping course tests were performed for each patient with the measurements of the Lysholm scale and visual analog scale. Tested parameters were peak torque, total work, average power, and endurance ratios. Statistical analyses revealed that at the end of the 6-wk treatment period, functional and isokinetic parameters improved significantly, as did pain scores. There was not statistically significant correlation between different groups of parameters. The isokinetic exercise treatment program used in this study prevented the extensor power loss due to patellofemoral pain syndrome, but the improvement in the functional capacity was not correlated with the gained power.
DEFF Research Database (Denmark)
Lakshmanan, Venkatachalam; Marinelli, Mattia; Kosek, Anna M.
2017-01-01
This paper investigates the usability of thermostat controlled domestic appliances for load shift in LV distribution grids. The proposed method uses refrigerators for the demonstration of adaptive load prediction to estimate its flexibility and perform scheduling based on load threshold limit. Tw...
DEFF Research Database (Denmark)
de Carvalho Froufe Andrade, Alberto César Pereira; Caserotti, Paolo; de Carvalho, Carlos Manuel Pereira
2013-01-01
The aim of this study was to assess the reliability of isokinetic and ISO knee extensor and flexor muscle strength when using the REV9000 (Technogym) isokinetic dynamometer. Moreover, the reliability of several strength imbalance indices and bilateral ratios were also examined. Twenty-four physic...
Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe
2015-01-01
To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (Pisokinetic group (Pisokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality.
Isokinetic Evaluation of the Hip Flexor and Extensor Muscles: A Systematic Review.
Zapparoli, Fabricio Yuri; Riberto, Marcelo
2017-11-01
Isokinetic dynamometry testing is a safe and reliable method accepted as the "gold standard" in the evaluation of muscle strength in the open kinetic chain. Isokinetic hip examinations face problems in the standardization of the position of the equipment axis, in the individual being examined, and in the adjustment of the lever arm and in stabilization strategies for the patients during the tests. Identification of the methodologic procedures with best reproducibility is also needed. To review the literature to evaluate the parameters used for the isokinetic evaluation of the hip flexor and extensor muscles and its reproducibility. This is a systematic literature review of the Cochrane, LILACS, PEDro, PubMed, and SciELO databases. The inclusion criteria were articles on the evaluation of hip flexor and/or extensor muscular strength with an isokinetic dynamometer and articles that analyzed the ICC or Pearson's reproducibility. The information extracted was positioning of the patient; positioning of the dynamometer axis; positioning of the lever arm; angular speed; sample size, pathology; type of contraction; and ICC and Pearson's results. 204 articles were found, from which 14 were selected that evaluated hip flexor and extensor muscles, involving 550 individuals who were submitted to an isokinetic hip evaluation. Five articles obtained the best result in reproducibility and had their methodology analyzed. To obtain better reproducibility of the isokinetic evaluation of the hip flexor and extensor muscles, the following recommendations must be followed: the individual must be positioned in the supine position and the dynamometer axis must be aligned with the greater trochanter of the femur. The positioning of the lever arm must be in the most distal region of the thigh possible. The angular speed used to analyze torque peak and muscle work was 60°/s, and to evaluate the muscle power it was 180°/s, with concentric and eccentric contractions being analyzed.
Overview of Existing and Future Residential Use Cases for Connected Thermostats
Energy Technology Data Exchange (ETDEWEB)
Rotondo, Julia [Energetics Inc., Washington, DC (United States); Johnson, Robert [Energetics Inc., Washington, DC (United States); Gonzalez, Nancy [Energetics Inc., Washington, DC (United States); Waranowski, Alexandra [Energetics Inc., Washington, DC (United States); Badger, Chris [Vermont Energy Investment Corporation, Burlington, VT (United States); Lange, Nick [Vermont Energy Investment Corporation, Burlington, VT (United States); Goldman, Ethan [Vermont Energy Investment Corporation, Burlington, VT (United States); Foster, Rebecca [Vermont Energy Investment Corporation, Burlington, VT (United States)
2017-03-01
This paper is intended to help inform future technology deployment opportunities for connected thermostats (CTs), based on investigation and review of the U.S. residential housing and CT markets, as well as existing, emerging, and future use cases for CT hardware and CT-generated data. The CT market has experienced tremendous growth over the last 5 years—both in terms of the number of units sold and the number of firms offering competing products—and can be characterized by its rapid pace of technological innovation. Despite many assuming CTs would become powerful tools for increasing comfort while saving energy, there remains a great deal of uncertainty about the actual energy and cost savings that are likely to be realized from deployment of CTs, particularly under different conditions.
Overview of Existing and Future Residential Use Cases for Connected Thermostats
Energy Technology Data Exchange (ETDEWEB)
Rotondo, Julia [Energetics Inc., Washington, DC (United States); Johnson, Robert [Energetics Inc., Washington, DC (United States); Gonzales, Nancy [Energetics Inc., Washington, DC (United States); Waranowski, Alexandra [Energetics Inc., Washington, DC (United States); Badger, Chris [Vermont Energy Investment Corp., Burlington, VT (United States); Lange, Nack [Vermont Energy Investment Corp., Burlington, VT (United States); Goldman, Ethan [Vermont Energy Investment Corp., Burlington, VT (United States); Foster, Rebecca [Vermont Energy Investment Corp., Burlington, VT (United States)
2016-12-01
This paper is intended to help inform future technology deployment opportunities for connected thermostats (CTs), based on investigation and review of the U.S. residential housing and CT markets, as well as existing, emerging, and future use cases for CT hardware and CT-generated data. The CT market has experienced tremendous growth over the last five years — both in terms of the number of units sold and the number of firms offering competing products — and can be characterized by its rapid pace of technological innovation. Despite many assuming CTs would become powerful tools for increasing comfort while saving energy, there remains a great deal of uncertainty about the actual energy and cost savings that are likely to be realized from deployment of CTs, particularly under different conditions.
DEFF Research Database (Denmark)
Lakshmanan, Venkatachalam; Marinelli, Mattia; Kosek, Anna Magdalena
2015-01-01
activation. The outcome of this experimental study quantifies the actual flexibility of household TCLs and the consequence for the different parties with respect to power behaviour. Each DR activation method adopts different scenarios to meet the power reduction, and has different impacts on the parameters......This paper describes the impacts of different types of DR (demand response) activation on TCLs' (thermostatically controlled loads) aggregated power. The different parties: power system operators, DR service providers (or aggregators) and consumers, have different objectives in relation to DR....... The experiments are conducted with real domestic refrigerators representing TCL. Activating refrigerators for DR with a delay reduces the ISE (integral square error) in power limitation by 28.46%, overshoot by 7.69%. The delay in refrigerator activation causes reduction in power ramp down rate by 39.90%, ramp up...
How the Invisible Hand is Supposed to Adjust the Natural Thermostat: A Guide for the Perplexed.
Storm, Servaas
2017-10-01
Mainstream climate economics takes global warming seriously, but perplexingly concludes that the optimal economic policy is to almost do nothing about it. This conclusion can be traced to just a few "normative" assumptions, over which there exists fundamental disagreement amongst economists. This paper explores two axes of this disagreement. The first axis ("market vs. regulation") measures faith in the invisible hand to adjust the natural thermostat. The second axis expresses differences in views on the efficiency and equity implications of climate action. The two axes combined lead to a classification of conflicting approaches in climate economics. The variety of approaches does not imply a post-modern "anything goes", as the contradictions between climate and capitalism cannot be wished away.
THE EFFECTS OF ISOKINETIC KNEE STRENGTH ON THE PROMPTNESS OF SOCCER PLAYERS
Ali Kerim Yilmaz; Menderes Kabadayi; Muhammet Hakan Mayda; Murşit Ceyhun Birinci; Mustafa Özdal
2017-01-01
The purpose of this study is to examine the effects of isokinetic knee strength on promptness. 15 soccer players with an average age of 22,80±2,14 years and 15 controls with an average age of 21,60±1,40 years participated in the study. Body composition, isokinetic knee strength measurement at angular speeds of 60o, 180o, 240o and 10 m sprint test were conducted respectively in the study. General warm-up procedure was carried out on the groups before measurements. In statistical analyses, Shap...
DEFF Research Database (Denmark)
Jacobsen, Søren; Wildschiødtz, Gordon; Danneskiold-Samsøe, B
1991-01-01
Twenty women with primary fibromyalgia syndrome and 20 age matched healthy women were investigated. The subjects performed maximum voluntary isokinetic contractions of the right quadriceps in an isokinetic dynamometer. Maximum voluntary isometric contractions of the right quadriceps were performed...... of superimposed twitches was 65% in the patient group and 15% in the control group (p = 0.003). Patients with primary fibromyalgia have a lower maximum voluntary muscle strength than expected. The increased presence of superimposed electrically elicited twitches during maximum voluntary contraction indicates...... submaximal force application in primary fibromyalgia syndrome....
[Progress in isokinetic technology in testing and training for assessment of muscle function].
Huang, Ting-Ting; Fan, Li-Hua; Gao, Dong; Xia, Qing; Zhang, Min
2013-02-01
Isokinetic technology in testing and training is the most advanced practical technique in the evaluation of muscle function. This method is a continuous dynamic test in the full range of the joint motion which has strong pertinence at the aspect of assessing muscle strength, and is an objective and quantitative method for reflecting each point's muscle strength in the range of the joint motion. This article reviews the key concepts, brief history of development and influencing factors of isokinetic technology in testing and training, introduces the progress in the field of rehabilitation medicine and sport science, etc., and discusses the future exploration in forensic science.
Energy Technology Data Exchange (ETDEWEB)
Herter, Karen; Wayland, Seth; Rasin, Josh
2009-09-25
This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. An analysis of hourly load data indicates that the offices and retail stores in our sample provided significant demand response, while the restaurants did not. Thermostat data provides further evidence that restaurants attempted to precool and reduce AC service during event hours, but were unable to because their air-conditioning units were undersized. On a 100 F reference day, load impacts of all participants during events averaged 14%, while load impacts of office and retail buildings (excluding restaurants) reached 20%. Overall, pilot participants including restaurants had 2007-2008 summer energy savings of 20% and bill savings of 30%. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability
International Nuclear Information System (INIS)
Voter, A. F.; Sindhikara, Daniel J.; Kim, Seonah; Roitberg, Adrian E.
2009-01-01
Molecular dynamics simulations starting from different initial conditions are commonly used to mimic the behavior of an experimental ensemble. We show in this article that when a Langevin thermostat is used to maintain constant temperature during such simulations, extreme care must be taken when choosing the random number seeds used in order to prevent statistical correlation among the MD trajectories. While recent studies have shown that stochastically thermostatted trajectories evolving within a single potential basin with identical random number seeds tend to synchronize, we show that there is a synchronization effect even for complex, biologically relevant systems. We demonstrate this effect in simulations of Alanine trimer and pentamer and in a simulation of a temperature-jump experiment for peptide folding of a 14-residue peptide. Even in replica-exchange simulations, in which the trajectories are at different temperatures, we find partial synchronization occurring when the same random number seed is employed. We explain this by extending the recent derivation of the synchronization effect for two trajectories in a harmonic well to the case in which the trajectories are at two different temperatures. Our results suggest several ways in which mishandling selection of a pseudo random number generator initial seed can lead to corruption of simulation data. Simulators can fall into this trap in simple situations such as neglecting to specifically indicate different random seeds in either parallel or sequential restart simulations, utilizing a simulation package with a weak pseudorandom number generator, or using an advanced simulation algorithm that hasn't been programmed to distribute initial seeds
Gravitational surface Hamiltonian and entropy quantization
Directory of Open Access Journals (Sweden)
Ashish Bakshi
2017-02-01
Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Effective Hamiltonian for travelling discrete breathers
MacKay, Robert S.; Sepulchre, Jacques-Alexandre
2002-05-01
Hamiltonian chains of oscillators in general probably do not sustain exact travelling discrete breathers. However solutions which look like moving discrete breathers for some time are not difficult to observe in numerics. In this paper we propose an abstract framework for the description of approximate travelling discrete breathers in Hamiltonian chains of oscillators. The method is based on the construction of an effective Hamiltonian enabling one to describe the dynamics of the translation degree of freedom of moving breathers. Error estimate on the approximate dynamics is also studied. The concept of the Peierls-Nabarro barrier can be made clear in this framework. We illustrate the method with two simple examples, namely the Salerno model which interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear Schrödinger system, and the Fermi-Pasta-Ulam chain.
Noncanonical Hamiltonian methods in plasma dynamics
International Nuclear Information System (INIS)
Kaufman, A.N.
1982-01-01
A Hamiltonian approach to plasma dynamics is described. The Poisson bracket of two observables g 1 and g 2 is given by using an antisymmetric tensor J, and must satisfy the Jacobi condition. The J can be obtained by elementary tensor analysis. The evolution in time of an observable g is given in terms of the Poisson bracket and a Hamiltonian H(Z). The guiding-center description of particle motion was presented by Littlejohn. The ponderomotive drift and force, the wave-induced oscillation-center velocity, and the gyrofrequency shift are obtained. The Lie transform yields the wave-induced increment to the gyromomentum. In the coulomb model for a Vlasov system, the dynamical variable is the Vlasov distribution f(z). The Hamiltonian functional and the Poisson bracket are obtained. The coupling of f(z) to the Maxwell field appears in the Poisson bracket. The evolution equation yields the Vlasov-Maxwell system. (Kato, T.)
Hamiltonian boundary term and quasilocal energy flux
International Nuclear Information System (INIS)
Chen, C.-M.; Nester, James M.; Tung, R.-S.
2005-01-01
The Hamiltonian for a gravitating region includes a boundary term which determines not only the quasilocal values but also, via the boundary variation principle, the boundary conditions. Using our covariant Hamiltonian formalism, we found four particular quasilocal energy-momentum boundary term expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here, from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads to the associated quasilocal energy flux expressions. For electromagnetism one of the four is distinguished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For Einstein's general relativity two different boundary condition choices correspond to quasilocal expressions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the one which is covariant
Bäcklund transformations and Hamiltonian flows
International Nuclear Information System (INIS)
Zullo, Federico
2013-01-01
In this work we show that, under certain conditions, parametric Bäcklund transformations for a finite dimensional integrable system can be interpreted as solutions to the equations of motion defined by an associated non-autonomous Hamiltonian. The two systems share the same constants of motion. This observation leads to the identification of the Hamiltonian interpolating the iteration of the discrete map defined by the transformations, which indeed in numerical applications can be considered a linear combination of the integrals appearing in the spectral curve of the Lax matrix. An example with the periodic Toda lattice is given. (paper)
Hamiltonian dynamics for complex food webs
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
Convergence to equilibrium under a random Hamiltonian
Brandão, Fernando G. S. L.; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K.; Mozrzymas, Marek
2012-09-01
We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.
Ostrogradski Hamiltonian approach for geodetic brane gravity
International Nuclear Information System (INIS)
Cordero, Ruben; Molgado, Alberto; Rojas, Efrain
2010-01-01
We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.
A Comparison of Isotonic, Isokinetic, and Plyometric Training Methods for Vertical Jump Improvement.
Miller, Christine D.
This annotated bibliography documents three training methods used to develop vertical jumping ability and power: isotonic, isokinetics, and plyometric training. Research findings on all three forms of training are summarized and compared. A synthesis of conclusions drawn from the annotated writings is presented. The report includes a glossary of…
Use of isokinetic muscle strength as a measure of severity of rheumatoid arthritis
DEFF Research Database (Denmark)
Schiøttz-Christensen, Berit; Lyngberg, K; Keiding, N
2001-01-01
The aim of this study was to study the association between isokinetic muscle strength (IMS) and other clinical indicators of disability and disease activity in patients with rheumatoid arthritis (RA). A cohort of 36 RA patients was followed over a 1-year period with five measurements of disease...
Jenkins, Nathaniel D M; Housh, Terry J; Palmer, Ty B; Cochrane, Kristen C; Bergstrom, Haley C; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T
2015-07-01
We compared absolute and normalized values for peak torque (PT), mean power (MP), rate of velocity development, and electromyography (EMG) amplitude during maximal isometric and concentric isokinetic leg extension muscle actions, as well as the %decrease in PT and %increase in MP from 1.05 to 3.14 rad·s(-1) in younger versus older men. Measurements were performed twice for reliability. Isokinetic measurements were normalized to the isometric muscle actions. Absolute isometric PT, isokinetic PT and MP, and EMG amplitudes at 1.05 and 3.14 rad·s(-1) were greater in the younger men, although normalizing to isometric PT eliminated the age differences. The older men exhibited greater %decrease in PT (37.2% vs. 31.3%) and lower %increase in MP (87.6% vs. 126.4%) regardless of normalization. Normalization eliminated absolute differences in isokinetic strength and power, but the relative differences from slow to fast velocities may reflect dynapenia characterized by age-related decreases in fast-twitch fiber function. © 2014 Wiley Periodicals, Inc.
Le Goff, Caroline; Kaux, Jean-François; Couffignal, Vincent; Coubard, Romain; Mélon, Pierre; Cavalier, Etienne; Croisier, Jean-Louis
2015-09-01
Cardiopathies are the world's leading cause of mortality and morbidity. Although rare, cardiovascular accidents can occur during intense and infrequent sporting activity, particularly among those who are unaware of their heart condition. The development of cardiospecific biochemical markers has led to a reconsideration of the role of biology in the diagnosis of cardiovascular illnesses. The aim of this study therefore was, through the use of cardiac biomarker assays, to highlight the impact of sustained physical effort in the form of intense and prolonged concentric isokinetic exercise and to research potential cardiovascular risks. Eighteen subjects participated in a maximal concentric isokinetic exercise involving 30 knee flexion-extensions for each leg. Five blood tests were taken to study the kinetics of the cardiac biomarkers. Haemodynamic parameters were measured continuously using a Portapres, and respiratory parameters were measured using a Sensormedics Vmax 29C. The results showed significant increases in the creatine kinase, myoglobin, homocysteine and haemoglobin cardiac markers. Evolutionary trends were also observed for the following biomarkers: NT-proBNP, myeloperoxydase and C-reactive protein. All the physiological parameters measured presented statistically significant changes. Isokinetic effort leads to the release of cardiac markers in the blood, but these do not exceed the reference values in healthy subjects. Maximal concentric isokinetic exercise does not, therefore, lead to an increased risk of cardiovascular pathologies. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T
2015-12-01
To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (Pvertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, Pvertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.
Isokinetic trunk muscle performance in pre-teens and teens with and without back pain.
Bernard, J-C; Boudokhane, S; Pujol, A; Chaléat-Valayer, E; Le Blay, G; Deceuninck, J
2014-02-01
To assess with an isokinetic dynamometer the force and endurance of the spinal flexor and extensor muscles in pre-teens or teens aged 11 to 13 and 14 to 16 years with and without low back pain (LBP). The control group and the LBP group were homogeneous in terms of age, weight, height and Body Mass Index (BMI). Assessment was carried out with the isokinetic dynamometer Cybex Norm®. The spinal flexors and extensors were explored concentrically at speeds of 60°, 90° and 120°/sec. The parameters chosen were: maximal moment of force (MMF), mean power (MP), total work (TW), F/E ratios (between the flexors and the extensors for the aforesaid parameters). In the LBP groups, clinical information (pain, extensibility of the spinal and sub-pelvic muscles, sports practice) and sagittal radiological data were all measured. While no significant difference in isokinetic performance was found between asymptomatic and LBP children in the 11-to-13-year-old group, the isokinetic performances of the LBP children were influenced positively by BMI value, number of hours of physical activity and radiologic value of the lumbar lordosis. As regards these pre-teens, assessment with an isokinetic dynamometer does not highlight muscle characteristics that might explain LBP occurrence. As regards the 14-to-16-year-old group, muscle strength has been found to be correlated with age. LBP teens were showed to have weaker extensors and stronger flexors than the healthy teens. It is with regard to this age group that assessment with an isokinetic dynamometer clearly yields interesting results. Since we have yet to standardize our evaluation criteria (working speed, number of trials…), it is difficult to compare our results with those reported in the literature. This is a preliminary study involving a relatively low number of patients. That said, given the fact that numerous parameters are connected with the age and height of the subjects, assessment with an isokinetic dynamometer can be
International Nuclear Information System (INIS)
Masood, T.; Khan, H.M.M.H.
2017-01-01
To compare the effects of isokinetic and isometric strength trainings on hamstring and quadriceps average-peak-torques, physical performance, and pain. Methodology: Twenty athletes with knee pain were randomly assigned to two equal groups: Isokinetic training and isometric training. Both groups were trained on Biodex System 3 Pro for 10 sessions. Isokinetic-group received isokinetic training on 5 different velocities while isometric-group performed isometric contractions at 3 knee joint angles. Results: Hamstring isokinetic average-peak-torque was significantly higher at all velocities without significant improvement in quadriceps average-peak-torque except for at the slowest velocity. Isometric training did not cause significant change in isometric average-peak-torque at any knee angle for either hamstring or quadriceps. Agility, elastic leg strength, and pain improved significantly in both groups with no significant between-group differences. No significant statistical correlation was observed between pain and any other parameter after either type of training. Conclusions: Athletes participating in sports requiring dynamic hamstring strength should prefer isokinetic strength training for physical rehabilitation of knee pain. However, physical performance and pain can be improved with both isometric and isokinetic strength training. (author)
Laudner, Kevin; Evans, Daniel; Wong, Regan; Allen, Aaron; Kirsch, Tom; Long, Brian; Meister, Keith
2015-06-01
Clinicians are often challenged when making return-to-play decisions following anterior cruciate ligament reconstruction (ACL-R). Isokinetic strength and jump performance testing are common tools used to make this decision. Unfortunately, vertical jump performance standards have not been clearly established and many clinicians do not have access to isokinetic testing equipment. To establish normative jump and strength characteristics in ACL-R patients cleared by an orthopedic physician to return-to-play and to determine if relationships exist between knee isokinetic strength measurements and jump characteristics described using an electronic jump map system. Descriptive laboratory study. Thirty-three ACL-R patients who had been cleared to return to athletic competition participated in this study. Twenty-six of these ACL-R participants were also matched to 26 asymptomatic athletes based on sex, limb, height, and mass to determine isokinetic strength and jump characteristic differences between groups. Jump tests consisted of single leg vertical, double leg vertical, and a 4-jump single leg vertical jump assessed using an electronic jump mat system. Independent t-tests were used to determine differences between groups and multiple regression analyses were used to identify any relationships between jump performance and knee strength (pjump capabilities and some bilateral knee strength deficiencies compared to the matched control group. The ACL-R group also showed several moderate-to-strong positive relationships for both knee extension and flexion strength with several jump performance characteristics, such as single and double leg vertical jump height. The current results indicate that ACL-R patients present with several knee strength and vertical jump differences compared to a matched control group at the time of return-to-play. Also, ACL-R patient's performance on an electronic jump mat system is strongly related to isokinetic knee strength measures. 2b.
The isokinetic strength profile of elite soccer players according to playing position.
Directory of Open Access Journals (Sweden)
Robert Śliwowski
Full Text Available The aim of this study was to compare isokinetic strength performance profiles in elite soccer players across different field positions. A total of 111 elite international players of Polish Ekstraklasa (the top division in Poland were examined during the 2010-2015 seasons. The players were classified into six positional roles: central defenders (CD, external defenders (ED, central midfielders (CM, external midfielders (EM, forwards (F, and goalkeepers (G. The concentric isokinetic strength (peak torque [PT] of quadriceps and hamstrings, H/Q ratios was calculated for the dominant leg and the non-dominant leg at angular velocity of 1.05 rad ·s-1, whereas to assess isokinetic muscle endurance, the total work [TW] at angular velocity of 4.19 rad ·s-1, was taken into consideration. The results showed that isokinetic strength performance varies significantly among players in different playing positions. The analysis of PT for quadriceps (PT-Q and hamstrings (PT-H generally showed that the goalkeepers and central midfielders had lower strength levels compared to other playing positions. In the case of PT-H and hamstring/quadricep (H/Q peak torque ratios, statistically significant differences were also noted for the legs, where mean values noted for the dominant leg were higher than for the non-dominant leg. For TW for quadriceps (TW-Q and hamstrings (TW-H, statistically significant differences were noted only between playing positions. TW-Q values for goalkeepers were lower than for central defenders and external midfielders. TW-H values for goalkeepers were lower than for central midfielders, central defenders and external midfielders. This study showed that specific functional activity of players in individual positions on the field influences the varied profile of isokinetic strength performance.
Diamond, Laura E; Wrigley, Tim V; Hinman, Rana S; Hodges, Paul W; O'Donnell, John; Takla, Amir; Bennell, Kim L
2016-09-01
This study investigated isometric and isokinetic hip strength in individuals with and without symptomatic femoroacetabular impingement (FAI). The specific aims were to: (i) determine whether differences exist in isometric and isokinetic hip strength measures between groups; (ii) compare hip strength agonist/antagonist ratios between groups; and (iii) examine relationships between hip strength and self-reported measures of either hip pain or function in those with FAI. Cross-sectional. Fifteen individuals (11 males; 25±5 years) with symptomatic FAI (clinical examination and imaging (alpha angle >55° (cam FAI), and lateral centre edge angle >39° and/or positive crossover sign (combined FAI))) and 14 age- and sex-matched disease-free controls (no morphological FAI on magnetic resonance imaging) underwent strength testing. Maximal voluntary isometric contraction strength of hip muscle groups and isokinetic hip internal (IR) and external rotation (ER) strength (20°/s) were measured. Groups were compared with independent t-tests and Mann-Whitney U tests. Participants with FAI had 20% lower isometric abduction strength than controls (p=0.04). There were no significant differences in isometric strength for other muscle groups or peak isokinetic ER or IR strength. The ratio of isometric, but not isokinetic, ER/IR strength was significantly higher in the FAI group (p=0.01). There were no differences in ratios for other muscle groups. Angle of peak IR torque was the only feature correlated with symptoms. Individuals with symptomatic FAI demonstrate isometric hip abductor muscle weakness and strength imbalance in the hip rotators. Strength measurement, including agonist/antagonist ratios, may be relevant for clinical management of FAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Adaptive control of port-Hamiltonian systems
Dirksz, D.A.; Scherpen, J.M.A.; Edelmayer, András
2010-01-01
In this paper an adaptive control scheme is presented for general port-Hamiltonian systems. Adaptive control is used to compensate for control errors that are caused by unknown or uncertain parameter values of a system. The adaptive control is also combined with canonical transformation theory for
Iterated Hamiltonian type systems and applications
Tiba, Dan
2018-04-01
We discuss, in arbitrary dimension, certain Hamiltonian type systems and prove existence, uniqueness and regularity properties, under the independence condition. We also investigate the critical case, define a class of generalized solutions and prove existence and basic properties. Relevant examples and counterexamples are also indicated. The applications concern representations of implicitly defined manifolds and their perturbations, motivated by differential systems involving unknown geometries.
