WorldWideScience

Sample records for halophytic species resulted

  1. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops

    Directory of Open Access Journals (Sweden)

    Hassan Etesami

    2018-02-01

    Full Text Available Salinity stress is one of the major abiotic stresses limiting crop production in arid and semi-arid regions. Interest is increasing in the application of PGPRs (plant growth promoting rhizobacteria to ameliorate stresses such as salinity stress in crop production. The identification of salt-tolerant, or halophilic, PGPRs has the potential to promote saline soil-based agriculture. Halophytes are a useful reservoir of halotolerant bacteria with plant growth-promoting capabilities. Here, we review recent studies on the use of halophilic PGPRs to stimulate plant growth and increase the tolerance of non-halophytic crops to salinity. These studies illustrate that halophilic PGPRs from the rhizosphere of halophytic species can be effective bio-inoculants for promoting the production of non-halophytic species in saline soils. These studies support the viability of bioinoculation with halophilic PGPRs as a strategy for the sustainable enhancement of non-halophytic crop growth. The potential of this strategy is discussed within the context of ensuring sustainable food production for a world with an increasing population and continuing climate change. We also explore future research needs for using halotolerant PGPRs under salinity stress.

  2. Accumulation of cadmium by halophytic and non-halophytic Juncus species

    Czech Academy of Sciences Publication Activity Database

    Vaněk, Tomáš; Moťková, Kateřina; Podlipná, Radka

    2016-01-01

    Roč. 28, č. 4 (2016), s. 415-423 ISSN 2197-0025 R&D Projects: GA MŠk(CZ) OC10028; GA MPO FR-TI3/778 Institutional support: RVO:61389030 Keywords : plant-responses * salt-tolerance * heavy-metals * salinity tolerance * abiotic stress * rice seedlings * amino-acids * proline * phytoremediation * detoxification * Halophyte * Cadmium accumulation * Proline * Juncus gerardii * Juncus inflexus Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.045, year: 2016

  3. Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Marius Nicusor GRIGORE

    2012-05-01

    Full Text Available Halophytes are salt-tolerant plants found exclusively in habitats with high levels of soil salinity. It is generally assumed that salt stress is the most important limiting factor for plant growth in natural saline environments, and that halophytes have developed specific adaptations to elevated salinity which make them unfitted to grow in the absence of salt, thus explaining their distribution in nature. To address experimentally this question, two halophytic species (Inula crithmoides L. and Plantago crassifolia Forssk. and a maritime dune species (Medicago marina L. were grown in the greenhouse for several weeks in different substrates: peat, vegetable garden soil, saline soil and sand from maritime dunes. Measurements of growth parameters number of leaves, plant length, fresh and dry weights showed that all three species grew much better on the salt-free and nutrient-rich substrates, peat and garden soil, than on saline soil and dune sand. These results indicate that salts are not compulsorily required for development of halophytic species, and suggest that limitation of water and nutrients, rather than soil salinity per se, are the most important restrictive factors for plant growth in saline habitats. The distribution of halophytes in nature is probably dependent on their limited ability to compete with glycophytes in non-saline areas, while remaining highly competitive under environmental conditions stressful for non-tolerant species.

  4. Do Halophytes Really Require Salts for Their Growth and Development? An Experimental Approach

    Directory of Open Access Journals (Sweden)

    Marius Nicusor GRIGORE

    2012-05-01

    Full Text Available Halophytes are salt-tolerant plants found exclusively in habitats with high levels of soil salinity. It is generally assumed that salt stress is the most important limiting factor for plant growth in natural saline environments, and that halophytes have developed specific adaptations to elevated salinity which make them unfitted to grow in the absence of salt, thus explaining their distribution in nature. To address experimentally this question, two halophytic species (Inula crithmoides L. and Plantago crassifolia Forssk. and a maritime dune species (Medicago marina L. were grown in the greenhouse for several weeks in different substrates: peat, vegetable garden soil, saline soil and sand from maritime dunes. Measurements of growth parameters � number of leaves, plant length, fresh and dry weights � showed that all three species grew much better on the salt-free and nutrient-rich substrates, peat and garden soil, than on saline soil and dune sand. These results indicate that salts are not compulsorily required for development of halophytic species, and suggest that limitation of water and nutrients, rather than soil salinity per se, are the most important restrictive factors for plant growth in saline habitats. The distribution of halophytes in nature is probably dependent on their limited ability to compete with glycophytes in non-saline areas, while remaining highly competitive under environmental conditions stressful for non-tolerant species.

  5. Differential activity of Plasma and Vacuolar Membrane Transporters contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    DEFF Research Database (Denmark)

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana

    2013-01-01

    quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa....... These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce......Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow...

  6. Coping With Metal Toxicity – Cues From Halophytes

    Directory of Open Access Journals (Sweden)

    Ganesh C. Nikalje

    2018-06-01

    Full Text Available Being the native flora of saline soil, halophytes are well studied for their salt tolerance and adaptation mechanism at the physiological, biochemical, molecular and metabolomic levels. However, these saline habitats are getting contaminated due to various anthropogenic activities like urban waste, agricultural runoff, mining, industrial waste that are rich in toxic metals and metalloids. These toxic metals impose detrimental effects on growth and development of most plant species. Halophytes by virtue of their tolerance to salinity also show high tolerance to heavy metals which is attributed to the enhanced root to shoot metal translocation and bioavailability. Halophytes rapidly uptake toxic ions from the root and transport them toward aerial parts by using different transporters which are involved in metal tolerance and homeostasis. A number of defense related physiological and biochemical strategies are known to be crucial for metal detoxification in halophytes however; there is paucity of information on the molecular regulators. Understanding of the phenomenon of cross-tolerance of salinity with other abiotic stresses in halophytes could very well boost their potential use in phytoremediation. In this article, we present an overview of heavy metal tolerance in case of halophytes, associated mechanisms and cross-tolerance of salinity with other abiotic stresses.

  7. Environmental change in a Mediterranean salt marsh wetland: ecological drivers of halophytes diversity along flooding frequency gradients

    Directory of Open Access Journals (Sweden)

    Patricia María Rodríguez-González

    2014-04-01

    Full Text Available Coastal wetlands are among most threatened ecosystems, owing to the intense human activity concentrated in shoreline areas together with the expected sea level rise resultant from climate change. Salt marshes are wetlands which are inundated twice daily by the sea, thus tightly dependent on frequency and duration of submergence. Identifying the factors that determine the diversity, distribution and abundance of halophyte species in salt marshes will help retaining their conservation status and adopt anticipate management measures, and this will ultimately contribute to preserve marshland biodiversity and ecological services. Reserva Natural de Castro Marim e Vila Real de Santo António (RNSCMVRSA is a natural reserve located in South Eastern Portugal, comprising the tidal area of Guadiana River mouth. In spite of their great ecological value, salt marsh ecosystems in this region have suffered intense anthropic disturbance, namely hydrologic alterations and vegetation removal to gain soils for agriculture and salt intensive production. The present study aimed at characterizing the halophyte diversity in the RNSCMVRSA salt marshes and determining their major ecological correlates. The end-point is to implement, afterward, a sustainable cultivation of autochthonous halophyte plants, with economic value, in the abandoned saltpans and degraded rangelands. This project will contribute to the conservation of halophyte diversity, promote environmental requalification, and provide an economic alternative for local populations, enabling the reduction of unregulated harvest of halophyte plant populations. Field sampling strategy included a preliminary survey of local vegetation diversity and floristic inventories of halophyte communities in plots established across the existing environmental heterogeneity in order to span the whole variation gradients of the species presence and abundance. The abiotic characterization of halophyte communities included a

  8. Potential Use of Halophytes to Remediate Saline Soils

    Directory of Open Access Journals (Sweden)

    Mirza Hasanuzzaman

    2014-01-01

    Full Text Available Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.

  9. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture

    NARCIS (Netherlands)

    Rozema, J.; Schat, H.

    2013-01-01

    Halophytes of the lower coastal salt marsh show increased salt tolerance, and under high salinity they grow faster than upper marsh species. We could not show reduced growth rate of halophytes compared with glycophytes when grown under non-saline conditions. This indicates limited energy costs

  10. Differential Activity of Plasma and Vacuolar Membrane Transporters Contributes to Genotypic Differences in Salinity Tolerance in a Halophyte Species, Chenopodium quinoa

    Directory of Open Access Journals (Sweden)

    Edgar Bonales-Alatorre

    2013-04-01

    Full Text Available Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd., a facultative C3 halophyte species, can efficiently control the activity of slow (SV and fast (FV tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013 Plant Physiology. This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i a higher rate of Na+ exclusion from leaf mesophyll; (ii maintenance of low cytosolic Na+ levels; (iii better K+ retention in the leaf mesophyll; (iv a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  11. Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a Halophyte Species, Chenopodium quinoa.

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Pottosin, Igor; Shabala, Lana; Chen, Zhong-Hua; Zeng, Fanrong; Jacobsen, Sven-Erik; Shabala, Sergey

    2013-04-29

    Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.

  12. Native-Invasive Plants vs. Halophytes in Mediterranean Salt Marshes: Stress Tolerance Mechanisms in Two Related Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica

    2016-01-01

    Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we

  13. Native-invasive plants vs. halophytes in Mediterranean salt marshes: Stress tolerance mechanisms in two related species

    Directory of Open Access Journals (Sweden)

    Mohamad eAl Hassan

    2016-04-01

    . Based on these results, we concluded that although D. viscosa cannot directly compete with true halophytes in highly saline environments, it is nevertheless quite stress tolerant and therefore represents a threat for the vegetation located on the salt marshes borders, where several endemic and threatened species are found in the area of study

  14. Coping with low nutrient availability and inundation: root growth responses of three halophytic grass species from different elevations along a flooding gradient

    NARCIS (Netherlands)

    Bouma, T.J.; Koutstaal, B.P.; Van Dongen, M.; Nielsen, K.F.

    2001-01-01

    We describe the responses of three halophytic grass species that dominate the low (Spartina anglica), middle (Puccinellia maritima) and high (Elymus pycnanthus) parts of a salt marsh, to soil conditions that are believed to favour contrasting root-growth strategies. Our hypotheses were: (1)

  15. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-05-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno-halophytic

  16. HALOPHYTIC VEGETATION OF IRAN: TOWARDS A SYNTAXONOMICAL CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    H. AKHANI

    2004-01-01

    Full Text Available Iran with its diverse c1irnatic conditions and geologic and land use history support large areas of saline habitats and diverse halophytic flora. The halophytic diversity in not only enriched by the evolving of a large number of autochthonous Irano-Turanian elements, but also many of the halophytes of other phytochoria like Saharo-Arabian, Mediterranean and even Euro-Siberian elements are represented in Iran. Therefore most of the higher syntaxa of Euro-Mediterranean and Afro-Asian-al last partly-occur in Iran. Prior to a consolidated syntaxonomical system for the halophytic vegetation of Iran, major halophytic vegetation units of Iran are summarized and shown along salinity and moisture gradients. These include: (I: Mangrove communities (Avicennio-Sonneratietea. (2: Submerged aquatic plant communities (Ruppietea maritimae. (3: Annual obligatory hygro-halophytic communities on sea, lake and river marshes dominated by stem or leaf succulent C3 chenopods (Thero-Salicornietea. (4 Semi-woody or perennial halophytic communities on muddy or coastal salt flats dominated by stem succulent C3 chenopods (Salicornietea fruticosae. (5: Hydrophi!ous euryhalophytic rush communities: Phragmitetea australis. (6: Halophytic grassland and herbaceous perennial sedge communities belonging to genera Puccinellia and Juncus (Juncetea maritimi. (7: Salt marsh and riverine bruchwood communities dominated by salt-excreting halophytes (Tamaricetea ramosissimae, prov.. (8: Annua1 halophytic communities dominated by C4 chenopods in temporary moist and inundated, or disturbed salty soils (Climacopteretea crassae, prov.. (9: Halophytic shrubby. semi-woody or hemicrytophytic communities on salty and dry soils dominated by lcaf or stem succulent C4 chenopods (Haloxylo-Salsoletea tomentosae, prov.. (1O: Halophytic shrub communities, on salty and sandy coastal or margin of sabkhas with high water table dominated by Nitraria schoberi and Reaumuria fruticosa. (11. Psarno-halophytic

  17. ADAPTIVE STRATEGIES OF THE HALOPHYTE POPULATIONS

    Directory of Open Access Journals (Sweden)

    O. Z. Glukhov

    2013-11-01

    Full Text Available Studies of the adaptive strategies of halophytes at different levels of their organization are important not only for assessment of their health condition and prognosticating their future behaviors, but also for testing potential suitability of technogenic edaphotopes for plant growth without making additional analyses. We investigated the population structure and morphological variation of three halophilic Gypsophyla L. species which actively spread in different technogenic ecotopes of Ukraine by methods generally accepted in ecology and phytocenology. By the type of strategy populations of species of the genus Gypsophila in technogenic edaphotopes can change the primary type of strategy for the secondary, or gain the stress-tolerant type, mainly due to the changes of parameters of seed productivity. The studied populations are stable with predominance of individuals which reached the prereproductive and reproductive stages of their development. At the organism level the species differ by phenotypic plasticity revealing in compensatory development of vegetative and generative organs. This reflects not only in absolute values of parameters of features, but also when calculating the coefficients of divergence, variation, as well as the vitality classes in populations.By the adaptive strategy halophytes are candidates for use in local phytoremediation of disturbed lands.

  18. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Agoramoorthy, Govindasamy; Chen, F.-A. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China); Hsu, Minna J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China)], E-mail: hsumin@mail.nsysu.edu.tw

    2008-09-15

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 {+-} 0.37 {mu}g/g) was seven times higher than mangrove plants (0.06 {+-} 0.03 {mu}g/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem.

  19. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Chen, F.-A.; Hsu, Minna J.

    2008-01-01

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 ± 0.37 μg/g) was seven times higher than mangrove plants (0.06 ± 0.03 μg/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem

  20. [Response characteristics of the field-measured spectrum for the four general types of halophyte and species recognition in the northern slope area of Tianshan Mountain in Xinjiang].

    Science.gov (United States)

    Zhang, Fang; Xiong, Hei-gang; Nurbay, Abdusalih; Luan, Fu-ming

    2011-12-01

    Based on the field-measured Vis-NIR reflectance of four common types of halophyte (Achnatherum splendens(Trin.) Nevski, Sophora alopecuroides L., Camphorosma monspeliaca L. subsp. lessingii(L.)Aellen, Alhagi sparsifolia shap) within given spots in the Northern Slope Area of Tianshan Mountain in Xinjiang, the spectral response characteristics and species recognition of these types of halophyte were analyzed. The results showed that (Alhagi sparsifolia shap) had higher chlorophyll and carotenoid by CARI and SIPI index. (Sophora alopecuroides L. was at a vigorously growing state and had a higher NDVI compared with the other three types of halophyte because of its greater canopy density. But its CARI and SIPI values were lower due to the influence of its flowers. (Sophora alopecuroides L.) and (Camphorosma monspeliaca L. subsp. lessingii(L.)) had stable REPs and BEPs, but REPs and BEPs of (Achnatherum splendens(Trin.)Nevski, Aellen, Alhagi sparsifolia shap) whose spectra red shift and spectra blue shift occurred concurrently obviously changed. There was little difference in spectral curves among the four types of halophyte, so the spectrum mixing phenomenon was severe. (Camphorosma monspeliaca L. subsp. lessingii (L.)Aellen) and (Alhagi sparsifolia shap) could not be separated exactly in a usual R/NIR feature space in remote sensing. Using the stepwise discriminant analysis, five indices were selected to establish the discriminant model, and the model accuracy was discussed using the validated sample group. The total accuracy of the discriminant model was above 92% and (Achnatherum splendens(Trin.)Nevski) and (Camphorosma monspeliaca L. subsp. lessingii(L.)Aellen) could be respectively recognized 100% correctly.

  1. Manipulating the antioxidant capacity of halophytes to increase their cultural and economic value through saline cultivation.

    Science.gov (United States)

    Boestfleisch, Christian; Wagenseil, Niko B; Buhmann, Anne K; Seal, Charlotte E; Wade, Ellie Merrett; Muscolo, Adele; Papenbrock, Jutta

    2014-08-13

    Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal. To address this, we analysed a range of metabolites with antioxidant capacity (including total phenols, flavonoids, ascorbate, reduced/oxidized glutathione and reactive oxygen species scavenging enzymes) in seedlings and plants from different families (Amaranthaceae, Brassicaceae, Plantaginaceae and Rhizophoraceae) and habitats grown under different salt concentrations. We show that it is possible to manipulate the antioxidant capacity of plants and seedlings by altering the saline growing environment, the length of time under saline cultivation and the developmental stage. Among the species studied, the halophytes Tripolium pannonicum, Plantago coronopus, Lepidium latifolium and Salicornia europaea demonstrated the most potential as functional foods or nutraceuticals. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Rapid regulation of the plasma membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa

    Science.gov (United States)

    Bose, Jayakumar; Rodrigo-Moreno, Ana; Lai, Diwen; Xie, Yanjie; Shen, Wenbiao; Shabala, Sergey

    2015-01-01

    Background and Aims The activity of H+-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na+ exclusion via Na+/H+ exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H+-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed. Methods The kinetics of salt-induced net H+, Na+ and K+ fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots. Key Results Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (−144 ± 3·3, −138 ± 5·4 and −128 ± 3·3 mV, respectively). Treatment with 100 mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H+ efflux, Na+ efflux and K+ retention in roots (quinoa > saltbush > arabidopsis). NaCl-induced stimulation of H+ efflux was most pronounced in the root elongation zone. In contrast, H+-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100 mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa. Conclusions Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plant’s ability to rapidly upregulate plasma membrane H+-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative

  3. Stoichiometric variation of halophytes in response to changes in soil salinity.

    Science.gov (United States)

    Sun, X; Gao, Y; Wang, D; Chen, J; Zhang, F; Zhou, J; Yan, X; Li, Y

    2017-05-01

    Variation in soil salt may change the stoichiometry of a halophyte by altering plant ecophysiology, and exert different influences on various plant organs, which has potentially important consequences for the nutrition of consumers as well as nutrient cycling in a saline ecosystem. Using a greenhouse pot experiment, we investigated the effect of salinity variability on the growth and stoichiometry of different organs of Suaeda glauca and Salicornia europaea - two dominant species of important ecological and economic value in the saline ecosystem. Our results showed that appropriate salt stimulated the growth of both species during the vigorous growth period, while high salt suppressed growth. Na significantly increased with increased salt in the culture, whereas concentrations of other measured elements and K:Na ratio for both species significantly decreased at low salt treatments, and became more gradual under higher salt conditions. Furthermore, with the change of salt in culture, variations in leaf (degenerated leaf for S. europaea, considered as young stem) stoichiometry, except N:P ratio, were large and less in stems (old stems for S. europaea) than in roots, reflecting physiological and biochemical reactions in the leaf in response to salt stress, supported by sharp changes in trends. These results suggest that appropriate saline conditions can enhance biological C fixation of halophytes; however, increasing salt could affect consumer health and decrease cycling of other nutrients in saline ecosystems. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. The development of halophyte-based agriculture: past and present.

    Science.gov (United States)

    Ventura, Yvonne; Eshel, Amram; Pasternak, Dov; Sagi, Moshe

    2015-02-01

    Freshwater comprises about a mere 2·5% of total global water, of which approximately two-thirds is locked into glaciers at the polar ice caps and on mountains. In conjunction with this, in many instances irrigation with freshwater causes an increase in soil salinity due to overirrigation of agricultural land, inefficient water use and poor drainage of unsuitable soils. The problem of salinity was recognized a long time ago and, due to the importance of irrigated agriculture, numerous efforts have been devoted towards improving crop species for better utilization of saline soils and water. Irrigating plants with saline water is a challenge for practitioners and researchers throughout the world. Recruiting wild halophytes with economic potential was suggested several decades ago as a way to reduce the damage caused by salinization of soil and water. A range of cultivation systems for the utilization of halophytes have been developed, for the production of biofuel, purification of saline effluent in constructed wetlands, landscaping, cultivation of gourmet vegetables, and more. This review critically analyses past and present halophyte-based production systems in the context of genetics, physiology, agrotechnical issues and product value. There are still difficulties that need to be overcome, such as direct germination in saline conditions or genotype selection. However, more and more research is being directed not only towards determining salt tolerance of halophytes, but also to the improvement of agricultural traits for long-term progress. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Phytoremediation potential of some halophytic species for soil salinity.

    Science.gov (United States)

    Devi, S; Nandwal, A S; Angrish, R; Arya, S S; Kumar, N; Sharma, S K

    2016-01-01

    Phytoremediation potential of six halophytic species i.e. Suaeda nudiflora, Suaeda fruticosa, Portulaca oleracea, Atriplex lentiformis, Parkinsonia aculeata and Xanthium strumarium was assessed under screen house conditions. Plants were raised at 8.0, 12.0, 16.0, and 20.0 dSm(-1) of chloride-dominated salinity. The control plants were irrigated with canal water. Sampling was done at vegetative stage (60-75 DAS). About 95 percent seed germination occurred up to 12 dSm(-1) and thereafter declined slightly. Mean plant height and dry weight plant(-1) were significantly decreased from 48.71 to 32.44 cm and from 1.73 to 0.61g plant(-1) respectively upon salinization. Na(+)/K(+) ratio (0.87 to 2.72), Na(+)/ Ca(2+) + Mg(2+) (0.48 to 1.54) and Cl(-)/SO4(2-) (0.94 to 5.04) ratio showed increasing trend. Salinity susceptibility index was found minimum in Suaeda fruticosa (0.72) and maximum in Parkinsonia aculeata (1.17). Total ionic content also declined and magnitude of decline varied from 8.51 to 18.91% at 8 dSm(-1) and 1.85 to 7.12% at 20 dSm(-1) of salinity. On the basis of phytoremediation potential Suaeda fruticosa (1170.02 mg plant(-1)), Atriplex lentiformis (777.87 mg plant(-1)) were the best salt hyperaccumulator plants whereas Xanthium strumarium (349.61 mg plant(-1)) and Parkinsonia aculeata (310.59 mg plant(-1)) were the least hyperaccumulator plants.

