New Hamiltonian constraint operator for loop quantum gravity
Jinsong Yang
2015-12-01
Full Text Available A new symmetric Hamiltonian constraint operator is proposed for loop quantum gravity, which is well defined in the Hilbert space of diffeomorphism invariant states up to non-planar vertices with valence higher than three. It inherits the advantage of the original regularization method to create new vertices to the spin networks. The quantum algebra of this Hamiltonian is anomaly-free on shell, and there is less ambiguity in its construction in comparison with the original method. The regularization procedure for this Hamiltonian constraint operator can also be applied to the symmetric model of loop quantum cosmology, which leads to a new quantum dynamics of the cosmological model.
Inertia as Emerging of a Hamiltonian Constraint System
Darabi, F
1998-01-01
The issue of inertia as opposition to acceleration of a massive point particle in Minkowski space-time is investigated in the context of a Hamiltonian constraint system. It is shown that the inertia as a locally-originating force in Minkowski space-time may emerge due to a global constraint.
Solving the Hamiltonian constraint for 1+log trumpets
Dietrich, Tim
2013-01-01
The puncture method specifies black hole data on a hypersurface with the aid of a conformal rescaling of the metric that exhibits a coordinate singularity at the puncture point. When constructing puncture initial data by solving the Hamiltonian constraint for the conformal factor, the coordinate singularity requires special attention. The standard way to treat the pole singularity occurring in wormhole puncture data is not generally applicable to trumpet puncture data. We investigate a new approach based on inverse powers of the conformal factor and present numerical examples for single punctures of the wormhole and 1+log-trumpet type. Additionally, we describe a method to solve the Hamiltonian constraint for two 1+log trumpets for a given extrinsic curvature with non-vanishing trace. We investigate properties of this constructed initial data during binary black hole evolutions and find that the initial gauge dynamics is reduced.
A taste of Hamiltonian constraint in spin foam models
Bonzom, Valentin
2011-01-01
The asymptotics of some spin foam amplitudes for a quantum 4-simplex is known to display rapid oscillations whose frequency is the Regge action. In this note, we reformulate this result through a difference equation, asymptotically satisfied by these models, and whose semi-classical solutions are precisely the sine and the cosine of the Regge action. This equation is then interpreted as coming from the canonical quantization of a simple constraint in Regge calculus. This suggests to lift and generalize this constraint to the phase space of loop quantum gravity parametrized by twisted geometries. The result is a reformulation of the flat model for topological BF theory from the Hamiltonian perspective. The Wheeler-de-Witt equation in the spin network basis gives difference equations which are exactly recursion relations on the 15j-symbol. Moreover, the semi-classical limit is investigated using coherent states, and produces the expected results. It mimics the classical constraint with quantized areas, and for ...
Matrix elements of Lorentzian Hamiltonian constraint in loop quantum gravity
Alesci, Emanuele; Liegener, Klaus; Zipfel, Antonia
2013-10-01
The Hamiltonian constraint is the key element of the canonical formulation of loop quantum gravity (LQG) coding its dynamics. In Ashtekar-Barbero variables it naturally splits into the so-called Euclidean and Lorentzian parts. However, due to the high complexity of this operator, only the matrix elements of the Euclidean part have been considered so far. Here we evaluate the action of the full constraint, including the Lorentzian part. The computation requires heavy use of SU(2) recoupling theory and several tricky identities among n-j symbols are used to find the final result: these identities, together with the graphical calculus used to derive them, also simplify the Euclidean constraint and are of general interest in LQG computations.
Risk analysis for renewable energy projects due to constraints arising
Prostean, G.; Vasar, C.; Prostean, O.; Vartosu, A.
2016-02-01
Starting from the target of the European Union (EU) to use renewable energy in the area that aims a binding target of 20% renewable energy in final energy consumption by 2020, this article illustrates the identification of risks for implementation of wind energy projects in Romania, which could lead to complex technical implications, social and administrative. In specific projects analyzed in this paper were identified critical bottlenecks in the future wind power supply chain and reasonable time periods that may arise. Renewable energy technologies have to face a number of constraints that delayed scaling-up their production process, their transport process, the equipment reliability, etc. so implementing these types of projects requiring complex specialized team, the coordination of which also involve specific risks. The research team applied an analytical risk approach to identify major risks encountered within a wind farm project developed in Romania in isolated regions with different particularities, configured for different geographical areas (hill and mountain locations in Romania). Identification of major risks was based on the conceptual model set up for the entire project implementation process. Throughout this conceptual model there were identified specific constraints of such process. Integration risks were examined by an empirical study based on the method HAZOP (Hazard and Operability). The discussion describes the analysis of our results implementation context of renewable energy projects in Romania and creates a framework for assessing energy supply to any entity from renewable sources.
Orbit structure of Hamiltonian systems arising from Lie transformation group actions
Garzia, M. R.; Loparo, K. A.; Martin, C. F.
1983-01-01
This paper associates the Riccati group and its group action on linear-quadratic optimal control problems to the action of a Lie transformation group on a set of Hamiltonian matrices. In this Lie theoretic setting results are presented concerning the associated orbit structure and the structure of the group itself. These results are of importance in understanding the solution structure of matrix Riccati differential equations, and thus also of importance in linear-quadratic optimal control.
Orbit structure of Hamiltonian systems arising from Lie transformation group actions
Garzia, M. R.; Loparo, K. A.; Martin, C. F.
This paper associates the Riccati group and its group action on linear-quadratic optimal control problems to the action of a Lie transformation group on a set of Hamiltonian matrices. In this Lie theoretic setting results are presented concerning the associated orbit structure and the structure of the group itself. These results are of importance in understanding the solution structure of matrix Riccati differential equations, and thus also of importance in linear-quadratic optimal control.
Deformations of the constraint algebra of Ashtekar's Hamiltonian formulation of general relativity.
Krasnov, Kirill
2008-02-29
We show that the constraint algebra of Ashtekar's Hamiltonian formulation of general relativity can be nontrivially deformed by allowing the cosmological constant to become an arbitrary function of the (Weyl) curvature. Our result implies that there is not one but infinitely many (parametrized by an arbitrary function) four-dimensional generally covariant local gravity theories propagating 2 degrees of freedom.
A mollified numerical integrator of ring polymer Hamiltonian dynamics with constraints
Xiong, Yunfeng
2014-01-01
In this paper, a symplectic and time-reversible integrator is proposed of simulating the Hamiltonian dynamics with constraints in path integral molecular dynamics. The constraints are tackled by Matrix Inverted Linearized Constraint algorithm (MILC), while a slight modification is requested under normal mode representation, and the slow potential is mollified by Equilibrium method (Equilibrium MOLLY) to ameliorate the numerical resonance. It is demonstrated that the slow force impulse can be evaluated only at the centroid of beads, instead of being evaluated at the positions of each bead independently. Therefore, it not only allows longer time step but also reduces the complexity of computation. The numerical experiment is performed using SPC/E model in 298K with eight beads. Further discussion will involve the application of Equilibrium MOLLY in flexible bond model.
Aldaya, V.; Navarro-Salas, J.
1991-04-01
We introduce a highest weight type representation of the Rovelli-Smolin algebra of loop observables for quantum gravity. In terms of this representation, new solutions of the hamiltonian and diffeomorphism constraints are given. Assuming the locality of the quantum hamiltonian constraint we show that any functional depending on the generalized link class of the disjoint union of arbitrary simple loops is a solution. Finally we argue that this is the general solution in the irreducible representation space. On leave of absence from the Departamento de Fisica Teorica, Universidad de Valencia, and IFIC, Centro Mixto Universidad de Valencia - CSIC, Burjassot, Spain.
Crater, Horace; Yang, Dujiu
1991-09-01
A semirelativistic expansion in powers of 1/c2 is canonically matched through order (1/c4) of the two-particle total Hamiltonian of Wheeler-Feynman vector and scalar electrodynamics to a similar expansion of the center of momentum (c.m.) total energy of two interacting particles obtained from covariant generalized mass shell constraints derived with the use of the classical Todorov equation and Dirac's Hamiltonian constraint mechanics. This determines through order 1/c4 the direct interaction used in the covariant Todorov constraint equation. We show that these interactions are momentum independent in spite of the extensive and complicated momentum dependence of the potential energy terms in the Wheeler-Feynman Hamiltonian. The invariant expressions for the relativistic reduced mass and energy of the fictitious particle of relative motion used in the Todorov equation are also dynamically determined through this order by this same procedure. The resultant covariant Todorov equation then not only reproduces the noncovariant Wheeler-Feynman dynamics through order 1/c4 but also implicitly provides a rather simple covariant extrapolation of it to all orders of 1/c2.
Kiriushcheva, N; Kuzmin, S V
2011-01-01
We argue that the field-parametrization dependence of Dirac's procedure, for Hamiltonians with first-class constraints not only preserves covariance in covariant theories, but in non-covariant gauge theories it allows one to find the natural field parametrization in which the Hamiltonian formulation automatically leads to the simplest gauge symmetry.
Towards a general solution of the Hamiltonian constraints of General Relativity
Tiemblo, A
2005-01-01
The present work has a double aim. On the one hand we call attention on the relationship existing between the Ashtekar formalism and other gauge-theoretical approaches to gravity, in particular the Poincar\\'e Gauge Theory. On the other hand we reduce the constraints of General Relativity to a single scalar condition on the three-metric.
Shao Dan; Shao Liang; Shao Changgui
2008-01-01
The actions of the Hamiltonian constraint onto the members of the extended knot families {ψi}22, {ψi}43 and {ψi}64, and the check of their invariance under the Mandel-stare identities are given in the extended loop representation of loop quantum gravity.
Delle Monache, M. L.; Goatin, P.
2014-12-01
We consider a strongly coupled PDE-ODE system that describes the influence of a slow and large vehicle on road traffic. The model consists of a scalar conservation law accounting for the main traffic evolution, while the trajectory of the slower vehicle is given by an ODE depending on the downstream traffic density. The moving constraint is expressed by an inequality on the flux, which models the bottleneck created in the road by the presence of the slower vehicle. We prove the existence of solutions to the Cauchy problem for initial data of bounded variation.
Discrete-Time Models for Implicit Port-Hamiltonian Systems
Castaños, Fernando; Michalska, Hannah; Gromov, Dmitry; Hayward, Vincent
2015-01-01
Implicit representations of finite-dimensional port-Hamiltonian systems are studied from the perspective of their use in numerical simulation and control design. Implicit representations arise when a system is modeled in Cartesian coordinates and when the system constraints are applied in the form of additional algebraic equations (the system model is in a DAE form). Such representations lend themselves better to sample-data approximations. An implicit representation of a port-Hamiltonian sys...
Polyuga, Rostyslav V.; Schaft, Arjan J. van der
2012-01-01
The geometric formulation of general port-Hamiltonian systems is used in order to obtain two structure preserving reduction methods. The main idea is to construct a reduced-order Dirac structure corresponding to zero power flow in some of the energy-storage ports. This can be performed in two canoni
Maxwell's Optics Symplectic Hamiltonian
Kulyabov, D S; Sevastyanov, L A
2015-01-01
The Hamiltonian formalism is extremely elegant and convenient to mechanics problems. However, its application to the classical field theories is a difficult task. In fact, you can set one to one correspondence between the Lagrangian and Hamiltonian in the case of hyperregular Lagrangian. It is impossible to do the same in gauge-invariant field theories. In the case of irregular Lagrangian the Dirac Hamiltonian formalism with constraints is usually used, and this leads to a number of certain difficulties. The paper proposes a reformulation of the problem to the case of a field without sources. This allows to use a symplectic Hamiltonian formalism. The proposed formalism will be used by the authors in the future to justify the methods of vector bundles (Hamiltonian bundles) in transformation optics.
Soo, C
2005-01-01
The super-Hamiltonian of four-dimensional gravity as simplified by Ashtekar through the use of gauge potential and densitized triad variables can furthermore be succinctly expressed as a Poisson bracket between fundamental invariants. Even when a cosmological constant is present, the constraint is equivalent to the vanishing of the Poisson Bracket between the volume element and a combination of the integral of the trace of the extrinsic curvature and the Chern-Simons functional. This observation naturally suggests a reformulation of non-perturbative quantum gravity wherein the Wheeler-DeWitt Equation is reduced to the requirement of the vanishing of the expectation value of the corresponding commutator. Remarkably, this formulation singles out spin network states as explicit realizations of the physical states. Moreover, by requiring physical states to be simultaneous eigenstates of the commuting operators, the formulation also yields a Schrodinger Equation with "intrinsic-time development".
Wieland, Wolfgang M
2013-01-01
This paper presents a Hamiltonian formulation of spinfoam-gravity, which leads to a straight-forward canonical quantisation. To begin with, we derive a continuum action adapted to the simplicial decomposition. The equations of motion admit a Hamiltonian formulation, allowing us to perform the constraint analysis. We do not find any secondary constraints, but only get restrictions on the Lagrange multipliers enforcing the reality conditions. This comes as a surprise. In the continuum theory, the reality conditions are preserved in time, only if the torsionless condition (a secondary constraint) holds true. Studying an additional conservation law for each spinfoam vertex, we discuss the issue of torsion and argue that spinfoam gravity may indeed miss an additional constraint. Next, we canonically quantise. Transition amplitudes match the EPRL (Engle--Pereira--Rovelli--Livine) model, the only difference being the additional torsional constraint affecting the vertex amplitude.
Ryan, M.
1972-01-01
The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.
Quantum Hamiltonian Complexity
2014-01-01
Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via s...
Orsucci, Davide [Scuola Normale Superiore, I-56126 Pisa (Italy); Burgarth, Daniel [Department of Mathematics, Aberystwyth University, Aberystwyth SY23 3BZ (United Kingdom); Facchi, Paolo; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Nakazato, Hiromichi; Yuasa, Kazuya [Department of Physics, Waseda University, Tokyo 169-8555 (Japan); Giovannetti, Vittorio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy)
2015-12-15
The problem of Hamiltonian purification introduced by Burgarth et al. [Nat. Commun. 5, 5173 (2014)] is formalized and discussed. Specifically, given a set of non-commuting Hamiltonians (h{sub 1}, …, h{sub m}) operating on a d-dimensional quantum system ℋ{sub d}, the problem consists in identifying a set of commuting Hamiltonians (H{sub 1}, …, H{sub m}) operating on a larger d{sub E}-dimensional system ℋ{sub d{sub E}} which embeds ℋ{sub d} as a proper subspace, such that h{sub j} = PH{sub j}P with P being the projection which allows one to recover ℋ{sub d} from ℋ{sub d{sub E}}. The notions of spanning-set purification and generator purification of an algebra are also introduced and optimal solutions for u(d) are provided.
Meeds, E.; Leenders, R.; Welling, M.; Meila, M.; Heskes, T.
2015-01-01
Approximate Bayesian computation (ABC) is a powerful and elegant framework for performing inference in simulation-based models. However, due to the difficulty in scaling likelihood estimates, ABC remains useful for relatively lowdimensional problems. We introduce Hamiltonian ABC (HABC), a set of lik
Mochon, C
2006-01-01
Hamiltonian oracles are the continuum limit of the standard unitary quantum oracles. In this limit, the problem of finding the optimal query algorithm can be mapped into the problem of finding shortest paths on a manifold. The study of these shortest paths leads to lower bounds of the original unitary oracle problem. A number of example Hamiltonian oracles are studied in this paper, including oracle interrogation and the problem of computing the XOR of the hidden bits. Both of these problems are related to the study of geodesics on spheres with non-round metrics. For the case of two hidden bits a complete description of the geodesics is given. For n hidden bits a simple lower bound is proven that shows the problems require a query time proportional to n, even in the continuum limit. Finally, the problem of continuous Grover search is reexamined leading to a modest improvement to the protocol of Farhi and Gutmann.
Note About Hamiltonian Structure of Non-Linear Massive Gravity
Kluson, J
2011-01-01
We perform the Hamiltonian analysis of non-linear massive gravity action studied recently in arXiv:1106.3344 [hep-th]. We show that the Hamiltonian constraint is the second class constraint. As a result the theory possesses an odd number of the second class constraints and hence all non physical degrees of freedom cannot be eliminated.
Vilasi, Gaetano
2001-01-01
This is both a textbook and a monograph. It is partially based on a two-semester course, held by the author for third-year students in physics and mathematics at the University of Salerno, on analytical mechanics, differential geometry, symplectic manifolds and integrable systems. As a textbook, it provides a systematic and self-consistent formulation of Hamiltonian dynamics both in a rigorous coordinate language and in the modern language of differential geometry. It also presents powerful mathematical methods of theoretical physics, especially in gauge theories and general relativity. As a m
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael; Guzmán, María José
2016-11-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and Misner algebra of general relativity is recovered as a subalgebra.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael
2016-01-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR) is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudo-inverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms, and the (local) Lorentz transformations of the vielbein. In particular, the ADM algebra of general relativity is recovered as a sub-algebra.
Restuccia, A
2014-01-01
The Poisson structure of a coupled system arising from a supersymmetric breaking of N=1 Super KdV equations is obtained. The supersymmetric breaking is implemented by introducing a Clifford algebra instead of a Grassmann algebra. The Poisson structure follows from the Dirac brackets obtained by the constraint analysis of the hamiltonian of the system. The coupled system has multisolitonic solutions. We show that the one soliton solutions are Liapunov stable.
THE HAMILTONIAN SYSTEMS OF THE LCZ HIERARCHY BY NONLINEARIZATION
Li Lu
2000-01-01
In this paper, we first search for the Hamiltonian structure of LCZ hierarchy by use of a trace identity. Then we determine a higher-order constraint condition between the potentials and the eigenfunctions of the LCZ spectral problem, and under this constraint condition, the Lax pairs of LCZ hierarchy are all nonlinearized into the finite-dimensional integrable Hamiltonian systems in Liouville sense.
Hamiltonian dynamics of extended objects
Capovilla, R [Departamento de FIsica, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo Postal 14-740, 07000 Mexico, DF (Mexico); Guven, J [School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4 (Ireland); Rojas, E [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apdo Postal 70-543, 04510 Mexico, DF (Mexico)
2004-12-07
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler-Lagrange equations.
A Hamiltonian approach to Thermodynamics
Baldiotti, M.C., E-mail: baldiotti@uel.br [Departamento de Física, Universidade Estadual de Londrina, 86051-990, Londrina-PR (Brazil); Fresneda, R., E-mail: rodrigo.fresneda@ufabc.edu.br [Universidade Federal do ABC, Av. dos Estados 5001, 09210-580, Santo André-SP (Brazil); Molina, C., E-mail: cmolina@usp.br [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Bettio 1000, CEP 03828-000, São Paulo-SP (Brazil)
2016-10-15
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed on top of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac’s theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases. - Highlights: • A strictly Hamiltonian approach to Thermodynamics is proposed. • Dirac’s theory of constrained systems is extensively used. • Thermodynamic equations of state are realized as constraints. • Thermodynamic potentials are related by canonical transformations.
A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints
de Leon, M. [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); de Diego, D.M. [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, 28040 Madrid (Spain)
1997-06-01
We construct a constraint algorithm for singular Lagrangian systems subjected to nonholonomic constraints which generalizes that of Dirac for constrained Hamiltonian systems. {copyright} {ital 1997 American Institute of Physics.}
Hamiltonian Algorithm Sound Synthesis
大矢, 健一
2013-01-01
Hamiltonian Algorithm (HA) is an algorithm for searching solutions is optimization problems. This paper introduces a sound synthesis technique using Hamiltonian Algorithm and shows a simple example. "Hamiltonian Algorithm Sound Synthesis" uses phase transition effect in HA. Because of this transition effect, totally new waveforms are produced.
Bravetti, Alessandro, E-mail: alessandro.bravetti@iimas.unam.mx [Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Cruz, Hans, E-mail: hans@ciencias.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70543, México, DF 04510 (Mexico); Tapias, Diego, E-mail: diego.tapias@nucleares.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70543, México, DF 04510 (Mexico)
2017-01-15
In this work we introduce contact Hamiltonian mechanics, an extension of symplectic Hamiltonian mechanics, and show that it is a natural candidate for a geometric description of non-dissipative and dissipative systems. For this purpose we review in detail the major features of standard symplectic Hamiltonian dynamics and show that all of them can be generalized to the contact case.
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Caticha, Ariel; Bartolomeo, Daniel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States); Reginatto, Marcel [Physicalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany)
2015-01-13
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.
Nonperturbative embedding for highly nonlocal Hamiltonians
Subaşı, Yiǧit; Jarzynski, Christopher
2016-07-01
The need for Hamiltonians with many-body interactions arises in various applications of quantum computing. However, interactions beyond two-body are difficult to realize experimentally. Perturbative gadgets were introduced to obtain arbitrary many-body effective interactions using Hamiltonians with at most two-body interactions. Although valid for arbitrary k -body interactions, their use is limited to small k because the strength of interaction is k th order in perturbation theory. In this paper we develop a nonperturbative technique for obtaining effective k -body interactions using Hamiltonians consisting of at most l -body interactions with l effect of this procedure is shown to be equivalent to evolving the system with the original nonlocal Hamiltonian. This technique does not suffer from the aforementioned shortcoming of perturbative methods and requires only one ancilla qubit for each k -body interaction irrespective of the value of k . It works best for Hamiltonians with a few many-body interactions involving a large number of qubits and can be used together with perturbative gadgets to embed Hamiltonians of considerable complexity in proper subspaces of two-local Hamiltonians. We describe how our technique can be implemented in a hybrid (gate-based and adiabatic) as well as solely adiabatic quantum computing scheme.
The Maslov indices of Hamiltonian periodic orbits
Gosson, Maurice de [Blekinge Institute of Technology, SE 371 79 Karlskrona (Sweden); Gosson, Serge de [Vaexjoe University (MSI), SE 351 95 Vaexjoe (Sweden)
2003-12-05
We use the properties of the Leray index to give precise formulae in arbitrary dimensions for the Maslov index of the monodromy matrix arising in periodic Hamiltonian systems. We compare our index with other indices appearing in the literature. (letter to the editor)
张素英; 邓子辰
2004-01-01
For the constrained generalized Hamiltonian system with dissipation, by introducing Lagrange multiplier and using projection technique, the Lie group integration method was presented, which can preserve the inherent structure of dynamic system and the constraint-invariant. Firstly, the constrained generalized Hamiltonian system with dissipative was converted to the non-constraint generalized Hamiltonian system, then Lie group integration algorithm for the non-constraint generalized Hamiltonian system was discussed, finally the projection method for generalized Hamiltonian system with constraint was given. It is found that the constraint invariant is ensured by projection technique, and after introducing Lagrange multiplier the Lie group character of the dynamic system can't be destroyed while projecting to the constraint manifold. The discussion is restricted to the case of holonomic constraint. A presented numerical example shows the effectiveness of the method.
Horwitz, Lawrence; Zion, Yossi Ben; Lewkowicz, Meir;
2007-01-01
The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce ...... results in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions....
Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca
2010-01-01
, under the assumption that the original constraint-based approach has these properties. Practically, as a concrete case study, we have integrated this technique into OFMC, a state-of-the-art model-checker for security protocol analysis, and demonstrated its effectiveness by extensive experimentation. Our......We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...
Hamiltonian analysis of higher derivative scalar-tensor theories
Langlois, David
2015-01-01
We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of the dangerous Ostrogradski ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.
Hamiltonian analysis of higher derivative scalar-tensor theories
Langlois, David; Noui, Karim
2016-07-01
We perform a Hamiltonian analysis of a large class of scalar-tensor Lagrangians which depend quadratically on the second derivatives of a scalar field. By resorting to a convenient choice of dynamical variables, we show that the Hamiltonian can be written in a very simple form, where the Hamiltonian and the momentum constraints are easily identified. In the case of degenerate Lagrangians, which include the Horndeski and beyond Horndeski quartic Lagrangians, our analysis confirms that the dimension of the physical phase space is reduced by the primary and secondary constraints due to the degeneracy, thus leading to the elimination of the dangerous Ostrogradsky ghost. We also present the Hamiltonian formulation for nondegenerate theories and find that they contain four degrees of freedom, including a ghost, as expected. We finally discuss the status of the unitary gauge from the Hamiltonian perspective.
Hamiltonian dynamics of the parametrized electromagnetic field
G., J Fernando Barbero; Villaseñor, Eduardo J S
2015-01-01
We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.
Hamiltonian dynamics of the parametrized electromagnetic field
Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.
2016-06-01
We study the Hamiltonian formulation for a parametrized electromagnetic field with the purpose of clarifying the interplay between parametrization and gauge symmetries. We use a geometric approach which is tailor-made for theories where embeddings are part of the dynamical variables. Our point of view is global and coordinate free. The most important result of the paper is the identification of sectors in the primary constraint submanifold in the phase space of the model where the number of independent components of the Hamiltonian vector fields that define the dynamics changes. This explains the non-trivial behavior of the system and some of its pathologies.
Diagonalization of Hamiltonian; Diagonalization of Hamiltonian
Garrido, L. M.; Pascual, P.
1960-07-01
We present a general method to diagonalized the Hamiltonian of particles of arbitrary spin. In particular we study the cases of spin 0,1/2, 1 and see that for spin 1/2 our transformation agrees with Foldy's and obtain the expression for different observables for particles of spin C and 1 in the new representation. (Author) 7 refs.
A Hamiltonian Algorithm for Singular Optimal LQ Control Systems
Delgado-Tellez, M
2012-01-01
A Hamiltonian algorithm, both theoretical and numerical, to obtain the reduced equations implementing Pontryagine's Maximum Principle for singular linear-quadratic optimal control problems is presented. This algorithm is inspired on the well-known Rabier-Rheinhboldt constraints algorithm used to solve differential-algebraic equations. Its geometrical content is exploited fully by implementing a Hamiltonian extension of it which is closer to Gotay-Nester presymplectic constraint algorithm used to solve singular Hamiltonian systems. Thus, given an optimal control problem whose optimal feedback is given in implicit form, a consistent set of equations is obtained describing the first order differential conditions of Pontryaguine's Maximum Principle. Such equations are shown to be Hamiltonian and the set of first class constraints corresponding to controls that are not determined, are obtained explicitly. The strength of the algorithm is shown by exhibiting a numerical implementation with partial feedback on the c...
Path Integrals and Hamiltonians
Baaquie, Belal E.
2014-03-01
1. Synopsis; Part I. Fundamental Principles: 2. The mathematical structure of quantum mechanics; 3. Operators; 4. The Feynman path integral; 5. Hamiltonian mechanics; 6. Path integral quantization; Part II. Stochastic Processes: 7. Stochastic systems; Part III. Discrete Degrees of Freedom: 8. Ising model; 9. Ising model: magnetic field; 10. Fermions; Part IV. Quadratic Path Integrals: 11. Simple harmonic oscillators; 12. Gaussian path integrals; Part V. Action with Acceleration: 13. Acceleration Lagrangian; 14. Pseudo-Hermitian Euclidean Hamiltonian; 15. Non-Hermitian Hamiltonian: Jordan blocks; 16. The quartic potential: instantons; 17. Compact degrees of freedom; Index.
Running Couplings in Hamiltonians
Glazek, S D
2000-01-01
We describe key elements of the perturbative similarity renormalization group procedure for Hamiltonians using two, third-order examples: phi^3 interaction term in the Hamiltonian of scalar field theory in 6 dimensions and triple-gluon vertex counterterm in the Hamiltonian of QCD in 4 dimensions. These examples provide insight into asymptotic freedom in Hamiltonian approach to quantum field theory. The renormalization group procedure also suggests how one may obtain ultraviolet-finite effective Schrödinger equations that correspond to the asymptotically free theories, including transition from quark and gluon to hadronic degrees of freedom in case of strong interactions. The dynamics is invariant under boosts and allows simultaneous analysis of bound state structure in the rest and infinite momentum frames.
Covariant Hamiltonian field theory
Giachetta, G; Sardanashvily, G
1999-01-01
We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.
Hamiltonian analysis for linearly acceleration-dependent Lagrangians
Cruz, Miguel; Gómez-Cortés, Rosario; Molgado, Alberto; Rojas, Efraín
2016-06-01
We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies together with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.
A Hamiltonian approach to Thermodynamics
Baldiotti, M C; Molina, C
2016-01-01
In the present work we develop a strictly Hamiltonian approach to Thermodynamics. A thermodynamic description based on symplectic geometry is introduced, where all thermodynamic processes can be described within the framework of Analytic Mechanics. Our proposal is constructed ontop of a usual symplectic manifold, where phase space is even dimensional and one has well-defined Poisson brackets. The main idea is the introduction of an extended phase space where thermodynamic equations of state are realized as constraints. We are then able to apply the canonical transformation toolkit to thermodynamic problems. Throughout this development, Dirac's theory of constrained systems is extensively used. To illustrate the formalism, we consider paradigmatic examples, namely, the ideal, van der Waals and Clausius gases.
Information, disturbance and Hamiltonian quantum feedback control
Doherty, A C; Jungman, G; Doherty, Andrew C.; Jacobs, Kurt; Jungman, Gerard
2001-01-01
We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance which are distinct from those usually considered in quantum information theory. Using these concepts we identify an information trade-off in quantum feedback control.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENG Daizhan; XI Zairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonian realizatiou. First, it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization. Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural outpnt. Then some conditions for an affine nonlinear system to have a Hamiltonian realization arc given.For generalized outputs, the conditions of the feedback, keeping Hamiltonian, are discussed. Finally, the admissible feedback controls for generalized Hamiltonian systems are considered.
FEEDBACK REALIZATION OF HAMILTONIAN SYSTEMS
CHENGDaizhan; XIZairong
2002-01-01
This paper investigates the relationship between state feedback and Hamiltonican realization.Firest,it is proved that a completely controllable linear system always has a state feedback state equation Hamiltonian realization.Necessary and sufficient conditions are obtained for it to have a Hamiltonian realization with natural output.Then some conditions for an affine nonlinear system to have a Hamiltonian realization are given.some conditions for an affine nonlinear system to have a Hamiltonian realization are given.For generalized outputs,the conditions of the feedback,keeping Hamiltonian,are discussed.Finally,the admissible feedback controls for generalized Hamiltonian systems are considered.
Remarks on hamiltonian digraphs
Gutin, Gregory; Yeo, Anders
2001-01-01
This note is motivated by A.Kemnitz and B.Greger, Congr. Numer. 130 (1998)127-131. We show that the main result of the paper by Kemnitz and Greger is an easy consequence of the characterization of hamiltonian out-locally semicomplete digraphs by Bang-Jensen, Huang, and Prisner, J. Combin. Theory...... of Fan's su#cient condition [5] for an undirected graph to be hamiltonian. In this note we give another, more striking, example of this kind, which disproves a conjecture from [6]. We also show that the main result of [6] 1 is an easy consequence of the characterization of hamiltonian out......-tournaments by Bang-Jensen, Huang and Prisner [4]. For further information and references on hamiltonian digraphs, see e.g. the chapter on hamiltonicity in [1] as well as recent survey papers [2, 8]. We use the standard terminology and notation on digraphs as described in [1]. A digraph D has vertex set V (D) and arc...
Microscopic plasma Hamiltonian
Peng, Y.-K. M.
1974-01-01
A Hamiltonian for the microscopic plasma model is derived from the Low Lagrangian after the dual roles of the generalized variables are taken into account. The resulting Hamilton equations are shown to agree with the Euler-Lagrange equations of the Low Lagrangian.
Transformation design and nonlinear Hamiltonians
Brougham, Thomas; Jex, Igor
2009-01-01
We study a class of nonlinear Hamiltonians, with applications in quantum optics. The interaction terms of these Hamiltonians are generated by taking a linear combination of powers of a simple `beam splitter' Hamiltonian. The entanglement properties of the eigenstates are studied. Finally, we show how to use this class of Hamiltonians to perform special tasks such as conditional state swapping, which can be used to generate optical cat states and to sort photons.
The Koszul-Tate Cohomology in Covariant Hamiltonian Formalism
Mangiarotti, L
1999-01-01
We show that, in the framework of covariant Hamiltonian field theory, a degenerate almost regular quadratic Lagrangian $L$ admits a complete set of non-degenerate Hamiltonian forms such that solutions of the corresponding Hamilton equations, which live in the Lagrangian constraint space, exhaust solutions of the Euler--Lagrange equations for $L$. We obtain the characteristic splittings of the configuration and momentum phase bundles. Due to the corresponding projection operators, the Koszul-Tate resolution of the Lagrangian constraints for a generic almost regular quadratic Lagrangian is constructed in an explicit form.
Hamiltonian Approach To Dp-Brane Noncommutativity
Nikolic, B.; Sazdovic, B.
2010-07-01
In this article we investigate Dp-brane noncommutativity using Hamiltonian approach. We consider separately open bosonic string and type IIB superstring which endpoints are attached to the Dp-brane. From requirement that Hamiltonian, as the time translation generator, has well defined derivatives in the coordinates and momenta, we obtain boundary conditions directly in the canonical form. Boundary conditions are treated as canonical constraints. Solving them we obtain initial coordinates in terms of the effective ones as well as effective momenta. Presence of momenta implies noncommutativity of the initial coordinates. Effective theory, defined as initial one on the solution of boundary conditions, is its Ω even projection, where Ω is world-sheet parity transformation Ω:σ→-σ. The effective background fields are expressed in terms of Ω even and squares of the Ω odd initial background fields.
A Hamiltonian Formulation of Topological Gravity
Waelbroeck, Henri
2009-01-01
Topological gravity is the reduction of Einstein's theory to spacetimes with vanishing curvature, but with global degrees of freedom related to the topology of the universe. We present an exact Hamiltonian lattice theory for topological gravity, which admits translations of the lattice sites as a gauge symmetry. There are additional symmetries, not present in Einstein's theory, which kill the local degrees of freedom. We show that these symmetries can be fixed by choosing a gauge where the torsion is equal to zero. In this gauge, the theory describes flat space-times. We propose two methods to advance towards the holy grail of lattice gravity: A Hamiltonian lattice theory for curved space-times, with first-class translation constraints.
Quantum Hamiltonian complexity and the detectability lemma
Aharonov, Dorit; Landau, Zeph; Vazirani, Umesh
2010-01-01
Quantum Hamiltonian complexity studies computational complexity aspects of local Hamiltonians and ground states; these questions can be viewed as generalizations of classical computational complexity problems related to local constraint satisfaction (such as SAT), with the additional ingredient of multi-particle entanglement. This additional ingredient of course makes generalizations of celebrated theorems such as the PCP theorem from classical to the quantum domain highly non-trivial; it also raises entirely new questions such as bounds on entanglement and correlations in ground states, and in particular area laws. We propose a simple combinatorial tool that helps to handle such questions: it is a simplified, yet more general version of the detectability lemma introduced by us in the more restricted context on quantum gap amplification a year ago. Here, we argue that this lemma is applicable in much more general contexts. We use it to provide a simplified and more combinatorial proof of Hastings' 1D area law...
Estimation of a general time-dependent Hamiltonian for a single qubit.
de Clercq, L E; Oswald, R; Flühmann, C; Keitch, B; Kienzler, D; Lo, H-Y; Marinelli, M; Nadlinger, D; Negnevitsky, V; Home, J P
2016-04-14
The Hamiltonian of a closed quantum system governs its complete time evolution. While Hamiltonians with time-variation in a single basis can be recovered using a variety of methods, for more general Hamiltonians the presence of non-commuting terms complicates the reconstruction. Here using a single trapped ion, we propose and experimentally demonstrate a method for estimating a time-dependent Hamiltonian of a single qubit. We measure the time evolution of the qubit in a fixed basis as a function of a time-independent offset term added to the Hamiltonian. The initially unknown Hamiltonian arises from transporting an ion through a static laser beam. Hamiltonian estimation allows us to estimate the spatial beam intensity profile and the ion velocity as a function of time. The estimation technique is general enough that it can be applied to other quantum systems, aiding the pursuit of high-operational fidelities in quantum control.
Bountis, Tassos
2012-01-01
This book introduces and explores modern developments in the well established field of Hamiltonian dynamical systems. It focuses on high degree-of-freedom systems and the transitional regimes between regular and chaotic motion. The role of nonlinear normal modes is highlighted and the importance of low-dimensional tori in the resolution of the famous FPU paradox is emphasized. Novel powerful numerical methods are used to study localization phenomena and distinguish order from strongly and weakly chaotic regimes. The emerging hierarchy of complex structures in such regimes gives rise to particularly long-lived patterns and phenomena called quasi-stationary states, which are explored in particular in the concrete setting of one-dimensional Hamiltonian lattices and physical applications in condensed matter systems. The self-contained and pedagogical approach is blended with a unique balance between mathematical rigor, physics insights and concrete applications. End of chapter exercises and (more demanding) res...
Exploring the Hamiltonian inversion landscape.
Donovan, Ashley; Rabitz, Herschel
2014-08-07
The identification of quantum system Hamiltonians through the use of experimental data remains an important research goal. Seeking a Hamiltonian that is consistent with experimental measurements constitutes an excursion over a Hamiltonian inversion landscape, which is the quality of reproducing the data as a function of the Hamiltonian parameters. Recent theoretical work showed that with sufficient experimental data there should be local convexity about the true Hamiltonian on the landscape. The present paper builds on this result and performs simulations to test whether such convexity is observed. A gradient-based Hamiltonian search algorithm is incorporated into an inversion routine as a means to explore the local inversion landscape. The simulations consider idealized noise-free as well as noise-ridden experimental data. The results suggest that a sizable convex domain exists about the true Hamiltonian, even with a modest amount of experimental data and in the presence of a reasonable level of noise.