Symmetry and resonance in Hamiltonian systems
Tuwankotta, J.M.; Verhulst, F.
2000-01-01
In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After giving a sharp estimate of the resonance domain, we
Symmetry and resonance in Hamiltonian systems
Tuwankotta, J.M.; Verhulst, F.
1999-01-01
In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After determining the size of the resonance domain, we
Hamiltonian evolutions of twisted polygons in RPn
International Nuclear Information System (INIS)
Beffa, Gloria Marì; Wang, Jing Ping
2013-01-01
In this paper we find a discrete moving frame and their associated invariants along projective polygons in RP n , and we use them to describe invariant evolutions of projective N-gons. We then apply a reduction process to obtain a natural Hamiltonian structure on the space of projective invariants for polygons, establishing a close relationship between the projective N-gon invariant evolutions and the Hamiltonian evolutions on the invariants of the flow. We prove that any Hamiltonian evolution is induced on invariants by an invariant evolution of N-gons—what we call a projective realization—and both evolutions are connected explicitly in a very simple way. Finally, we provide a completely integrable evolution (the Boussinesq lattice related to the lattice W 3 -algebra), its projective realization in RP 2 and its Hamiltonian pencil. We generalize both structures to n-dimensions and we prove that they are Poisson, defining explicitly the n-dimensional generalization of the planar evolution (a discretization of the W n -algebra). We prove that the generalization is completely integrable, and we also give its projective realization, which turns out to be very simple. (paper)
Discrete variable representation for singular Hamiltonians
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
The hamiltonian structures of the KP hierarchy
International Nuclear Information System (INIS)
Das, A.; Panda, S.; Huang Wenjui
1991-01-01
We obtain the two hamiltonian structures of the KP hierarchy following the method of Drinfeld and Sokolov. We point out how the second structure of Drinfeld and Sokolov needs to be modified in the present case. We briefly comment on the connection between these structures and the W 1+∞ algebra. (orig.)
Hamiltonian structure for rescaled integrable Lorenz systems
International Nuclear Information System (INIS)
Haas, F.; Goedert, J.
1993-01-01
It is shown that three among the known invariants for the Lorenz system recast the original equations into a Hamiltonian form. This is made possible by an appropriate time-dependent rescaling and the use of a generalized formalism with non-trivial structure functions. (author)
Singularities of Poisson structures and Hamiltonian bifurcations
Meer, van der J.C.
2010-01-01
Consider a Poisson structure on C8(R3,R) with bracket {, } and suppose that C is a Casimir function. Then {f, g} =<¿C, (¿g x ¿f) > is a possible Poisson structure. This confirms earlier observations concerning the Poisson structure for Hamiltonian systems that are reduced to a one degree of freedom
Transparency in port-Hamiltonian based telemanipulation
Secchi, C; Stramigioli, Stefano; Fantuzzi, C.
2005-01-01
After stability, transparency is the major issue in the design of a telemanipulation system. In this paper we exploit a behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian based teleoperators. Furthermore we provide a transparency analysis of
Transparency in Port-Hamiltonian-Based Telemanipulation
Secchi, Cristian; Stramigioli, Stefano; Fantuzzi, Cesare
After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of
Equivalence of Lagrangian and Hamiltonian BRST quantizations
International Nuclear Information System (INIS)
Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.
1992-01-01
Two approaches to the quantization of gauge theories using BRST symmetry are widely used nowadays: the Lagrangian quantization, developed in (BV-quantization) and Hamiltonian quantization, formulated in (BFV-quantization). For all known examples of field theory (Yang-Mills theory, gravitation etc.) both schemes give equivalent results. However the equivalence of these approaches in general wasn't proved. The main obstacle in comparing of these formulations consists in the fact, that in Hamiltonian approach the number of ghost fields is equal to the number of all first-class constraints, while in the Lagrangian approach the number of ghosts is equal to the number of independent gauge symmetries, which is equal to the number of primary first-class constraints only. This paper is devoted to the proof of the equivalence of Lagrangian and Hamiltonian quantizations for the systems with first-class constraints only. This is achieved by a choice of special gauge in the Hamiltonian approach. It's shown, that after integration over redundant variables on the functional integral we come to effective action which is constructed according to rules for construction of the effective action in Lagrangian quantization scheme
Hamiltonian formulation of anomaly free chiral bosons
International Nuclear Information System (INIS)
Abdalla, E.; Abdalla, M.C.B.; Devecchi, F.P.; Zadra, A.
1988-01-01
Starting out of an anomaly free Lagrangian formulation for chiral scalars, which a Wess-Zumino Term (to cancel the anomaly), we formulate the corresponding hamiltonian problem. Ther we use the (quantum) Siegel invariance to choose a particular, which turns out coincide with the obtained by Floreanini and Jackiw. (author) [pt
Hamiltonian structure of gravitational field theory
International Nuclear Information System (INIS)
Rayski, J.
1992-01-01
Hamiltonian generalizations of Einstein's theory of gravitation introducing a laminar structure of spacetime are discussed. The concepts of general relativity and of quasi-inertial coordinate systems are extended beyond their traditional scope. Not only the metric, but also the coordinate system, if quantized, undergoes quantum fluctuations
Port-Hamiltonian Systems on Open Graphs
Schaft, A.J. van der; Maschke, B.M.
2010-01-01
In this talk we discuss how to define in an intrinsic manner port-Hamiltonian dynamics on open graphs. Open graphs are graphs where some of the vertices are boundary vertices (terminals), which allow interconnection with other systems. We show that a directed graph carries two natural Dirac
Gauge theories of infinite dimensional Hamiltonian superalgebras
International Nuclear Information System (INIS)
Sezgin, E.
1989-05-01
Symplectic diffeomorphisms of a class of supermanifolds and the associated infinite dimensional Hamiltonian superalgebras, H(2M,N) are discussed. Applications to strings, membranes and higher spin field theories are considered: The embedding of the Ramond superconformal algebra in H(2,1) is obtained. The Chern-Simons gauge theory of symplectic super-diffeomorphisms is constructed. (author). 29 refs
The Hamiltonian structures of the KP hierarchy
International Nuclear Information System (INIS)
Das, A.; Panda, S.; Huang Wenjui
1991-08-01
We obtain the two Hamiltonian structures of the KP hierarchy following the method of Drinfeld and Sokolov. We point out how the second structure of Drinfeld and Sokolov needs to be modified in the present case. We briefly comment on the connection between these structures and the W 1+∞ algebra. (author). 18 refs
Quasi exact solution of the Rabi Hamiltonian
Koç, R; Tuetuencueler, H
2002-01-01
A method is suggested to obtain the quasi exact solution of the Rabi Hamiltonian. It is conceptually simple and can be easily extended to other systems. The analytical expressions are obtained for eigenstates and eigenvalues in terms of orthogonal polynomials. It is also demonstrated that the Rabi system, in a particular case, coincides with the quasi exactly solvable Poeschl-Teller potential.
Edge-disjoint Hamiltonian cycles in hypertournaments
DEFF Research Database (Denmark)
Thomassen, Carsten
2006-01-01
We introduce a method for reducing k-tournament problems, for k >= 3, to ordinary tournaments, that is, 2-tournaments. It is applied to show that a k-tournament on n >= k + 1 + 24d vertices (when k >= 4) or on n >= 30d + 2 vertices (when k = 3) has d edge-disjoint Hamiltonian cycles if and only...
Hamiltonian constraint in polymer parametrized field theory
International Nuclear Information System (INIS)
Laddha, Alok; Varadarajan, Madhavan
2011-01-01
Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.
The group of Hamiltonian automorphisms of a star product
La Fuente-Gravy, Laurent
2015-01-01
We deform the group of Hamiltonian diffeomorphisms into the group of Hamiltonian automorphisms of a formal star product on a symplectic manifold. We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.
QCD string with quarks. 2. Light cone Hamiltonian
International Nuclear Information System (INIS)
Dubin, A.Yu.; Kaidalov, A.B.; Simonov, Yu.A.
1994-01-01
The light-cone Hamiltonian is derived from the general gauge - and Lorentz - invariant expression for the qq-bar Green function. The resulting Hamiltonian contains in a non-additive way contributions from quark and string degrees of freedom
Construction and Start-up of a Large-Volume Thermostat for Dielectric-Constant Gas Thermometry
Merlone, A.; Moro, F.; Zandt, T.; Gaiser, C.; Fellmuth, B.
2010-07-01
A liquid-bath thermostat with a volume of about 800 L was designed to provide a suitable thermal environment for a dielectric-constant gas thermometer (DCGT) in the range from the triple point of mercury to the melting point of gallium. In the article, results obtained with the unique, huge thermostat without the DCGT measuring chamber are reported to demonstrate the capability of controlling the temperature of very large systems at a metrological level. First tests showed that the bath together with its temperature controller provide a temperature variation of less than ±0.5mK peak-to-peak. This temperature instability could be maintained over a period of several days. In the central working volume (diameter—500mm, height—650mm), in which the vacuum chamber containing the measuring system of the DCGT will be placed later, the temperature inhomogeneity has been demonstrated to be also well below 1mK.
Hamiltonian analysis of transverse dynamics in axisymmetric rf photoinjectors
International Nuclear Information System (INIS)
Wang, C.-x.
2006-01-01
A general Hamiltonian that governs the beam dynamics in an rf photoinjector is derived from first principles. With proper choice of coordinates, the resulting Hamiltonian has a simple and familiar form, while taking into account the rapid acceleration, rf focusing, magnetic focusing, and space-charge forces. From the linear Hamiltonian, beam-envelope evolution is readily obtained, which better illuminates the theory of emittance compensation. Preliminary results on the third-order nonlinear Hamiltonian will be given as well.
On integrable Hamiltonians for higher spin XXZ chain
International Nuclear Information System (INIS)
Bytsko, Andrei G.
2003-01-01
Integrable Hamiltonians for higher spin periodic XXZ chains are constructed in terms of the spin generators; explicit examples for spins up to (3/2) are given. Relations between Hamiltonians for some U q (sl 2 )-symmetric and U(1)-symmetric universal r-matrices are studied; their properties are investigated. A certain modification of the higher spin periodic chain Hamiltonian is shown to be an integrable U q (sl 2 )-symmetric Hamiltonian for an open chain
Numerical determination of the magnetic field line Hamiltonian
International Nuclear Information System (INIS)
Kuo-Petravic, G.; Boozer, A.H.
1986-03-01
The structure of a magnetic field is determined by a one-degree of freedom, time-dependent Hamiltonian. This Hamiltonian is evaluated for a given field in a perturbed action-angle form. The location and the size of magnetic islands in the given field are determined from Hamiltonian perturbation theory and from an ordinary Poincare plot of the field line trajectories
Effective Hamiltonians in quantum physics: resonances and geometric phase
International Nuclear Information System (INIS)
Rau, A R P; Uskov, D
2006-01-01
Effective Hamiltonians are often used in quantum physics, both in time-dependent and time-independent contexts. Analogies are drawn between the two usages, the discussion framed particularly for the geometric phase of a time-dependent Hamiltonian and for resonances as stationary states of a time-independent Hamiltonian
International Nuclear Information System (INIS)
Yu, F.W.; Chan, K.T.; Chu, H.Y.
2006-01-01
Thermostatic expansion valves (TXVs) have long been used in air-cooled chillers to implement head pressure control under which the condensing temperature is kept high at around 50 o C by staging condenser fans as few as possible. This paper considers how TXVs prevent the chillers from operating with an increased COP at lower condensing temperatures when the chiller load or outdoor temperature drops. An analysis on an existing air-cooled reciprocating chiller showed that the range of differential pressures across TXVs restricts the maximum heat rejection airflow required to increase the chiller COP, though the set point of condensing temperature is reduced to 22 o C from a high level of 45 o C. It is possible to use electronic expansion valves to meet the differential pressure requirements for maximum chiller COP. There is a maximum of 28.7% increase in the chiller COP when the heat rejection airflow is able to be maximized in various operating conditions. The results of this paper emphasize criteria for lowering the condensing temperature to enhance the performance of air-cooled chillers
Using billing and weather data to separate thermostat from insulation effects
Energy Technology Data Exchange (ETDEWEB)
Fels, M F; Goldberg, M L
1984-05-01
A simple methodology, which uses aggregate utility sales data to measure and decompose residential conservation trends, is demonstrated. The data base is the aggregate natural gas consumption of the nearly one million houses in New Jersey which use gas for heating. The conservation index resulting from the analysis is normalized annual consumption, which adjusts per-household consumption to typical weather conditions. To smooth erratic year-to-year changes, four-year composite analyses are moved forward in time over the period 1970-82. Dramatic decreases in consumption, totaling 26% since the oil embargo, are evident. A decomposition of the results for the four years following the embargo suggests that over half of this conservation effect is due to changes in interior temperatures, with the policy implication that thermostat setbacks have played a far greater conservation role than have either structural change through retrofitting or modifications in appliance usage. In more recent years, for which the overall reduction in energy usage is lower, the dominant conservation role appears to have shifted to reductions in temperature-independent, base-level consumption by water heaters and appliances, while the effects of retrofitting remain relatively small.
DEFF Research Database (Denmark)
Jacobsen, Søren; Danneskiold-Samsøe, B
1987-01-01
A common complaint among patients with fibrositis syndrome is exhaustion and fatique. It was therefore felt desirable to evaluate the muscle strength of these patients compared with normal subjects. Maximum isometric and isokinetic strength of knee extension was measured in 15 patients and 15...... healthy matched subjects, using an isokinetic dynamometer (Cybex II). Maximum isometric strength at various knee extension angles (90 degrees, 60 degrees and 30 degrees degrees) was significantly (p less than 0.001) lower in the fibrositis group than in controls, a reduction of approximately 58......-66%. Maximum isokinetic strength at various knee extension velocities (30-240 degrees per second) was also significantly (p less than 0.01) lower in the fibrositis group than in controls, the reduction being approximately 41-51%. In conclusion, isometric and isokinetic muscle strength is found to be lower...
Coherent states of systems with quadratic Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V.G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Gitman, D.M., E-mail: gitman@if.usp.br [Tomsk State University, Tomsk (Russian Federation); Pereira, A.S., E-mail: albertoufcg@hotmail.com [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica
2015-06-15
Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)
Coherent states of systems with quadratic Hamiltonians
International Nuclear Information System (INIS)
Bagrov, V.G.; Gitman, D.M.; Pereira, A.S.
2015-01-01
Different families of generalized coherent states (CS) for one-dimensional systems with general time-dependent quadratic Hamiltonian are constructed. In principle, all known CS of systems with quadratic Hamiltonian are members of these families. Some of the constructed generalized CS are close enough to the well-known due to Schroedinger and Glauber CS of a harmonic oscillator; we call them simply CS. However, even among these CS, there exist different families of complete sets of CS. These families differ by values of standard deviations at the initial time instant. According to the values of these initial standard deviations, one can identify some of the families with semiclassical CS. We discuss properties of the constructed CS, in particular, completeness relations, minimization of uncertainty relations and so on. As a unknown application of the general construction, we consider different CS of an oscillator with a time dependent frequency. (author)
Effective Hamiltonian for high Tc Cu oxides
International Nuclear Information System (INIS)
Fukuyama, H.; Matsukawa, H.
1989-01-01
Effective Hamiltonian has been derived for CuO 2 layers in the presence of extra holes doped mainly into O-sites by taking both on-site and intersite Coulomb interaction into account. A special case with a single hole has been examined in detail. It is found that there exist various types of bound states, singlet and triplet with different spatial symmetry, below the hole bank continuum. The spatial extent of the Zhang-Rice singlet state, which is most stabilized, and the effective transfer integral between these singlet states are seen to be very sensitive to the relative magnitude of the direct and the indirect transfer integrals between O-sites. Effective Hamiltonian for the case of electron doping has also been derived
Partial quantization of Lagrangian-Hamiltonian systems
International Nuclear Information System (INIS)
Amaral, C.M. do; Soares Filho, P.C.
1979-05-01
A classical variational principle is constructed in the Weiss form, for dynamical systems with support spaces of the configuration-phase kind. This extended principle rules the dynamics of classical systems, partially Hamiltonian, in interaction with Lagrangean parameterized subsidiary dynamics. The variational family of equations obtained, consists of an equation of the Hamilton-Jacobi type, coupled to a family of differential equations of the Euler-Lagrange form. The basic dynamical function appearing in the equations is a function of the Routh kind. By means of an ansatz induced by the variationally obtained family, a generalized set of equation, is proposed constituted by a wave equation of Schroedinger type, coupled to a family of equations formaly analog to those Euler-Lagrange equations. A basic operator of Routh type appears in our generalized set of equations. This operator describes the interaction between a quantized Hamiltonian dynamics, with a parameterized classical Lagrangean dynamics in semi-classical closed models. (author) [pt
Quadratic hamiltonians and relativistic quantum mechanics
International Nuclear Information System (INIS)
Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.
1981-01-01
For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru
Hamiltonian mechanics and divergence-free fields
International Nuclear Information System (INIS)
Boozer, A.H.
1986-08-01
The field lines, or integral curves, of a divergence-free field in three dimensions are shown to be topologically equivalent to the trajectories of a Hamiltonian with two degrees of freedom. The consideration of fields that depend on a parameter allow the construction of a canonical perturbation theory which is valid even if the perturbation is large. If the parametric dependence of the magnetic, or the vorticity field is interpreted as time dependence, evolution equations are obtained which give Kelvin's theorem or the flux conservation theorem for ideal fluids and plasmas. The Hamiltonian methods prove especially useful for study of fields in which the field lines must be known throughout a volume of space
Quantum mechanical Hamiltonian models of discrete processes
International Nuclear Information System (INIS)
Benioff, P.
1981-01-01
Here the results of other work on quantum mechanical Hamiltonian models of Turing machines are extended to include any discrete process T on a countably infinite set A. The models are constructed here by use of scattering phase shifts from successive scatterers to turn on successive step interactions. Also a locality requirement is imposed. The construction is done by first associating with each process T a model quantum system M with associated Hilbert space H/sub M/ and step operator U/sub T/. Since U/sub T/ is not unitary in general, M, H/sub M/, and U/sub T/ are extended into a (continuous time) Hamiltonian model on a larger space which satisfies the locality requirement. The construction is compared with the minimal unitary dilation of U/sub T/. It is seen that the model constructed here is larger than the minimal one. However, the minimal one does not satisfy the locality requirement
Boundary Hamiltonian Theory for Gapped Topological Orders
Hu, Yuting; Wan, Yidun; Wu, Yong-Shi
2017-06-01
We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.
Hamiltonian reduction of Kac-Moody algebras
International Nuclear Information System (INIS)
Kimura, Kazuhiro
1991-01-01
Feigin-Fucks construction provides us methods to treat rational conformal theories in terms of free fields. This formulation enables us to describe partition functions and correlation functions in the Fock space of free fields. There are several attempt extending to supersymmetric theories. In this report authors present an explicit calculation of the Hamiltonian reduction based on the free field realization. In spite of the results being well-known, the relations can be clearly understood in the language of bosons. Authors perform the hamiltonian reduction by imposing a constraint with appropriate gauge transformations which preserve the constraint. This approaches enables us to gives the geometric interpretation of super Virasoro algebras and relations of the super gravity. In addition, author discuss the properties of quantum groups by using the explicit form of the group element. It is also interesting to extend to super Kac-Moody algebras. (M.N.)
Phase transitions in the Hubbard Hamiltonian
International Nuclear Information System (INIS)
Chaves, C.M.; Lederer, P.; Gomes, A.A.
1977-05-01
Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques is studied, using the epsilon = 4 - d expansion to first order in epsilon. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. This coupling is pure imaginary, which has interesting consequences on the critical properties of this coupled field system. The effect of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed
Hamiltonian partial differential equations and applications
Nicholls, David; Sulem, Catherine
2015-01-01
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
A diagrammatic construction of formal E-independent model hamiltonian
International Nuclear Information System (INIS)
Kvasnicka, V.
1977-01-01
A diagrammatic construction of formal E-independent model interaction (i.e., without second-quantization formalism) is suggested. The construction starts from the quasi-degenerate Brillouin-Wigner perturbation theory, in the framework of which an E-dependent model Hamiltonian is simply constructed. Applying the ''E-removing'' procedure to this E-dependent model Hamiltonian, the E-independent formal model Hamiltonian either Hermitian or non-Hermitian can diagrammatically be easily derived. For the formal E-independent model Hamiltonian the separability theorem is proved, which can be profitably used for a rather ''formalistic ''construction of a many-body E-independent model Hamiltonian
Boson mapping and the microscopic collective nuclear Hamiltonian
International Nuclear Information System (INIS)
Dobes, J.; Ivanova, S.P.; Dzholos, R.V.; Pedrosa, R.
1990-01-01
Starting with the mapping of the quadrupole collective states in the fermion space onto the boson space, the fermion nuclear problem is transformed into the boson one. The boson images of the bifermion operators and of the fermion Hamiltonian are found. Recurrence relations are used to obtain approximately the norm matrix which appears in the boson-fermion mapping. The resulting boson Hamiltonian contains terms which go beyond the ordinary SU(6) symmetry Hamiltonian of the interacting boson model. Calculations, however, suggest that on the phenomenological level the differences between the mapped Hamiltonian and the SU(6) Hamiltonian are not too important. 18 refs.; 2 figs
Recursive tridiagonalization of infinite dimensional Hamiltonians
International Nuclear Information System (INIS)
Haydock, R.; Oregon Univ., Eugene, OR
1989-01-01
Infinite dimensional, computable, sparse Hamiltonians can be numerically tridiagonalized to finite precision using a three term recursion. Only the finite number of components whose relative magnitude is greater than the desired precision are stored at any stage in the computation. Thus the particular components stored change as the calculation progresses. This technique avoids errors due to truncation of the orbital set, and makes terminators unnecessary in the recursion method. (orig.)
Hamiltonian theory of guiding-center motion
International Nuclear Information System (INIS)
Littlejohn, R.G.
1980-05-01
A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion
Hamiltonian kinetic theory of plasma ponderomotive processes
International Nuclear Information System (INIS)
McDonald, S.W.; Kaufman, A.N.
1982-01-01
The nonlinear nonresonant interaction of plasma waves and particles is formulated in Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility
Symplectic Geometric Algorithms for Hamiltonian Systems
Feng, Kang
2010-01-01
"Symplectic Geometry Algorithms for Hamiltonian Systems" will be useful not only for numerical analysts, but also for those in theoretical physics, computational chemistry, celestial mechanics, etc. The book generalizes and develops the generating function and Hamilton-Jacobi equation theory from the perspective of the symplectic geometry and symplectic algebra. It will be a useful resource for engineers and scientists in the fields of quantum theory, astrophysics, atomic and molecular dynamics, climate prediction, oil exploration, etc. Therefore a systematic research and development
Dynamical invariants for variable quadratic Hamiltonians
International Nuclear Information System (INIS)
Suslov, Sergei K
2010-01-01
We consider linear and quadratic integrals of motion for general variable quadratic Hamiltonians. Fundamental relations between the eigenvalue problem for linear dynamical invariants and solutions of the corresponding Cauchy initial value problem for the time-dependent Schroedinger equation are emphasized. An eigenfunction expansion of the solution of the initial value problem is also found. A nonlinear superposition principle for generalized Ermakov systems is established as a result of decomposition of the general quadratic invariant in terms of the linear ones.
The Effective Hamiltonian in the Scalar Electrodynamics
Dineykhan, M D; Zhaugasheva, S A; Sakhyev, S K
2002-01-01
On the basis of an investigation of the asymptotic behaviour of the polarization loop for the scalar particles in the external electromagnetic field the relativistic corrections to the Hamiltonian are determined. The constituent mass of the particles in the bound state is analytically derived. It is shown that the constituent mass of the particles differs from the mass of the particles in the free state. The corrections connected with the Thomas precession have been calculated.
Quantization of non-Hamiltonian physical systems
International Nuclear Information System (INIS)
Bolivar, A.O.
1998-09-01
We propose a general method of quantization of non-Hamiltonian physical systems. Applying it, for example, to a dissipative system coupled to a thermal reservoir described by the Fokker-Planck equation, we are able to obtain the Caldeira-Leggett master equation, the non-linear Schroedinger-Langevin equation and Caldirola-Kanai equation (with an additional term), as particular cases. (author)
Hamiltonian kinetic theory of plasma ponderomotive processes
International Nuclear Information System (INIS)
McDonald, S.W.; Kaufman, A.N.