  6. Facing the challenge of sustainable bioenergy production: Could halophytes be part of the solution?

    Science.gov (United States)

    Debez, Ahmed; Belghith, Ikram; Friesen, Jan; Montzka, Carsten; Elleuche, Skander

    2017-01-01

    Due to steadily growing population and economic transitions in the more populous countries, renewable sources of energy are needed more than ever. Plant biomass as a raw source of bioenergy and biofuel products may meet the demand for sustainable energy; however, such plants typically compete with food crops, which should not be wasted for producing energy and chemicals. Second-generation or advanced biofuels that are based on renewable and non-edible biomass resources are processed to produce cellulosic ethanol, which could be further used for producing energy, but also bio-based chemicals including higher alcohols, organic acids, and bulk chemicals. Halophytes do not compete with conventional crops for arable areas and freshwater resources, since they grow naturally in saline ecosystems, mostly in semi-arid and arid areas. Using halophytes for biofuel production may provide a mid-term economically feasible and environmentally sustainable solution to producing bioenergy, contributing, at the same time, to making saline areas - which have been considered unproductive for a long time - more valuable. This review emphasises on halophyte definition, global distribution, and environmental requirements. It also examines their enzymatic valorization, focusing on salt-tolerant enzymes from halophilic microbial species that may be deployed with greater advantage compared to their conventional mesophilic counterparts for faster degradation of halophyte biomass.

  7. Biophysical analysis of water filtration phenomenon in the roots of halophytes

    Science.gov (United States)

    Kim, Kiwoong; Lee, Sang Joon

    2015-11-01

    The water management systems of plants, such as water collection and water filtration have been optimized through a long history. In this point of view, new bio-inspired technologies can be developed by mimicking the nature's strategies for the survival of the fittest. In this study, the biophysical characteristics of water filtration process in the roots of halophytes are experimentally investigated in the plant hydrodynamic point of view. To understand the functional features of the halophytes 3D morphological structure of their roots are analyzed using advanced bioimaging techniques. The surface properties of the roots of halophytes are also examined Based on the quantitatively analyzed information, water filtration phenomenon in the roots is examined. Sodium treated mangroves are soaked in sodium acting fluorescent dye solution to trace sodium ions in the roots. In addition, in vitroexperiment is carried out by using the roots. As a result, the outermost layer of the roots filters out continuously most of sodium ions. This study on developing halophytes would be helpful for understanding the water filtration mechanism of the roots of halophytes and developing a new bio inspired desalination system. This research was financially supported by the National Research Foundation (NRF) of Korea (Contract grant number: 2008-0061991).

  8. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh.

    Science.gov (United States)

    Chaudhary, Doongar R; Kim, Jinhyun; Kang, Hojeong

    2018-04-01

    Salt marshes are transitional zone between terrestrial and aquatic ecosystems, occupied mainly by halophytic vegetation which provides numerous ecological services to coastal ecosystem. Halophyte-associated microbial community plays an important role in the adaptation of plants to adverse condition and also affected habitat characteristics. To explore the relationship between halophytes and soil microbial community, we studied the soil enzyme activities, soil microbial community structure, and functional gene abundance in halophytes- (Carex scabrifolia, Phragmites australis, and Suaeda japonica) covered and un-vegetated (mud flat) soils at Suncheon Bay, South Korea. Higher concentrations of total, Gram-positive, Gram-negative, total bacterial, and actinomycetes PLFAs (phospholipid fatty acids) were observed in the soil underneath the halophytes compared with mud flat soil and were highest in Carex soil. Halophyte-covered soils had different microbial community composition due to higher abundance of Gram-negative bacteria than mud flat soil. Similar to PLFA concentrations, the increased activities of β-glucosidase, cellulase, phosphatase, and sulfatase enzymes were observed under halophyte soil compared to mud flat soil and Carex exhibited highest activities. The abundance of archaeal 16S rRNA, fungal ITS, and denitrifying genes (nirK, nirS, and nosZ) were not influenced by the halophytes. Abundance bacterial 16S rRNA and dissimilatory (bi)sulfite (dsrA) genes were highest in Carex-covered soil. The abundance of functional genes involved in methane cycle (mcrA and pmoA) was not affected by the halophytes. However, the ratios of mcrA/pmoA and mcrA/dsrA increased in halophyte-covered soils which indicate higher methanogenesis activities. The finding of the study also suggests that halophytes had increased the microbial and enzyme activities, and played a pivotal role in shaping microbial community structure.

  9. The role of succulent halophytes in the water balance of salt marsh rodents.

    Science.gov (United States)

    Coulombe, Harry N

    1970-09-01

    experiments. It is suggested that cathartic ions (possibly magnesium, sulphate, or oxalate) prohibit the utilization of certain halophytes. The mechanisms that enable meadow mice to utilize Salicornia are not clearly understood.Measurements of harvest mouse evaporative water loss are among the highest reported for small mammals (1.35 mg H 2 O/cc O 2 consumed). On the basis of these data and other information in the literature, a water budget was constructed. The results suggest that harvest mice may enter daily torpor in response to osmotic stress or water deprivation.The role of dew and fog precipitation in the ecology of small rodents inhabiting coastal marshes is discussed. Apparently a sufficient amount of free water is available to meet the requirements of the salt marsh populations, although the quality of the available water may be influenced by salt-excretion activity of certain halophytes. Less halophytic succulents are available in the coastal marshes; these species may be more readily utilized than Salicornia by small vertebrates.

  10. Rapid regulation of the plasma membrane H⁺-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa.

    Science.gov (United States)

    Bose, Jayakumar; Rodrigo-Moreno, Ana; Lai, Diwen; Xie, Yanjie; Shen, Wenbiao; Shabala, Sergey

    2015-02-01

    The activity of H(+)-ATPase is essential for energizing the plasma membrane. It provides the driving force for potassium retention and uptake through voltage-gated channels and for Na(+) exclusion via Na(+)/H(+) exchangers. Both of these traits are central to plant salinity tolerance; however, whether the increased activity of H(+)-ATPase is a constitutive trait in halophyte species and whether this activity is upregulated at either the transcriptional or post-translation level remain disputed. The kinetics of salt-induced net H(+), Na(+) and K(+) fluxes, membrane potential and AHA1/2/3 expression changes in the roots of two halophyte species, Atriplex lentiformis (saltbush) and Chenopodium quinoa (quinoa), were compared with data obtained from Arabidopsis thaliana roots. Intrinsic (steady-state) membrane potential values were more negative in A. lentiformis and C. quinoa compared with arabidopsis (-144 ± 3·3, -138 ± 5·4 and -128 ± 3·3 mV, respectively). Treatment with 100 mm NaCl depolarized the root plasma membrane, an effect that was much stronger in arabidopsis. The extent of plasma membrane depolarization positively correlated with NaCl-induced stimulation of vanadate-sensitive H(+) efflux, Na(+) efflux and K(+) retention in roots (quinoa > saltbush > arabidopsis). NaCl-induced stimulation of H(+) efflux was most pronounced in the root elongation zone. In contrast, H(+)-ATPase AHA transcript levels were much higher in arabidopsis compared with quinoa plants, and 100 mm NaCl treatment led to a further 3-fold increase in AHA1 and AHA2 transcripts in arabidopsis but not in quinoa. Enhanced salinity tolerance in the halophyte species studied here is not related to the constitutively higher AHA transcript levels in the root epidermis, but to the plant's ability to rapidly upregulate plasma membrane H(+)-ATPase upon salinity treatment. This is necessary for assisting plants to maintain highly negative membrane potential values and to

  11. Soil amendment with halophytes induces physiological changes and reduces root-knot infection in eggplant and okra

    Directory of Open Access Journals (Sweden)

    Waseem M. ABBASI

    2011-01-01

    Full Text Available Root-knot nematode, Meloidogyne javanica (Treub Chitwood is a soil-borne plant pathogen of roots. Nematode infection results in altered plant growth and physicochemical processes due to gall formation. Many plants contain unique biochemicals that have biocidal properties and offer a potential novel approach to suppress the nematode populations in soil and improve growth of crop plants. In the present study effect of some indigenous halophytic plant species (Tamarix indica Willd, Suaeda fruticosa Forssk and Salsola imbricata (Schultz Dandy were tested against M. javanica. Tested halophytes significantly (P<0.001 reduced egg hatching and caused mortality of second stage juveniles (J2 in vitro. These halophytes when incorporated in soil (0.3, 0.5 and 1% w/w markedly increased growth of eggplant (Solanum melongena L. cv. Black beauty and okra (Abelmoschus esculentus [L.] Moench. cv. Arka anamika and provided control of root-knot infection at higher doses (0.5 and 1%. Amended eggplants and okra showed significant (P<0.001 increase in chlorophylls and decrease in chlorophyll a/b ratio. Protein concentration in leaves of both the plants were increased with 1% amendment of S. fruticosa and S. imbricata. While nucleic acid concentrations were varied with different treatments.  

  12. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions.

    Science.gov (United States)

    Gil, Ricardo; Bautista, Inmaculada; Boscaiu, Monica; Lidón, Antonio; Wankhade, Shantanu; Sánchez, Héctor; Llinares, Josep; Vicente, Oscar

    2014-08-19

    In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K(+)/Na(+) ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na(+), Cl(-), K(+) and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However-except for P. crassifolia-proline may play a role in stress tolerance based on its 'osmoprotectant' functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural

  13. Towards saving freshwater: halophytes as unconventional feedstuffs in livestock feed: a review.

    Science.gov (United States)

    Abd El-Hack, Mohamed E; Samak, Dalia H; Noreldin, Ahmed E; Arif, Muhammad; Yaqoob, Hilal S; Swelum, Ayman A

    2018-04-26

    Water represents 71% of all earth area and about 97% of this water is salty water. So, only 3% of the overall world water quantity is freshwater. Human can benefit only from 1% of this water and the remaining 2% freeze at both poles of earth. Therefore, it is important to preserve the freshwater through increasing the plants consuming salty water. The future prosperity of feed resources in arid and semi-arid countries depends on economic use of alternative resources that have been marginalized for long periods of time, such as halophytic plants, which are one such potential future resource. Halophyte plants can grow in high salinity water and soil and to some extent during drought. The growth of these plants depends on the contact of the salted water with plant roots as in semi-desert saline water, mangrove swamps, marshes, and seashores. Halophyte plants need high levels of sodium chloride in the soil water for growth, and the soil water must also contain high levels of salts, as sodium hydroxide or magnesium sulfate. There are many uses for halophyte plants, including feed for animals, vegetables, drugs, sand dune stabilizers, wind shelter, soil cover, wetland cultivation, laundry detergents, and paper production. This paper will focus on the use of halophytes as a feed additive for animals. In spite of the good nutritional value of halophytes, some anti-nutritional factors as nitrates, nitrite complexes, tannins, glycosides, phenolic compounds, saponins, oxalates, and alkaloids may be present in some of them. The presence of such anti-nutritional agents makes halophytes unpalatable to animals, which tends to reduce feed intake and nutrient use. Therefore, the negative effects of these plants on animal performance are the only objection against using halophytes in animal feed diets. This review article highlights the beneficial impact of considering halophytes in animal feeding on saving freshwater and illustrates its nutritive value for livestock from different

  14. Characterization of phenolic compounds from different species of halophytes from Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (Portugal)

    OpenAIRE

    Mafalda R. Almeida; Joana Pacheco

    2014-01-01

    Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (RNSCMVRSA) is a natural reserve (SE of Portugal, Algarve region) that has habitats with different saline conditions and great ecological importance. Halophytes are plants that grow in a wide variety of saline habitats, namely in RNSCMVRSA, and can accumulated in their biomass high contents of salt. This plant behavior can increase production of reactive oxygen species (ROS) and consequently, the oxidative stress, cellular ...

  15. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    Science.gov (United States)

    Lutts, Stanley; Lefèvre, Isabelle

    2015-01-01

    Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments. PMID:25672360

  16. Characterization of phenolic compounds from different species of halophytes from Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (Portugal

    Directory of Open Access Journals (Sweden)

    Mafalda R. Almeida

    2014-06-01

    Full Text Available Reserva Natural do Sapal de Castro Marim e Vila Real de Santo António (RNSCMVRSA is a natural reserve (SE of Portugal, Algarve region that has habitats with different saline conditions and great ecological importance. Halophytes are plants that grow in a wide variety of saline habitats, namely in RNSCMVRSA, and can accumulated in their biomass high contents of salt. This plant behavior can increase production of reactive oxygen species (ROS and consequently, the oxidative stress, cellular damage and metabolic disorders. In order to protect the cells from ROS, these plants developed an efficient antioxidant system. This system can be constituted by phenolics compounds that have an important effect on oxidative, anti-inflammatory and microbial stability important properties for food, dietary and pharmaceutical industries. Therefore, this work aims to identify the phenolic compounds in biomass of different autochthones halophytes species growing on natural conditions in RNSCMVSRA. Composite samples of Salicornia patula, Salicornia ramosissima, Sarcoccornia fruticosa and Sarcocornia perennis were collected in 2013. Sequential extraction was realized: firstly the plant samples were subjected to soxhlet extraction using dichloromethane and then by a solid-liquid extraction with ethanol. Finally, the main compounds present in each extract were identified by GC-MS (Gas chromatography–mass spectrometry. The total of phenolic compounds and polyphenolic antioxidants in the extracts was also determined by Folin-Ciocalteu method.

  17. Effect of saline water irrigation on seed germination and early seedling growth of the halophyte quinoa

    DEFF Research Database (Denmark)

    Panuccio, M.R.; Jacobsen, Sven-Erik; Saleem Akhtar, Saqib

    2014-01-01

    with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects...... been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its develop- ment. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds...... of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germi- nated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which...

  18. A bio-thermic seawater desalination system using halophytes

    NARCIS (Netherlands)

    Finck, C.

    2014-01-01

    A bio-thermic seawater desalination system using halophytes was developed and successfully tested. A greenhouse as part of a test rig, with different sorts of mangroves, was installed. Measurements showed promising results concerning fresh water relative yielding rates up to 1.4 kg/h/m2 (leaf

  19. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.

    Science.gov (United States)

    Mishra, Avinash; Tanna, Bhakti

    2017-01-01

    Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  20. Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters

    Directory of Open Access Journals (Sweden)

    Avinash Mishra

    2017-05-01

    Full Text Available Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase, ion channels (Cl−, Ca2+, aquaporins, antioxidant encoding genes (APX, CAT, GST, BADH, SOD and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes. It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.

  1. Seasonal variations in plant water status of four desert halophytes from semi-arid region of Karachi

    International Nuclear Information System (INIS)

    Aziz, I.; Gul, B.; Gulzar, S.; Khan, A

    2011-01-01

    Halophytes in arid and semi arid zones of the world are often subjected to extremely variable drought, salinity and temperature. These fluctuations may bring about changes in their osmoregulation and gas exchange responses besides other physiological and biochemical processes. The purpose of this study was to detect temporal changes in plant water status and osmotic adjustment in four desert halophytes viz., Suaeda fruticosa, Heliotropium curassavicum, Haloxylon stocksii and Atriplex stocksii from an inland community at Karachi University Campus. During the dry period (November to January) water and osmotic potentials of all test species increased with higher values in A. stocksii (salt secretor) than those of S. fruticosa and H. stocksii (salt includer) and H. curassavicum (salt excluder). Proline increased substantially and was highest in H. curassavicum followed by A. stocksii in comparison to the two salt includers. The lowering of osmotic potential corresponded to an increase in Na and Cl, lower stomatal conductance and chlorophyll content indicating reduced gas exchange during the dry period. The increase in proline may have little role in osmoreglation but could contribute in scavenging reactive oxygen species. (author)

  2. Modeling Halophytic Plants in APEX for Sustainable Water and Agriculture

    Science.gov (United States)

    DeRuyter, T.; Saito, L.; Nowak, B.; Rossi, C.; Toderich, K.

    2013-12-01

    A major problem for irrigated agricultural production is soil salinization, which can occur naturally or can be human-induced. Human-induced, or secondary salinization, is particularly a problem in arid and semi-arid regions, especially in irrigated areas. Irrigated land has more than twice the production of rainfed land, and accounts for about one third of the world's food, but nearly 20% of irrigated lands are salt-affected. Many farmers worldwide currently seasonally leach their land to reduce the soil salt content. These practices, however, create further problems such as a raised groundwater table, and salt, fertilizer, and pesticide pollution of nearby lakes and groundwater. In Uzbekistan, a combination of these management practices and a propensity to cultivate 'thirsty' crops such as cotton has also contributed to the Aral Sea shrinking nearly 90% by volume since the 1950s. Most common agricultural crops are glycophytes that have reduced yields when subjected to salt-stress. Some plants, however, are known as halophytic or 'salt-loving' plants and are capable of completing their life-cycle in higher saline soil or water environments. Halophytes may be useful for human consumption, livestock fodder, or biofuel, and may also be able to reduce or maintain salt levels in soil and water. To assess the potential for these halophytes to assist with salinity management, we are developing a model that is capable of tracking salinity under different management practices in agricultural environments. This model is interdisciplinary as it combines fields such as plant ecology, hydrology, and soil science. The US Department of Agriculture (USDA) model, Agricultural Policy/Environmental Extender (APEX), is being augmented with a salinity module that tracks salinity as separate ions across the soil-plant-water interface. The halophytes Atriplex nitens, Climacoptera lanata, and Salicornia europaea are being parameterized and added into the APEX model database. Field sites

  3. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha

    2010-09-10

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5\\' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species. © American Society of Plant Biologists.

  4. On the distribution and evaluation of Na, Mg and Cl in leaves of selected halophytes

    Energy Technology Data Exchange (ETDEWEB)

    Pongrac, Paula; Vogel-Mikuš, Katarina; Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana (Slovenia); Kaligarič, Mitja [Department of Biology, Faculty of Natural Sciences and Mathematics, Koroška c. 160, SI-2000 Maribor (Slovenia); Vavpetič, Primož; Kelemen, Mitja; Grlj, Nataša [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Shelef, Oren; Golan-Goldhirsh, Avi; Rachmilevitch, Shimon [French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion (Israel); Pelicon, Primož, E-mail: primoz.pelicon@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2013-07-01

    Diverse physiological, biochemical and morphological adaptations enable plants to survive in extreme saline environments where osmotic and ionic stresses limit growth and development. Halophytes are salt-tolerant plants that can withstand extraordinarily high levels of Na and Cl in their leaves. The tissue and cellular distribution patterns of salt ions can be linked to the underlying mechanisms of salt tolerance. Application of fast, reliable, multi-elemental and quantitative techniques such as micro-proton-induced X-ray emission (micro-PIXE) will significantly contribute to and accelerate studies of plant salt tolerance, especially as micro-PIXE also provides spatially resolved quantitative data for light elements, such as Na and Mg. The spatial concentration distributions of Na, Mg, Cl, K, P and S in leaves of four halophytes (Bassia indica, Atriplex prostrata, Spartina maritima and Limonium angustifolium) were determined using micro-PIXE, to study the salt-tolerance strategies of the selected halophytes. Different distribution patterns of the studied elements were seen in the leaves; however, in all four of these plant species, Na was excluded from photosynthetically active chlorophyl tissues. With the exception of L. angustifolium, Cl, P and S contents (representing chloride, phosphate and sulphate ionic forms, respectively) did not ensure charge balance in the leaves, which suggests other anionic compounds, such as nitrate and organic anions, have crucial roles in maintaining electroneutrality in these halophytes. By increasing soil salinisation worldwide, the possibility to reliably complement spatial distributions of Na, Mg, Cl, K, P and S with plant structural morphology will contribute significantly to our understanding of plant tolerance mechanisms at the tissue and cell levels. In addition, these kinds of studies are of particular value for designing crop plants with high salt tolerance and for the development of phytoremediation technologies.

  5. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.

    Science.gov (United States)

    Zhang, Xia; Liao, Maoseng; Chang, Dan; Zhang, Fuchun

    2014-12-17

    Much attention has been given to the potential of halophytes as sources of tolerance traits for introduction into cereals. However, a great deal remains unknown about the diverse mechanisms employed by halophytes to cope with salinity. To characterize salt tolerance mechanisms underlying Karelinia caspica, an Asteraceae halophyte, we performed Large-scale transcriptomic analysis using a high-throughput Illumina sequencing platform. Comparative gene expression analysis was performed to correlate the effects of salt stress and ABA regulation at the molecular level. Total sequence reads generated by pyrosequencing were assembled into 287,185 non-redundant transcripts with an average length of 652 bp. Using the BLAST function in the Swiss-Prot, NCBI nr, GO, KEGG, and KOG databases, a total of 216,416 coding sequences associated with known proteins were annotated. Among these, 35,533 unigenes were classified into 69 gene ontology categories, and 18,378 unigenes were classified into 202 known pathways. Based on the fold changes observed when comparing the salt stress and control samples, 60,127 unigenes were differentially expressed, with 38,122 and 22,005 up- and down-regulated, respectively. Several of the differentially expressed genes are known to be involved in the signaling pathway of the plant hormone ABA, including ABA metabolism, transport, and sensing as well as the ABA signaling cascade. Transcriptome profiling of K. caspica contribute to a comprehensive understanding of K. caspica at the molecular level. Moreover, the global survey of differentially expressed genes in this species under salt stress and analyses of the effects of salt stress and ABA regulation will contribute to the identification and characterization of genes and molecular mechanisms underlying salt stress responses in Asteraceae plants.

  6. The use of halophytic plants for salt phytoremediation in constructed wetlands.

    Science.gov (United States)

    Farzi, Abolfazl; Borghei, Seyed Mehdi; Vossoughi, Manouchehr

    2017-07-03

    This research studied the use of constructed wetlands (CWs) to reduce water salinity. For this purpose, three halophytic species of the Chenopodiaceae family (Salicornia europaea, Salsola crassa, and Bienertia cycloptera) that are resistant to saline conditions were planted in the CWs, and experiments were conducted at three different salinity levels [electrical conductivity (EC)∼2, 6, 10 dS/m]. EC and concentrations of calcium (Ca), magnesium (Mg), sodium (Na), and chlorine (Cl) were measured before and after phytoremediation with a retention time of 1 week. The results suggested that these plants were able to grow well and complete their life cycles at all the salinity levels within this study. Moreover, these plants reduced the measured parameters to acceptable levels. Therefore, these plants can be considered good options for salt phytoremediation.