Hamiltonian thermodynamics of three-dimensional dilatonic black hole
Dias, Gonçalo A S
2008-01-01
The action for a class of three-dimensional dilaton-gravity theories with a cosmological constant can be recast in a Brans-Dicke type action, with its free $\\omega$ parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ($\\omega\\to\\infty$), a dimensionally reduced cylindrical four-dimensional general relativity theory ($\\omega=0$), and a theory representing a class of theories ($\\omega=-3$). The Hamiltonian formalism is setup in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unc...
On the Hamiltonian formalism of the tetrad-gravity
Lagraa, Meriem Hadjer; Touhami, Nabila
2016-01-01
We present a detailed analysis of the Hamiltonian constraints of the d-dimensional tetrad-gravity where the non-dynamical part of the spatial connection is fixed to zero. This new action depending on the co-tetrad and the dynamical part of the spatial connection leads to Lorentz, scalar and vectorial first-class polynomial constraints obeying a closed algebra in terms of Poisson brackets. This algebra closes on the structure constants instead of structure functions resulting from the Hamiltonian formalisms based on the A.D.M. decomposition. The same algebra of the reduced first-class constraints defined on the reduced phase-space, where the second-class constraints are solved, is obtained in terms of Dirac brackets. PACS numbers: 04.20.Cv, 04.20.Fy, 11.10.Ef, 11.30.Cp
Riccati group invariants of linear hamiltonian systems
Garzia, M. R.; Loparo, K. A.; Martin, C. F.
1983-01-01
The action of the Riccati group on the Riccati differential equation is associated with the action of a subgroup of the symplectic group on a set of hamiltonian matrices. Within this framework various sets of canonical forms are developed for the matrix coefficients of the Riccati differential equation. The canonical forms presented are valid for arbitrary Kronecker indices, and it is shown that the Kronecker indices are invariants for this group action. These canonical forms are useful for studying problems arising in the areas of optimal decentralized control and the spectral theory of optimal control problems.
Nonabelian N=2 Superstrings: Hamiltonian Structure
Isaev, A P
2009-01-01
We examine the Hamiltonian structure of nonabelian N=2 superstrings models which are the supergroup manifold extensions of N=2 Green-Schwarz superstring. We find the Kac-Moody and Virasoro type superalgebras of the relevant constraints and present elements of the corresponding quantum theory. A comparison with the type IIA Green-Schwarz superstring moving in a general curved 10-d supergravity background is also given. We find that nonabelian superstrings (for d=10) present a particular case of this general system corresponding to a special choices of the background.
Hydrostatic Hamiltonian particle-mesh (HPM) methods for atmospheric modelling
Shin, S.; Reich, S.; Frank, J.E.
2011-01-01
We develop a hydrostatic Hamiltonian particle-mesh (HPM) method for efficient long-term numerical integration of the atmosphere. In the HPM method, the hydrostatic approximation is interpreted as a holonomic constraint for the vertical position of particles. This can be viewed as defining a set of v
Hamiltonian Noether theorem for gauge systems and two time physics
Villanueva, V M; Ruiz, L; Silvas, J
2005-01-01
The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al. model and, with special emphasis, to two time physics.
Sobisch, Jan-Ulrich
2013-01-01
Some Buddhist scholars have periodized the expected lifetime of the Buddha's teachings. According to them, these periods of 500 years each have different characteristics. The first is called 'the period of the results'. Therefore some scholars have claimed that only in the first 500 years after...... the Buddha results can arise. Kyobpa Jigten Sumgön has argued that results arise through practise as long as Dharma and Sangha exist....
Chondroblastoma arising from acromion
WANG Min; ZHOU Yue; REN Xian-jun; ZHANG Xia; WANG Jian
2005-01-01
@@ Chondroblastoma is an uncommon benign tumor arising in the epiphysis of long bones such as humerus, tibia and femur while the skeletal or extraskeletal presentations are mostly unusual. The chondroblastoma arising from acromion process of scapulus has been extremely rare and only two cases can be screened out in the English literature[1,2]. Here, we reported another case of chondroblastoma that developed on the acromion of scapulus.
Hamiltonian Analysis of an On-shell U(1) Gauge Field Theory
Lin, Chunshan
2016-01-01
We perform the Hamiltonian analysis of an on-shell U(1) gauge field theory, in which the action is not invariant under local U(1) transformations but recovers the invariance when the equations of motion are imposed. We firstly apply Dirac's method of Hamiltonian analysis. We find one first-class constraint and two second-class constraints in the vector sector. It implies the photons have only two polarisations, at least at the classical level, although the standard U(1) symmetry is explicitly broken. The results are confirmed by an independent analysis based on the Faddeev-Jackiw Hamiltonian reduction approach.
Chromatic roots and hamiltonian paths
Thomassen, Carsten
2000-01-01
We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G; Sardanashvily, G
2007-01-01
Integrals of motion of a Hamiltonian system need not be commutative. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as an abelian completely integrable Hamiltonian system.
The Hamiltonian formulation of general relativity: myths and reality
Kiriushcheva, Natalia; Kuzmin, Sergei
2011-06-01
A conventional wisdom often perpetuated in the literature states that: (i) a 3 + 1 decomposition of spacetime into space and time is synonymous with the canonical treatment and this decomposition is essential for any Hamiltonian formulation of General Relativity (GR); (ii) the canonical treatment unavoidably breaks the symmetry between space and time in GR and the resulting algebra of constraints is not the algebra of four-dimensional diffeomorphism; (iii) according to some authors this algebra allows one to derive only spatial diffeomorphism or, according to others, a specific field-dependent and non-covariant four-dimensional diffeomorphism; (iv) the analyses of Dirac [21] and of ADM [22] of the canonical structure of GR are equivalent. We provide some general reasons why these statements should be questioned. Points (i-iii) have been shown to be incorrect in [45] and now we thoroughly re-examine all steps of the Dirac Hamiltonian formulation of GR. By direct calculation we show that Dirac's references to space-like surfaces are inessential and that such surfaces do not enter his calculations. In addition, we show that his assumption g 0k = 0, used to simplify his calculation of different contributions to the secondary constraints, is unwarranted; yet, remarkably his total Hamiltonian is equivalent to the one computed without the assumption g 0k = 0. The secondary constraints resulting from the conservation of the primary constraints of Dirac are in fact different from the original constraints that Dirac called secondary (also known as the "Hamiltonian" and "diffeomorphism" constraints). The Dirac constraints are instead particular combinations of the constraints which follow directly from the primary constraints. Taking this difference into account we found, using two standard methods, that the generator of the gauge transformation gives diffeomorphism invariance in four-dimensional space-time; and this shows that points (i-iii) above cannot be attributed to the
Hamiltonian analysis of the double null 2+2 decomposition of Ashtekar variables
d'Inverno, R A; Vickers, J A
2006-01-01
We derive a canonical analysis of a double null 2+2 Hamiltonian description of General Relativity in terms of complex self-dual 2-forms and the associated SO(3) connection variables. The algebra of first class constraints is obtained and forms a Lie algebra that consists of two constraints that generate diffeomorphisms in the two surface, a constraint that generates diffeomorphisms along the null generators and a constraint that generates self-dual spin and boost transformations.
Constraints in Quantum Geometrodynamics
Gentle, A P; Kheyfets, A I; Miller, W A; Gentle, Adrian P.; George, Nathan D.; Kheyfets, Arkady; Miller, Warner A.
2003-01-01
We compare different treatments of the constraints in canonical quantum gravity. The standard approach on the superspace of 3-geometries treats the constraints as the sole carriers of the dynamic content of the theory, thus rendering the traditional dynamic equations obsolete. Quantization of the constraints in both the Dirac and ADM square root Hamiltonian approach lead to the well known problems of the description of time evolution. These problems of time are both of interpretational and technical nature. In contrast, the so-called geometrodynamic quantization procedure on the superspace of the true dynamic variables separates the issue of quantization from enforcing the constraints. The resulting theory takes into account the states that are off shell with respect to the constraints, and thus avoids the problems of time. Here, we develop, for the first time, the geometrodynamic quantization formalism in a general setting and show that it retains all essential features previously illustrated in the context ...
On the Reaction Path Hamiltonian
孙家钟; 李泽生
1994-01-01
A vector-fiber bundle structure of the reaction path Hamiltonian, which has been introduced by Miller, Handy and Adams, is explored with respect to molecular vibrations orthogonal to the reaction path. The symmetry of the fiber bundle is characterized by the real orthogonal group O(3N- 7) for the dynamical system with N atoms. Under the action of group O(3N- 7). the kinetic energy of the reaction path Hamiltonian is left invariant. Furthermore , the invariant behaviour of the Hamiltonian vector fields is investigated.
Kuramoto dynamics in Hamiltonian systems.
Witthaut, Dirk; Timme, Marc
2014-09-01
The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds. We show that locking of the phase of one oscillator on a Kuramoto manifold to the average phase emerges where the transverse Hamiltonian action dynamics of that specific oscillator becomes unstable. Moreover, the inverse participation ratio of the Hamiltonian dynamics perturbed off the manifold indicates the global synchronization transition point for finite N more precisely than the standard Kuramoto order parameter. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics.
Continuum Hamiltonian Hopf Bifurcation II
Hagstrom, G I
2013-01-01
Building on the development of [MOR13], bifurcation of unstable modes that emerge from continuous spectra in a class of infinite-dimensional noncanonical Hamiltonian systems is investigated. Of main interest is a bifurcation termed the continuum Hamiltonian Hopf (CHH) bifurcation, which is an infinite-dimensional analog of the usual Hamiltonian Hopf (HH) bifurcation. Necessary notions pertaining to spectra, structural stability, signature of the continuous spectra, and normal forms are described. The theory developed is applicable to a wide class of 2+1 noncanonical Hamiltonian matter models, but the specific example of the Vlasov-Poisson system linearized about homogeneous (spatially independent) equilibria is treated in detail. For this example, structural (in)stability is established in an appropriate functional analytic setting, and two kinds of bifurcations are considered, one at infinite and one at finite wavenumber. After defining and describing the notion of dynamical accessibility, Kre\\u{i}n-like the...
Hamiltonian Structure of PI Hierarchy
Kanehisa Takasaki
2007-03-01
Full Text Available The string equation of type (2,2g+1 may be thought of as a higher order analogue of the first Painlevé equation that corresponds to the case of g = 1. For g > 1, this equation is accompanied with a finite set of commuting isomonodromic deformations, and they altogether form a hierarchy called the PI hierarchy. This hierarchy gives an isomonodromic analogue of the well known Mumford system. The Hamiltonian structure of the Lax equations can be formulated by the same Poisson structure as the Mumford system. A set of Darboux coordinates, which have been used for the Mumford system, can be introduced in this hierarchy as well. The equations of motion in these Darboux coordinates turn out to take a Hamiltonian form, but the Hamiltonians are different from the Hamiltonians of the Lax equations (except for the lowest one that corresponds to the string equation itself.
Alternative Hamiltonian representation for gravity
Rosas-RodrIguez, R [Instituto de Fisica, Universidad Autonoma de Puebla, Apdo. Postal J-48, 72570, Puebla, Pue. (Mexico)
2007-11-15
By using a Hamiltonian formalism for fields wider than the canonical one, we write the Einstein vacuum field equations in terms of alternative variables. This variables emerge from the Ashtekar's formalism for gravity.
Hamiltonian analysis of interacting fluids
Banerjee, Rabin; Mitra, Arpan Krishna [S. N. Bose National Centre for Basic Sciences, Kolkata (India); Ghosh, Subir [Indian Statistical Institute, Kolkata (India)
2015-05-15
Ideal fluid dynamics is studied as a relativistic field theory with particular stress on its hamiltonian structure. The Schwinger condition, whose integrated version yields the stress tensor conservation, is explicitly verified both in equal-time and light-cone coordinate systems. We also consider the hamiltonian formulation of fluids interacting with an external gauge field. The complementary roles of the canonical (Noether) stress tensor and the symmetric one obtained by metric variation are discussed. (orig.)
When are vector fields hamiltonian?
Crehan, P
1994-01-01
Dynamical systems can be quantised only if they are Hamiltonian. This prompts the question from which our talk gets its title. We show how the simple predator-prey equation and the damped harmonic oscillator can be considered to be Hamiltonian with respect to an infinite number of non-standard Poisson brackets. This raises some interesting questions about the nature of quantisation. Questions which are valid even for flows which possess a canonical structure.
Interchange graphs and the Hamiltonian cycle polytope
Sierksma, G
1998-01-01
This paper answers the (non)adjacency question for the whole spectrum of Hamiltonian cycles on the Hamiltonian cycle polytope (HC-polytope), also called the symmetric traveling salesman polytope, namely from Hamiltonian cycles that differ in only two edges through Hamiltonian cycles that are edge di
Local temperatures and local terms in modular Hamiltonians
Arias, Raul; Casini, Horacio; Huerta, Marina
2016-01-01
We show there are analogues to the Unruh temperature that can be defined for any quantum field theory and region of the space. These local temperatures are defined using relative entropy with localized excitations. We show important restrictions arise from relative entropy inequalities and causal propagation between Cauchy surfaces. These suggest a large amount of universality for local temperatures, specially the ones affecting null directions. For regions with any number of intervals in two space-time dimensions the local temperatures might arise from a term in the modular Hamiltonian proportional to the stress tensor. We argue this term might be universal, with a coefficient that is the same for any theory, and check analytically and numerically this is the case for free massive scalar and Dirac fields. In dimensions $d\\ge 3$ the local terms in the modular Hamiltonian producing these local temperatures cannot be formed exclusively from the stress tensor. For a free scalar field we classify the structure of...
Hamiltonian description of the ideal fluid
Morrison, P.J.
1994-01-01
Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.
Bender, C M; Chen, J H; Jones, H F; Milton, K A; Ogilvie, M C; Bender, Carl M.; Brody, Dorje C.; Chen, Jun-Hua; Jones, Hugh F.; Milton, Kimball A.; Ogilvie, Michael C.
2006-01-01
In a recent paper Jones and Mateo used operator techniques to show that the non-Hermitian $\\cP\\cT$-symmetric wrong-sign quartic Hamiltonian $H=\\half p^2-gx^4$ has the same spectrum as the conventional Hermitian Hamiltonian $\\tilde H=\\half p^2+4g x^4-\\sqrt{2g} x$. Here, this equivalence is demonstrated very simply by means of differential-equation techniques and, more importantly, by means of functional-integration techniques. It is shown that the linear term in the Hermitian Hamiltonian is anomalous; that is, this linear term has no classical analog. The anomaly arises because of the broken parity symmetry of the original non-Hermitian $\\cP\\cT$-symmetric Hamiltonian. This anomaly in the Hermitian form of a $\\cP\\cT$-symmetric quartic Hamiltonian is unchanged if a harmonic term is introduced into $H$. When there is a harmonic term, an immediate physical consequence of the anomaly is the appearance of bound states; if there were no anomaly term, there would be no bound states. Possible extensions of this work to...
Geometric solitons of Hamiltonian flows on manifolds
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Hamiltonian formalism and path entropy maximization
Davis, Sergio; González, Diego
2015-10-01
Maximization of the path information entropy is a clear prescription for constructing models in non-equilibrium statistical mechanics. Here it is shown that, following this prescription under the assumption of arbitrary instantaneous constraints on position and velocity, a Lagrangian emerges which determines the most probable trajectory. Deviations from the probability maximum can be consistently described as slices in time by a Hamiltonian, according to a nonlinear Langevin equation and its associated Fokker-Planck equation. The connections unveiled between the maximization of path entropy and the Langevin/Fokker-Planck equations imply that missing information about the phase space coordinate never decreases in time, a purely information-theoretical version of the second law of thermodynamics. All of these results are independent of any physical assumptions, and thus valid for any generalized coordinate as a function of time, or any other parameter. This reinforces the view that the second law is a fundamental property of plausible inference.
Enumerating Hamiltonian Cycles in a Planar Graph Using Combinatorial Cycle Bases
Retno MAHARESI
2016-04-01
Full Text Available Cycle bases belong to a k-connected simple graph used both for listing and enumerating Hamiltonian cycles contained in a planar graph. Planar cycle bases have a weighted induced graph whose weight values limited to 1. Hence making it was possible used in the Hamiltonian cycle enumeration procedures efficiently. In this paper a Hamiltonian cycle enumeration scheme is obtained through two stages. First, i cycles out of m bases cycles are determined using an appropriate constructed constraint. Secondly, to search all Hamiltonian cycles which are formed by the combination of i bases cycles obtained in the first stage efficiently. This efficiency achieved through a generation a class of objects as the representation of i cycle combinations among m bases cycles. The experiment conducted based on the proposed algorithm successfully generated and enumerated all the Hamiltonian cycles contained in a well-known example of planar graph.
Revised Virial Theorem for Hamiltonians with Coordinates-Momentum Coupling Terms
GUO Qin; FAN Hong-Yi
2008-01-01
Usually the Virial thcorem,which can be derived from the Feynman-Hellmann theorem,applies to Hamil-tonians without coordinates-momentum coupling.In this paper we discuss when there are such kind of couplings in Hamiltonians then how the Virial theorem should be modified.We also discuss the energy contribution arising from the coordinates-momentum coupling for a definite energy level.
Effective Hamiltonian of strained graphene.
Linnik, T L
2012-05-23
Based on the symmetry properties of the graphene lattice, we derive the effective Hamiltonian of graphene under spatially nonuniform acoustic and optical strains. Comparison with the published results of the first-principles calculations allows us to determine the values of some Hamiltonian parameters, and suggests the validity of the derived Hamiltonian for acoustical strain up to 10%. The results are generalized for the case of graphene with broken plane reflection symmetry, which corresponds, for example, to the case of graphene placed on a substrate. Here, essential modifications to the Hamiltonian give rise, in particular, to the gap opening in the spectrum in the presence of the out-of-plane component of optical strain, which is shown to be due to the lifting of the sublattice symmetry. The developed effective Hamiltonian can be used as a convenient tool for analysis of a variety of strain-related effects, including electron-phonon interaction or pseudo-magnetic fields induced by the nonuniform strain.
Full hamiltonian structure for a parametric coupled Korteweg-de Vries system
Restuccia, A
2014-01-01
We obtain the full hamiltonian structure for a parametric coupled KdV system. The coupled system arises from four different real basic lagrangians. The associated hamiltonian functionals and the corresponding Poisson structures follow from the geometry of a constrained phase space by using the Dirac approach for constrained systems. The overall algebraic structure for the system is given in terms of two pencils of Poisson structures with associated hamiltonians depending on the parameter of the Poisson pencils. The algebraic construction we present admits the most general space of observables related to the coupled system.
van Oers, Alexander M.; Maas, Leo R. M.; Bokhove, Onno
2017-02-01
The linear equations governing internal gravity waves in a stratified ideal fluid possess a Hamiltonian structure. A discontinuous Galerkin finite element method has been developed in which this Hamiltonian structure is discretized, resulting in conservation of discrete analogs of phase space and energy. This required (i) the discretization of the Hamiltonian structure using alternating flux functions and symplectic time integration, (ii) the discretization of a divergence-free velocity field using Dirac's theory of constraints and (iii) the handling of large-scale computational demands due to the 3-dimensional nature of internal gravity waves and, in confined, symmetry-breaking fluid domains, possibly its narrow zones of attraction.
Hamiltonian Dynamics of Preferential Attachment
Zuev, Konstantin; Krioukov, Dmitri
2015-01-01
Prediction and control of network dynamics are grand-challenge problems in network science. The lack of understanding of fundamental laws driving the dynamics of networks is among the reasons why many practical problems of great significance remain unsolved for decades. Here we study the dynamics of networks evolving according to preferential attachment, known to approximate well the large-scale growth dynamics of a variety of real networks. We show that this dynamics is Hamiltonian, thus casting the study of complex networks dynamics to the powerful canonical formalism, in which the time evolution of a dynamical system is described by Hamilton's equations. We derive the explicit form of the Hamiltonian that governs network growth in preferential attachment. This Hamiltonian turns out to be nearly identical to graph energy in the configuration model, which shows that the ensemble of random graphs generated by preferential attachment is nearly identical to the ensemble of random graphs with scale-free degree d...
The electronic Hamiltonian for cuprates
Annett, James F.; Mcmahan, A. K.; Martin, Richard M.
1991-01-01
A realistic many-body Hamiltonian for the cuprate superconductors should include both copper d and oxygen p states, hopping matrix elements between them, and Coulomb energies, both on-site and inter-site. We have developed a novel computational scheme for deriving the relevant parameters ab initio from a constrained occupation local density functional. The scheme includes numerical calculation of appropriate Wannier functions for the copper and oxygen states. Explicit parameter values are given for La2CuO4. These parameters are generally consistent with other estimates and with the observed superexchange energy. Secondly, we address whether this complicated multi-band Hamiltonian can be reduced to a simpler one with fewer basis states per unit cell. We propose a mapping onto a new two-band effective Hamiltonian with one copper d and one oxygen p derived state per unit cell. This mapping takes into account the large oxygen-oxygen hopping given by the ab initio calculations.
First principles of Hamiltonian medicine.
Crespi, Bernard; Foster, Kevin; Úbeda, Francisco
2014-05-19
We introduce the field of Hamiltonian medicine, which centres on the roles of genetic relatedness in human health and disease. Hamiltonian medicine represents the application of basic social-evolution theory, for interactions involving kinship, to core issues in medicine such as pathogens, cancer, optimal growth and mental illness. It encompasses three domains, which involve conflict and cooperation between: (i) microbes or cancer cells, within humans, (ii) genes expressed in humans, (iii) human individuals. A set of six core principles, based on these domains and their interfaces, serves to conceptually organize the field, and contextualize illustrative examples. The primary usefulness of Hamiltonian medicine is that, like Darwinian medicine more generally, it provides novel insights into what data will be productive to collect, to address important clinical and public health problems. Our synthesis of this nascent field is intended predominantly for evolutionary and behavioural biologists who aspire to address questions directly relevant to human health and disease.
The Batalin-Vilkovisky Field-Antifield Action for Systems with First-Class Constraints
Louis-Martinez, Domingo J
2011-01-01
The Batalin-Vilkovisky field-antifield action for systems with first-class constraints is given explicitly in terms of the canonical hamiltonian, the hamiltonian constraints and the first-order hamiltonian gauge structure functions. It is shown that this action does not depend on the hamiltonian gauge structure functions of higher orders. A method for finding the lagrangian gauge structure tensors of all orders is presented. It is proven that the lagrangian gauge structure tensors do not depend on the hamiltonian gauge structure functions of second- or higher-orders.
Unified Hamiltonian for conducting polymers
Leitão Botelho, André; Shin, Yongwoo; Li, Minghai; Jiang, Lili; Lin, Xi
2011-11-01
Two transferable physical parameters are incorporated into the Su-Schrieffer-Heeger Hamiltonian to model conducting polymers beyond polyacetylene: the parameter γ scales the electron-phonon coupling strength in aromatic rings and the other parameter ɛ specifies the heterogeneous core charges. This generic Hamiltonian predicts the fundamental band gaps of polythiophene, polypyrrole, polyfuran, poly-(p-phenylene), poly-(p-phenylene vinylene), and polyacenes, and their oligomers of all lengths, with an accuracy exceeding time-dependent density functional theory. Its computational costs for moderate-length polymer chains are more than eight orders of magnitude lower than first-principles approaches.
Hamiltonian systems as selfdual equations
2008-01-01
Hamiltonian systems with various time boundary conditions are formulated as absolute minima of newly devised non-negative action func-tionals obtained by a generalization of Bogomolnyi's trick of 'completing squares'. Reminiscent of the selfdual Yang-Mills equations, they are not derived from the fact that they are critical points (i.e., from the correspond- ing Euler-Lagrange equations) but from being zeroes of the corresponding non-negative Lagrangians. A general method for resolving such variational problems is also described and applied to the construction of periodic solutions for Hamiltonian systems, but also to study certain Lagrangian intersections.
Hamiltonian formalism for Perturbed Black Hole Spacetimes
Mihaylov, Deyan; Gair, Jonathan
2017-01-01
Present and future gravitational wave observations provide a new mechanism to probe the predictions of general relativity. Observations of extreme mass ratio inspirals with millihertz gravitational wave detectors such as LISA will provide exquisite constraints on the spacetime structure outside astrophysical black holes, enabling tests of the no-hair property that all general relativistic black holes are described by the Kerr metric. Previous work to understand what constraints LISA observations will be able to place has focussed on specific alternative theories of gravity, or generic deviations that preserve geodesic separability. We describe an alternative approach to this problem--a technique that employs canonical perturbations of the Hamiltonian function describing motion in the Kerr metric. We derive this new approach and demonstrate its application to the cases of a slowly rotating Kerr black hole which is viewed as a perturbation of a Schwarzschild black hole, of coupled perturbations of black holes in the second-order Chern-Simons modified gravity theory, and several more indicative scenarios. Deyan Mihaylov is funded by STFC.
Constraint algebra in bigravity
Soloviev, V. O., E-mail: Vladimir.Soloviev@ihep.ru [National Research Center Kurchatov Institute, Institute for High Energy Physics (Russian Federation)
2015-07-15
The number of degrees of freedom in bigravity theory is found for a potential of general form and also for the potential proposed by de Rham, Gabadadze, and Tolley (dRGT). This aim is pursued via constructing a Hamiltonian formalismand studying the Poisson algebra of constraints. A general potential leads to a theory featuring four first-class constraints generated by general covariance. The vanishing of the respective Hessian is a crucial property of the dRGT potential, and this leads to the appearance of two additional second-class constraints and, hence, to the exclusion of a superfluous degree of freedom—that is, the Boulware—Deser ghost. The use of a method that permits avoiding an explicit expression for the dRGT potential is a distinctive feature of the present study.
Skurnick, Ronald; Davi, Charles; Skurnick, Mia
2005-01-01
Since 1952, several well-known graph theorists have proven numerous results regarding Hamiltonian graphs. In fact, many elementary graph theory textbooks contain the theorems of Ore, Bondy and Chvatal, Chvatal and Erdos, Posa, and Dirac, to name a few. In this note, the authors state and prove some propositions of their own concerning Hamiltonian…
Hamiltonian monodromy as lattice defect
Zhilinskii, B.
2003-01-01
The analogy between monodromy in dynamical (Hamiltonian) systems and defects in crystal lattices is used in order to formulate some general conjectures about possible types of qualitative features of quantum systems which can be interpreted as a manifestation of classical monodromy in quantum finite particle (molecular) problems.
Maslov index for Hamiltonian systems
Alessandro Portaluri
2008-01-01
Full Text Available The aim of this article is to give an explicit formula for computing the Maslov index of the fundamental solutions of linear autonomous Hamiltonian systems in terms of the Conley-Zehnder index and the map time one flow.
Dynamical stability of Hamiltonian systems
无
2000-01-01
Dynamical stability has become the center of study on Hamiltonian system. In this article we intro-duce the recent development in some areas closely related to this topic, such as the KAM theory, Mather theory, Arnolddiffusion and non-singular collision of n-body problem.
Derivation of Hamiltonians for accelerators
Symon, K.R.
1997-09-12
In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived. Except where noted, the treatment will apply generally to linear and circular accelerators, storage rings, and beamlines. The generic term accelerator will be used to refer to any of these devices. The author will use the usual accelerator coordinate system, which will be introduced first, along with a list of handy formulas. He then starts from the general Hamiltonian for a particle in an electromagnetic field, using the accelerator coordinate system, with time t as independent variable. He switches to a form more convenient for most purposes using the distance s along the reference orbit as independent variable. In section 2, formulas will be derived for the vector potentials that describe the various lattice components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of horizontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.
Time-reversible Hamiltonian systems
Schaft, Arjan van der
1982-01-01
It is shown that transfer matrices satisfying G(-s) = G(s) = G^T(-s) have a minimal Hamiltonian realization with an energy which is the sum of potential and kinetic energy, yielding the time reversibility of the equations. Furthermore connections are made with an associated gradient system. The
On third order integrable vector Hamiltonian equations
Meshkov, A. G.; Sokolov, V. V.
2017-03-01
A complete list of third order vector Hamiltonian equations with the Hamiltonian operator Dx having an infinite series of higher conservation laws is presented. A new vector integrable equation on the sphere is found.
Hamiltonian realizations of nonlinear adjoint operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2002-01-01
This paper addresses the issue of state-space realizations for nonlinear adjoint operators. In particular, the relationships between nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are established. Then, characterizations of the adjoints of control
Hamiltonian Realizations of Nonlinear Adjoint Operators
Fujimoto, Kenji; Scherpen, Jacquelien M.A.; Gray, W. Steven
2000-01-01
This paper addresses state-space realizations for nonlinear adjoint operators. In particular the relationship among nonlinear Hilbert adjoint operators, Hamiltonian extensions and port-controlled Hamiltonian systems are clarified. The characterization of controllability, observability and Hankel ope
Quantum Jacobi fields in Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
Jacobi fields of classical solutions of a Hamiltonian mechanical system are quantized in the framework of vertical-extended Hamiltonian formalism. Quantum Jacobi fields characterize quantum transitions between classical solutions.
Quantization of noncommutative completely integrable Hamiltonian systems
Giachetta, G. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Mangiarotti, L. [Department of Mathematics and Informatics, University of Camerino, 62032 Camerino (Italy); Sardanashvily, G. [Department of Theoretical Physics, Moscow State University, 117234 Moscow (Russian Federation)]. E-mail: gennadi.sardanashvily@unicam.it
2007-02-26
Integrals of motion of a Hamiltonian system need not commute. The classical Mishchenko-Fomenko theorem enables one to quantize a noncommutative completely integrable Hamiltonian system around its invariant submanifold as the Abelian one.
Port-Hamiltonian systems: an introductory survey
Schaft, van der Arjan; Sanz-Sole, M.; Soria, J.; Varona, J.L.; Verdera, J.
2006-01-01
The theory of port-Hamiltonian systems provides a framework for the geometric description of network models of physical systems. It turns out that port-based network models of physical systems immediately lend themselves to a Hamiltonian description. While the usual geometric approach to Hamiltonian
New sufficient conditions for Hamiltonian paths.
Rahman, M Sohel; Kaykobad, M; Firoz, Jesun Sahariar
2014-01-01
A Hamiltonian path in a graph is a path involving all the vertices of the graph. In this paper, we revisit the famous Hamiltonian path problem and present new sufficient conditions for the existence of a Hamiltonian path in a graph.
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Geometric Hamiltonian structures and perturbation theory
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging.
Driving Hamiltonian in a Quantum Search Problem
Oshima, K
2001-01-01
We examine the driving Hamiltonian in the analog analogue of Grover's algorithm by Farhi and Gutmann. For a quantum system with a given Hamiltonian $E|w> $ from an initial state $|s>$, the driving Hamiltonian $E^{\\prime}|s> < s|(E^{\\prime} \
Renormalized Effective QCD Hamiltonian Gluonic Sector
Robertson, D G; Szczepaniak, A P; Ji, C R; Cotanch, S R
1999-01-01
Extending previous QCD Hamiltonian studies, we present a new renormalization procedure which generates an effective Hamiltonian for the gluon sector. The formulation is in the Coulomb gauge where the QCD Hamiltonian is renormalizable and the Gribov problem can be resolved. We utilize elements of the Glazek and Wilson regularization method but now introduce a continuous cut-off procedure which eliminates non-local counterterms. The effective Hamiltonian is then derived to second order in the strong coupling constant. The resulting renormalized Hamiltonian provides a realistic starting point for approximate many-body calculations of hadronic properties for systems with explicit gluon degrees of freedom.
Lowest Eigenvalues of Random Hamiltonians
Shen, J J; Arima, A; Yoshinaga, N
2008-01-01
In this paper we present results of the lowest eigenvalues of random Hamiltonians for both fermion and boson systems. We show that an empirical formula of evaluating the lowest eigenvalues of random Hamiltonians in terms of energy centroids and widths of eigenvalues are applicable to many different systems (except for $d$ boson systems). We improve the accuracy of the formula by adding moments higher than two. We suggest another new formula to evaluate the lowest eigenvalues for random matrices with large dimensions (20-5000). These empirical formulas are shown to be applicable not only to the evaluation of the lowest energy but also to the evaluation of excited energies of systems under random two-body interactions.
On Hamiltonian formulation of cosmologies
K D Krori; S Dutta
2000-03-01
Novello et al [1,2] have shown that it is possible to ﬁnd a pair of canonically conjugate variables (written in terms of gauge-invariant variables) so as to obtain a Hamiltonian that describes the dynamics of a cosmological system. This opens up the way to the usual technique of quantization. Elbaz et al [4] have applied this method to the Hamiltonian formulation of FRW cosmological equations. This note presents a generalization of this approach to a variety of cosmologies. A general Schrödinger wave equation has been derived and exact solutions have been worked out for the stiff matter era for some cosmological models. It is argued that these solutions appear to hint at their possible relevance in the early phase of cosmological evolution.
Hamiltonian mechanics of stochastic acceleration.
Burby, J W; Zhmoginov, A I; Qin, H
2013-11-08
We show how to find the physical Langevin equation describing the trajectories of particles undergoing collisionless stochastic acceleration. These stochastic differential equations retain not only one-, but two-particle statistics, and inherit the Hamiltonian nature of the underlying microscopic equations. This opens the door to using stochastic variational integrators to perform simulations of stochastic interactions such as Fermi acceleration. We illustrate the theory by applying it to two example problems.
The Group of Hamiltonian Homeomorphisms in the L^\\infty-norm
Müller, Stefan C
2007-01-01
The group Hameo (M,\\omega) of Hamiltonian homeomorphisms of a connected symplectic manifold (M,\\omega) was defined and studied in [7] and further in [6]. In these papers, the authors consistently used the L^{(1,\\infty)}-Hofer norm (and not the L^\\infty-Hofer norm) on the space of Hamiltonian paths (see below for the definitions). A justification for this choice was given in [7]. In this article we study the L^\\infty-case. In view of the fact that the Hofer norm on the group Ham (M,\\omega) of Hamiltonian diffeomorphisms does not depend on the choice of the L^{(1,\\infty)}-norm vs. the L^\\infty-norm [9], Y.-G. Oh and D. McDuff (private communications) asked whether the two notions of Hamiltonian homeomorphisms arising from the different norms coincide. We will give an affirmative answer to this question in this paper.
Hamiltonian chaos and fractional dynamics
Zaslavsky, George M
2008-01-01
The dynamics of realistic Hamiltonian systems has unusual microscopic features that are direct consequences of its fractional space-time structure and its phase space topology. The book deals with the fractality of the chaotic dynamics and kinetics, and also includes material on non-ergodic and non-well-mixing Hamiltonian dynamics. The book does not follow the traditional scheme of most of today's literature on chaos. The intention of the author has been to put together some of the most complex and yet open problems on the general theory of chaotic systems. The importance of the discussed issues and an understanding of their origin should inspire students and researchers to touch upon some of the deepest aspects of nonlinear dynamics. The book considers the basic principles of the Hamiltonian theory of chaos and some applications including for example, the cooling of particles and signals, control and erasing of chaos, polynomial complexity, Maxwell's Demon, and others. It presents a new and realistic image ...
Decentralized systems with design constraints
Mahmoud, Magdi S
2014-01-01
This volume provides a rigorous examination of the analysis, stability and control of large-scale systems, and addresses the difficulties that arise because of dimensionality, information structure constraints, parametric uncertainty and time-delays.
STOCHASTIC OPTIMAL CONTROL FOR THE RESPONSE OF QUASI NON-INTEGRABLE HAMILTONIAN SYSTEMS~
DengMaolin; HongMingchao; ZhuWeiqiu
2003-01-01
A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.
Shestakova, T P
2013-01-01
We construct Hamiltonian dynamics of the generalized spherically symmetric gravitational model in extended phase space. We start from the Faddeev - Popov effective action with gauge-fixing and ghost terms, making use of gauge conditions in differential form. It enables us to introduce missing velocities into the Lagrangian and then construct a Hamiltonian function according a usual rule which is applied for systems without constraints. The main feature of Hamiltonian dynamics in extended phase space is that it can be proved to be completely equivalent to Lagrangian dynamics derived from the effective action. The sets of Lagrangian and Hamiltonian equations are not gauge invariant in general. We demonstrate that solutions to the obtained equations include those of the gauge invariant Einstein equations, and also discuss a possible role of gauge-noninvariant terms. Then, we find a BRST invariant form of the effective action by adding terms not affecting Lagrangian equations. After all, we construct the BRST cha...
Hamiltonian positivity of massive spin-2 particles via a rank-2 tensor
Benndorf, D.; Dalmazi, D.; dos Santos, A. L. R.