1981-12-01
The nonlinear nonresonant interaction of plasma waves and particles is formulated in a Hamiltonian kinetic theory which treats the wave-action and particle distributions on an equal footing, thereby displaying reciprocity relations. In the quasistatic limit, a nonlinear wave-kinetic equation is obtained. The generality of the formalism allows for applications to arbitrary geometry, with the nonlinear effects expressed in terms of the linear susceptibility
Symplectic topology of integrable Hamiltonian systems
International Nuclear Information System (INIS)
Nguyen Tien Zung.
1993-08-01
We study the topology of integrable Hamiltonian systems, giving the main attention to the affine structure of their orbit spaces. In particular, we develop some aspects of Fomenko's theory about topological classification of integrable non-degenerate systems, and consider some relations between such systems and ''pure'' contact and symplectic geometry. We give a notion of integrable surgery and use it to obtain some interesting symplectic structures. (author). Refs, 10 figs
Hamiltonian description and quantization of dissipative systems
Enz, Charles P.
1994-09-01
Dissipative systems are described by a Hamiltonian, combined with a “dynamical matrix” which generalizes the simplectic form of the equations of motion. Criteria for dissipation are given and the examples of a particle with friction and of the Lotka-Volterra model are presented. Quantization is first introduced by translating generalized Poisson brackets into commutators and anticommutators. Then a generalized Schrödinger equation expressed by a dynamical matrix is constructed and discussed.
Hamiltonian theory of guiding-center motion
Energy Technology Data Exchange (ETDEWEB)
Littlejohn, R.G.
1980-05-01
A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion.
Hamiltonian description of the ideal fluid
International Nuclear Information System (INIS)
Morrison, P.J.
1998-01-01
The Hamiltonian viewpoint of fluid mechanical systems with few and infinite number of degrees of freedom is described. Rudimentary concepts of finite-degree-of-freedom Hamiltonian dynamics are reviewed, in the context of the passive advection of a scalar or tracer field by a fluid. The notions of integrability, invariant-tori, chaos, overlap criteria, and invariant-tori breakup are described in this context. Preparatory to the introduction of field theories, systems with an infinite number of degrees of freedom, elements of functional calculus and action principles of mechanics are reviewed. The action principle for the ideal compressible fluid is described in terms of Lagrangian or material variables. Hamiltonian systems in terms of noncanonical variables are presented, including several examples of Eulerian or inviscid fluid dynamics. Lie group theory sufficient for the treatment of reduction is reviewed. The reduction from Lagrangian to Eulerian variables is treated along with Clebsch variable decompositions. Stability in the canonical and noncanonical Hamiltonian contexts is described. Sufficient conditions for stability, such as Rayleigh-like criteria, are seen to be only sufficient in the general case because of the existence of negative-energy modes, which are possessed by interesting fluid equilibria. Linearly stable equilibria with negative energy modes are argued to be unstable when nonlinearity or dissipation is added. The energy-Casimir method is discussed and a variant of it that depends upon the notion of dynamical accessibility is described. The energy content of a perturbation about a general fluid equilibrium is calculated using three methods. copyright 1998 The American Physical Society
Large-scale stochasticity in Hamiltonian systems
International Nuclear Information System (INIS)
Escande, D.F.
1982-01-01
Large scale stochasticity (L.S.S.) in Hamiltonian systems is defined on the paradigm Hamiltonian H(v,x,t) =v 2 /2-M cos x-P cos k(x-t) which describes the motion of one particle in two electrostatic waves. A renormalization transformation Tsub(r) is described which acts as a microscope that focusses on a given KAM (Kolmogorov-Arnold-Moser) torus in phase space. Though approximate, Tsub(r) yields the threshold of L.S.S. in H with an error of 5-10%. The universal behaviour of KAM tori is predicted: for instance the scale invariance of KAM tori and the critical exponent of the Lyapunov exponent of Cantori. The Fourier expansion of KAM tori is computed and several conjectures by L. Kadanoff and S. Shenker are proved. Chirikov's standard mapping for stochastic layers is derived in a simpler way and the width of the layers is computed. A simpler renormalization scheme for these layers is defined. A Mathieu equation for describing the stability of a discrete family of cycles is derived. When combined with Tsub(r), it allows to prove the link between KAM tori and nearby cycles, conjectured by J. Greene and, in particular, to compute the mean residue of a torus. The fractal diagrams defined by G. Schmidt are computed. A sketch of a methodology for computing the L.S.S. threshold in any two-degree-of-freedom Hamiltonian system is given. (Auth.)
NLO renormalization in the Hamiltonian truncation
Elias-Miró, Joan; Rychkov, Slava; Vitale, Lorenzo G.
2017-09-01
Hamiltonian truncation (also known as "truncated spectrum approach") is a numerical technique for solving strongly coupled quantum field theories, in which the full Hilbert space is truncated to a finite-dimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper, we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states." We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian truncation to higher spacetime dimensions.
Redesign of the DFT/MRCI Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany)
2016-01-21
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.
International Nuclear Information System (INIS)
Okruhlica, P.; Mrtvy, M.; Kopecky, Z.
2009-01-01
Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)
International Nuclear Information System (INIS)
Okruhlica, P.; Mrtvy, M.; Kopecky, Z.
2008-01-01
Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)
Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R
2013-01-01
Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.
Test-Retest Reliability of Isokinetic Knee Strength Measurements in Children Aged 8 to 10 Years.
Fagher, Kristina; Fritzson, Annelie; Drake, Anna Maria
Isokinetic dynamometry is a useful tool to objectively assess muscle strength of children and adults in athletic and rehabilitative settings. This study examined test-retest reliability of isokinetic knee strength measurements in children aged 8 to 10 years and defined limits for the minimum difference (MD) in strength that indicates a clinically important change. Isokinetic knee strength measurements (using the Biodex System 4) in children will provide reliable results. Descriptive laboratory study. In 22 healthy children, 5 maximal concentric (CON) knee extensor (KE) and knee flexor (KF) contractions at 2 angular velocities (60 deg/s and 180 deg/s) and 5 maximal eccentric (ECC) KE/KF contractions at 60 deg/s were assessed 7 days apart. The intraclass correlation coefficient (ICC 2.1 ) was used to examine relative reliability, and the MD was calculated on the basis of standard error of measurement. ICCs for CON KE/KF peak torque measurements were fair to excellent (range, 0.49-0.81). The MD% values for CON KE and KF ranged from 31% to 37% at 60 deg/s and from 34% to 39% at 180 deg/s. ICCs in the ECC mode were good (range, 0.60-0.70), but associated MD% values were high (>50%). There was no systematic error for CON KE/KF and ECC KE strength measurements at 60 deg/s, but systematic error was found for all other measurements. The dynamometer provides a reliable analysis of isokinetic CON knee strength measurements at 60 deg/s in children aged 8 to 10 years. Measurements at 180 deg/s and in the ECC mode were not reliable, indicating a need for more familiarization prior to testing. The MD values may help clinicians to determine whether a change in knee strength is due to error or intervention.
Isokinetic strength testing does not predict hamstring injury in Australian Rules footballers
Bennell, K.; Wajswelner, H.; Lew, P.; Schall-Riaucour, A.; Leslie, S.; Plant, D.; Cirone, J.
1998-01-01
OBJECTIVE: To determine the relation of hamstring and quadriceps muscle strength and imbalance to hamstring injury using a prospective observational cohort study METHOD: A total of 102 senior male Australian Rules footballers aged 22.2 (3.6) years were tested at the start of a football season. Maximum voluntary concentric and eccentric torque of the hamstring and quadriceps muscles of both legs was assessed using a Kin-Com isokinetic dynamometer at angular velocities of 60 and 180 degre...
Tan, J; Balci, N; Sepici, V; Gener, F A
1995-01-01
Dynamic stability of the knee joint depends on the appropriate strength ratio of quadriceps and hamstring muscles. The purpose of this investigation was to determine the maximum peak torque (MPT) and MPT ratios of hamstrings to quadriceps (H/Q) muscles in patients with knee osteoarthritis (OA). Two groups of patients were included in the study. The first group consisted of 30 patients (Group A) with the clinical and radiologic findings of knee OA. The second group consisted of 30 patients (Group B) exhibiting knee joint pain without roentgenologic findings of knee OA. The findings of two patient groups were compared with each other and also with 30 healthy subjects (Group C). Isokinetic (at 60 degrees/s and at 180 degrees/s) and isometric (at 30 degrees and at 60 degrees of knee flexion) tests were performed by the rate-limiting isokinetic dynamometer system. Isokinetic and isometric MPT loss of knee flexors and extensors was found in both patient groups with respect to controls, but MPT ratios of H/Q muscles did not show a statistically significant difference compared with the control group. This may be related to the equal strength loss of knee flexors and knee extensors in patients with knee OA. It is concluded that strengthening exercises of hamstring muscles is as important as quadriceps strengthening in rehabilitation of knee OA.
Results and Conclusions from the NASA Isokinetic Total Water Content Probe 2009 IRT Test
Reehorst, Andrew; Brinker, David
2010-01-01
The NASA Glenn Research Center has developed and tested a Total Water Content Isokinetic Sampling Probe. Since, by its nature, it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument comprises the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Results and conclusions are presented from probe tests in the NASA Glenn Icing Research Tunnel (IRT) during January and February 2009. The use of reference probe heat and the control of air pressure in the water vapor measurement subsystem are discussed. Several run-time error sources were found to produce identifiable signatures that are presented and discussed. Some of the differences between measured Isokinetic Total Water Content Probe and IRT calibration seems to be caused by tunnel humidification and moisture/ice crystal blow around. Droplet size, airspeed, and liquid water content effects also appear to be present in the IRT calibration. Based upon test results, the authors provide recommendations for future Isokinetic Total Water Content Probe development.
Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.
Guilhem, G; Cornu, C; Guével, A
2010-06-01
To present the properties of an eccentric contraction and compare neuromuscular and muscle-tendon system adaptations induced by isotonic and isokinetic eccentric trainings. An eccentric muscle contraction is characterized by the production of muscle force associated to a lengthening of the muscle-tendon system. This muscle solicitation can cause micro lesions followed by a regeneration process of the muscle-tendon system. Eccentric exercise is commonly used in functional rehabilitation for its positive effect on collagen synthesis but also for resistance training to increase muscle strength and muscle mass in athletes. Indeed, eccentric training stimulates muscle hypertrophy, increases the fascicle pennation angle, fascicles length and neural activation, thus inducing greater strength gains than concentric or isometric training programs. Eccentric exercise is commonly performed either against a constant external load (isotonic) or at constant velocity (isokinetic), inducing different mechanical constraints. These different mechanical constraints could induce structural and neural adaptive strategies specific to each type of exercise. The literature tends to show that isotonic mode leads to a greater strength gain than isokinetic mode. This observation could be explained by a greater neuromuscular activation after IT training. However, the specific muscle adaptations induced by each mode remain difficult to determine due to the lack of standardized, comparative studies. 2010 Elsevier Masson SAS. All rights reserved.
Isokinetic analysis of ankle and ground reaction forces in runners and triathletes
Directory of Open Access Journals (Sweden)
Natália Mariana Silva Luna
2012-09-01
Full Text Available OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and nonathletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5 years were divided into three groups: a triathlete group (n=26, a long-distance runner group (n = 23, and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180º/s was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60º/s was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners.
International Nuclear Information System (INIS)
Nambu, Yohsuke; Takashima, Toshihide; Inagaki, Akiya
2015-01-01
This paper examines the effects of connecting multiplexing shunt circuits composed of inductors and resistors to piezoelectric transducers so as to improve the robustness of a piezoelectric vibration absorber (PVA). PVAs are well known to be effective at suppressing the vibration of an adaptive structure; their weakness is low robustness to changes in the dynamic parameters of the system, including the main structure and the absorber. In the application to space structures, the temperature-dependency of capacitance of piezoelectric ceramics is the factor that causes performance reduction. To improve robustness to the temperature-dependency of the capacitance, this paper proposes a multiple-PVA system that is composed of distributed piezoelectric transducers and several shunt circuits. The optimization problems that determine both the frequencies and the damping ratios of the PVAs are multi-objective problems, which are solved using a real-coded genetic algorithm in this paper. A clamped aluminum beam with four groups of piezoelectric ceramics attached was considered in simulations and experiments. Numerical simulations revealed that the PVA systems designed using the proposed method had tolerance to changes in the capacitances. Furthermore, experiments using a thermostatic bath were conducted to reveal the effectiveness and robustness of the PVA systems. The maximum peaks of the transfer functions of the beam with the open circuit, the single-PVA system, the double-PVA system, and the quadruple-PVA system at 20 °C were 14.3 dB, −6.91 dB, −7.47 dB, and −8.51 dB, respectively. The experimental results also showed that the multiple-PVA system is more robust than a single PVA in a variable temperature environment from −10 °C to 50 °C. In conclusion, the use of multiple PVAs results in an effective, robust vibration control method for adaptive structures. (paper)
International Nuclear Information System (INIS)
Sinitsyn, Nikolai A.; Kundu, Soumya; Backhaus, Scott
2013-01-01
Highlights: ► Algorithms to produce useful load response from a heterogeneous group of TCLs. ► Generation of sharp power pulses without initiating any unwanted oscillation. ► Open-loop methods, not requiring any detailed system modeling. ► One-way, utility-to-consumer, communication. ► Potential use in secondary frequency regulation, generation-load balancing, etc. - Abstract: We explore methods to use thermostatically controlled loads (TCLs), such as water heaters and air conditioners, to provide ancillary services by assisting in balancing generation and load. We show that by adding simple imbedded instructions and a small amount of memory to temperature controllers of TCLs, it is possible to design open-loop control algorithms capable of creating short-term pulses of demand response without unwanted power oscillations associated with temporary synchronization of the TCL dynamics. By moving a small amount of intelligence to each of the end point TCL devices, we are able to leverage our knowledge of the time dynamics of TCLs to shape the demand response pulses for different power system applications. A significant benefit of our open-loop method is the reduction from two-way to one-way broadcast communication which also eliminates many basic consumer privacy issues. In this work, we focus on developing the algorithms to generate a set of fundamental pulse shapes that can subsequently be used to create demand response with arbitrary profiles. Demand response control methods, such as the one developed here, open the door to fast, nonperturbative control of large aggregations of TCLs
Quantum Hamiltonian reduction and conformal field theories
International Nuclear Information System (INIS)
Bershadsky, M.
1991-01-01
It is proved that irreducible representation of the Virasoro algebra can be extracted from an irreducible representation space of the SL (2, R) current algebra by putting a constraint on the latter using the BRST formalism. Thus there is a SL(2, R) symmetry in the Virasoro algebra which is gauged and hidden. This construction of the Virasoro algebra is the quantum analog of the Hamiltonian reduction. The author then naturally leads to consider an SL(2, R) Wess-Zumino-Witten model. This system is related to the quantum field theory of the coadjoint orbit of the Virasoro group. Based on this result he presents the canonical derivation of the SL(2, R) current algebra in Polyakov's theory of two dimensional gravity; it is manifestation of the SL(2, R) symmetry in the conformal field theory hidden by the quantum Hamiltonian reduction. He discusses the quantum Hamiltonian reduction of the SL(n, R) current algebra for the general type of constraints labeled by index 1 ≤ l ≤ (n - 1) and claim that it leads to the new extended conformal algebras W n l . For l = 1 he recovers the well known W n algebra introduced by A. Zamolodchikov. For SL(3, R) Wess-Zumino-Witten model there are two different possibilities of constraining it. The first possibility gives the W 3 algebra, while the second leads to the new chiral algebra W 3 2 generated by the stress-energy tensor, two bosonic supercurrents with spins 3/2 and the U(1) current. He conjectures a Kac formula that describes the highly reducible representation for this algebra. He also makes some speculations concerning the structure of W gravity
Integrable Time-Dependent Quantum Hamiltonians
Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen
2018-05-01
We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.
Discrete variable representation for singular Hamiltonians
DEFF Research Database (Denmark)
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...... solely on an orthogonal polynomial basis is adequate, provided the Gauss-Lobatto or Gauss-Radau quadrature rule is used. This ensures that the mesh contains the singular points and by simply discarding the DVR functions corresponding to those points, all matrix elements become well behaved. the boundary...
Resonant driving of a nonlinear Hamiltonian system
International Nuclear Information System (INIS)
Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro
2013-01-01
As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.
Nonabelian N=2 superstrings: Hamiltonian structure
International Nuclear Information System (INIS)
Isaev, A.P.; Ivanov, E.A.
1991-04-01
We examine the Hamiltonian structure of nonabelian N=2 superstring models which are the supergroup manifold extensions of N=2 Green-Schwarz superstring. We find the Kac-Moody and Virasoro type superalgebras of the relevant constraints and present elements of the corresponding quantum theory. A comparison with the type IIA Green-Schwarz superstring moving in a general curved 10-d supergravity background is also given. We find that nonabelian superstrings (for d=10) present a particular case of this general system corresponding to a special choice of the background. (author). 22 refs
Effective Hamiltonians for phosphorene and silicene
DEFF Research Database (Denmark)
Voon, L. C. Lew Yan; Lopez-Bezanilla, A.; Wang, J.
2015-01-01
We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field andmagnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (NewJ. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene.......For phosphorene, it is shown that the bands near the Brillouin zone center only have terms ineven powers of the wave vector. We predict that the energies change quadratically in the presence of aperpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to thosefor silicene...
Hamiltonian Description of Convective-cell Generation
International Nuclear Information System (INIS)
Krommes, J.A.; Kolesnikov, R.A.
2004-01-01
The nonlinear statistical growth rate eq for convective cells driven by drift-wave (DW) interactions is studied with the aid of a covariant Hamiltonian formalism for the gyrofluid nonlinearities. A statistical energy theorem is proven that relates eq to a second functional tensor derivative of the DW energy. This generalizes to a wide class of systems of coupled partial differential equations a previous result for scalar dynamics. Applications to (i) electrostatic ion-temperature-gradient-driven modes at small ion temperature, and (ii) weakly electromagnetic collisional DW's are noted
Eigenfunctions of quadratic hamiltonians in Wigner representation
International Nuclear Information System (INIS)
Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.
1984-01-01
Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail
Action-minimizing methods in Hamiltonian dynamics
Sorrentino, Alfonso
2015-01-01
John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach-known as Aubry-Mather theory-singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as a
A new perturbative treatment of pentadiagonal Hamiltonians
International Nuclear Information System (INIS)
Znojil, M.
1987-01-01
A new formulation of the Rayleich - Schroedinger perturbation theory is proposed. It is inspired by a recurent construction of propagators, and its main idea lies in a replacement of the auxiliary matrix elements (generalized continued fractions) by their non-numerical approximants. In a test of convergence (the anharmonic oscillator), the asymptotic fixed-point approximation scheme is used. The results indicate a good applicability of this fixed-point version of our formalism to systems with a band-matrix structure of the Hamiltonian
Effective hamiltonian within the microscopic unitary nuclear model
International Nuclear Information System (INIS)
Avramenko, V.I.; Blokhin, A.L.
1989-01-01
Within the microscopic version of the unitary collective model with the horizontal mixing the effective Hamiltonian for 18 O and 18 Ne nuclei is constructed. The algebraic structure of the Hamiltonian is compared to the familiar phenomenological ones with the SU(3)-mixing terms which describe the coupled rotational and vibrational spectra. The Hamiltonian, including central nuclear and Coulomb interaction, is diagonalized on the basis of three SU(3) irreducible representations with two orbital symmetries. 32 refs.; 2 figs.; 4 tabs
A Hamiltonian functional for the linearized Einstein vacuum field equations
International Nuclear Information System (INIS)
Rosas-RodrIguez, R
2005-01-01
By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained
Introduction to thermodynamics of spin models in the Hamiltonian limit
Energy Technology Data Exchange (ETDEWEB)
Berche, Bertrand [Groupe M, Laboratoire de Physique des Materiaux, UMR CNRS No 7556, Universite Henri Poincare, Nancy 1, BP 239, F-54506 Vandoeuvre les Nancy, (France); Lopez, Alexander [Instituto Venezolano de Investigaciones CientIficas, Centro de Fisica, Carr. Panamericana, km 11, Altos de Pipe, Aptdo 21827, 1020-A Caracas, (Venezuela)
2006-01-01
A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices. The targeted students are those of a graduate statistical physics course.
Hamiltonian structure of the Lotka-Volterra equations
Nutku, Y.
1990-03-01
The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.
Hamiltonian structures of some non-linear evolution equations
International Nuclear Information System (INIS)
Tu, G.Z.
1983-06-01
The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)
Geometry and Hamiltonian mechanics on discrete spaces
International Nuclear Information System (INIS)
Talasila, V; Clemente-Gallardo, J; Schaft, A J van der
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a 'smooth' model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure-in doing so we try to bring together various fundamental concepts from numerical analysis, differential geometry, algebraic geometry, simplicial homology and classical Hamiltonian mechanics. For example, the concept of a twisted derivation is borrowed from algebraic geometry for developing a discrete calculus. The theory is applied to a nonlinear pendulum and we compare the dynamics obtained through a discrete modelling approach with the dynamics obtained via the usual discretization procedures. Also an example of an energy-conserving algorithm on a simple harmonic oscillator is presented, and its effect on the Poisson structure is discussed
Thermalization Time Bounds for Pauli Stabilizer Hamiltonians
Temme, Kristan
2017-03-01
We prove a general lower bound to the spectral gap of the Davies generator for Hamiltonians that can be written as the sum of commuting Pauli operators. These Hamiltonians, defined on the Hilbert space of N-qubits, serve as one of the most frequently considered candidates for a self-correcting quantum memory. A spectral gap bound on the Davies generator establishes an upper limit on the life time of such a quantum memory and can be used to estimate the time until the system relaxes to thermal equilibrium when brought into contact with a thermal heat bath. The bound can be shown to behave as {λ ≥ O(N^{-1} exp(-2β overline{ɛ}))}, where {overline{ɛ}} is a generalization of the well known energy barrier for logical operators. Particularly in the low temperature regime we expect this bound to provide the correct asymptotic scaling of the gap with the system size up to a factor of N -1. Furthermore, we discuss conditions and provide scenarios where this factor can be removed and a constant lower bound can be proven.
Normal form for mirror machine Hamiltonians
International Nuclear Information System (INIS)
Dragt, A.J.; Finn, J.M.
1979-01-01
A systematic algorithm is developed for performing canonical transformations on Hamiltonians which govern particle motion in magnetic mirror machines. These transformations are performed in such a way that the new Hamiltonian has a particularly simple normal form. From this form it is possible to compute analytic expressions for gyro and bounce frequencies. In addition, it is possible to obtain arbitrarily high order terms in the adiabatic magnetic moment expansion. The algorithm makes use of Lie series, is an extension of Birkhoff's normal form method, and has been explicitly implemented by a digital computer programmed to perform the required algebraic manipulations. Application is made to particle motion in a magnetic dipole field and to a simple mirror system. Bounce frequencies and locations of periodic orbits are obtained and compared with numerical computations. Both mirror systems are shown to be insoluble, i.e., trajectories are not confined to analytic hypersurfaces, there is no analytic third integral of motion, and the adiabatic magnetic moment expansion is divergent. It is expected also that the normal form procedure will prove useful in the study of island structure and separatrices associated with periodic orbits, and should facilitate studies of breakdown of adiabaticity and the onset of ''stochastic'' behavior
Nonextensive formalism and continuous Hamiltonian systems
International Nuclear Information System (INIS)
Boon, Jean Pierre; Lutsko, James F.
2011-01-01
A recurring question in nonequilibrium statistical mechanics is what deviation from standard statistical mechanics gives rise to non-Boltzmann behavior and to nonlinear response, which amounts to identifying the emergence of 'statistics from dynamics' in systems out of equilibrium. Among several possible analytical developments which have been proposed, the idea of nonextensive statistics introduced by Tsallis about 20 years ago was to develop a statistical mechanical theory for systems out of equilibrium where the Boltzmann distribution no longer holds, and to generalize the Boltzmann entropy by a more general function S q while maintaining the formalism of thermodynamics. From a phenomenological viewpoint, nonextensive statistics appeared to be of interest because maximization of the generalized entropy S q yields the q-exponential distribution which has been successfully used to describe distributions observed in a large class of phenomena, in particular power law distributions for q>1. Here we re-examine the validity of the nonextensive formalism for continuous Hamiltonian systems. In particular we consider the q-ideal gas, a model system of quasi-particles where the effect of the interactions are included in the particle properties. On the basis of exact results for the q-ideal gas, we find that the theory is restricted to the range q<1, which raises the question of its formal validity range for continuous Hamiltonian systems.
Hamiltonian Anomalies from Extended Field Theories
Monnier, Samuel
2015-09-01
We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.
Effective Hamiltonians for phosphorene and silicene
International Nuclear Information System (INIS)
Lew Yan Voon, L C; Lopez-Bezanilla, A; Wang, J; Zhang, Y; Willatzen, M
2015-01-01
We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field and magnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (New J. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene. Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expression for band warping is obtained analytically and found to be of different order than for graphene. We prove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature. For phosphorene, it is shown that the bands near the Brillouin zone center only have terms in even powers of the wave vector. We predict that the energies change quadratically in the presence of a perpendicular external electric field but linearly in a perpendicular magnetic field, as opposed to those for silicene which vary linearly in both cases. Preliminary ab initio calculations for the intrinsic band structures have been carried out in order to evaluate some of the k⋅p parameters. (paper)
Phase space eigenfunctions of multidimensional quadratic Hamiltonians
International Nuclear Information System (INIS)
Dodonov, V.V.; Man'ko, V.I.