  7. Effects of Salt Stress on Three Ecologically Distinct Plantago Species.

    Science.gov (United States)

    Al Hassan, Mohamad; Pacurar, Andrea; López-Gresa, María P; Donat-Torres, María P; Llinares, Josep V; Boscaiu, Monica; Vicente, Oscar

    2016-01-01

    Comparative studies on the responses to salt stress of taxonomically related taxa should help to elucidate relevant mechanisms of stress tolerance in plants. We have applied this strategy to three Plantago species adapted to different natural habitats, P. crassifolia and P. coronopus-both halophytes-and P. major, considered as salt-sensitive since it is never found in natural saline habitats. Growth inhibition measurements in controlled salt treatments indicated, however, that P. major is quite resistant to salt stress, although less than its halophytic congeners. The contents of monovalent ions and specific osmolytes were determined in plant leaves after four-week salt treatments. Salt-treated plants of the three taxa accumulated Na+ and Cl- in response to increasing external NaCl concentrations, to a lesser extent in P. major than in the halophytes; the latter species also showed higher ion contents in the non-stressed plants. In the halophytes, K+ concentration decreased at moderate salinity levels, to increase again under high salt conditions, whereas in P. major K+ contents were reduced only above 400 mM NaCl. Sorbitol contents augmented in all plants, roughly in parallel with increasing salinity, but the relative increments and the absolute values reached did not differ much in the three taxa. On the contrary, a strong (relative) accumulation of proline in response to high salt concentrations (600-800 mM NaCl) was observed in the halophytes, but not in P. major. These results indicate that the responses to salt stress triggered specifically in the halophytes, and therefore the most relevant for tolerance in the genus Plantago are: a higher efficiency in the transport of toxic ions to the leaves, the capacity to use inorganic ions as osmotica, even under low salinity conditions, and the activation, in response to very high salt concentrations, of proline accumulation and K+ transport to the leaves of the plants.

  8. A spatial pattern analysis of the halophytic species distribution in an arid coastal environment.

    Science.gov (United States)

    Badreldin, Nasem; Uria-Diez, J; Mateu, J; Youssef, Ali; Stal, Cornelis; El-Bana, Magdy; Magdy, Ahmed; Goossens, Rudi

    2015-05-01

    Obtaining information about the spatial distribution of desert plants is considered as a serious challenge for ecologists and environmental modeling due to the required intensive field work and infrastructures in harsh and remote arid environments. A new method was applied for assessing the spatial distribution of the halophytic species (HS) in an arid coastal environment. This method was based on the object-based image analysis for a high-resolution Google Earth satellite image. The integration of the image processing techniques and field work provided accurate information about the spatial distribution of HS. The extracted objects were based on assumptions that explained the plant-pixel relationship. Three different types of digital image processing techniques were implemented and validated to obtain an accurate HS spatial distribution. A total of 2703 individuals of the HS community were found in the case study, and approximately 82% were located above an elevation of 2 m. The micro-topography exhibited a significant negative relationship with pH and EC (r = -0.79 and -0.81, respectively, p < 0.001). The spatial structure was modeled using stochastic point processes, in particular a hybrid family of Gibbs processes. A new model is proposed that uses a hard-core structure at very short distances, together with a cluster structure in short-to-medium distances and a Poisson structure for larger distances. This model was found to fit the data perfectly well.

  9. Storage on maternal plants affects light and temperature on requirements during germination in two small seeded halophytes in the arabian deserts

    International Nuclear Information System (INIS)

    Ali, A.; Gairola, S.

    2015-01-01

    Seeds are either stored in a soil seed bank or retained on maternal plants until they are released (aerial seed bank). Though there are extensive studies on the germination requirements of seeds in soil banks of saline habitats, studies conducted for halophytes with aerial seed banks are rare. We assessed the impact of aerial and room-temperature storages on the light and temperature requirements during germination in two small-seeded halophytes: Halocnmum strobilaceum having a short-term aerial seed bank (less than one year) and Halopeplis perfoliata having a longer term aerial seed bank (up to two years). Seed storage in the aerial bank reduced the germination in H. strobilaceum, but either increased it (5-months storage) or had no effect (17-months storage) in H. perfoliata. Seeds of both species that were stored in aerial bank germinated to higher percentages in light than in darkness, indicating that considerable portions of the seed populations are light sensitive. Seeds of H. perfoliata attained less than 5.0 percentage germination in darkness at higher temperatures, compared to more than 90.0 percentage in light. The results support the hypothesis that the aerial seed bank is an adaptive strategy for survival in the saline habitats of the two species. (author)

  10. Halophytes, Algae, and Bacteria Food and Fuel Feedstocks

    Science.gov (United States)

    Hendricks, R. C.; Bushnell, D. M.

    2009-01-01

    The constant, increasing demand for energy, freshwater, and food stresses our ability to meet these demands within reasonable cost and impact on climate while sustaining quality of life. This environmental Triangle of Conflicts between energy, food, and water--while provoked by anthropogenic monetary and power struggles--can be resolved through an anthropogenic paradigm shift in how we produce and use energy, water, and food. With world population (6.6 billion) projected to increase 40 percent in 40 to 60 yr, proper development of saline agriculture and aquaculture is required, as 43 percent of the Earth's landmass is arid or semi-arid and 97 percent of the Earth's water is seawater. In light of this, we seek fuel alternatives in plants that thrive in brackish and saltwater with the ability to survive in arid lands. The development and application of these plants (halophytes) become the primary focus. Herein we introduce some not-so-familiar halophytes and present a few of their benefits, cite a few research projects (including some on the alternatives algae and bacteria), and then set theoretical limits on biomass production followed by projections in terms of world energy demands. Based on diverse arid lands with a total size equivalent to the Sahara Desert (8.6(exp 8) ha, or 2.1(exp 9) acres), these projections show that halophyte agriculture and algae systems can provide for the projected world energy demand.

  11. Biophysical and biochemical constraints imposed by salt stress:Learning from halophyte

    Directory of Open Access Journals (Sweden)

    Bernardo eDuarte

    2014-12-01

    Full Text Available Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world’s 5.2 billion ha of agricultural dryland have already suffered erosion, degradation and salinization. Halophytes typically are considered as plants able to complete their life cycle in environments where the salt concentration is 200 mM NaCl or higher. Different strategies are known to overcome salt stress, as adaptation mechanisms from this type of plants. Salinity adjustment is a complex phenomenon characterized by both biochemical and biophysical adaptations. As photosynthesis is a prerequisite for biomass production, halophytes adapted their electronic transduction pathways and the entire energetic metabolism to overcome the salt excess. The maintenance of ionic homeostasis is in the basis of all cellular stress in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation to biochemical mechanisms, integrating data from photosystem light harvesting complexes, electronic transport chains to the quinone pools, carbon harvesting and energy dissipation metabolism.

  12. Halophytic plants as a component of a bioregenerative life support system for recycling of NaCl contained in human liquid waste.

    Science.gov (United States)

    Balnokin, Yurii; Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    europaea was selected from seven halophytic plant candidates, preliminary chosen from observations in their natural habitats, from our previous investigations and literature data. Characterization of the plant performance was obtained in the experiments on plants grown in water culture in a cultivation chamber under controlled conditions. A model nutrient solution simulating mineralized urine was used for halophyte growing. Under the experimental conditions, S.europaea exhibited high productivity and accumulated Na+ and Cl- in the shoots in high quantities. It has been shown that above-ground organs of S.europaea exhibit high nutritive value, the proteins are enriched with the essential amino acids and displayed high abundance of leucine, aspartic and glutamic acids. The results demonstrate that it is feasible to put into practice permanent Na+ and Cl- recycling in BLSS by a various-aged S.europaea conveyor. Relying on data on distribution of Na+ and Cl- between the plant and growth medium, parameters of the conveyor for permanent ion turnover in the system humans - exometabolites - nutrient solution - S.europaea - humans have been evaluated.

  13. Secondary metabolites as anti-nutritional factors in locally used halophytic forage/fodder

    International Nuclear Information System (INIS)

    Ehsen, S.; Qasim, M.; Abideen, Z.; Rizve, R. F.; Gul, B.; Ansari, R.

    2016-01-01

    Rampant salinity coupled with population explosion necessitates search for suitable alternatives to conventional sources of food both for human and animal consumption. While it may be difficult to change our culinary preferences, training animals to adopt a changed diet of nonconventional salt tolerant plants is easier. Using these wild plants however, requires estimation of undesirable secondary metabolites (SMs) produced during stressful conditions, which may be harmful for health of animals. Some of these anti-nutritional components (total phenols, flavonoids, tannins, nitrates, saponins and oxalates) were determined in 22 halophytes locally used as fodder/forage. Most of the species were perennial shrubs and herbs of an area where environmental conditions like high mean annual temperature (∼35 degree C), low rainfall (< 250mm) with soil mostly dry (average 2 percent moisture) and saline (average EC 13 dSm/sup -1/) supported the growth of halophytes and xerophytes. Values of SMs in the studied plants ranged from 0.13-4.05 percent for total phenols, 0.38-6.99 percent for tannins, 0.15-1.50 percent for flavonoids, 0.10-1.15 percent for nitrates, 0.45-8.68 percent for saponins and 0.36-2.34 percent for oxalates. Most of the species (19) contained low to moderate amount of individual as well as total SMs which were within the non-toxic ranges. However, three species distributed in coastal habitats where average soil salinity (27.67 dSm-1) was considerably higher than inland ones (7.09 dSm-1) had SMs contents above the safe limits. It is evident from these Results that most of these plants contained moderate to low levels of anti-nutritional factors, which lies under the safe limits and hence, could be used as a potential feed source to raise animals, particularly in arid/semiarid areas. Additionally, these plants represents a viable choice as they can be grown without encroaching on agricultural lands and fresh water resources and could promote livestock

  14. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    Science.gov (United States)

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.

  15. Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns

    Directory of Open Access Journals (Sweden)

    Mohamad Al Hassan

    2017-08-01

    Full Text Available We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to “recovery of germination” tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limonium taxa. Salt treatments were also applied to young plants, by 1-month irrigation with NaCl up to 800 mM; then, growth parameters, levels of monovalent and divalent ions (in roots and leaves, and leaf contents of photosynthetic pigments and common osmolytes were determined in control and stressed plants of the four species. Seed germination is the most salt-sensitive developmental phase in Limonium. The different germination behavior of the investigated species appears to be responsible for their geographical range size: L. narbonense and L. virgatum, widespread throughout the Mediterranean, are the most tolerant and the most competitive at higher soil salinities; the endemic L. santapolense and L. girardianum are the most sensitive and more competitive only at lower salinities. During early vegetative growth, all taxa showed a strong tolerance to salt stress, although slightly higher in L. virgatum and L. santapolense. Salt tolerance is based on the efficient transport of Na+ and Cl− to the leaves and on the accumulation of fructose and proline for osmotic adjustment. Despite some species-specific quantitative differences, the accumulation patterns of the different ions were similar in all species, not explaining differences in tolerance, except for the

  16. Screening of 18 species for digestate phytodepuration.

    Science.gov (United States)

    Pavan, Francesca; Breschigliaro, Simone; Borin, Maurizio

    2015-02-01

    This experiment assesses the aptitude of 18 species in treating the digestate liquid fraction (DLF) in a floating wetland treatment system. The pilot system was created in NE Italy in 2010 and consists of a surface-flow system with 180 floating elements (Tech-IA®) vegetated with ten halophytes and eight other wetland species. The species were transplanted in July 2011 in basins filled with different proportions of DLF/water (DLF/w); periodic increasing of the DLF/w ratio was imposed after transplanting, reaching the worst conditions for plants in summer 2012 (highest EC value 7.3 mS cm/L and NH4-N content 225 mg/L). It emerged that only Cynodon dactylon, Typha latifolia, Elytrigia atherica, Halimione portulacoides, Salicornia fruticosa, Artemisia caerulescens, Spartina maritima and Puccinellia palustris were able to survive under the system conditions. Halophytes showed higher dry matter production than other plants. The best root development (up to 40-cm depth) was recorded for Calamagrostis epigejos, Phragmites australis, T. latifolia and Juncus maritimus. The highest nitrogen (10-15 g/m(2)) and phosphorus (1-4 g/m(2)) uptakes were obtained with P. palustris, Iris pseudacorus and Aster tripolium. In conclusion, two halophytes, P. palustris and E. atherica, present the highest potential to be used to treat DLF in floating wetlands.

  17. Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments.

    Science.gov (United States)

    Pardo, T; Bernal, M P; Clemente, R

    2017-07-01

    Phytostabilisation strategies have proven to be an efficient remediation option for mine tailings, but the adequate plant species and amendments have to be carefully selected. A remediation experiment was carried out at the semi-field level in tailings (pH 3.2, ≈1100, 4700 and 5000 mg kg -1 of As, Pb and Zn, respectively) from the mining district of La Unión-Cartagena (SE Spain). A red mud derivative (Fe/Al oxides), its combination with compost, and hydrated lime (Ca hydroxide) were applied in field plots of 0.25 m 2 . After four months of field stabilisation, tailings were transferred unaltered to a plant growth facility, and Atriplex halimus and Zygophyllum fabago (halophytes) were sown. Three months later, trace element (TE) solubility, plant accumulation and chemical speciation in the tailings pore water were studied. In unamended tailings, soluble TEs concentrations were very high (e.g., 40 mg Zn l -1 ), the dominant species being free ions and SO 4 2- - complexes (>70%). The addition of amendments increased tailings pH (6.7-7), reduced TEs solubility and extractability (>80-99%) and changed the dominant species of soluble Al, Cu, Pb and Zn to hydroxides and/or organo-metallic complexes, but increased slightly the extractable As and soluble Tl concentrations. Plants were able to grow only in amended tailings, and both species presented low levels of Al, As, Cd and Zn. Therefore, the use of combined red mud derivative and compost and halophytes was shown to be a good phytostabilisation strategy, although the dose applied must be carefully chosen in order to avoid possible solubilisation of As and Tl. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Alternate-Fueled Flight: Halophytes, Algae, Bio-, and Synthetic Fuels

    Science.gov (United States)

    Hendricks, R. C.

    2012-01-01

    Synthetic and biomass fueling are now considered to be near-term aviation alternate fueling. The major impediment is a secure sustainable supply of these fuels at reasonable cost. However, biomass fueling raises major concerns related to uses of common food crops and grasses (some also called "weeds") for processing into aviation fuels. These issues are addressed, and then halophytes and algae are shown to be better suited as sources of aerospace fuels and transportation fueling in general. Some of the history related to alternate fuels use is provided as a guideline for current and planned alternate fuels testing (ground and flight) with emphasis on biofuel blends. It is also noted that lessons learned from terrestrial fueling are applicable to space missions. These materials represent an update (to 2009) and additions to the Workshop on Alternate Fueling Sustainable Supply and Halophyte Summit at Twinsburg, Ohio, October 17 to 18, 2007.

  19. Growing halophytes floating at sea

    Directory of Open Access Journals (Sweden)

    Ricardo Radulovich

    2017-11-01

    Full Text Available Freshwater shortages are increasingly limiting both irrigated and rainfed agriculture. To expand possibilities for controlled plant production without using land nor freshwater, we cultivated potted halophytes floating at sea that were provided with rain- and seawater. Plantlets of two mangroves (Avicennia germinans and Rhizophora mangle and plants of two herbaceous species, sea purslane (Sesuvium portulacastrum and salt couch grass (Sporobolus virginicus were grown in near-coastal tropical Pacific waters of Costa Rica for 733 days. There were a total of 504 rainless days, including two dry periods of ca. 150 d long each, evidencing prolonged and exclusive reliance on seawater. Pots with a sandy soil mixture and the transplanted plants were placed on low-cost wooden floating rafts with their lower end perforated and immersed for capillary rise of water. Free seawater entry and exit through the bottom from bobbing with waves, which also occasionally added water from the top, effectively controlled soil salinity build-up even during the rainless seasons. Continuous leaching made necessary frequent fertilizer addition. No water deficit symptoms were observed and midday canopy temperature during rainless periods was not significantly different between species or from air temperature. With all-year-round growth, height increase of mangrove plantlets ranged from 208.1 to 401.5 mm yr−1. Fresh biomass production of sea purslane and the grass was 10.9 and 3.0 kg m−2 yr−1 respectively. High yield, edibility and protein content of 10.2% dry weight established sea purslane as a potential crop. While further research is needed, the method evidenced to be a viable plant production option of potentially far-reaching applications.

  20. Land degradation and halophytic plant diversity of milleyha wetland ecosystem (samandag-hatay), Turkey

    International Nuclear Information System (INIS)

    Altay, V.

    2012-01-01

    Investigations were undertaken during 2010-2011 to study effect of human induced land degradation on structure of some halophytic plant communities. Over all 183 taxa of vascular plant were recorded. Out of these 76 were of typical halophytes. The dominant plant taxa were; Phragmites australis, Halimione portulacoides and Bolboschoenus maritimus. The threatened categories of these taxa were identified from the Red Data Book of Turkey together with their distribution. The impact of degradation on the habitats due to land use for agriculture, organic and inorganic waste disposal and housing for tourisitc purposes were identified and conservation measures were outlined in this study. (author)

  1. Soil Microbial Community Structure Evolution along Halophyte Succession in Bohai Bay Wetland

    Directory of Open Access Journals (Sweden)

    Mingyang Cong

    2014-01-01

    Full Text Available It is urgent to recover Bohai Bay costal wetland ecosystem because of covering a large area of severe saline-alkali soil. To explore the relationship between halophyte herbaceous succession and microbial community structure, we chose four local communities which played an important role in improving soil microenvironment. We performed phospholipid fatty acid analysis, measured soil parameters, and evaluated shifts of microbial community structure. Results showed that microbial community structure changed significantly along succession and bacteria community was dominant. Total phospholipid fatty acid content increased in different successional stages but decreased with depth, with similar variations in bacterial and fungal biomass. Soil organic carbon and especially total nitrogen were positively correlated with microbial biomass. Colonization of pioneering salt-tolerant plants Suaeda glauca in saline-alkali bare land changed total soil microorganism content and composition. These results showed that belowground processes were strongly related with aboveground halophyte succession. Fungal/bacterial ratio, Gram-negative/Gram-positive bacteria ratio, total microbial biomass, and fungi and bacteria content could indicate the degree of succession stages in Bohai Bay wetland ecosystem. And also these findings demonstrated that microbial community biomass and composition evolved along with vegetation succession environmental variables.

  2. Halophyte vegetation influences in salt marsh retention capacity for heavy metals

    International Nuclear Information System (INIS)

    Reboreda, Rosa; Cacador, Isabel

    2007-01-01

    We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system. - The type of vegetal cover can affect the overall retention capacity of a salt marsh as well as the functioning of the salt marsh as a sink or source of metals to the estuarine system

  3. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    Science.gov (United States)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  4. [Isolation, identification and characterization of ACC deaminase-containing endophytic bacteria from halophyte Suaeda salsa].

    Science.gov (United States)

    Teng, Songshan; Liu, Yanping; Zhao, Lei

    2010-11-01

    We Isolated and characterized 1-aminocyclopropane-1-carboxylate (ACC) deaminase-containing endophytic bacteria from halophyte Suaeda salsa to understand the interactions between endophytes and halophyte. ACC deaminase-containing endophytic bacteria were isolated from root, stalk and leaf of Suaeda salsa and were identified based on morphological, physiological-biochemical properties, API and 16S rRNA sequence analysis. Isolates were evaluated for their ACC deaminase, antifungal, protease activity, siderophores and phytohormones, such as indole-3-acetic acid, gibberellic acid and abscisic acid production, as well as atmospheric nitrogen fixation and phosphate solubilization. Four ACC deaminase-containing endophytic bacteria strains named as LP11, SS12, TW1 and TW2 were isolated and identified as Pseudomonas oryzihabitans, Pseudomonas sp., Pantoea agglomerans and Pseudomonas putida respectively. All the strains possessed the phosphate-solubilizing ability and could produce siderophores and phytohormones more or less. None of them could fix atmospheric nitrogen or produce protease. Only strain SS12 showed antagonism against two phytopathogenic fungi viz Fusarium oxysporum f. sp. conglutinans and F. oxysporum f. sp. cucumerinum. ACC deaminase-containing endophytic bacteria of Pseudomonas sp. and Pantoea sp. isolated from halophyte Suaeda salsa have abundant biological characteristics related to plant growth promotion, stress homeostasis regulation and biocontrol activity.

  5. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes

    International Nuclear Information System (INIS)

    Qasim, M.; Aziz, I.; Gul, B.

    2016-01-01

    This study was conducted to determine the most effective solvent for extraction of polyphenols and antioxidant activity of medicinally important coastal halophytes (Thespesia populneoides, Salvadora persica, Ipomoea pes-caprae, Suaeda fruticosa and Pluchea lanceolata) known for high antioxidant potential. Five different solvents (water, 80% methanol, 80% ethanol, acetone and chloroform) were used to quantify polyphenols including total phenolic (TPC), total flavonoid (TFC) and proanthocyanidin contents (PC) and antioxidant capacity using DPPH radical scavenging and Ferric reducing antioxidant power (FRAP) activities. Among solvents of different polarities 80% methanol appeared most effective for polyphenol extraction. Thespesia populneoides had the highest polyphenols (TPC, TFC and PC) followed by Salvadora persica. Highest antioxidant activity was also found in T. populneoides and S. persica using the same solvent (80% methanol) which appeared better than synthetic antioxidants (BHA and BHT). The correlation analyses of each solvent showed strong to weak relationships among all studied parameters with maximum values (r and R2) in methanol followed by ethanol and water. Weaker correlation of acetone and chloroform indicates low capacity of these solvents both for polyphenol extraction and antioxidant activity. Our results reveal that aqueous methanol extracts of coastal halophytes had comparatively higher antioxidant activity than commercial antioxidants which indicate both their prospective efficacy and potential to replace synthetic derivatives from edible and medicinal products. (abstract)

  6. Salt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella salsugineum, a Halophytic Relative of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yana Kazachkova

    2016-08-01

    Full Text Available The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress, as well as providing a food source on marginal lands. However, despite being salt-tolerant plants, the seeds of many halophytes will not germinate on saline soils, yet little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5 and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate

  7. Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora.