2017-02-01
There are three families of Lagrangians describing massive spin-2 particles via a general (nonsymmetric) rank-2 tensor. Each of those families depends on an arbitrary real parameter, one of them includes the paradigmatic Fierz–Pauli theory whose Hamiltonian positivity is known and reviewed here. Here we apply the plain Dirac–Bergmann procedure in the two remaining families. We identify all Hamiltonian constraints and prove both positivity of the reduced Hamiltonian and correct counting of degrees of freedom. The positivity of each spin mode contribution is demonstrated by using spin projection operators. The massless cases are also examined. In particular, we prove positivity of the reduced Hamiltonian and correct counting of degrees of freedom of a Weyl invariant description of massless spin-2 particles.
L\\'eon Rosenfeld's invention of constrained Hamiltonian dynamics
Salisbury, Donald
2016-01-01
This commentary reflects on the 1930 discoveries of L\\'eon Rosenfeld in the domain of phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that a...
Léon Rosenfeld's general theory of constrained Hamiltonian dynamics
Salisbury, Donald; Sundermeyer, Kurt
2017-01-01
This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.
Decentralized Constraint Satisfaction
Duffy, K R; Leith, D J
2011-01-01
Constraint satisfaction problems (CSPs) lie at the heart of many modern industrial and commercial tasks. An important new collection of CSPs has recently been emerging that differ from classical problems in that they impose constraints on the class of algorithms that can be used to solve them. In computer network applications, these constraints arise as the variables within the CSP are located at physically distinct devices that cannot communicate. At each instant, every variable only knows if all its constraints are met or at least one is not. Consequently, the CSP's solution must be found using a decentralized approach. Existing algorithms for solving CSPs are either centralized or distributed, both of which violate these algorithmic constraints. In this article we present the first algorithm for solving CSPs that fulfills these new requirements. It is fully decentralized, making no use of a centralized controller or message-passing between variables. We prove that this algorithm converges with probability ...
Redundancy of constraints in the classical and quantum theories of gravitation.
Moncrief, V.
1972-01-01
It is shown that in Dirac's version of the quantum theory of gravitation, the Hamiltonian constraints are greatly redundant. If the Hamiltonian constraint condition is satisfied at one point on the underlying, closed three-dimensional manifold, then it is automatically satisfied at every point, provided only that the momentum constraints are everywhere satisfied. This permits one to replace the usual infinity of Hamiltonian constraints by a single condition which may be taken in the form of an integral over the manifold. Analogous theorems are given for the classical Einstein Hamilton-Jacobi equations.
The Monge-Ampère equation: Hamiltonian and symplectic structures, recursions, and hierarchies
Kersten, P.H.M.; Krasil'shchik, I.; Verbovetsky, A.V.
2004-01-01
Using methods of geometry and cohomology developed recently, we study the Monge-Ampère equation, arising as the first nontrivial equation in the associativity equations, or WDVV equations. We describe Hamiltonian and symplectic structures as well as recursion operators for this equation in its
Formulation of quantized Hamiltonian dynamics in terms of natural variables.
Akimov, Alexey V; Prezhdo, Oleg V
2012-12-14
We present a formulation of quantized Hamiltonian dynamics (QHD) using variables that arise naturally from the Heisenberg equation of motion. The QHD equations are obtained and solved either directly in terms of these generalized variables, or by employing a wavefunction ansatz. The approach avoids a Taylor expansion and other approximations to the potential, leading to more stable dynamics and a higher precision of the calculated quantities. The proposed formulation is also amenable to for analytic and numerical implementations, thus facilitating its use in molecular dynamics simulation.
Hamiltonians with Riesz Bases of Generalised Eigenvectors and Riccati Equations
Wyss, Christian
2010-01-01
An algebraic Riccati equation for linear operators is studied, which arises in systems theory. For the case that all involved operators are unbounded, the existence of infinitely many selfadjoint solutions is shown. To this end, invariant graph subspaces of the associated Hamiltonian operator matrix are constructed by means of a Riesz basis with parentheses of generalised eigenvectors and two indefinite inner products. Under additional assumptions, the existence and a representation of all bounded solutions is obtained. The theory is applied to Riccati equations of differential operators.
Super Five Brane Hamiltonian and the Chiral Degrees of Freedom
De Castro, A
2002-01-01
We construct the Hamiltonian of the super five brane in terms of its physical degrees of freedom. It does not depend on the inverse of the induced metric. Consequently, some singular configurations are physically admissible, implying an interpretation of the theory as a multiparticle one. The symmetries of the theory are analyzed from the canonical point of view in terms of the first and second class constraints. In particular it is shown how the chiral sector may be canonically reduced to its physical degrees of freedom.
Self-Dual Conformal Supergravity and the Hamiltonian Formulation
Chee, G Y; Chee, Guoying; Jia, Yanhua
2001-01-01
In terms of Dirac matrices the self-dual and anti-self-dual decomposition of a conformal supergravity is given and a self-dual conformal supergravity theory is developed as a connection dynamic theory in which the basic dynamic variabes include the self-dual spin connection i.e. the Ashtekar connection rather than the triad. The Hamiltonian formulation and the constraints are obtained by using the Dirac-Bergmann algorithm. PACS numbers: 04.20.Cv, 04.20.Fy,04.65.+e
Hamiltonian analysis of the BFCG theory for a generic Lie 2-group
Mikovic, Aleksandar; Vojinovic, Marko
2016-01-01
We perform a complete Hamiltonian analysis of the BFCG action for a general Lie 2-group by using the Dirac procedure. We show that the resulting dynamical constraints eliminate all local degrees of freedom which implies that the BFCG theory is a topological field theory.
A port-Hamiltonian approach to power network modeling and analysis
Fiaz, S.; Zonetti, D.; Ortega, R.; Scherpen, J.M.A.; van der Schaft, A.J.
2013-01-01
In this paper we present a systematic framework for modeling of power networks. The basic idea is to view the complete power network as a port-Hamiltonian system on a graph where edges correspond to components of the power network and nodes are buses. The interconnection constraints are given by the
Hamiltonian reduction of the U$_{EM}$(1) gauged three flavour WZW model
Paschalis, J E
1995-01-01
The three-flavour Wess-Zumino model coupled to electromagnetism is treated as a constraint system using the Faddeev-Jackiw method. Expanding into series of powers of the Goldstone boson fields and keeping terms up to second and third order we obtain Coulomb-gauge hamiltonian densities.
The Hamiltonian structure of Yang-Mills theories and instantons II
Bergvelt, M. J.; De Kerf, E. A.
1986-11-01
The formalism of constraints, reviewed in paper I, is applied to Yang-Mills theory to determine the physical phase space. This turns out to be the cotangent bundle of orbit space, the space of gauge inequivalent potentials. Self-dual configurations are not Hamiltonian with respect to the symplectic structure inherited from the general system.
Monte Carlo Hamiltonian: Linear Potentials
LUO Xiang-Qian; LIU Jin-Jiang; HUANG Chun-Qing; JIANG Jun-Qin; Helmut KROGER
2002-01-01
We further study the validity of the Monte Carlo Hamiltonian method. The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach, is its capability to study the excited states. Weconsider two quantum mechanical models: a symmetric one V(x) = |x|/2; and an asymmetric one V(x) = ∞, forx ＜ 0 and V(x) = x, for x ≥ 0. The results for the spectrum, wave functions and thermodynamical observables are inagreement with the analytical or Runge-Kutta calculations.
LOCALIZATION THEOREM ON HAMILTONIAN GRAPHS
无
2000-01-01
Let G be a 2-connected graph of order n( 3).If I(u,v) S(u,v) or max {d(u),d(v)} n/2 for any two vertices u,v at distance two in an induced subgraph K1,3 or P3 of G,then G is hamiltonian.Here I(u,v) = ｜N(u)∩ N(v)｜,S(u,v) denotes thenumber of edges of maximum star containing u,v as an induced subgraph in G.
Discrete Hamiltonian for General Relativity
Ziprick, Jonathan
2015-01-01
Beginning from canonical general relativity written in terms of Ashtekar variables, we derive a discrete phase space with a physical Hamiltonian for gravity. The key idea is to define the gravitational fields within a complex of three-dimensional cells such that the dynamics is completely described by discrete boundary variables, and the full theory is recovered in the continuum limit. Canonical quantization is attainable within the loop quantum gravity framework, and we believe this will lead to a promising candidate for quantum gravity.
Chasing Hamiltonian structure in gyrokinetic theory
Burby, J W
2015-01-01
Hamiltonian structure is pursued and uncovered in collisional and collisionless gyrokinetic theory. A new Hamiltonian formulation of collisionless electromagnetic theory is presented that is ideally suited to implementation on modern supercomputers. The method used to uncover this structure is described in detail and applied to a number of examples, where several well-known plasma models are endowed with a Hamiltonian structure for the first time. The first energy- and momentum-conserving formulation of full-F collisional gyrokinetics is presented. In an effort to understand the theoretical underpinnings of this result at a deeper level, a \\emph{stochastic} Hamiltonian modeling approach is presented and applied to pitch angle scattering. Interestingly, the collision operator produced by the Hamiltonian approach is equal to the Lorentz operator plus higher-order terms, but does not exactly conserve energy. Conversely, the classical Lorentz collision operator is provably not Hamiltonian in the stochastic sense.
Exact decoupling of the Dirac Hamiltonian. III. Molecular properties.
Wolf, Alexander; Reiher, Markus
2006-02-14
Recent advances in the theory of the infinite-order Douglas-Kroll-Hess (DKH) transformation of the Dirac Hamiltonian require a fresh and unified view on the calculation of atomic and molecular properties. It is carefully investigated how the four-component Dirac Hamiltonian in the presence of arbitrary electric and magnetic potentials is decoupled to two-component form. In order to cover the whole range of electromagnetic properties on the same footing, a consistent description within the DKH theory is presented. Subtle distinctions are needed between errors arising from any finite-order DKH scheme and effects due to oversimplified and thus approximate decoupling strategies for the Dirac operator, which will, though being numerically negligible in most cases, still be visible in the infinite-order limit of the two-component treatment. Special focus is given to the issue, whether the unitary DKH transformations to be applied to the Dirac Hamiltonian should depend on the property under investigation or not. It is explicitly shown that up to third order in the external potential the transformed property operator is independent of the chosen parametrization of the unitary transformations of the generalized DKH scheme. Since the standard DKH protocol covers the transformation of one-electron integrals only, the presentation is developed for one-electron properties for the sake of brevity. Nevertheless, all findings for the calculation of one-electron properties within a two-component framework presented here also hold for two-electron properties as well.
Partial Hamiltonian formalism, multi-time dynamics and singular theories
Duplij, Steven
2013-01-01
We formulate singular classical theories without involving constraints. Applying the action principle for the action (27) we develop a partial (in the sense that not all velocities are transformed to momenta) Hamiltonian formalism in the initially reduced phase space (with the canonical coordinates $q_{i},p_{i}$, where the number $n_{p}$ of momenta $p_{i}$, $i=1,\\...,n_{p}$ (17) is arbitrary $n_{p}\\leq n$, where $n$ is the dimension of the configuration space), in terms of the partial Hamiltonian $H_{0}$ (18) and $(n-n_{p})$ additional Hamiltonians $H_{\\alpha}$, $\\alpha=n_{p}+1,\\...,n$ (20). We obtain $(n-n_{p}+1)$ Hamilton-Jacobi equations (25)-(26). The equations of motion are first order differential equations (33)-(34) with respect to $q_{i},p_{i}$ and second order differential equations (35) for $q_{\\alpha}$. If $H_{0}$, $H_{\\alpha}$ do not depend on $\\dot{q}_{\\alpha}$ (42), then the second order differential equations (35) become algebraic equations (43) with respect to $\\dot{q}_{\\alpha}$. We interpret ...
Restuccia, A. [Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile and Departamento de Física, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Sotomayor, A. [Departamento de Matemáticas, Universidad de Antofagasta, Antofagasta (Chile)
2013-11-15
A supersymmetric breaking procedure for N= 1 super Korteweg-de Vries (KdV), using a Clifford algebra, is implemented. Dirac's method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled KdV type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.
Restuccia, A
2013-01-01
A supersymmetric breaking procedure for $N=1$ Super KdV, using a Clifford algebra, is implemented. Dirac's method for the determination of constraints is used to obtain the Hamiltonian structure, via a Lagrangian, for the resulting solitonic system of coupled Korteweg-de Vries type system. It is shown that the Hamiltonian obtained by this procedure is bounded from below and in that sense represents a model which is physically admissible.
Stochastic averaging of quasi-Hamiltonian systems
朱位秋
1996-01-01
A stochastic averaging method is proposed for quasi-Hamiltonian systems (Hamiltonian systems with light dampings subject to weakly stochastic excitations). Various versions of the method, depending on whether the associated Hamiltonian systems are integrable or nonintegrable, resonant or nonresonant, are discussed. It is pointed out that the standard stochastic averaging method and the stochastic averaging method of energy envelope are special cases of the stochastic averaging method of quasi-Hamiltonian systems and that the results obtained by this method for several examples prove its effectiveness.
Hamiltonian cosmology in bigravity and massive gravity
Soloviev, Vladimir O
2015-01-01
In the Hamiltonian language we provide a study of flat-space cosmology in bigravity and massive gravity constructed mostly with de Rham, Gabadadze, Tolley (dRGT) potential. It is demonstrated that the Hamiltonian methods are powerful not only in proving the absence of the Boulware-Deser ghost, but also in solving other problems. The purpose of this work is to give an introduction both to the Hamiltonian formalism and to the cosmology of bigravity. We sketch three roads to the Hamiltonian of bigravity with the dRGT potential: the metric, the tetrad and the minisuperspace approaches.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María; Głazek, Stanisław D.
2016-07-01
We derive asymptotic freedom of gluons in terms of the renormalized SU(3) Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian {β} -function coincides with the one obtained in an earlier calculation using a different generator.
Hamiltonian tomography of photonic lattices
Ma, Ruichao; Owens, Clai; LaChapelle, Aman; Schuster, David I.; Simon, Jonathan
2017-06-01
In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites α and β may be obtained directly from Sα β(ω ) , the (suitably normalized) two-port measurement between sites α and β at frequency ω . This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.
Unconstrained Hamiltonian formulation of low energy QCD
Pavel Hans-Peter
2014-04-01
Full Text Available Using a generalized polar decomposition of the gauge fields into gaugerotation and gauge-invariant parts, which Abelianises the Non-Abelian Gauss-law constraints to be implemented, a Hamiltonian formulation of QCD in terms of gauge invariant dynamical variables can be achieved. The exact implementation of the Gauss laws reduces the colored spin-1 gluons and spin-1/2 quarks to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields and colorless Rarita-Schwinger fields respectively. The obtained physical Hamiltonian naturally admits a systematic strongcoupling expansion in powers of λ = g−2/3, equivalent to an expansion in the number of spatial derivatives. The leading-order term corresponds to non-interacting hybridglueballs, whose low-lying spectrum can be calculated with high accuracy by solving the Schrödinger-equation of the Dirac-Yang-Mills quantum mechanics of spatially constant fields (at the moment only for the 2-color case. The discrete glueball excitation spectrum shows a universal string-like behaviour with practically all excitation energy going in to the increase of the strengths of merely two fields, the “constant Abelian fields” corresponding to the zero-energy valleys of the chromomagnetic potential. Inclusion of the fermionic degrees of freedom significantly lowers the spectrum and allows for the study of the sigma meson. Higher-order terms in λ lead to interactions between the hybridglueballs and can be taken into account systematically using perturbation theory in λ, allowing for the study of IR-renormalisation and Lorentz invarianz. The existence of the generalized polar decomposition used, the position of the zeros of the corresponding Jacobian (Gribov horizons, and the ranges of the physical variables can be investigated by solving a system of algebraic equations. Its exact solution for the case of one spatial dimension and first numerical solutions for two and three spatial dimensions indicate
Bigravity in Kuchar's Hamiltonian formalism. 1. The General Case
Soloviev, Vladimir O
2013-01-01
The Hamiltonian formalism of bigravity and bimetric theories is constructed for the general form of potential between two metrics. It is natural to study the role played by the lapse and shift functions in theories with two metrics on the base of Kuchar's approach because then they do not depend on the choice of space-time coordinate frame. The algebra of first class constraints is derived in Dirac brackets constructed from the second class constraints. It is the celebrated algebra of the hypersurface deformations. Fixing one of the metrics we obtain a bimetric theory without any first class constrains. Then we can use the symmetries of the background metric to construct conserved quantities looking ultralocally when written through the potential. The special case of potential providing the less number for degrees of freedom will be treated in the companion paper.
3-state Hamiltonians associated to solvable 33-vertex models
Crampé, N.; Frappat, L.; Ragoucy, E.; Vanicat, M.
2016-09-01
Using the nested coordinate Bethe ansatz, we study 3-state Hamiltonians with 33 non-vanishing entries, or 33-vertex models, where only one global charge with degenerate eigenvalues exists and each site possesses three internal degrees of freedom. In the context of Markovian processes, they correspond to diffusing particles with two possible internal states which may be exchanged during the diffusion (transmutation). The first step of the nested coordinate Bethe ansatz is performed providing the eigenvalues in terms of rapidities. We give the constraints ensuring the consistency of the computations. These rapidities also satisfy Bethe equations involving 4 × 4 R-matrices, solutions of the Yang-Baxter equation which implies new constraints on the models. We solve them allowing us to list all the solvable 33-vertex models.
Hamiltonian formulation of surfaces with constant Gaussian curvature
Trejo, Miguel; Amar, Martine Ben; Mueller, Martin Michael [Laboratoire de Physique Statistique de l' Ecole Normale Superieure (UMR 8550), associe aux Universites Paris 6 et Paris 7 et au CNRS, 24, rue Lhomond, 75005 Paris (France)
2009-10-23
Dirac's method for constrained Hamiltonian systems is used to describe surfaces of constant Gaussian curvature. A geometrical free energy, for which these surfaces are equilibrium states, is introduced and interpreted as an action. An equilibrium surface can then be generated by the evolution of a closed space curve. Since the underlying action depends on second derivatives, the velocity of the curve and its conjugate momentum must be included in the set of phase-space variables. Furthermore, the action is linear in the acceleration of the curve and possesses a local symmetry-reparametrization invariance-which implies primary constraints in the canonical formalism. These constraints are incorporated into the Hamiltonian through Lagrange multiplier functions that are identified as the components of the acceleration of the curve. The formulation leads to four first-order partial differential equations, one for each canonical variable. With the appropriate choice of parametrization, only one of these equations has to be solved to obtain the surface which is swept out by the evolving space curve. To illustrate the formalism, several evolutions of pseudospherical surfaces are discussed.
Implicit variational principle for contact Hamiltonian systems
Wang, Kaizhi; Wang, Lin; Yan, Jun
2017-02-01
We establish an implicit variational principle for the contact Hamiltonian systems generated by the Hamiltonian H(x, u, p) with respect to the contact 1-form α =\\text{d}u-p\\text{d}x under Tonelli and Lipschitz continuity conditions.
Some Graphs Containing Unique Hamiltonian Cycles
Lynch, Mark A. M.
2002-01-01
In this paper, two classes of graphs of arbitrary order are described which contain unique Hamiltonian cycles. All the graphs have mean vertex degree greater than one quarter the order of the graph. The Hamiltonian cycles are detailed, their uniqueness proved and simple rules for the construction of the adjacency matrix of the graphs are given.…
A parcel formulation for Hamiltonian layer models
Bokhove, O.; Oliver, M.
2009-01-01
Starting from the three-dimensional hydrostatic primitive equations, we derive Hamiltonian N-layer models with isentropic tropospheric and isentropic or isothermal stratospheric layers. Our construction employs a new parcel Hamiltonian formulation which describes the fluid as a continuum of Hamilton
Equivalence of Conformal Superalgebras to Hamiltonian Superoperators
Xiaoping Xu
2001-01-01
In this paper, we present a formal variational calculus of super functions in one real variable and find the conditions for a "matrix differential operator'' to be a Hamiltonian superoperator. Moreover, we prove that conformal superalgebras are equivalent to certain Hamiltonian superoperators.
ON THE STABILITY BOUNDARY OF HAMILTONIAN SYSTEMS
QI Zhao-hui(齐朝晖); Alexander P. Seyranian
2002-01-01
The criterion for the points in the parameter space being on the stability boundary of linear Hamiltonian system depending on arbitrary numbers of parameters was given, through the sensitivity analysis of eigenvalues and eigenvectors. The results show that multiple eigenvalues with Jordan chain take a very important role in the stability of Hamiltonian systems.
Hamiltonian for a restricted isoenergetic thermostat
Dettmann, C. P.
1999-01-01
Nonequilibrium molecular dynamics simulations often use mechanisms called thermostats to regulate the temperature. A Hamiltonian is presented for the case of the isoenergetic (constant internal energy) thermostat corresponding to a tunable isokinetic (constant kinetic energy) thermostat, for which a Hamiltonian has recently been given.
Normal Form for Families of Hamiltonian Systems
Zhi Guo WANG
2007-01-01
We consider perturbations of integrable Hamiltonian systems in the neighborhood of normally parabolic invariant tori. Using the techniques of KAM-theory we prove that there exists a canonical transformation that puts the Hamiltonian in normal form up to a remainder of weighted order 2d+1. And some dynamical consequences are obtained.
Bohr Hamiltonian with time-dependent potential
Naderi, L.; Hassanabadi, H.; Sobhani, H.
2016-04-01
In this paper, Bohr Hamiltonian has been studied with the time-dependent potential. Using the Lewis-Riesenfeld dynamical invariant method appropriate dynamical invariant for this Hamiltonian has been constructed and the exact time-dependent wave functions of such a system have been derived due to this dynamical invariant.
Infinite-dimensional Hamiltonian Lie superalgebras
无
2010-01-01
The natural filtration of the infinite-dimensional Hamiltonian Lie superalgebra over a field of positive characteristic is proved to be invariant under automorphisms by characterizing ad-nilpotent elements.We are thereby able to obtain an intrinsic characterization of the Hamiltonian Lie superalgebra and establish a property of the automorphisms of the Lie superalgebra.
Momentum and hamiltonian in complex action theory
Nagao, Keiichi; Nielsen, Holger Frits Bech
2012-01-01
$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led...
Square conservation systems and Hamiltonian systems
王斌; 曾庆存; 季仲贞
1995-01-01
The internal and external relationships between the square conservation scheme and the symplectic scheme are revealed by a careful study on the interrelation between the square conservation system and the Hamiltonian system in the linear situation, thus laying a theoretical basis for the application and extension of symplectic schemes to square conservations systems, and of those schemes with quadratic conservation properties to Hamiltonian systems.
The Global versus Local Hamiltonian Description of Quantum Input-Output Theory
Gough, John
2015-06-01
The aim of this paper is to derive the global Hamiltonian form for a quantum system and bath, or more generally a quantum network with multiple quantum input field connections, based on the local descriptions. We give a new simple argument which shows that the global Hamiltonian for a single Markov component arises as the singular perturbation of the free translation operator. We show that the Fermi analogue takes an equivalent form provided the parity of the coefficients is correctly specified. This allows us to immediately extend the theory of quantum feedback networks to Fermi systems.
Brugnano, Luigi; Trigiante, Donato
2009-01-01
One main issue, when numerically integrating autonomous Hamiltonian systems, is the long-term conservation of some of its invariants, among which the Hamiltonian function itself. For example, it is well known that standard (even symplectic) methods can only exactly preserve quadratic Hamiltonians. In this paper, a new family of methods, called Hamiltonian Boundary Value Methods (HBVMs), is introduced and analyzed. HBVMs are able to exactly preserve, in the discrete solution, Hamiltonian functions of polynomial type of arbitrarily high degree. These methods turn out to be symmetric, perfectly $A$-stable, and can have arbitrarily high order. A few numerical tests confirm the theoretical results.
From physical principles to relativistic classical Hamiltonian and Lagrangian particle mechanics
Carcassi, Gabriele
2015-01-01
We show that classical particle mechanics (Hamiltonian and Lagrangian consistent with relativistic electromagnetism) can be derived from three fundamental assumptions: infinite reducibility, deterministic and reversible evolution, and kinematic equivalence. The core idea is that deterministic and reversible systems preserve the cardinality of a set of states, which puts considerable constraints on the equations of motion. This perspective links different concepts from different branches of math and physics (e.g. cardinality of a set, cotangent bundle for phase space, Hamiltonian flow, locally Minkowskian space-time manifold), providing new insights. The derivation strives to use definitions and mathematical concepts compatible with future extensions to field theories and quantum mechanics.
Hamiltonian Systems and Darboux Transformation Associated with a 3 × 3 Matrix Spectral Problem
无
2007-01-01
Starting from a 3 × 3 matrix spectral problem, we derive a hierarchy of nonlinear equations. It is shown that the hierarchy possesses bi-Hamiltonian structure. Under the symmetry constraints between the potentials and the eigenfunctions, Lax pair and adjoint Lax pairs including partial part and temporal part are nonlinearied into two finitedimensional Hamiltonian systems (FDHS) in Liouville sense. Moreover, an explicit N-fold Darboux transformation for CDNS equation is constructed with the help of a gauge transformation of the spectral problem.
Nechaev, I. A.; Krasovskii, E. E.
2016-11-01
We present a method to microscopically derive a small-size k .p Hamiltonian in a Hilbert space spanned by physically chosen ab initio spinor wave functions. Without imposing any complementary symmetry constraints, our formalism equally treats three- and two-dimensional systems and simultaneously yields the Hamiltonian parameters and the true Z2 topological invariant. We consider bulk crystals and thin films of Bi2Se3 , Bi2Te3 , and Sb2Te3 . It turns out that the effective continuous k .p models with open boundary conditions often incorrectly predict the topological character of thin films.
Effective Hamiltonians for Complexes of Unstable Particles
Urbanowski, K
2014-01-01
Effective Hamiltonians governing the time evolution in a subspace of unstable states can be found using more or less accurate approximations. A convenient tool for deriving them is the evolution equation for a subspace of state space sometime called the Krolikowski-Rzewuski (KR) equation. KR equation results from the Schr\\"{o}dinger equation for the total system under considerations. We will discuss properties of approximate effective Hamiltonians derived using KR equation for $n$--particle, two particle and for one particle subspaces. In a general case these affective Hamiltonians depend on time $t$. We show that at times much longer than times at which the exponential decay take place the real part of the exact effective Hamiltonian for the one particle subsystem (that is the instantaneous energy) tends to the minimal energy of the total system when $t \\rightarrow \\infty$ whereas the imaginary part of this effective Hamiltonian tends to the zero as $t\\rightarrow \\infty$.
Lagrangian and Hamiltonian two-scale reduction
Giannoulis, Johannes; Mielke, Alexander
2008-01-01
Studying high-dimensional Hamiltonian systems with microstructure, it is an important and challenging problem to identify reduced macroscopic models that describe some effective dynamics on large spatial and temporal scales. This paper concerns the question how reasonable macroscopic Lagrangian and Hamiltonian structures can by derived from the microscopic system. In the first part we develop a general approach to this problem by considering non-canonical Hamiltonian structures on the tangent bundle. This approach can be applied to all Hamiltonian lattices (or Hamiltonian PDEs) and involves three building blocks: (i) the embedding of the microscopic system, (ii) an invertible two-scale transformation that encodes the underlying scaling of space and time, (iii) an elementary model reduction that is based on a Principle of Consistent Expansions. In the second part we exemplify the reduction approach and derive various reduced PDE models for the atomic chain. The reduced equations are either related to long wave...
Simulating sparse Hamiltonians with star decompositions
Childs, Andrew M
2010-01-01
We present an efficient algorithm for simulating the time evolution due to a sparse Hamiltonian. In terms of the maximum degree d and dimension N of the space on which the Hamiltonian H acts, this algorithm uses (d^2(d+log* N)||H||)^{1+o(1)} queries. This improves the complexity of the sparse Hamiltonian simulation algorithm of Berry, Ahokas, Cleve, and Sanders, which scales like (d^4(log* N)||H||)^{1+o(1)}. To achieve this, we decompose a general sparse Hamiltonian into a small sum of Hamiltonians whose graphs of non-zero entries have the property that every connected component is a star, and efficiently simulate each of these pieces.
Change in Hamiltonian general relativity from the lack of a time-like Killing vector field
Pitts, J. Brian
2014-08-01
In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially tuned sum of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism (changing the electric field) or General Relativity. The change spoils the Lagrangian constraints, Gauss's law or the Gauss-Codazzi relations describing embedding of space into space-time, in terms of the physically relevant velocities rather than auxiliary canonical momenta. While Maudlin and Healey have defended change in GR much as G. E. Moore resisted skepticism, there remains a need to exhibit the technical flaws in the no-change argument. Insistence on Hamiltonian-Lagrangian equivalence, a theme emphasized by Mukunda, Castellani, Sugano, Pons, Salisbury, Shepley and Sundermeyer among others, holds the key. Taking objective change to be ineliminable time dependence, one recalls that there is change in vacuum GR just in case there is no time-like vector field ξα satisfying Killing's equation £ξgμν = 0, because then there exists no coordinate system such that everything is independent of time. Throwing away the spatial dependence of GR for convenience, one finds explicitly that the time evolution from Hamilton's equations is real change just when there is no time-like Killing vector. The inclusion of a massive scalar field is simple. No obstruction is expected in including spatial dependence and coupling more general matter fields. Hence change is real and local even in the Hamiltonian formalism. The considerations here resolve the Earman-Maudlin standoff over change in Hamiltonian General Relativity: the
New formulation of Horava-Lifshitz quantum gravity as a master constraint theory
Soo, Chopin; Yu, Hoi-Lai
2010-01-01
Horava-Lifshitz theory of quantum gravity attempts to preserve unitarity by relinquishing space-time covariance, and improve renormalizability by including higher order (spatial) derivatives. For theories without full space-time covariance, departures of the constraint algebra from the Dirac algebra are to be expected. In the non-projectable version of Horava-Lifshitz gravity, the commutator of two local Hamiltonian constraints leads to severely restrictive secondary constraints and perplexing "troubles". On the other hand, the projectable version has an integrated Hamiltonian constraint and consistent constraint algebra. But an extra graviton mode which can be problematic is then allowed, whereas in Einstein's theory the spurious mode is eliminated precisely by the local Hamiltonian constraint. A new formulation of Horava-Lifshitz gravity, naturally realized as a representation of the master constraint algebra studied by loop quantum gravity researchers, is presented in this work. This reformulation yields a...
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Tassi, Emanuele
2010-01-01
Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving the infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium "translated" pressure gradient, stable equilibria can either be energy stable, i.e.\\ possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes (NEMs). The ETG instability is then shown to arise through a Kre\\u{\\i}n-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, ...
Hamiltonian and action principle formalisms for spin-1/2 magnetohydrodynamics
Lingam, M., E-mail: manasvi@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States)
2015-02-15
A Hamiltonian and Action Principle formulation of spin-1/2 magnetohydrodynamics is presented via a first-principles derivation of the underlying Lagrangian, and the associated Hamiltonian. The derivation invokes the notion of “frozen-in” constraints, symmetry breaking, and similarities with Ginzburg-Landau theory to arrive at the relevant terms in the Hamiltonian. The model thus obtained includes the effects of spin and other quantum corrections and is shown to be in full agreement with existent models in the literature. It is also indicated how two-fluid effects, gyroviscosity, and anisotropic pressure can be included in the model, in addition to incorporating higher-order (nonlinear) quantum spin corrections. An interesting analogy with the theory of liquid crystals is also highlighted.
Unconstrained Hamiltonian formulation of low energy SU(3) Yang-Mills quantum theory
Pavel, Hans-Peter
2012-01-01
An unconstrained Hamiltonian formulation of the SU(3) Yang-Mills quantum mechanics of spatially constant fields is given using the method of minimal embedding of SU(2) into SU(3) by Kihlberg and Marnelius. Using a canonical transformation of the gluon fields to a new set of adapted coordinates (a non-standard type polar decomposition), which Abelianizes the Non-Abelian Gauss law constraints to be implemented, the corresponding unconstrained Hamiltonian and total angular momentum are derived. This reduces the colored spin-1 gluons to unconstrained colorless spin-0, spin-1, spin-2 and spin-3 glueball fields. The obtained unconstrained Hamiltonian is then rewritten into a form, which separates the rotational from the scalar degrees of freedom. It is shown that the chromomagnetic potential has classical zero-energy valleys for two arbitrarily large classical glueball fields, which are the unconstrained analogs of the well-known "constant Abelian fields". On the quantum level, practically all glueball excitation e...
Loop constraints A habitat and their algebra
Lewandowski, J R; Lewandowski, Jerzy; Marolf, Donald
1998-01-01
This work introduces a new space $\\T'_*$ of `vertex-smooth' states for use in the loop approach to quantum gravity. Such states provide a natural domain for Euclidean Hamiltonian constraint operators of the type introduced by Thiemann (and using certain ideas of Rovelli and Smolin). In particular, such operators map $\\T'_*$ into itself, and so are actual operators in this space. Their commutator can be computed on $\\T'_*$ and compared with the classical hypersurface deformation algebra. Although the classical Poisson bracket of Hamiltonian constraints yields an inverse metric times an infinitesimal diffeomorphism generator, and despite the fact that the diffeomorphism generator has a well-defined non-trivial action on $\\T'_*$, the commutator of quantum constraints vanishes identically for a large class of proposals.
Lectures on Hamiltonian Dynamics : Theory and Applications
Benettin, Giancarlo; Kuksin, Sergei
2005-01-01
This volume collects three series of lectures on applications of the theory of Hamiltonian systems, contributed by some of the specialists in the field. The aim is to describe the state of the art for some interesting problems, such as the Hamiltonian theory for infinite-dimensional Hamiltonian systems, including KAM theory, the recent extensions of the theory of adiabatic invariants and the phenomena related to stability over exponentially long times of Nekhoroshev's theory. The books may serve as an excellent basis for young researchers, who will find here a complete and accurate exposition of recent original results and many hints for further investigation.
Extended Hamiltonian approach to continuous tempering.
Gobbo, Gianpaolo; Leimkuhler, Benedict J
2015-06-01
We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.
EXISTENCE OF HAMILTONIAN κ-FACTOR
CAI Maocheng; FANG Qizhi; LI Yanjun
2004-01-01
A Hamiltonian k-factor is a k-factor containing a Hamiltonian cycle. An n/2-critical graph G is a simple graph of order n which satisfies δ(G) ≥ n/2 and δ(G - e) ＜ n/2for any edge e ∈ E(G). Let κ≥ 2 be an integer and G be an n/2-critical graph of even order n ≥ 8κ - 14. It is shown in this paper that for any given Hamiltonian cycle Cexcept that G - C consists of two components of odd orders when κ is odd, G has a k-factor containing C.
Orthogonal separable Hamiltonian systems on T2
无
2007-01-01
In this paper we characterize the Liouvillian integrable orthogonal separable Hamiltonian systems on T2 for a given metric, and prove that the Hamiltonian flow on any compact level hypersurface has zero topological entropy. Furthermore, by examples we show that the integrable Hamiltonian systems on T2 can have complicated dynamical phenomena. For instance they can have several families of invariant tori, each family is bounded by the homoclinic-loop-like cylinders and heteroclinic-loop-like cylinders. As we know, it is the first concrete example to present the families of invariant tori at the same time appearing in such a complicated way.
EXTENDED CASIMIR APPROACH TO CONTROLLED HAMILTONIAN SYSTEMS
Yuqian GUO; Daizhan CHENG
2006-01-01
In this paper, we first propose an extended Casimir method for energy-shaping. Then it is used to solve some control problems of Hamiltonian systems. To solve the H∞ control problem, the energy function of a Hamiltonian system is shaped to such a form that could be a candidate solution of HJI inequality. Next, the energy function is shaped as a candidate of control ISS-Lyapunov function, and then the input-to-state stabilization of port-controlled Hamiltonian systems is achieved. Some easily verifiable sufficient conditions are presented.
Minimal Realizations of Supersymmetry for Matrix Hamiltonians
Andrianov, Alexandr A
2014-01-01
The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of $2\\times2$ matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated.
On a general Heisenberg exchange effective Hamiltonian
Blanco, J.A.; Prida Pidal, V.M. [Dept. de Fisica, Oviedo Univ. (Spain)
1995-07-01
A general Heisenberg exchange effective Hamiltonian is deduced in a straightforward way from the elemental quantum mechanical principles for the case of magnetic ions with non-orbital degeneracy in a crystalline lattice. Expressions for the high order direct exchange coupling constants or parameters are presented. The meaning of this effective Hamiltonian is important because extracting information from the Heisenberg Hamiltonian is a difficult task and is however taken as the starting point for many quite profound investigations of magnetism in solids and therefore could play an important role in an introductory course to solid state physics. (author)
Algebraic Hamiltonian for Vibrational Spectra of Stibine
HOU Xi-Wen
2004-01-01
@@ An algebraic Hamiltonian, which in a limit can be reduced to an extended local mode model by Law and Duncan,is proposed to describe both stretching and bending vibrational energy levels of polyatomic molecules, where Fermi resonances between the stretches and the bends are considered. The Hamiltonian is used to study the vibrational spectra of stibine (SbH3). A comparison with the extended local mode model is made. Results of fitting the experimental data show that the algebraic Hamiltonian reproduces the observed values better than the extended local mode model.