1986-01-01
We obtain the explicit expressions for phace space eigenfunctions (PSE),i.e. Weyl's symbols of dyadic operators like vertical stroken> ,vertical strokem>, being the solution of the Schroedinger equation with the Hamiltonian which is a quite arbitrary multidimensional quadratic form of the operators of Cartesian coordinates and conjugated to them momenta with time-dependent coefficients. It is shown that for an arbitrary quadratic Hamiltonian one can always construct the set of completely factorized PSE which are products of N factors, each factor being dependent only on two arguments for nnot=m and on a single argument for n=m. These arguments are nothing but constants of motion of the correspondent classical system. PSE are expressed in terms of the associated Laguerre polynomials in the case of a discrete spectrum and in terms of the Airy functions in the continuous spectrum case. Three examples are considered: a harmonic oscillator with a time-dependent frequency, a charged particle in a nonstationary uniform magnetic field, and a particle in a time-dependent uniform potential field. (orig.)
Diffeomorphism invariance in the Hamiltonian formulation of General Relativity
International Nuclear Information System (INIS)
Kiriushcheva, N.; Kuzmin, S.V.; Racknor, C.; Valluri, S.R.
2008-01-01
It is shown that when the Einstein-Hilbert Lagrangian is considered without any non-covariant modifications or change of variables, its Hamiltonian formulation leads to results consistent with principles of General Relativity. The first-class constraints of such a Hamiltonian formulation, with the metric tensor taken as a canonical variable, allow one to derive the generator of gauge transformations, which directly leads to diffeomorphism invariance. The given Hamiltonian formulation preserves general covariance of the transformations derivable from it. This characteristic should be used as the crucial consistency requirement that must be met by any Hamiltonian formulation of General Relativity
Matchings Extend to Hamiltonian Cycles in 5-Cube
Directory of Open Access Journals (Sweden)
Wang Fan
2018-02-01
Full Text Available Ruskey and Savage asked the following question: Does every matching in a hypercube Qn for n ≥ 2 extend to a Hamiltonian cycle of Qn? Fink confirmed that every perfect matching can be extended to a Hamiltonian cycle of Qn, thus solved Kreweras’ conjecture. Also, Fink pointed out that every matching can be extended to a Hamiltonian cycle of Qn for n ∈ {2, 3, 4}. In this paper, we prove that every matching in Q5 can be extended to a Hamiltonian cycle of Q5.
Squeezed states from a quantum deformed oscillator Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Ramírez, R. [IFLP, CONICET–Department of Mathematics, University of La Plata c.c. 67 1900, La Plata (Argentina); Reboiro, M., E-mail: marta.reboiro@gmail.com [IFLP, CONICET–Department of Physics, University of La Plata c.c. 67 1900, La Plata (Argentina)
2016-03-11
The spectrum and the time evolution of a system, which is modeled by a non-hermitian quantum deformed oscillator Hamiltonian, is analyzed. The proposed Hamiltonian is constructed from a non-standard realization of the algebra of Heisenberg. We show that, for certain values of the coupling constants and for a range of values of the deformation parameter, the deformed Hamiltonian is a pseudo-hermitic Hamiltonian. We explore the conditions under which the Hamiltonian is similar to a Swanson Hamiltonian. Also, we show that the lowest eigenstate of the system is a squeezed state. We study the time evolution of the system, for different initial states, by computing the corresponding Wigner functions. - Highlights: • A generalization of the squeezed harmonic oscillator is constructed from a non-standard realization of the Heisenberg algebra. • It is proved that, for certain values of the parameters of the model, the Hamiltonian is a pseudo-hermitian Hamiltonian. • It is shown that the lowest eigenstate of the Hamiltonian is a squeezed state. • The squeezing behavior of the associated Gazeau–Klauder state, as a function of time, is discussed.
Spectral and resonance properties of the Smilansky Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Exner, Pavel [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Doppler Institute for Mathematical Physics and Applied Mathematics, Czech Technical University, Břehová 7, 11519 Prague (Czech Republic); Lotoreichik, Vladimir [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic); Tater, Miloš, E-mail: tater@ujf.cas.cz [Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež near Prague (Czech Republic)
2017-02-26
We analyze the Hamiltonian proposed by Smilansky to describe irreversible dynamics in quantum graphs and studied further by Solomyak and others. We derive a weak-coupling asymptotics of the ground state and add new insights by finding the discrete spectrum numerically in the subcritical case. Furthermore, we show that the model then has a rich resonance structure. - Highlights: • We derive conditions on bound states and on resonances of the Smilansky Hamiltonian. • Using these conditions we find numerically discrete spectrum and resonances of this Hamiltonian. • Our numerical tests confirm known properties of the Hamiltonian and allow us to conjecture new ones.
A Hamiltonian approach to model and analyse networks of ...
Indian Academy of Sciences (India)
2015-09-24
Sep 24, 2015 ... Gyroscopes; energy harvesters; synchronization; Hamiltonian mechanics. ... ideas and methods from nonlinear dynamics system theory, in particular, ... deploy highly sensitive, lowpower, magnetic and electric field sensors.
Gaudet, Sylvain; Tremblay, Jonathan; Begon, Mickael
2018-05-01
The aims of this study were to investigate the differences in peak muscle activity and recruitment patterns during high- and low-velocity, concentric and eccentric, internal and external isokinetic shoulder rotations. Electromyographic activity of the rotator cuff and eight superficial muscles of the shoulder girdle was recorded on 25 healthy adults during isokinetic internal and external shoulder rotation at 60°/s and 240°/s. Peak muscle activity, electromyographic envelopes and peak isokinetic moments were analyzed using three-factor ANOVA and statistical parametric mapping. The subscapularis and serratus anterior showed moderate to high peak activity levels during each conditions, while the middle and posterior deltoids, upper, middle and lower trapezius, infraspinatus and supraspinatus showed higher peak activity levels during external rotations (+36.5% of maximum voluntary activation (MVA)). The pectoralis major and latissimus dorsi were more active during internal rotations (+40% of MVA). Only middle trapezius and pectoralis major electromyographic activity decreased with increasing velocity. Peak muscle activity was similar or lower during eccentric contractions, although the peak isokinetic moment increased by 35% on average. The subscapularis and serratus anterior appear to be important stabilizers of the glenohumeral joint and scapula. Isokinetic eccentric training at high velocities may allow for faster recruitment of the shoulder girdle muscles, which could improve joint stability during shoulder internal and external rotations.
Energy Technology Data Exchange (ETDEWEB)
2016-02-01
Modern, energy-efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.
Desnica Bakrac, N
2003-03-01
To assess quantitatively dynamics and extent of the increase in muscle strength during isokinetic rehabilitation. daily measurements of muscle strength; detailed testing at the beginning and at the end of rehabilitation. Cybex Rehabilitation Center, Zagreb. 44 athletes (31 m, 13 F, age 16-35), 3 injury-defined groups: athletes with ACL rupture (non-reconstructed and reconstructed) and chondromalacia patellae. all subjects underwent isokinetic rehabilitation on Cybex Orthotron KT2 device, using individually designed protocols (extension and flexion exercises, concentric muscle contractions, 15 treatments). monitoring of daily progress on rehabilitation device and detailed testing on diagnostic device. All patients showed considerable improvement. Muscle strength improved on average 141% (SD=110) in ACL-reconstructed group, 144% (SD=130) for chondromalacia patellae group and 150% (SD=74) for ACL-non-reconstructed group, comparing to initial strength. Dynamic status tested on Cybex Otrhotron diagnostic device prior and after rehabilitation strongly correlated with final progress monitored on the rehabilitation device. Isokinetic rehabilitation is a quick and effective method in treating knee injuries in athletes. Both types of objective criteria have shown significant increase in muscle strength. The improvement of muscle strength was on the average 149% (SD=101), which is about 10% daily for 15 treatments. The greatest progress, 19% per day, occurred during first five days. The athletes were able to resume their sport activities as follows: patients from chondromalacia patellae group, and most of them from the non-reconstructed ACL group were back in competition within a month, while 75% from the ACL reconstructed group came back within 3 months, and the rest of them within 5 months.
Shoulder isokinetic profile of male handball players of the Brazilian National Team
Andrade, Marília S.; Vancini, Rodrigo L.; de Lira, Claudio A. B.; Mascarin, Naryana C.; Fachina, Rafael J. F. G.; da Silva, Antonio C.
2013-01-01
Background Data obtained on an isokinetic dynamometer are useful to characterize muscle status and have been reported in muscle imbalance studies in different types of sport. However, few studies have assessed elite handball players to establish reference values. Objective The purpose of this study was to compare, for the dominant (D) and non-dominant (ND) side, the isokinetic profile of shoulder rotator muscle strength between male handball players (H) and asymptomatic non-athletes (NA). Method Isokinetic concentric and eccentric strength tests for D upper limbs were performed by the H group (n=20) and the NA group (n=12). Internal and external rotator muscle peak torque in concentric action was assessed at 60°/s and 300°/s and in eccentric action at 300°/s. We also calculated conventional balance (the ratio of external rotator peak torque to internal rotator peak torque in concentric action) and functional balance (the ratio of external rotator peak torque in eccentric action to internal rotator peak torque in concentric action). Results In the H group, dominant limbs were stronger in concentric action for external rotation at 60 and 300°/s. The conventional balance ratio for the D side was significantly lower at 60 and 300°/s for H compared to NA. The functional ratio for the D side was significantly lower at 300º/s for H compared to NA. Conclusions Compared to asymptomatic non-athletes, handball players presented significant muscular imbalance resulting from daily sports practice, a known risk factor for shoulder injuries. PMID:24271090
Isokinetic strength of shoulder internal and external rotators in cricket bowlers
Directory of Open Access Journals (Sweden)
X.M. Mabasa
2002-02-01
Full Text Available The strength of the shoulder internal and external rotators incricket bowlers, may not be sufficient to cope with the demands of bowling.As very little research has been done on cricketers, this study was done to establish the isokinetic strength profile of the shoulder internal andexternal rotators in cricket bowlers.Isokinetic, shoulder rotational strength was evaluated in thirty malecricket volunteers with a mean age of 23.9 years and mean body weight of 70.3 kgs. The Cybex 340 dynamometer multi joint system was used to collect data on shoulder rotation strength in a standing neutral position. Data were collected at four different speeds (60,90,180 and 300deg/sec and were computed for peak torque values for internal and external ratios for both dominant and non dominant shoulders.The results showed no statistically significant difference in the mean shoulder rotational torque between the bowlingand non-bowling shoulders for external rotation (p>0.05, and indicated statistically significant differences in themean shoulder rotational torque between the bowling and non-bowling shoulders for internal rotation (p<0.05. Therewas a significant decrease in isokinetic peak torque production for the external/internal rotator muscles as the speedof contraction increased (p<0.05. The peak torque ratio for the external/internal rotator muscles of the bowling armwere significantly less than of the non-bowling arm (p<0.05. These findings suggest that the strength ratios of thebowling arm need to be considered when managing young cricketers and their injuries.
Energy Technology Data Exchange (ETDEWEB)
Anon.
2008-04-15
Fifty percent of all installed thermostat valves are assumed to be lacking in energy efficiency, according to the ''Optimus'' research report. Industry has reacted to this by developing a ThermostatCheck, which can be accessed in the internet by builder-owners and fitters. (orig.)
Isokinetic strength effects of FIFA'a "The 11+" injury prevention training programme
DEFF Research Database (Denmark)
Brito, João; Figueiredo, Pedro; Fernandes, Luís
2010-01-01
The purpose of this study was to evaluate whether FIFA's Medical Assessment and Research Centre (F-MARC) injury prevention programme, "The 11+", improves isokinetic strength of the knee extensor and flexor muscles in sub-elite soccer players. Twenty players aged 22.3 ± 4.2 yr performed "The 11+" 3...... significantly improved the conventional H/Q ratio at 60°/s by 14.8{\\%} and the DCR by 13.8% in the non-dominant limb (pknee joint....
Isokinetic muscle performance of the hip and ankle muscles in women with fibromyalgia.
Yetişgin, Alparslan; Tiftik, Tülay; Kara, Murat; Karabay, İlkay; Akkuş, Selami; Ersöz, Murat
2016-06-01
To compare isokinetic muscle performances of a proximal (hip) and a distal (ankle) muscle of fibromyalgia syndrome (FMS) patients with those of age- and body mass index (BMI)-matched healthy subjects. Thirty female patients with FMS (mean age: 41.5 ± 6.7 years [range, 27-54]) and 30 age- (mean age: 40.6 ± 6.0 years [range, 27-54]) and BMI-matched female healthy controls were consecutively enrolled. Demographic and clinical characteristics of the subjects were recorded. Isokinetic measurements of hip and ankle flexion and extension at angular velocities of 60°/s and 180°/s, peak torques, flexor-extensor torque ratios, muscle fatigue resistance values and average power were obtained. Mean disease duration of FMS patients was 2.4 ± 1.9 years. Mean weight, height and BMI values were 70.4 ± 12.5 kg, 159.5 ± 6.0 cm and 27.7 ± 4.7 kg/m² (FMS patients) and 69.3 ± 10.1 kg, 161.7 ± 6.2 cm and 26.6 ± 4.3 kg/m² (control subjects), respectively (all P > 0.05). All isokinetic values were statistically decreased in the FMS group when compared with the control group, except for the peak torques at angular velocity of 180°/s on flexion of the hip and extension of the ankle and the total work and average power on extension of the ankle. We did not find any correlation between isokinetic values and disease related parameters of FMS patients. In the light of our results, we may conclude that muscle strength and muscle fatigue seem to decrease in FMS patients' both proximal and distal lower extremity muscles. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
Geometric solitons of Hamiltonian flows on manifolds
Energy Technology Data Exchange (ETDEWEB)
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Hamiltonian indices and rational spectral densities
Byrnes, C. I.; Duncan, T. E.
1980-01-01
Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.
Betatron coupling: Merging Hamiltonian and matrix approaches
Directory of Open Access Journals (Sweden)
R. Calaga
2005-03-01
Full Text Available Betatron coupling is usually analyzed using either matrix formalism or Hamiltonian perturbation theory. The latter is less exact but provides a better physical insight. In this paper direct relations are derived between the two formalisms. This makes it possible to interpret the matrix approach in terms of resonances, as well as use results of both formalisms indistinctly. An approach to measure the complete coupling matrix and its determinant from turn-by-turn data is presented. Simulations using methodical accelerator design MAD-X, an accelerator design and tracking program, were performed to validate the relations and understand the scope of their application to real accelerators such as the Relativistic Heavy Ion Collider.
A Hamiltonian five-field gyrofluid model
Energy Technology Data Exchange (ETDEWEB)
Keramidas Charidakos, I.; Waelbroeck, F. L.; Morrison, P. J. [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, TX 78712 (United States)
2015-11-15
A Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of the electron and ion gyro-center densities, the parallel component of the ion and electron velocities, and the ion temperature. The quasineutrality property and Ampère's law determine, respectively, the electrostatic potential and magnetic flux. The Casimir invariants are presented, and shown to be associated with five Lagrangian invariants advected by distinct velocity fields. A linear, local study of the model is conducted both with and without Landau and diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic models.
Hamiltonian circuited simulations in reactor physics
International Nuclear Information System (INIS)
Rio Hirowati Shariffudin
2002-01-01
In the assessment of suitability of reactor designs and in the investigations into reactor safety, the steady state of a nuclear reactor has to be studied carefully. The analysis can be done through mockup designs but this approach costs a lot of money and consumes a lot of time. A less expensive approach is via simulations where the reactor and its neutron interactions are modelled mathematically. Finite difference discretization of the diffusion operator has been used to approximate the steady state multigroup neutron diffusion equations. The steps include the outer scheme which estimates the resulting right hand side of the matrix equation, the group scheme which calculates the upscatter problem and the inner scheme which solves for the flux for a particular group. The Hamiltonian circuited simulations for the inner iterations of the said neutron diffusion equation enable the effective use of parallel computing, especially where the solutions of multigroup neutron diffusion equations involving two or more space dimensions are required. (Author)
Hamiltonian inclusive fitness: a fitter fitness concept.
Costa, James T
2013-01-01
In 1963-1964 W. D. Hamilton introduced the concept of inclusive fitness, the only significant elaboration of Darwinian fitness since the nineteenth century. I discuss the origin of the modern fitness concept, providing context for Hamilton's discovery of inclusive fitness in relation to the puzzle of altruism. While fitness conceptually originates with Darwin, the term itself stems from Spencer and crystallized quantitatively in the early twentieth century. Hamiltonian inclusive fitness, with Price's reformulation, provided the solution to Darwin's 'special difficulty'-the evolution of caste polymorphism and sterility in social insects. Hamilton further explored the roles of inclusive fitness and reciprocation to tackle Darwin's other difficulty, the evolution of human altruism. The heuristically powerful inclusive fitness concept ramified over the past 50 years: the number and diversity of 'offspring ideas' that it has engendered render it a fitter fitness concept, one that Darwin would have appreciated.
Renormalized semiclassical quantization for rescalable Hamiltonians
International Nuclear Information System (INIS)
Takahashi, Satoshi; Takatsuka, Kazuo
2004-01-01
A renormalized semiclassical quantization method for rescalable Hamiltonians is proposed. A classical Hamilton system having a potential function that consists of homogeneous polynomials like the Coulombic potential can have a scale invariance in its extended phase space (phase space plus time). Consequently, infinitely many copies of a single trajectory constitute a one-parameter family that is characterized in terms of a scaling factor. This scaling invariance in classical dynamics is lost in quantum mechanics due to the presence of the Planck constant. It is shown that in a system whose classical motions have a self-similarity in the above sense, classical trajectories adopted in the semiclassical scheme interact with infinitely many copies of their own that are reproduced by the relevant scaling procedure, thereby undergoing quantum interference among themselves to produce a quantized spectrum
Effective hamiltonian calculations using incomplete model spaces
International Nuclear Information System (INIS)
Koch, S.; Mukherjee, D.
1987-01-01
It appears that the danger of encountering ''intruder states'' is substantially reduced if an effective hamiltonian formalism is developed for incomplete model spaces (IMS). In a Fock-space approach, the proof a ''connected diagram theorem'' is fairly straightforward with exponential-type of ansatze for the wave-operator W, provided the normalization chosen for W is separable. Operationally, one just needs a suitable categorization of the Fock-space operators into ''diagonal'' and ''non-diagonal'' parts that is generalization of the corresponding procedure for the complete model space. The formalism is applied to prototypical 2-electron systems. The calculations have been performed on the Cyber 205 super-computer. The authors paid special attention to an efficient vectorization for the construction and solution of the resulting coupled non-linear equations
Non-self-adjoint hamiltonians defined by Riesz bases
Energy Technology Data Exchange (ETDEWEB)
Bagarello, F., E-mail: fabio.bagarello@unipa.it [Dipartimento di Energia, Ingegneria dell' Informazione e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, Italy and INFN, Università di Torino, Torino (Italy); Inoue, A., E-mail: a-inoue@fukuoka-u.ac.jp [Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180 (Japan); Trapani, C., E-mail: camillo.trapani@unipa.it [Dipartimento di Matematica e Informatica, Università di Palermo, I-90123 Palermo (Italy)
2014-03-15
We discuss some features of non-self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that the eigenvectors form a Riesz basis of Hilbert space. Among other things, we give conditions under which these Hamiltonians can be factorized in terms of generalized lowering and raising operators.
The Group of Hamiltonian Automorphisms of a Star Product
Energy Technology Data Exchange (ETDEWEB)
La Fuente-Gravy, Laurent, E-mail: lfuente@ulg.ac.be [Université de Liège, Département de Mathématique (Belgium)
2016-09-15
We deform the group of Hamiltonian diffeomorphisms into a group of Hamiltonian automorphisms, Ham(M,∗), of a formal star product ∗ on a symplectic manifold (M,ω). We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.
Hamiltonian formulation for the Martin-Taylor model
International Nuclear Information System (INIS)
Vasconcelos, D.B.; Viana, R.L.
1993-01-01
Locally stochastic layer and its optimization are studied. In order to accomplish this task, it is employed a Hamiltonian formulation of magnetic field line flow with a subsequent application of Escande-Doveil renormalization method which have been extensively used to obtain accurate estimates of stochasticity thresholds in systems exhibiting Hamiltonian chaos. (author)
Formulation of Hamiltonian mechanics with even and odd Poisson brackets
International Nuclear Information System (INIS)
Khudaverdyan, O.M.; Nersesyan, A.P.
1987-01-01
A possibility is studied as to constrict the odd Poisson bracket and odd Hamiltonian by the given dynamics in phase superspace - the even Poisson bracket and even Hamiltonian so the transition to the new structure does not change the equations of motion. 9 refs
Effective Hamiltonian within the microscopic unitary nuclear model
International Nuclear Information System (INIS)
Filippov, G.F.; Blokhin, A.L.
1989-01-01
A technique of projecting the microscopic nuclear Hamiltonian on the SU(3)-group enveloping algebra is developed. The approach proposed is based on the effective Hamiltonian restored from the matrix elements between the coherent states of the SU(3) irreducible representations. The technique is displayed for almost magic nuclei within the mixed representation basis, and for arbitrary nuclei within the single representation. 40 refs
Classical and quantum mechanics of complex Hamiltonian systems ...
Indian Academy of Sciences (India)
Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.
Local Hamiltonians for maximally multipartite-entangled states
Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.
2010-10-01
We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.
Local Hamiltonians for maximally multipartite-entangled states
International Nuclear Information System (INIS)
Facchi, P.; Florio, G.; Pascazio, S.; Pepe, F.
2010-01-01
We study the conditions for obtaining maximally multipartite-entangled states (MMESs) as nondegenerate eigenstates of Hamiltonians that involve only short-range interactions. We investigate small-size systems (with a number of qubits ranging from 3 to 5) and show some example Hamiltonians with MMESs as eigenstates.
Modelling chaotic Hamiltonian systems as a Markov Chain ...
African Journals Online (AJOL)
The behaviour of chaotic Hamiltonian system has been characterised qualitatively in recent times by its appearance on the Poincaré section and quantitatively by the Lyapunov exponent. Studying the dynamics of the two chaotic Hamiltonian systems: the Henon-Heiles system and non-linearly coupled oscillators as their ...
On the physical applications of hyper-Hamiltonian dynamics
International Nuclear Information System (INIS)
Gaeta, Giuseppe; Rodriguez, Miguel A
2008-01-01
An extension of Hamiltonian dynamics, defined on hyper-Kahler manifolds ('hyper-Hamiltonian dynamics') and sharing many of the attractive features of standard Hamiltonian dynamics, was introduced in previous work. In this paper, we discuss applications of the theory to physically interesting cases, dealing with the dynamics of particles with spin 1/2 in a magnetic field, i.e. the Pauli and the Dirac equations. While the free Pauli equation corresponds to a hyper-Hamiltonian flow, it turns out that the hyper-Hamiltonian description of the Dirac equation, and of the full Pauli one, is in terms of two commuting hyper-Hamiltonian flows. In this framework one can use a factorization principle discussed here (which is a special case of a general phenomenon studied by Walcher) and provide an explicit description of the resulting flow. On the other hand, by applying the familiar Foldy-Wouthuysen and Cini-Tousheck transformations (and the one recently introduced by Mulligan) which separate-in suitable limits-the Dirac equation into two equations, each of these turn out to be described by a single hyper-Hamiltonian flow. Thus the hyper-Hamiltonian construction is able to describe the fundamental dynamics for particles with spin
The Group of Hamiltonian Automorphisms of a Star Product
International Nuclear Information System (INIS)
La Fuente-Gravy, Laurent
2016-01-01
We deform the group of Hamiltonian diffeomorphisms into a group of Hamiltonian automorphisms, Ham(M,∗), of a formal star product ∗ on a symplectic manifold (M,ω). We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.
Hamiltonian reduction of SU(2) Yang-Mills field theory
International Nuclear Information System (INIS)
Khvedelidze, A.M.; Pavel, H.-P.
1998-01-01
The unconstrained system equivalent to SU (2) Yang-Mills field theory is obtained in the framework of the generalized Hamiltonian formalism using the method of Hamiltonian reduction. The reduced system is expressed in terms of fields with 'nonrelativistic' spin-0 and spin-2
An effective Hamiltonian approach to quantum random walk
Indian Academy of Sciences (India)
2017-02-09
Feb 9, 2017 ... Abstract. In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamil- tonians are generators of time translations. Then an attempt has been made to ...
Model reduction of port-Hamiltonian systems as structured systems
Polyuga, R.V.; Schaft, van der A.J.
2010-01-01
The goal of this work is to demonstrate that a specific projection-based model reduction method, which provides an H2 error bound, turns out to be applicable to port-Hamiltonian systems, preserving the port-Hamiltonian structure for the reduced order model, and, as a consequence, passivity.
Port Hamiltonian Formulation of Infinite Dimensional Systems I. Modeling
Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio
2004-01-01
In this paper, some new results concerning the modeling of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-variable case.
Port-Hamiltonian approaches to motion generation for mechanical systems
Sakai, Satoru; Stramigioli, Stefano
This paper gives new motion generation methods for mechanical port-Hamiltonian systems. First, we propose a generation method based on an asymptotic stabilization method without damping assignment. This asymptotic stabilization method preserves the Hamiltonian structure in the closed-loop system
Structure preserving port-Hamiltonian model reduction of electrical circuits
Polyuga, R.; Schaft, van der A.J.; Benner, P.; Hinze, M.; Maten, ter E.J.W.
2011-01-01
This paper discusses model reduction of electrical circuits based on a port-Hamiltonian representation. It is shown that by the use of the Kalman decomposition an uncontrollable and/or unobservable port-Hamiltonian system is reduced to a controllable/observable system that inherits the
Residual gauge invariance of Hamiltonian lattice gauge theories
International Nuclear Information System (INIS)
Ryang, S.; Saito, T.; Shigemoto, K.
1984-01-01
The time-independent residual gauge invariance of Hamiltonian lattice gauge theories is considered. Eigenvalues and eigenfunctions of the unperturbed Hamiltonian are found in terms of Gegengauer's polynomials. Physical states which satisfy the subsidiary condition corresponding to Gauss' law are constructed systematically. (orig.)