    Science.gov (United States)

    Mateos-Naranjo, Enrique; Andrades-Moreno, Luis; Davy, Anthony J

    2013-02-01

    The non-essential element silicon is known to improve plant fitness by alleviating the effects of biotic and abiotic stresses, particularly in crops. However, its possible role in the exceptional tolerance of halophytes to salinity has not been investigated. This study reports the effect of Si supply on the salinity tolerance of the halophytic grass Spartina densiflora; plants were treated with NaCl (0-680 mM), with or without silicon addition of 500 μM, in a glasshouse experiment. Plant responses were examined using growth analysis, combined with measurements of gas exchange, chlorophyll fluorescence and photosynthetic pigment concentrations. In addition, tissue concentrations of aluminium, calcium, copper, iron, potassium, magnesium, sodium, phosphorus and silicon were determined. Although high salinity decreased growth, this effect was alleviated by treatment with Si. Improved growth was associated with higher net photosynthetic rate (A), and greater water-use efficiency (WUE). Enhanced A at high salinity could be explained by beneficial effects of Si on the photochemical apparatus, and on chlorophyll concentrations. Ameliorative effects of Si were correlated with reduced sodium uptake, which was unrelated to a reduction in the transpiration rate, since Si-supplemented plants had higher stomatal conductances (G(s)). These plants also had higher tissue concentrations of essential nutrients, suggesting that Si had a positive effect on the mineral nutrient balance in salt-stressed plants. Si appears to play a significant role in salinity tolerance even in a halophyte, which has other, specific salt-tolerance mechanisms, through diverse protective effects on the photosynthetic apparatus, water-use efficiency and mineral nutrient balance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. THE GENESIS OF PHOTOSYNTHESIS TYPES AS THE BASIS OF ECOLOGICAL EXPANSION OF HALOPHYTIC PLANTS

    Directory of Open Access Journals (Sweden)

    Pyurko O.Ye.

    2011-12-01

    Full Text Available The C3, C4, and CAM photosynthesis types are considerably differed by CO2 absorption intensity, its biochemistry, saturation level, water productivity, biological productivity, and other different features, which secure the plants survival at stress and extreme conditions. The aim of current research was to discover the photosynthesis peculiarities at halophytic plants species (Salicornia europaea L., Halimione pedunculata, Artemisia santonica L., Plantago lanceolata L. by salinity at model and natural conditions, and to generalize data in historical aspect. It was constituted that S. europaea L. was characterized by C3 photosynthesis passage which was switched on CAM CO2 fixation under soil salinity conditions till 4-4,5 %, but glycophyte A.santonica was immanent C4assimilation way of aspartate type.Analysis of literature data and own research allows to find out that in majority the C3photosynthesis dependence from environmental factors described by determinate curve with matched mathematical expression. It was suggested to generalize the data by Lagrange polynomial. The obtained results proved that the pattern of photosynthesis evolution is: C3 → C4 → CAM with commute possibilities: C3 → CAM; C4 → CAM.

  9. Exploration for the Salinity Tolerance-Related Genes from Xero-Halophyte Atriplex canescens Exploiting Yeast Functional Screening System

    Directory of Open Access Journals (Sweden)

    Gang Yu

    2017-11-01

    Full Text Available Plant productivity is limited by salinity stress, both in natural and agricultural systems. Identification of salt stress-related genes from halophyte can provide insights into mechanisms of salt stress tolerance in plants. Atriplex canescens is a xero-halophyte that exhibits optimum growth in the presence of 400 mM NaCl. A cDNA library derived from highly salt-treated A. canescens plants was constructed based on a yeast expression system. A total of 53 transgenic yeast clones expressing enhanced salt tolerance were selected from 105 transformants. Their plasmids were sequenced and the gene characteristics were annotated using a BLASTX search. Retransformation of yeast cells with the selected plasmids conferred salt tolerance to the resulting transformants. The expression patterns of 28 of these stress-related genes were further investigated in A. canescens leaves by quantitative reverse transcription-PCR. In this study, we provided a rapid and robust assay system for large-scale screening of genes for varied abiotic stress tolerance with high efficiency in A. canescens.

  10. Comparison of Seed Germination and Recovery Responses of a Salt Marsh Halophyte Halopeplis Perfoliata to Osmotic and Ionic Treatments

    International Nuclear Information System (INIS)

    Rasool, S. G.; Hameed, A.; Ahmed, M. Z.; Khan, M. A.

    2016-01-01

    Salinity affects seed germination of halophytes by inducing ionic toxicity, osmotic constraint or both. Information about the effects of salinity on seed germination of a large number of halophytes exists, but generally little is known about the basis of salinity-induced germination inhibition. In order to partition salinity effects, we studied seed germination and recovery responses of a coastal salt marsh halophyte halopeplis perfoliata to different isotonic treatments (Psi/sub S/: -0.5, -1.0, -1.5, -2.0 and -2.5, MPa) of various salts and polythylene glycol (PEG) under two light regimes (12-h light photo period and 24-h complete darkness). Highest seed germination was observed in distilled water under 12-h light photo period and reduction in osmotic potential of the solution decreased seed germination. However, some seeds of H. perfoliata could germinate in as low as -2.5 MPa (600 mM NaCl), which is equivalent to seawater salinity. Sea-salt treatment was more inhibitory than isotonic NaCl at the lowest osmotic potential (Psi/sub S/ -2.5 MPa). Generally, chloride salts with lowest Psi/sub S/ inhibited germination more than the isotonic sulfate salts. Comparable germination responses of the seeds in NaCl and isotonic PEG treatments as well as high recovery of germination in un-germinated seeds after alleviation of NaCl salinity indicated prevalence of osmotic constraint. These results thus indicate that the seeds of H. perfoliata could tolerate high levels of a wide variety of salts found in soil. (author)

  11. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  12. Effect of climate change on halophytic grasslands loss and its impact in the viability of Gopherus flavomarginatus

    Directory of Open Access Journals (Sweden)

    Jorge Luis Becerra-López

    2017-08-01

    Full Text Available The decrease of the habitat is one of the main factors that affect the survival of G. flavomarginatus. This study assesses the halophytic grasslands loss over a period of 30 years in the distribution area of the Bolson tortoise and the effects of climate change on the habitat suitability of these grasslands and its possible impact on this tortoise. Grassland loss was assessed by an analysis of symmetric differences and the habitat suitability model was carried out by the method of overlapping layers raster. Our results showed a grassland loss of 63.7%; however, our current habitat suitability model points out that much of the grassland loss has occurred where the environmental conditions are suitable. These results suggest that anthropic activity is a main factor in the habitat disturbance in the study area. Likewise, the models for years 2050 and 2070 under the criteria RCP 2.6, RCP 4.5, RCP 6.0, suggest that anthropic activity will continue be the main cause of the grassland loss. Therefore, considering the association between the Bolson tortoise and grassland halophyte Hilaria mutica, which comprises around 60% of its diet, the viability of the Bolson tortoise depends largely on strategies aimed at protecting the soil that allow the presence of this grassland.

  13. Phytohormone profiling in relation to osmotic adjustment in NaCl-treated plants of the halophyte tomato wild relative species Solanum chilense comparatively to the cultivated glycophyte Solanum lycopersicum

    Czech Academy of Sciences Publication Activity Database

    Gharbi, E.; Martínez, J. L.; Benahmed, H.; Hichri, I.; Dobrev, Petre; Motyka, Václav; Quineta, M.; Lutts, S.

    2017-01-01

    Roč. 258, MAY (2017), s. 77-89 ISSN 0168-9452 R&D Projects: GA ČR(CZ) GA16-14649S Institutional support: RVO:61389030 Keywords : antioxidant enzyme-activities * improves salinity tolerance * enhances salt tolerance * abscisic-acid * water-stress * na+-exclusion * accumulation * ethylene * growth * arabidopsis * Osmotic adjustment * Halophyte * Salinity * Solanum chilense * Hormone * Tomato Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.437, year: 2016

  14. Glyceride structure and sterol composition of SOS-7 halophyte oil

    Directory of Open Access Journals (Sweden)

    El-Shami, S. M.

    1991-06-01

    Full Text Available Glyceride structure of SOS-7 halophyte oil was studied using the lipase hydrolysis technique. This halophyte sample was obtained from 1988 harvest planted in Ghardaka, on the border of the Red Sea, Egypt. The oilseed was ground and extracted for its oil using commercial hexane in Soxhlet extractor. The unsaturated fatty acids were found centralized in the 2-position of triglycerides, whereas oleic and linolenic acids showed more preference for this position. It was found that P3 was the major component of GS3, whereas P2L and PStL; PL2, POL and StL2 are predominating among GS2U and GSU3 respectively. L3 manifested itself as the principal constituent of GU3 type. Sterol composition of the halophyte oil was determined by GLC as TMS derivative. It was found that the oil contains campsterol, β-sitosterol, stigmasterol and 7-stigmasterol of which 7-stigmasterol is the major sterol and constitute 52.4%.

    Se ha estudiado usando la técnica de hidrólisis mediante lipasa la estructura glicerídica de aceite de halofito SOS-7. Esta muestra de halofito fue obtenida a partir de una cosecha de 1988 plantada en Ghardaka, en la orilla del Mar Rojo, Egipto. Para la extracción del aceite de la semilla molida se utilizó hexano comercial en extractor Soxhlet. Los ácidos grasos insaturados se encontraron centralizados en la posición 2 de los triglicéridos, siendo los ácidos oleico y linolénico los que mostraron mayor preferencia por esta posición. Se encontró que P3 fue el componente mayoritario de GS3, mientras que P2L y PStL; PL2 POL y StL2 son los predominantes para GS2U y GSU3 respectivamente. L3 se manifestó como el principal constituyente de los GU3. La composición esterólica del aceite de halofito se determinó por GLC como derivados del

  15. NaCl protects against Cd and Cu-induced toxicity in the halophyte Atriplex halimus

    Energy Technology Data Exchange (ETDEWEB)

    Bankaji, I.; Sleimi, N.; Gómez-Cadenas, A.; Pérez-Clemente, R.M.

    2016-07-01

    The objective of the present work was to evaluate the extent of Cd- and Cu-induced oxidative stress and the antioxidant response triggered in the halophyte species Atriplex halimus after metallic trace elements exposure. Plants were treated for one month with Cd2+ or Cu2+ (400 µM) in the absence or presence of 200 mM NaCl in the irrigation solution. The interaction between salinity and heavy metal stress was analyzed in relation to plant growth, tissue ion contents (Na+, K+ and Mg2+), oxidative damage and antioxidative metabolism. Data indicate that shoot and root weight significantly decreased as a consequence of Cd2+- or Cu2+-induced stress. Metallic stress leads to unbalanced nutrient uptake by reducing the translocation of K+ and Mg2+ from the root to the shoot. The levels of malondialdehyde increased in root tissue when Cd, and especially Cu, were added to the irrigation solution, indicating that oxidative damage occurred. Results showed that NaCl gave a partial protection against Cd and Cu induced toxicity, although these contaminants had distinct influence on plant physiology. It can be concluded that salinity drastically modified heavy metal absorption and improved plant growth. Salinity also decreased oxidative damage, but differently in plants exposed to Cd or Cu stress.

  16. Reduced Tonoplast Fast-Activating and Slow-Activating Channel Activity Is Essential for Conferring Salinity Tolerance in a Facultative Halophyte, Quinoa1[C][W][OA

    Science.gov (United States)

    Bonales-Alatorre, Edgar; Shabala, Sergey; Chen, Zhong-Hua; Pottosin, Igor

    2013-01-01

    Halophyte species implement a “salt-including” strategy, sequestering significant amounts of Na+ to cell vacuoles. This requires a reduction of passive Na+ leak from the vacuole. In this work, we used quinoa (Chenopodium quinoa) to investigate the ability of halophytes to regulate Na+-permeable slow-activating (SV) and fast-activating (FV) tonoplast channels, linking it with Na+ accumulation in mesophyll cells and salt bladders as well as leaf photosynthetic efficiency under salt stress. Our data indicate that young leaves rely on Na+ exclusion to salt bladders, whereas old ones, possessing far fewer salt bladders, depend almost exclusively on Na+ sequestration to mesophyll vacuoles. Moreover, although old leaves accumulate more Na+, this does not compromise their leaf photochemistry. FV and SV channels are slightly more permeable for K+ than for Na+, and vacuoles in young leaves express less FV current and with a density unchanged in plants subjected to high (400 mm NaCl) salinity. In old leaves, with an intrinsically lower density of the FV current, FV channel density decreases about 2-fold in plants grown under high salinity. In contrast, intrinsic activity of SV channels in vacuoles from young leaves is unchanged under salt stress. In vacuoles of old leaves, however, it is 2- and 7-fold lower in older compared with young leaves in control- and salt-grown plants, respectively. We conclude that the negative control of SV and FV tonoplast channel activity in old leaves reduces Na+ leak, thus enabling efficient sequestration of Na+ to their vacuoles. This enables optimal photosynthetic performance, conferring salinity tolerance in quinoa species. PMID:23624857

  17. Remediation of saline soils contaminated with crude oil using the halophyte Salicornia persica in conjunction with hydrocarbon-degrading bacteria.

    Science.gov (United States)

    Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza

    2018-05-08

    The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Cd and Ni transport and accumulation in the halophyte Sesuvium portulacastrum: implication of organic acids in these processes

    Directory of Open Access Journals (Sweden)

    Tahar eGhnaya

    2015-03-01

    Full Text Available The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 µM Cd, 100 µM Ni and the combination of 50 µM Cd + 100 µM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants individually exposed to heavy metal application than in those subjected to the combined treatment Cd + Ni, suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However a minor relationship was observed between metal application and fumaric, malic and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species.

  19. The relationship between silicon availability, and growth and silicon concentration of the salt marsh halophyte Spartina anglica

    NARCIS (Netherlands)

    De Bakker, N.; Hemminga, M.A.; Van Soelen, J.

    1999-01-01

    Analysis of silicon concentrations of various halophytes from salt marshes in the S.W. Netherlands shows that the silicon concentration of Spartina anglica (Gramineae) is relatively high. To study the influence of dissolved Si concentrations on growth and plant tissue concentrations of S. anglica,

  20. Streptomyces halophytocola sp. nov., an endophytic actinomycete isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Qin, Sheng; Bian, Guang-Kai; Tamura, Tomohiko; Zhang, Yue-Ji; Zhang, Wen-Di; Cao, Cheng-Liang; Jiang, Ji-Hong

    2013-08-01

    A novel actinomycete, designated KLBMP 1284(T), was isolated from the surface-sterilized stems of a coastal halophyte Tamarix chinensis Lour. collected from the city of Nantong, Jiangsu Province, east China. The strain was found to have morphological and chemotaxonomic characteristics typical of members of the genus Streptomyces. Analysis of the 16S rRNA gene sequence of strain KLBMP 1284(T) revealed that the strain formed a distinct clade within the phylogenetic tree based on 16S rRNA gene sequences and the highest sequence similarity (99.43 %) was to Streptomyces sulphureus NRRL B-1627(T). 16S rRNA gene sequence similarity to other species of the genus Streptomyces was lower than 97 %. Based on DNA-DNA hybridization values and comparison of morphological and phenotypic data, KLBMP 1284(T) could be distinguished from the closest phylogenetically related species, Streptomyces sulphureus NRRL B-1627(T). Thus, based on these data, it is evident that strain KLBMP 1284(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces halophytocola sp. nov. is proposed. The type strain is KLBMP 1284(T) (= KCTC 19890(T) = NBRC 108770(T)).

  1. The SbASR-1 gene cloned from an extreme halophyte Salicornia brachiata enhances salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Jha, Bhavanath; Lal, Sanjay; Tiwari, Vivekanand; Yadav, Sweta Kumari; Agarwal, Pradeep K

    2012-12-01

    Salinity severely affects plant growth and development. Plants evolved various mechanisms to cope up stress both at molecular and cellular levels. Halophytes have developed better mechanism to alleviate the salt stress than glycophytes, and therefore, it is advantageous to study the role of different genes from halophytes. Salicornia brachiata is an extreme halophyte, which grows luxuriantly in the salty marshes in the coastal areas. Earlier, we have isolated SbASR-1 (abscisic acid stress ripening-1) gene from S. brachiata using cDNA subtractive hybridisation library. ASR-1 genes are abscisic acid (ABA) responsive, whose expression level increases under abiotic stresses, injury, during fruit ripening and in pollen grains. The SbASR-1 transcript showed up-regulation under salt stress conditions. The SbASR-1 protein contains 202 amino acids of 21.01-kDa molecular mass and has 79 amino acid long signatures of ABA/WDS gene family. It has a maximum identity (73 %) with Solanum chilense ASR-1 protein. The SbASR-1 has a large number of disorder-promoting amino acids, which make it an intrinsically disordered protein. The SbASR-1 gene was over-expressed under CaMV 35S promoter in tobacco plant to study its physiological functions under salt stress. T(0) transgenic tobacco seeds showed better germination and seedling growth as compared to wild type (Wt) in a salt stress condition. In the leaf tissues of transgenic lines, Na(+) and proline contents were significantly lower, as compared to Wt plant, under salt treatment, suggesting that transgenic plants are better adapted to salt stress.

  2. Antioxidant and antimicrobial activities of the edible medicinal halophyte Tamarix gallica L. and related polyphenolic constituents.

    Science.gov (United States)

    Ksouri, Riadh; Falleh, Hanen; Megdiche, Wided; Trabelsi, Najla; Mhamdi, Baya; Chaieb, Kamel; Bakrouf, Amina; Magné, Christian; Abdelly, Chedly

    2009-08-01

    Tamarix gallica is a halophytic species having hepatotonic and stimulant properties, as it was traditionally used in the treatment of various liver disorders. Leaf and flower infusion have anti-inflammatory and anti-diarrheic properties. In this work, we have investigated antioxidant and antimicrobial activities of leaf and flower extracts and their phenolic composition. Results showed that flowers exhibit a higher antioxidant activity as compared to the leaves, IC(50) values of the flower extracts are being 1.3 (beta-carotene bleaching) to 19 times (lipid peroxidation inhibition) lower than those for leaves. Accordingly, flower extracts exhibited the highest total phenolic content (135.35 mgGAE/gDW) and RP-HPLC analysis showed that syringic acid, isoquercitin as well as catechin were the major phenolics. Furthermore, Tamarix extracts showed appreciable antibacterial properties against human pathogen strains. The mean inhibition zone was from 0 to 6.5mm when the concentration increased from 2 to 100mg/l. The strongest activity was recorded against Micrococcus luteus and the lowest activity was observed against Escherichia coli. Moreover, organ extracts show a weakly to moderate activity against the tested Candida. These findings suggest that Tamarix may be considered as an interesting source of antioxidants for therapeutic or nutraceutical industries and for food manufactures.

  3. Pseudonocardia nantongensis sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte Tamarix chinensis Lour.

    Science.gov (United States)

    Xing, Ke; Qin, Sheng; Bian, Guang-Kai; Zhang, Yue-Ji; Zhang, Wen-Di; Dai, Chuan-Chao; Liu, Chang-Hong; Li, Wen-Jun; Jiang, Ji-Hong

    2012-11-01

    A novel isolate, designated strain KLBMP 1282(T) was isolated from the surface-sterilized leaves of a coastal halophyte Tamarix chinensis Lour., collected from Nantong, Jiangsu Province, east of China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that this strain belongs to the genus Pseudonocardia, being most closely related to Pseudonocardia kongjuensis LM 157(T) (98.33 %), Pseudonocardia autotrophica IMSNU 20050(T) (97.77 %), Pseudonocardia endophytica YIM 56035(T) (97.63 %), Pseudonocardia ammonioxydans H9 (T) (97.62 %) and Pseudonocardia compacta IMSNU 20111(T) (97.56 %); similarity to other type strains of the genus Pseudonocardia was <97.5 %. Chemotaxonomic data confirmed the affiliation of strain KLBMP 1282(T) to the genus Pseudonocardia. Strain KLBMP 1282(T) contained MK-8(H(4)) as the predominant ubiquinone and iso-C(16:0) as the major fatty acid. The polar lipids detected in strain KLBMP 1282(T) were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides, one unknown phospholipid and four unknown glycolipids. The DNA G + C content of strain KLBMP 1282(T) was 73.1 mol %. The results of DNA-DNA hybridizations and the phylogenetic analysis, together with the phenotypic and biochemical tests, allowed the differentiation of strain KLBMP 1282(T) from strains of other recognized Pseudonocardia species. Therefore, strain KLBMP 1282(T) represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia nantongensis sp. nov. is proposed. The type strain is KLBMP 1282(T) (=KCTC 29053(T) = NBRC 108677(T)).

  4. Rethinking the role of edaphic condition in halophyte vegetation degradation on salt marshes due to coastal defense structure

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Bai, Junhong; Li, Shanze; Zhang, Shuyan

    2018-02-01

    Determining how human disturbance affects plant community persistence and species conservation is one of the most pressing ecological challenges. The large-scale disturbance form defense structures usually have a long-term and potential effect on phytocommunity in coastal saltmarshes. Coastal defense structures usually remove the effect of tidal wave on tidal salt marshes. As a consequence, edaphic factors such as the salinity and moisture contents are disturbed by tidal action blocking. However, few previous studies have explicitly addressed the response of halophyte species persistence and dynamics to the changing edaphic conditions. The understanding of the response of species composition in seed banks and aboveground vegetation to the stress is important to identify ecological effect of coastal defense structures and provide usefully insight into restoration. Here, we conducted a field study to distinguish the density, species composition and relationships of seed bank with aboveground vegetation between tidal flat wetlands with and without coastal defense structures. We also addressed the role of edaphic condition in vegetation degradation caused by coastal defense structures in combination with field monitor and greenhouse experiments. Our results showed the density of the seed bank and aboveground vegetation in the tidal flat without coastal defense structures was significantly lower than the surrounded flat with coastal defense structures. A total of 14 species were founded in the surrounded flat seed bank and 11 species in the tidal flat, but three species were only recorded in aboveground vegetation of the tidal flat which was much lower than 24 aboveground species in the surrounded flat. The absent of species in aboveground vegetation contributed to low germination rate which depend on the edaphic condition. The germination of seeds in the seed bank were inhabited by high soil salinity in the tidal flat and low soil moisture in the surrounded flat. Our

  5. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and tr...