Indirect quantum tomography of quadratic Hamiltonians
Burgarth, Daniel [Institute for Mathematical Sciences, Imperial College London, London SW7 2PG (United Kingdom); Maruyama, Koji; Nori, Franco, E-mail: daniel@burgarth.de, E-mail: kmaruyama@riken.jp [Advanced Science Institute, RIKEN, Wako-shi, Saitama 351-0198 (Japan)
2011-01-15
A number of many-body problems can be formulated using Hamiltonians that are quadratic in the creation and annihilation operators. Here, we show how such quadratic Hamiltonians can be efficiently estimated indirectly, employing very few resources. We found that almost all the properties of the Hamiltonian are determined by its surface and that these properties can be measured even if the system can only be initialized to a mixed state. Therefore, our method can be applied to various physical models, with important examples including coupled nano-mechanical oscillators, hopping fermions in optical lattices and transverse Ising chains.
Hamiltonian and Lagrangian theory of viscoelasticity
Hanyga, A.; Seredyńska, M.
2008-03-01
The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
Dicycle Cover of Hamiltonian Oriented Graphs
Khalid A. Alsatami
2016-01-01
Full Text Available A dicycle cover of a digraph D is a family F of dicycles of D such that each arc of D lies in at least one dicycle in F. We investigate the problem of determining the upper bounds for the minimum number of dicycles which cover all arcs in a strong digraph. Best possible upper bounds of dicycle covers are obtained in a number of classes of digraphs including strong tournaments, Hamiltonian oriented graphs, Hamiltonian oriented complete bipartite graphs, and families of possibly non-Hamiltonian digraphs obtained from these digraphs via a sequence of 2-sum operations.
Improved Sufficient Conditions for Hamiltonian Properties
Bode Jens-P.
2015-05-01
Full Text Available In 1980 Bondy [2] proved that a (k+s-connected graph of order n ≥ 3 is traceable (s = −1 or Hamiltonian (s = 0 or Hamiltonian-connected (s = 1 if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1(n+s−1+1/2. It is shown in [1] that one can allow exceptional (k+ 1-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition.
QCD unitarity constraints on Reggeon Field Theory
Kovner, Alex; Lublinsky, Michael
2016-01-01
We point out that the unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun's Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a "black disk limit" as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature
QCD unitarity constraints on Reggeon Field Theory
Kovner, Alex [Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States); Levin, Eugene [Departemento de Física, Universidad Técnica Federico Santa María,and Centro Científico-Tecnológico de Valparaíso,Avda. Espana 1680, Casilla 110-V, Valparaíso (Chile); Department of Particle Physics, Tel Aviv University,Tel Aviv 69978 (Israel); Lublinsky, Michael [Physics Department, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States)
2016-08-04
We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit' as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.
Nishimatsu, Takeshi; Grünebohm, Anna; Waghmare, Umesh V.; Kubo, Momoji
2016-11-01
We present a semi-empirical effective Hamiltonian to capture effects of disorder associated with Ba and Sr cations occupying A sites in (BaxSr1-x)TiO3 on its ferroelectric phase transition. Averaging between the parameters of first-principles effective Hamiltonians of end members BaTiO3 and SrTiO3, we include a term with an empirical parameter to capture the local polarization and strains arising from the difference between ionic radii of Ba and Sr. Using mixed-space molecular dynamics of the effective Hamiltonian, we determine T-dependent ferroelectric phase transitions in (BaxSr1-x)TiO3 which are in good agreement with experiment. Our scheme of determination of semi-empirical parameters in effective Hamiltonian should be applicable to other perovskite-type ferroelectric solid solutions.
Effective stability for generalized Hamiltonian systems
CONG; Fuzhong; LI; Yong
2004-01-01
An effective stability result for generalized Hamiltonian systems is obtained by applying the simultaneous approximation technique due to Lochak. Among these systems,dimensions of action variables and angle variables might be distinct.
Spinor-Like Hamiltonian for Maxwellian Optics
Kulyabov D.S.
2016-01-01
Conclusions. For Maxwell equations in the Dirac-like form we can expand research methods by means of quantum field theory. In this form, the connection between the Hamiltonians of geometric, beam and Maxwellian optics is clearly visible.
Integrable Hamiltonian systems and spectral theory
Moser, J
1981-01-01
Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.
Compressed quantum metrology for the Ising Hamiltonian
Boyajian, W. L.; Skotiniotis, M.; Dür, W.; Kraus, B.
2016-12-01
We show how quantum metrology protocols that seek to estimate the parameters of a Hamiltonian that exhibits a quantum phase transition can be efficiently simulated on an exponentially smaller quantum computer. Specifically, by exploiting the fact that the ground state of such a Hamiltonian changes drastically around its phase-transition point, we construct a suitable observable from which one can estimate the relevant parameters of the Hamiltonian with Heisenberg scaling precision. We then show how, for the one-dimensional Ising Hamiltonian with transverse magnetic field acting on N spins, such a metrology protocol can be efficiently simulated on an exponentially smaller quantum computer while maintaining the same Heisenberg scaling for the squared error, i.e., O (N-2) precision, and derive the explicit circuit that accomplishes the simulation.
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi; Nielsen, Holger Bech
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view based on the complex coordinate formalism of our foregoing paper. After reviewing the formalism briefly, we describe in FPI with a Lagrangian the time development of a ξ-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator. Solving this eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum relation again via the saddle point for p. This study confirms that the momentum and Hamiltonian in the CAT have the same forms as those in the real action theory. We also show the third derivation of the momentum relation via the saddle point for q.
A Student's Guide to Lagrangians and Hamiltonians
Hamill, Patrick
2013-11-01
Part I. Lagrangian Mechanics: 1. Fundamental concepts; 2. The calculus of variations; 3. Lagrangian dynamics; Part II. Hamiltonian Mechanics: 4. Hamilton's equations; 5. Canonical transformations: Poisson brackets; 6. Hamilton-Jacobi theory; 7. Continuous systems; Further reading; Index.
Classical mechanics Hamiltonian and Lagrangian formalism
Deriglazov, Alexei
2016-01-01
This account of the fundamentals of Hamiltonian mechanics also covers related topics such as integral invariants and the Noether theorem. With just the elementary mathematical methods used for exposition, the book is suitable for novices as well as graduates.
Jacobi fields of completely integrable Hamiltonian systems
Giachetta, G.; Mangiarotti, L.; Sardanashvily, G
2003-03-31
We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion.
Polysymplectic Hamiltonian formalism and some quantum outcomes
Giachetta, G; Sardanashvily, G
2004-01-01
Covariant (polysymplectic) Hamiltonian field theory is formulated as a particular Lagrangian theory on a polysymplectic phase space that enables one to quantize it in the framework of familiar quantum field theory.
Asymptocic Freedom of Gluons in Hamiltonian Dynamics
Gómez-Rocha, María
2016-01-01
We derive asymptotic freedom of gluons in terms of the renormalized $SU(3)$ Yang-Mills Hamiltonian in the Fock space. Namely, we use the renormalization group procedure for effective particles (RGPEP) to calculate the three-gluon interaction term in the front-form Yang-Mills Hamiltonian using a perturbative expansion in powers of $g$ up to third order. The resulting three-gluon vertex is a function of the scale parameter $s$ that has an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant exhibits asymptotic freedom, and the corresponding Hamiltonian $\\beta$-function coincides with the one obtained in an earlier calculation using a different generator.
Hamiltonian cycle problem and Markov chains
Borkar, Vivek S; Filar, Jerzy A; Nguyen, Giang T
2014-01-01
This book summarizes a line of research that maps certain classical problems of discrete mathematics and operations research - such as the Hamiltonian cycle and the Travelling Salesman problems - into convex domains where continuum analysis can be carried out.
Singh, Parampreet; Soni, S. K.
2016-06-01
The problem of obtaining canonical Hamiltonian structures from the equations of motion, without any knowledge of the action, is studied in the context of the spatially flat Friedmann, ‘Robertson’, and Walker models. Modifications to the Raychaudhuri equation are implemented independently as quadratic and cubic terms of energy density without introducing additional degrees of freedom. Depending on their sign, modifications make gravity repulsive above a curvature scale for matter satisfying strong energy conditions, or more attractive than in the classical theory. The canonical structure of the modified theories is determined by demanding that the total Hamiltonian be a linear combination of gravity and matter Hamiltonians. In the quadratic repulsive case, the modified canonical phase space of gravity is a polymerized phase space with canonical momentum as inverse a trigonometric function of the Hubble rate; the canonical Hamiltonian can be identified with the effective Hamiltonian in loop quantum cosmology. The repulsive cubic modification results in a ‘generalized polymerized’ canonical phase space. Both the repulsive modifications are found to yield singularity avoidance. In contrast, the quadratic and cubic attractive modifications result in a canonical phase space in which canonical momentum is nontrigonometric and singularities persist. Our results hint at connections between the repulsive/attractive nature of modifications to gravity arising from the gravitational sector and polymerized/non polymerized gravitational phase space.
Duality relation among the Hamiltonian structures of a parametric coupled Korteweg-de Vries system
Restuccia Alvaro
2016-01-01
Full Text Available We obtain the full Hamiltonian structure for a parametric coupled KdV system. The coupled system arises from four different real basic lagrangians. The associated Hamiltonian functionals and the corresponding Poisson structures follow from the geometry of a constrained phase space by using the Dirac approach for constrained systems. The overall algebraic structure for the system is given in terms of two pencils of Poisson structures with associated Hamiltonians depending on the parameter of the Poisson pencils. The algebraic construction we present admits the most general space of observables related to the coupled system. We then construct two master lagrangians for the coupled system whose field equations are the ε-parametric Gardner equations obtained from the coupled KdV system through a Gardner transformation. In the weak limit ε → 0 the lagrangians reduce to the ones of the coupled KdV system while, after a suitable redefinition of the fields, in the strong limit ε → ∞ we obtain the lagrangians of the coupled modified KdV system. The Hamiltonian structures of the coupled KdV system follow from the Hamiltonian structures of the master system by taking the two limits ε → 0 and ε → ∞.
Duality relation among the Hamiltonian structures of a parametric coupled Korteweg-de Vries system
Restuccia, Alvaro; Sotomayor, Adrián
2016-01-01
We obtain the full Hamiltonian structure for a parametric coupled KdV system. The coupled system arises from four different real basic lagrangians. The associated Hamiltonian functionals and the corresponding Poisson structures follow from the geometry of a constrained phase space by using the Dirac approach for constrained systems. The overall algebraic structure for the system is given in terms of two pencils of Poisson structures with associated Hamiltonians depending on the parameter of the Poisson pencils. The algebraic construction we present admits the most general space of observables related to the coupled system. We then construct two master lagrangians for the coupled system whose field equations are the ɛ-parametric Gardner equations obtained from the coupled KdV system through a Gardner transformation. In the weak limit ɛ → 0 the lagrangians reduce to the ones of the coupled KdV system while, after a suitable redefinition of the fields, in the strong limit ɛ → ∞ we obtain the lagrangians of the coupled modified KdV system. The Hamiltonian structures of the coupled KdV system follow from the Hamiltonian structures of the master system by taking the two limits ɛ → 0 and ɛ → ∞.
On the exactness of effective Floquet Hamiltonians employed in solid-state NMR spectroscopy
Garg, Rajat; Ramachandran, Ramesh
2017-05-01
Development of theoretical models based on analytic theory has remained an active pursuit in molecular spectroscopy for its utility both in the design of experiments as well as in the interpretation of spectroscopic data. In particular, the role of "Effective Hamiltonians" in the evolution of theoretical frameworks is well known across all forms of spectroscopy. Nevertheless, a constant revalidation of the approximations employed in the theoretical frameworks is necessitated by the constant improvements on the experimental front in addition to the complexity posed by the systems under study. Here in this article, we confine our discussion to the derivation of effective Floquet Hamiltonians based on the contact transformation procedure. While the importance of the effective Floquet Hamiltonians in the qualitative description of NMR experiments has been realized in simpler cases, its extension in quantifying spectral data deserves a cautious approach. With this objective, the validity of the approximations employed in the derivation of the effective Floquet Hamiltonians is re-examined through a comparison with exact numerical methods under differing experimental conditions. The limitations arising from the existing analytic methods are outlined along with remedial measures for improving the accuracy of the derived effective Floquet Hamiltonians.
Hamiltonian formulation of guiding center motion
Stern, D. P.
1971-01-01
The nonrelativistic guiding center motion of a charged particle in a static magnetic field is derived using the Hamiltonian formalism. By repeated application of first-order canonical perturbation theory, the first two adiabatic invariants and their averaged Hamiltonians are obtained, including the first-order correction terms. Other features of guiding center theory are also given, including lowest order drifts and the flux invariant.
Continuous finite element methods for Hamiltonian systems
无
2007-01-01
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.
On Hamiltonians Generating Optimal-Speed Evolutions
2008-01-01
We present a simple derivation of the formula for the Hamiltonian operator(s) that achieve the fastest possible unitary evolution between given initial and final states. We discuss how this formula is modified in pseudo-Hermitian quantum mechanics and provide an explicit expression for the most general optimal-speed quasi-Hermitian Hamiltonian. Our approach allows for an explicit description of the metric- (inner product-) dependence of the lower bound on the travel time and the universality ...
Hamiltonian Quantum Cellular Automata in 1D
Nagaj, Daniel; Wocjan, Pawel
2008-01-01
We construct a simple translationally invariant, nearest-neighbor Hamiltonian on a chain of 10-dimensional qudits that makes it possible to realize universal quantum computing without any external control during the computational process. We only require the ability to prepare an initial computational basis state which encodes both the quantum circuit and its input. The computational process is then carried out by the autonomous Hamiltonian time evolution. After a time polynomially long in th...
Hamiltonian Map to Conformal Modification of Spacetime Metric:Kaluza-Klein and TeVeS
Horwitz, Lawrence; Schiffer, Marcelo
2009-01-01
It has been shown that the orbits of motion for a wide class of nonrelativistic Hamiltonian systems can be described as geodesic flows on a manifold and an associated dual. This method can be applied to a four dimensional manifold of orbits in spacetime associated with a relativistic system. We show that a relativistic Hamiltonian which generates Einstein geodesics, with the addition of a world scalar field, can be put into correspondence with another Hamiltonian with conformally modified metric. Such a construction could account for part of the requirements of Bekenstein for achieving the MOND theory of Milgrom in the post-Newtonian limit. The constraints on the MOND theory imposed by the galactic rotation curves, through this correspondence, would then imply constraints on the structure of the world scalar field. We then use the fact that a Hamiltonian with vector gauge fields results, through such a conformal map, in a Kaluza-Klein type theory, and indicate how the TeVeS structure can be put into this fram...
Minimal realizations of supersymmetry for matrix Hamiltonians
Andrianov, Alexander A., E-mail: andrianov@icc.ub.edu; Sokolov, Andrey V., E-mail: avs_avs@rambler.ru
2015-02-06
The notions of weak and strong minimizability of a matrix intertwining operator are introduced. Criterion of strong minimizability of a matrix intertwining operator is revealed. Criterion and sufficient condition of existence of a constant symmetry matrix for a matrix Hamiltonian are presented. A method of constructing of a matrix Hamiltonian with a given constant symmetry matrix in terms of a set of arbitrary scalar functions and eigen- and associated vectors of this matrix is offered. Examples of constructing of 2×2 matrix Hamiltonians with given symmetry matrices for the cases of different structure of Jordan form of these matrices are elucidated. - Highlights: • Weak and strong minimization of a matrix intertwining operator. • Criterion of strong minimizability from the right of a matrix intertwining operator. • Conditions of existence of a constant symmetry matrix for a matrix Hamiltonian. • Method of constructing of a matrix Hamiltonian with a given constant symmetry matrix. • Examples of constructing of 2×2 matrix Hamiltonians with a given symmetry matrix.
Input-output decoupling of Hamiltonian systems : The linear case
Nijmeijer, H.; Schaft, A.J. van der
1985-01-01
In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems.
Input-output decoupling of Hamiltonian systems: The linear case
Nijmeijer, H.
1985-01-01
In this note we give necessary and sufficient conditions for a linear Hamiltonian system to be input-output decouplable by Hamiltonian feedback, i.e. feedback that preserves the Hamiltonian structure. In a second paper we treat the same problem for nonlinear Hamiltonian systems.
Hamiltonian Dynamics at Spatial Infinity.
Alexander, Matthew
We employ a projective construction of spatial infinity in four-dimensional spacetimes which are asymptotically flat. In this construction, points of the spatial boundary of the spacetime manifold are identified with congruences of asymptotically parallel spacelike curves that are asymptotically geodesic. It is shown that for this type of construction spatial infinity is represented by a three-dimensional timelike hyperboloid, and that this follows as a consequence of the vacuum Einstein equations. We then construct tensor fields which are defined at spatial infinity, and which embody the information carried by the gravitational field regarding the total mass, linear, and angular momentum of the spacetime. It is shown that these tensor fields must satisfy a set of second order partial differential field equations at spatial infinity. The asymptotic symmetry group implied by the projective construction is examined, and is identified with the Spi group. The field equations satisfied by the tensor fields at spatial infinity can be derived from an action principle, however this action does not appear to be related in any obvious way to the Hilbert-Einstein action of general relativity. Under mappings generated by the Spi group our Lagrangian is left form -invariant, and the corresponding Noether-conserved quantities are examined. It is found that for spacetimes which are stationary or axisymmetric, these conserved quantities are not the limits of the conserved quantities associated with the infinitesimal four-dimensional coordinate transformations. It is shown that using the tensor fields at spatial infinity one can define a set of canonical variables. Further, we show that the "time" derivatives of the configuration variables can be expressed in terms of some of the momentum densities; the remaining momentum densities are constrained. Finally, we construct the Hamiltonian, and examine the transformations generated by it.
A Hamiltonian interpretation of Penrose's quasi-local mass
Mason, L. J.
1989-02-01
A connection is established between Penrose's definition of quasi-local mass and the more conventional notions of mass, momentum etc., arising from the canonical formalism of general relativity (which exist at least asymptotically). It is shown that each component of the 'angular momentum' twistor can be thought of as the value of a Hamiltonian which generates motions of regions of the spacetime which tend towards one of a collection of 'quasi-Killing vectors' on the bounding 2-surface on which the computations take place. The quasi-Killing vectors are obtained from solutions of the twistor equation, and essential use is made of the spinorial version of the gravitational Hamiltonian first employed in Witten's simplified proof of positive energy in general relativity. These ideas are then used to suggest a variation on Penrose's quasi-local mass definition using 'quasi-conformal Killing vectors' rather than quasi-Killing vectors. This has the advantage that there are only sixteen real quantities rather than the twenty real (ten complex) ones from Penrose's original definition.
Hamiltonian theory of the FQHE edge: Collective modes
Nguyen, Hoang; Joglekar, Yogesh; Murthy, Ganpathy
2003-03-01
We study the collective modes of the fractional quantum Hall edge states using the Hamiltonian formalism [1]. While most theoretical approaches start with an effective bosonic theory [2] in which all fermions are integrated out (an exception is the approach based on Chern-Simons theory [3]), the Hamiltonian theory treats the composite fermions as fully interacting. We obtain the gapless edge-modes using a conserving approximation which respects the constraints [4]. The implications of our study to the tunneling experiments into the edge of a fractional quantum Hall system [5] are discussed. [1] R.Shankar and G.Murthy, Phys.Rev.Lett. 79, 4437 (1997). [2] X.-G.Wen, Phys.Rev.Lett. 64, 2206 (1990); D.-H.Lee and X.-G.Wen, cond-mat/9809160; A.Lopez and E.Fradkin, Phys.Rev.B 59, 15323 (1999); U. Zulicke and A.H.MacDonald, Phys.Rev.B 60, 1837 (1999); V.J.Goldman and E.V.Tsiper, Phys.Rev.Lett. 86, 5841 (2001); S.S.Mandal and J.K.Jain, Phys.Rev.Lett. 89, 096801 (2002). [3] L.S.Levitov, A.V.Shytov, and B.I.Halperin, Phys. Rev. B 64, 075322 (2001). [4] N. Read, Phys.Rev.B 58, 16262 (1998); G. Murthy, Phys.Rev.B 64, 195310 (2001). [5] A.M.Chang et.al., Phys.Rev.Lett. 86, 143 (2000).
A phenomenological Hamiltonian for the Lotka-Volterra problem
Georgian, T. [Corps of Engineers, Omaha, NE (United States); Findley, G.L. [Northeast Louisiana Univ., Monroe, LA (United States)
1996-12-31
We have presented a Hamiltonian theory of phenomenological chemical kinetics. In the present paper, we extend this treatment to the Lotka-Volterra model of sustained oscillations. Our approach begins with the usual definition of an intrinsic reaction coordinate space (x{sub 1},x{sub 2}) for the Lotka-Volterra problem, which leads to the rate equations x{sub 1}=ax{sub 1}-bx{sub 1}x{sub 2}, x{sub 2}=-cx{sub 2}+bx{sub 1}x{sub 2}, with a,b and c being real constants. We thereafter present a Hamiltonian function H(x,y)[y{sub 1} = x{sub 1} and y{sub 2} = x{sub 2}] and an associated holonomic constraint, which give rise to the above rates as half of Hamilton`s equations. We provide trajectories by numerical integration (4th order Runge-Kutta) and show that H(x,y) is a constant of the motion. Finally, issues involved in developing an analytic solution to this problem are discussed.
Alicki's model of scattering-induced decoherence derived from Hamiltonian dynamics
Hellmich, Mario [Faculty of Physics, University of Bielefeld, 33615 Bielefeld (Germany)
2004-09-10
We study a semiphenomenological model introduced by Alicki (2002 Phys. Rev. A 65 034104), describing environmental decoherence by scattering of a Brownian particle in a gas environment. For a slightly wider class of models, we prove that the semigroup describing the dynamics of the Brownian particle can be approximated by the reduced dynamics arising from a Hamiltonian interaction between the particle and an infinite fermionic thermal gas reservoir, provided the scattering process is isotropic.
Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong; Fu Hao; Fu Jing-Li
2012-01-01
This paper focuses on studying Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems.Firstly,the discrete generalized Hamiltonian canonical equations and discrete energy equation of nonholonomic Hamiltonian systems are derived from discrete Hamiltonian action.Secondly,the determining equations and structure equation of Lie symmetry of the system are obtained.Thirdly,the Lie theorems and the conservation quantities are given for the discrete nonholonomic Hamiltonian systems.Finally,an example is discussed to illustrate the application of the results.
Incorporation of New Information in an Approximate Hamiltonian
Viazminsky, C. P.; Baza, S
2002-01-01
Additional information about the eigenvalues and eigenvectors of a physical system demands extension of the effective Hamiltonian in use. In this work we extend the effective Hamiltonian that describes partially a physical system so that the new Hamiltonian comprises, in addition to the information in the old Hamiltonian, new information, available by means of experiment or theory. A simple expression of the enlarged Hamiltonian, which does not involve matrix inversion, is obtained. It is als...
Di Bartolo, C; Griego, J R; Pullin, J; Bartolo, Cayetano Di; Gambini, Rodolfo; Griego, Jorge; Pullin, Jorge
2000-01-01
In a companion paper we introduced a kinematical arena for the discussion of the constraints of canonical quantum gravity in the spin network representation based on Vassiliev invariants. In this paper we introduce the Hamiltonian constraint, extend the space of states to non-diffeomorphism invariant ``habitats'' and check that the off-shell quantum constraint commutator algebra reproduces the classical Poisson algebra of constraints of general relativity without anomalies. One can therefore consider the resulting set of constraints and space of states as a consistent theory of canonical quantum gravity.
Deformed Hamiltonian Floer theory, capacity estimates, and Calabi quasimorphisms
Usher, Michael
2010-01-01
We develop a family of deformations of the differential and of the pair-of-pants product on the Hamiltonian Floer complex of a symplectic manifold (M,\\omega) which upon passing to homology yields ring isomorphisms with the big quantum homology of M. By studying the properties of the resulting deformed version of the Oh-Schwarz spectral invariants, we obtain a Floer-theoretic interpretation of a result of Lu which bounds the Hofer-Zehnder capacity of M when M has a nonzero Gromov-Witten invariant with two point constraints, and we produce a new algebraic criterion for (M,\\omega) to admit a Calabi quasimorphism and a symplectic quasi-state. This latter criterion is found to hold whenever M has generically semisimple quantum homology in the sense considered by Dubrovin and Manin (this includes all compact toric M), and also whenever M is a point blowup of an arbitrary closed symplectic manifold.
Hamiltonian Poincaré gauge theory of gravitation
Tiemblo, A
1996-01-01
We develop a Hamiltonian formalism suitable to be applied to gauge theories in the presence of Gravitation, and to Gravity itself when considered as a gauge theory. It is based on a nonlinear realization of the Poincar\\'e group, taken as the local spacetime group of the gravitational gauge theory, with SO(3) as the classification subgroup. The Wigner--like rotation induced by the nonlinear approach singularizes out the role of time and allows to deal with ordinary SO(3) vectors. We apply the general results to the Einstein--Cartan action. We study the constraints and we obtain Einstein's classical equations in the extremely simple form of time evolution equations of the coframe. As a consequence of our approach, we identify the gauge--theoretical origin of the Ashtekar variables.
Gapless modes of fractional quantum Hall edges: a Hamiltonian study
Nguyen, Hoang; Joglekar, Yogesh; Murthy, Ganpathy
2004-03-01
We study the collective modes of the fractional quantum Hall edge states using the Hamiltonian formalism [1]. In this theory, the composite fermions are fully interacting; the collective modes are obtained within a conserving approximation which respects the constraints [2]. We present the gapless edge-mode dispersions at 1/3 and 2/5 filling fractions of unreconstructed and reconstructed edges. The dispersions are found to be nonlinear due to the variation of the effective magnetic field on the composite fermions. The implications of our study to the tunneling experiments into the edge of a fractional quantum Hall system [3] are discussed*. 1. R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997). 2. G. Murthy, Phys. Rev. B 64, 195310 (2001). 3. A.M.Chang et. al., Phys. Rev. Lett. 86, 143 (2000). * Work supported by the NSF, Grant number DMR 031176.
Hamiltonian formulation of time-dependent plausible inference
Davis, Sergio
2014-01-01
Maximization of the path information entropy is a clear prescription for performing time-dependent plausible inference. Here it is shown that, following this prescription under the assumption of arbitrary instantaneous constraints on position and velocity, a Lagrangian emerges which determines the most probable trajectory. Deviations from the probability maximum can be consistently described as slices in time by a Hamiltonian, according to a nonlinear Langevin equation and its associated Fokker-Planck equation. The connections unveiled between the maximization of path entropy and the Langevin/Fokker-Planck equations imply that missing information about the phase space coordinate never decreases in time, a purely information-theoretical version of the Second Law of Thermodynamics. All of these results are independent of any physical assumptions, and thus valid for any generalized coordinate as a function of time, or any other parameter. This reinforces the view that the Second Law is a fundamental property of ...
A covariant Hamiltonian tetrad approach to numerical relativity
Hamilton, Andrew J S
2016-01-01
A Hamiltonian approach to the equations of general relativity is proposed in which the gravitational coordinates are the 12 spatial components of the line interval (the vierbein) including their antisymmetric parts, and their 12 conjugate momenta. A feature of the proposed formalism is that it allows Lorentz gauge freedoms to be imposed on the Lorentz connections rather than on the vierbein, which may facilitate numerical integration in some challenging problems. The 40 Hamilton's equations comprise 12 + 12 = 24 equations of motion and 6 identities, along with 10 constraint equations. By comparison, the ADM formalism has 12 equations of motion and 18 identities, while the BSSN formalism has 15 equations of motion and 15 identities. I conjecture that, by maximizing the number of "good" causal equations of motion and minimizing the number of "bad" acausal identities, the proposed approach may have improved properties of numerical stability.
Bifurcation sequences in the symmetric 1:1 Hamiltonian resonance
Marchesiello, Antonella
2015-01-01
We present a general review of the bifurcation sequences of periodic orbits in general position of a family of resonant Hamiltonian normal forms with nearly equal unperturbed frequencies, invariant under $Z_2 \\times Z_2$ symmetry. The rich structure of these classical systems is investigated with geometric methods and the relation with the singularity theory approach is also highlighted. The geometric approach is the most straightforward way to obtain a general picture of the phase-space dynamics of the family as is defined by a complete subset in the space of control parameters complying with the symmetry constraint. It is shown how to find an energy-momentum map describing the phase space structure of each member of the family, a catastrophe map that captures its global features and formal expressions for action-angle variables. Several examples, mainly taken from astrodynamics, are used as applications.
Hamiltonian Formulation of the Yang-Mills field on the null-plane
Casana, R., E-mail: casana@ufma.b [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Campus Universitario do Bacanga, CEP 65085-580, Sao Luis - MA, Brasil. (Brazil); Pimentel, B.M., E-mail: pimentel@ift.unesp.b [Instituto de Fisica Teorica (IFT/UNESP), UNESP - Sao Paulo State University, Caixa Postal 70532-2, 01156-970, Sao Paulo, SP (Brazil); Zambrano, G.E.R., E-mail: gramos@ift.unesp.b [Instituto de Fisica Teorica (IFT/UNESP), UNESP - Sao Paulo State University, Caixa Postal 70532-2, 01156-970, Sao Paulo, SP (Brazil)
2010-02-15
We have studied the null-plane hamiltonian structure of the free Yang-Mills fields. Following the Dirac's procedure for constrained systems we have performed a detailed analysis of the constraint structure of the model and we give the generalized Dirac brackets for the physical variables. Using the correspondence principle in the Dirac's brackets we obtain the same commutators present in the literature and new ones.
Hamiltonian Formulation of the Yang-Mills field on the null-plane
Casana, R.; Pimentel, B. M.; Zambrano, G. E. R.
2010-02-01
We have studied the null-plane hamiltonian structure of the free Yang-Mills fields. Following the Dirac's procedure for constrained systems we have performed a detailed analysis of the constraint structure of the model and we give the generalized Dirac brackets for the physical variables. Using the correspondence principle in the Dirac's brackets we obtain the same commutators present in the literature and new ones.
Projection formalism for constrained dynamical systems: from Newtonian to Hamiltonian mechanics.
Kneller, Gerald R
2007-10-28
The Hamiltonian of a holonomically constrained dynamical many-particle system in Cartesian coordinates has been recently derived for applications in statistical mechanics [G. R. Kneller, J. Chem. Phys. 125, 114107 (2006)]. Using the same projector formalism, we show here the equivalence of the corresponding equations of motion with those obtained from a Newtonian and a Lagrangian description. In the case of Newtonian mechanics, the general case of nonholonomic constraints is considered, too.
An O(D,D) Invariant Hamiltonian Action for the Superstring
Blair, Chris D A; Routh, Alasdair J
2013-01-01
We construct O(D,D) invariant actions for the bosonic string and RNS superstring, using Hamiltonian methods and ideas from double field theory. In this framework the doubled coordinates of double field theory appear as coordinates on phase space and T-duality becomes a canonical transformation. Requiring the algebra of constraints to close leads to the section condition, which splits the phase space coordinates into spacetime coordinates and momenta.
Cotter, C.J.; Frank, J.E.; Reich, S.
2004-01-01
We develop a particle-mesh method for two-layer shallow-water equations subject to the rigid-lid approximation. The method is based on the recently proposed Hamiltonian particle-mesh (HPM) method and the interpretation of the rigid-lid approximation as a set of holonomic constraints. The suggested s
Hamiltonian Description of Multi-fluid Streaming
Valls, C.; de La Llave, R.; Morrison, P. J.
2001-10-01
The general noncanonical Hamiltonian description of interpenetrating fluids coupled by electrostatic, gravitational, or other forces is presented. This formalism is used to describe equilibrium and nonlinear stability using techniques of Hamiltonian dynamics theory. For example, we study the stability of two warm counter-streaming electron beams in a neutralizing ion background. The normal modes are obtained from an energy functional by computing the lowest-order expression for the perturbed energy about an equilibrium, and transforming the corresponding system into action-angle variables. Higher-order terms in the Hamiltonian provide coupling between normal modes and can lead to instability because of the presence of negative energy modes (NEM's). (The signature of the NEM's is determined by the signature of the Hamiltonian, Moser's bracket definition, or the conventional plasma definition in terms of the dielectric function, all of which are shown to be equivalent.) The possible nonlinear behavior is discovered by constructing the Birkhoff normal form. Accounting for resonances, we transform away terms in the Hamiltonian to address the question of long-time stability for such systems.
An intuitive Hamiltonian for quantum search
Fenner, S A
2000-01-01
We present new intuition behind Grover's quantum search algorithm by means of a Hamiltonian. Given a black-box Boolean function f mapping strings of length n into {0,1} such that f(w) = 1 for exactly one string w, L. K. Grover describes a quantum algorithm that finds w in O(2^{n/2}) time. Farhi & Gutmann show that w can also be found in the same amount time by letting the quantum system evolve according to a simple Hamiltonian depending only on f. Their system evolves along a path far from that taken by Grover's original algorithm, however. The current paper presents an equally simple Hamiltonian matching Grover's algorithm step for step. The new Hamiltonian is similar in appearance from that of Farhi & Gutmann, but has some important differences, and provides new intuition for Grover's algorithm itself. This intuition both contrasts with and supplements other explanations of Grover's algorithm as a rotation in two dimensions, and suggests that the Hamiltonian-based approach to quantum algorithms can ...
Bargmann Symmetry Constraint for a Family of Liouville Integrable Differential-Difference Equations
徐西祥
2012-01-01
A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectie map and a completely integrable tinite-dimensionai Hamiltonian system.
Equivalent Hamiltonians with additional discrete states
Chinn, C.R. (Physics Department, Lawrence Livermore National Laboratory, Livermore, CA (USA)); Thaler, R.M. (Los Alamos National Laboratory, Los Alamos, NM (USA) Department of Physics, Case Western Reserve University, Cleveland, OH (USA))
1991-01-01
Given a particular Hamiltonian {ital H}, we present a method to generate a new Hamiltonian {ital {tilde H}}, which has the same discrete energy eigenvalues and the same continuum phase shifts as {ital H}, but which also has additional given discrete eigenstates. This method is used to generate a Hamiltonian {ital h}{sub 1}, which gives rise to a complete orthonormal set of basis states, which contain a given set of biorthonormal discrete states, the continuum states of which are asymptotic to plane waves (have zero phase shifts). Such a set of states may be helpful in representing the medium modification of the Green's function due to the Pauli principle, as well as including Pauli exclusion effects into scattering calculations.
Equivalent Hamiltonians with additional discrete states
Chinn, C. R.; Thaler, R. M.
1991-01-01
Given a particular Hamiltonian H, we present a method to generate a new Hamiltonian H~, which has the same discrete energy eigenvalues and the same continuum phase shifts as H, but which also has additional given discrete eigenstates. This method is used to generate a Hamiltonian h1, which gives rise to a complete orthonormal set of basis states, which contain a given set of biorthonormal discrete states, the continuum states of which are asymptotic to plane waves (have zero phase shifts). Such a set of states may be helpful in representing the medium modification of the Green's function due to the Pauli principle, as well as including Pauli exclusion effects into scattering calculations.
Hamiltonian Dynamics of Cosmological Quintessence Models
Ivanov, Rossen I
2016-01-01
The time-evolution dynamics of two nonlinear cosmological real gas models has been reexamined in detail with methods from the theory of Hamiltonian dynamical systems. These examples are FRWL cosmologies, one based on a gas, satisfying the van der Waals equation and another one based on the virial expansion gas equation. The cosmological variables used are the expansion rate, given by the Hubble parameter, and the energy density. The analysis is aided by the existence of global first integral as well as several special (second) integrals in each case. In addition, the global first integral can serve as a Hamiltonian for a canonical Hamiltonian formulation of the evolution equations. The conserved quantities lead to the existence of stable periodic solutions (closed orbits) which are models of a cyclic Universe. The second integrals allow for explicit solutions as functions of time on some special trajectories and thus for a deeper understanding of the underlying physics. In particular, it is shown that any pos...
Gravitational surface Hamiltonian and entropy quantization
Ashish Bakshi
2017-02-01
Full Text Available The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos–Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Gravitational surface Hamiltonian and entropy quantization
Bakshi, Ashish; Majhi, Bibhas Ranjan; Samanta, Saurav
2017-02-01
The surface Hamiltonian corresponding to the surface part of a gravitational action has xp structure where p is conjugate momentum of x. Moreover, it leads to TS on the horizon of a black hole. Here T and S are temperature and entropy of the horizon. Imposing the hermiticity condition we quantize this Hamiltonian. This leads to an equidistant spectrum of its eigenvalues. Using this we show that the entropy of the horizon is quantized. This analysis holds for any order of Lanczos-Lovelock gravity. For general relativity, the area spectrum is consistent with Bekenstein's observation. This provides a more robust confirmation of this earlier result as the calculation is based on the direct quantization of the Hamiltonian in the sense of usual quantum mechanics.