Vanouni, Maziar
The notion of demand-side participation in power systems operation and control is on the verge of realization because of the advancement in the required technologies an tools like communications, smart meters, sensor networks, large data management techniques, large scale optimization method, etc. Therefore, demand-response (DR) programs can be one of the prosperous solutions to accommodate part of the increasing demand for load balancing services which is brought about by the high penetration of intermittent renewable energies in power systems. This dissertation studies different aspects of the DR programs that utilized the thermostatically controlled loads (TCLs) to provide load balancing services. The importance of TCLs among the other loads lie on their flexibility in power consumption pattern while the customer/end-user comfort is not (or minimally) impacted. Chapter 2 discussed a previously presented direct load control (DLC) to control the power consumption of aggregated TCLs. The DLC method performs a power tracking control and based on central approach where a central controller broadcasts the control command to the dispersed TCLs to toggle them on/off. The central controller receives measurement feedback from the TCLs once per couple of minutes to run a successful forecast process. The performance evaluation criteria to evaluate the load balancing service provided by the TCLs are presented. The results are discussed under different scenarios and situation. The numerical results show the proper performance of the DLC method. This DLC method is used as the control method in all the studies in this dissertation. Chapter 3 presents performance improvements for the original method in Chapter 2 by communicating two more pieces of information called forecast parameters (FPs). Communicating improves the forecast process in the DLC and hence, both performance accuracy and the amount of tear-and-wear imposed on the TCLs. Chapter 4 formulates a stochastic
Sattler, Tine; Sekulic, Damir; Spasic, Miodrag; Osmankac, Nedzad; Vicente João, Paulo; Dervisevic, Edvin; Hadzic, Vedran
2016-01-01
Previous investigations noted potential importance of isokinetic strength in rapid muscular performances, such as jumping. This study aimed to identify the influence of isokinetic-knee-strength on specific jumping performance in volleyball. The secondary aim of the study was to evaluate reliability and validity of the two volleyball-specific jumping tests. The sample comprised 67 female (21.96±3.79 years; 68.26±8.52 kg; 174.43±6.85 cm) and 99 male (23.62±5.27 years; 84.83±10.37 kg; 189.01±7.21 cm) high- volleyball players who competed in 1st and 2nd National Division. Subjects were randomly divided into validation (N.=55 and 33 for males and females, respectively) and cross-validation subsamples (N.=54 and 34 for males and females, respectively). Set of predictors included isokinetic tests, to evaluate the eccentric and concentric strength capacities of the knee extensors, and flexors for dominant and non-dominant leg. The main outcome measure for the isokinetic testing was peak torque (PT) which was later normalized for body mass and expressed as PT/Kg. Block-jump and spike-jump performances were measured over three trials, and observed as criteria. Forward stepwise multiple regressions were calculated for validation subsamples and then cross-validated. Cross validation included correlations between and t-test differences between observed and predicted scores; and Bland Altman graphics. Jumping tests were found to be reliable (spike jump: ICC of 0.79 and 0.86; block-jump: ICC of 0.86 and 0.90; for males and females, respectively), and their validity was confirmed by significant t-test differences between 1st vs. 2nd division players. Isokinetic variables were found to be significant predictors of jumping performance in females, but not among males. In females, the isokinetic-knee measures were shown to be stronger and more valid predictors of the block-jump (42% and 64% of the explained variance for validation and cross-validation subsample, respectively
A generalized AKNS hierarchy and its bi-Hamiltonian structures
International Nuclear Information System (INIS)
Xia Tiecheng; You Fucai; Chen Dengyuan
2005-01-01
First we construct a new isospectral problem with 8 potentials in the present paper. And then a new Lax pair is presented. By making use of Tu scheme, a class of new soliton hierarchy of equations is derived, which is integrable in the sense of Liouville and possesses bi-Hamiltonian structures. After making some reductions, the well-known AKNS hierarchy and other hierarchies of evolution equations are obtained. Finally, in order to illustrate that soliton hierarchy obtained in the paper possesses bi-Hamiltonian structures exactly, we prove that the linear combination of two-Hamiltonian operators admitted are also a Hamiltonian operator constantly. We point out that two Hamiltonian operators obtained of the system are directly derived from a recurrence relations, not from a recurrence operator
Local modular Hamiltonians from the quantum null energy condition
Koeller, Jason; Leichenauer, Stefan; Levine, Adam; Shahbazi-Moghaddam, Arvin
2018-03-01
The vacuum modular Hamiltonian K of the Rindler wedge in any relativistic quantum field theory is given by the boost generator. Here we investigate the modular Hamiltonian for more general half-spaces which are bounded by an arbitrary smooth cut of a null plane. We derive a formula for the second derivative of the modular Hamiltonian with respect to the coordinates of the cut which schematically reads K''=Tv v . This formula can be integrated twice to obtain a simple expression for the modular Hamiltonian. The result naturally generalizes the standard expression for the Rindler modular Hamiltonian to this larger class of regions. Our primary assumptions are the quantum null energy condition—an inequality between the second derivative of the von Neumann entropy of a region and the stress tensor—and its saturation in the vacuum for these regions. We discuss the validity of these assumptions in free theories and holographic theories to all orders in 1 /N .
Periodic solutions of asymptotically linear Hamiltonian systems without twist conditions
Energy Technology Data Exchange (ETDEWEB)
Cheng Rong [Coll. of Mathematics and Physics, Nanjing Univ. of Information Science and Tech., Nanjing (China); Dept. of Mathematics, Southeast Univ., Nanjing (China); Zhang Dongfeng [Dept. of Mathematics, Southeast Univ., Nanjing (China)
2010-05-15
In dynamical system theory, especially in many fields of applications from mechanics, Hamiltonian systems play an important role, since many related equations in mechanics can be written in an Hamiltonian form. In this paper, we study the existence of periodic solutions for a class of Hamiltonian systems. By applying the Galerkin approximation method together with a result of critical point theory, we establish the existence of periodic solutions of asymptotically linear Hamiltonian systems without twist conditions. Twist conditions play crucial roles in the study of periodic solutions for asymptotically linear Hamiltonian systems. The lack of twist conditions brings some difficulty to the study. To the authors' knowledge, very little is known about the case, where twist conditions do not hold. (orig.)
Sdg interacting boson hamiltonian in the seniority scheme
Energy Technology Data Exchange (ETDEWEB)
Yoshinaga, N.
1989-03-06
The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagnoalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.
sdg Interacting boson hamiltonian in the seniority scheme
Yoshinaga, N.
1989-03-01
The sdg interacting boson hamiltonian is derived in the seniority scheme. We use the method of Otsuka, Arima and Iachello in order to derive the boson hamiltonian from the fermion hamiltonian. To examine how good is the boson approximation in the zeroth-order, we carry out the exact shell model calculations in a single j-shell. It is found that almost all low-lying levels are reproduced quite well by diagonalizing the sdg interacting boson hamiltonian in the vibrational case. In the deformed case the introduction of g-bosons improves the reproduction of the spectra and of the binding energies which are obtained by diagonalizing the exact shell model hamiltonian. In particular the sdg interacting boson model reproduces well-developed rotational bands.
Frustration-free Hamiltonians supporting Majorana zero edge modes
International Nuclear Information System (INIS)
Jevtic, Sania; Barnett, Ryan
2017-01-01
A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs. (paper)
Frustration-free Hamiltonians supporting Majorana zero edge modes
Jevtic, Sania; Barnett, Ryan
2017-10-01
A one-dimensional fermionic system, such as a superconducting wire, may host Majorana zero-energy edge modes (MZMs) at its edges when it is in the topological phase. MZMs provide a path to realising fault-tolerant quantum computation, and so are the focus of intense experimental and theoretical studies. However, given a Hamiltonian, determining whether MZMs exist is a daunting task as it relies on knowing the spectral properties of the Hamiltonian in the thermodynamic limit. The Kitaev chain is a paradigmatic non-interacting model that supports MZMs and the Hamiltonian can be fully diagonalised. However, for interacting models, the situation is far more complex. Here we consider a different classification of models, namely, ones with frustration-free Hamiltonians. Within this class of models, interacting and non-interacting systems are treated on an equal footing, and we identify exactly which Hamiltonians can realise MZMs.
Suydam, Stephen M; Manal, Kurt; Buchanan, Thomas S
2017-07-01
Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.
Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry.
Guilhem, Gaël; Giroux, Caroline; Couturier, Antoine; Maffiuletti, Nicola A
2014-12-01
This study aimed to evaluate the validity and test-retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r=0.74-0.85; Ptorque (r ⩾ 0.99; Ptorque between test and retest ranged from -3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test-retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparison of isokinetic muscle strength and muscle power by types of warm-up.
Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun
2015-05-01
[Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.
Gas exchange kinetics following concentric-eccentric isokinetic arm and leg exercise.
Drescher, U; Mookerjee, S; Steegmanns, A; Knicker, A; Hoffmann, U
2017-06-01
To evaluate the effects of exercise velocity (60, 150, 240deg∙s -1 ) and muscle mass (arm vs leg) on changes in gas exchange and arterio-venous oxygen content difference (avDO 2 ) following high-intensity concentric-eccentric isokinetic exercise. Fourteen subjects (26.9±3.1years) performed a 3×20-repetition isokinetic exercise protocol. Recovery beat-to-beat cardiac output (CO) and breath-by-breath gas exchange were recorded to determine post-exercise half-time (t 1/2 ) for oxygen uptake (V˙O 2 pulm), carbon dioxide output (V˙CO 2 pulm), and ventilation (V˙ E ). Significant differences of the t 1/2 values were identified between 60 and 150deg∙s -1 . Significant differences in the t 1/2 values were observed between V˙O 2 pulm and V˙CO 2 pulm and between V˙CO 2 pulm and V˙ E . The time to attain the first avDO 2 -peak showed significant differences between arm and leg exercise. The present study illustrates, that V˙O 2 pulm kinetics are distorted due to non-linear CO dynamics. Therefore, it has to be taken into account, that V˙O 2 pulm may not be a valuable surrogate for muscular oxygen uptake kinetics in the recovery phases. Copyright © 2017 Elsevier B.V. All rights reserved.
Model Hamiltonian Calculations of the Nonlinear Polarizabilities of Conjugated Molecules.
Risser, Steven Michael
This dissertation advances the theoretical knowledge of the nonlinear polarizabilities of conjugated molecules. The unifying feature of these molecules is an extended delocalized pi electron structure. The pi electrons dominate the electronic properties of the molecules, allowing prediction of molecular properties based on the treatment of just the pi electrons. Two separate pi electron Hamiltonians are used in the research. The principal Hamiltonian used is the non-interacting single-particle Huckel Hamiltonian, which replaces the Coulomb interaction among the pi electrons with a mean field interaction. The simplification allows for exact solution of the Hamiltonian for large molecules. The second Hamiltonian used for this research is the interacting multi-particle Pariser-Parr-Pople (PPP) Hamiltonian, which retains explicit Coulomb interactions. This limits exact solutions to molecules containing at most eight electrons. The molecular properties being investigated are the linear polarizability, and the second and third order hyperpolarizabilities. The hyperpolarizabilities determine the nonlinear optical response of materials. These molecular parameters are determined by two independent approaches. The results from the Huckel Hamiltonian are obtained through first, second and third order perturbation theory. The results from the PPP Hamiltonian are obtained by including the applied field directly in the Hamiltonian and determining the ground state energy at a series of field strengths. By fitting the energy to a polynomial in field strength, the polarizability and hyperpolarizabilities are determined. The Huckel Hamiltonian is used to calculate the third order hyperpolarizability of polyenes. These calculations were the first to show the average hyperpolarizability of the polyenes to be positive, and also to show the saturation of the hyperpolarizability. Comparison of these Huckel results to those from the PPP Hamiltonian shows the lack of explicit Coulomb
van der Ham, Wim; Klein, Michel; Tabatabaei, Seyed Amin; Thilakarathne, Dilhan; Treur, Jan
Smart thermostats can play an important role in achieving more economic energy usage in domestic situations. This paper focuses on the energy used for natural gas-based heating, and monitoring of gas usages versus indoor and outdoor temperatures over time. Two methods are presented that enable the
DEFF Research Database (Denmark)
Lakshmanan, Venkatachalam; Marinelli, Mattia; Hu, Junjie
2017-01-01
This paper studies the flexibility available with thermostatically controlled loads (TCLs) to provide power system services by demand response (DR) activation. Although the DR activation on TCLs can provide power system ancillary services, it is important to know how long such services can...... be provided for when different levels of power reduction are imposed. The flexibility change with different levels of power reduction is tested experimentally with domestic fridges used by real customers with unknown user interaction. The investigation quantifies the flexibility of household fridges...... and the impact of DR activation in terms of deviation in the average temperature. The maximum possible power reduction with the cluster of refrigerators is 67% and the available flexibility with the cluster of refrigerators is 10%. The resulting deviation in the average temperature is 14%....
DEFF Research Database (Denmark)
Lund, Hans; Søndergaard, K; Zachariassen, T
2005-01-01
The aim of this study was to examine the learning effect during a set of isokinetic measurements, to evaluate the reliability of the Biodex System 3 PRO dynamometer, and to compare the Biodex System 3 PRO and the Lido Active dynamometers on both extension and flexion over the elbow and the knee a...
Anandkumar, Sudarshan; Sudarshan, Shobhalakshmi; Nagpal, Pratima
2014-08-01
Double blind pre-test post-test control group design. To compare the isokinetic quadriceps torque, standardized stair-climbing task (SSCT) and pain during SSCT between subjects diagnosed with knee osteoarthritis pre and post kinesio tape (KT) application with and without tension. Strength of the quadriceps and torque producing capability is frequently found to be compromised in knee osteoarthritis. The efficacy of KT in improving isokinetic quadriceps torque in knee osteoarthritis is unknown, forming the basis for this study. Forty subjects were randomly allocated to either the experimental (therapeutic KT with tension) or control group (sham KT without tension) with the allocation being concealed. Pre and post test measurements of isokinetic quadriceps torque, SSCT and pain during SSCT were carried out by a blinded assessor. A large effect size with significant improvements in the peak quadriceps torque (concentric and eccentric at angular velocities of 90° per second and 120° per second), SSCT and pain were obtained in the experimental group when compared to the control group. Application of therapeutic KT is effective in improving isokinetic quadriceps torque, SSCT and reducing pain in knee osteoarthritis.
Bergamin, Marco; Gobbo, Stefano; Bullo, Valentina; Vendramin, Barbara; Duregon, Federica; Frizziero, Antonio; Di Blasio, Andrea; Cugusi, Lucia; Zaccaria, Marco; Ermolao, Andrea
2017-01-01
Lower extremity muscle mass, strength, power, and physical performance are critical determinants of independent functioning in later life. Isokinetic dynamometers are becoming very common in assessing different features of muscle strength, in both research and clinical practice; however, reliability studies are still needed to support the extended use of those devices. The purpose of this study is to assess the test-retest reliability of knee and ankle isokinetic and isometric strength testing protocols in a sample of older healthy subjects, using a new and untested isokinetic multi-joint evaluation system. Sixteen male and fourteen female older adults (mean age 65.2 ± 4.6 years) were assessed in two testing sessions. Each participant performed a randomized testing procedure that includes different isometric and isokinetic tests for knee and ankle joints. All participants concluded the trial safety and no subject reported any discomfort throughout the overall assessment. Coefficients of correlation between measures were calculated showing moderate to strong effects among all test-retest assessments and paired-sample t test showed only one significant difference (pisometric strength provided reliable test-retest measures in healthy older adults. Ib.
Roth, Ralf; Donath, Lars; Kurz, Eduard; Zahner, Lukas; Faude, Oliver
2017-03-01
The present study aimed to assess the between day reliability of isokinetic and isometric peak torque (PT) during trunk measurement on an isokinetic device (IsoMed 2000). Test-retest-protocol on five separate days. Fifteen healthy sport students (8 female and 7 male) aged 21 to 26. PT was assessed in isometric back extension and flexion as well as right and left rotation. Isokinetic strength was captured at a speed of 60°/s and 150°/s for all tasks. For none of the assessed parameters a meaningful variation in PT during test days was observed. Relative reliability (ICC = 0.85-0.96) was excellent for all tasks. Estimates of absolute reliability as Coefficient of Variation (CoV) and Standard Error of Measurement (SEM in Nm/kg lean body mass) remained stable for isometric (6.9% strength measurement in flexion and extension or trunk rotation in either isometric or isokinetic condition is highly reliable. Therefore, it seems possible to elucidate changes which are smaller than 10% due to intervention programs when a preceding familiarization condition was applied. Copyright © 2016 Elsevier Ltd. All rights reserved.
van Dyk, Nicol; Bahr, Roald; Whiteley, Rodney; Tol, Johannes L.; Kumar, Bhavesh D.; Hamilton, Bruce; Farooq, Abdulaziz; Witvrouw, Erik
2016-01-01
A hamstring strain injury (HSI) has become the most common noncontact injury in soccer. Isokinetic muscle strength deficits are considered a risk factor for HSIs. However, underpowered studies with small sample sizes unable to determine small associations have led to inconclusive results regarding
Tol, Johannes L.; Hamilton, Bruce; Eirale, Cristiano; Muxart, Patrice; Jacobsen, Philipp; Whiteley, Rod
2014-01-01
There is an ongoing debate regarding the optimal criteria for return to sport after an acute hamstring injury. Less than 10% isokinetic strength deficit is generally recommended but this has never been documented in professional football players after rehabilitation. Our aim was to evaluate
New Hamiltonian constraint operator for loop quantum gravity
Directory of Open Access Journals (Sweden)
Jinsong Yang
2015-12-01
Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.
Greenberger-Horne-Zeilinger States and Few-Body Hamiltonians
Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V.
2011-12-01
The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.
Homotopical Dynamics IV: Hopf invariants and hamiltonian flows
Cornea, Octavian
2001-01-01
In a non-compact context the first natural step in the search for periodic orbits of a hamiltonian flow is to detect bounded ones. In this paper we show that, in a non-compact setting, certain algebraic topological constraints imposed to a gradient flow of the hamiltonian function $f$ imply the existence of bounded orbits for the hamiltonian flow of $f$. Once the existence of bounded orbits is established, under favorable circumstances, application of the $C^{1}$-closing lemma leads to period...
New Hamiltonian constraint operator for loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Yang, Jinsong, E-mail: yangksong@gmail.com [Department of Physics, Guizhou university, Guiyang 550025 (China); Institute of Physics, Academia Sinica, Taiwan (China); Ma, Yongge, E-mail: mayg@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2015-12-17
A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.
Remarks on Hamiltonian structures in G2-geometry
International Nuclear Information System (INIS)
Cho, Hyunjoo; Salur, Sema; Todd, A. J.
2013-01-01
In this article, we treat G 2 -geometry as a special case of multisymplectic geometry and make a number of remarks regarding Hamiltonian multivector fields and Hamiltonian differential forms on manifolds with an integrable G 2 -structure; in particular, we discuss existence and make a number of identifications of the spaces of Hamiltonian structures associated to the two multisymplectic structures associated to an integrable G 2 -structure. Along the way, we prove some results in multisymplectic geometry that are generalizations of results from symplectic geometry
Hamiltonian reduction and supersymmetric mechanics with Dirac monopole
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen
2006-01-01
We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparision with previous work is also carried out
The Hamiltonian structure of general relativistic perfect fluids
International Nuclear Information System (INIS)
Bao, D.; Houston Univ., TX; Marsden, J.; Walton, R.
1985-01-01
We show that the evolution equations for a perfect fluid coupled to general relativity in a general lapse and shift, are Hamiltonian relative to a certain Poisson structure. For the fluid variables, a Lie-Poisson structure associated to the dual of a semi-direct product Lie algebra is used, while the bracket for the gravitational variables has the usual canonical symplectic structure. The evolution is governed by a Hamiltonian which is equivalent to that obtained from a canonical analysis. The relationship of our Hamiltonian structure with other approaches in the literature, such as Clebsch potentials, Lagrangian to Eulerian transformations, and its use in clarifying linearization stability, are discussed. (orig.)
Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces
Jacob, Birgit
2012-01-01
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the fir
Toric codes and quantum doubles from two-body Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Brell, Courtney G; Bartlett, Stephen D; Doherty, Andrew C [Centre for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney (Australia); Flammia, Steven T, E-mail: cbrell@physics.usyd.edu.au [Perimeter Institute for Theoretical Physics, Waterloo (Canada)
2011-05-15
We present here a procedure to obtain the Hamiltonians of the toric code and Kitaev quantum double models as the low-energy limits of entirely two-body Hamiltonians. Our construction makes use of a new type of perturbation gadget based on error-detecting subsystem codes. The procedure is motivated by a projected entangled pair states (PEPS) description of the target models, and reproduces the target models' behavior using only couplings that are natural in terms of the original Hamiltonians. This allows our construction to capture the symmetries of the target models.
Greenberger-Horne-Zeilinger states and few-body Hamiltonians.
Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio; Pepe, Francesco V
2011-12-23
The generation of Greenberger-Horne-Zeilinger (GHZ) states is a crucial problem in quantum information. We derive general conditions for obtaining GHZ states as eigenstates of a Hamiltonian. We find that a necessary condition for an n-qubit GHZ state to be a nondegenerate eigenstate of a Hamiltonian is the presence of m-qubit couplings with m≥[(n+1)/2]. Moreover, we introduce a Hamiltonian with a GHZ eigenstate and derive sufficient conditions for the removal of the degeneracy.
Quantum bootstrapping via compressed quantum Hamiltonian learning
International Nuclear Information System (INIS)
Wiebe, Nathan; Granade, Christopher; Cory, D G
2015-01-01
A major problem facing the development of quantum computers or large scale quantum simulators is that general methods for characterizing and controlling are intractable. We provide a new approach to this problem that uses small quantum simulators to efficiently characterize and learn control models for larger devices. Our protocol achieves this by using Bayesian inference in concert with Lieb–Robinson bounds and interactive quantum learning methods to achieve compressed simulations for characterization. We also show that the Lieb–Robinson velocity is epistemic for our protocol, meaning that information propagates at a rate that depends on the uncertainty in the system Hamiltonian. We illustrate the efficiency of our bootstrapping protocol by showing numerically that an 8 qubit Ising model simulator can be used to calibrate and control a 50 qubit Ising simulator while using only about 750 kilobits of experimental data. Finally, we provide upper bounds for the Fisher information that show that the number of experiments needed to characterize a system rapidly diverges as the duration of the experiments used in the characterization shrinks, which motivates the use of methods such as ours that do not require short evolution times. (fast track communication)
Relativistic and separable classical hamiltonian particle dynamics
International Nuclear Information System (INIS)
Sazdjian, H.
1981-01-01
We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light
Ekstrand, Elisabeth; Lexell, Jan; Brogårdh, Christina
2015-09-01
To evaluate the test-retest reliability of isometric and isokinetic muscle strength measurements in the upper extremity after stroke. A test-retest design. Forty-five persons with mild to moderate paresis in the upper extremity > 6 months post-stroke. Isometric arm strength (shoulder abduction, elbow flexion), isokinetic arm strength (elbow extension/flexion) and isometric grip strength were measured with electronic dynamometers. Reliability was evaluated with intra-class correlation coefficients (ICC), changes in the mean, standard error of measurements (SEM) and smallest real differences (SRD). Reliability was high (ICCs: 0.92-0.97). The absolute and relative (%) SEM ranged from 2.7 Nm (5.6%) to 3.0 Nm (9.4%) for isometric arm strength, 2.6 Nm (7.4%) to 2.9 Nm (12.6%) for isokinetic arm strength, and 22.3 N (7.6%) to 26.4 N (9.2%) for grip strength. The absolute and relative (%) SRD ranged from 7.5 Nm (15.5%) to 8.4 Nm (26.1%) for isometric arm strength, 7.1 Nm (20.6%) to 8.0 Nm (34.8%) for isokinetic arm strength, and 61.8 N (21.0%) to 73.3 N (25.6%) for grip strength. Muscle strength in the upper extremity can be reliably measured in persons with chronic stroke. Isometric measurements yield smaller measurement errors than isokinetic measurements and might be preferred, but the choice depends on the research question.
Ercan, Sabriye; Çetin, Cem; Yavuz, Turhan; Demir, Hilmi M; Atalay, Yurdagül B
2018-05-01
Objective The aim of this study was to observe the change of the ankle joint range of motion, the muscle strength values measured with an isokinetic dynamometer, pain scores, quality of life scale, and venous return time in chronic venous insufficiency diagnosed patients by prospective follow-up after 12-week exercise program including isokinetic exercises. Methods The patient group of this study comprised 27 patients (23 female, 4 male) who were diagnosed with chronic venous insufficiency. An exercise program including isokinetic exercise for the calf muscle was given to patients three days per week for 12 weeks. At the end of 12 weeks, five of the patients left the study due to inadequate compliance with the exercise program. As a result, control data of 22 patients were included. Ankle joint range of active motion, isokinetic muscle strength, pain, quality of life, and photoplethysmography measurements were assessed before starting and after the exercise program. Results Evaluating changes of the starting and control data depending on time showed that all isokinetic muscle strength measurement parameters, range of motion, and overall quality of life values of patients improved. Venous return time values have also increased significantly ( p < 0.05). Conclusion In conclusion, increase in muscle strength has been provided with exercise therapy in patients with chronic venous insufficiency. It has been determined that the increase in muscle strength affected the venous pump and this ensured improvement in venous function and range of motion of the ankle. In addition, it has been detected that pain reduced and quality of life improved after the exercise program.
g Algebra and two-dimensional quasiexactly solvable Hamiltonian ...
Indian Academy of Sciences (India)
Keywords. g2 algebra; quasiexactly solvable Hamiltonian; hidden algebra; Poschl–Teller potential. ... space of the polynomials, restricting to a linear transformation on this space, the associ- .... The operators L6 and L7 are the positive root.