  6. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum

    International Nuclear Information System (INIS)

    Redondo-Gomez, Susana; Mateos-Naranjo, Enrique; Andrades-Moreno, Luis

    2010-01-01

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l -1 on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg -1 . The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l -1 Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P N ). Reductions in P N could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

  7. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum

    Energy Technology Data Exchange (ETDEWEB)

    Redondo-Gomez, Susana, E-mail: susana@us.es [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain); Mateos-Naranjo, Enrique; Andrades-Moreno, Luis [Departamento de Biologia Vegetal y Ecologia, Facultad de Biologia, Universidad de Sevilla, Apartado 1095, 41080 Sevilla (Spain)

    2010-12-15

    The potential of the extreme halophyte Arthrocnemum macrostachyum was examined to determine its tolerance and ability to accumulate cadmium for phytoremediation purposes. A glasshouse experiment was designed to investigate the effect of cadmium from 0 to 1.35 mmol l{sup -1} on the growth and the photosynthetic apparatus of A. macrostachyum by measuring chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. We also determined ash, cadmium, calcium, copper, iron, manganese, magnesium, phosphorous, sodium, and zinc concentrations, and C/N ratio. A. macrostachyum demonstrated hypertolerance to cadmium stress; it did not show phytotoxicity at shoot concentration as high as 70 mg kg{sup -1}. The bioaccumulator factors exceeded the critical value (1.0) for all Cd treatments, and the transport factors indicated that this species has higher ability to transfer Cd from roots to shoots at lower Cd concentrations. At 1.35 mmol l{sup -1} Cd A. macrostachyum showed 25% biomass reduction after a month of treatment. Long-term effects of cadmium on the growth were mainly determined by variations in net photosynthetic rate (P{sub N}). Reductions in P{sub N} could be accounted by higher dark respiration and lower pigment concentrations. Finally, A. macrostachyum has the basic characteristics of a Cd-hyperaccumulator and may be useful for restoring Cd-contaminated sites.

  8. Determination of oil and fatty acids concentration in seeds of coastal halophytic Sueada aegyptica plant

    Directory of Open Access Journals (Sweden)

    Tahereh Assadi

    2013-04-01

    Full Text Available Background: Suaeda aegyptica (S. aegyptica species belong to the Chenepodiaceae family, the second largest family in the world of plants kingdom. It is indigenous to arid and semi-arid regions of the world and salty coastal zones Persian Gulf of Iran. It is an annual succulent halophyte plant which is characterized by producing oily seeds, high growth rate and large number of biomass. The aim of this study was analysis and determination of oil and fatty acids concentration in the S. aegyptica seed. Material and Methods: The seeds of S. aegyptica were collected form coastal zones of Persian Gulf in Bushehr province, washed and dried. The fatty acids content of the dried seeds were extracted in n-hexane solvent by soxhellet apparatus. The residue of n-hexane in oily phase was evaporated by rotary evaporator and remaining oil was collected for fatty acids analysis. In the presence of potassium hydroxide and BF3 by refluxing for 30 minutes, the methyl ester derivative of fatty acids were produced. Then the resulted derivatives were analyzed by gas chromatography (GC-FID. Results: The seeds of S. aegyptica contains eight fatty acids as: Pelargonic (C9, Capric (C10, Undecylic (C11, Tridecylic (C13, Myristic (C14, Palmitic (C16, Stearic (C18, Linoleic (18:2 and Linolenic (18:3. Average oil content in seeds 014/0 ± 87 / percent. Conclusion: The ratio of unsaturated fatty acids was higher than the saturated ones. Linoleic and Palmitic acids are major unsaturated and saturated fatty acids of S. aegyptica seed respectively.

  9. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    Science.gov (United States)

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  10. A novel plant-based-sea water culture media for in vitro cultivation and in situ recovery of the halophyte microbiome

    Directory of Open Access Journals (Sweden)

    Mohamed Y. Saleh

    2017-11-01

    Full Text Available The plant-based-sea water culture medium is introduced to in vitro cultivation and in situ recovery of the microbiome of halophytes. The ice plant (Mesembryanthemum crystallinum was used, in the form of juice and/or dehydrated plant powder packed in teabags, to supplement the natural sea water. The resulting culture medium enjoys the combinations of plant materials as rich source of nutrients and sea water exercising the required salt stress. As such without any supplements, the culture medium was sufficient and efficient to support very good in vitro growth of halotolerant bacteria. It was also capable to recover their in situ culturable populations in the phyllosphere, ecto-rhizosphere and endo-rhizosphere of halophytes prevailing in Lake Mariout, Egypt. When related to the total bacterial numbers measured for Suaeda pruinosa roots by quantitative-PCR, the proposed culture medium increased culturability (15.3–19.5% compared to the conventional chemically-synthetic culture medium supplemented with (11.2% or without (3.8% NaCl. Based on 16S rRNA gene sequencing, representative isolates of halotolerant bacteria prevailed on such culture medium were closely related to Bacillus spp., Halomonas spp., and Kocuria spp. Seed germination tests on 25–50% sea water agar indicated positive interaction of such bacterial isolates with the germination and seedlings’ growth of barley seeds.

  11. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins

    OpenAIRE

    Barkla, Bronwyn J.; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-01-01

    Background Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. Results In...

  12. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  13. Ecological Performances of Plant Species of Halophilous Hydromorphic Ecosystems

    Directory of Open Access Journals (Sweden)

    Maria Speranza

    2015-12-01

    Full Text Available Coastal wetlands are very special environments, characterized by soils permanently or seasonally saturated by salt or brackish water. They host microorganisms and plants able to adapt to anoxic conditions. This paper proposes a review of recent scientific papers dealing with the study of coastal wetlands from different points of view. Some studies examine the species composition and the pattern of the spatial distribution of plant communities, depending on the depth of the salt water table, as well as on other related factors. A significant number of studies analyse instead the coastal wetlands in their ability for the phytoremediation (phytostabilisation and/or phytoextraction and highlight the importance of interactions between the rhizosphere of the halophytes and the physical environment. Finally, more recent studies consider the plant species of the coastal wetlands as a source of useful products (food, feed, oils and expose the results of promising researches on their cultivation.

  14. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy.

    Science.gov (United States)

    Wang, Lei; Huang, Zhenying; Baskin, Carol C; Baskin, Jerry M; Dong, Ming

    2008-11-01

    Suaeda aralocaspica is a C4 summer annual halophyte without Kranz anatomy that is restricted to the deserts of central Asia. It produces two distinct types of seeds that differ in colour, shape and size. The primary aims of the present study were to compare the dormancy and germination characteristics of dimorphic seeds of S. aralocaspica and to develop a conceptual model of their dynamics. Temperatures simulating those in the natural habitat of S. aralocaspica were used to test for primary dormancy and germination behaviour of fresh brown and black seeds. The effects of cold stratification, gibberellic acid, seed coat scarification, seed coat removal and dry storage on dormancy breaking were tested in black seeds. Germination percentage and recovery responses of brown seeds, non-treated black seeds and 8-week cold-stratified black seeds to salt stress were tested. Brown seeds were non-dormant, whereas black seeds had non-deep Type 2 physiological dormancy (PD). Germination percentage and rate of germination of brown seeds and of variously pretreated black seeds were significantly higher than those of non-pretreated black seeds. Exposure of seeds to various salinities had significant effects on germination, germination recovery and induction into secondary dormancy. A conceptual model is presented that ties these results together and puts them into an ecological context. The two seed morphs of S. aralocaspica exhibit distinct differences in dormancy and germination characteristics. Suaeda aralocaspica is the first cold desert halophyte for which non-deep Type 2 PD has been documented.

  15. The changes in contents of Salt Marsh Species and the importance of Edaphic Physiochemical Factors

    International Nuclear Information System (INIS)

    Kutbay, Hamdi G.; Demir, M.

    2001-01-01

    The changes in nutrient contents of some halophytic plants which occurred in a salt marsh located in the vicinity of Bafra town, on the north coast of Turkey during the growing seasons were investigated. Contents of So4, Cl, Na, K, Ca and Mg changed during the growing season in most species. High correlation coefficients were obtained between plant ion and soil ion contents. It has been found that the most prevalent ion was Na in the plant and soil samples. It was also shown that species diversity was quite low in the study area, and species diversity was highly correlated with so4/Cl ratio, electrical conductivity and pH. (author)

  16. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

    Science.gov (United States)

    Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon

    2013-07-01

    Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.

  17. Radionuclides transfer into halophytes growing in tidal salt marshes from the Southwest of Spain

    International Nuclear Information System (INIS)

    Luque, Carlos J.; Vaca, Federico; García-Trapote, Ana; Hierro, Almudena; Bolívar, Juan P.; Castellanos, Eloy M.

    2015-01-01

    Estuaries are sinks of materials and substances which are released directly into them or transported from rivers that drain the basin. It is usual to find high organic matter loads and fine particles in the sediments. We analyzed radionuclide concentrations ("2"1"0Po, "2"3"0Th, "2"3"2Th, "2"3"4U, "2"3"8U, "2"2"6Ra, "2"2"8Th, "2"2"8Ra, "4"0K) in sediments and three different organs (roots, stems and leaves) of three species of halophytes plants (Spartina maritima, Spartina densiflora and Sarcocornia perennis). The study was carried out in two tidal salt marshes, one polluted by U-series radionuclides and another nearby that was unpolluted and was used as a control (or reference) area. The Tinto River salt marsh shows high levels of U-series radionuclides coming from mining and industrial discharges. On the contrary, the unperturbed Piedras River salt marsh is located about 25 km from the Tinto marsh, and shows little presence of contaminants and radionuclides. The results of this work have shown that natural radionuclide concentrations (specially the U-isotopes) in the Tinto salt marsh sediments are one order of magnitude higher than those in the Piedras marsh. These radionuclide enhancements are reflected in the different organs of the plants, which have similar concentration increases as the sediments where they have grown. Finally, the transfer factor (TF) of the most polluted radionuclides (U-isotopes and "2"1"0Po) in the Tinto area are one order of magnitude higher than in the Piedras area, indicating that the fraction of each radionuclide in the sediment originating from the pollution is more available for the plants than the indigenous fraction. This means that the plants of the salt marshes are unhelpful as bioindicators or for the phytoremediation of radionuclides. - Highlights: • Radionuclides were analyzed in sediments and plants in unpolluted salt marshes. • Plants uptake radionuclides in all organs in both salt marshes. • The transfer factors

  18. Analysis of oilseed of Halophytic species

    Directory of Open Access Journals (Sweden)

    Parto Roshandel

    2015-07-01

    Full Text Available Seeds of Atriplex griffithii, Haloxylon ammodendron, Salicornia europaea and Salsola yazdiana were analyzed to determine their potential as sources of edible oil. The quantity of total oil varied from 13.8% in Atriplex griffithii to 20.9% in H. ammodendron. The proportion of unsaturated fatty acids were higher (62-73.8%, with the highest values of α-linoleic acid (18.6%, linoleic acid (28.6% and oleic acid (19.7% in the seeds of A. griffithii, H. ammodendron and S. europaea, respectively. Results of physicochemical evaluation of the extracted oils ranged as follows: iodine values, 99.8-106.5 (g I2/100 g; saponification value, 188-283 (mg KOH/1g of oil; peroxide value, 9-13 (meq./kg and refractive index, 1.4750- 1.4761. Amongst these oilseeds, S. europaea (containing 73.8% unsaturated fatty acids but not erucic acid was the highest in quality for human consumption followed by H. ammodendron.

  19. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    Science.gov (United States)

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  20. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica

    Science.gov (United States)

    Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying

    2012-01-01

    Background and Aims Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Method Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Key Results Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. Conclusions The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds. PMID:22975287

  1. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent.

    Science.gov (United States)

    Ayyappan, Durai; Sathiyaraj, Ganesan; Ravindran, Konganapuram Chellappan

    2016-01-01

    The present study investigated the sources for remediation of heavy metals and salts from tannery effluent using salt marsh halophyte Sesuvium portulacastrum. From the results observed, in tannery effluent treated soil from 1 kg dry weight of plant sample, Sesuvium portulacastrum accumulated 49.82 mg Cr, 22.10 mg Cd, 35.10 mg Cu and 70.10 mg Zn and from 1 g dry weight of the plant sample, 246.21 mg Na Cl. Cultivation of Sesuvium portulacastrum significantly reduced the EC, pH and SAR levels in tannery effluent and salt treated soil and correspondingly increased in plant sample after 125 days of cultivation. In conclusion, Sesuvium portulacastrum was an efficient in accumulating heavy metals such as Chromium, Cadmium, Copper and Zinc, sodium and chloride maximum through its leaves when compared to stem and root. The finding of these bioacccumulation studies indicates that Sesuvium portulacastrum could be used for phytoremediation of tannery effluent contaminated field.

  2. Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice.

    Science.gov (United States)

    Mondal, Tapan Kumar; Ganie, Showkat Ahmad; Debnath, Ananda Bhusan

    2015-01-01

    Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.

  3. The Arabidopsis halophytic relative Thellungiella halophila tolerates nitrogen-limiting conditions by maintaining growth, nitrogen uptake, and assimilation.

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J

    2008-07-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low (15)NO(3)(-) supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.

  4. Oxygen dynamics during submergence in the halophytic stem succulent Halosarcia pergranulata

    DEFF Research Database (Denmark)

    Pedersen, Ole; Vos, Harrie; Colmer, Timothy David

    2006-01-01

    This study elucidated O2 dynamics in shoots and roots of submerged Halosarcia pergranulata (Salicornioideae), a perennial halophytic stem succulent that grows on flood-prone mudflats of salt lakes. Oxygen within shoots and roots was measured using microelectrodes, for plants when waterlogged...... the roots, at least during the first several hours (the time period measured) after submergence or when light periods followed darkness. The influence of light on tissue O2 dynamics was confirmed in an experiment on a submerged plant in a salt lake in south-western Australia. In the late afternoon, partial...... pressure of O2 (pO2) in the succulent stem was 23.2 kPa (i.e. ~10% above that in the air), while in the roots, it was 6.2-9.8 kPa. Upon sunset, the pO2 in the succulent stems declined within 1 h to below detection, but then showed some fluctuations with the pO2 increasing to at most 2.5 kPa during...

  5. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2012-09-01

    Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The interactive effects of mercury and selenium on metabolic profiles, gene expression and antioxidant enzymes in halophyte Suaeda salsa.

    Science.gov (United States)

    Liu, Xiaoli; Lai, Yongkai; Sun, Hushan; Wang, Yiyan; Zou, Ning

    2016-04-01

    Suaeda salsa is the pioneer halophyte in the Yellow River Delta and was consumed as a popular vegetable. Mercury has become a highly risky contaminant in the sediment of intertidal zones of the Yellow River Delta. In this work, we investigated the interactive effects of mercury and selenium in S. salsa on the basis of metabolic profiling, antioxidant enzyme activities and gene expression quantification. Our results showed that mercury exposure (20 μg L(-1)) inhibited plant growth of S. salsa and induced significant metabolic responses and altered expression levels of INPS, CMO, and MDH in S. salsa samples, together with the increased activities of antioxidant enzymes including SOD and POD. Overall, these results indicated osmotic and oxidative stresses, disturbed protein degradation and energy metabolism change in S. salsa after mercury exposures. Additionally, the addition of selenium could induce both antagonistic and synergistic effects including alleviating protein degradation and aggravating osmotic stress caused by mercury. © 2014 Wiley Periodicals, Inc.

  7. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel

    Science.gov (United States)

    The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...

  8. Documentation of hypoglycemic and wound healing plants in Kodiyampalayam coastal village (southeast coast of India

    Directory of Open Access Journals (Sweden)

    Satyavani Kaliamurthi

    2014-08-01

    Full Text Available Objective: To document the hypoglycemic and wound healing plant species especially halophytes and associates were carried out in the coastal village of Kodiyampalayam (Southeast coast of India. Methods: The data were collected during the month of December 2011 to November 2012 with personal interviews and group discussion of local coastal fisher women community and traditional practitioner. Results: The results indicated the traditional knowledge of 33 medicinal plant species, photographs, vernacular name, habit, active part and their mode of action. Among these, Citrullus colocynthis, Coccinia grandis, Rhizophora apiculata, Rhizophora mucronata, Bruguiera cylindrica, Excoecaria agallocha and Andrographis paniculata were discovered in huge number. Conclusions: This study concludes medicinal uses of halophytes and associates in the coastal area. It will be needed scientific validation for development of novel therapeutic agents.

  9. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia.

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina; Sagi, Moshe

    2017-09-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia : the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H 2 S, NH 3 , and pyruvate. The major function of O -acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H 2 S. This activity was significantly higher in Sarcocornia than in Salicornia , especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia . © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. Higher Novel L-Cys Degradation Activity Results in Lower Organic-S and Biomass in Sarcocornia than the Related Saltwort, Salicornia1[OPEN

    Science.gov (United States)

    Kurmanbayeva, Assylay; Bekturova, Aizat; Soltabayeva, Aigerim; Asatryan, Armine; Ventura, Yvonne; Salazar, Octavio; Fedoroff, Nina

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, whereas Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates Cys and l-Cys desulfhydrase that degrades Cys to H2S, NH3, and pyruvate. The major function of O-acetyl-Ser-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of l-Cys, but our study shows that the OAS-TL A and OAS-TL B of both halophytes are enzymes that also degrade l-Cys to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5′-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high l-Cys degradation rate by OAS-TLs, whereas the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low l-Cys degradation rate, resulting in higher net Cys biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia. PMID:28743765

  11. Validation of reference genes for quantitative RT-PCR normalization in Suaeda aralocaspica, an annual halophyte with heteromorphism and C4 pathway without Kranz anatomy

    Directory of Open Access Journals (Sweden)

    Jing Cao

    2016-02-01

    Full Text Available Reverse transcription quantitative real-time polymerase chain reaction (qRT-PCR is a powerful analytical technique for the measurement of gene expression, which depends on the stability of the reference gene used for data normalization. Suaeda aralocaspica, an annual halophyte with heteromorphic seeds and possessing C4 photosynthesis pathway without Kranz anatomy, is an ideal plant species to identify stress tolerance-related genes and compare relative expression at transcriptional level. So far, no molecular information is available for this species. In the present study, six traditionally used reference genes were selected and their expression stability in two types of seeds of S. aralocaspica under different experimental conditions was evaluated. Three analytical programs, geNorm, NormFinder and BestKeeper, were used to assess and rank the stability of reference gene expression. Results revealed that although some reference genes may display different transcriptional profiles between the two types of seeds, β-TUB and GAPDH appeared to be the most suitable references under different developmental stages and tissues. GAPDH was the appropriate reference gene under different germination time points and salt stress conditions, and ACTIN was suitable for various abiotic stress treatments for the two types of seeds. For all the sample pools, β-TUB served as the most stable reference gene, whereas 18S rRNA and 28S rRNA performed poorly and presented as the least stable genes in our study. UBQ seemed to be unsuitable as internal control under different salt treatments. In addition, the expression of a photosynthesis-related gene (PPDK of C4 pathway and a salt tolerance-related gene (SAT of S. aralocaspica were used to validate the best performance reference genes. This is the first systematic comparison of reference gene selection for qRT-PCR work in S. aralocaspica and these data will facilitate further studies on gene expression in this species

  12. Searching for new sources of innovative products for the food industry within halophyte aromatic plants: In vitro antioxidant activity and phenolic and mineral contents of infusions and decoctions of Crithmum maritimum L.

    Science.gov (United States)

    Pereira, Catarina Guerreiro; Barreira, Luísa; da Rosa Neng, Nuno; Nogueira, José Manuel Florêncio; Marques, Cátia; Santos, Tamára F; Varela, João; Custódio, Luísa

    2017-09-01

    Aromatic halophyte plants are an outstanding source of bioactive compounds and natural products with potential use in the food industry. This work reports the in vitro antioxidant activity, toxicity, polyphenolic profile and mineral contents of infusions and decoctions from stems, leaves and flowers of Crithmum maritimum L., an aromatic and edible maritime halophyte (sea fennel). Aspalathus linearis (Burm.f.) Dahlg. (rooibos) herbal tea was used as a reference. Sea fennel's tisanes, particularly from leaves, were rich in phenolic compounds and five of them (p-hydroxybenzoic and ferulic acids, epicatechin, pyrocatechol and 4-hydroxybenzaldehyde) were here described in C. maritimum for the first time. Chlorogenic acid was the dominant phenolic determined. Na was the most abundant mineral in all tisanes followed by Ca and Mg in leaves' tisanes and K in flowers. Sea fennel's samples had a similar antioxidant activity than those from A. linearis, and had no significant toxicity towards four different mammalian cell lines. Altogether, our results suggest that sea fennel can be a source of products and/or molecules for the food industry with antioxidant properties and minerals in the form, for example, of innovative health-promoting herbal beverages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Arabidopsis Halophytic Relative Thellungiella halophila Tolerates Nitrogen-Limiting Conditions by Maintaining Growth, Nitrogen Uptake, and Assimilation1[W][OA

    Science.gov (United States)

    Kant, Surya; Bi, Yong-Mei; Weretilnyk, Elizabeth; Barak, Simon; Rothstein, Steven J.