Manifest Covariant Hamiltonian Theory of General Relativity
Cremaschini, Claudio
2016-01-01
The problem of formulating a manifest covariant Hamiltonian theory of General Relativity in the presence of source fields is addressed, by extending the so-called "DeDonder-Weyl" formalism to the treatment of classical fields in curved space-time. The theory is based on a synchronous variational principle for the Einstein equation, formulated in terms of superabundant variables. The technique permits one to determine the continuum covariant Hamiltonian structure associated with the Einstein equation. The corresponding continuum Poisson bracket representation is also determined. The theory relies on first-principles, in the sense that the conclusions are reached in the framework of a non-perturbative covariant approach, which allows one to preserve both the 4-scalar nature of Lagrangian and Hamiltonian densities as well as the gauge invariance property of the theory.
The canonical form of the Rabi hamiltonian
Szopa, M; Ceulemans, A; Szopa, Marek; Mys, Geert; Ceulemans, Arnout
1996-01-01
The Rabi Hamiltonian, describing the coupling of a two-level system to a single quantized boson mode, is studied in the Bargmann-Fock representation. The corresponding system of differential equations is transformed into a canonical form in which all regular singularities between zero and infinity have been removed. The canonical or Birkhoff-transformed equations give rise to a two-dimensional eigenvalue problem, involving the energy and a transformational parameter which affects the coupling strength. The known isolated exact solutions of the Rabi Hamiltonian are found to correspond to the uncoupled form of the canonical system.
Effective Hamiltonians for phosphorene and silicene
Voon, L. C. Lew Yan; Lopez-Bezanilla, A.; Wang, J.;
2015-01-01
We derived the effective Hamiltonians for silicene and phosphorene with strain, electric field andmagnetic field using the method of invariants. Our paper extends the work of Geissler et al 2013 (NewJ. Phys. 15 085030) on silicene, and Li and Appelbaum 2014 (Phys. Rev. B 90, 115439) on phosphorene.......Our Hamiltonians are compared to an equivalent one for graphene. For silicene, the expressionfor band warping is obtained analytically and found to be of different order than for graphene. Weprove that a uniaxial strain does not open a gap, resolving contradictory numerical results in the literature...
Hamiltonian Dynamics of Protein Filament Formation.
Michaels, Thomas C T; Cohen, Samuel I A; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J
2016-01-22
We establish the Hamiltonian structure of the rate equations describing the formation of protein filaments. We then show that this formalism provides a unified view of the behavior of a range of biological self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow linear growth phenomena to be equated with autocatalytic growth processes. We finally show how these results reveal simple rate laws that provide the basis for interpreting experimental data in terms of specific mechanisms controlling the proliferation of fibrils.
Hamiltonian dynamics for complex food webs.
Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno
2016-03-01
We investigate stability and dynamics of large ecological networks by introducing classical methods of dynamical system theory from physics, including Hamiltonian and averaging methods. Our analysis exploits the topological structure of the network, namely the existence of strongly connected nodes (hubs) in the networks. We reveal new relations between topology, interaction structure, and network dynamics. We describe mechanisms of catastrophic phenomena leading to sharp changes of dynamics and hence completely altering the ecosystem. We also show how these phenomena depend on the structure of interaction between species. We can conclude that a Hamiltonian structure of biological interactions leads to stability and large biodiversity.
Hamiltonian adaptive resolution simulation for molecular liquids.
Potestio, Raffaello; Fritsch, Sebastian; Español, Pep; Delgado-Buscalioni, Rafael; Kremer, Kurt; Everaers, Ralf; Donadio, Davide
2013-03-08
Adaptive resolution schemes allow the simulation of a molecular fluid treating simultaneously different subregions of the system at different levels of resolution. In this work we present a new scheme formulated in terms of a global Hamiltonian. Within this approach equilibrium states corresponding to well-defined statistical ensembles can be generated making use of all standard molecular dynamics or Monte Carlo methods. Models at different resolutions can thus be coupled, and thermodynamic equilibrium can be modulated keeping each region at desired pressure or density without disrupting the Hamiltonian framework.
Stability of Frustration-Free Hamiltonians
Michalakis, Spyridon
2011-01-01
We prove stability of the spectral gap for gapped, frustration-free Hamiltonians under general, quasi-local perturbations. We present a necessary and sufficient condition for stability, which we call "Local Topological Quantum Order" and show that this condition implies an area law for the entanglement entropy of the groundstate subspace. This result extends previous work by Bravyi et al., on the stability of topological quantum order for Hamiltonians composed of commuting projections with a common zero-energy subspace. We conclude with a list of open problems relevant to spectral gaps and topological quantum order.
Hamiltonian theory of guiding-center motion
Cary, John R.; Brizard, Alain J. [Center for Integrated Plasma Studies and Department of Physics, University of Colorado, Boulder, Colorado 80309-0390 (United States) and Tech-X Corporation, Boulder, Colorado 80303 (United States); Department of Chemistry and Physics, Saint Michael' s College, Colchester, Vermont 05439 (United States)
2009-04-15
Guiding-center theory provides the reduced dynamical equations for the motion of charged particles in slowly varying electromagnetic fields, when the fields have weak variations over a gyration radius (or gyroradius) in space and a gyration period (or gyroperiod) in time. Canonical and noncanonical Hamiltonian formulations of guiding-center motion offer improvements over non-Hamiltonian formulations: Hamiltonian formulations possess Noether's theorem (hence invariants follow from symmetries), and they preserve the Poincare invariants (so that spurious attractors are prevented from appearing in simulations of guiding-center dynamics). Hamiltonian guiding-center theory is guaranteed to have an energy conservation law for time-independent fields--something that is not true of non-Hamiltonian guiding-center theories. The use of the phase-space Lagrangian approach facilitates this development, as there is no need to transform a priori to canonical coordinates, such as flux coordinates, which have less physical meaning. The theory of Hamiltonian dynamics is reviewed, and is used to derive the noncanonical Hamiltonian theory of guiding-center motion. This theory is further explored within the context of magnetic flux coordinates, including the generic form along with those applicable to systems in which the magnetic fields lie on nested tori. It is shown how to return to canonical coordinates to arbitrary accuracy by the Hazeltine-Meiss method and by a perturbation theory applied to the phase-space Lagrangian. This noncanonical Hamiltonian theory is used to derive the higher-order corrections to the magnetic moment adiabatic invariant and to compute the longitudinal adiabatic invariant. Noncanonical guiding-center theory is also developed for relativistic dynamics, where covariant and noncovariant results are presented. The latter is important for computations in which it is convenient to use the ordinary time as the independent variable rather than the proper time
Convergence to equilibrium under a random Hamiltonian.
Brandão, Fernando G S L; Ćwikliński, Piotr; Horodecki, Michał; Horodecki, Paweł; Korbicz, Jarosław K; Mozrzymas, Marek
2012-09-01
We analyze equilibration times of subsystems of a larger system under a random total Hamiltonian, in which the basis of the Hamiltonian is drawn from the Haar measure. We obtain that the time of equilibration is of the order of the inverse of the arithmetic average of the Bohr frequencies. To compute the average over a random basis, we compute the inverse of a matrix of overlaps of operators which permute four systems. We first obtain results on such a matrix for a representation of an arbitrary finite group and then apply it to the particular representation of the permutation group under consideration.
Incorporation of New Information in an Approximate Hamiltonian
Viazminsky, C P
2002-01-01
Additional information about the eigenvalues and eigenvectors of a physical system demands extension of the effective Hamiltonian in use. In this work we extend the effective Hamiltonian that describes partially a physical system so that the new Hamiltonian comprises, in addition to the information in the old Hamiltonian, new information, available by means of experiment or theory. A simple expression of the enlarged Hamiltonian, which does not involve matrix inversion, is obtained. It is also shown that the Lee-Suzuki transformation effectively put the initial Hamiltonian in a diagonal block form.
The Hamiltonian of Einstein affine-metric formulation of general relativity
Kiriushcheva, N.; Kuzmin, S.V. [Huron University College, Faculty of Arts and Social Science, London (Canada); University of Western Ontario, Department of Applied Mathematics, London (Canada)
2010-11-15
It is shown that the Hamiltonian of the Einstein affine-metric (first-order) formulation of General Relativity (GR) leads to a constraint structure that allows the restoration of its unique gauge invariance, four-diffeomorphism, without the need of any field dependent redefinition of gauge parameters as in the case of the second-order formulation. In the second-order formulation of ADM gravity the need for such a redefinition is the result of the non-canonical change of variables (Xiv:0809.0097). For the first-order formulation, the necessity of such a redefinition ''to correspond to diffeomorphism invariance'' (reported by Ghalati, arXiv:0901.3344) is just an artifact of using the Henneaux-Teitelboim-Zanelli ansatz (Nucl. Phys. B 332:169, 1990), which is sensitive to the choice of linear combination of tertiary constraints. This ansatz cannot be used as an algorithm for finding a gauge invariance, which is a unique property of a physical system, and it should not be affected by different choices of linear combinations of non-primary first class constraints. The algorithm of Castellani (Ann. Phys. 143:357, 1982) is free from such a deficiency and it leads directly to four-diffeomorphism invariance for first, as well as for second-order Hamiltonian formulations of GR. The distinct role of primary first class constraints, the effect of considering different linear combinations of constraints, the canonical transformations of phase-space variables, and their interplay are discussed in some detail for Hamiltonians of the second- and first-order formulations of metric GR. The first-order formulation of Einstein-Cartan theory, which is the classical background of Loop Quantum Gravity, is also discussed. (orig.)
Szalay, Viktor
2015-05-07
A new ro-vibrational Hamiltonian operator, named gateway Hamiltonian operator, with exact kinetic energy term, Tˆ, is presented. It is in the Eckart frame and it is of the same form as Watson's normal coordinate Hamiltonian. However, the vibrational coordinates employed are not normal coordinates. The new Hamiltonian is shown to provide easy access to Eckart frame ro-vibrational Hamiltonians with exact Tˆ given in terms of any desired set of vibrational coordinates. A general expression of the Eckart frame ro-vibrational Hamiltonian operator is given and some of its properties are discussed.
The gravitational Hamiltonian, first order action, Poincar\\'e charges and surface terms
Corichi, Alejandro
2015-01-01
We consider the issue of attaining a consistent Hamiltonian formulation, after a 3+1 splitting, of a well-defined action principle for asymptotically flat gravity. More precisely, our starting point is the gravitational first order Holst action with surface terms and fall-off conditions that make the variational principle and the covariant phase space formulation well-defined for asymptotically flat spacetimes. Keeping all surface terms and paying due attention to subtleties that arise from the different cut-offs at infinity, we give a derivation of the gravitational Hamiltonian starting from this action. The 3+1 decomposition and time gauge fixing results in a well-defined Hamiltonian action and a well-defined Hamiltonian formulation for the standard -and more general- asymptotic ADM conditions. Unlike the case of the Einstein-Hilbert action with Gibbons-Hawking-York or Hawking-Horowitz terms, here we {\\it {do}} recover the ADM energy-momentum from the covariant surface term also when more general variations...
Implicit Hamiltonian formulation of bond graphs
Golo, G.; Schaft, A.J. van der; Breedveld, P.C.; Maschke, B.M.
2003-01-01
This paper deals with mathematical formulation of bond graphs. It is proven that the power continuous part of bond graphs, the junction structure, can be associated with a Dirac structure and that equations describing a bond graph model correspond to an implicit port-controlled Hamiltonian system wi
Hamiltonian Approach to the Gribov Problem
Heinzl, T
1996-01-01
We study the Gribov problem within a Hamiltonian formulation of pure Yang-Mills theory. For a particular gauge fixing, a finite volume modification of the axial gauge, we find an exact characterization of the space of gauge-inequivalent gauge configurations.
Edge-disjoint Hamiltonian cycles in hypertournaments
Thomassen, Carsten
2006-01-01
We introduce a method for reducing k-tournament problems, for k >= 3, to ordinary tournaments, that is, 2-tournaments. It is applied to show that a k-tournament on n >= k + 1 + 24d vertices (when k >= 4) or on n >= 30d + 2 vertices (when k = 3) has d edge-disjoint Hamiltonian cycles if and only...
Lagrangian tetragons and instabilities in Hamiltonian dynamics
Entov, Michael; Polterovich, Leonid
2017-01-01
We present a new existence mechanism, based on symplectic topology, for orbits of Hamiltonian flows connecting a pair of disjoint subsets in the phase space. The method involves function theory on symplectic manifolds combined with rigidity of Lagrangian submanifolds. Applications include superconductivity channels in nearly integrable systems and dynamics near a perturbed unstable equilibrium.
Linear Hamiltonian Behaviors and Bilinear Differential Forms
Rapisarda, P.; Trentelman, H.L.
2004-01-01
We study linear Hamiltonian systems using bilinear and quadratic differential forms. Such a representation-free approach allows us to use the same concepts and techniques to deal with systems isolated from their environment and with systems subject to external influences and allows us to study
Discrete variable representation for singular Hamiltonians
Schneider, B. I.; Nygaard, Nicolai
2004-01-01
We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...
An underlying geometrical manifold for Hamiltonian mechanics
Horwitz, L. P.; Yahalom, A.; Levitan, J.; Lewkowicz, M.
2017-02-01
We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.
Bifurcations and safe regions in open Hamiltonians
Barrio, R; Serrano, S [GME, Dpto Matematica Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Blesa, F [GME, Dpto Fisica Aplicada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)], E-mail: rbarrio@unizar.es, E-mail: fblesa@unizar.es, E-mail: sserrano@unizar.es
2009-05-15
By using different recent state-of-the-art numerical techniques, such as the OFLI2 chaos indicator and a systematic search of symmetric periodic orbits, we get an insight into the dynamics of open Hamiltonians. We have found that this kind of system has safe bounded regular regions inside the escape region that have significant size and that can be located with precision. Therefore, it is possible to find regions of nonzero measure with stable periodic or quasi-periodic orbits far from the last KAM tori and far from the escape energy. This finding has been possible after a careful combination of a precise 'skeleton' of periodic orbits and a 2D plate of the OFLI2 chaos indicator to locate saddle-node bifurcations and the regular regions near them. Besides, these two techniques permit one to classify the different kinds of orbits that appear in Hamiltonian systems with escapes and provide information about the bifurcations of the families of periodic orbits, obtaining special cases of bifurcations for the different symmetries of the systems. Moreover, the skeleton of periodic orbits also gives the organizing set of the escape basin's geometry. As a paradigmatic example, we study in detail the Henon-Heiles Hamiltonian, and more briefly the Barbanis potential and a galactic Hamiltonian.
Bifurcations and safe regions in open Hamiltonians
Barrio, R.; Blesa, F.; Serrano, S.
2009-05-01
By using different recent state-of-the-art numerical techniques, such as the OFLI2 chaos indicator and a systematic search of symmetric periodic orbits, we get an insight into the dynamics of open Hamiltonians. We have found that this kind of system has safe bounded regular regions inside the escape region that have significant size and that can be located with precision. Therefore, it is possible to find regions of nonzero measure with stable periodic or quasi-periodic orbits far from the last KAM tori and far from the escape energy. This finding has been possible after a careful combination of a precise 'skeleton' of periodic orbits and a 2D plate of the OFLI2 chaos indicator to locate saddle-node bifurcations and the regular regions near them. Besides, these two techniques permit one to classify the different kinds of orbits that appear in Hamiltonian systems with escapes and provide information about the bifurcations of the families of periodic orbits, obtaining special cases of bifurcations for the different symmetries of the systems. Moreover, the skeleton of periodic orbits also gives the organizing set of the escape basin's geometry. As a paradigmatic example, we study in detail the Hénon-Heiles Hamiltonian, and more briefly the Barbanis potential and a galactic Hamiltonian.
Basis Optimization Renormalization Group for Quantum Hamiltonian
Sugihara, Takanori
2001-01-01
We find an algorithm of numerical renormalization group for spin chain models. The essence of this algorithm is orthogonal transformation of basis states, which is useful for reducing the number of relevant basis states to create effective Hamiltonian. We define two types of rotations and combine them to create appropriate orthogonal transformation.
Hamiltonian analysis of BHT massive gravity
Blagojević, M
2010-01-01
We study the Hamiltonian structure of the Bergshoeff-Hohm-Townsend (BHT) massive gravity with a cosmological constant. In the space of coupling constants $(\\Lambda_0,m^2)$, our canonical analysis reveals the special role of the condition $\\Lambda_0/m^2\
Hamiltonian and self-adjoint control systems
Schaft, A. van der; Crouch, P.E.
1987-01-01
This paper outlines results recently obtained in the problem of determining when an input-output map has a Hamiltonian realization. The results are obtained in terms of variations of the system trajectories, as in the solution of the Inverse Problem in Classical Mechanics. The variational and adjoin
Hamiltonian constants for several new entire solutions
2008-01-01
Using the Hamiltonian identities and the corresponding Hamilto- nian constants for entire solutions of elliptic partial differential equations, we investigate several new entire solutions whose existence were shown recently, and show interesting properties of the solutions such as formulas for contact angles at infinity of concentration curves.
Transparency in Port-Hamiltonian-Based Telemanipulation
Secchi, Cristian; Stramigioli, Stefano; Fantuzzi, Cesare
2008-01-01
After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of p
Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation
Mane, S R
2016-01-01
A Hamiltonian formalism is employed to elucidate the effects of the Stern-Gerlach force on beams of relativistic spin-polarized particles, for passage through a localized region with a static magnetic or electric field gradient. The problem of the spin-orbit coupling for nonrelativistic bounded motion in a central potential (hydrogen-like atoms, in particular) is also briefly studied.
Momentum and Hamiltonian in Complex Action Theory
Nagao, Keiichi
2011-01-01
In the complex action theory (CAT) we explicitly examine how the momentum and Hamiltonian are defined from the Feynman path integral (FPI) point of view. In arXiv:1104.3381[quant-ph], introducing a philosophy to keep the analyticity in parameter variables of FPI and defining a modified set of complex conjugate, hermitian conjugates and bras, we have extended $| q >$ and $| p >$ to complex $q$ and $p$ so that we can deal with a complex coordinate $q$ and a complex momentum $p$. After reviewing them briefly, we describe in terms of the newly introduced devices the time development of a $\\xi$-parametrized wave function, which is a solution to an eigenvalue problem of a momentum operator $\\hat{p}$, in FPI with a starting Lagrangian. Solving the eigenvalue problem, we derive the momentum and Hamiltonian. Oppositely, starting from the Hamiltonian we derive the Lagrangian in FPI, and we are led to the momentum again via the saddle point for $p$. This study confirms that the momentum and Hamiltonian in the CAT have t...
Notch filters for port-Hamiltonian systems
Dirksz, Daniel; Scherpen, Jacquelien M.A.; van der Schaft, Abraham; Steinbuch, M.
2012-01-01
Network modeling of lumped-parameter physical systems naturally leads to a geometrically defined class of systems, i.e., port-Hamiltonian (PH) systems [4, 6]. The PH modeling framework describes a large class of (nonlinear) systems including passive mechanical systems, electrical systems, electromec
Global Properties of Integrable Hamiltonian Systems
Lukina, O.V.; Takens, F.; Broer, H.W.
2008-01-01
This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our
Global Properties of Integrable Hamiltonian Systems
Lukina, O.V.; Takens, F.; Broer, H.W.
2008-01-01
This paper deals with Lagrangian bundles which are symplectic torus bundles that occur in integrable Hamiltonian systems. We review the theory of obstructions to triviality, in particular monodromy, as well as the ensuing classification problems which involve the Chern and Lagrange class. Our approa
Scattering for Infinite Dimensional Port Hamiltonian Systems
Macchelli, Alessandro; Stramigioli, Stefano; Schaft, Arjan van der; Melchiorri, Claudio
2002-01-01
In this paper, an introduction to scattering for infinite dimensional systems within the framework of port Hamiltonian system is presented. The classical results on wave propagation can be extended to generic power propagation phenomena, for example to fluid dynamics or flexible structures. The key-
Effective Hamiltonian approach to periodically perturbed quantum optical systems
Sainz, I. [Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Diaz de Leon, 47460 Lagos de Moreno, Jal. (Mexico)]. E-mail: isa@culagos.udg.mx; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44410 Guadalajara, Jal. (Mexico)]. E-mail: klimov@cencar.udg.mx; Saavedra, C. [Center for Quantum Optics and Quantum Information, Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)]. E-mail: csaaved@udec.cl
2006-02-20
We apply the method of Lie-type transformations to Floquet Hamiltonians for periodically perturbed quantum systems. Some typical examples of driven quantum systems are considered in the framework of this approach and corresponding effective time dependent Hamiltonians are found.
Integrable Coupling of KN Hierarchy and Its Hamiltonian Structure
GUO Fu-Kui; ZHANG Yu-Feng
2006-01-01
The Hamiltonian structure of the integrable couplings obtained by our method has not been solved. In this paper, the Hamiltonian structure of the KN hierarchy is obtained by making use of the quadratic-form identity.
Biswas, P K; Gogonea, V
2005-10-22
We describe a regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical (QM)-molecular-mechanical (MM) calculations. To remedy the nonphysical QM/MM Coulomb interaction at short distances arising from a point electrostatic potential (ESP) charge of the MM atom and also to accommodate the effect of polarized MM atom in the coupling Hamiltonian, we propose a partial-wave expansion of the ESP charge and describe the effect of a s-wave expansion, extended over the covalent radius r(c), of the MM atom. The resulting potential describes that, at short distances, large scale cancellation of Coulomb interaction arises intrinsically from the localized expansion of the MM point charge and the potential self-consistently reduces to 1r(c) at zero distance providing a renormalization to the Coulomb energy near interatomic separations. Employing this renormalized Hamiltonian, we developed an interface between the Car-Parrinello molecular-dynamics program and the classical molecular-dynamics simulation program Groningen machine for chemical simulations. With this hybrid code we performed QM/MM calculations on water dimer, imidazole carbon monoxide (CO) complex, and imidazole-heme-CO complex with CO interacting with another imidazole. The QM/MM results are in excellent agreement with experimental data for the geometry of these complexes and other computational data found in literature.
Hamiltonian Structures for the Generalized Dispersionless KdV Hierarchy
Brunelli, J. C.
1996-01-01
We study from a Hamiltonian point of view the generalized dispersionless KdV hierarchy of equations. From the so called dispersionless Lax representation of these equations we obtain three compatible Hamiltonian structures. The second and third Hamiltonian structures are calculated directly from the r-matrix approach. Since the third structure is not related recursively with the first two ones the generalized dispersionless KdV hierarchy can be characterized as a truly tri-Hamiltonian system.
Topological Hamiltonian as an exact tool for topological invariants.
Wang, Zhong; Yan, Binghai
2013-04-17
We propose the concept of 'topological Hamiltonian' for topological insulators and superconductors in interacting systems. The eigenvalues of the topological Hamiltonian are significantly different from the physical energy spectra, but we show that the topological Hamiltonian contains the information of gapless surface states, therefore it is an exact tool for topological invariants.
THE HAMILTONIAN EQUATIONS IN SOME MATHEMATICS AND PHYSICS PROBLEMS
陈勇; 郑宇; 张鸿庆
2003-01-01
Some new Hamiltonian canonical system are discussed for a series of partialdifferential equations in Mathematics and Physics. It includes the Hamiltonian formalism forthe symmetry second-order equation with the variable coefficients, the new nonhomogeneousHamiltonian representation for fourth-order symmetry equation with constant coefficients,the one of MKdV equation and KP equation.
HAMILTONIAN MECHANICS ON K(A)HLER MANIFOLDS
无
2006-01-01
Using the mechanical principle, the theory of modern geometry and advanced calculus, Hamiltonian mechanics was generalized to Kahler manifolds, and the Hamiltonian mechanics on Kahler manifolds was established. Then the complex mathematical aspect of Hamiltonian vector field and Hamilton's equations was obtained, and so on.
Introduction to thermodynamics of spin models in the Hamiltonian limit
Berche, B; Berche, Bertrand; Lopez, Alexander
2006-01-01
A didactic description of the thermodynamic properties of classical spin systems is given in terms of their quantum counterpart in the Hamiltonian limit. Emphasis is on the construction of the relevant Hamiltonian, and the calculation of thermal averages is explicitly done in the case of small systems described, in Hamiltonian field theory, by small matrices.
AD JOINT SYMMETRY CONSTRAINTS OF MULTICOMPONENT AKNS EQUATIONS
无
2002-01-01
A soliton hierarchy of multicomponent AKNS equations is generated from an arbitrary order matrix spectral problem,along with its bi-Hamiltonian formulation.Adjoint symmetry constraints are presented to manipulate binary nonlinearization for the associated arbitrary order matrix spectral problem.The resulting spatial and temporal constrained flows are shown to provide integrable decompositions of the multicomponent AKNS equations.
Xiao, Yunlong; Liu, Wenjian
2013-07-21
The relativistic molecular Hamiltonian written in the body-fixed frame of reference is the basis for high-precision calculations of spectroscopic parameters involving nuclear vibrations and/or rotations. Such a Hamiltonian that describes electrons fully relativistically and nuclei quasi-relativistically is just developed for semi-rigid nonlinear molecules [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. Yet, the formulation should somewhat be revised for linear molecules thanks to some unusual features arising from the redundancy of the rotation around the molecular axis. Nonetheless, the resulting isomorphic Hamiltonian is rather similar to that for nonlinear molecules. Consequently, the relativistic formulation of nuclear spin-rotation (NSR) tensor for linear molecules is very much the same as that for nonlinear molecules. So is the relativistic mapping between experimental NSR and NMR.
Gutiérrez, R; Caetano, R A; Woiczikowski, B P; Kubar, T; Elstner, M; Cuniberti, G
2009-05-22
We present a hybrid method based on a combination of classical molecular dynamics simulations, quantum-chemical calculations, and a model Hamiltonian approach to describe charge transport through biomolecular wires with variable lengths in presence of a solvent. The core of our approach consists in a mapping of the biomolecular electronic structure, as obtained from density-functional based tight-binding calculations of molecular structures along molecular dynamics trajectories, onto a low-dimensional model Hamiltonian including the coupling to a dissipative bosonic environment. The latter encodes fluctuation effects arising from the solvent and from the molecular conformational dynamics. We apply this approach to the case of pG-pC and pA-pT DNA oligomers as paradigmatic cases and show that the DNA conformational fluctuations are essential in determining and supporting charge transport.
NOISE-INDUCED CHAOTIC MOTIONS IN HAMILTONIAN SYSTEMS WITH SLOW-VARYING PARAMETERS
王双连; 郭乙木; 甘春标
2001-01-01
This paper studies chaotic motions in quasi-integrable Hamiltonian systems with slow-varying parameters under both harmonic and noise excitations.Based on the dynamic theory and some assumptions of excited noises, an extended form of the stochastic Melnikov method is presented. Using this extended method, the homoclinic bifurcations and chaotic behavior of a nonlinear Hamiltonian system with weak feed-back control under both harmonic and Gaussian white noise excitations are analyzed in detail. It is shown that the addition of stochastic excitations can make the parameter threshold value for the occurrence of chaotic motions vary in a wider region. Therefore, chaotic motions may arise easily in the system. By the Monte-Carlo method, the numerical results for the time-history and the maximum Lyapunov exponents of an example system are finally given to illustrate that the presented method is effective.
The molecular asymmetric rigid rotor Hamiltonian as an exactly solvable model
Jarvis, P D
2008-01-01
Representations of the rotation group may be formulated in second-quantised language via Schwinger's transcription of angular momentum states onto states of an effective two-dimensional oscillator. In the case of the molecular asymmetric rigid rotor, by projecting onto the state space of rigid body rotations, the standard Ray Hamiltonian $H(1,\\kappa,-1)$ (with asymmetry parameter $1 \\ge \\kappa \\ge -1$), becomes a quadratic polynomial in the generators of the associated dynamical $su(1,1)$ algebra. We point out that $H(1,\\kappa,-1)$ is in fact quadratic in the Gaudin operators arising from the quasiclassical limit of an associated $su_q(1,1)$ Yang-Baxter algebra. The general asymmetric rigid rotor Hamiltonian is thus an exactly solvable model. This fact has important implications for the structure of the spectrum, as well as for the eigenstates and correlation functions of the model.
Hamiltonian fluid closures of the Vlasov-Amp{\\`e}re equations: from water-bags to N moment models
Perin, M; Morrison, P J; Tassi, E
2015-01-01
Moment closures of the Vlasov-Amp{\\`e}re system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.
Modified FRW cosmologies arising from states of the hybrid quantum Gowdy model
Navascués, Beatriz Elizaga; Marugán, Guillermo A Mena
2015-01-01
We construct approximate solutions of the hybrid quantum Gowdy cosmology with three-torus topology, linear polarization, and local rotational symmetry, in the presence of a massless scalar field. More specifically, we determine some families of states for which the complicated inhomogeneous and anisotropic Hamiltonian constraint operator of the Gowdy model is approximated by a much simpler one. Our quantum states follow the dynamics governed by this simpler constraint, while being at the same time also approximate solutions of the full Gowdy model. This is so thanks to the quantum correlations that the considered states present between the isotropic and anisotropic sectors of the model. Remarkably, this simpler constraint can be regarded as that of a flat Friedmann-Robertson-Walker universe filled with different kinds of perfect fluids and geometrically corrected by homogeneous and isotropic curvature-like terms. Therefore, our quantum states, which are intrinsically inhomogeneous, admit approximate homogeneo...
Hamiltonian description of the parametrized scalar field in bounded spatial regions
G., J Fernando Barbero; Villaseñor, Eduardo J S
2015-01-01
We study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed Lorentzian background metric. We pay particular attention to the geometry of the infinite dimensional manifold of embeddings and the description of the relevant geometric objects: the symplectic form on the primary constraint submanifold and the Hamiltonian vector fields defined on it.
A finite-temperature Hartree-Fock code for shell-model Hamiltonians
Bertsch, G. F.; Mehlhaff, J. M.
2016-10-01
The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree-Fock energy functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the Hartree-Fock energy for zero-temperature properties or the Hartree-Fock grand potential for finite-temperature properties (thermal energy, entropy). The minimization may be subjected to additional constraints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is particularly useful to resolve near-degeneracies among distinct minima.
Hamiltonian analysis of gauged $CP^1$ model, with or without Hopf term, and fractional spin
Chakraborty, B
1997-01-01
Recently it has been shown by Cho and Kimm that the gauged $CP^1$ model, obtained by gauging the global SU(2) group of $CP^1$ model and adding a corresponding Chern-Simons term, has got its own soliton. These solitons are somewhat distinct from those of pure $CP^1$ model, as they cannot always be characterised by $\\pi_2(CP^1)=Z$. In this paper, we first carry out the Hamiltonian analysis of this gauged $CP^1$ model. Then we couple the Hopf term, associated to these solitons and again carry out its Hamiltonian analysis. The symplectic structures, along with the structures of the constraints, of these two models (with or without Hopf term) are found to be essentially the same. The model with Hopf term, is then shown to have fractional spin, which however depends not only on the soliton number $N$ but also on the nonabelian charge.
Covariant constraints for generic massive gravity and analysis of its characteristics
Deser, S.; Sandora, M.; Waldron, A.;
2014-01-01
We perform a covariant constraint analysis of massive gravity valid for its entire parameter space, demonstrating that the model generically propagates 5 degrees of freedom; this is also verified by a new and streamlined Hamiltonian description. The constraint's covariant expression permits...
Hamiltonian[k,k+1]-因子%Hamiltonian [k, k + 1]-Factor
蔡茂诚; 方奇志; 李延军
2003-01-01
A Hamiltonian [k, k + 1]-factor is a [k, k + 1]-factor containing a Hamiltonian cycle. A simple graph G of order n is n/2-critical if δ(G) ≥ n/2 but δ(G - e) ＜ n/2 for any edge e ∈ E(G). Let k ≥ 2 be an integer and G be an n/2-critical graph with n ≥ 4k - 6 and n ≥ 7. In this paper it is proved that for any given Hamiltonian cycle C of G, G has a [k, k + 1]-factor containing C. This result is an improvement on some recent results about the existence of Hamiltonian [k, k + 1]-factor.%本文考虑n/2-临界图中Hamiltonian[k,k+1]-因子的存在性.Hamiltonian[k,k+1]-因子是指包含Hamiltonian圈的[k,k+1]-因子;给定阶数为n的简单图G,若δ(G)≥n/2而δ(G\\e)＜n/2(对任意的e∈E(G)),则称G为n/2-临界图.设k为大于等于2的整数,G为n/2-临界图(其中n≥4k-6且n≥7),我们证明了对于G的任何Hamiltonian圈C,G中必存在包含C的[k,k+1]-因子.该结果改进了现有的一些有关Hamiltonian[k,k+1]-因子存在性的结果.
The Hamiltonian formalism for scalar fields coupled to gravity in a cosmological background
Bernardini, A.E., E-mail: alexeb@ufscar.br; Bertolami, O., E-mail: orfeu.bertolami@fc.up.pt
2013-11-15
A novel routine to investigate the scalar fields in a cosmological context is discussed in the framework of the Hamiltonian formalism. Starting from the Einstein–Hilbert action coupled to a Lagrangian density that contains two components–one corresponding to a scalar field Lagrangian, L{sub ϕ}, and another that depends on the scale parameter, L{sub a}–one can identify a generalized Hamiltonian density from which first-order dynamical equations can be obtained. This set up corresponds to the dynamics of Friedmann–Robertson–Walker models in the presence of homogeneous fields embedded into a generalized cosmological background fluid in a system that evolves all together isentropically. Once the generalized Hamiltonian density is properly defined, the constraints on the gravity–matter–field system are straightforwardly obtained through the first-order Hamilton equations. The procedure is illustrated for three examples of cosmological interest for studies of the dark sector: real scalar fields, tachyonic fields and generalized Born–Infeld tachyonic fields. The inclusion of some isentropic fluid component into the Friedmann equation allows for identifying an exact correspondence between the dark sector underlying scalar field and an ordinary real scalar field dynamics. As a final issue, the Hamiltonian formulation is used to set the first-order dynamical equations through which one obtains the exact analytical description of the cosmological evolution of a generalized Chaplygin gas (GCG) with dustlike matter, radiation or curvature contributions. Model stability in terms of the square of the sound velocity, c{sub s}{sup 2}, cosmic acceleration, q, and conditions for inflation are discussed. -- Highlights: •The Hamiltonian formalism for scalar fields coupled to gravity in a cosmological background is constructed. •Real scalar, tachyonic and generalized Born–Infeld tachyonic-type fields are considered. •An extended formulation of the Hamilton
Lax operator algebras and Hamiltonian integrable hierarchies
Sheinman, Oleg K
2009-01-01
We consider the theory of Lax equations in complex simple and reductive classical Lie algebras with the spectral parameter on a Riemann surface of finite genus. Our approach is based on the new objects -- the Lax operator algebras, and develops the approach of I.Krichever treating the $\\gl(n)$ case. For every Lax operator considered as the mapping sending a point of the cotangent bundle on the space of extended Tyrin data to an element of the corresponding Lax operator algebra we construct the hierarchy of mutually commuting flows given by Lax equations and prove that those are Hamiltonian with respect to the Krichever-Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example we derive elliptic $A_n$, $C_n$, $D_n$ Calogero-Moser systems in frame of our approach.
Lax operator algebras and Hamiltonian integrable hierarchies
Sheinman, Oleg K [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)
2011-02-28
This paper considers the theory of Lax equations with a spectral parameter on a Riemann surface, proposed by Krichever in 2001. The approach here is based on new objects, the Lax operator algebras, taking into consideration an arbitrary complex simple or reductive classical Lie algebra. For every Lax operator, regarded as a map sending a point of the cotangent bundle on the space of extended Tyurin data to an element of the corresponding Lax operator algebra, a hierarchy of mutually commuting flows given by the Lax equations is constructed, and it is proved that they are Hamiltonian with respect to the Krichever-Phong symplectic structure. The corresponding Hamiltonians give integrable finite-dimensional Hitchin-type systems. For example, elliptic A{sub n}, C{sub n}, and D{sub n} Calogero-Moser systems are derived in the framework of our approach. Bibliography: 13 titles.
An Underlying Geometrical Manifold for Hamiltonian Mechanics
Horwitz, L P; Levitan, J; Lewkowicz, M
2015-01-01
We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture) that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamilton-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical pictu...
Hamiltonian approach to hybrid plasma models
Tronci, Cesare
2010-01-01
The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.
ON THE ELUSIVENESS OF HAMILTONIAN PROPERTY
高随祥
2001-01-01
Decision tree complexity is an important measure of computational complexity. A graph property is a set of graphs such that if some graph G is in the set then each isomorphic graph to G is also in the set. Let P be a graph property on n vertices, if every decision tree algorithm recognizing P must examine at least k pairs of vertices in the worst case, then it is said that the decision tree complexity of P is k. If every decision tree algorithm recognizing P must examine all n(n-1)/2 pairs of vertices in the worst case, then P is said to be elusive. Karp conjectured that every nontrivial monotone graph property is elusive. This paper concerns the elusiveness of Hamiltonian property. It is proved that if n=p+1, pq or pq+1, (where p,q are distinct primes),then Hamiltonian property on n vertices is elusive.
General formalism for singly thermostated Hamiltonian dynamics.