Integrable Hamiltonian systems and interactions through quadratic constraints
International Nuclear Information System (INIS)
Pohlmeyer, K.
1975-08-01
Osub(n)-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems. (orig.) [de
Towards practical characterization of quantum systems with quantum Hamiltonian learning
Santagati, R.; Wang, J.; Paesani, S.; Knauer, S.; Gentile, A. A.; Wiebe, N.; Petruzzella, M.; O'Brien, J. L.; Rarity, J. G.; Laing, A.; Thompson, M. G.
2017-01-01
Here we show the first experimental implementation of quantum Hamiltonian Learning, where a silicon-on-insulator quantum photonic simulator is used to learn the dynamics of an electron-spin in an NV center in diamond.
On the quantization of sectorially Hamiltonian dissipative systems
Energy Technology Data Exchange (ETDEWEB)
Castagnino, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Instituto de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires (Argentina); Gadella, M. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)], E-mail: manuelgadella@yahoo.com.ar; Lara, L.P. [Instituto de Fisica de Rosario, 2000 Rosario (Argentina); Facultad Regional Rosario, UTN, 2000 Rosario (Argentina)
2009-10-15
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
On the quantization of sectorially Hamiltonian dissipative systems
International Nuclear Information System (INIS)
Castagnino, M.; Gadella, M.; Lara, L.P.
2009-01-01
We present a theoretical discussion showing that, although some dissipative systems may have a sectorial Hamiltonian description, this description does not allow for canonical quantization. However, a quantum Liouville counterpart of these systems is possible, although it is not unique.
Hamiltonian formalisms and symmetries of the Pais–Uhlenbeck oscillator
Directory of Open Access Journals (Sweden)
Krzysztof Andrzejewski
2014-12-01
Full Text Available The study of the symmetry of Pais–Uhlenbeck oscillator initiated in Andrzejewski et al. (2014 [24] is continued with special emphasis put on the Hamiltonian formalism. The symmetry generators within the original Pais and Uhlenbeck Hamiltonian approach as well as the canonical transformation to the Ostrogradski Hamiltonian framework are derived. The resulting algebra of generators appears to be the central extension of the one obtained on the Lagrangian level; in particular, in the case of odd frequencies one obtains the centrally extended l-conformal Newton–Hooke algebra. In this important case the canonical transformation to an alternative Hamiltonian formalism (related to the free higher derivatives theory is constructed. It is shown that all generators can be expressed in terms of the ones for the free theory and the result agrees with that obtained by the orbit method.
Experimental Hamiltonian identification for controlled two-level systems
International Nuclear Information System (INIS)
Schirmer, S.G.; Kolli, A.; Oi, D.K.L.
2004-01-01
We present a strategy to empirically determine the internal and control Hamiltonians for an unknown two-level system (black box) subject to various (piecewise constant) control fields when direct readout by measurement is limited to a single, fixed observable
A local inverse spectral theorem for Hamiltonian systems
International Nuclear Information System (INIS)
Langer, Matthias; Woracek, Harald
2011-01-01
We consider (2 × 2)-Hamiltonian systems of the form y'(x) = zJH(x)y(x), x in [s − , s + ). If a system of this form is in the limit point case, an analytic function is associated with it, namely its Titchmarsh–Weyl coefficient q H . The (global) uniqueness theorem due to de Branges says that the Hamiltonian H is (up to reparameterization) uniquely determined by the function q H . In this paper we give a local uniqueness theorem; if the Titchmarsh–Weyl coefficients q H 1 and q H 2 corresponding to two Hamiltonian systems are exponentially close, then the Hamiltonians H 1 and H 2 coincide (up to reparameterization) up to a certain point of their domain, which depends on the quantitative degree of exponential closeness of the Titchmarsh–Weyl coefficients
Hamiltonian Approach to 2+1 Dimensional Gravity
Cantini, L.; Menotti, P.; Seminara, D.
2002-12-01
It is shown that the reduced particle dynamics of 2+1 dimensional gravity in the maximally slicing gauge has hamiltonian form. We give the exact diffeomorphism which transforms the spinning cone metric in the Deser, Jackiw, 't Hooft gauge to the maximally slicing gauge. It is explicitly shown that the boundary term in the action, written in hamiltonian form gives the hamiltonian for the reduced particle dynamics. The quantum mechanical translation of the two particle hamiltonian gives rise to the logarithm of the Laplace-Beltrami operator on a cone whose angular deficit is given by the total energy of the system irrespective of the masses of the particles thus proving at the quantum level a conjecture by 't Hooft on the two particle dynamics.
Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians
Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan
2018-02-01
Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.
Isokinetic eccentric resistance training prevents loss in mechanical muscle function after running
DEFF Research Database (Denmark)
Oliveira, Anderson S. C.; Caputo, Fabrizio; Aagaard, Per
2013-01-01
session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180° s(-1), or served as controls (n...... damages. However, IERT may not avoid reductions in explosive muscle actions. In turn, this may allow more intense training sessions to be performed, facilitating the adaptive response to running training.......The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective...
Time and a physical Hamiltonian for quantum gravity.
Husain, Viqar; Pawłowski, Tomasz
2012-04-06
We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society
A hierarchy of Liouville integrable discrete Hamiltonian equations
Energy Technology Data Exchange (ETDEWEB)
Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn
2008-05-12
Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.
On the topological entropy of an optical Hamiltonian flow
Niche, Cesar J.
2000-01-01
In this article we prove two formulas for the topological entropy of an F-optical Hamiltonian flow induced by a C^{\\infty} Hamiltonian, where F is a Lagrangian distribution. In these formulas, we calculate the topological entropy as the exponential growth rate of the average of the determinant of the differential of the flow, restricted to the Lagrangian distribution or to a proper modification.
SOLVING THE HAMILTONIAN CYCLE PROBLEM USING SYMBOLIC DETERMINANTS
Ejov, V.; Filar, J. A.; Lucas, S. K.; Nelson, J. L.
2006-01-01
In this note we show how the Hamiltonian Cycle problem can be reduced to solving a system of polynomial equations related to the adjacency matrix of a graph. This system of equations can be solved using the method of Gröbner bases, but we also show how a symbolic determinant related to the adjacency matrix can be used to directly decide whether a graph has a Hamiltonian cycle.
Noncanonical Hamiltonian density formulation of hydrodynamics and ideal MHD
International Nuclear Information System (INIS)
Morrison, P.J.; Greene, J.M.
1980-04-01
A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field is presented. Contrary to previous work the dynamical variables are the physical variables, rho, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where the dynamical variables are the spatial Fourier coefficients of the fluid variables
Families of superintegrable Hamiltonians constructed from exceptional polynomials
International Nuclear Information System (INIS)
Post, Sarah; Tsujimoto, Satoshi; Vinet, Luc
2012-01-01
We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable. (paper)
Construction of alternative Hamiltonian structures for field equations
Energy Technology Data Exchange (ETDEWEB)
Herrera, Mauricio [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Hojman, Sergio A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Facultad de Educacion, Universidad Nacional Andres Bello, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)
2001-08-10
We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)
Orbits and variational principles for conservative Hamiltonian systems
International Nuclear Information System (INIS)
Torres del Castillo, G.F.
1989-01-01
It is shown that for any Hamiltonian system whose Hamiltonian is time-independent the equations that determine the orbits followed by the system, without making reference to time, have the form of Hamilton's equations in a phase space of dimension two units smaller than that of the original phase space. By considering the cases of classical mechanics and of geometrical optics, it is shown that this result amounts, respectively, to Maupertuis' least action principle and to Fermat's principle. (Author)
Bazzucchi, Ilenia; Riccio, Maria Elena; Felici, Francesco
2008-10-01
Previous studies have suggested that muscle coactivation could be reduced by a recurrent activity (training, daily activities). If this was correct, skilled athletes should show a specific muscle activation pattern with a low level of coactivation of muscles which are typically involved in their discipline. In particular, the aim of this study was to verify the hypothesis that the amount of antagonist activation of biceps brachii (BB) and triceps brachii (TB) is different between tennis players and non-players individuals during maximal isokinetic contractions. Ten young healthy men and eight male tennis players participated in the study. The surface electromyographic signals (sEMG) were recorded from the BB and TB muscles during three maximal voluntary isometric contractions (MVC) of elbow flexors and extensors and a set of three maximal elbow flexions and extensions at 15 degrees , 30 degrees , 60 degrees , 120 degrees , 180 degrees and 240 degrees /s. Normalized root mean square (RMS) of sEMG was calculated as an index of sEMG amplitude. Antagonist activation (%RMSmax) of TB was significantly lower in tennis players (from 14.0+/-7.9% at MVC to 16.3+/-8.9% at 240 degrees /s) with respect to non-players (from 27.7+/-19.7% at MVC to 38.7+/-17.6% at 240 degrees /s) at all angular velocities. Contrary to non-players, tennis players did not show any difference in antagonist activation between BB and TB muscles. Tennis players, with a constant practice in controlling forces around the elbow joint, learn how to reduce coactivation of muscles involved in the control of this joint. This has been shown by the lower antagonist muscular activity of triceps brachii muscle during isokinetic elbow flexion found in tennis players with respect to non-players.
Directory of Open Access Journals (Sweden)
Morgan Lanzarin
2016-02-01
Full Text Available BACKGROUND: Intermittent claudication (IC is a debilitating condition that mostly affects elderly people. IC is manifested by a decrease in ambulatory function. Individuals with IC present with motor and sensory nerve dysfunction in the lower extremities, which may lead to deficits in balance. OBJECTIVE: This study aimed to measure postural control and isokinetic muscle function in individuals with intermittent claudication. METHOD: The study included 32 participants of both genders, 16 IC participants (mean age: 64 years, SD=6 and 16 healthy controls (mean age: 67 years, SD=5, which were allocated into two groups: intermittent claudication group (ICG and control group (CG. Postural control was assessed using the displacement and velocity of the center of pressure (COP during the sensory organization test (SOT and the motor control test (MCT. Muscle function of the flexor and extensor muscles of the knee and ankle was measured by an isokinetic dynamometer. Independent t tests were used to calculate the between-group differences. RESULTS: The ICG presented greater displacement (p =0.027 and speed (p =0.033 of the COP in the anteroposterior direction (COPap during the MCT, as well as longer latency (p =0.004. There were no between-group differences during the SOT. The ICG showed decreased muscle strength and power in the plantar flexors compared to the CG. CONCLUSION: Subjects with IC have lower values of strength and muscle power of plantiflexores, as well as changes in postural control in dynamic conditions. These individuals may be more vulnerable to falls than healthy subjects.
Directory of Open Access Journals (Sweden)
Kabaciński Jarosław
2017-09-01
Full Text Available Purpose. Tests such as the counter movement jump (CMJ and squat jump (SJ allow for determining the ratio of maximal power output generated during SJ to CMJ (S/C. The isokinetic peak torque ratio of the hamstrings contracting eccentrically to the quadriceps contracting concentrically (H/Q is defined as functional H/Q. The purpose of this study was to compare the S/C and functional H/Q between female basketball and volleyball players. Methods. The total of 14 female basketball players (age, 19.8 ± 1.4 years and 12 female volleyball players (age, 22.3 ± 4.2 years participated in the study. A piezoelectric force platform was used for the CMJ and SJ. Moreover, isokinetic tests of the hamstrings and quadriceps muscle torque during eccentric and concentric contraction were performed. Results. The results of the S/C and functional H/Q at 90 deg · s-1/60 deg · s-1 velocities were higher in basketball players (87.3 ± 9.1% and 91.4 ± 9.3%, respectively than in volleyball players (83.1 ± 9.8% and 83.6 ± 16.5%, respectively. No significant differences in S/C or functional H/Q values between the two groups were found (p > 0.05. Conclusions. Decreasing the S/C may result from an improvement in the power output during CMJ and a better utilization of the stretch-shortening cycle effect. Balancing the functional H/Q through increasing the eccentric hamstrings strength can provide dynamic knee joint stabilization.
Goren, David; Ayalon, Moshe; Nyska, Meir
2005-04-01
Reports on complete spontaneous Achilles tendon ruptures and associated treatment have become more frequent in the literature in the past two decades, as has the request for treatments that enable the finest possible functional recovery. The best available treatment is a matter of considerable controversy in the literature. The purpose of this study was to compare the isokinetic strength and endurance of the plantarflexor muscle-tendon unit in subjects who sustained rupture of the Achilles tendon and underwent either open surgery or closed percutaneous repair of the Achilles tendon. Twenty patients (18 males, 2 females) with spontaneous ruptures of the Achilles tendon were included in this study. Ten patients were treated by open surgery, and 10 patients were treated percutaneously. All patients had ruptured their Achilles tendon more than 6 months before the study, and all of the ruptures occurred 3.5 years or less before the day of the testing. All patients underwent an oriented physical examination. An isokinetic Biodex dynamometer (Biodex Medical System, Shirley, NY) was used to measure ankle joint angle, and in plantarflexion to calculate the torque at the ankle joint (Newton/meter), and the average work (jouls) for both maximal power and endurance. Each measurement was compared to the normal ankle. Biodex dynamometer evaluations at 90 deg/sec demonstrated a significant difference of maximal voluntary plantarflexor torque, endurance performance and range of motion at the ankle joint between the involved and uninvolved sides in patients treated by either mode of treatment. Yet, no statistically significant differences were revealed for the parameters mentioned above between the subjects that were treated either percutaneously or by an open surgery. In functional terms, the biomechanical outcomes of open surgery and percutaneous repair for acute ruptures of the Achilles tendon are both effective.
Vassão, P G; Toma, R L; Antunes, H K M; Tucci, H T; Renno, A C M
2016-02-01
Aging is responsible by a series of morphological and functional modifications that lead to a decline of muscle function, particularly in females. Muscle tissue in elderly people is more susceptible to fatigue and, consequently, to an increased inability to maintain strength and motor control. In this context, therapeutic approaches able of attenuating muscle fatigue have been investigated. Among these, the photobiomodulation demonstrate positive results to interacts with biological tissues, promoting the increase in cell energy production. Thus, the aim of this study was to investigate the effects of photobiomodulation (808 nm, 250 J/cm(2), 100 mW, 7 J each point) in the fatigue level and muscle performance in elderly women. Thirty subjects entered a crossover randomized double-blinded placebo-controlled trial. Photobiomodulation was delivered on the rectus femoris muscle of the dominant limb immediately before the fatigue protocol. In both sessions, peripheral muscle fatigue was analyzed by surface electromyography (EMG) and blood lactate analysis. Muscle performance was evaluated using an isokinetic dynamometer. The results showed that photobiomodulation was able of reducing muscle fatigue by a significant increase of electromyographic fatigue index (EFI) (p = 0.047) and decreasing significantly lactate concentration 6 min after the performance of the fatigue protocol (p = 0. 0006) compared the placebo laser session. However, the photobiomodulation was not able of increasing muscle performance measured by the isokinetic dynamometer. Thus, it can be conclude that the photobiomodulation was effective in reducing fatigue levels. However, no effects of photobiomodulation on muscle performance was observed.
Sakamoto, Akihiro; Naito, Hisashi; Chow, Chin Moi
2015-07-01
Hyperventilation, implemented during recovery of repeated maximal sprints, has been shown to attenuate performance decrement. This study evaluated the effects of hyperventilation, using strength exercises, on muscle torque output and EMG amplitude. Fifteen power-trained athletes underwent maximal isokinetic knee extensions consisting of 12 repetitions × 8 sets at 60°/s and 25 repetitions × 8 sets at 300°/s. The inter-set interval was 40 s for both speeds. For the control condition, subjects breathed spontaneously during the interval period. For the hyperventilation condition, subjects hyperventilated for 30 s before each exercise set (50 breaths/min, PETCO2: 20-25 mmHg). EMG was recorded from the vastus medialis and lateralis muscles to calculate the mean amplitude for each contraction. Hyperventilation increased blood pH by 0.065-0.081 and lowered PCO2 by 8.3-10.3 mmHg from the control values (P < 0.001). Peak torque declined with repetition and set numbers for both speeds (P < 0.001), but the declining patterns were similar between conditions. A significant, but small enhancement in peak torque was observed with hyperventilation at 60°/s during the initial repetition phase of the first (P = 0.032) and fourth sets (P = 0.040). EMG amplitude also declined with set number (P < 0.001) for both speeds and muscles, which was, however, not attenuated by hyperventilation. Despite a minor ergogenic effect in peak torque at 60°/s, hyperventilation was not effective in attenuating the decrement in torque output at 300°/s and decrement in EMG amplitude at both speeds during repeated sets of maximal isokinetic knee extensions.
Oscillator representations for self-adjoint Calogero Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V; Voronov, B L, E-mail: gitman@dfn.if.usp.br, E-mail: tyutin@lpi.ru, E-mail: voronov@lpi.ru [Lebedev Physical Institute, Moscow (Russian Federation)
2011-10-21
In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = {alpha}x{sup -2}. We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d{sub x}{sup 2}+{alpha}x{sup -2} for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat{sup +} a-hat and A-hat = a-hat a-hat{sup +} are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat{sup +}. An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)
Oscillator representations for self-adjoint Calogero Hamiltonians
International Nuclear Information System (INIS)
Gitman, D M; Tyutin, I V; Voronov, B L
2011-01-01
In Gitman et al (2010 J. Phys. A: Math. Theor. 43 145205), we presented a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential V(x) = αx -2 . We described all possible self-adjoint (s.a.) operators (s.a. Hamiltonians) associated with the differential operation H=-d x 2 +αx -2 for the Calogero Hamiltonian. Here, we discuss a new aspect of the problem, the so-called oscillator representations for the Calogero Hamiltonians. As is known, operators of the form N-hat = a-hat + a-hat and A-hat = a-hat a-hat + are called operators of oscillator type. Oscillator-type operators possess a number of useful properties in the case when the elementary operators a-hat are closed. It turns out that some s.a. Calogero Hamiltonians allow oscillator-type representations. We describe such Hamiltonians and find the corresponding mutually adjoint elementary operators a-hat and a-hat + . An oscillator-type representation for a given Hamiltonian is generally not unique. (paper)
Hamiltonian quantum simulation with bounded-strength controls
International Nuclear Information System (INIS)
Bookatz, Adam D; Wocjan, Pawel; Viola, Lorenza
2014-01-01
We propose dynamical control schemes for Hamiltonian simulation in many-body quantum systems that avoid instantaneous control operations and rely solely on realistic bounded-strength control Hamiltonians. Each simulation protocol consists of periodic repetitions of a basic control block, constructed as a modification of an ‘Eulerian decoupling cycle,’ that would otherwise implement a trivial (zero) target Hamiltonian. For an open quantum system coupled to an uncontrollable environment, our approach may be employed to engineer an effective evolution that simulates a target Hamiltonian on the system while suppressing unwanted decoherence to the leading order, thereby allowing for dynamically corrected simulation. We present illustrative applications to both closed- and open-system simulation settings, with emphasis on simulation of non-local (two-body) Hamiltonians using only local (one-body) controls. In particular, we provide simulation schemes applicable to Heisenberg-coupled spin chains exposed to general linear decoherence, and show how to simulate Kitaev's honeycomb lattice Hamiltonian starting from Ising-coupled qubits, as potentially relevant to the dynamical generation of a topologically protected quantum memory. Additional implications for quantum information processing are discussed. (papers)
Naz, Rehana
2018-01-01
Pontrygin-type maximum principle is extended for the present value Hamiltonian systems and current value Hamiltonian systems of nonlinear difference equations for uniform time step $h$. A new method termed as a discrete time current value Hamiltonian method is established for the construction of first integrals for current value Hamiltonian systems of ordinary difference equations arising in Economic growth theory.
Sueyoshi, Ted; Nakahata, Akihiro; Emoto, Gen; Yuasa, Tomoki
2017-11-01
Isokinetic strength and hop tests are commonly used to assess athletes' readiness to return to sport after knee surgery. The purpose of this study was to investigate the results of single-leg hop and isokinetic knee strength testing in athletes who underwent anterior cruciate ligament reconstruction (ACLR) upon returning to sport participation as well as to study the correlation between these 2 test batteries. The secondary purpose was to compare the test results by graft type (patellar tendon or hamstring). It was hypothesized that there would be no statistically significant limb difference in either isokinetic knee strength or single-leg hop tests, that there would be a moderate to strong correlation between the 2 test batteries, and that there would be no significant difference between graft types. Cross-sectional study; Level of evidence, 3. Twenty-nine high school and collegiate athletes who underwent ACLR participated in this study. At the time of return to full sport participation, a series of hop tests and knee extension/flexion isokinetic strength measurements were conducted. The results were analyzed using analysis of variance and Pearson correlation ( r ). The timed 6-m hop test was the only hop test that showed a significant difference between the involved and uninvolved limbs (2.3 and 2.2 seconds, respectively; P = .02). A significant difference between limbs in knee strength was found for flexion peak torque/body weight at 180 deg/s ( P = .03), flexion total work/body weight at 180 deg/s ( P = .04), and flexion peak torque/body weight at 300 deg/s ( P = .03). The strongest correlation between the hop tests and knee strength was found between the total distance of the hop tests and flexion total work/body weight at 300 deg/s ( r = 0.69) and between the timed 6-m hop test and flexion peak torque/body weight at 300 deg/s ( r = -0.54). There was no statistically significant difference in hop test performance or isokinetic knee strength between graft types
Hamiltonian derivation of a gyrofluid model for collisionless magnetic reconnection
International Nuclear Information System (INIS)
Tassi, E
2014-01-01
We consider a simple electromagnetic gyrokinetic model for collisionless plasmas and show that it possesses a Hamiltonian structure. Subsequently, from this model we derive a two-moment gyrofluid model by means of a procedure which guarantees that the resulting gyrofluid model is also Hamiltonian. The first step in the derivation consists of imposing a generic fluid closure in the Poisson bracket of the gyrokinetic model, after expressing such bracket in terms of the gyrofluid moments. The constraint of the Jacobi identity, which every Poisson bracket has to satisfy, selects then what closures can lead to a Hamiltonian gyrofluid system. For the case at hand, it turns out that the only closures (not involving integro/differential operators or an explicit dependence on the spatial coordinates) that lead to a valid Poisson bracket are those for which the second order parallel moment, independently for each species, is proportional to the zero order moment. In particular, if one chooses an isothermal closure based on the equilibrium temperatures and derives accordingly the Hamiltonian of the system from the Hamiltonian of the parent gyrokinetic model, one recovers a known Hamiltonian gyrofluid model for collisionless reconnection. The proposed procedure, in addition to yield a gyrofluid model which automatically conserves the total energy, provides also, through the resulting Poisson bracket, a way to derive further conservation laws of the gyrofluid model, associated with the so called Casimir invariants. We show that a relation exists between Casimir invariants of the gyrofluid model and those of the gyrokinetic parent model. The application of such Hamiltonian derivation procedure to this two-moment gyrofluid model is a first step toward its application to more realistic, higher-order fluid or gyrofluid models for tokamaks. It also extends to the electromagnetic gyrokinetic case, recent applications of the same procedure to Vlasov and drift- kinetic systems
Undheim, Marit Baste; Cosgrave, Ciaran; King, Enda; Strike, Siobhán; Marshall, Brendan; Falvey, Éanna; Franklyn-Miller, Andrew
2015-10-01
Following anterior cruciate ligament reconstruction (ACLR), strength is a key variable in regaining full function of the knee. Isokinetic strength is commonly used as part of the return to sport (RTS) criteria. We systematically reviewed the isokinetic strength evaluation protocols that are currently being used following ACLR. A secondary aim was to suggest an isokinetic protocol that could meet RTS criteria. Articles were searched using ScienceDirect, PubMed and Sage Journals Online, combined with cross-checked reference lists of the publications. Protocol data and outcome measurements and RTS criteria were extracted from each article included in the review. 39 studies met the inclusion criteria and reported their isokinetic strength evaluation protocol following ACLR. The variables that were most commonly used were concentric/concentric mode of contraction (31 studies), angular velocity of 60°/s (29 studies), 3-5 repetitions (24 studies), range of motion of 0-90° (6 studies), and using gravity correction (9 studies). 8 studies reported strength limb symmetry index scores as part of their RTS criteria. There was no standardised isokinetic protocol following ACLR; isokinetic strength measures have not been validated as useful predictors of successful RTS. We propose a standard protocol to allow consistency of testing and accurate comparison of future research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
An extended discrete gradient formula for oscillatory Hamiltonian systems
International Nuclear Information System (INIS)
Liu Kai; Shi Wei; Wu Xinyuan
2013-01-01
In this paper, incorporating the idea of the discrete gradient method into the extended Runge–Kutta–Nyström integrator, we derive and analyze an extended discrete gradient formula for the oscillatory Hamiltonian system with the Hamiltonian H(p,q)= 1/2 p T p+ 1/2 q T Mq+U(q), where q:R→R d represents generalized positions, p:R→R d represents generalized momenta and M is an element of R dxd is a symmetric and positive semi-definite matrix. The solution of this system is a nonlinear oscillator. Basically, many nonlinear oscillatory mechanical systems with a partitioned Hamiltonian function lend themselves to this approach. The extended discrete gradient formula presented in this paper exactly preserves the energy H(p, q). We derive some properties of the new formula. The convergence is analyzed for the implicit schemes based on the discrete gradient formula, and it turns out that the convergence of the implicit schemes based on the extended discrete gradient formula is independent of ‖M‖, which is a significant property for the oscillatory Hamiltonian system. Thus, it transpires that a larger step size can be chosen for the new energy-preserving schemes than that for the traditional discrete gradient methods when applied to the oscillatory Hamiltonian system. Illustrative examples show the competence and efficiency of the new schemes in comparison with the traditional discrete gradient methods in the scientific literature. (paper)
Multivector field formulation of Hamiltonian field theories: equations and symmetries
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)
1999-12-03
We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)
Non-stoquastic Hamiltonians in quantum annealing via geometric phases
Vinci, Walter; Lidar, Daniel A.