    2008-01-01

    A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low 15NO3− supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance. PMID:18467466

  14. Identification of salt-induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis.

    Science.gov (United States)

    Jha, Bhavanath; Agarwal, Pradeep K; Reddy, Palakolanu Sudhakar; Lal, Sanjay; Sopory, Sudhir K; Reddy, Malireddy K

    2009-04-01

    Salinity severely affects plant growth and development causing crop loss worldwide. We have isolated a large number of salt-induced genes as well as unknown and hypothetical genes from Salicornia brachiata Roxb. (Amaranthaceae). This is the first description of identification of genes in response to salinity stress in this extreme halophyte plant. Salicornia accumulates salt in its pith and survives even at 2 M NaCl under field conditions. For isolating salt responsive genes, cDNA subtractive hybridization was performed between control and 500 mM NaCl treated plants. Out of the 1200 recombinant clones, 930 sequences were submitted to the NCBI database (GenBank accession: EB484528 to EB485289 and EC906125 to EC906292). 789 ESTs showed matching with different genes in NCBI database. 4.8% ESTs belonged to stress-tolerant gene category and approximately 29% ESTs showed no homology with known functional gene sequences, thus classified as unknown or hypothetical. The detection of a large number of ESTs with unknown putative function in this species makes it an interesting contribution. The 90 unknown and hypothetical genes were selected to study their differential regulation by reverse Northern analysis for identifying their role in salinity tolerance. Interestingly, both up and down regulation at 500 mM NaCl were observed (21 and 10 genes, respectively). Northern analysis of two important salt tolerant genes, ASR1 (Abscisic acid stress ripening gene) and plasma membrane H+ATPase, showed the basal level of transcripts in control condition and an increase with NaCl treatment. ASR1 gene is made full length using 5' RACE and its potential role in imparting salt tolerance is being studied.

  15. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: Similarities and differences between a glycophyte and a halophyte

    Directory of Open Access Journals (Sweden)

    Lucie Maršálová

    2016-08-01

    Full Text Available Response to a high salinity treatment of 300 mM NaCl was studied in a cultivated barley Hordeum vulgare Syrian cultivar Tadmor and in a halophytic wild barley Hordeum marinum. Differential salinity tolerance of H. marinum and H. vulgare is underlied by qualitative and quantitative differences in proteins involved in a variety of biological processes. The major aim was to identify proteins underlying differential salinity tolerance between the two barley species. Analyses of plant water content, osmotic potential and accumulation of proline and dehydrin proteins under high salinity revealed a relatively higher water saturation deficit in H. marinum than in H. vulgare while H. vulgare had lower osmotic potential corresponding with high levels of proline and dehydrins. Analysis of proteins soluble upon boiling isolated from control and salt-treated crown tissues revealed similarities as well as differences between H. marinum and H. vulgare. The similar salinity responses of both barley species lie in enhanced levels of stress-protective proteins such as defence-related proteins from late-embryogenesis abundant (LEA family, several chaperones from heat shock protein (HSP family, and others such as GrpE. However, there have also been found significant differences between H. marinum and H. vulgare salinity response indicating an active stress acclimation in H. marinum while stress damage in H. vulgare. An active acclimation to high salinity in H. marinum is underlined by enhanced levels of several stress-responsive transcription factors from basic leucine zipper (bZIP and nascent polypeptide-associated complex (NAC families. In salt-treated H. marinum, enhanced levels of proteins involved in energy metabolism such as glycolysis, ATP metabolism, and photosynthesis-related proteins indicate an active acclimation to enhanced energy requirements during an establishment of novel plant homeostasis. In contrast, changes at proteome level in salt-treated H

  16. Physiological and proteomic analyses of salt stress response in the halophyte Halogeton glomeratus.

    Science.gov (United States)

    Wang, Juncheng; Meng, Yaxiong; Li, Baochun; Ma, Xiaole; Lai, Yong; Si, Erjing; Yang, Ke; Xu, Xianliang; Shang, Xunwu; Wang, Huajun; Wang, Di

    2015-04-01

    Very little is known about the adaptation mechanism of Chenopodiaceae Halogeton glomeratus, a succulent annual halophyte, under saline conditions. In this study, we investigated the morphological and physiological adaptation mechanisms of seedlings exposed to different concentrations of NaCl treatment for 21 d. Our results revealed that H. glomeratus has a robust ability to tolerate salt; its optimal growth occurs under approximately 100 mm NaCl conditions. Salt crystals were deposited in water-storage tissue under saline conditions. We speculate that osmotic adjustment may be the primary mechanism of salt tolerance in H. glomeratus, which transports toxic ions such as sodium into specific salt-storage cells and compartmentalizes them in large vacuoles to maintain the water content of tissues and the succulence of the leaves. To investigate the molecular response mechanisms to salt stress in H. glomeratus, we conducted a comparative proteomic analysis of seedling leaves that had been exposed to 200 mm NaCl for 24 h, 72 h and 7 d. Forty-nine protein spots, exhibiting significant changes in abundance after stress, were identified using matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and similarity searches across EST database of H. glomeratus. These stress-responsive proteins were categorized into nine functional groups, such as photosynthesis, carbohydrate and energy metabolism, and stress and defence response. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  17. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    Science.gov (United States)

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  18. Choline but not its derivative betaine blocks slow vacuolar channels in the halophyte Chenopodium quinoa: implications for salinity stress responses.

    Science.gov (United States)

    Pottosin, Igor; Bonales-Alatorre, Edgar; Shabala, Sergey

    2014-11-03

    Activity of tonoplast slow vacuolar (SV, or TPC1) channels has to be under a tight control, to avoid undesirable leak of cations stored in the vacuole. This is particularly important for salt-grown plants, to ensure efficient vacuolar Na(+) sequestration. In this study we show that choline, a cationic precursor of glycine betaine, efficiently blocks SV channels in leaf and root vacuoles of the two chenopods, Chenopodium quinoa (halophyte) and Beta vulgaris (glycophyte). At the same time, betaine and proline, two major cytosolic organic osmolytes, have no significant effect on SV channel activity. Physiological implications of these findings are discussed. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Evaluating species richness: biased ecological inference results from spatial heterogeneity in species detection probabilities

    Science.gov (United States)

    McNew, Lance B.; Handel, Colleen M.

    2015-01-01

    Accurate estimates of species richness are necessary to test predictions of ecological theory and evaluate biodiversity for conservation purposes. However, species richness is difficult to measure in the field because some species will almost always be overlooked due to their cryptic nature or the observer's failure to perceive their cues. Common measures of species richness that assume consistent observability across species are inviting because they may require only single counts of species at survey sites. Single-visit estimation methods ignore spatial and temporal variation in species detection probabilities related to survey or site conditions that may confound estimates of species richness. We used simulated and empirical data to evaluate the bias and precision of raw species counts, the limiting forms of jackknife and Chao estimators, and multi-species occupancy models when estimating species richness to evaluate whether the choice of estimator can affect inferences about the relationships between environmental conditions and community size under variable detection processes. Four simulated scenarios with realistic and variable detection processes were considered. Results of simulations indicated that (1) raw species counts were always biased low, (2) single-visit jackknife and Chao estimators were significantly biased regardless of detection process, (3) multispecies occupancy models were more precise and generally less biased than the jackknife and Chao estimators, and (4) spatial heterogeneity resulting from the effects of a site covariate on species detection probabilities had significant impacts on the inferred relationships between species richness and a spatially explicit environmental condition. For a real dataset of bird observations in northwestern Alaska, the four estimation methods produced different estimates of local species richness, which severely affected inferences about the effects of shrubs on local avian richness. Overall, our results

  20. Evaluation of the halophyte Salsola soda as an alternative crop for saline soils high in selenium and boron.

    Science.gov (United States)

    Centofanti, Tiziana; Bañuelos, Gary

    2015-07-01

    Urbanization, industrial development, and intensive agriculture have caused soil contamination and land degradation in many areas of the world. Salinization is one important factor contributing to land degradation and it affects agricultural production and environmental quality. When salinization is combined with soil pollution by trace elements, as it occurs in many arid and semi-arid regions around the world, strategies to phyto-manage pollutants and sustain crop production need to be implemented. In this study, we present the case of saline soils in the West side of Central California which contain naturally-occurring selenium (Se), boron (B), and other salts, such as NaCl, CaCl2, Na2SO4, and Na2SeO4. To sustain crop production on Se- and B-laden arid saline soils, we investigated the potential of the halophyte "agretti" (Salsola soda L.) as an alternative crop. The aim of our greenhouse study was to examine adaptability, B tolerance, and Se accumulation by S. soda grown on soils collected from a typical saline-laden field site located on the West side of the San Joaquin Valley (SJV). Our results showed that S. soda tolerates the saline (EC ∼ 10 dS m(-1)) and B-laden soils (10 mg B L(-1)) of the SJV even with the additional irrigation of saline and B rich water (EC ∼ 3 dS m(-1) and 4 mg B L(-1)). Under these growing conditions, the plant can accumulate high concentrations of Na (80 g Na kg(-1) DW), B (100 mg B kg(-1) DW), and Se (3-4 mg Se kg(-1) DW) without showing toxicity symptoms. Hence, S. soda showed promising potential as a plant species that can be grown in B-laden saline soils and accumulate and potentially manage excessive soluble Se and B in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.

    Science.gov (United States)

    Renault, Sylvie; Wolfe, Scott; Markham, John; Avila-Sakar, Germán

    2016-01-01

    Plants often grow under the combined stress of several factors. Salinity and herbivory, separately, can severely hinder plant growth and reproduction, but the combined effects of both factors are still not clearly understood. Salinity is known to reduce plant tissue nitrogen content and growth rates. Since herbivores prefer tissues with high N content, and biochemical pathways leading to resistance are commonly elicited by salt-stress, we hypothesized that plants growing in saline conditions would have enhanced resistance against herbivores. The non-halophyte, Brassica juncea, and the generalist herbivore Trichoplusia ni were used to test the prediction that plants subjected to salinity stress would be both more resistant and more tolerant to herbivory than those growing without salt stress. Plants were grown under different NaCl levels, and either exposed to herbivores and followed by removal of half of their leaves, or left intact. Plants were left to grow and reproduce until senescence. Tissue quality was assessed, seeds were counted and biomass of different organs measured. Plants exposed to salinity grew less, had reduced tissue nitrogen, protein and chlorophyll content, although proline levels increased. Specific leaf area, leaf water content, transpiration and root:shoot ratio remained unaffected. Plants growing under saline condition had greater constitutive resistance than unstressed plants. However, induced resistance and tolerance were not affected by salinity. These results support the hypothesis that plants growing under salt-stress are better defended against herbivores, although in B. juncea this may be mostly through resistance, and less through tolerance. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Effect of saline soil parameters on endo mycorrhizal colonisation of dominant halophytes in four Hungarian sites

    Energy Technology Data Exchange (ETDEWEB)

    Fuzy, A.; Biro, B.; Toth, T.

    2010-07-01

    Soil and root samples were collected from the rhizosphere of dominant halophytes (Artemisia santonicum, Aster tripolium, Festuca pseudovina, Lepidium crassifolium, Plantago maritima and Puccinellia limosa) at four locations with saline soils in Hungary. The correlations- between arbuscular mycorrhiza (AM) fungal colonisation parameters (% colonisation, % arbuscules) and soil physical, chemical and biological parameters were determined Endomycorrhiza colonisation was found to be negatively correlated with the electric conductivity of the soil paste, the salt-specific ion concentrations and the cation exchange capacity, showing the sensitivity of AM fungi at increasing salt concentrations, independently of the types of salt-specific anions. A positive correlation was detected between the mycorrhiza colonisation and the abundance of oligotroph bacteria known to be the less variable and more stable (k-strategist) group. This fact and the negative correlation found with the humus content underlines the importance of nutrient availability and the limitations of the symbiotic interactions in stressed saline or sodic soils. (Author) 29 refs.

  3. Leaf anatomy and subgeneric affiliations of C3 and C4 species of Suaeda (Chenopodiaceae) in North America

    International Nuclear Information System (INIS)

    Fisher, D.D.; Schenk, H.J.; Thorsch, J.A.; Ferren, W.R. Jr.

    1997-01-01

    The halophytic genus Suaeda (Chenopodiaceae) includes species with the C3 and C4 photosynthetic pathways. North American species of this genus were investigated to determine whether C3 and C4 leaf anatomy are consistent within the two sections of Suaeda, Chenopodina and Limbogermen, present on this continent. All species from section Chenopodina were found to possess C3 anatomy, whereas all species from section Limbogermen were found to be C4 species. Characteristics of leaf anatomy and chloroplast ultrastructure are similar to those reported from C3 and C4 species, respectively, from the Eastern Hemisphere. All species from section Limbogermen have the suaedoid type of leaf anatomy, characterized by differentiation of the mesophyll into palisade parenchyma and a chlorenchymatous sheath surrounding central water-storage tissue, as well as leaf carbon isotope ratios of above -20. All species from section Chenopodina have austrobassioid leaf anatomy without a chlorenchymatous sheath and leaf carbon isotope ratio values of below -20. According to our literature review, the photosynthetic pathway has now been reported for about half (44) of the Suaeda species worldwide. The C3 and C4 photosynthetic syndromes are with few exceptions distributed along sectional or subsectional lines. These findings throw new light on the infrageneric taxonomy of this genus

  4. Salt tolerant green crop species for sodium management in space agriculture

    Science.gov (United States)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.

    Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.

  5. A SNARE-Like Superfamily Protein SbSLSP from the Halophyte Salicornia brachiata Confers Salt and Drought Tolerance by Maintaining Membrane Stability, K(+)/Na(+) Ratio, and Antioxidant Machinery.

    Science.gov (United States)

    Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K; Jha, Bhavanath

    2016-01-01

    About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na(+) ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  6. A SNARE-like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K+/Na+ ratio, and antioxidant machinery

    Directory of Open Access Journals (Sweden)

    Dinkar eSingh

    2016-06-01

    Full Text Available About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP, (Salicornia brachiata SNARE-like superfamily protein showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterised proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localisation studies indicated that the SbSLSP protein is mainly localised in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS. Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signalling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil.

  7. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Yunzhao Li

    2014-01-01

    Full Text Available The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of βT and Jaccard’s coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion.

  8. Ecological Effects of Roads on the Plant Diversity of Coastal Wetland in the Yellow River Delta

    Science.gov (United States)

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Qu, Fanzhu; Wang, Guangmei; Fu, Yuqin; Zhan, Chao

    2014-01-01

    The 26 sample sites in 7 study plots adjacent to asphalt road and earth road in coastal wetland in the Yellow River Delta were selected to quantify plant diversity using quadrat sampling method in plant bloom phase of July and August 2012. The indice of β T and Jaccard's coefficient were applied to evaluate the species diversity. The results showed that the plant diversities and alien plants were high in the range of 0–20 m to the road verge. There were more exotics and halophytes in plots of asphalt roadside than that of earth roadside. However, proportion of halophytes in habitats of asphalt roadsides was lower than that of earth roadside. By comparing β-diversity, there were more common species in the asphalt roadsides than that in the earth roadsides. The similarity of plant communities in studied plots of asphalt roadsides and earth roadsides increased with increasing the distance to road verge. The effect range of roads for plant diversity in study region was about 20 m to road verge. Our results indicate that the construction and maintenance of roads in wetland could increase the plant species diversities of communities and risk of alien species invasion. PMID:25147872

  9. Growth, chlorophyll fluorescence and mineral nutrition in the halophyte Tamarix gallica cultivated in combined stress conditions: Arsenic and NaCl.

    Science.gov (United States)

    Sghaier, Dhouha Belhaj; Duarte, Bernardo; Bankaji, Insaf; Caçador, Isabel; Sleimi, Noomene

    2015-08-01

    Trace metal elements can cause various environmental and health issues due to their accumulation and integration in the food chain. In the present study, we determined the major toxic effects of arsenic on physiological behaviour of plants. For this propose, several combinations of high salinity and arsenic (As) concentrations were applied to the halophytic shrub, Tamarix gallica, by growing for three months with an irrigation solution supplemented with different concentrations of As (0, 200, 500 and 800M) with and without 200mM NaCl. The effect of the combined stress conditions on growth, physiological patterns and biochemical parameters were also assessed. The results demonstrated that T. gallica is a tolerant plant regarding arsenic. The photosynthesis apparatus Fo, Fm and Fv fluorescence, as well as Fv/Fm were not affected by As nor by As combined with salt. Likewise, pigment and nutrient (K(+), Ca(2+) and Mg(2+)) contents were not affected either. However, the study results revealed that As adversely and significantly influenced the growth with increasing the concentration of As. Despite shoots growth reduction, the present research demonstrates that T. gallica is able to cope with high external concentrations of As (under 500μM) alone or in combination with NaCl. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea.

    Science.gov (United States)

    Vera-Estrella, Rosario; Barkla, Bronwyn J; Pantoja, Omar

    2014-12-05

    Halophytes have evolved unique molecular strategies to overcome high soil salinity but we still know very little about the main mechanisms that these plants use to complete their lifecycle under salinity stress. One useful approach to further our understanding in this area is to directly compare the response to salinity of two closely related species which show diverse levels of salt tolerance. Here we present a comparative proteomic study using DIGE of leaf microsomal proteins to identify salt-responsive membrane associated proteins in Arabidopsis thaliana (a glycophyte) and Thellungiella salsuginea (a halophyte). While a small number of distinct protein abundance changes were observed upon salt stress in both species, the most notable differences were observed between species and specifically, in untreated plants with a total of 36 proteins displaying significant abundance changes. Gene ontology (GO) term enrichment analysis showed that the majority of these proteins were distributed into two functional categories; transport (31%) and carbohydrate metabolism (17%). Results identify several novel salt responsive proteins in this system and support the theory that T. salsuginea shows a high degree of salt-tolerance because molecular mechanisms are primed to deal with the stress. This intrinsic ability to anticipate salinity stress distinguishes it from the glycophyte A. thaliana. There is significant interest in understanding the molecular mechanisms that plants use to tolerate salinity as soil salinization is becoming an increasing concern for agriculture with high soil Na(+) levels leading to reduced yields and economic loss. Much of our knowledge on the molecular mechanisms employed by plants to combat salinity stress has come from work on salt-sensitive plants, but studies on naturally occurring highly salt-resistant plants, halophytes, and direct comparisons between closely related glycophytes and halophytes, could help to further our understanding of salinity

  11. Hairy root induction and phytoremediation of textile dye, Reactive green 19A-HE4BD, in a halophyte, Sesuvium portulacastrum (L. L.

    Directory of Open Access Journals (Sweden)

    Vinayak H. Lokhande

    2015-12-01

    Full Text Available In this study, we report phytoremediation of textile dyes using hairy roots derived through Agrobacterium rhizogenes (NCIM 5140 infection of in vitro leaf and stem explants of a halophyte Sesuvium portulacastrum (L. L. Leaf explants showed higher frequency of hairy root induction (70% than stem explants (30%, and maximum number of roots (leaf 42.3 ± 2.4 and stem 50.3 ± 1.7. Transformed nature of hairy roots was ascertained by amplifying 970 bp region of T-DNA of Ri plasmid. Hairy roots were screened for phytoremediation of various textile dyes and results showed that HRs were able to degrade Reactive green 19A HE4BD upto 98% within 5 days of incubation. Spectrophotometric analysis showed decrease in dye concentration while HPLC and FTIR analysis confirmed its degradation. Seed germination assay demonstrated non-toxic nature of the extracted metabolites. This is the first report on induction of hairy root culture in Sesuvium portulacastrum and phytoremediation of textile dyes.

  12. NATURAL DEVELOPMENT OF THE HALOPHYTE Salicornia bigelovii (TOR. IN COASTAL AREA OF SONORA STATE

    Directory of Open Access Journals (Sweden)

    Edgar Omar Rueda Puente

    2017-05-01

    Full Text Available In order to increase knowledge about the vegetative structure and environmental conditions, two coastal areas (north and south in Sonora, Mexico, where Salicornia bigelovii develops in natural form were investigated. Based on the abundance of Salicornia, three locations were selected in the two areas. Transects in each of the three sites were developed. The sediments in the northern areas showed higher values compared with the south areas of Sonora in organic matter. Plant biomass, density, height and frequency of occurrence were higher in frequently flooded areas compared to sparsely or less often by the tides. The average total biomass ranged from 2.23 to 6.33 kg (dry weight m-2 and is composed primarily of surface components. The maximum values of biomass of Salicornia were observed in February to May in both areas. The growth of Salicornia bigelovii is influenced mainly by the frequency of flooding, duration of exposure to air during low tide, rainfall, salinity and salt content of the ambient water and sediment, respectively. The carbon content increased with plant age, while protein content decreased by 233.6%. The steady increase in human pressure on coastal areas where Salicornia and other halophytes growth, require immediate protection order to prevent vulnerabilities in their populations.

  13. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk.

    Science.gov (United States)

    Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke

    2018-05-01

    Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.

  14. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco.

    Science.gov (United States)

    Yadav, Narendra Singh; Shukla, Pushp Sheel; Jha, Anupama; Agarwal, Pradeep K; Jha, Bhavanath

    2012-10-11

    Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na(+)/H(+) antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K(+)/Na(+) ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na(+) content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na(+) content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na(+) loading to xylem from root and leaf tissues. Transgenic lines also showed increased K(+) and Ca(2+) content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na(+) efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na(+) content in different organs and also affect the other transporters activity indirectly. These

  15. Local desalination treatment plant wastewater reuse and evaluation potential absorption of salts by the halophyte plants

    Directory of Open Access Journals (Sweden)

    Elham Kalantari

    2018-01-01

    Full Text Available The expansion of arid and semi-arid areas and consequently water scarcity are affected by climate change. This can influence on availability and quality of water while demands on food and water are increasing. As pressure on freshwater is increasing, utilization of saline water in a sustainable approach is inevitable. Therefore, bioremediation using salt tolerant plants that is consistent with sustainable development objectives might be an alternative and effective approach. In this study, saline wastewater from a local desalination treatment plant was utilized to irrigate four halophyte plants, including Aloevera, Tamarix aphylla, Rosmarinus officinalis and Matricaria chamomilla. A field experiment was designed and conducted in Zarrindasht, south of Iran in years 2012-2013 accordingly. Two irrigation treatments consisting of freshwater with salinity of 2.04 dS.m-1 and desalination wastewater with salinity of 5.77dSm-1 were applied. The experiment was designed as a split plot in the form of randomized complete block design (RCB with three replications. The results of variance analysis, ANOVA, on salt concentration in Aloevera showed that there was no significant difference between the effects of two irrigation water qualities except for Na. In Rosmarinus officinalis, only the ratio of K/Na showed a significant difference. None of the examined salt elements showed a significant difference in Tamarix aphylla irrigated with both water qualities. In Matricaria chamomilla, only Mg and K/Na ratio showed a significant difference (Duncan 5%. As a result, no significant difference was observed in salt absorption by the examined plants in treatments which were irrigated by desalination wastewater and freshwater. This could be a good result that encourages the use of similar wastewater to save freshwater in a sustainable system.