Ramshaw, John D
2015-11-01
A general formalism is developed for constructing modified Hamiltonian dynamical systems which preserve a canonical equilibrium distribution by adding a time evolution equation for a single additional thermostat variable. When such systems are ergodic, canonical ensemble averages can be computed as dynamical time averages over a single trajectory. Systems of this type were unknown until their recent discovery by Hoover and colleagues. The present formalism should facilitate the discovery, construction, and classification of other such systems by encompassing a wide class of them within a single unified framework. This formalism includes both canonical and generalized Hamiltonian systems in a state space of arbitrary dimensionality (either even or odd) and therefore encompasses both few- and many-particle systems. Particular attention is devoted to the physical motivation and interpretation of the formalism, which largely determine its structure. An analogy to stochastic thermostats and fluctuation-dissipation theorems is briefly discussed.
Hamiltonian partial differential equations and applications
Nicholls, David; Sulem, Catherine
2015-01-01
This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.
Hamiltonian hierarchy and the Hulthen potential
Gönül, B
2000-01-01
We deal with the Hamiltonian hierarchy problem of the Hulth\\'{e}n potential within the frame of the supersymmetric quantum mechanics and find that the associated superymmetric partner potentials simulate the effect of the centrifugal barrier. Incorporating the supersymmetric solutions and using the first-order perturbation theory we obtain an expression for the energy levels of theHulth\\'{e}n potential which gives satisfactory values for the non-zero angular momentum states.
Hamiltonian theory of guiding-center motion
Littlejohn, R.G.
1980-05-01
A Hamiltonian treatment of the guiding center problem is given which employs noncanonical coordinates in phase space. Separation of the unperturbed system from the perturbation is achieved by using a coordinate transformation suggested by a theorem of Darboux. As a model to illustrate the method, motion in the magnetic field B=B(x,y)z is studied. Lie transforms are used to carry out the perturbation expansion.
Analytical Special Solutions of the Bohr Hamiltonian
Bonatsos, D; Petrellis, D; Terziev, P A; Yigitoglu, I
2005-01-01
The following special solutions of the Bohr Hamiltonian are briefly described: 1) Z(5) (approximately separable solution in five dimensions with gamma close to 30 degrees), 2) Z(4) (exactly separable gamma-rigid solution in four dimensions with gamma = 30 degrees), 3) X(3) (exactly separable gamma-rigid solution in three dimensions with gamma =0). The analytical solutions obtained using Davidson potentials in the E(5), X(5), Z(5), and Z(4) frameworks are also mentioned.
Some Oscillation Results for Linear Hamiltonian Systems
Nan Wang; Fanwei Meng
2012-01-01
The purpose of this paper is to develop a generalized matrix Riccati technique for the selfadjoint matrix Hamiltonian system ${U}^{\\prime }=A(t)U+B(t)V$ , ${V}^{\\prime }=C(t)U-{A}^{\\ast }(t)V$ . By using the standard integral averaging technique and positive functionals, new oscillation and interval oscillation criteria are established for the system. These criteria extend and improve some results that have been required before. An interesting example is included to illustrate the...
Obtaining breathers in nonlinear Hamiltonian lattices
Flach, S
1995-01-01
Abstract We present a numerical method for obtaining high-accuracy numerical solutions of spatially localized time-periodic excitations on a nonlinear Hamiltonian lattice. We compare these results with analytical considerations of the spatial decay. We show that nonlinear contributions have to be considered, and obtain very good agreement between the latter and the numerical results. We discuss further applications of the method and results.
Monte Carlo Hamiltonian:Inverse Potential
LUO Xiang-Qian; CHENG Xiao-Ni; Helmut KR(O)GER
2004-01-01
The Monte Carlo Hamiltonian method developed recently allows to investigate the ground state and low-lying excited states of a quantum system,using Monte Carlo(MC)algorithm with importance sampling.However,conventional MC algorithm has some difficulties when applied to inverse potentials.We propose to use effective potential and extrapolation method to solve the problem.We present examples from the hydrogen system.
Spectral analysis of tridiagonal Fibonacci Hamiltonians
Yessen, William
2011-01-01
We consider a family of discrete Jacobi operators on the one-dimensional integer lattice, with the diagonal and the off-diagonal entries given by two sequences generated by the Fibonacci substitution on two letters. We show that the spectrum is a Cantor set of zero Lebesgue measure, and discuss its fractal structure and Hausdorff dimension. We also extend some known results on the diagonal and the off-diagonal Fibonacci Hamiltonians.
Gauge symmetry enhancement in Hamiltonian formalism
Hong, S T; Lee, T H; Oh, P; Oh, Phillial
2003-01-01
We study the Hamiltonian structure of the gauge symmetry enhancement in the enlarged CP(N) model coupled with U(2) chern-Simons term, which contains a free parameter governing explicit symmetry breaking and symmetry enhancement. After giving a general discussion of the geometry of constrained phase space suitable for the symmetry enhancement, we explicitly perform the Dirac analysis of out model and compute the Dirac brackets for the symmetry enhanced and broken cases. We also discuss some related issues.
The Effective Hamiltonian in the Scalar Electrodynamics
Dineykhan, M D; Zhaugasheva, S A; Sakhyev, S K
2002-01-01
On the basis of an investigation of the asymptotic behaviour of the polarization loop for the scalar particles in the external electromagnetic field the relativistic corrections to the Hamiltonian are determined. The constituent mass of the particles in the bound state is analytically derived. It is shown that the constituent mass of the particles differs from the mass of the particles in the free state. The corrections connected with the Thomas precession have been calculated.
Hamiltonian methods in the theory of solitons
Fadeev, Ludwig
1987-01-01
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrodinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.
Optimal Hamiltonian Simulation by Quantum Signal Processing
Low, Guang Hao; Chuang, Isaac L.
2017-01-01
The physics of quantum mechanics is the inspiration for, and underlies, quantum computation. As such, one expects physical intuition to be highly influential in the understanding and design of many quantum algorithms, particularly simulation of physical systems. Surprisingly, this has been challenging, with current Hamiltonian simulation algorithms remaining abstract and often the result of sophisticated but unintuitive constructions. We contend that physical intuition can lead to optimal simulation methods by showing that a focus on simple single-qubit rotations elegantly furnishes an optimal algorithm for Hamiltonian simulation, a universal problem that encapsulates all the power of quantum computation. Specifically, we show that the query complexity of implementing time evolution by a d -sparse Hamiltonian H ^ for time-interval t with error ɛ is O [t d ∥H ^ ∥max+log (1 /ɛ ) /log log (1 /ɛ ) ] , which matches lower bounds in all parameters. This connection is made through general three-step "quantum signal processing" methodology, comprised of (i) transducing eigenvalues of H ^ into a single ancilla qubit, (ii) transforming these eigenvalues through an optimal-length sequence of single-qubit rotations, and (iii) projecting this ancilla with near unity success probability.
Redesign of the DFT/MRCI Hamiltonian.
Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M
2016-01-21
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.
Reinforcement learning for port-hamiltonian systems.
Sprangers, Olivier; Babuška, Robert; Nageshrao, Subramanya P; Lopes, Gabriel A D
2015-05-01
Passivity-based control (PBC) for port-Hamiltonian systems provides an intuitive way of achieving stabilization by rendering a system passive with respect to a desired storage function. However, in most instances the control law is obtained without any performance considerations and it has to be calculated by solving a complex partial differential equation (PDE). In order to address these issues we introduce a reinforcement learning (RL) approach into the energy-balancing passivity-based control (EB-PBC) method, which is a form of PBC in which the closed-loop energy is equal to the difference between the stored and supplied energies. We propose a technique to parameterize EB-PBC that preserves the systems's PDE matching conditions, does not require the specification of a global desired Hamiltonian, includes performance criteria, and is robust. The parameters of the control law are found by using actor-critic (AC) RL, enabling the search for near-optimal control policies satisfying a desired closed-loop energy landscape. The advantage is that the solutions learned can be interpreted in terms of energy shaping and damping injection, which makes it possible to numerically assess stability using passivity theory. From the RL perspective, our proposal allows for the class of port-Hamiltonian systems to be incorporated in the AC framework, speeding up the learning thanks to the resulting parameterization of the policy. The method has been successfully applied to the pendulum swing-up problem in simulations and real-life experiments.
Dynamics of Hamiltonian Systems and Memristor Circuits
Itoh, Makoto; Chua, Leon
In this paper, we show that any n-dimensional autonomous systems can be regarded as subsystems of 2n-dimensional Hamiltonian systems. One of the two subsystems is identical to the n-dimensional autonomous system, which is called the driving system. Another subsystem, called the response system, can exhibit interesting behaviors in the neighborhood of infinity. That is, the trajectories approach infinity with complicated nonperiodic (chaotic-like) behaviors, or periodic-like behavior. In order to show the above results, we project the trajectories of the Hamiltonian systems onto n-dimensional spheres, or n-dimensional balls by using the well-known central projection transformation. Another interesting behavior is that the transient regime of the subsystems can exhibit Chua corsage knots. We next show that generic memristors can be used to realize the above Hamiltonian systems. Finally, we show that the internal state of two-element memristor circuits can have the same dynamics as n-dimensional autonomous systems.
A variational inequality arising from European option pricing with transaction costs
YI FaHuai; YANG Zhou
2008-01-01
In this paper we present a method which can transform a variational inequality with gradient constraints into a usual two obstacles problem in one dimensional case. The prototype of the problem is a parabolic variational inequality with the constraints of two first order differential inequalities arising from a two-dimensional model of European call option pricing with transaction costs. We obtain the monotonicity and smoothness of two free boundaries.
A variational inequality arising from European option pricing with transaction costs
2008-01-01
In this paper we present a method which can transform a variational inequality with gradient constraints into a usual two obstacles problem in one dimensional case.The prototype of the problem is a parabolic variational inequality with the constraints of two first order differential inequalities arising from a two-dimensional model of European call option pricing with transaction costs.We obtain the monotonicity and smoothness of two free boundaries.
Hamiltonian formulation and exact solutions of the Bianchi type I space-time in conformal gravity
Demaret, J; Scheen, C
1999-01-01
We develop a Hamiltonian formulation of the Bianchi type I space-time in conformal gravity, i.e. the theory described by a Lagrangian that is defined by the contracted quadratic product of the Weyl tensor, in a four-dimensional space-time. We derive the explicit forms of the super-Hamiltonian and of the constraint expressing the conformal invariance of the theory and we write down the system of canonical equations. To seek out exact solutions of this system we add extra constraints on the canonical variables and we go through a global involution algorithm which eventually leads to the closure of the constraint algebra. The Painleve approach provides us with a proof of non-integrability, as a consequence of the presence of movable logarithms in the general solution of the problem. We extract all possible particular solutions that may be written in closed analytical form. This enables us to demonstrate that the global involution algorithm has brought forth the complete list of exact solutions that may be writte...
Primary extradural meningioma arising from the calvarium
N Ravi
2013-06-01
Full Text Available Meningiomas are the most common intracranial tumours. Meningiomas arising at other locations are termed primary extradural meningiomas (EDM and are rare. Here we report a case of EDM arising from the calvarium – a primary calvarial meningioma (PCM.
Delusional Disorder Arising From a CNS Neoplasm.
Stupinski, John; Kim, Jihye; Francois, Dimitry
2017-01-01
Erotomania arising from a central nervous system (CNS) neoplasm has not been previously described. Here, we present the first known case, to our knowledge, of erotomania with associated persecutory delusions arising following diagnosis and treatment of a left frontal lobe brain tumor.
New formulation of Horava-Lifshitz quantum gravity as a master constraint theory
Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yang Jinsong, E-mail: Yangksong@gmail.com [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Hoi-Lai, E-mail: hlyu@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)
2011-07-04
Both projectable and non-projectable versions of Horava-Lifshitz gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra scalar mode which can be problematic. A new formulation of non-projectable Horava-Lifshitz gravity, naturally realized as a representation of the master constraint algebra studied by loop quantum gravity researchers, is presented. This yields a consistent canonical theory with first class constraints. It captures the essence of Horava-Lifshitz gravity in retaining only spatial diffeomorphisms (instead of full space-time covariance) as the physically relevant non-trivial gauge symmetry; at the same time the local Hamiltonian constraint needed to eliminate the extra mode is equivalently enforced by the master constraint.
Visualizing the zero order basis of the spectroscopic Hamiltonian.
Barnes, George L; Kellman, Michael E
2012-01-14
Recent works have shown that a generalization of the spectroscopic effective Hamiltonian can describe spectra in surprising regions, such as isomerization barriers. In this work, we seek to explain why the effective Hamiltonian is successful where there was reason to doubt that it would work at all. All spectroscopic Hamiltonians have an underlying abstract zero-order basis (ZOB) which is the "ideal" basis for a given form and parameterization of the Hamiltonian. Without a physical model there is no way to transform this abstract basis into a coordinate representation. To this end, we present a method of obtaining the coordinate space representation of the abstract ZOB of a spectroscopic effective Hamiltonian. This method works equally well for generalized effective Hamiltonians that encompass above-barrier multiwell behavior, and standard effective Hamiltonians for the vicinity of a single potential minimum. Our approach relies on a set of converged eigenfunctions obtained from a variational calculation on a potential surface. By making a one-to-one correspondence between the energy eigenstates of the effective Hamiltonian and those of the coordinate space Hamiltonian, a physical representation of the abstract ZOB is calculated. We find that the ZOB basis naturally adjusts its complexity depending on the underlying nature of phase space, which allows spectroscopic Hamiltonians to succeed for systems sampling multiple stationary points.
Hamiltonian realization of power system dynamic models and its applications
2008-01-01
Power system is a typical energy system. Because Hamiltonian approaches are closely related to the energy of the physical system, they have been widely re-searched in recent years. The realization of the Hamiltonian structure of the nonlinear dynamic system is the basis for the application of the Hamiltonian methods. However, there have been no systematically investigations on the Ham-iltonian realization for different power system dynamic models so far. This paper researches the Hamiltonian realization in power systems dynamics. Starting from the widely used power system dynamic models, the paper reveals the intrinsic Hamiltonian structure of the nonlinear power system dynamics and also proposes approaches to formulate the power system Hamiltonian structure. Furthermore, this paper shows the application of the Hamiltonian structure of the power system dynamics to design non-smooth controller considering the nonlinear ceiling effects from the real physical limits. The general procedure to design controllers via the Hamiltonian structure is also summarized in the paper. The controller design based on the Hamiltonian structure is a completely nonlinear method and there is no lin-earization during the controller design process. Thus, the nonlinear characteristics of the dynamic system are completely kept and fully utilized.
d'Inverno, R A; Vickers, J A
2006-01-01
In this paper we obtain a 2+2 double null Hamiltonian description of General Relativity using only the (complex) SO(3) connection and the components of the complex densitised self-dual bivectors. We carry out the general canonical analysis of this system and obtain the first class constraint algebra entirely in terms of the self-dual variables. The first class algebra forms a Lie algebra and all the first class constraints have a simple geometrical interpretation.
Chaos, ergodicity, and the thermodynamics of lower-dimensional time-independent Hamiltonian systems
Kandrup, Henry E.; Sideris, Ioannis V.; Bohn, Courtlandt L.
2002-01-01
This paper uses the assumptions of ergodicity and a microcanonical distribution to compute estimates of the largest Lyapunov exponents in lower-dimensional Hamiltonian systems. That the resulting estimates are in reasonable agreement with the actual values computed numerically corroborates the intuition that chaos in such systems can be understood as arising generically from a parametric instability and that this instability may be modeled by a stochastic-oscillator equation [cf. Casetti, Clementi, and Pettini, Phys. Rev. E 54, 5969 (1996)], linearized perturbations of a chaotic orbit satisfying a harmonic-oscillator equation with a randomly varying frequency.
Chaos, ergodicity, and the thermodynamics of lower-dimensional Hamiltonian systems
Kandrup, H E; Bohn, C L; Kandrup, Henry E.; Sideris, Ioannis V.
2002-01-01
This paper uses the assumptions of ergodicity and a microcanonical distribution to compute estimates of the largest Lyapunov exponents in lower-dimensional Hamiltonian systems. That the resulting estimates are in reasonable agreement with the actual values computed numerically corroborates the intuition that chaos in such systems can be understood as arising generically from a parametric instability and that this instability can be modeled by a stochastic-oscillator equation (cf. Casetti, Clementi, and Pettini, Phys. Rev. E 54, 5969 (1996)), linearised perturbations of a chaotic orbit satisfying a harmonic-oscillator equation with a randomly varying frequency.
The Hamiltonian formulation of General Relativity: myths and reality
Kiriushcheva, N
2008-01-01
A conventional wisdom often perpetuated in the literature states that: (i) a 3+1 decomposition of space-time into space and time is synonymous with the canonical treatment and this decomposition is essential for any Hamiltonian formulation of General Relativity (GR); (ii) the canonical treatment unavoidably breaks the symmetry between space and time in GR and the resulting algebra of constraints is not the algebra of four-dimensional diffeomorphism; (iii) according to some authors this algebra allows one to derive only spatial diffeomorphism or, according to others, a specific field-dependent and non-covariant four-dimensional diffeomorphism; (iv) the analyses of Dirac [Proc. Roy. Soc. A 246 (1958) 333] and of ADM [Arnowitt, Deser and Misner, in "Gravitation: An Introduction to Current Research" (1962) 227] of the canonical structure of GR are equivalent. We provide some general reasons why these statements should be questioned. Points (i-iii) have been shown to be incorrect in [Kiriushcheva et al., Phys. Let...
On the Hamiltonian approach: Applications to geophysical flows
V. Goncharov
1998-01-01
Full Text Available This paper presents developments of the Harniltonian Approach to problems of fluid dynamics, and also considers some specific applications of the general method to hydrodynamical models. Nonlinear gauge transformations are found to result in a reduction to a minimum number of degrees of freedom, i.e. the number of pairs of canonically conjugated variables used in a given hydrodynamical system. It is shown that any conservative hydrodynamic model with additional fields which are in involution may be always reduced to the canonical Hamiltonian system with three degrees of freedom only. These gauge transformations are associated with the law of helicity conservation. Constraints imposed on the corresponding Clebsch representation are determined for some particular cases, such as, for example. when fluid motions develop in the absence of helicity. For a long time the process of the introduction of canonical variables into hydrodynamics has remained more of an intuitive foresight than a logical finding. The special attention is allocated to the problem of the elaboration of the corresponding regular procedure. The Harniltonian Approach is applied to geophysical models including incompressible (3D and 2D fluid motion models in curvilinear and lagrangian coordinates. The problems of the canonical description of the Rossby waves on a rotating sphere and of the evolution of a system consisting of N singular vortices are investigated.
Faddeev-Jackiw Hamiltonian reduction for free and gauged Rarita-Schwinger theories
Dengiz, Suat [Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States)
2016-10-15
We study the Faddeev-Jackiw symplectic Hamiltonian reduction for 3 + 1-dimensional free and Abelian gauged Rarita-Schwinger theories that comprise Grassmannian fermionic fields. We obtain the relevant fundamental brackets and find that they are in convenient forms for quantization. The brackets are independent of whether the theories contain mass or gauge fields, and the structures of constraints and symplectic potentials largely determine characteristic behaviors of the theories. We also note that, in contrast to the free massive theory, the Dirac field equations for free massless Rarita-Schwinger theory cannot be obtained in a covariant way. (orig.)
Faddeev-Jackiw Hamiltonian reduction for free and gauged Rarita-Schwinger theories
Dengiz, Suat
2016-10-01
We study the Faddeev-Jackiw symplectic Hamiltonian reduction for 3+1-dimensional free and Abelian gauged Rarita-Schwinger theories that comprise Grassmannian fermionic fields. We obtain the relevant fundamental brackets and find that they are in convenient forms for quantization. The brackets are independent of whether the theories contain mass or gauge fields, and the structures of constraints and symplectic potentials largely determine characteristic behaviors of the theories. We also note that, in contrast to the free massive theory, the Dirac field equations for free massless Rarita-Schwinger theory cannot be obtained in a covariant way.
Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates
Huang, Chao-Guang
2016-01-01
The Hamiltonian analysis for a 3-dimensional $SO(1,1)\\times T_+$-connection dynamics is conducted in a Bondi-like coordinate system.A null coframe with 5 independent variables and 9 connection coefficients are treated as basic configuration variables.All constraints and their consistency conditions, as well as the equations of motion,for the system are presented.There is no physical degree of freedom in the system as expected.The Ba\\~nados-Teitelboim-Zanelli spacetime as an example is used to check the analysis.
An extended phase-space stochastic quantization of constrained Hamiltonian systems
Ter-Kazarian, G T [Byurakan Astrophysical Observatory, Byurakan 378433, Aragatsotn District (Armenia); Sobouti, Y [Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, PO Box 45195-159 (Iran, Islamic Republic of)], E-mail: gago-50@yahoo.com, E-mail: sobouti@iasbs.ac.ir
2008-08-08
Having gained some insight into the concept of 'actual and virtual paths' in a phase-space formalism (Sobouti and Nasiri 1993 Int. J. Mod. Phys. B 7 3255, Nasiri et al 2006 J. Math. Phys. 47 092106), in the present paper we address the question of 'extended' phase-space stochastic quantization of Hamiltonian systems with first class holonomic constraints. We present the appropriate Langevin equations, which quantize such constrained systems, and prove the equivalence of the stochastic quantization method with the conventional path-integral gauge measure of Faddeev-Popov quantization.
J. Squire, H. Qin and W.M. Tang
2012-09-25
We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in Ref. 1. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with the Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models and Casimir type stability methods. __________________________________________________
Dimension of the moduli space and Hamiltonian analysis of BF field theories
Cartas-Fuentevilla, R; Berra-Montiel, J
2011-01-01
By using the Atiyah-Singer theorem through some similarities with the instanton and the anti-instanton moduli spaces, the dimension of the moduli space for two and four-dimensional BF theories valued in different background manifolds and gauge groups scenarios is determined. Additionally, we develop Dirac's canonical analysis for a four-dimensional modified BF theory, which reproduces the topological YM theory. This framework will allow us to understand the local symmetries, the constraints, the extended Hamiltonian and the extended action of the theory.
Hamiltonian dynamics of 5D Kalb-Ramond theories with a compact dimension
Escalante, Alberto
2014-01-01
A detailed Hamiltonian analysis for a five-dimensional Kalb-Ramond, massive Kalb-Ramond and St{\\"{u}}eckelberg Kalb-Ramond theories with a compact dimension is performed. We develop a complete constraint program, then we quantize the theory by constructing the Dirac brackets. From the gauge transformations of the theories, we fix a particular gauge and we find pseudo-Goldstone bosons in Kalb-Ramond and St{\\"{u}}eckelberg Kalb-Ramond's effective theories. Finally we discuss some remarks and prospects.
Proton radius puzzle in Hamiltonian dynamics
Glazek, Stanislaw D
2014-01-01
Relativistic lepton-proton bound-state eigenvalue equations for Hamiltonians derived from quantum field theory using second-order renormalization group procedure for effective particles, are reducible to two-body Schroedinger eigenvalue equations with the effective Coulomb potential that exhibits a tiny sensitivity to the characteristic momentum-scale of the bound system. The scale dependence is shown to be relevant to the theoretical interpretation of precisely measured lepton-proton bound-state energy levels in terms of a 4 percent difference between the proton radii in muon-proton and electron-proton bound states.
Linear representation of energy-dependent Hamiltonians
Znojil, Miloslav
2004-05-01
Quantum mechanics abounds in models with Hamiltonian operators which are energy-dependent. A linearization of the underlying Schrödinger equation with H= H( E) is proposed here via an introduction of a doublet of separate energy-independent representatives K and L of the respective right and left action of H( E). Both these new operators are non-Hermitian so that our formalism admits a natural extension to non-Hermitian initial H( E)s. Its applicability may range from pragmatic phenomenology and variational calculations (where all the subspace-projected effective operators depend on energy by construction) up to perturbation theory and quasi-exact constructions.
Dyson--Schwinger Approach to Hamiltonian QCD
Campagnari, Davide R; Huber, Markus Q; Vastag, Peter; Ebadati, Ehsan
2016-01-01
Dyson--Schwinger equations are an established, powerful non-perturbative tool for QCD. In the Hamiltonian formulation of a quantum field theory they can be used to perform variational calculations with non-Gaussian wave functionals. By means of the DSEs the various $n$-point functions, needed in expectation values of observables like the Hamilton operator, can be thus expressed in terms of the variational kernels of our trial ansatz. Equations of motion for these variational kernels are derived by minimizing the energy density and solved numerically.
Enumeration of Hamiltonian Cycles in 6-cube
Deza, Michel
2010-01-01
Finding the number 2H6 of directed Hamiltonian cycles in 6-cube is problem 43 in Section 7.2.1.1 of Knuth's ' The Art of Computer Programming'; various proposed estimates are surveyed below. We computed exact value: H6=14,754,666,508,334,433,250,560=6*2^4*217,199*1,085,989*5,429,923. Also the number Aut6 of those cycles up to automorphisms of 6-cube was computed as 147,365,405,634,413,085
Hamiltonian analysis of BHT massive gravity
Blagojević, M.; Cvetković, B.
2011-01-01
We study the Hamiltonian structure of the Bergshoeff-Hohm-Townsend (BHT) massive gravity with a cosmological constant. In the space of coupling constants ( Λ 0, m 2), our canonical analysis reveals the special role of the condition Λ 0/ m 2 ≠ -1. In this sector, the dimension of the physical phase space is found to be N ∗ = 4, which corresponds to two Lagrangian degree of freedom. When applied to the AdS asymptotic region, the canonical approach yields the conserved charges of the BTZ black hole, and central charges of the asymptotic symmetry algebra.
Action-minimizing methods in Hamiltonian dynamics
Sorrentino, Alfonso
2015-01-01
John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach-known as Aubry-Mather theory-singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather's theory, and can serve as a
Statistical mechanics of Hamiltonian adaptive resolution simulations.
Español, P; Delgado-Buscalioni, R; Everaers, R; Potestio, R; Donadio, D; Kremer, K
2015-02-14
The Adaptive Resolution Scheme (AdResS) is a hybrid scheme that allows to treat a molecular system with different levels of resolution depending on the location of the molecules. The construction of a Hamiltonian based on the this idea (H-AdResS) allows one to formulate the usual tools of ensembles and statistical mechanics. We present a number of exact and approximate results that provide a statistical mechanics foundation for this simulation method. We also present simulation results that illustrate the theory.
The quantization of the Rabi Hamiltonian
Vandaele, Eva R. J.; Arvanitidis, Athanasios; Ceulemans, Arnout
2017-03-01
The Rabi Hamiltonian addresses the proverbial paradigmatic case of a two-level fermionic system coupled to a single bosonic mode. It is expressed by a system of two coupled first-order differential equations in the complex field, which may be rewritten in a canonical form under the Birkhoff transformation. The transformation gives rise to leapfrog recurrence relations, from which the eigenvalues and eigenvectors could be obtained. The interesting feature of this approach is that it generates integer quantum numbers, which rationalize the spectrum by relating the solutions to the Juddian baselines. The relationship with Braak’s integrability claim (Braak 2011 Phys. Rev. Lett. 107 100401) is discussed.
Quantum Hamiltonian Identification from Measurement Time Traces
Zhang, Jun; Sarovar, Mohan
2014-08-01
Precise identification of parameters governing quantum processes is a critical task for quantum information and communication technologies. In this Letter, we consider a setting where system evolution is determined by a parametrized Hamiltonian, and the task is to estimate these parameters from temporal records of a restricted set of system observables (time traces). Based on the notion of system realization from linear systems theory, we develop a constructive algorithm that provides estimates of the unknown parameters directly from these time traces. We illustrate the algorithm and its robustness to measurement noise by applying it to a one-dimensional spin chain model with variable couplings.
Connecting orbits for families of Tonelli Hamiltonians
Mandorino, Vito
2011-01-01
We investigate the existence of Arnold diffusion-type orbits for systems obtained by iterating in any order the time-one maps of a family of Tonelli Hamiltonians. Such systems are known as 'polysystems' or 'iterated function systems'. When specialized to families of twist maps on the cylinder, our results are similar to those obtained by Moeckel [20] and Le Calvez [15]. Our approach is based on weak KAM theory and is close to the one used by Bernard in [3] to study the case of a single Tonell...
Hamiltonian BF theory and projected Borromean Rings
Contreras, Ernesto; Leal, Lorenzo
2011-01-01
It is shown that the canonical formulation of the abelian BF theory in D = 3 allows to obtain topological invariants associated to curves and points in the plane. The method consists on finding the Hamiltonian on-shell of the theory coupled to external sources with support on curves and points in the spatial plane. We explicitly calculate a non-trivial invariant that could be seen as a "projection" of the Milnor's link invariant MU(1; 2; 3), and as such, it measures the entanglement of generalized (or projected) Borromeans Rings in the Euclidean plane.
Geometry and Hamiltonian mechanics on discrete spaces
Talasila, V.; Clemente-Gallardo, J.; van der Schaft, A. J.
2004-01-01
Numerical simulation is often crucial for analysing the behaviour of many complex systems which do not admit analytic solutions. To this end, one either converts a ‘smooth’ model into a discrete (in space and time) model, or models systems directly at a discrete level. The goal of this paper is to provide a discrete analogue of differential geometry, and to define on these discrete models a formal discrete Hamiltonian structure—in doing so we try to bring together various fundamental concepts...
Subsystem's dynamics under random Hamiltonian evolution
Vinayak,
2011-01-01
We study time evolution of a subsystem's density matrix under a unitary evolution, generated by a sufficiently complex, say quantum chaotic, Hamiltonian. We exactly calculate all coherences, purity and fluctuations. The reduced density matrix is described in terms of a noncentral correlated Wishart ensemble. Our description accounts for a transition from an arbitrary initial state towards a random state at large times, enabling us to determine the convergence time after which random states are reached. We identify and describe a number of other interesting features, like a series of collisions between the largest eigenvalue and the bulk, accompanied by a phase transition in its distribution function.
New approaches to generalized Hamiltonian realization of autonomous nonlinear systems
王玉振; 李春文; 程代展
2003-01-01
The Hamiltonian function method plays an important role in stability analysis and stabilization. The key point in applying the method is to express the system under consideration as the form of dissipative Hamiltonian systems, which yields the problem of generalized Hamiltonian realization. This paper deals with the generalized Hamiltonian realization of autonomous nonlinear systems. First, this paper investigates the relation between traditional Hamiltonian realizations and first integrals, proposes a new method of generalized Hamiltonian realization called the orthogonal decomposition method, and gives the dissipative realization form of passive systems. This paper has proved that an arbitrary system has an orthogonal decomposition realization and an arbitrary asymptotically stable system has a strict dissipative realization. Then this paper studies the feedback dissipative realization problem and proposes a control-switching method for the realization. Finally,this paper proposes several sufficient conditions for feedback dissipative realization.
Perturbation Theory for Parent Hamiltonians of Matrix Product States
Szehr, Oleg; Wolf, Michael M.
2015-05-01
This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).
On Hamiltonian realization of time-varying nonlinear systems
无
2007-01-01
This paper Investigates Hamiltonian realization of time-varying nonlinear (TVN) systems, and proposes a number of new methods for the problem. It is shown that every smooth TVN system can be expressed as a generalized Hamiltonian system if the origin is the equilibrium of the system. If the Jacooian matrix of a TVN system is nonsingu-lar, the system has a generalized Hamiltonian realization whose structural matrix and Hamiltonian function are given explicitly. For the case that the Jacobian matrix is singular, this paper provides a constructive decomposition method, and then proves that a TVN system has a generalized Hamiltonian realization if its Jacobian matrix has a nonsingular main diagonal block. Furthermore, some sufficient (necessary and sufficient) conditions for dissipative Hamiltonian realization of TVN systems are also presented in this paper.
Equivalence of two sets of deformed Calogero-Moser Hamiltonians
Gorbe, T F
2015-01-01
The equivalence of two complete sets of Poisson commuting Hamiltonians of the (super)integrable rational BC(n) Ruijsenaars-Schneider-van Diejen system is established. Specifically, the commuting Hamiltonians constructed by van Diejen are shown to be linear combinations of the Hamiltonians generated by the characteristic polynomial of the Lax matrix obtained recently by Pusztai, and the explicit formula of this invertible linear transformation is found.
Hamiltonian and non-Hamiltonian perturbation theory for nearly periodic motion
Larsson, Jonas
1986-02-01
Kruskal's asymptotic theory of nearly period motion [M. Kruskal, J. Math. Phys. 4, 806 (1962)] (with applications to nonlinear oscillators, guiding center motion, etc.) is generalized and modified. A new more natural recursive formula, with considerable advantages in applications, determining the averaging transformations and the drift equations is derived. Also almost quasiperiodic motion is considered. For a Hamiltonian system, a manifestly Hamiltonian extension of Kruskal's theory is given by means of the phase-space Lagrangian formulation of Hamiltonian mechanics. By performing an averaging transformation on the phase-space Lagrangian for the system (L → L¯) and adding a total derivative dS/dτ, a nonoscillatory Lagrangian Λ=L¯+dS/dτ is obtained. The drift equations and the adiabatic invariant are now obtained from Λ. By truncating Λ to some finite order in the small parameter ɛ, manifestly Hamiltonian approximating systems are obtained. The utility of the method for treating the guiding-center motion is demonstrated in a separate paper.
Feedback minimization of first-passage failure of quasi integrable Hamiltonian systems
Maolin Deng; Weiqiu Zhu
2007-01-01
A nonlinear stochastic optimal control strategy for minimizing the first-passage failure of quasi integrable Hamiltonian systems (multi-degree-of-freedom integrable Hamiltonian systems subject to light dampings and weakly random excitations) is proposed. The equations of motion for a controlled quasi integrable Hamiltonian system are reduced to a set of averaged It6 stochastic differential equations by using the stochastic averaging method. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximiza-tion of reliability and mean first-passage time are formulated.The optimal control law is derived from the dynamical pro-gramming equations and the control constraints. The final dynamical programming equations for these control prob-lems are determined and their relationships to the backward Kolmogorov equation governing the conditional reliability function and the Pontryagin equation governing the mean first-passage time are separately established. The conditional reliability function and the mean first-passage time of the controlled system are obtained by solving the final dynami-cal programming equations or their equivalent Kolmogorov and Pontryagin equations. An example is presented to illus-trate the application and effectiveness of the proposed control strategy.
Optimal control strategies for stochastically excited quasi partially integrable Hamiltonian systems
Ronghua Huan; Maolin Deng; Weiqiu Zhu
2007-01-01
In this paper two different control strategies designed to alleviate the response of quasi partially integrable Hamiltonian systems subjected to stochastic excitation are proposed. First, by using the stochastic averaging method for quasi partially integrable Hamiltonian systems, an n-DOF controlled quasi partially integrable Hamiltonian system with stochastic excitation is converted into a set of partially averaged Ito stochastic differential equations. Then, the dynamical programming equation associated with the partially averaged Ito equations is formulated by applying the stochastic dynamical programming principle. In the first control strategy, the optimal control law is derived from the dynamical programming equation and the control constraints without solving the dynamical programming equation. In the second control strategy, the optimal control law is obtained by solving the dynamical programming equation. Finally, both the responses of controlled and uncontrolled systems are predicted through solving the Fokker-Plank-Kolmogorov equation associated with fully averaged Ito equations. An example is worked out to illustrate the application and effectiveness of the two proposed control strategies.
Hamiltonian Cycles in Regular 2-Connected Claw-Free Graphs
李明楚
2003-01-01
A known result by Jackson Bill is that every 2-connected k-regular graph on at most 3k vertices is Hamiltonian. In this paper,it is proved that every 2-connected k-regular claw-free graph on at most 5k(k≥10)vertices is Hamiltonian. Moreover, the bound 5k is best possible. A counterexample of a 2-connected k-regular claw-free non-Hamiltonian graph on 5k+1 vertices is given, and it is conjectured that every 3-connected k-regular claw-free graph on at most 12k-7 vertices is Hamiltonian.
Hamiltonian description of closed configurations of the vacuum magnetic field
Skovoroda, A. A., E-mail: skovoroda-aa@nrcki.ru [National Research Centre Kurchatov Institute (Russian Federation)
2015-05-15
Methods of obtaining and using the Hamiltonians of closed vacuum magnetic configurations of fusion research systems are reviewed. Various approaches to calculate the flux functions determining the Hamiltonian are discussed. It is shown that the Hamiltonian description allows one not only to reproduce all traditional results, but also to study the behavior of magnetic field lines by using the theory of dynamic systems. The potentialities of the Hamiltonian formalism and its close relation to traditional methods are demonstrated using a large number of classical examples adopted from the fundamental works by A.I. Morozov, L.S. Solov’ev, and V.D. Shafranov.
Covariant hamiltonian spin dynamics in curved space–time
D' Ambrosi, G., E-mail: gdambros@nikhef.nl [Nikhef, Science Park 105, Amsterdam (Netherlands); Satish Kumar, S., E-mail: satish@lorentz.leidenuniv.nl [Lorentz Institute, Leiden University, Niels Bohrweg 2, Leiden (Netherlands); Holten, J.W. van, E-mail: t32@nikhef.nl [Nikhef, Science Park 105, Amsterdam (Netherlands); Lorentz Institute, Leiden University, Niels Bohrweg 2, Leiden (Netherlands)
2015-04-09
The dynamics of spinning particles in curved space–time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space–time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern–Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.