2017-09-01
We argue that a complete description of quantum annealing implemented with continuous variables must take into account the non-adiabatic Aharonov-Anandan geometric phase that arises when the system Hamiltonian changes during the anneal. We show that this geometric effect leads to the appearance of non-stoquasticity in the effective quantum Ising Hamiltonians that are typically used to describe quantum annealing with flux qubits. We explicitly demonstrate the effect of this geometric non-stoquasticity when quantum annealing is performed with a system of one and two coupled flux qubits. The realization of non-stoquastic Hamiltonians has important implications from a computational complexity perspective, since it is believed that in many cases quantum annealing with stoquastic Hamiltonians can be efficiently simulated via classical algorithms such as Quantum Monte Carlo. It is well known that the direct implementation of non-stoquastic Hamiltonians with flux qubits is particularly challenging. Our results suggest an alternative path for the implementation of non-stoquasticity via geometric phases that can be exploited for computational purposes.
Wan, Zijian; Zhong, Longjie; Pan, Yuxiang; Li, Hongbo; Zou, Quchao; Su, Kaiqi; Wang, Ping
2017-01-01
A microplate method provides an efficient way to use modern detection technology. However, there are some difficulties concerning on-site detection, such as being non-portable and time-consuming. In this work, a novel portable microplate analyzer with a thermostatic chamber based on a smartphone was designed for rapid on-site detection. An analyzer with a wide-angle lens and an optical filter provides a proper environment for the microplate. A smartphone app-iPlate Monitor was used for RGB analyze of image. After a consistency experiment with a microtiter plate reader (MTPR), the normalized calibration curves were y = 0.7276x + 0.0243 (R 2 = 0.9906) and y = 0.3207x + 0.0094 (R 2 = 0.9917) with a BCA protein kit as well as y = 0.182x + 0.0134 (R 2 = 0.994) and y = 0.0674x + 0.0003 (R 2 = 0.9988) with a glucose kit. The times for obtaining the detection requirement were 15 and 10 min for the BCA protein kit and the glucose kit at 37°C; in contrast, it required more than 30 and 20 min at ambient temperature. Meanwhile, it also showed good repeatability for detections.
International Nuclear Information System (INIS)
Vite T, J.; Leon, C.C. de; Vite T, M.; Soto T, J.L.
2006-01-01
The purpose of this work was to evaluate the efficiency of lixiviation of heavy metals, using thermostatized columns and hazardous industrial residual wastes: those by the volume with which are generated and its high toxicity, its represent a great problem for it treatment and disposition, in this work a diagram of a pilot plant for extraction of heavy metals is included. The process and equipment were patented in United States and in Mexico. For the development of this study four thermostated columns were used that were coupled. The waste were finely milled and suspended in an aqueous pulp adding of 10 - 40gL -1 of mineral acid or sodium hydroxide until reaching an interval of pH of 2,5,7 and 10. Its were used of 4-10 gL -1 of a reducer agent and of 0.3-1.5 g of a surfactant agent. In some cases with this method was possible to remove until 100% of heavy metals. It was used Plasma Emission Spectroscopy to determine the concentrations of the cations in the lixiviation liquors. For studying the metallic alloys the X-ray diffraction technique was used. (Author)
Directory of Open Access Journals (Sweden)
Raphael Mendes Ritti Dias
2007-06-01
Full Text Available During a soccer match, countless movements involving muscular force are performed. While some studies have analyzed the force exerted by soccer players, their results have been divergent, particularly when force has been analyzed with respect to fi eld positions. The objective of this study was to compare peak torque, total muscular work, maximum power and isokinetic fatigue index of the knee fl exor and extensor muscles of soccer players in a variety of fi eld positions. Seventy-eight under-twenty soccer players were classifi ed according to the position they play: goalkeepers (n=7, full backs (n=14, wingers (n=16, defensive midfi elders (n=11, center midfi elders (n=14 and forwards (n=16. The concentric isokinetic force of knee fl exor and extensor muscles was evaluated using an isokinetic dynamometer, Cybex® brand Norm™ 6000 model (CSMI, USA. Data was analyzed in terms of non-parametric statistics and results expressed in medians and semi-interquartile range. The Kruskal-Wallis test was applied and when results were signifi cant to pRESUMO Durante uma partida de futebol são realizados inúmeros movimentos que envolvem a força muscular. Embora alguns estudos tenham analisado a força de jogadores de futebol, os resultados encontrados têm sido controversos, principalmente quando analisada a força em função da posição de jogo. O objetivo deste estudo foi comparar o pico de torque, trabalho muscular total, potência máxima e índice de fadiga isocinético dos músculos fl exores e extensores de joelho de jogadores de futebol que atuam em diferentes posições de jogo. Foram incluídos 78 atletas de futebol, pertencentes à categoria Sub-20, foram agrupados de acordo com a posição em campo de jogo: goleiros (n=7, zagueiros (n=14, laterais (n=16, volantes (n=11, meio campo (n=14 e atacantes (n=16. Foi realizada avaliação da força isocinética concêntrica dos músculos fl exores e extensores de joelho em dinamômetro isocin
DEFF Research Database (Denmark)
Helge, Eva Wulff; Melin, Anna; Waaddegaard, Mette
2012-01-01
Female endurance athletes suffering from low energy availability and reproductive hormonal disorders are at risk of low BMD. Muscle forces acting on bone may have a reverse site-specific effect. Therefore we wanted to test how BMD in female elite triathletes was associated to isokinetic peak torque...... (IPT) and reproductive hormone concentrations (RHC). A possible effect of oral contraceptives (OCON's) is taken into consideration....
Lee, Myungsun; Han, Gunsoo
2016-01-01
[Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subje...
Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.
1994-01-01
To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.
Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.
1994-01-01
To determine if daily isotonic exercise or isokinetic exercise training coupled with daily log proprioceptive training, would influence log proprioceptive tracking responses during Bed Rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a NO-Exercise (NOE) training control group (n = 5), and IsoTanic Exercise (ITE, n = 7) and IsoKinetic Exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min period / d, 5 d /week. Only the IKE group performed proprioceptive training using a now isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pro-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p less than 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9 +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.50, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both lsotonic exercise training (without additional propriaceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.
Croisier, J L; Camus, G; Deby-Dupont, G; Bertrand, F; Lhermerout, C; Crielaard, J M; Juchmès-Ferir, A; Deby, C; Albert, A; Lamy, M
1996-01-01
To address the question of whether delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of the arachidonic acid derived product prostaglandin E2 (PGE2). 10 healthy male subjects were submitted to eccentric and concentric isokinetic exercises on a Kin Trex device at 60 degrees/s angular velocity. Exercise consisted of 8 stages of 5 maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases. There was an interval of at least 30 days between eccentric and concentric testing, and the order of the two exercise sessions was randomly assigned. The subjective presence and intensity of DOMS was evaluated using a visual analogue scale, immediately, following 24 h and 48 h after each test. Five blood samples were drawn from an antecubital vein: at rest before exercise, immediately after, after 30 min recovery, 24 h and 48 h after the tests. The magnitude of the acute inflammatory response to exercise was assessed by measuring plasma levels of polymorphonuclear elastase ([EL]), myeloperoxidase ([MPO]) and PGE2 ([PGE2]). Using two way analysis of variance, it appeared that only eccentric exercise significantly increased [EL] and DOMS, especially of the hamstring muscles. Furthermore, a significant decrease in eccentric peak torque of this muscle group only was observed on day 2 after eccentric work (- 21%; P < 0.002). Serum activity of creatine kinase and serum concentration of myoglobin increased significantly 24 and 48 h after both exercise tests. However, these variables reached significantly higher values following eccentric contractions 48 h after exercise. Mean [PGE2] in the two exercise modes remained unchanged over time and were practically equal at each time point. On the basis of these findings, we conclude that the magnitude of polymorphonuclear (PMN) activation, muscle damage, and DOMS are greater after eccentric than after concentric muscle
Seasonal variation in isokinetic strength of knee flexors and extensors in soccer players
Directory of Open Access Journals (Sweden)
Michal Lehnert
2015-06-01
Full Text Available BACKGROUND: Muscle strength is an important factor in soccer from the performance and health perspective. There is a lack of knowledge about changes in muscle strength of the knee flexors and extensors and their ratios during annual training cycle. OBJECTIVES: The aim of this study was to evaluate the seasonal variability of the observed parameters of isokinetic strength of the knee flexors and extensors in soccer players, U19, from the performance and health perspective. METHODS: The strength of the knee flexors and extensors was measured in players U19 category (n = 9; the average age 18.5 ±0.4 years on the isokinetic dynamometer IsoMed 2000 in angular velocity 60° × s-1. Measurement was performed in concentric/concentric and excentric/excentric mode of muscle action at the beginning of the winter preparatory period, at the end of the preparatory period and at the end of the spring competitive period. Monitored parameters were absolute peak torque (PT, conventional H/Q ratio (H/QCON, functional H/Q ratio (H/QFUN and functional H/Q ratio in range 10-30° of knee flexion (H/QFUN_10-30. RESULTS: Significant change in PT (p < .05 was noted only in cases of the knee extensors of the nondominant leg in the concentric mode. The evaluation of imbalance of the knee flexors and extensors by H/QCON and H/QFUN ratios did not show any significant changes, but there was found a significant decrease of the H/QFUN_10-30 ratio in the dominant leg between measurements at the beginning and at the end of the winter preparatory period. CONCLUSIONS: The results of the current study indicate that throughout the monitored periods of the annual training cycle desirable changes in knee flexors and extensors strength did not occur. The values suggest the disruption of the dynamic stabilization of the knee joint and increase in injury risk. Diﬀerent dynamics of the three observed ratios confirmed that they provide diﬀerent information about the physical fitness of
Gender Differences in Isokinetic Strength after 60 and 90 d Bed Rest
English, K. L.; Ploutz-Snyder, R. J.; Cromwell, R. L.; Ploutz-Snyder, L. L.
2010-01-01
Recent reports suggest that changes in muscle strength following disuse may differ between males and females. PURPOSE: To examine potential gender differences in strength changes following 60 and 90 d of experimental bed rest. METHODS: Isokinetic extensor and flexor strength of the knee (60deg and 180deg/s, concentric only), ankle (30deg/s, concentric and eccentric), and trunk (60deg/s, concentric only) were measured following 60 d (males: n=4, 34.5+/-9.6 y; females: n=4, 35.5+/-8.2 y) and 90 d (males: n=10, 31.4+/-4.8 y; females: n=5, 37.6+/-9.9 y) of 6-degree head-down-tilt bed rest (BR; N=23). Subjects were fed a controlled diet (55%/15%/ 30%, CHO/PRO/FAT) that maintained body weight within 3% of the weight recorded on Day 3 of bed rest. After a familiarization session, testing was conducted 6 d before BR and 2 d after BR completion. Peak torque and total work were calculated for the tests performed. To allow us to combine data from both 60- and 90-d subjects, we used a mixed-model statistical analysis in which time and gender were fixed effects and bed rest duration was a random effect. Log-transformations of strength measures were utilized when necessary in order to meet statistical assumptions. RESULTS: Main effects were seen for both time and gender (p<0.05), showing decreased strength in response to bed rest for both males and females, and males stronger than females for most strength measures. Only one interaction effect was observed: females exhibited a greater loss of trunk extensor peak torque at 60 d versus pre-BR, relative to males (p=0.004). CONCLUSION: Sixty and 90 d of BR induced significant losses in isokinetic muscle strength of the locomotor and postural muscles of the knee, ankle, and trunk. Although males were stronger than females for most of the strength measures that we examined, only changes in trunk extensor peak torque were greater for females than males at day 60 of bed rest
Felicetti, G; Avanza, F; Fiori, M; Brignoli, E; Rovescala, R
1996-01-01
The knee is a common site for injuries of the cartilage, capsule and ligament, which calls for the use of noninvasive techniques to assess injury severity properly and to plan adequate rehabilitation. Our study was aimed at comparing MR with isokinetic findings. To this purpose, 40 patients were examined; they were all affected with chondromalacia patellae, grades I-III, previously diagnosed at arthroscopy. Namely, 8 patients had grade I and 32 grades II and III chondromalacia. After MR and isokinetic exams, all patients were submitted to a standardized rehabilitation program. Our results indicate a marked decrease in quadriceps strength, especially in the most severe cases; in less severe cases, recovery was complete at 6 months, while the deficit remained in grades II and III injuries. MR yield was not relevant in 4 of 8 cases, while isokinetic findings were negative in one case. Both methods were positive in the most severe cases. At 6 months, both functional and MR findings were normal in grade I injuries, while some alterations remained in the others.
Maurelli, Olivier; Bernard, Pierre L; Dubois, Romain; Ahmaidi, Said; Prioux, Jacques
2018-05-25
Maurelli, O, Bernard, PL, Dubois, R, Ahmaidi, S, and Prioux, J. Effects of the competitive season on the isokinetic muscle parameters changes in world-class handball players. J Strength Cond Res XX(X): 000-000, 2018-The aim of this study is to investigate the effects of the competitive season on isokinetic muscular parameters of the lower limbs in world-class handball players. Nineteen, male, world-class, handball players (age, 26.6 ± 5.4 years) participated in the study. Two bilateral isokinetic tests of knee joint flexors (H; hamstring) and extensors (Q; quadriceps) were performed in the beginning and end of the competitive season to determine the peak torque (PT), the mean power, and agonist-antagonist ratio, dominant-nondominant ratio (DNDR), and combined ratio. The results showed a significant decrease in PT values at low angular velocity (60°·s) in concentric mode for Q on dominant leg (p handball players. Accordingly, this study should help trainers to modify their planning to maximize strength and power qualities of the lower limbs of their players in addition to avoiding injuries.
Felicio, Diogo Carvalho; Pereira, Daniele Sirineu; Assumpção, Alexandra Miranda; de Jesus-Moraleida, Fabianna Resende; de Queiroz, Barbara Zille; da Silva, Juscelio Pereira; de Brito Rosa, Naysa Maciel; Dias, João Marcos Domingues; Pereira, Leani Souza Máximo
2014-01-01
To investigate the correlation between handgrip strength and performance of knee flexor and extensor muscles determined using an isokinetic dynamometer in community-dwelling elderly women. This was a cross-sectional study. Sample selection for the study was made by convenience, and 221 (71.07 ± 4.93 years) community-dwelling elderly women were included. Knee flexor and extensor muscle performance was measured using an isokinetic dynamometer Biodex System 3 Pro. The isokinetic variables chosen for analysis were peak torque, peak torque/bodyweight, total work/bodyweight, total work, average power, and agonist/antagonist ratio at the angular velocities of 60°/s and 180°/s. Assessment of handgrip strength was carried out using the Jamar dynamometer. Spearman's correlation coefficient was calculated to identify intervariable correlations. Only knee flexor peak torque (60°/s) and average power (60°/s), and knee extensor peak torque (180°/s) and total work (180°/s) were significantly (P women. © 2013 Japan Geriatrics Society.
Lee, Myungsun; Han, Gunsoo
2016-04-01
[Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes.
Effective Hamiltonian for protected edge states in graphene
International Nuclear Information System (INIS)
Winkler, R.; Deshpande, H.
2017-01-01
Edge states in topological insulators (TIs) disperse symmetrically about one of the time-reversal invariant momenta Λ in the Brillouin zone (BZ) with protected degeneracies at Λ. Commonly TIs are distinguished from trivial insulators by the values of one or multiple topological invariants that require an analysis of the bulk band structure across the BZ. We propose an effective two-band Hamiltonian for the electronic states in graphene based on a Taylor expansion of the tight-binding Hamiltonian about the time-reversal invariant M point at the edge of the BZ. This Hamiltonian provides a faithful description of the protected edge states for both zigzag and armchair ribbons, though the concept of a BZ is not part of such an effective model. In conclusion, we show that the edge states are determined by a band inversion in both reciprocal and real space, which allows one to select Λ for the edge states without affecting the bulk spectrum.
Cluster expansion for ground states of local Hamiltonians
Directory of Open Access Journals (Sweden)
Alvise Bastianello
2016-08-01
Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Hamiltonian approach to second order gauge invariant cosmological perturbations
Domènech, Guillem; Sasaki, Misao
2018-01-01
In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.
Riemannian geometry of Hamiltonian chaos: hints for a general theory.
Cerruti-Sola, Monica; Ciraolo, Guido; Franzosi, Roberto; Pettini, Marco
2008-10-01
We aim at assessing the validity limits of some simplifying hypotheses that, within a Riemmannian geometric framework, have provided an explanation of the origin of Hamiltonian chaos and have made it possible to develop a method of analytically computing the largest Lyapunov exponent of Hamiltonian systems with many degrees of freedom. Therefore, a numerical hypotheses testing has been performed for the Fermi-Pasta-Ulam beta model and for a chain of coupled rotators. These models, for which analytic computations of the largest Lyapunov exponents have been carried out in the mentioned Riemannian geometric framework, appear as paradigmatic examples to unveil the reason why the main hypothesis of quasi-isotropy of the mechanical manifolds sometimes breaks down. The breakdown is expected whenever the topology of the mechanical manifolds is nontrivial. This is an important step forward in view of developing a geometric theory of Hamiltonian chaos of general validity.
Intertwined Hamiltonians in two-dimensional curved spaces
International Nuclear Information System (INIS)
Aghababaei Samani, Keivan; Zarei, Mina
2005-01-01
The problem of intertwined Hamiltonians in two-dimensional curved spaces is investigated. Explicit results are obtained for Euclidean plane, Minkowski plane, Poincare half plane (AdS 2 ), de Sitter plane (dS 2 ), sphere, and torus. It is shown that the intertwining operator is related to the Killing vector fields and the isometry group of corresponding space. It is shown that the intertwined potentials are closely connected to the integral curves of the Killing vector fields. Two problems are considered as applications of the formalism presented in the paper. The first one is the problem of Hamiltonians with equispaced energy levels and the second one is the problem of Hamiltonians whose spectrum is like the spectrum of a free particle
NATO Advanced Study Institute on Hamiltonian Dynamical Systems and Applications
2008-01-01
Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical systems on finite dimensional phase space as in classical mechanics, or partial differential equations (PDE) which are naturally of infinitely many degrees of freedom. This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems as well as the theory of Hamiltonian systems in infinite dimensional phase space; these are described in depth in this volume. Applications are also presented to several important areas of research, including problems in classical mechanics, continu...
Lie transforms and their use in Hamiltonian perturbation theory
International Nuclear Information System (INIS)
Cary, J.R.
1978-06-01
A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here
Directory of Open Access Journals (Sweden)
Rudowicz Czesław
2015-07-01
Full Text Available The interface between optical spectroscopy, electron magnetic resonance (EMR, and magnetism of transition ions forms the intricate web of interrelated notions. Major notions are the physical Hamiltonians, which include the crystal field (CF (or equivalently ligand field (LF Hamiltonians, and the effective spin Hamiltonians (SH, which include the zero-field splitting (ZFS Hamiltonians as well as to a certain extent also the notion of magnetic anisotropy (MA. Survey of recent literature has revealed that this interface, denoted CF (LF ↔ SH (ZFS, has become dangerously entangled over the years. The same notion is referred to by three names that are not synonymous: CF (LF, SH (ZFS, and MA. In view of the strong need for systematization of nomenclature aimed at bringing order to the multitude of different Hamiltonians and the associated quantities, we have embarked on this systematization. In this article, we do an overview of our efforts aimed at providing a deeper understanding of the major intricacies occurring at the CF (LF ↔ SH (ZFS interface with the focus on the EMR-related problems for transition ions.
Blocking Radial Diffusion in a Double-Waved Hamiltonian Model
International Nuclear Information System (INIS)
Martins, Caroline G L; De Carvalho, R Egydio; Marcus, F A; Caldas, I L
2011-01-01
A non-twist Hamiltonian system perturbed by two waves with particular wave numbers can present Robust Tori, barriers created by the vanishing of the perturbing Hamiltonian at some defined positions. When Robust Tori exist, any trajectory in phase space passing close to them is blocked by emergent invariant curves that prevent the chaotic transport. We analyze the breaking up of the RT as well the transport dependence on the wave numbers and on the wave amplitudes. Moreover, we report the chaotic web formation in the phase space and how this pattern influences the transport.
Some sufficient conditions for Hamiltonian property in terms of ...
Indian Academy of Sciences (India)
[1, D], or Wf (G) ≥ f (1). 2 n2 + [f(2) − 3. 2 f(1)]n − 2[f(2) − f(1)] for a monotonically decreasing function f(x) on x ∈ [1, D], then G is Hamiltonian, unless G ∼= K∗ n or K2∨3K1. Proof. Assume that G is not a Hamiltonian graph with degree sequence (d1,d2,...,dn), where d1 ≤ d2 ≤ ··· ≤ dn and n ≥ 3. By Lemma 1, there is a ...
Painlevé IV Hamiltonian systems and coherent states
International Nuclear Information System (INIS)
Bermudez, D; Contreras-Astorga, A; Fernández C, D J
2015-01-01
Schrödinger Hamiltonians with third-order differential ladder operators are linked to the Painlevé IV equation. Some of these appear from applying SUSY QM to the harmonic oscillator. Departing from them, we will build coherent states as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the third-order ladder operators, and finally as displaced extremal states using linearized ladder operators. To each Hamiltonian corresponds two families of coherent states for fixed ladder operators: one in the infinite dimension subspace associated with the oscillator spectrum and another in the finite dimension one generated by the eigenstates created by SUSY QM. (paper)
Noether symmetries and integrability in time-dependent Hamiltonian mechanics
Directory of Open Access Journals (Sweden)
Jovanović Božidar
2016-01-01
Full Text Available We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.
Topological color codes and two-body quantum lattice Hamiltonians
Kargarian, M.; Bombin, H.; Martin-Delgado, M. A.
2010-02-01
Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan-Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the
Necessary conditions for super-integrability of Hamiltonian systems
Energy Technology Data Exchange (ETDEWEB)
Maciejewski, Andrzej J. [Institute of Astronomy, University of Zielona Gora, Podgorna 50, PL-65-246 Zielona Gora (Poland)], E-mail: maciejka@astro.ia.uz.zgora.pl; Przybylska, Maria [Torun Centre for Astronomy, N. Copernicus University, Gagarina 11, PL-87-100 Torun (Poland)], E-mail: maria.przybylska@astri.uni.torun.pl; Yoshida, Haruo [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, 181-8588 Tokyo (Japan)], E-mail: h.yoshida@nao.ac.jp
2008-08-18
We formulate a general theorem which gives a necessary condition for the maximal super-integrability of a Hamiltonian system. This condition is expressed in terms of properties of the differential Galois group of the variational equations along a particular solution of the considered system. An application of this general theorem to natural Hamiltonian systems of n degrees of freedom with a homogeneous potential gives easily computable and effective necessary conditions for the super-integrability. To illustrate an application of the formulated theorems, we investigate: three known families of integrable potentials, and the three body problem on a line.
A progressive diagonalization scheme for the Rabi Hamiltonian
International Nuclear Information System (INIS)
Pan, Feng; Guan, Xin; Wang, Yin; Draayer, J P
2010-01-01
A diagonalization scheme for the Rabi Hamiltonian, which describes a qubit interacting with a single-mode radiation field via a dipole interaction, is proposed. It is shown that the Rabi Hamiltonian can be solved almost exactly using a progressive scheme that involves a finite set of one variable polynomial equations. The scheme is especially efficient for the lower part of the spectrum. Some low-lying energy levels of the model with several sets of parameters are calculated and compared to those provided by the recently proposed generalized rotating-wave approximation and a full matrix diagonalization.
A Class of Quasi-exact Solutions of Rabi Hamiltonian
International Nuclear Information System (INIS)
Pan Feng; Yao Youkun; Xie Mingxia; Han Wenjuan; Draayer, J.P.
2007-01-01
A class of quasi-exact solutions of the Rabi Hamiltonian, which describes a two-level atom interacting with a single-mode radiation field via a dipole interaction without the rotating-wave approximation, are obtained by using a wavefunction ansatz. Exact solutions for part of the spectrum are obtained when the atom-field coupling strength and the field frequency satisfy certain relations. As an example, the lowest exact energy level and the corresponding atom-field entanglement at the quasi-exactly solvable point are calculated and compared to results from the Jaynes-Cummings and counter-rotating cases of the Rabi Hamiltonian.
Phase transition in the non-degenerate Hubbard Hamiltonian
International Nuclear Information System (INIS)
Chaves, C.M.; Lederer, P.; Gomes, A.A.
1976-01-01
Phase transition in the isotropic non-degenerate Hubbard Hamiltonian within the renormalization group techniques, using the epsilon = 4 - d expansion to first order in epsilon, is studied. The functional obtained from the Hubbard Hamiltonian displays full rotation symmetry and describes two coupled fields: a vector spin field, with n components and a non-soft scalar charge field. The possibility of tricritical behavior then emerges. The effects of simple constraints imposed on the charge field is considered. The relevance of the coupling between the fields in producing Fisher renormalization of the critical exponents is discussed. The possible singularities introduced in the charge-charge correlation function by the coupling are also discussed
Additional integrals of the motion of classical Hamiltonian wave systems
International Nuclear Information System (INIS)
Shul'man, E.I.