  16. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    Science.gov (United States)

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  17. Comparison of species ordinations resulting from alternative indices of interspecific association and different numbers of included species

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F G

    1975-12-19

    Several measures of interspecific association are compared. Dispersion and covariance are limited in value because they respond to the commonness of the species compared. Correlation is not so limited but it responds to discrepancies in commonness among the species. The practical result of these relationships between commonness and association is that only the most common species can occupy peripheral positions in a species ordination. Rare species are relegated to positions near the center not on the basis of their phytosociological pattern but simply because of their rarity. Both Cole's index of association and the tetrachoric correlation overcome the problem imposed by the relationship between ordination position and species commonness and they both produce very similar results. The effect of differing numbers of species on the ordination configuration is examined using both Pearson's correlation and Cole's index. The basic pattern of the ordination is set with the first few species when Cole's index is used, however, since rare species are given more weight in the analysis with this index, the addition of several very rare species can change the configuration of the ordination. (auth)

  18. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yadav Narendra

    2012-10-01

    Full Text Available Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1 gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC, chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other

  19. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco

    Science.gov (United States)

    2012-01-01

    Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly

  20. Defining the next generation modeling of coastal ecotone dynamics in response to global change

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Teh, Su-Y; Krauss, Ken W.; Wang, Hongqing; Haidong, Li; Smith, Thomas; Koh, Hock L.

    2016-01-01

    Coastal ecosystems are especially vulnerable to global change; e.g., sea level rise (SLR) and extreme events. Over the past century, global change has resulted in salt-tolerant (halophytic) plant species migrating into upland salt-intolerant (glycophytic) dominated habitats along major rivers and large wetland expanses along the coast. While habitat transitions can be abrupt, modeling the specific drivers of abrupt change between halophytic and glycophytic vegetation is not a simple task. Correlative studies, which dominate the literature, are unlikely to establish ultimate causation for habitat shifts, and do not generate strong predictive capacity for coastal land managers and climate change adaptation exercises. In this paper, we first review possible drivers of ecotone shifts for coastal wetlands, our understanding of which has expanded rapidly in recent years. Any exogenous factor that increases growth or establishment of halophytic species will favor the ecotone boundary moving upslope. However, internal feedbacks between vegetation and the environment, through which vegetation modifies the local microhabitat (e.g., by changing salinity or surface elevation), can either help the system become resilient to future changes or strengthen ecotone migration. Following this idea, we review a succession of models that have provided progressively better insight into the relative importance of internal positive feedbacks versus external environmental factors. We end with developing a theoretical model to show that both abrupt environmental gradients and internal positive feedbacks can generate the sharp ecotonal boundaries that we commonly see, and we demonstrate that the responses to gradual global change (e.g., SLR) can be quite diverse.

  1. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco

    2010-07-01

    Salinity is an abiotic stress that limits both yield and the expansion of agricultural crops to new areas. In the last 20 years our basic understanding of the mechanisms underlying plant tolerance and adaptation to saline environments has greatly improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt tolerance research is largely neglected. The recent introduction of halophytic Arabidopsis-Relative Model Species (ARMS) has begun to compare and relate several unique genetic resources to the well-developed Arabidopsis model. In a search for candidates to begin to understand, through genetic analyses, the biological bases of salt tolerance, 11 wild relatives of Arabidopsis thaliana were compared: Barbarea verna, Capsella bursa-pastoris, Hirschfeldia incana, Lepidium densiflorum, Malcolmia triloba, Lepidium virginicum, Descurainia pinnata, Sisymbrium officinale, Thellungiella parvula, Thellungiella salsuginea (previously T. halophila), and Thlaspi arvense. Among these species, highly salt-tolerant (L. densiflorum and L. virginicum) and moderately salt-tolerant (M. triloba and H. incana) species were identified. Only T. parvula revealed a true halophytic habitus, comparable to the better studied Thellungiella salsuginea. Major differences in growth, water transport properties, and ion accumulation are observed and discussed to describe the distinctive traits and physiological responses that can now be studied genetically in salt stress research. 2010 The Author.

  2. Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta.

    Science.gov (United States)

    Wei, Huaibin; Yu, Huibin; Pan, Hongwei; Gao, Hongjie

    2018-05-01

    UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at

  3. Redescription of Cadrema pallida var. bilineata (de Meijere, 1904 (Diptera: Chloropidae and its role as pollinator and carrion feeder from Indian Sunderbans

    Directory of Open Access Journals (Sweden)

    Sankarsan Roy

    2016-10-01

    Full Text Available Sunderbans, the UNESCO World Heritage Site is one of the largest mangrove forests in the World. This unique tidal halophytic mangrove ecosystem is also spread over the neighbouring country- Bangladesh. This ecosystem supports a variety of halophytic mangrove species and provides shelter and food to many faunal components (Chakraborty, 2011. Till date, several studies have been made on dipteran fauna from SBR which was altogether compiled by Mitra (2013. Further, Mitra et al. (2014, 2015 added some more records of the Diptera from this area. Apart from documenting the dipteran insects, we attempted here their functional contribution towards sustainability of this sensitive ecosystem.

  4. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na(+) and Cl(-) ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells.

  5. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum

    Science.gov (United States)

    Barkla, Bronwyn J.; Vera-Estrella, Rosario

    2015-01-01

    One of the remarkable adaptive features of the halophyte Mesembryanthemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC) which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF) and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples identified 352 significantly differing metabolites (268 after correction for FDR). Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na+ and Cl− ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggests large alterations in M. crystallinum epidermal bladder cells. PMID:26113856

  6. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model.

    Science.gov (United States)

    Song, Jie; Wang, Baoshan

    2015-02-01

    As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    Science.gov (United States)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  8. Generation and Analysis of Expressed Sequence Tags (ESTs from Halophyte Atriplex canescens to Explore Salt-Responsive Related Genes

    Directory of Open Access Journals (Sweden)

    Jingtao Li

    2014-06-01

    Full Text Available Little information is available on gene expression profiling of halophyte A. canescens. To elucidate the molecular mechanism for stress tolerance in A. canescens, a full-length complementary DNA library was generated from A. canescens exposed to 400 mM NaCl, and provided 343 high-quality ESTs. In an evaluation of 343 valid EST sequences in the cDNA library, 197 unigenes were assembled, among which 190 unigenes (83.1% ESTs were identified according to their significant similarities with proteins of known functions. All the 343 EST sequences have been deposited in the dbEST GenBank under accession numbers JZ535802 to JZ536144. According to Arabidopsis MIPS functional category and GO classifications, we identified 193 unigenes of the 311 annotations EST, representing 72 non-redundant unigenes sharing similarities with genes related to the defense response. The sets of ESTs obtained provide a rich genetic resource and 17 up-regulated genes related to salt stress resistance were identified by qRT-PCR. Six of these genes may contribute crucially to earlier and later stage salt stress resistance. Additionally, among the 343 unigenes sequences, 22 simple sequence repeats (SSRs were also identified contributing to the study of A. canescens resources.

  9. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Directory of Open Access Journals (Sweden)

    Bronwyn Jane Barkla

    2015-06-01

    Full Text Available One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples was used to identify 352 significantly differing metabolites (268 after correction for FDR. Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na and Cl ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggest large alterations in Mesembryanthemum crystallinum epidermal bladder cells.

  10. Salinization of the soil solution decreases the further accumulation of salt in the root zone of the halophyte Atriplex nummularia Lindl. growing above shallow saline groundwater.

    Science.gov (United States)

    Alharby, Hesham F; Colmer, Timothy D; Barrett-Lennard, Edward G

    2018-01-01

    Water use by plants in landscapes with shallow saline groundwater may lead to the accumulation of salt in the root zone. We examined the accumulation of Na + and Cl - around the roots of the halophyte Atriplex nummularia Lindl. and the impacts of this increasing salinity for stomatal conductance, water use and growth. Plants were grown in columns filled with a sand-clay mixture and connected at the bottom to reservoirs containing 20, 200 or 400 mM NaCl. At 21 d, Na + and Cl - concentrations in the soil solution were affected by the salinity of the groundwater, height above the water table and the root fresh mass density at various soil depths (P soil solution therefore had a feedback effect on further salinization within the root zone. © 2017 John Wiley & Sons Ltd.

  11. The Microstructure Organization and Functional Peculiarities of Euphorbia paralias L. and Polygonum maritimum L. – Halophytic Plants from Dunes of Pomorie Lake (Bulgaria

    Directory of Open Access Journals (Sweden)

    I.V. Kosakivska

    2017-05-01

    Full Text Available The aim of this research was to investigate the leaf surface microstructure, pigments spectrum, hormones status and lipids composition of halophytes Polygonum maritimum L. and Euphorbia paralias L. that grow under natural conditions on the dunes of Pomorie Lake, (Bulgaria. It was shown that the existence in saline and dry soils provided among others adaptive mechanisms by specific microstructure of leaf. The adaxial and abaxial surfaces of P. maritimum leaves are covered with a dense layer of cuticle wax, stomata are located on the leaf both sides below the cuticle level. In E. paralias the cuticle is also well developed on the adaxial surface of leaf laminas. The epidermis of the leaf lower side is covered with a less dense cuticle layer formed by large wax crystals. This plant has stoma pores only on the abaxial side of small leaves below the cuticle level and they are surrounded with hump-shaped cuticle constructions. A high amount of carotenoids (as compared with that of chlorophylls in P. maritimum leaves indicates that these pigments have a light-collecting function and could transfer an additional energy to chlorophylls. The high performance liquid chromatography method has been used to provide a qualitative and quantitative analysis of hormones. It was shown that in leaves of E. paralias and P. maritimum free abscisic (ABA and conjugated indole-3-acetic (IAA acids prevailed. A high level of active ABA is correlated with the salt tolerance and ability to survive and grow in stress conditions. A high level of conjugated form of IAA demonstrated that activity of this hormone is limited. The cytokinins qualitative and quantitative analyses demonstrated that in E. paralias leaves zeatin forms dominated, and the level of inactive cytokinins (cis-zeatin and zeatin-O-glucoside was much higher than that of active ones (trans-zeatin and zeatin riboside. P. maritinum leaves contained a significant quantity of isopentenyl forms

  12. Potential use of the facultative halophyte Chenopodium quinoa Willd. as substrate for biogas production cultivated with different concentrations of sodium chloride under hydroponic conditions.

    Science.gov (United States)

    Turcios, Ariel E; Weichgrebe, Dirk; Papenbrock, Jutta

    2016-03-01

    This project analyses the biogas potential of the halophyte Chenopodium quinoa Willd. In a first approach C. quinoa was grown with different concentrations of NaCl (0, 10 and 20 ppt NaCl) and the crop residues were used as substrate for biogas production. In a second approach, C. quinoa was grown with 0, 10, 20 and 30 ppt NaCl under hydroponic conditions and the fresh biomass was used as substrate. The more NaCl is in the culture medium, the higher the sodium, potassium, crude ash and hemicellulose content in the plant tissue whereas the calcium, sulfur, nitrogen and carbon content in the biomass decrease. According to this study, it is possible to produce high yields of methane using biomass of C. quinoa. The highest specific methane yields were obtained using the substrate from the plants cultivated at 10 and 20 ppt NaCl in both experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. EFFECT OF EXOGENOUS ABSCISIC ACID ON GROWTH AND BIOCHEMICAL CHANGES IN THE HALOPHYTE SUAEDA MARITIMA

    Directory of Open Access Journals (Sweden)

    Anbarasi G.

    2015-04-01

    Full Text Available Different types of phytohormones are being extensively used to alleviate the adverse effect of salinity stress on plant growth. Among those, Abscisic acid (ABA is a plant stress hormone and one of the most important signaling molecules in plants. Drought and salinity activate De-novo abscisic acid synthesis prevent further water loss by evaporation through stomata, mediated by changes in the guard cell turgor pressure. Under osmotic stress abscisic acid induce the accumulation of protein involved in the biosynthesis of osmolites which increasing the stress tolerance of plant. In addition, exogenous application of ABA enhances the tolerance of plants or plant cells to cold, heat, drought, anoxia and heavy metal stresses. This study was carried out to study the exogenous abscisic (ABA acid induced regulatory role on the growth, water content, protein content, chlorophyll content, osmolyte accumulation and protein profiling through SDS PAGE in a halophyte, Suaeda maritima. The osmolyte accumulation of proline and glycine betaine was found to be more in 50 µM ABA concentrations. The protein profiling through SDS PAGE revealed that ̴ 66KDa proteins was not expressed in the control plant and in 10μM ABA treated plants. Interestingly, the ABA treatment induced a new protein of 14.2KDa in 10μM concentration. The ABA treated plants with concentrations 50μM, 100μM and 150μM showed changes in the expression of protein in abundance than the control and 10μM ABA treated plants. The findings in this study indicate that among all the concentrations, 50μM ABA concentration treated plants exhibited higher growth rate.

  14. Responses to salinity in invasive cordgrass hybrids and their parental species (Spartina) in a scenario of sea level rise and climate change

    Science.gov (United States)

    Background/Question/Methods: Salinity is one of the main abiotic factors in salt marshes. Studies rooted to analyzed salinity tolerance of halophytes may help to relate their physiological tolerances with distribution limits in the field. Climate change-induced sea level rise and higher temperatures...

  15. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  16. Non-use Economic Values for Little-Known Aquatic Species at Risk: Comparing Choice Experiment Results from Surveys Focused on Species, Guilds, and Ecosystems

    Science.gov (United States)

    Rudd, Murray A.; Andres, Sheri; Kilfoil, Mary

    2016-09-01

    Accounting for non-market economic values of biological diversity is important to fully assess the benefits of environmental policies and regulations. This study used three choice experiments (species-, guild-, and ecosystem-based surveys) in parallel to quantify non-use values for little-known aquatic species at risk in southern Ontario. Mean willingness-to-pay (WTP) ranged from 9.45 to 21.41 per listing status increment under Canada's Species at Risk Act for both named and unnamed little-known species. Given the broad range of valuable ecosystem services likely to accrue to residents from substantial increases in water quality and the rehabilitation of coastal wetlands, the difference in WTP between species- and ecosystem-based surveys seemed implausibly small. It appeared that naming species—the `iconization' of species in two of the three surveys—had an important effect on WTP. The results suggest that reasonable annual household-level WTP values for little-known aquatic species may be 10 to 25 per species or 10 to 20 per listing status increment. The results highlighted the utility of using parallel surveys to triangulate on non-use economic values for little-known species at risk.

  17. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species

    International Nuclear Information System (INIS)

    De La Riva, Deborah G.; Trumble, John T.

    2016-01-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL −1 ) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL −1 ) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. - Highlights: • Argentine ant colonies exposed to selenium had reduced fecundity compared to unexposed colonies. • Viability of offspring was negatively impacted by selenium. • Queen survival was reduced in colonies

  18. A Heavy Metal-Associated Protein (AcHMA1 from the Halophyte, Atriplex canescens (Pursh Nutt., Confers Tolerance to Iron and Other Abiotic Stresses When Expressed in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Xin-Hua Sun

    2014-08-01

    Full Text Available Many heavy metals are essential for metabolic processes, but are toxic at elevated levels. Metal tolerance proteins provide resistance to this toxicity. In this study, we identified and characterized a heavy metal-associated protein, AcHMA1, from the halophyte, Atriplex canescens. Sequence analysis has revealed that AcHMA1 contains two heavy metal binding domains. Treatments with metals (Fe, Cu, Ni, Cd or Pb, PEG6000 and NaHCO3 highly induced AcHMA1 expression in A. canescens, whereas NaCl and low temperature decreased its expression. The role of AcHMA1 in metal stress tolerance was examined using a yeast expression system. Expression of the AcHMA1 gene significantly increased the ability of yeast cells to adapt to and recover from exposure to excess iron. AcHMA1 expression also provided salt, alkaline, osmotic and oxidant stress tolerance in yeast cells. Finally, subcellular localization of an AcHMA1/GFP fusion protein expressed in tobacco cells showed that AcHMA1 was localized in the plasma membrane. Thus, our results suggest that AcHMA1 encodes a membrane-localized metal tolerance protein that mediates the detoxification of iron in eukaryotes. Furthermore, AcHMA1 also participates in the response to abiotic stress.

  19. Mercury cycling and sequestration in salt marshes sediments: An ecosystem service provided by Juncus maritimus and Scirpus maritimus

    International Nuclear Information System (INIS)

    Marques, B.; Lillebo, A.I.; Pereira, E.; Duarte, A.C.

    2011-01-01

    In this study two time scales were looked at: a yearlong study was completed, and a 180-day decay experiment was done. Juncus maritimus and Scirpus maritimus have different life cycles, and this seems to have implications in the Hg-contaminated salt marsh sediment chemical environment, namely Eh and pH. In addition, the belowground biomass decomposition rates were faster for J. maritimus, as well as the biomass turnover rates. Results show that all these species-specific factors have implications in the mercury dynamics and sequestration. Meaning that J. maritimus belowground biomass has a sequestration capacity for mercury per square metre approximately 4-5 times higher than S. maritimus, i.e., in S. maritimus colonized areas Hg is more extensively exchange between belowground biomass and the rhizosediment. In conclusion, J. maritimus seems to provide a comparatively higher ecosystem service through phytostabilization (Hg complexation in the rhizosediment) and through phytoaccumulation (Hg sequestration in the belowground biomass). - Graphical abstract: Display Omitted Highlights: → Potentially halophytes auto-remediate systems by reducing Hg availability. → Species-specific factors have implications in the Hg dynamics and sequestration. → Ecosystem services are provided through phytostabilization and/or phytoaccumulation. → J. maritimus provide a comparatively higher ecosystem service. → In S. maritimus rhizosediment Hg is more extensively exchange with the halophyte. - Juncus maritimus provide an ecosystem service through Hg-phytostabilization and Hg-phytoaccumulation.

  20. Transcriptomic Profiling and Physiological Analysis of Haloxylon ammodendron in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    Hui-Juan Gao

    2017-12-01

    Full Text Available Haloxylon ammodendron, a perennial xero-halophyte, is an essential species for investigating the effects of drought on desert tree. To gain a comprehensive knowledge on the responses of H. ammodendron to drought stress, we specially performed the molecular and physiological analysis of H. ammodendron in response to −0.75 MPa osmotic stress for six and 24 h in lab condition via RNA-seq and digital gene expression (DGE. In total, 87,109 unigenes with a mean length of 680 bp and 13,486 potential simple sequence repeats (SSRs were generated, and 3353 differentially expressed genes (DEGs in shoots and 4564 in roots were identified under stress. These DEGs were mainly related to ion transporters, signal transduction, ROS-scavenging, photosynthesis, cell wall organization, membrane stabilization and hormones. Moreover, the physiological changes of inorganic ions and organic solute content, peroxidase (POD activity and osmotic potential were in accordance with dynamic transcript profiles of the relevant genes. In this study, a detailed investigation of the pathways and candidate genes identified promote the research on the molecular mechanisms of abiotic stress tolerance in the xero-halophytic species. Our data provides valuable genetic resources for future improvement of forage and crop species for better adaptation to abiotic stresses.

  1. Alien Species and the Water Framework Directive - Questionnaire Results

    OpenAIRE

    VANDEKERKHOVE JOCHEN; CARDOSO Ana

    2010-01-01

    Alien species constitute a major pressure in aquatic environments, both ecologically and economically. This recognition has initiated a debate on the role of alien species in ecological status classifications. We distributed a questionnaire to review how EU Member States (MSs) deal with alien species in their national status assessments under the Water Framework Directive (WFD). The questionnaire was filled and returned by 23 EU MSs and Norway. Analysis of the questionnaire returns and referr...

  2. The tolerance to salinity and nutrient supply in four European Bolboschoenus species (B. maritimus, B. laticarpus, B. planiculmis and B. yagara) affects their vulnerability or expansiveness

    Czech Academy of Sciences Publication Activity Database

    Hroudová, Zdenka; Zákravský, Petr; Flegrová, Monika

    2014-01-01

    Roč. 112, Jan. 2014 (2014), s. 66-75 ISSN 0304-3770 R&D Projects: GA AV ČR IAA6005905 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : halophytes * stress tolerance * wetlands Subject RIV: EF - Botanics Impact factor: 1.608, year: 2014

  3. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition

    Directory of Open Access Journals (Sweden)

    ASISH KUMAR PARIDA

    2016-03-01

    Full Text Available Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl. There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl. The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM, whereas it increased significantly at higher salinity (500 and 750 mM NaCl. The proline content increased in the NaCl treated seedlings as

  4. Analysing how plants in coastal wetlands respond to varying tidal regimes throughout their life cycles.

    Science.gov (United States)

    Xie, Tian; Cui, Baoshan; Li, Shanze

    2017-10-15

    Important to conserve plant species in coastal wetlands throughout their life cycle. All life stages in these habitats are exposed to varying tidal cycles. It is necessary to investigate all life stages as to how they respond to varying tidal regimes. We examine three wetlands containing populations of an endangered halophyte species, each subjected to different tidal regimes: (1). wetlands completely closed to tidal cycles; (2). wetlands directly exposed to tidal cycles (3). wetlands exposed to a partially closed tidal regime. Our results showed that the most threatened stage varied between wetlands subjected to these varying tidal regimes. We hypothesis that populations of this species have adapted to these different tidal regimes. Such information is useful in developing management options for coastal wetlands and modifying future barriers restricting tidal flushing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Using local biodiversity to prevent pollution transfers to environmental components of a Mediterranean semi-arid ecosystem

    Science.gov (United States)

    Heckenroth, Alma; Rabier, Jacques; Laffont-Schwob, Isabelle

    2014-05-01

    plants, mostly halophytic or halo-tolerant calcareous grass and shrubs and medium levels of MM pollution and an area at the bottom of the creeping chimney of the factory, that corresponds to a hot-spot of pollution, with shrublands and stands of Aleppo pines. Phytoecological samplings and soil MM analyses were conducted on 20 sampling plots on each area, organised in transects corresponding to environmental and potential pollution gradients. For each area, few variables related to distances from pollution or disturbances sources, natural and anthropogenic, were added for statistical treatments. Data were analysed using correlation matrix and PCA to identify which variables had major influences on the composition of plant communities. On the halophytic area, where natural constraints are drastic and despite the soil pollution, sea spray still appeared to be a decisive factor on plant community organization. However, anthropogenic disturbances seemed also to be influent drivers. On the chimney area, the results of the multivariate analysis indicated that a century of MM pollution pressure produced a noticeable effect on plant population dynamics. These results suggest that some native plant species have successfully developed tolerance or resistance mechanisms to face MM impacts. As a result, a grid of criteria has been chosen based on statistical relationships between occurrence of plant species and variables to select native plant species to be studied for their phytoremediation potential, taking into account the specificity of each study area.