Covariant hamiltonian spin dynamics in curved space-time
d'Ambrosi, G; van Holten, J W
2015-01-01
The dynamics of spinning particles in curved space-time is discussed, emphasizing the hamiltonian formulation. Different choices of hamiltonians allow for the description of different gravitating systems. We give full results for the simplest case with minimal hamiltonian, constructing constants of motion including spin. The analysis is illustrated by the example of motion in Schwarzschild space-time. We also discuss a non-minimal extension of the hamiltonian giving rise to a gravitational equivalent of the Stern-Gerlach force. We show that this extension respects a large class of known constants of motion for the minimal case.
How is Lorentz invariance encoded in the Hamiltonian?
Kajuri, Nirmalya
2016-07-01
One of the disadvantages of the Hamiltonian formulation is that Lorentz invariance is not manifest in the former. Given a Hamiltonian, there is no simple way to check whether it is relativistic or not. One would either have to solve for the equations of motion or calculate the Poisson brackets of the Noether charges to perform such a check. In this paper we show that, for a class of Hamiltonians, it is possible to check Lorentz invariance directly from the Hamiltonian. Our work is particularly useful for theories where the other methods may not be readily available.
How is Lorentz Invariance encoded in the Hamiltonian?
Kajuri, Nirmalya
2016-01-01
One of the disadvantages of the Hamiltonian formulation is that Lorentz invariance is not manifest in the former. Given a Hamiltonian, there is no simple way to check whether it is relativistic or not. One would either have to solve for the equations of motion or calculate the Poisson Brackets of the Noether charges to perform such a check. In this paper we show that, for a class of Hamiltonians, it is possible to check Lorentz invariance directly from the Hamiltonian. Our work is particularly useful for theories where the other methods may not be readily available.
A New Scheme of Integrability for (bi)Hamiltonian PDE
De Sole, Alberto; Kac, Victor G.; Valeri, Daniele
2016-10-01
We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.
Position-dependent mass quantum Hamiltonians: general approach and duality
Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.
2016-03-01
We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.
Hamiltonian realization of power system dynamic models and its applications
MA Jin; MEI ShengWei
2008-01-01
Power system is a typical energy system. Because Hamiltonian approaches are closely related to the energy of the physical system, they have been widely re-searched in recent years. The realization of the Hamiltonian structure of the nonlinear dynamic system is the basis for the application of the Hamiltonian methods. However, there have been no systematically investigations on the Ham-iltonian realization for different power system dynamic models so far. This paper researches the Hamiltonian realization in power systems dynamics. Starting from the widely used power system dynamic models, the paper reveals the intrinsic Hamiltonian structure of the nonlinear power system dynamics and also proposes approaches to formulate the power system Hamiltonian structure. Furthermore, this paper shows the application of the Hemiltonian structure of the power system dynamics to design non-smooth controller considering the nonlinear ceiling effects from the real physical limits. The general procedure to design controllers via the Hamiltonian structure is also summarized in the paper. The controller design based on the Hamiltonian structure is a completely nonlinear method and there is no lin-earization during the controller design process. Thus, the nonlinear characteristics of the dynamic system are completely kept and fully utilized.
Darboux transformations of the Jaynes-Cummings Hamiltonian
Samsonov, B F; Samsonov, Boris F; Negro, Javier
2004-01-01
A detailed analysis of matrix Darboux transformations under the condition that the derivative of the superpotential be self-adjoint is given. As a onsequence, a class of the symmetries associated to Schr\\"odinger matrix Hamiltonians is characterized. The applications are oriented towards the Jaynes-Cummings eigenvalue problem, so that exactly solvable $2\\times 2$ matrix Hamiltonians of the Jaynes-Cummings type are obtained. It is also established that the Jaynes-Cummings Hamiltonian is a quadratic function of a Dirac-type Hamiltonian.
Hamiltonian theory of nonlinear waves in planetary rings
Stewart, G. R.
1987-01-01
The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.
Non-isospectral Hamiltonians, intertwining operators and hidden hermiticity
Bagarello, Fabio
2011-01-01
We have recently proposed a strategy to produce, starting from a given hamiltonian $h_1$ and a certain operator $x$ for which $[h_1,xx^\\dagger]=0$ and $x^\\dagger x$ is invertible, a second hamiltonian $h_2$ with the same eigenvalues as $h_1$ and whose eigenvectors are related to those of $h_1$ by $x^\\dagger$. Here we extend this procedure to build up a second hamiltonian, whose eigenvalues are different from those of $h_1$, and whose eigenvectors are still related as before. This new procedure is also extended to crypto-hermitian hamiltonians.
Synchronous melanomas arising within nevus spilus*
de Brito, Maria Helena Toda Sanches; Dionísio, Cecília Silva Nunes de Moura; Fernandes, Cândida Margarida Branco Martins; Ferreira, Joana Cintia Monteiro; Rosa, Maria Joaninha Madalena de Palma Mendonça da Costa; Garcia, Maria Manuela Antunes Pecegueiro da Silva
2017-01-01
Nevus spilus is a melanocytic cutaneous lesion consisting of a light brown background macule with numerous superimposed darker maculopapular speckles. Melanoma arising from a nevus spilus is rare, with less than 40 cases reported to date. The absolute risk for malignant transformation is not well defined, lacking a standardized management approach. We report a new case of melanoma arising from nevus spilus, with the additional peculiarity of multifocality. We offer our recommendations for the management of the condition. PMID:28225967
Solutions of the Bohr Hamiltonian, a compendium
Fortunato, L.
2005-10-01
The Bohr Hamiltonian, also called collective Hamiltonian, is one of the cornerstones of nuclear physics and a wealth of solutions (analytic or approximated) of the associated eigenvalue equation have been proposed over more than half a century (confining ourselves to the quadrupole degree of freedom). Each particular solution is associated with a peculiar form for the V(β,γ) potential. The large number and the different details of the mathematical derivation of these solutions, as well as their increased and renewed importance for nuclear structure and spectroscopy, demand a thorough discussion. It is the aim of the present monograph to present in detail all the known solutions in γ-unstable and γ-stable cases, in a taxonomic and didactical way. In pursuing this task we especially stressed the mathematical side leaving the discussion of the physics to already published comprehensive material. The paper contains also a new approximate solution for the linear potential, and a new solution for prolate and oblate soft axial rotors, as well as some new formulae and comments. The quasi-dynamical SO(2) symmetry is proposed in connection with the labeling of bands in triaxial nuclei.
Historical Hamiltonian Dynamics: symplectic and covariant
Lachieze-Rey, M
2016-01-01
This paper presents a "historical" formalism for dynamical systems, in its Hamiltonian version (Lagrangian version was presented in a previous paper). It is universal, in the sense that it applies equally well to time dynamics and to field theories on space-time. It is based on the notion of (Hamiltonian) histories, which are sections of the (extended) phase space bundle. It is developed in the space of sections, in contradistinction with the usual formalism which works in the bundle manifold. In field theories, the formalism remains covariant and does not require a spitting of space-time. It considers space-time exactly in the same manner than time in usual dynamics, both being particular cases of the evolution domain. It applies without modification when the histories (the fields) are forms rather than scalar functions, like in electromagnetism or in tetrad general relativity. We develop a differential calculus in the infinite dimensional space of histories. It admits a (generalized) symplectic form which d...
Dirac Hamiltonian with superstrong Coulomb field
Voronov, B L; Tyutin, I V
2006-01-01
We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=137 based on the fact that the standard expression for energy eigenvalues yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is the nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamilt...
A Hamiltonian Five-Field Gyrofluid Model
Keramidas Charidakos, Ioannis; Waelbroeck, Francois; Morrison, Philip
2015-11-01
Reduced fluid models constitute versatile tools for the study of multi-scale phenomena. Examples include magnetic islands, edge localized modes, resonant magnetic perturbations, and fishbone and Alfven modes. Gyrofluid models improve over Braginskii-type models by accounting for the nonlocal response due to particle orbits. A desirable property for all models is that they not only have a conserved energy, but also that they be Hamiltonian in the ideal limit. Here, a Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of electron and ion densities, the parallel component of ion and electron velocities and ion temperature. Quasineutrality and Ampere's law determine respectively the electrostatic potential and magnetic flux. The Casimir invariants are presented, and shown to be associated to five Lagrangian invariants advected by distinct velocity fields. A linear, local study of the model is conducted both with and without Landau and diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic models. This work was funded by U.S. DOE Contract No. DE-FG02-04ER-54742.
New relativistic Hamiltonian: the angular magnetoelectric coupling
Paillard, Charles; Mondal, Ritwik; Berritta, Marco; Dkhil, Brahim; Singh, Surendra; Oppeneer, Peter M.; Bellaiche, Laurent
2016-10-01
Spin-Orbit Coupling (SOC) is a ubiquitous phenomenon in the spintronics area, as it plays a major role in allowing for enhancing many well-known phenomena, such as the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, the Rashba effect, etc. However, the usual expression of the SOC interaction ħ/4m2c2 [E×p] • σ (1) where p is the momentum operator, E the electric field, σ the vector of Pauli matrices, breaks the gauge invariance required by the electronic Hamiltonian. On the other hand, very recently, a new phenomenological interaction, coupling the angular momentum of light and magnetic moments, has been proposed based on symmetry arguments: ξ/2 [r × (E × B)] M, (2) with M the magnetization, r the position, and ξ the interaction strength constant. This interaction has been demonstrated to contribute and/or give rise, in a straightforward way, to various magnetoelectric phenomena,such as the anomalous Hall effect (AHE), the anisotropic magnetoresistance (AMR), the planar Hall effect and Rashba-like effects, or the spin-current model in multiferroics. This last model is known to be the origin of the cycloidal spin arrangement in bismuth ferrite for instance. However, the coupling of the angular momentum of light with magnetic moments lacked a fundamental theoretical basis. Starting from the Dirac equation, we derive a relativistic interaction Hamiltonian which linearly couples the angular momentum density of the electromagnetic (EM) field and the electrons spin. We name this coupling the Angular MagnetoElectric (AME) coupling. We show that in the limit of uniform magnetic field, the AME coupling yields an interaction exactly of the form of Eq. (2), thereby giving a firm theoretical basis to earlier works. The AME coupling can be expressed as: ξ [E × A] • σ (3) with A being the vector potential. Interestingly, the AME coupling was shown to be complementary to the traditional SOC, and together they restore the gauge invariance of the
Symmetry and reduction in implicit generalized Hamiltonian systems
Blankenstein, G.; Schaft, van der A.J.
2001-01-01
In this paper we study the notion of symmetry for implicit generalized Hamiltonian systems, which are Hamiltonian systems with respect to a generalized Dirac structure. We investigate the reduction of these systems admitting a symmetry Lie group with corresponding quantities. Main features in this a
Symmetry and Reduction in Implicit Generalized Hamiltonian Systems
Blankenstein, G.; Schaft, A.J. van der
2001-01-01
In this paper we study the notion of symmetry for implicit generalized Hamiltonian systems, which are Hamiltonian systems with respect to a generalized Dirac structure. We investigate the reduction of these systems admitting a symmetry Lie group with corresponding conserved quantities. Main features
Non-self-adjoint hamiltonians defined by Riesz bases
Bagarello, F., E-mail: fabio.bagarello@unipa.it [Dipartimento di Energia, Ingegneria dell' Informazione e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, I-90128 Palermo, Italy and INFN, Università di Torino, Torino (Italy); Inoue, A., E-mail: a-inoue@fukuoka-u.ac.jp [Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180 (Japan); Trapani, C., E-mail: camillo.trapani@unipa.it [Dipartimento di Matematica e Informatica, Università di Palermo, I-90123 Palermo (Italy)
2014-03-15
We discuss some features of non-self-adjoint Hamiltonians with real discrete simple spectrum under the assumption that the eigenvectors form a Riesz basis of Hilbert space. Among other things, we give conditions under which these Hamiltonians can be factorized in terms of generalized lowering and raising operators.
HAMILTONIAN DECOMPOSITION OF COMPLETE BIPARTITE r-HYPERGRAPHS
吉日木图; 王建方
2001-01-01
In [1] the concepts of paths and cycles of a hypergraph were introduced. In this paper, we give the concepts for bipartite hypergraph and Hamiltonian paths and cycles of a hypergraph,and prove that the complete bipartite 3-hypergraph with q vertices in each part is Hamiltonian decomposable where q is a prime.
A CLASS OF QUADRATIC HAMILTONIAN SYSTEMS UNDER QUADRATIC PERTURBATION
丰建文; 陈士华
2001-01-01
This paper deals with a class of quadratic Hamiltonian systems with quadratic perturbation. The authors prove that if the first order Melnikov function M1(h) = 0 and the second order Melnikov function M2(h) ≡ 0, then the origin of the Hamiltonian system with small perturbation is a center.
Integrability and Non-integrability of Hamiltonian Normal Forms
Verhulst, Ferdinand
2015-01-01
This paper summarizes the present state of integrability of Hamiltonian normal forms and it aims at characterizing non-integrable behaviour in higher-dimensional systems. Non-generic behaviour in Hamiltonian systems can be a sign of integrability, but it is not a conclusive indication. We will discu
A SUFFICIENT CONDITION FOR HAMILTONIAN CYCLES IN BIPARTITE TOURNAMENTS
无
2007-01-01
In this paper, we present a new sufficient condition on degrees for a bipartite tournament to be Hamiltonian, that is, if an n × n bipartite tournament T satisfies the condition W(n - 3), then T is Hamiltonian, except for four exceptional graphs. This result is shown to be best possible in a sense.
Bifurcations in Hamiltonian systems with a reflecting symmetry
Bosschaert, M.; Hanssmann, H.
2011-01-01
A reflecting symmetry q 7→ −q of a Hamiltonian system does not leave the symplectic structure dq∧dp invariant and is therefore usually asso- ciated with a reversible Hamiltonian system. However, if q 7→ −q leads to H 7→ −H, then the equations of motion are invariant under the re- flection. This impo
Quantum System Identification: Hamiltonian Estimation using Spectral and Bayesian Analysis
Schirmer, S G
2009-01-01
Identifying the Hamiltonian of a quantum system from experimental data is considered. General limits on the identifiability of model parameters with limited experimental resources are investigated, and a specific Bayesian estimation procedure is proposed and evaluated for a model system where a-priori information about the Hamiltonian's structure is available.
Port Hamiltonian Formulation of Infinite Dimensional Systems I. Modeling
Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio
2004-01-01
In this paper, some new results concerning the modeling of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-variable case.
Distributed port-Hamiltonian formulation of infinite dimensional systems
Macchelli, Alessandro; Schaft, van der Arjan J.; Melchiorri, Claudio
2004-01-01
In this paper, some new results concerning the modeling and control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-va
Distributed Port-Hamiltonian Formulation of Innite Dimensional Systems
Macchelli, Alessandro; Schaft, Arjan J. van der; Melchiorri, Claudio
2004-01-01
In this paper, some new results concerning the modeling and control of distributed parameter systems in port Hamiltonian form are presented. The classical finite dimensional port Hamiltonian formulation of a dynamical system is generalized in order to cope with the distributed parameter and multi-va
Port controlled Hamiltonian representation of distributed parameter systems
Maschke, B.M.; van der Schaft, Arjan
2000-01-01
A port controlled Hamiltonian formulation of the dynamics of distributed parameter systems is presented, which incorporates the energy flow through the boundary of the domain of the system, and which allows to represent the system as a boundary control Hamiltonian system. This port controlled
Port-Hamiltonian approach to deployment on a line
Vos, Ewoud; Scherpen, Jacquelien M.A.; van der Schaft, Abraham
2012-01-01
In this talk we present a port-Hamiltonian approach to the deployment on a line of a robotic sensor network (see e.g. [3] for related work). Using the port-Hamiltonian modelling framework has some clear benefits. Including physical interpretation of the model, insight in the system’s energy and
On the minimization of Hamiltonians over pure Gaussian states
Derezinski, Jan; Napiorkowski, Marcin; Solovej, Jan Philip
2013-01-01
A Hamiltonian defined as a polynomial in creation and annihilation operators is considered. After a minimization of its expectation value over pure Gaussian states, the Hamiltonian is Wick-ordered in creation and annihillation operators adapted to the minimizing state. It is shown...
Port-Hamiltonian approach to deployment on a line
Vos, Ewoud; Scherpen, Jacquelien M.A.; van der Schaft, Abraham
2012-01-01
In this talk we present a port-Hamiltonian approach to the deployment on a line of a robotic sensor network (see e.g. [3] for related work). Using the port-Hamiltonian modelling framework has some clear benefits. Including physical interpretation of the model, insight in the system’s energy and stru
The Group of Hamiltonian Automorphisms of a Star Product
La Fuente-Gravy, Laurent, E-mail: lfuente@ulg.ac.be [Université de Liège, Département de Mathématique (Belgium)
2016-09-15
We deform the group of Hamiltonian diffeomorphisms into a group of Hamiltonian automorphisms, Ham(M,∗), of a formal star product ∗ on a symplectic manifold (M,ω). We study the geometry of that group and deform the Flux morphism in the framework of deformation quantization.
A Quantum Algorithm for the Hamiltonian NAND Tree
Farhi, E; Gutmann, S
2007-01-01
We give a quantum algorithm for the NAND tree problem in the Hamiltonian oracle model. The algorithm uses a continuous time quantum walk with a run time proportional to sqrt(N)*sqrt(logN). We also show a lower bound of sqrt(N) for the NAND tree problem in the Hamiltonian oracle model.
Nonperturbative light-front Hamiltonian methods
Hiller, J R
2016-01-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli--Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, $\\phi^4$ theory, ordinary Yukawa theory, supersymmetric Yang--Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations...
Hamiltonian indices and rational spectral densities
Byrnes, C. I.; Duncan, T. E.
1980-01-01
Several (global) topological properties of various spaces of linear systems, particularly symmetric, lossless, and Hamiltonian systems, and multivariable spectral densities of fixed McMillan degree are announced. The study is motivated by a result asserting that on a connected but not simply connected manifold, it is not possible to find a vector field having a sink as its only critical point. In the scalar case, this is illustrated by showing that only on the space of McMillan degree = /Cauchy index/ = n, scalar transfer functions can one define a globally convergent vector field. This result holds both in discrete-time and for the nonautonomous case. With these motivations in mind, theorems of Bochner and Fogarty are used in showing that spaces of transfer functions defined by symmetry conditions are, in fact, smooth algebraic manifolds.
Fourier series expansion for nonlinear Hamiltonian oscillators.
Méndez, Vicenç; Sans, Cristina; Campos, Daniel; Llopis, Isaac
2010-06-01
The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator position as a function of time as well as the period-amplitude relationship. We compare our results with other recent approaches such as variational methods or heuristic approximations, in particular the Ren-He's method. Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown that the Fourier series expansion method is the most accurate.
Using Hamiltonian control to desynchronize Kuramoto oscillators
Gjata, Oltiana; Asllani, Malbor; Barletti, Luigi; Carletti, Timoteo
2017-02-01
Many coordination phenomena are based on a synchronization process, whose global behavior emerges from the interactions among the individual parts. Often in nature, such self-organized mechanism allows the system to behave as a whole and thus grounding its very first existence, or expected functioning, on such process. There are, however, cases where synchronization acts against the stability of the system; for instance in some neurodegenerative diseases or epilepsy or the famous case of Millennium Bridge where the crowd synchronization of the pedestrians seriously endangered the stability of the structure. In this paper we propose an innovative control method to tackle the synchronization process based on the application of the Hamiltonian control theory, by adding a small control term to the system we are able to impede the onset of the synchronization. We present our results on a generalized class of the paradigmatic Kuramoto model.
Hamiltonian description of composite fermions: Magnetoexciton dispersions
Murthy, Ganpathy
1999-11-01
A microscopic Hamiltonian theory of the FQHE, developed by Shankar and myself based on the fermionic Chern-Simons approach, has recently been quite successful in calculating gaps in fractional quantum hall states, and in predicting approximate scaling relations between the gaps of different fractions. I now apply this formalism towards computing magnetoexciton dispersions (including spin-flip dispersions) in the ν=13, 25, and 37 gapped fractions, and find approximate agreement with numerical results. I also analyze the evolution of these dispersions with increasing sample thickness, modelled by a potential soft at high momenta. New results are obtained for instabilities as a function of thickness for 25 and 37, and it is shown that the spin-polarized 25 state, in contrast to the spin-polarized 13 state, cannot be described as a simple quantum ferromagnet.
Weak Hamiltonian, CP Violation and Rare Decays
Buras, Andrzej J
1998-01-01
These lectures describe in detail the effective Hamiltonians for weak decays of mesons constructed by means of the operator product expansion and the renormalization group method. We calculate Wilson coeffcients of local operators, discuss mixing of operators under renormalization, the anomalous dimensions of operators and anomalous dimension matrices. We elaborate on the renormalzation scheme and renormalization scale dependences and their cancellations in physical amplitudes. In particular we discuss the issue of gamma-5 in D-dimensions and the role of evanescent operators in the calculation of two-loop anomalous dimensions. We present an explicit calculation of the 6 times 6 one-loop anomalous dimension matrix involving current-current and QCD-penguin operators and we give some hints how to properly calculate two-loop anomalous dimensions of these operators. In the phenonomenological part of these lectures we discuss in detail: CKM matrix, the unitarity triangle and its determination, two-body non-leptonic...
Nonperturbative light-front Hamiltonian methods
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
PLANE INFINITE ANALYTICAL ELEMENT AND HAMILTONIAN SYSTEM
孙雁; 周钢; 刘正兴
2003-01-01
It is not convenient to solve those engineering problems defined in an infinitefield by using FEM. An infinite area can be divided into a regular infinite external area anda finite internal area. The finite internal area was dealt with by the FEM and the regularinfinite external area was settled in a polar coordinate. All governing equations weretransformed into the Hamiltonian system. The methods of variable separation andeigenfunction expansion were used to derive the stiffness matrix of a new infinite analyticalelement. This new element, like a super finite element, can be combined with commonlyused finite elements. The proposed method was verified by numerical case studies. Theresults show that the preparation work is very simple, the infinite analytical element has ahigh precision, and it can be used conveniently. The method can also be easily extended to a three-dimensional problem.
Boundary Liouville Theory: Hamiltonian Description and Quantization
Harald Dorn
2007-01-01
Full Text Available The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in 2d Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr-Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator $e^varphi$ in terms of free field exponentials is constructed in the hyperbolic sector.
Entanglement Concentration with Quantum Non Demolition Hamiltonians
Tatham, Richard
2011-01-01
We devise and examine two procrustean entanglement concentration schemes using Quantum Non- Demolition (QND) interaction Hamiltonians in the continuous variable regime, applicable for light, for atomic ensembles or in a hybrid setting. We thus expand the standard entanglement distillation toolbox to the use of a much more general, versatile and experimentally feasible interaction class. The first protocol uses Gaussian ancillary modes and a non-Gaussian post-measurement, the second a non-Gaussian ancillary mode and a Gaussian post-measurement. We explicitly calculate the density matrix elements of the non-Gaussian mixed states resulting from these protocols using an elegant Wigner-function based method in a numerically efficient manner. We then quantify the entanglement increase calculating the Logarithmic Negativity of the output state and discuss and compare the performance of the protocols.
Mixing properties of stochastic quantum Hamiltonians
Onorati, E; Kliesch, M; Brown, W; Werner, A H; Eisert, J
2016-01-01
Random quantum processes play a central role both in the study of fundamental mixing processes in quantum mechanics related to equilibration, thermalisation and fast scrambling by black holes, as well as in quantum process design and quantum information theory. In this work, we present a framework describing the mixing properties of continuous-time unitary evolutions originating from local Hamiltonians having time-fluctuating terms, reflecting a Brownian motion on the unitary group. The induced stochastic time evolution is shown to converge to a unitary design. As a first main result, we present bounds to the mixing time. By developing tools in representation theory, we analytically derive an expression for a local k-th moment operator that is entirely independent of k, giving rise to approximate unitary k-designs and quantum tensor product expanders. As a second main result, we introduce tools for proving bounds on the rate of decoupling from an environment with random quantum processes. By tying the mathema...
Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation
Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar
2016-06-15
We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators are useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.
Action and Index Spectra and Periodic Orbits in Hamiltonian Dynamics
Ginzburg, Viktor L
2008-01-01
The main theme of this paper is the connection between the existence of infinitely many periodic orbits for a Hamiltonian system and the behavior of its action or index spectrum under iterations. We use the action and index spectra to show that any Hamiltonian diffeomorphism of a closed, rational manifold with zero first Chern class has infinitely many periodic orbits and that, for a general rational manifold, the number of geometrically distinct periodic orbits is bounded from below by the ratio of the minimal Chern number and half of the dimension. These generalizations of the Conley conjecture follow from another result proved here asserting that a Hamiltonian diffeomorphism with a symplectically degenerate maximum on a closed rational manifold has infinitely many periodic orbits. We also show that for a broad class of manifolds and/or Hamiltonian diffeomorphisms the minimal action--index gap remains bounded for some infinite sequence of iterations and, as a consequence, whenever a Hamiltonian diffeomorphi...
Remarks on the Lagrangian representation of bi-Hamiltonian equations
Pavlov, M. V.; Vitolo, R. F.
2017-03-01
The Lagrangian representation of multi-Hamiltonian PDEs has been introduced by Y. Nutku and one of us (MVP). In this paper we focus on systems which are (at least) bi-Hamiltonian by a pair A1, A2, where A1 is a hydrodynamic-type Hamiltonian operator. We prove that finding the Lagrangian representation is equivalent to finding a generalized vector field τ such that A2 =LτA1. We use this result in order to find the Lagrangian representation when A2 is a homogeneous third-order Hamiltonian operator, although the method that we use can be applied to any other homogeneous Hamiltonian operator. As an example we provide the Lagrangian representation of a WDVV hydrodynamic-type system in 3 components.
Lagrangian and Hamiltonian Geometries. Applications to Analytical Mechanics
Miron, Radu
2012-01-01
The aim of the present text is twofold: to provide a compendium of Lagrangian and Hamiltonian geometries and to introduce and investigate new analytical Mechanics: Finslerian, Lagrangian and Hamiltonian. The fundamental equations (or evolution equations) of these Mechanics are derived from the variational calculus applied to the integral of action and these can be studied by using the methods of Lagrangian or Hamiltonian geometries. More general, the notions of higher order Lagrange or Hamilton spaces have been introduced and developed by the present author. The applications led to the notions of Lagrangian or Hamiltonian Analytical Mechanics of higher order. For short, in this text we aim to solve some difficult problems: The problem of geometrization of classical non conservative mechanical systems; The foundations of geometrical theory of new mechanics: Finslerian, Lagrangian and Hamiltonian;To determine the evolution equations of the classical mechanical systems for whose external forces depend on the hig...
Asymptotic freedom in the Hamiltonian approach to binding of color
Gómez-Rocha María
2017-01-01
Full Text Available We derive asymptotic freedom and the SU(3 Yang-Mills β-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size s is introduced. Effective particles in the Fock space build eigenstates of the effective Hamiltonian Hs, which is a matrix written in a basis that depend on the scale (or size parameter s. The effective Hamiltonians Hs and the (regularized canonical Hamiltonian H0 are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.
Asymptotic freedom in the Hamiltonian approach to binding of color
Gómez-Rocha, María
2016-01-01
We derive asymptotic freedom and the $SU(3)$ Yang-Mills $\\beta$-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size $s$ is introduced. Effective particles in the Fock space build eigenstates of the effective Hamiltonian $H_s$, which is a matrix written in a basis that depend on the scale (or size) parameter $s$. The effective Hamiltonians $H_s$ and the (regularized) canonical Hamiltonian $H_{0}$ are related by a similarity transformation. We calculate the effective Hamiltonian by solving its renormalization-group equation perturbatively up to third order and calculate the running coupling from the three-gluon-vertex function in the effective Hamiltonian operator.
Cutaneous osteosarcoma arising from a burn scar
Lee, Min A.; Yi, Jaehyuck [Kyungpook National University, Department of Radiology, College of Medicine, Daegu (Korea, Republic of); Kyungpook National University Hospital, Department of Radiology, Daegu (Korea, Republic of); Chae, Jong Min [Kyungpook National University, Department of Pathology, College of Medicine, Daegu (Korea, Republic of)
2017-04-15
Tumors that develop in old burn scars are usually squamous cell carcinomas. Sarcomas have also been reported, albeit rarely. To our knowledge, there has been only one case report of an extraskeletal osteosarcoma arising in a prior burn scar reported in the English-language literature, mainly discussing the clinicopathological features. Herein, we present a case of cutaneous osteosarcoma visualized as a mineralized soft-tissue mass arising from the scar associated with a previous skin burn over the back. This seems to be the first report describing the imaging features of a cutaneous osteosarcoma from an old burn scar. (orig.)
Wu-hwan Jong
2013-11-01
Full Text Available We proved a parameterized KAM theorem in Hamiltonian system which has differentiable Hamiltonian without action-angle coordinates. It is a generalization of the result of [20] that deals with real analytic Hamiltonians.
Quantum control by means of hamiltonian structure manipulation.
Donovan, A; Beltrani, V; Rabitz, H
2011-04-28
A traditional quantum optimal control experiment begins with a specific physical system and seeks an optimal time-dependent field to steer the evolution towards a target observable value. In a more general framework, the Hamiltonian structure may also be manipulated when the material or molecular 'stockroom' is accessible as a part of the controls. The current work takes a step in this direction by considering the converse of the normal perspective to now start with a specific fixed field and employ the system's time-independent Hamiltonian structure as the control to identify an optimal form. The Hamiltonian structure control variables are taken as the system energies and transition dipole matrix elements. An analysis is presented of the Hamiltonian structure control landscape, defined by the observable as a function of the Hamiltonian structure. A proof of system controllability is provided, showing the existence of a Hamiltonian structure that yields an arbitrary unitary transformation when working with virtually any field. The landscape analysis shows that there are no suboptimal traps (i.e., local extrema) for controllable quantum systems when unconstrained structural controls are utilized to optimize a state-to-state transition probability. This analysis is corroborated by numerical simulations on model multilevel systems. The search effort to reach the top of the Hamiltonian structure landscape is found to be nearly invariant to system dimension. A control mechanism analysis is performed, showing a wide variety of behavior for different systems at the top of the Hamiltonian structure landscape. It is also shown that reducing the number of available Hamiltonian structure controls, thus constraining the system, does not always prevent reaching the landscape top. The results from this work lay a foundation for considering the laboratory implementation of optimal Hamiltonian structure manipulation for seeking the best control performance, especially with limited
Optimization of quantum Hamiltonian evolution: From two projection operators to local Hamiltonians
Patel, Apoorva; Priyadarsini, Anjani
Given a quantum Hamiltonian and its evolution time, the corresponding unitary evolution operator can be constructed in many different ways, corresponding to different trajectories between the desired end-points and different series expansions. A choice among these possibilities can then be made to obtain the best computational complexity and control over errors. It is shown how a construction based on Grover's algorithm scales linearly in time and logarithmically in the error bound, and is exponentially superior in error complexity to the scheme based on the straightforward application of the Lie-Trotter formula. The strategy is then extended first to simulation of any Hamiltonian that is a linear combination of two projection operators, and then to any local efficiently computable Hamiltonian. The key feature is to construct an evolution in terms of the largest possible steps instead of taking small time steps. Reflection operations and Chebyshev expansions are used to efficiently control the total error on the overall evolution, without worrying about discretization errors for individual steps. We also use a digital implementation of quantum states that makes linear algebra operations rather simple to perform.
ARISE: American renaissance in science education
NONE
1998-09-14
The national standards and state derivatives must be reinforced by models of curricular reform. In this paper, ARISE presents one model based on a set of principles--coherence, integration of the sciences, movement from concrete ideas to abstract ones, inquiry, connection and application, sequencing that is responsive to how people learn.
Technology arising from High-Energy Physics
1974-01-01
An exibition was held as a part of the Meeting on Technology arising from High- Energy Physics (24-26 April 1974). The Proceedings (including a list of stands) were published as Yellow Report, CERN 74-9, vol. 1-2.
Electroweak constraints on flavorful effective theories
Efrati, Aielet; Soreq, Yotam
2015-01-01
We derive model-independent constraints arising from the Z and W boson observables on dimension six operators in the effective theory beyond the Standard Model. In particular, we discuss the generic flavor structure for these operators as well as several flavor patterns motivated by simple new physics scenarios.
Electroweak constraints on flavorful effective theories
Efrati, Aielet; Falkowski, Adam; Soreq, Yotam
2015-07-01
We derive model-independent constraints arising from the Z and W boson observables on dimension six operators in the effective theory beyond the Standard Model. In particular, we discuss the generic flavor structure for these operators as well as several flavor patterns motivated by simple new physics scenarios.
An effective Hamiltonian approach to quantum random walk
Sarkar, Debajyoti; Paul, Niladri; Bhattacharya, Kaushik; Ghosh, Tarun Kanti
2017-03-01
In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltonians are generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, Sci. Rep. 3, 2829 (18)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.
On the genesis of Post constraint in modern electromagnetism
Lakhtakia, Akhlesh
2004-01-01
The genesis of the Post constraint is premised on two attributes of modern electromagnetism: (i) its microscopic nature, and (ii) the status of e and b as the primitive electromagnetic fields. This constraint can therefore not arise in EH--electromagnetism, wherein the primitive electromagnetic fields are the macroscopic fields E and H.
Shestakova, Tatyana P.
2015-01-01
Among theoretical issues in General Relativity the problem of constructing its Hamiltonian formulation is still of interest. The most of attempts to quantize Gravity are based upon Dirac generalization of Hamiltonian dynamics for system with constraints. At the same time there exists another way to formulate Hamiltonian dynamics for constrained systems guided by the idea of extended phase space. We have already considered some features of this approach in the previous MG12 Meeting by the example of a simple isotropic model. Now we apply the approach to a generalized spherically symmetric model which imitates the structure of General Relativity much better. In particular, making use of a global BRST symmetry and the Noether theorem, we construct the BRST charge that generates correct gauge transformations for all gravitational degrees of freedom.
Shestakova, T P
2013-01-01
Among theoretical issues in General Relativity the problem of constructing its Hamiltonian formulation is still of interest. The most of attempts to quantize Gravity are based upon Dirac generalization of Hamiltonian dynamics for system with constraints. At the same time there exists another way to formulate Hamiltonian dynamics for constrained systems guided by the idea of extended phase space. We have already considered some features of this approach in the previous MG12 Meeting by the example of a simple isotropic model. Now we apply the approach to a generalized spherically symmetric model which imitates the structure of General Relativity much better. In particular, making use of a global BRST symmetry and the Noether theorem, we construct the BRST charge that generates correct gauge transformations for all gravitational degrees of freedom.
A Compendium of Chameleon Constraints
Burrage, Clare
2016-01-01
The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in $f(R)$ theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.
A compendium of chameleon constraints
Burrage, Clare; Sakstein, Jeremy
2016-11-01
The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in f(R) theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.
Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces
Jacob, Birgit
2012-01-01
This book provides a self-contained introduction to the theory of infinite-dimensional systems theory and its applications to port-Hamiltonian systems. The textbook starts with elementary known results, then progresses smoothly to advanced topics in current research. Many physical systems can be formulated using a Hamiltonian framework, leading to models described by ordinary or partial differential equations. For the purpose of control and for the interconnection of two or more Hamiltonian systems it is essential to take into account this interaction with the environment. This book is the fir
On the minimization of Hamiltonians over pure Gaussian states
Derezinski, Jan; Napiorkowski, Marcin; Solovej, Jan Philip
2013-01-01
A Hamiltonian defined as a polynomial in creation and annihilation operators is considered. After a minimization of its expectation value over pure Gaussian states, the Hamiltonian is Wick-ordered in creation and annihillation operators adapted to the minimizing state. It is shown...... that this procedure eliminates from the Hamiltonian terms of degree 1 and 2 that do not preserve the particle number, and leaves only terms that can be interpreted as quasiparticles excitations. We propose to call this fact Beliaev's Theorem, since to our knowledge it was mentioned for the first time in a paper...
A KAM-type Theorem for Generalized Hamiltonian Systems
LIU BAI-FENG; ZHU WEN-ZHUANG; XU LE-SHUN; Li Yong
2009-01-01
In this paper we mainly concern the persistence of lower-dimensional invariant tori in generalized Hamiltonian systems. Here the generalized Hamiltonian systems refer to the systems which may admit a distinct number of action and angle variables. In particular, system under consideration can be odd dimensional. Under the Riissmann type non-degenerate condition, we proved that the majority of the lower-dimension invariant tori of the integrable systems in generalized Hamiltonian system are persistent under small perturbation. The surviving lower-dimensionai tori might be elliptic, hyperbolic, or of mixed type.
A cohomological obstruction for global quasi-bi-Hamiltonian fields
Rakotondralambo, Joseph, E-mail: joseph.rakotondralambo@unimes.f [Departement de Mathematiques et Informatique, Faculte des Sciences, Universite d' Antananarivo (Madagascar)
2011-02-14
We introduce the notion of integrating factor for a 1-form which is an inner product of a vector fields and a 2-form, and the notion of weakly bi-Hamiltonian field also, which is locally quasi-bi-Hamiltonian. A cohomological class in some first cohomology space is associated to such vector fields when this is weakly bi-Hamiltonian and defined relatively to the above 1-form. This class is a cohomological obstruction to the existence of a global integrating factor for the 1-form.