1989-01-01
It is shown that a classical Hamiltonian wave system that possesses at least one additional integral of the motion with quadratic principal part has an infinite number of such integrals in the cases of both nondegenerate and degenerate dispersion laws. Conditions under which in a space of dimension d ≥ 2 a system with nondegenerate dispersion law is completely integratable and its Hamiltonian can be reduced to normal form are found. In the case of a degenerate dispersion law integrals are not sufficient for complete integrability
Floquet-Green function formalism for harmonically driven Hamiltonians
International Nuclear Information System (INIS)
Martinez, D F
2003-01-01
A method is proposed for the calculation of the Floquet-Green function of a general Hamiltonian with harmonic time dependence. We use matrix continued fractions to derive an expression for the 'dynamical effective potential' that can be used to calculate the Floquet-Green function of the system. We demonstrate the formalism for the simple case of a space-periodic (in the tight-binding approximation) Hamiltonian with a defect whose on-site energy changes harmonically with time. We study the local density of states for this system and the behaviour of the localized states as a function of the different parameters that characterize the system
Divide and conquer approach to quantum Hamiltonian simulation
Hadfield, Stuart; Papageorgiou, Anargyros
2018-04-01
We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.
Hamiltonian formulation of QCD in the Schwinger gauge
International Nuclear Information System (INIS)
Schutte, D.
1989-01-01
The structure of the Hamiltonian related to a regularized non-Abelian gauge field theory is discussed in the light of different choices for gauge-invariant wave functionals (loop space, Coulomb, axial, Schwinger gauge). Arguments are given for the suggestion that the Schwinger gauge offers a specially suited framework for the computation of bound-state (hadron) properties. The most important reasons are the manifest rotation invariance, the lack of a Gribov horizon (giving standard many-body techniques a better chance), and the fact that a regularization analogous to the lattice regularization is easily implementable. Some details of the Schwinger-gauge Hamiltonian theory are discussed
Scattering theory of infrared divergent Pauli-Fierz Hamiltonians
Derezinski, J
2003-01-01
We consider in this paper the scattering theory of infrared divergent massless Pauli-Fierz Hamiltonians. We show that the CCR representations obtained from the asymptotic field contain so-called {\\em coherent sectors} describing an infinite number of asymptotically free bosons. We formulate some conjectures leading to mathematically well defined notion of {\\em inclusive and non-inclusive scattering cross-sections} for Pauli-Fierz Hamiltonians. Finally we give a general description of the scattering theory of QFT models in the presence of coherent sectors for the asymptotic CCR representations.
The detectability lemma and its applications to quantum Hamiltonian complexity
International Nuclear Information System (INIS)
Aharonov, Dorit; Arad, Itai; Vazirani, Umesh; Landau, Zeph
2011-01-01
Quantum Hamiltonian complexity, an emerging area at the intersection of condensed matter physics and quantum complexity theory, studies the properties of local Hamiltonians and their ground states. In this paper we focus on a seemingly specialized technical tool, the detectability lemma (DL), introduced in the context of the quantum PCP challenge (Aharonov et al 2009 arXiv:0811.3412), which is a major open question in quantum Hamiltonian complexity. We show that a reformulated version of the lemma is a versatile tool that can be used in place of the celebrated Lieb-Robinson (LR) bound to prove several important results in quantum Hamiltonian complexity. The resulting proofs are much simpler, more combinatorial and provide a plausible path toward tackling some fundamental open questions in Hamiltonian complexity. We provide an alternative simpler proof of the DL that removes a key restriction in the original statement (Aharonov et al 2009 arXiv:0811.3412), making it more suitable for the broader context of quantum Hamiltonian complexity. Specifically, we first use the DL to provide a one-page proof of Hastings' result that the correlations in the ground states of gapped Hamiltonians decay exponentially with distance (Hastings 2004 Phys. Rev. B 69 104431). We then apply the DL to derive a simpler and more intuitive proof of Hastings' seminal one-dimensional (1D) area law (Hastings 2007 J. Stat. Mech. (2007) P8024) (both these proofs are restricted to frustration-free systems). Proving the area law for two and higher dimensions is one of the most important open questions in the field of Hamiltonian complexity, and the combinatorial nature of the DL-based proof holds out hope for a possible generalization. Indeed, soon after the first publication of the methods presented here, they were applied to derive exponential improvements to Hastings' result (Arad et al 2011, Aharonov et al 2011) in the case of frustration-free 1D systems. Finally, we also provide a more general
The intrinsic stochasticity of near-integrable Hamiltonian systems
Energy Technology Data Exchange (ETDEWEB)
Krlin, L [Ceskoslovenska Akademie Ved, Prague (Czechoslovakia). Ustav Fyziky Plazmatu
1989-09-01
Under certain conditions, the dynamics of near-integrable Hamiltonian systems appears to be stochastic. This stochasticity (intrinsic stochasticity, or deterministic chaos) is closely related to the Kolmogorov-Arnold-Moser (KAM) theorem of the stability of near-integrable multiperiodic Hamiltonian systems. The effect of the intrinsic stochasticity attracts still growing attention both in theory and in various applications in contemporary physics. The paper discusses the relation of the intrinsic stochasticity to the modern ergodic theory and to the KAM theorem, and describes some numerical experiments on related astrophysical and high-temperature plasma problems. Some open questions are mentioned in conclusion. (author).
Hamiltonian models for the Madelung fluid and generalized Langevin equations
International Nuclear Information System (INIS)
Nonnenmacher, T.F.
1985-01-01
We present a Hamiltonian formulation of some type of an 'electromagnetic' Madelung fluid leading to a fluid mechanics interpretation of the Aharonov-Bohm effect and to a subsidary condition to be required in order to make the correspondence between Schroedinger's quantum mechanics and Madelung's fluid mechanics unique. Then we discuss some problems related with the Brownian oscillator. Our aim is to start out with a Hamiltonian for the composite system with surrounding heat bath) and to finally arrive at a stochastic differential equation with completely determined statistical properties. (orig./HSI)
Continuum-time Hamiltonian for the Baxter's model
International Nuclear Information System (INIS)
Libero, V.L.
1983-01-01
The associated Hamiltonian for the symmetric eight-vertex model is obtained by taking the time-continuous limit in an equivalent Ashkin-Teller model. The result is a Heisenberg Hamiltonian with coefficients J sub(x), J sub(y) and J sub(z) identical to those found by Sutherland for choices of the parameters a, b, c and d that bring the model close to the transition. The change in the operators is accomplished explicitly, the relation between the crossover operator for the Ashkin-Teller model and the energy operator for the eight-vertex model being obtained in a transparent form. (Author) [pt
Quantum-circuit model of Hamiltonian search algorithms
International Nuclear Information System (INIS)
Roland, Jeremie; Cerf, Nicolas J.
2003-01-01
We analyze three different quantum search algorithms, namely, the traditional circuit-based Grover's algorithm, its continuous-time analog by Hamiltonian evolution, and the quantum search by local adiabatic evolution. We show that these algorithms are closely related in the sense that they all perform a rotation, at a constant angular velocity, from a uniform superposition of all states to the solution state. This makes it possible to implement the two Hamiltonian-evolution algorithms on a conventional quantum circuit, while keeping the quadratic speedup of Grover's original algorithm. It also clarifies the link between the adiabatic search algorithm and Grover's algorithm
Constraints and Hamiltonian in light-front quantized field theory
International Nuclear Information System (INIS)
Srivastava, P.P.
1993-01-01
Self-consistent hamiltonian formulation of scalar theory on the null plane is constructed and quantized following the Dirac procedure. The theory contains also constraint equations which would give, if solved, to a nonlocal Hamiltonian. In contrast to the equal-time formulation we obtain a different description of the spontaneous symmetry breaking in the continuum and the symmetry generators are found to annihilate the light-front vacuum. Two examples are given where the procedure cannot be applied self-consistently. The corresponding theories are known to be ill-defined from the equal-time quantization. (author)
Useful forms of the Hamiltonian for ion-optical systems
International Nuclear Information System (INIS)
Davies, W.G.
1991-04-01
The symbiosis of differential algebra and the Lie-algebraic formulation of optics provides a set of very powerful tools for analyzing and understanding the orbit dynamics of complex accelerators up to very high orders. In order to use these tools effectively it is usually necessary to express the Hamiltonian in the appropriate coordinate system. In this report, the relativistic Hamiltonian is derived in curvilinear (the fundamental coordinate system for ion-optics), Cartesian and polar coordinates, in forms suitable for solving problems in ion optics and accelerator physics both with and without the help of differential algebra
van Dyk, Nicol; Bahr, Roald; Whiteley, Rodney; Tol, Johannes L; Kumar, Bhavesh D; Hamilton, Bruce; Farooq, Abdulaziz; Witvrouw, Erik
2016-07-01
A hamstring strain injury (HSI) has become the most common noncontact injury in soccer. Isokinetic muscle strength deficits are considered a risk factor for HSIs. However, underpowered studies with small sample sizes unable to determine small associations have led to inconclusive results regarding the role of isokinetic strength and strength testing in HSIs. To examine whether differences in isokinetic strength measures of knee flexion and extension represent risk factors for hamstring injuries in a large cohort of professional soccer players in an adequately powered study design. Cohort study; Level of evidence, 2. A total of 614 professional soccer players from 14 teams underwent isokinetic strength testing during preseason screening. Testing consisted of concentric knee flexion and extension at 60 deg/s and 300 deg/s and eccentric knee extension at 60 deg/s. A clustered multiple logistic regression analysis was used to identify variables associated with the risk of HSIs. Receiver operating characteristic (ROC) curves were calculated to determine sensitivity and specificity. Of the 614 players, 190 suffered an HSI during the 4 seasons. Quadriceps concentric strength at 60 deg/s (odds ratio [OR], 1.41; 95% CI, 1.03-1.92; P = .03) and hamstring eccentric strength at 60 deg/s (OR, 1.37; 95% CI, 1.01-1.85; P = .04) adjusted for bodyweight were independently associated with the risk of injuries. The absolute differences between the injured and uninjured players were 6.9 N·m and 9.1 N·m, with small effect sizes (d hamstring eccentric strength, respectively, indicating a failed combined sensitivity and specificity of the 2 strength variables identified in the logistic regression models. This study identified small absolute strength differences and a wide overlap of the absolute strength measurements at the group level. The small associations between lower hamstring eccentric strength and lower quadriceps concentric strength with HSIs can only be considered as weak
Sierra-Guzmán, Rafael; Jiménez, Fernando; Abián-Vicén, Javier
2018-05-01
Previous studies have reported the factors contributing to chronic ankle instability, which could lead to more effective treatments. However, factors such as the reflex response and ankle muscle strength have not been taken into account in previous investigations. Fifty recreational athletes with chronic ankle instability and 55 healthy controls were recruited. Peroneal reaction time in response to sudden inversion, isokinetic evertor muscle strength and dynamic balance with the Star Excursion Balance Test and the Biodex Stability System were measured. The relationship between the Cumberland Ankle Instability Tool score and performance on each test was assessed and a backward multiple linear regression analysis was conducted. Participants with chronic ankle instability showed prolonged peroneal reaction time, poor performance in the Biodex Stability System and decreased reach distance in the Star Excursion Balance Test. No significant differences were found in eversion and inversion peak torque. Moderate correlations were found between the Cumberland Ankle Instability Tool score and the peroneal reaction time and performance on the Star Excursion Balance Test. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test accounted for 36% of the variance in the Cumberland Ankle Instability Tool. Dynamic balance deficits and delayed peroneal reaction time are present in participants with chronic ankle instability. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test were the main contributing factors to the Cumberland Ankle Instability Tool score. No clear strength impairments were reported in unstable ankles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Isokinetic profile of elbow flexion and extension strength in elite junior tennis players.
Ellenbecker, Todd S; Roetert, E Paul
2003-02-01
Descriptive study. To determine whether bilateral differences exist in concentric elbow flexion and extension strength in elite junior tennis players. The repetitive nature of tennis frequently produces upper extremity overuse injuries. Prior research has identified tennis-specific strength adaptation in the dominant shoulder and distal upper extremity musculature of elite players. No previous study has addressed elbow flexion and extension strength. Thirty-eight elite junior tennis players were bilaterally tested for concentric elbow flexion and extension muscle performance on a Cybex 6000 isokinetic dynamometer at 90 degrees/s, 210 degrees/s, and 300 degrees/s. Repeated-measures ANOVAs were used to test for differences between extremities, muscle groups, and speed. Significantly greater (Pelbow extension peak torque values were measured at 90 degrees/s, 210 degrees/s, and 300 degrees/s for males. Significantly greater (Pelbow flexion muscular performance in males and for elbow flexion or extension peak torque and single-repetition work values in females. No significant difference between extremities was measured in elbow flexion/extension strength ratios in females and significant differences between extremities in this ratio were only present at 210 degrees/s in males (Pelbow in male elite junior tennis players but not females. These data have ramifications for clinicians rehabilitating upper extremity injuries in patients from this population.
Adaptation of the DP 50 dust meter for measuring dust content under isokinetic conditions
Energy Technology Data Exchange (ETDEWEB)
Vitek, J.; Novak, L.
1985-03-01
The DP 50 dust meter, developed by the Scientific Coal Research Institute Ostrava-Radvanice, is used for measuring dust content in the air in underground coal mines. Two versions of the system are used: a type developed in 1970 which is placed in a vertical position and used to measure the content of respirable coal particles in the air; and a type developed in 1983 for isokinetic measurement of dust content in the air. The latter is equipped with 8 cone-shaped adapters (with differing size and dimensions of the cone inlet adjusted to air flow rates from 0.25 to 8.00 m/s). Specifications of the 8 adapters are given in a table. The 1983 version of the DP 50 is placed in a horizontal position with the dust meter axis parallel to the direction of air flow ventilating a mine working. Recommendations for installation of dust meters in underground workings and effects of installation on measurement accuracy are discussed. 16 references.
Directory of Open Access Journals (Sweden)
C. Mucha
2009-01-01
Full Text Available The effects of a three-week isokinetic training compared to typical proprio -ceptive training on parameters of strength, movement and gait function after acute ankle ligament sprain were investigated. Thirty-nine patients were randomly allocated to two comparison groups. In group 1 (n=20a proprioceptive training and in group 2 (n=19 an isokinetic strength training (Cybex 6000® were administered. Thepatients of both groups underwent training five times a week for three weeks. Before and at the end of the treatmentcourse, in both groups isokinetic strength was tested, the range of motion in the ankle joint was recorded and gait wasanalyzed (multicomponent strength measurement platform, Henschel-System®. The maximum isokinetic torque(60°/s [Nm] and the contact time (monopedal support time of the injured leg during gait cycle were the basis for evaluation.The data obtained show that in group 2 a significantly greater increase of the maximum isokinetic torque wasattained in almost all range of motion of the ankle joint in the course of treatment. A t the same time, in group 2 theshortening of the contact time in the stance phase of the injured leg could be compensated. The active range of motionin the ankle joint was less at the end of treatment in group 2 than in group 1. The isokinetic training obviously did notonly lead to better strength regeneration, but also to a functionally more stable ankle joint with a rhythmically moreevenly balanced stance phase of the gait cycle. These results suggest that the used isokinetic training had positive effects on functional stability after acute ankle sprain.
Sattler, Tine; Sekulic, Damir; Esco, Michael R; Mahmutovic, Ifet; Hadzic, Vedran
2015-09-01
Isokinetic-knee-strength was hypothesized to be an important factor related to jumping performance. However, studies examining this relation among elite female athletes and sport-specific jumps are lacking. This investigation determined the influence of isokinetic-knee flexor/extensor strength measures on spike-jump (offensive) and block-jump (defensive) performance among high-level female volleyball players. Cross-sectional laboratory study. Eighty-two female volleyball athletes (age = 21.3 ± 3.8 years, height = 175.4 ± 6.76 cm, and weight = 68.29 ± 8.53 kg) volunteered to participate in this study. The studied variables included spike-jump and block-jump performance and a set of isokinetic tests to evaluate the eccentric and concentric strength capacities of the knee extensors (quadriceps - Q), and flexors (hamstring - H) for both legs. Both jumping tests showed high intra-session reliability (ICC of 0.87 and 0.95 for spike-jump and block-jump, respectively). The athletes were clustered into three achievement-groups based on their spike-jump and block-jump performances. For the block-jump, ANOVA identified significant differences between achievement-groups for all isokinetic variables except the Right-Q-Eccentric-Strength. When observed for spike-jump, achievement-groups differed significantly in all tests but Right-H-Concentric-Strength. Discriminant canonical analysis showed that the isokinetic-strength variables were more associated with block-jump then spike-jump-performance. The eccentric isokinetic measures were relatively less important determinants of block-jump than for the spike-jump performance. Data support the hypothesis of the importance of isokinetic strength measures for the expression of rapid muscular performance in volleyball. The results point to the necessity of the differential approach in sport training for defensive and offensive duties. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Frederik Ruelens
2015-08-01
Full Text Available The conventional control paradigm for a heat pump with a less efficient auxiliary heating element is to keep its temperature set point constant during the day. This constant temperature set point ensures that the heat pump operates in its more efficient heat-pump mode and minimizes the risk of activating the less efficient auxiliary heating element. As an alternative to a constant set-point strategy, this paper proposes a learning agent for a thermostat with a set-back strategy. This set-back strategy relaxes the set-point temperature during convenient moments, e.g., when the occupants are not at home. Finding an optimal set-back strategy requires solving a sequential decision-making process under uncertainty, which presents two challenges. The first challenge is that for most residential buildings, a description of the thermal characteristics of the building is unavailable and challenging to obtain. The second challenge is that the relevant information on the state, i.e., the building envelope, cannot be measured by the learning agent. In order to overcome these two challenges, our paper proposes an auto-encoder coupled with a batch reinforcement learning technique. The proposed approach is validated for two building types with different thermal characteristics for heating in the winter and cooling in the summer. The simulation results indicate that the proposed learning agent can reduce the energy consumption by 4%–9% during 100 winter days and by 9%–11% during 80 summer days compared to the conventional constant set-point strategy.
Naz, Rehana; Naeem, Imran
2018-03-01
The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.
Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations
DEFF Research Database (Denmark)
Nam, Phan Thanh; Napiorkowski, Marcin; Solovej, Jan Philip
2016-01-01
We provide general conditions for which bosonic quadratic Hamiltonians on Fock spaces can be diagonalized by Bogoliubov transformations. Our results cover the case when quantum systems have infinite degrees of freedom and the associated one-body kinetic and paring operators are unbounded. Our...
The Electromagnetic Dipole Radiation Field through the Hamiltonian Approach
Likar, A.; Razpet, N.
2009-01-01
The dipole radiation from an oscillating charge is treated using the Hamiltonian approach to electrodynamics where the concept of cavity modes plays a central role. We show that the calculation of the radiation field can be obtained in a closed form within this approach by emphasizing the role of coherence between the cavity modes, which is…
Measure synchronization in a coupled Hamiltonian associated with ...
African Journals Online (AJOL)
We report here, the existence of measure synchronization (MS) in a coupled Hamiltonian system associated with the motion of particles in a periodic potential of the pendulum type. We show that the oscillators can assume chaotic MS stares vis quasiperiodic measure desynchrononized state. In the chaotic MS state, the ...
Approximate first integrals of a chaotic Hamiltonian system | Unal ...
African Journals Online (AJOL)
Approximate first integrals (conserved quantities) of a Hamiltonian dynamical system with two-degrees of freedom which arises in the modeling of galaxy have been obtained based on the approximate Noether symmetries for the resonance ω1 = ω2. Furthermore, Kolmogorov-Arnold-Moser (KAM) curves have been ...
Periodic Hamiltonian hierarchies and non-uniqueness of ...
Indian Academy of Sciences (India)
2016-12-02
Dec 2, 2016 ... Ca. 1. Introduction. Through the past few decades, research in supersym- ... The subject of periodic Hamiltonians has been exam- ined for a long time ... The plan of this paper is as follows: In §2, a brief resume of SUSYQM is ...
Nuclear properties with realistic Hamiltonians through spectral distribution theory
International Nuclear Information System (INIS)
Vary, J.P.; Belehrad, R.; Dalton, B.J.
1979-01-01
Motivated by the need of non-perturbative methods for utilizing realistic nuclear Hamiltonians H, the authors use spectral distribution theory, based on calculated moments of H, to obtain specific bulk and valence properties of finite nuclei. The primary emphasis here is to present results for the binding energies of nuclei obtained with and without an assumed core. (Auth.)
Existence and multiplicity results for homoclinic orbits of Hamiltonian systems
Directory of Open Access Journals (Sweden)
Chao-Nien Chen
1997-03-01
Full Text Available Homoclinic orbits play an important role in the study of qualitative behavior of dynamical systems. Such kinds of orbits have been studied since the time of Poincare. In this paper, we discuss how to use variational methods to study the existence of homoclinic orbits of Hamiltonian systems.
Multi-component bi-Hamiltonian Dirac integrable equations
Energy Technology Data Exchange (ETDEWEB)
Ma Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)], E-mail: mawx@math.usf.edu
2009-01-15
A specific matrix iso-spectral problem of arbitrary order is introduced and an associated hierarchy of multi-component Dirac integrable equations is constructed within the framework of zero curvature equations. The bi-Hamiltonian structure of the obtained Dirac hierarchy is presented be means of the variational trace identity. Two examples in the cases of lower order are computed.
Steiner systems and large non-Hamiltonian hypergraphs
Directory of Open Access Journals (Sweden)
Zsolt Tuza
2006-10-01
Full Text Available From Steiner systems S(k − 2, 2k − 3, v, we construct k-uniform hyper- graphs of large size without Hamiltonian cycles. This improves previous estimates due to G. Y. Katona and H. Kierstead [J. Graph Theory 30 (1999, pp. 205–212].
Hamiltonian Noether theorem for gauge systems and two time physics
International Nuclear Information System (INIS)
Villanueva, V M; Nieto, J A; Ruiz, L; Silvas, J
2005-01-01
The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al model and, with special emphasis, to two time physics
Conventional hamiltonian for first-order differential systems
International Nuclear Information System (INIS)
Farias, J.R.
1984-01-01
Lagrangian systems corresponding to a given set of 2n first-order ordinary differential equations are singular ones. In despite this, it is shown that these systems can be put into a Hamiltonian form in the usual manner. (Author) [pt
Classical and quantum mechanics of complex Hamiltonian systems
Indian Academy of Sciences (India)
Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...
Propagator of a time-dependent unbound quadratic Hamiltonian system
International Nuclear Information System (INIS)
Yeon, K.H.; Kim, H.J.; Um, C.I.; George, T.F.; Pandey, L.N.
1996-01-01
The propagator for a time-dependent unbound quadratic Hamiltonian system is explicitly evaluated using the path integral method. Two time-invariant quantities of the system are found where these invariants determine whether or not the system is bound. Several examples are considered to illustrate that the propagator obtained for the unbound systems is correct
Horizontal circulation and jumps in Hamiltonian wave models
Gagarina, Elena; van der Vegt, Jacobus J.W.; Bokhove, Onno
2013-01-01
We are interested in the numerical modeling of wave-current interactions around surf zones at beaches. Any model that aims to predict the onset of wave breaking at the breaker line needs to capture both the nonlinearity of the wave and its dispersion. We have therefore formulated the Hamiltonian
On the Curvature and Heat Flow on Hamiltonian Systems
Directory of Open Access Journals (Sweden)
Ohta Shin-ichi
2014-01-01
Full Text Available We develop the differential geometric and geometric analytic studies of Hamiltonian systems. Key ingredients are the curvature operator, the weighted Laplacian, and the associated Riccati equation.We prove appropriate generalizations of the Bochner-Weitzenböck formula and Laplacian comparison theorem, and study the heat flow.
Spectra of PT -symmetric Hamiltonians on tobogganic contours
Indian Academy of Sciences (India)
The term PT -symmetric quantum mechanics, although defined to be of a much broader use, was coined in tight connection with C. Bender's analysis of one- ... on the other hand, the other members of the family were strange Hamiltonians with imaginary potentials which do not appear physical at all. The aim of the.
On the minimization of Hamiltonians over pure Gaussian states
DEFF Research Database (Denmark)
Derezinski, Jan; Napiorkowski, Marcin; Solovej, Jan Philip
2013-01-01
that this procedure eliminates from the Hamiltonian terms of degree 1 and 2 that do not preserve the particle number, and leaves only terms that can be interpreted as quasiparticles excitations. We propose to call this fact Beliaev's Theorem, since to our knowledge it was mentioned for the first time in a paper...
Hamiltonian formulation of QED in the superaxial gauge
International Nuclear Information System (INIS)
Girotti, H.O.; Rothe, H.J.
A Hamiltonian formulation of QED in a fully fixed axial gauge is presented. The equal-time commutators for all field variables are computed and are shown to lead to the correct equations of motion. The constraints and gauge conditions hold as strong operator relations. (Author) [pt
Fractional Hamiltonian analysis of higher order derivatives systems
International Nuclear Information System (INIS)
Baleanu, Dumitru; Muslih, Sami I.; Tas, Kenan
2006-01-01
The fractional Hamiltonian analysis of 1+1 dimensional field theory is investigated and the fractional Ostrogradski's formulation is obtained. The fractional path integral of both simple harmonic oscillator with an acceleration-squares part and a damped oscillator are analyzed. The classical results are obtained when fractional derivatives are replaced with the integer order derivatives
The generalized Mayer theorem in the approximating hamiltonian method
International Nuclear Information System (INIS)
Bakulev, A.P.; Bogoliubov, N.N. Jr.; Kurbatov, A.M.
1982-07-01
With the help of the generalized Mayer theorem we obtain the improved inequality for free energies of model and approximating systems, where only ''connected parts'' over the approximating hamiltonian are taken into account. For the concrete system we discuss the problem of convergency of appropriate series of ''connected parts''. (author)
On Interconnections of Infinite-dimensional Port-Hamiltonian Systems
Pasumarthy, Ramkrishna; Schaft, Arjan J. van der
2004-01-01
Network modeling of complex physical systems leads to a class of nonlinear systems called port-Hamiltonian systems, which are defined with respect to a Dirac structure (a geometric structure which formalizes the power-conserving interconnection structure of the system). A power conserving