An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator
Masterov, Ivan
2015-01-01
Ostrogradsky's method allows one to construct Hamiltonian formulation for a higher derivative system. An application of this approach to the Pais-Uhlenbeck oscillator yields the Hamiltonian which is unbounded from below. This leads to the ghost problem in quantum theory. In order to avoid this nasty feature, the technique previously developed in [Acta Phys. Polon. B 36 (2005) 2115] is used to construct an alternative Hamiltonian formulation for the multidimensional Pais-Uhlenbeck oscillator of arbitrary even order with distinct frequencies of oscillation. This construction is also generalized to the case of an N=2 supersymmetric Pais-Uhlenbeck oscillator.
An alternative Hamiltonian formulation for the Pais-Uhlenbeck oscillator
Masterov, Ivan
2016-01-01
Ostrogradsky's method allows one to construct Hamiltonian formulation for a higher derivative system. An application of this approach to the Pais-Uhlenbeck oscillator yields the Hamiltonian which is unbounded from below. This leads to the ghost problem in quantum theory. In order to avoid this nasty feature, the technique previously developed in [7] is used to construct an alternative Hamiltonian formulation for the multidimensional Pais-Uhlenbeck oscillator of arbitrary even order with distinct frequencies of oscillation. This construction is also generalized to the case of an N = 2 supersymmetric Pais-Uhlenbeck oscillator.
Hamiltonian dynamics of several rigid bodies interacting with point vortices
Weissmann, Steffen
2013-01-01
We introduce a Hamiltonian description for the dynamics of several rigid bodies interacting with point vortices in an inviscid, incompressible fluid. We adopt the idea of Vankerschaver et al. (2009) to derive the Hamiltonian formulation via symplectic reduction of a canonical Hamiltonian system on a principle fibre bundle. On the reduced phase space we determine the magnetic symplectic form directly, without resorting to the machinery of mechanical connections on principle fibre bundles. We derive the equations of motion for the general case, and also for the special Lie-Poisson case of a single rigid body and zero total vorticity. Finally we give a partly degenerate Lagrangian formulation for the system.
Diagonal representation for a generic matrix valued quantum Hamiltonian
Gosselin, Pierre [Universite Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF UFR de Mathematiques, BP74, Saint Martin d' Heres Cedex (France); Mohrbach, Herve [Universite Paul Verlaine-Metz, Laboratoire de Physique Moleculaire et des Collisions, ICPMB-FR CNRS 2843, Metz Cedex 3 (France)
2009-12-15
A general method to derive the diagonal representation for a generic matrix valued quantum Hamiltonian is proposed. In this approach new mathematical objects like non-commuting operators evolving with the Planck constant promoted as a running variable are introduced. This method leads to a formal compact expression for the diagonal Hamiltonian which can be expanded in a power series of the Planck constant. In particular, we provide an explicit expression for the diagonal representation of a generic Hamiltonian to the second order in the Planck constant. This result is applied, as a physical illustration, to Dirac electrons and neutrinos in external fields. (orig.)
Robust H∞ Control of Hamiltonian System with Uncertainty
薛安成; 梅生伟; 胡伟; 周原
2003-01-01
This paper investigates the robust H∞ problem for a class of generalized forced Hamiltonian systems with uncertainties. The robust L2-gain was proved for the Hamiltonian with a sufficient condition for stable control of multimachine power systems expressed as a matrix algebraic inequality. A similar sufficient condition was then extended to the robust H∞ control of Hamiltonian systems to construct the state feedback H∞ control law. A numerical example is given to verify the validity of the proposed control scheme, which shows the effectiveness and promising application of the method.
Covariant Hamiltonian for the electromagnetic two-body problem
De Luca, Jayme
2005-09-01
We give a Hamiltonian formalism for the delay equations of motion of the electromagnetic two-body problem with arbitrary masses and with either repulsive or attractive interaction. This dynamical system based on action-at-a-distance electrodynamics appeared 100 years ago and it was popularized in the 1940s by the Wheeler and Feynman program to quantize it as a means to overcome the divergencies of perturbative QED. Our finite-dimensional implicit Hamiltonian is closed and involves no series expansions. As an application, the Hamiltonian formalism is used to construct a semiclassical canonical quantization based on the numerical trajectories of the attractive problem.
Entangling capacities of noisy non-local Hamiltonians
Bandyopadhyay, S; Bandyopadhyay, Somshubhro; Lidar, Daniel A.
2003-01-01
We show that intrinsic Gaussian fluctuations in system control parameters impose limits on the ability of non-local (exchange) Hamiltonians to generate entanglement in the presence of mixed initial states. We find three equivalence classes. For the Ising and XYZ models there are qualitatively distinct sharp entanglement-generation transitions, while the class of Heisenberg, XY, and XXZ Hamiltonians is capable of generating entanglement for any finite noise level. Our findings imply that exchange Hamiltonians are surprisingly robust in their ability to generate entanglement in the presence of noise, thus potentially reducing the need for quantum error correction.
Ameloblastic Fibrosarcoma Arising in the Maxilla.
Pillay, Rachael R; Bilski, Arthur; Batstone, Martin
2016-01-01
Ameloblastic fibrosarcoma (AFS) is a rare odontogenic neoplasm of the jaw that usually arises de novo or through a malignant change in the mesenchymal component of a preexisting or recurrent benign fibroma. The majority of AFS cases reported in the literature arise in the mandible. A 35-year-old male presented with an asymptomatic left maxillary mass that on imaging was found to be effacing most of his maxillary sinus. He underwent a left maxillectomy with free-flap reconstruction and adjuvant radiotherapy to the tumor bed. Wide local excision remains the treatment of choice for AFS, given the poor survival rates of patients with recurrent disease. However, long-term studies and follow-up are needed to elucidate the role of adjuvant therapies in the primary treatment of AFS.
Sclerosing haemangioma arising within extralobar pulmonary sequestration
Ahmetoglu, Ali; Kosucu, Polat; Guemele, Halit Resit [Department of Radiology, Farabi Hospital, Karadeniz Technical University, 61080 Trabzon (Turkey); Imamoglu, Mustafa; Cay, Ali [Department of Paediatric Surgery, Farabi Hospital, Karadeniz Technical University, Trabzon (Turkey); Reis, Abdulkadir [Department of Pathology, Farabi Hospital, Karadeniz Technical University, Trabzon (Turkey)
2003-09-01
Extralobar pulmonary sequestration is a rare anomaly of abnormal pulmonary tissue without any communication to the bronchial tree. Sclerosing haemangioma is a rare lung tumour, generally seen in middle-aged women. The combination of these two rare pathologies has not been previously reported. We describe the CT and CT angiographic findings of sclerosing haemangioma arising within an extralobar pulmonary sequestration in a 2-year-old girl. (orig.)
Conjunctival lymphoma arising from reactive lymphoid hyperplasia
Fukuhara Junichi
2012-09-01
Full Text Available Abstract Extra nodal marginal zone B-cell lymphoma (EMZL of the conjunctiva typically arises in the marginal zone of mucosa-associated lymphoid tissue. The pathogenesis of conjunctival EMZL remains unknown. We describe an unusual case of EMZL arising from reactive lymphoid hyperplasia (RLH of the conjunctiva. A 35-year-old woman had fleshy salmon-pink conjunctival tumors in both eyes, oculus uterque (OU. Specimens from conjunctival tumors in the right eye, oculus dexter (OD, revealed a collection of small lymphoid cells in the stroma. Immunohistochemically, immunoglobulin (Ig light chain restriction was not detected. In contrast, diffuse atypical lymphoid cell infiltration was noted in the left eye, oculus sinister (OS, and positive for CD20, a marker for B cells OS. The tumors were histologically diagnosed as RLH OD, and EMZL OS. PCR analysis detected IgH gene rearrangement in the joining region (JH region OU. After 11 months, a re-biopsy specimen demonstrated EMZL based on compatible pathological and genetic findings OD, arising from RLH. This case suggests that even if the diagnosis of the conjunctival lymphoproliferative lesions is histologically benign, confirmation of the B-cell clonality by checking IgH gene rearrangement should be useful to predict the incidence of malignancy.
Time-dependent constrained Hamiltonian systems and Dirac brackets
Leon, Manuel de [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Marrero, Juan C. [Departamento de Matematica Fundamental, Facultad de Matematicas, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands (Spain); Martin de Diego, David [Departamento de Economia Aplicada Cuantitativa, Facultad de Ciencias Economicas y Empresariales, UNED, Madrid (Spain)
1996-11-07
In this paper the canonical Dirac formalism for time-dependent constrained Hamiltonian systems is globalized. A time-dependent Dirac bracket which reduces to the usual one for time-independent systems is introduced. (author)
INTEGRABLE COUPLINGS OF THE TB HIERARCHY AND ITS HAMILTONIAN STRUCTURE
无
2008-01-01
In this paper,we obtain integrable couplings of the TB hierarchy using the new subalgebra of the loop algebra A_3.Then the Hamiltonian structure of the above system is given by the quadratic-form identity.
Periodic equatorial water flows from a Hamiltonian perspective
Ionescu-Kruse, Delia; Martin, Calin Iulian
2017-04-01
The main result of this paper is a Hamiltonian formulation of the nonlinear governing equations for geophysical periodic stratified water flows in the equatorial f-plane approximation allowing for piecewise constant vorticity.
Rotationally Invariant Hamiltonians for Nuclear Spectra Based on Quantum Algebras
Bonatsos, D; Raychev, P P; Terziev, P A; Bonatsos, Dennis
2002-01-01
The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational nuclear spectra is explicitly proved and a connection of this Hamiltonian to the formalisms of Amal'sky and Harris is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITO) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced, and its connection to the Harris formalism is established. Numerical tests in a series of Th isotopes are provided.
ORDERED ANALYTIC REPRESENTATION OF PDES BY HAMILTONIAN CANONICAL SYSTEM
ZhengYu; ChenYong
2002-01-01
Based on the method of symplectic geometry and variational calculation,the method for some PDEs to be ordered and analytically represented by Hamiltonian canonical system is discussed. Meanwhile some related necessary and sufficient conditions are obtained.
Spin filtering on a ring with Rashba hamiltonian
Harmer, M.
2007-01-01
We consider a quantum graph consisting of a ring with Rashba hamiltonian and an arbitrary number of semi-infinite wires attached. We describe the scattering matrix for this system and investigate spin filtering for a three terminal device.
Lie transform Hamiltonian perturbation theory for limit cycle systems
Shah, Tirth; Chakraborty, Sagar
2016-01-01
Usage of a Hamiltonian perturbation theory for nonconservative system is counterintuitive and in general, a technical impossibility by definition. However, the dual (time independent) Hamiltonian formalism for nonconservative systems have opened the door for using various Hamiltonian (and hence, Lagrangian) perturbation theories for investigating the dynamics of such systems. Following the recent extension of the canonical perturbation theory that brings Li\\'enard systems possessing limit cycles under its scope, here we show that the Lie transform Hamiltonian perturbation theory can also be generalized to find perturbative solutions for similar systems. The Lie transform perturbation theories are comparatively easier while seeking higher order corrections in the perturbative series for the solutions and they are also numerically implementable using any symbolic algebra package. For the sake of concreteness, we have illustrated the methodology using the important example of the van der Pol oscillator. While th...
Construction of Lagrangians and Hamiltonians from the Equation of Motion
Yan, C. C.
1978-01-01
Demonstrates that infinitely many Lagrangians and Hamiltonians can be constructed from a given equation of motion. Points out the lack of an established criterion for making a proper selection. (Author/GA)
Hamiltonian Formalism of the Derivative Nonlinear Schrodinger Equation
CAI Hao; LIU Feng-Min; HUANG Nian-Ning
2003-01-01
A particular form of poisson bracket is introduced for the derivative nonlinear Schrodinger (DNLS) equation.And its Hamiltonian formalism is developed by a linear combination method. Action-angle variables are found.
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-01-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest. PMID:28198471
Existence of solutions to fractional Hamiltonian systems with combined nonlinearities
Ziheng Zhang
2016-01-01
Full Text Available This article concerns the existence of solutions for the fractional Hamiltonian system $$\\displaylines{ - _tD^{\\alpha}_{\\infty}\\big(_{-\\infty}D^{\\alpha}_{t}u(t\\big -L(tu(t+\
Machine-learned approximations to Density Functional Theory Hamiltonians
Hegde, Ganesh; Bowen, R. Chris
2017-02-01
Large scale Density Functional Theory (DFT) based electronic structure calculations are highly time consuming and scale poorly with system size. While semi-empirical approximations to DFT result in a reduction in computational time versus ab initio DFT, creating such approximations involves significant manual intervention and is highly inefficient for high-throughput electronic structure screening calculations. In this letter, we propose the use of machine-learning for prediction of DFT Hamiltonians. Using suitable representations of atomic neighborhoods and Kernel Ridge Regression, we show that an accurate and transferable prediction of DFT Hamiltonians for a variety of material environments can be achieved. Electronic structure properties such as ballistic transmission and band structure computed using predicted Hamiltonians compare accurately with their DFT counterparts. The method is independent of the specifics of the DFT basis or material system used and can easily be automated and scaled for predicting Hamiltonians of any material system of interest.
On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes
Cao Jianxiang
2016-11-01
Full Text Available The balanced hypercube BHn, defined by Wu and Huang, is a variant of the hypercube network Qn, and has been proved to have better properties than Qn with the same number of links and processors. For a bipartite graph G = (V0 ∪ V1,E, we say G is edge-hyper-Hamiltonian laceable if it is Hamiltonian laceable, and for any vertex v ∈ Vi, i ∈ {0, 1}, any edge e ∈ E(G − v, there is a Hamiltonian path containing e in G − v between any two vertices of V1−i. In this paper, we prove that BHn is edge-hy per- Hamiltonian laceable.
Spin filtering on a ring with Rashba hamiltonian
Harmer, M
2006-01-01
We consider a quantum graph consisting of a ring with Rashba hamiltonian and an arbitrary number of semi-infinite wires attached. We describe the scattering matrix for this system and investigate spin filtering for a three terminal device.
Matrix factorization method for the Hamiltonian structure of integrable systems
S Ghosh; B Talukdar; S Chakraborti
2003-07-01
We demonstrate that the process of matrix factorization provides a systematic mathematical method to investigate the Hamiltonian structure of non-linear evolution equations characterized by hereditary operators with Nijenhuis property.
Cliffordized NAC supersymmetry and PT-symmetric Hamiltonians
Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: toppan@cbpf.br
2007-07-01
It is shown that non-anti commutative supersymmetry can be described through a Cliffordization of the superspace fermionic coordinates. A NAC supersymmetric quantum mechanical model is shown to be a PT-symmetric Hamiltonian. (author)
Finding room for antilinear terms in the Hamiltonian
Eisele, Michael
2012-01-01
Although the Hamiltonian in quantum physics has to be a linear operator, it is possible to make quantum systems behave as if their Hamiltonians contained antilinear (i.e., semilinear or conjugate-linear) terms. For any given quantum system, another system can be constructed that is physically equivalent to the original one. It can be designed, despite the Wightman reconstruction theorem, so that antilinear operators in the original system become linear operators in the new system. Under certain conditions, these operators can then be added to the new Hamiltonian. The new quantum system has some unconventional features, a hidden degeneracy of the vacuum and a subtle distinction between the Hamiltonian and the observable of energy, but the physical equivalence guarantees that its states evolve like those in the original system and that corresponding measurements produce the same results. The same construction can be used to make time-reversal linear.
Twisted Hamiltonian Lie Algebras and Their Multiplicity-Free Representations
Ling CHEN
2011-01-01
We construct a class of new Lie algebras by generalizing the one-variable Lie algebras generated by the quadratic conformal algebras (or corresponding Hamiltonian operators) associated with Poisson algebras and a quasi-derivation found by Xu. These algebras can be viewed as certain twists of Xu's generalized Hamiltonian Lie algebras. The simplicity of these algebras is completely determined. Moreover, we construct a family of multiplicity-free representations of these Lie algebras and prove their irreducibility.
Mei Symmetry and Lie Symmetry of Relativistic Hamiltonian System
FANG Jian-Hui; YAN Xiang-Hong; LI Hong; CHEN Pei-Sheng
2004-01-01
The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained.An example is given to illustrate the application of the result.
Elementary Quantum Gates Based on Intrinsic Interaction Hamiltonian
CHEN Jing; YU Chang-Shui; SONG He-Shan
2006-01-01
A kind of new operators, the generalized pseudo-spin operators are introduced and a universal intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental quantum gate U(θ) is constructed based on the universal Hamiltonian and shown that the roles of the new quantum gate U(θ) is equivalent, functionally, to the joint operation of Hadamard and C-Not gates.
Hamiltonian replica-exchange in GROMACS: a flexible implementation
Bussi, Giovanni
2013-01-01
A simple and general implementation of Hamiltonian replica exchange for the popular molecular-dynamics software GROMACS is presented. In this implementation, arbitrarily different Hamiltonians can be used for the different replicas without incurring in any significant performance penalty. The implementation was validated on a simple toy model - alanine dipeptide in water - and applied to study the rearrangement of an RNA tetraloop, where it was used to compare recently proposed force-field co...
Noncanonical Hamiltonian density formulation of hydrodynamics and ideal MHD
Morrison, P.J.; Greene, J.M.
1980-04-01
A new Hamiltonian density formulation of a perfect fluid with or without a magnetic field is presented. Contrary to previous work the dynamical variables are the physical variables, rho, v, B, and s, which form a noncanonical set. A Poisson bracket which satisfies the Jacobi identity is defined. This formulation is transformed to a Hamiltonian system where the dynamical variables are the spatial Fourier coefficients of the fluid variables.
Applications of geometrical criteria for transition to Hamiltonian chaos.
Ben Zion, Yossi; Horwitz, Lawrence
2008-09-01
Using a recently developed geometrical method, we study the transition from order to chaos in an important class of Hamiltonian systems. We show agreement between this geometrical method and the surface of section technique applied to detect chaotic behavior. We give, as a particular illustration, detailed results for an important class of potentials obtained from the perturbation of an oscillator Hamiltonian by means of higher-order polynomials.
Applications of Noether conservation theorem to Hamiltonian systems
Mouchet, Amaury
2016-09-01
The Noether theorem connecting symmetries and conservation laws can be applied directly in a Hamiltonian framework without using any intermediate Lagrangian formulation. This requires a careful discussion about the invariance of the boundary conditions under a canonical transformation and this paper proposes to address this issue. Then, the unified treatment of Hamiltonian systems offered by Noether's approach is illustrated on several examples, including classical field theory and quantum dynamics.
Applications of Noether conservation theorem to Hamiltonian systems
Mouchet, Amaury
2016-01-01
The Noether theorem connecting symmetries and conservation laws can be applied directly in a Hamiltonian framework without using any intermediate Lagrangian formulation. This requires a careful discussion about the invariance of the boundary conditions under a canonical transformation and this paper proposes to address this issue. Then, the unified treatment of Hamiltonian systems offered by Noether's approach is illustrated on several examples, including classical field theory and quantum dynamics.
The Existence of Homoclinic Solutions for Second Order Hamiltonian System
Jie Gao
2011-10-01
Full Text Available The research of homoclinic orbits for Hamiltonian system is a classical problem, it has valuable applications in celestial mechanics, plasma physis, and biological engineering. For example, homoclinic orbits rupture can yield chaos lead to more complex dynamics behaviour. This paper studies the existence of homoclinic solutions for a class of second order Hamiltonian system, we will prove this system exists at least one nontrivial homoclinic solution.
Entangled State Representation for Hamiltonian Operator of Quantum Pendulum
FANHong-Yi
2003-01-01
By virtue of the Einstein-Podolsky-Rosen entangled state, which is the common eigenvector of two panicles' relative coordinate and total momentum, we establish the bosonic operator version of the Hamiltonian for a quantum point-mass pendulum. The Hamiltonian displays the correct Schroedlnger equation in the entangled state representation.The corresponding Heisenberg operator equations which predict the angular momentum-angle uncertainty relation are derived. The quantum operator description of two quantum pendulums coupled by a spring is also derived.
Entangled State Representation for Hamiltonian Operator of Quantum Pendulum
FAN Hong-Yi
2003-01-01
By virtue of the Einstein-Podolsky-Rosen entangled state, which is the common eigenvector of two particles'relativecoordinate and total momentum, we establish the bosonic operator version of the Hamiltonian for a quantumpoint-mass pendulum. The Hamiltonian displays the correct Schrodinger equation in the entangled state representation.The corresponding Heisenberg operator equations which predict the angular momentum-angle uncertainty relation arederived. The quantum operator description of two quantum pendulums coupled by a spring is also derived.
Construction of alternative Hamiltonian structures for field equations
Herrera, Mauricio [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Hojman, Sergio A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Facultad de Educacion, Universidad Nacional Andres Bello, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)
2001-08-10
We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)
Hamiltonian Forms for a Hierarchy of Discrete Integrable Coupling Systems
XU Xi-Xiang; YANG Hong-Xiang; LU Rong-Wu
2008-01-01
A semi-direct sum of two Lie algebras of four-by-four matrices is presented, and a discrete four-by-fore matrix spectral problem is introduced. A hierarchy of discrete integrable coupling systems is derived. The obtained integrable coupling systems are all written in their Hamiltonian forms by the discrete variational identity. Finally, we prove that the lattice equations in the obtained integrable coupling systems are all Liouville integrable discrete Hamiltonian systems.
Hamiltonian Analysis of SL(2,R) Symmetry in Liouville Theory
Blagojevic, M
1994-01-01
We consider a Hamiltonian analysis of the Liouville theory and construction of symmetry generators using Castellani's method. We then discuss the light-cone gauge fixed theory. In particular, we clarify the difference between Hamiltonian approaches based on different choices of time, $\\xi^0$ and $\\xi^+$. Our main result is the construction of SL(2,R) symmetry generators in both cases. ( Lectures presented at the Danube Workshop '93, June 1993, Belgrade, Yugoslavia.)
Hamiltonian replica-exchange in GROMACS: a flexible implementation
Bussi, Giovanni
2013-01-01
A simple and general implementation of Hamiltonian replica exchange for the popular molecular-dynamics software GROMACS is presented. In this implementation, arbitrarily different Hamiltonians can be used for the different replicas without incurring in any significant performance penalty. The implementation was validated on a simple toy model - alanine dipeptide in water - and applied to study the rearrangement of an RNA tetraloop, where it was used to compare recently proposed force-field corrections.
Smooth prime integrals for quasi-integrable Hamiltonian systems
Chierchia, L.; Gallavotti, G. (Rome Univ. (Italy). Ist. di Matematica)
1982-02-11
A Hamiltonian with N degrees of freedom, analytic perturbation of a canonically integrable strictly nonisochronous analytic Hamiltonian, is considered. We show the existence of N functions on phase space and of class Csup(infinity) which are prime integrals for the perturbed motions on a suitable region whose Lebesgue measure tends to fill locally the phase space as the perturbation's magnitude approaches zero. An application to the perturbations of isochronous nonresonant linear oscillators is given.
Comparing Maps to Symplectic Integrators in a Galactic Type Hamiltonian
N. D. Caranicolas; N. J. Papadopoulos
2003-09-01
We obtain the - Poincare phase plane for a two dimensional, resonant, galactic type Hamiltonian using conventional numerical integration, a second order symplectic integrator and a map based on the averaged Hamiltonian. It is found that all three methods give good results, for small values of the perturbation parameter, while the symplectic integrator does a better job than the mapping, for large perturbations. The dynamical spectra are used to distinguish between regular and chaotic motion.
Covariant constraints for generic massive gravity and analysis of its characteristics
Deser, S; Waldron, A; Zahariade, G
2014-01-01
We perform a covariant constraint analysis of massive gravity valid for its entire parameter space, demonstrating that the model generically propagates five degrees of freedom; this is also verified by a new and streamlined Hamiltonian description. The constraint's covariant expression permits computation of the model's caustics. Although new features such as the dynamical Riemann tensor appear in the characteristic matrix, the model still exhibits the pathologies uncovered in earlier work: superluminality and likely acausalities.
Robinett, Rush D., III; Wilson, David Gerald
2010-11-01
The swing equations for renewable generators connected to the grid are developed and a wind turbine is used as an example. The swing equations for the renewable generators are formulated as a natural Hamiltonian system with externally applied non-conservative forces. A two-step process referred to as Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) is used to analyze and design feedback controllers for the renewable generators system. This formulation extends previous results on the analytical verification of the Potential Energy Boundary Surface (PEBS) method to nonlinear control analysis and design and justifies the decomposition of the system into conservative and non-conservative systems to enable a two-step, serial analysis and design procedure. The first step is to analyze the system as a conservative natural Hamiltonian system with no externally applied non-conservative forces. The Hamiltonian surface of the swing equations is related to the Equal-Area Criterion and the PEBS method to formulate the nonlinear transient stability problem. This formulation demonstrates the effectiveness of proportional feedback control to expand the stability region. The second step is to analyze the system as natural Hamiltonian system with externally applied non-conservative forces. The time derivative of the Hamiltonian produces the work/rate (power flow) equation which is used to ensure balanced power flows from the renewable generators to the loads. The Second Law of Thermodynamics is applied to the power flow equations to determine the stability boundaries (limit cycles) of the renewable generators system and enable design of feedback controllers that meet stability requirements while maximizing the power generation and flow to the load. Necessary and sufficient conditions for stability of renewable generators systems are determined based on the concepts of Hamiltonian systems, power flow, exergy (the maximum work that can be extracted from an energy flow) rate
Yach Derek
2005-04-01
Full Text Available Abstract The tremendous benefits which have been conferred to almost 5 billion people through improved technologies and knowledge highlights the concomitant challenge of bringing these changes to the 1 billion people living mostly in sub-Saharan Africa and South Asia who are yet to benefit. There is a growing awareness of the need to reduce human suffering and of the necessary participation of governments, non-government organizations and industry within this process. This awareness has recently translated into new funding mechanisms to address HIV/Aids and vaccines, a global push for debt relief and better trade opportunities for the poorest countries, and recognition of how global norms that address food safety, infectious diseases and tobacco benefit all. 'Globalization and Health' will encourage an exchange of views on how the global architecture for health governance needs to changes in the light of global threats and opportunities.
Vogl, M.; Pankratov, O.; Shallcross, S.
2017-07-01
We present a tractable and physically transparent semiclassical theory of matrix-valued Hamiltonians, i.e., those that describe quantum systems with internal degrees of freedoms, based on a generalization of the Gutzwiller trace formula for a n ×n dimensional Hamiltonian H (p ̂,q ̂) . The classical dynamics is governed by n Hamilton-Jacobi (HJ) equations that act in a phase space endowed with a classical Berry curvature encoding anholonomy in the parallel transport of the eigenvectors of H (p ,q ) ; these vectors describe the internal structure of the semiclassical particles. At the O (ℏ1) level and for nondegenerate HJ systems, this curvature results in an additional semiclassical phase composed of (i) a Berry phase and (ii) a dynamical phase resulting from the classical particles "moving through the Berry curvature". We show that the dynamical part of this semiclassical phase will, generally, be zero only for the case in which the Berry phase is topological (i.e., depends only on the winding number). We illustrate the method by calculating the Landau spectrum for monolayer graphene, the four-band model of AB bilayer graphene, and for a more complicated matrix Hamiltonian describing the silicene band structure. Finally, we apply our method to an inhomogeneous system consisting of a strain engineered one-dimensional moiré in bilayer graphene, finding localized states near the Dirac point that arise from electron trapping in a semiclassical moiré potential. The semiclassical density of states of these localized states we show to be in perfect agreement with an exact quantum mechanical calculation of the density of states.
Stochastic Constraint Programming
Walsh, Toby
2009-01-01
To model combinatorial decision problems involving uncertainty and probability, we introduce stochastic constraint programming. Stochastic constraint programs contain both decision variables (which we can set) and stochastic variables (which follow a probability distribution). They combine together the best features of traditional constraint satisfaction, stochastic integer programming, and stochastic satisfiability. We give a semantics for stochastic constraint programs, and propose a number...
Study on the stability of switched dissipative Hamiltonian systems
ZHU Liying; WANG Yuzhen
2006-01-01
The hybrid Hamiltonian system is a kind of important nonlinear hybrid systems. Such a system not only plays an important role in the development of hybrid control theory, but also finds many applications in practical control designs for obtaining better control performances. This paper investigates the stability of switched dissipative Hamiltonian systems under arbitrary switching paths. Under a realistic assumption, it is shown that the Hamiltonian functions of all the subsystems can be used as the multiple-Lyapunov functions for the switched dissipative Hamiltonian system. Based on this and using the dissipative Hamiltonian structural properties, this paper then proves that the P-norm of the state of switched dissipative Hamiltonian system converges to zero with the time increasing, and presents two sufficient conditions for the asymptotical stability under arbitrary switching paths. Utilizing these new results, this paper also obtains two useful corollaries for the asymptotical stability of switched nonlinear time-invariant systems. Finally, two examples are studied by using the new results proposed in this paper, and some numerical simulations are carried out to support our new results.
The rovibrational Hamiltonian for ammonia-like molecules.
Makarewicz, Jan; Skalozub, Alexander
2002-03-01
A new exact quantum mechanical rovibrational Hamiltonian operator for ammonia-like molecules is derived. The Hamiltonian is constructed in a molecular system of axes, such that its z' axis makes a trisection of the pyramidal angle formed by three bond vectors with the vertex on the central atom. The introduced set of the internal rovibrational coordinates is adapted to facilitate a convenient description of the inversion motion. These internal coordinates and the molecular axis system have a remarkable property, namely, the internal vibrational angular momentum of the molecule equals zero. This property significantly reduces the Coriolis coupling and simplifies the form of the Hamiltonian. The correctness of this Hamiltonian is proved by a numerical procedure. The orthogonal Radau vectors allowing us to define a similar molecular axis system and the internal coordinates are considered. The Hamiltonian for the Radau parameterization takes a form simple enough to carry out effectively variational calculations of the molecular rovibrational states. Under the appropriate choice of the variational basis functions, the Hamiltonian matrix elements are fully factorizable and do not have any singularities. A convenient method of symmetrization of the basis functions is proposed.
An effective Hamiltonian approach to quantum random walk
DEBAJYOTI SARKAR; NILADRI PAUL; KAUSHIK BHATTACHARYA; TARUN KANTI GHOSH
2017-03-01
In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltoniansare generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, $\\it{Sci. Rep}$. 3, 2829 (2013)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.
Bokhove, O.; Norbury, J.; Roulstone, I.
2002-01-01
Most fluid systems, such as the three-dimensional compressible Euler equations, are too complicated to yield general analytical solutions, and approximation methods are needed to make progress in understanding aspects of particular flows. This chapter reviews derivations of approximate or reduced ge
吴亚波; 李磊
2002-01-01
We establish the double complex Ashtekar gravitational theory with the cosmological term. In particular, by performing the 3+1 decomposition of the double Ashtekar action containing the cosmological term to pass on the Hamiltonian framework, the double Ashtekar constraint equations are derived, which respectively correspond to Lorentzian and Euclidean gravity.
Finite BRST-BFV transformations for dynamical systems with second-class constraints
Batalin, Igor A.; Lavrov, Peter M.; Tyutin, Igor V.
2015-06-01
We study finite field-dependent BRST-BFV transformations for dynamical systems with first- and second-class constraints within the generalized Hamiltonian formalism. We find explicitly their Jacobians and the form of a solution to the compensation equation necessary for generating an arbitrary finite change of gauge-fixing functionals in the path integral.
Finite BRST-BFV transformations for dynamical systems with second-class constraints
Batalin, Igor A; Tyutin, Igor V
2015-01-01
We study finite field dependent BRST-BFV transformations for dynamical systems with first- and second-class constraints within the generalized Hamiltonian formalism. We find explicitly their Jacobians and the form of a solution to the compensation equation necessary for generating an arbitrary finite change of gauge-fixing functionals in the path integral.
Kapteyn series arising in radiation problems
Lerche, I [Institut fuer Geowissenschaften, Naturwissenschaftliche Fakultaet III, Martin-Luther-Universitaet Halle, D-06099 Halle (Germany); Tautz, R C [Institut fuer Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2008-01-25
In discussing radiation from multiple point charges or magnetic dipoles, moving in circles or ellipses, a variety of Kapteyn series of the second kind arises. Some of the series have been known in closed form for a hundred years or more, others appear not to be available to analytic persuasion. This paper shows how 12 such generic series can be developed to produce either closed analytic expressions or integrals that are not analytically tractable. In addition, the method presented here may be of benefit when one has other Kapteyn series of the second kind to consider, thereby providing an additional reason to consider such series anew.
Angiomyolipoma arising in the gluteal region
Emmanouil Pikoulis; Constantine Bramis; Othon Mich; George Liapis; Evangelos Felekourasx; Vassiliki Kyriakou; John Griniatsos
2007-01-01
@@ Angiomyolipoma (AML) is a tumour of uncertain histogenesis originally believed to be a hamartomatous lesion, but recently recognized as a usually benign clonal mesenchymal neoplasm.1 Along with lymphagiomyomatosis (LAM), clear cell "sugar"tumour (CCST) and clear cell myelomelanocytic tumour (CCMMT), AML was classified in the so called perivascular epithelioid cell (PEComa) neoplasm family.1 Kidney constitutes the principal site of its development.Extrarenal AMLs are rare and to the best of our knowledge, only two cases of AML development in the soft tissues have been reported so far.2,3 We presented a 23 years old female patient with an AML arising in the left gluteal region.
Security risks arising from portable storage devices
Molotsi, K
2012-10-01
Full Text Available ? To identify and provide security countermeasures to help organisations and users to address the security risks from PSDs DEFINITION OF PORTABLE STORAGE DEVICES A PSD can be defined as: ? A small, lightweight device that is capable of storing... stream_source_info Molotsi_2012.pdf.txt stream_content_type text/plain stream_size 4841 Content-Encoding ISO-8859-1 stream_name Molotsi_2012.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Security risks arising from...
Eccrine Poroma Arising within Nevus Sebaceous
Natnicha Girdwichai
2016-04-01
Full Text Available Nevus sebaceous is a congenital, benign hamartomatous lesion, characterized by a yellowish to skin-colored, hairless, verrucous plaque on the head and neck region. In later life, a secondary tumor, either benign or malignant, can develop within nevus sebaceous. Eccrine poroma developing on nevus sebaceous is extremely rare. There are few case reports of eccrine poroma developing within nevus sebaceous. We report a case of a 30-year-old female who presented with a congenital, hairless, verrucous, yellowish lesion on the scalp and an erythematous nodule arising within the yellowish lesion for 8 months. Her clinical presentation and histopathological findings were compatible with nevus sebaceous and eccrine poroma.
Modelling spin Hamiltonian parameters of molecular nanomagnets.
Gupta, Tulika; Rajaraman, Gopalan
2016-07-12
Molecular nanomagnets encompass a wide range of coordination complexes possessing several potential applications. A formidable challenge in realizing these potential applications lies in controlling the magnetic properties of these clusters. Microscopic spin Hamiltonian (SH) parameters describe the magnetic properties of these clusters, and viable ways to control these SH parameters are highly desirable. Computational tools play a proactive role in this area, where SH parameters such as isotropic exchange interaction (J), anisotropic exchange interaction (Jx, Jy, Jz), double exchange interaction (B), zero-field splitting parameters (D, E) and g-tensors can be computed reliably using X-ray structures. In this feature article, we have attempted to provide a holistic view of the modelling of these SH parameters of molecular magnets. The determination of J includes various class of molecules, from di- and polynuclear Mn complexes to the {3d-Gd}, {Gd-Gd} and {Gd-2p} class of complexes. The estimation of anisotropic exchange coupling includes the exchange between an isotropic metal ion and an orbitally degenerate 3d/4d/5d metal ion. The double-exchange section contains some illustrative examples of mixed valance systems, and the section on the estimation of zfs parameters covers some mononuclear transition metal complexes possessing very large axial zfs parameters. The section on the computation of g-anisotropy exclusively covers studies on mononuclear Dy(III) and Er(III) single-ion magnets. The examples depicted in this article clearly illustrate that computational tools not only aid in interpreting and rationalizing the observed magnetic properties but possess the potential to predict new generation MNMs.
Effective Floquet Hamiltonian for spin = 1 in magic angle spinning NMR using contact transformation
Manoj Kumar Pandey; Mangala Sunder Krishnan
2007-09-01
Contact transformation is an operator transformation method in time-independent perturbation theory which is used successfully in molecular spectroscopy to obtain an effective Hamiltonian. Floquet theory is used to transform the periodic time-dependent Hamiltonian, to a time-independent Floquet Hamiltonian. In this article contact transformation method has been used to get the analytical representation of Floquet Hamiltonian for quadrupolar nuclei with spin = 1 in the presence of an RF field and first order quadrupolar interaction in magic angle spinning NMR experiments. The eigenvalues of contact transformed Hamiltonian as well as Floquet Hamiltonian have been calculated and a comparison is made between the eigenvalues obtained using the two Hamiltonians.