  6. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  7. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    Science.gov (United States)

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na + , K + , and Cl - ), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  8. Maritime Halophyte Species from Southern Portugal as Sources of Bioactive Molecules

    DEFF Research Database (Denmark)

    Rodrigues, Maria João; Gangadhar, Katkam N.; Vizetto-Duarte, Catarina

    2014-01-01

    -ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical was obtained in the ether extract of J. acutus (IC50 = 0.4 mg/mL) and H. portulacoides (IC50 = 0.9 mg/mL). The maximum total phenolic content (TPC) was found in the methanol extract of M. edule (147 mg gallic acid equivalents (GAE)/g) and in the ether extract of J......,1-diphenyl-2-picrylhydrazyl (DPPH) radical were the methanol extracts of M. edule (IC50 = 0.1 mg/mL) and J. acutus (IC50 = 0.4 mg/mL), and the ether extracts of J. acutus (IC50 = 0.2 mg/mL) and A. macrostachyum (IC50 = 0.3 mg/mL). The highest radical scavenging activity (RSA) against the 2,2'-azino-bis (3...... activity and selectivity was obtained with the ether extract of J. acutus. Juncunol was identified as the active compound and for the first time was shown to display selective in vitro cytotoxicity towards various human cancer cells....

  9. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    Science.gov (United States)

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  10. Energy from biomass: Results of two-years trials on annual and perennial Herba ceous species

    International Nuclear Information System (INIS)

    Angelini, L.; Ceccarini, L.; Oggiano, N.; Bonari, E.

    1994-01-01

    In the framework of the PRisCa Project (Alternative Crops Research Project) a number of germ plasm collections were set up at the Department of Agronomy of the University of Pisa in order to identify annual and perennial herbaceous species utilizable for electric energy production. The first results deriving from trials carried out in 1992-93 are reported. The following species were used: 1) Annual: Sorghum bicolor, Hibiscus cannabinus, Pennisetum americanum, Kochia scoparia. 2) Perennial: Cynara cardunculus, Helianthus tuberosus, Miscantus sinensis, Arundo donax. Almost all species tested were represented by several genotypes. The total amount of species and genotype tested was 16. On all species, main phenological, biometric and productive determinations were performed. The hypothesized final use was intended to be electric power production by direct combustion and/or gasification. In addition, specific calorific value was also determined by adiabatic calorimeter as well as chemical composition of dry matter and ash composition. Species showing high yield potential, both from the quantitative and qualitative point of view, were Sorghum bicolor and Kochia scoparia (among annuals), as well as Miscanthus sinensis and Arundo donax (among perennials). Total dry matter yield ranged from about 23 tha -1 in the annual species to about 56 tha -1 in the perennials. The highest total calorific power obtainable from dry epigeic biomass was measured in Sorghum bicolor and Arundo donax - 4023 Kcal Kg -1 and 4166 Kcal Kg -1 respectively. The preliminary results suggest that vegetable biomass is environmentally-friendly and could contribute significantly to the world energy needs. (author)

  11. Use of local pastoral species to increase fodder production of the saline rangelands in southern Tunisia

    Science.gov (United States)

    Tlili, Abderrazak; Tarhouni, Mohamed; Cardà, Artemi; Neffati, Mohamed

    2017-04-01

    Climate changes associated with multiple destructive human activities accelerate the degradation process of the natural rangelands around the world and especially the vulnerable areas such as the dryland ecosystems (Anaya-Romero et al., 2015; Eskandari et al., 2016; Muños Rojas et al., 2016; Vicente-Serrano et al., 2016). The vegetation cover and the biomass production of these ecosystems are decreasing and this is resulting in land degradation due to the soil erosion and changes in soil quality due to the abuse and misuse of the soil resources (Cerdà et al., 2016; Prosdocimi et al., 2016; Keesstra et al., 2016). To cope with such threats, it is necessary to develop some management techniques (restoration, plantation…) to enhance the biomass production and the carbon sequestration of the degraded rangelands (Muñoz-Rojas et al., 2016; Tarhouni et al., 2016). The valorization of saline water by planting pastoral halophyte species in salt-affected soils as well as the marginal areas are considered among the valuable tools to increase the rangeland production in dry areas. In this work, the ability of four plants (Atriplex halimus L. (Amaranthaceae), Atriplex mollis Desf. (Amaranthaceae), Lotus creticus L. (Fabaceae) and Cenchrus ciliaris L. (Poaceae)) to grow and to produce are tested under a field saline conditions (water and soil). Non-destructive method (Vegmeasure) is used to estimate the biomass production of these species. Chemical (crude protein, moisture and ash contents) and biochemical analyses (sugars, tannins and polyphenols contents) are also undertaken. Two years after plantation, the obtained results showed the ability of the four species to survive and to grow under high salinity degree. A strong positive correlation was obtained between the canopy cover and the dry biomass of the four studied species. Hence, the restoration of saline soils can be ensured by planting local halophytes. Acknowledgements. The research leading to these results has

  12. Can quinoa, a salt-tolerant Andean crop species, be used for phytoremediation of chromium-polluted soil?

    Science.gov (United States)

    Ruiz, Karina B.; Cicatelli, Angela; Guarino, Francesco; Jacobsen, Sven-Erik; Biondi, Stefania; Castiglione, Stefano

    2017-04-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean halophytic seed crop, exhibits exceptional resistance to salinity, drought, and cold. Consistent with the notion that such a resilient plant is likely to tolerate toxic levels of heavy metals as well and could, therefore, be employed for the clean-up of polluted soil (via phytoextraction or phytostabilization), the species' ability to take up, translocate, and tolerate chromium (CrIII) was investigated in a greenhouse pot experiment. A cultivar adapted to European conditions (cv. Titicaca) was grown on soil spiked with 500 mg kg-1 DW of Cr(NO3)3•9H2O, combined (or not) with 150 mM NaCl, or on soil grown with 150 mM NaCl alone. Plants were grown up to maturity (four months after sowing), and then plant biomass and concentrations of Na, Cr, and other elements (e.g., Fe and P) were evaluated in the plant organs. Soil Cr content (total and available fractions) was analysed at the start of the experiment, one week after the last addition of Cr and/or NaCl, and at the end of the trial. No visible toxic effects were observed under the different culture conditions. Results revealed that Cr was mainly accumulated in roots, while Na+ was translocated to the aerial parts. In order to compare plant stress responses under the different treatments (Cr, NaCl, Cr+NaCl), expression levels of several stress-related genes, together with those of a potential Cr transporter, were determined by quantitative real-time RT-PCR.

  13. Higher degradation of L-Cys by O-acetylserine-thiolyases in Sarcocornia than Salicornia

    KAUST Repository

    Kurmanbayeva, Assylay

    2017-07-26

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, while Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates cysteine and L-cysteine desulfhydrase that degrades cysteine to H2S, NH3 and pyruvate. The major function of O-acetylserine-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of L-cysteine, but our study shows that the OAS-TL A and B of both halophytes are enzymes that also degrade L-cysteine to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5\\'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high L-cysteine degradation rate by OAS-TLs, whereas, the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low L-cysteine degradation rate, resulting in higher net cysteine biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.

  14. Higher degradation of L-Cys by O-acetylserine-thiolyases in Sarcocornia than Salicornia

    KAUST Repository

    Kurmanbayeva, Assylay; Bekturova, Aizat; Srivastava, Sudhakar; Soltabayeva, Aigerim; Khan, Mohammad Suhail; Salazar, Octavio; Fedoroff, Nina V.; Asatryan, Armine; Ventura, Yvonne; Sagi, Moshe

    2017-01-01

    Salicornia and Sarcocornia are almost identical halophytes whose edible succulent shoots hold promise for commercial production in saline water. Enhanced sulfur nutrition may be beneficial to crops naturally grown on high sulfate. However, little is known about sulfate nutrition in halophytes. Here we show that Salicornia europaea (ecotype RN) exhibits a significant increase in biomass and organic-S accumulation in response to supplemental sulfate, while Sarcocornia fruticosa (ecotype VM) does not, instead exhibiting increased sulfate accumulation. We investigated the role of two pathways on organic-S and biomass accumulation in Salicornia and Sarcoconia: the sulfate reductive pathway that generates cysteine and L-cysteine desulfhydrase that degrades cysteine to H2S, NH3 and pyruvate. The major function of O-acetylserine-(thiol) lyase (OAS-TL; EC 2.5.1.47) is the formation of L-cysteine, but our study shows that the OAS-TL A and B of both halophytes are enzymes that also degrade L-cysteine to H2S. This activity was significantly higher in Sarcocornia than in Salicornia, especially upon sulfate supplementation. The activity of the sulfate reductive pathway key enzyme, adenosine 5'-phosphosulfate reductase (APR, EC 1.8.99.2), was significantly higher in Salicornia than in Sarcocornia. These results suggest that the low organic-S level in Sarcocornia is the result of high L-cysteine degradation rate by OAS-TLs, whereas, the greater organic-S and biomass accumulation in Salicornia is the result of higher APR activity and low L-cysteine degradation rate, resulting in higher net cysteine biosynthesis. These results present an initial road map for halophyte growers to attain better growth rates and nutritional value of Salicornia and Sarcocornia.

  15. Transcriptome Characterization and Sequencing-Based Identification of Salt-Responsive Genes in Millettia pinnata, a Semi-Mangrove Plant

    OpenAIRE

    Huang, Jianzi; Lu, Xiang; Yan, Hao; Chen, Shouyi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2012-01-01

    Semi-mangroves form a group of transitional species between glycophytes and halophytes, and hold unique potential for learning molecular mechanisms underlying plant salt tolerance. Millettia pinnata is a semi-mangrove plant that can survive a wide range of saline conditions in the absence of specialized morphological and physiological traits. By employing the Illumina sequencing platform, we generated ∼192 million short reads from four cDNA libraries of M. pinnata and processed them into 108 ...

  16. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Chaturvedi

    Full Text Available Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13 showed significantly enhanced salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl, osmotic (PEG and metals (Zn++, Cu++ and Cd++ stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  17. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    Science.gov (United States)

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  18. Expansion of southern distributional range of Ucides occidentalis (Decapoda: Ucididae and Cardisoma crassum (Decapoda: Gecarcinidae

    Directory of Open Access Journals (Sweden)

    Solange Alemán

    2017-04-01

    Full Text Available Is recorded the species of crabs brachyuran Ucides occidentalis (mangrove crab and Cardisoma crassum (Blue crab or without mouth in the mangroves of San Pedro (Piura, expanding its geographical distribution south of Tumbes, which was the known limit. The habitat of these species is characterized by the presence of two varieties of mangrove trees, Jeli white (Laguncularia racemosa and salty Jeli (Avicenia germinans and halophytic shrub called glass (Batis maritima, it observing that the depth of the burrows is shallow (< 60 cm. Biometric information and some biological aspects of the collected specimens are also presented.

  19. Competition from native hydrophytes reduces establishment and growth of invasive dense-flowered cordgrass (Spartina densiflora

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abbas

    2015-10-01

    Full Text Available Experimental studies to determine the nature of ecological interactions between invasive and native species are necessary for conserving and restoring native species in impacted habitats. Theory predicts that species boundaries along environmental gradients are determined by physical factors in stressful environments and by competitive ability in benign environments, but little is known about the mechanisms by which hydrophytes exclude halophytes and the life history stage at which these mechanisms are able to operate. The ongoing invasion of the South American Spartina densiflora in European marshes is causing concern about potential impacts to native plants along the marsh salinity gradient, offering an opportunity to evaluate the mechanisms by which native hydrophytes may limit, or even prevent, the expansion of invasive halophytes. Our study compared S. densiflora seedling establishment with and without competition with Phragmites australis and Typha domingensis, two hydrophytes differing in clonal architecture. We hypothesized that seedlings of the stress tolerant S. densiflora would be out-competed by stands of P. australis and T. domingensis. Growth, survivorship, biomass patterns and foliar nutrient content were recorded in a common garden experiment to determine the effect of mature P. australis and T. domingensis on the growth and colonization of S. densiflora under fresh water conditions where invasion events are likely to occur. Mature P. australis stands prevented establishment of S. densiflora seedlings and T. domingensis reduced S. densiflora establishment by 38%. Seedlings grown with P. australis produced fewer than five short shoots and all plants died after ca. 2 yrs. Our results showed that direct competition, most likely for subterranean resources, was responsible for decreased growth rate and survivorship of S. densiflora. The presence of healthy stands of P. australis, and to some extent T. domingensis, along river channels

  20. Comparing and interpreting laboratory results of Hg oxidation by a chlorine species

    International Nuclear Information System (INIS)

    Agarwal, Hans; Romero, Carlos E.; Stenger, Harvey G.

    2007-01-01

    Several researchers have performed experimental work in attempts to explain the effects of various flue-gas components on the oxidation of elemental mercury (Hg 0 ). Some have concluded that water (H 2 O) inhibits Hg oxidation by chlorine (Cl 2 ). In recently published work, it was found that sulfur dioxide (SO 2 ) and nitric oxide (NO) also have an inhibitory effect on Hg oxidation. This paper aims to serve three purposes. First, to present data obtained in a laboratory scale apparatus, designed to test the effects of Cl 2 on the oxidation of Hg 0 with respect to temperature. The results show that as temperature increases, Cl 2 is less effective as an Hg oxidizing agent. Second, this paper presents a consolidation of data taken from several sources, where the effects of various flue-gas components on the oxidation of Hg 0 is observed and discussed. The summary of these results shows the following general trends: at high temperatures, hydrogen chloride (HCl) is the primary chlorine species responsible for Hg 0 oxidation, while at lower temperatures, Cl 2 is the dominant species. Third, a simple two reaction model is suggested to predict the experimental data shown in this paper. The results show that the predicted percent Hg oxidation values correspond very well with the observed experimental values

  1. Soil and fertilizer amendments and edge effects on the floral succession of pulverized fuel ash

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, P. [Roehampton University, London (United Kingdom). Whitelands College

    2009-01-15

    Plots of fresh pulverized fuel ash (PFA, an industrial waste) were inoculated with soils from existing PFA sites and fertilizers in a factorial design, then left unmanaged for 12 years during which time the floral development and soil chemistry were monitored annually. For the first 3 years, the site supported a sparse mix of chenopods (including the scarce Chenopodium glaucum) and halophytes. As salinity declined, ruderals, legumes, and grasses plus the fire-site moss Funaria hygrometrica colonized, followed by Festuca arundinacea grassland (NVC community MG12) and Hippophae rhamnoides scrub. Dactylorhiza incarnata (orchidacea) appeared after 7 years, but only in plots that had received soil from existing orchid colonies. Four years later, a larger second generation of Dactylorhiza appeared, but only in the central zone of the site where vegetation was thinnest. By year 12, the site was dominated by coarse grasses and scrub, with early successional species persisting only in the sparsely vegetated center, where nitrate levels were lowest. This edge effect is interpreted as centripetal encroachment, a process of potentially wider concern for the conservation of low-fertility habitat patches. Overall, seed bank inoculation seems to have introduced few but desirable species (D. incarnata, Pyrola rotundifolia, some halophytes, and annuals), whereas initial application of organic fertilizer had long-lasting ({ge} 10 years) effects on cover and soil composition.

  2. Bistability of mangrove forests and competition with freshwater plants

    Science.gov (United States)

    Jiang, Jiang; Fuller, Douglas O; Teh, Su Yean; Zhai, Lu; Koh, Hock Lye; DeAngelis, Donald L.; Sternberg, L.D.S.L.

    2015-01-01

    Halophytic communities such as mangrove forests and buttonwood hammocks tend to border freshwater plant communities as sharp ecotones. Most studies attribute this purely to underlying physical templates, such as groundwater salinity gradients caused by tidal flux and topography. However, a few recent studies hypothesize that self-reinforcing feedback between vegetation and vadose zone salinity are also involved and create a bistable situation in which either halophytic dominated habitat or freshwater plant communities may dominate as alternative stable states. Here, we revisit the bistability hypothesis and demonstrate the mechanisms that result in bistability. We demonstrate with remote sensing imagery the sharp boundaries between freshwater hardwood hammock communities in southern Florida and halophytic communities such as buttonwood hammocks and mangroves. We further document from the literature how transpiration of mangroves and freshwater plants respond differently to vadose zone salinity, thus altering the salinity through feedback. Using mathematical models, we show how the self-reinforcing feedback, together with physical template, controls the ecotones between halophytic and freshwater communities. Regions of bistability along environmental gradients of salinity have the potential for large-scale vegetation shifts following pulse disturbances such as hurricane tidal surges in Florida, or tsunamis in other regions. The size of the region of bistability can be large for low-lying coastal habitat due to the saline water table, which extends inland due to salinity intrusion. We suggest coupling ecological and hydrologic processes as a framework for future studies.

  3. Gene Flow Results in High Genetic Similarity Between Sibiraea (Rosaceae species in the Qinghai-Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Peng-Cheng Fu

    2016-10-01

    Full Text Available Studying closely related species and divergent populations provides insight into the process of speciation. Previous studies showed that the Sibiraea complex's evolutionary history on the Qinghai-Tibetan Plateau (QTP was confusing and could not be distinguishable on the molecular level. In this study, the genetic structure and gene flow of S. laevigata and S. angustata on the QTP was examined across 45 populations using 8 microsatellite loci. Microsatellites revealed high genetic diversity in Sibiraea populations. Most of the variance was detected within populations (87.45% rather than between species (4.39%. We found no significant correlations between genetic and geographical distances among populations. Bayesian cluster analysis grouped all individuals in the sympatric area of Sibiraea into one cluster and other individuals of S. angustata into another. Divergence history analysis based on the approximate Bayesian computation method indicated that the populations of S. angustata at the sympatric area derived from the admixture of 2 species. The assignment test assigned all individuals to populations of their own species rather than its congeneric species. Consistently, intraspecies were detected rather than interspecies first-generation migrants. The bidirectional gene flow in long-term patterns between the 2 species was asymmetric, with more from S. angustata to S. laevigata. In conclusion, the Sibiraea complex was distinguishable on the molecular level using microsatellite loci. We found that the high genetic similarity of these 2 species resulted from huge bidirectional gene flow, especially on the sympatric area where population admixtures between the species occurred.

  4. Patterns of plant diversity loss and species turnover resulting from land abandonment and intensification in semi-natural grasslands.

    Science.gov (United States)

    Uchida, Kei; Koyanagi, Tomoyo F; Matsumura, Toshikazu; Koyama, Asuka

    2018-07-15

    Land-use changes cause biodiversity loss in semi-natural ecosystems worldwide. Biotic homogenization has led to biodiversity loss, mainly through declines in species composition turnover. Elucidating patterns of turnover in species composition could enhance our understanding of how anthropogenic activities affect community assembly. Here, we focused on whether the decreasing patterns in plant diversity and turnover of species composition resulting from land-use change vary in two regions. We estimated the species diversity and composition of semi-natural grasslands surrounding paddy fields in satoyama landscapes. We examined the differences in species diversity and composition across three land-use types (abandoned, traditional, and intensified) in two regions (Hyogo and Niigata Prefectures, Japan), which were characterized by different climatic conditions. We then assessed alpha-, beta-, and gamma-diversity to compare the patterns of diversity losses in the two regions as a result of land-use changes. In each region, gamma-diversity was consistently higher in the traditional sites compared to abandoned or intensified sites. The analyses revealed that most of the beta-diversity in traditional sites differed significantly from those of abandoned and intensified sites in both regions. However, the beta-diversity of total and perennial species did not differ between traditional and abandoned sites in the Hyogo region. We noted that the beta-diversity of total and perennial species in intensified sites was much lower than that in the traditional sites of the Niigata region. Overall, the patterns of alpha- and gamma-diversity loss were similar in both study regions. Although the biotic homogenization was caused by intensified land-use in the Niigata region, this hypothesis did not completely explain the loss of biodiversity in the abandoned sites in the Hyogo region. The present study contributes to the growing body of work investigating changes in biodiversity as a

  5. Ecosystem Services and Community-Based Approaches to Wastewater and Saline Soils Reclamation in the Drylands of Uzbekistan

    Science.gov (United States)

    Toderich, Kristina; Khujanazarov, Timur; Aralova, Dildora; Shuyskaya, Elena; Gismatulina, Liliya; Boboev, Hasan

    2017-04-01

    The working hypothesis of this article support an indication of declining water quality, increasing soils salinity and higher production costs in the Bukhara oasis- a borderline lands between the sandy Kyzylkum Desert and irrigated zone in the lower stream of Zarafshan River Basin. The pollution of waters and soils with toxic metals is the major environmental problem in these agro-ecological zones. Conventional remediation approaches usually do not ensure adequate results. The mobility of toxic pollutants can be highly facilitated by the chemical properties of soils and the aridity of the climate. The impact of these factors of land degradation induces reduction in biodiversity and yields losses of agricultural crops and wild desert plant communities. A recent survey showed that the chemical composition of the drainage effluents is sulfate-chloride-hydrocarbonate - magnesium-sodium-calcium with high level of mineralization 4200 - 18800 ppm. Concentration of chloride and sulfate, detected both in drainage effluents and ground water, is 10 times higher than maximum allowable concentration (MAC); and traces of heavy metals, such as strontium, selenium, arsenic, lead, zinc, uranium are 2 times higher than MAC. Distribution of boron showed a strong correlation with those of arsenic and antimony. Aluminum has a significant correlation with arsenic and lead distribution. Antimony correlates significantly with zinc and arsenic, while copper and iron (Fe57) also well correlate with each other. Because these metals rarely exist in natural environment, it is presumed that they are caused both by the usage of some chemicals at the agricultural field in harvest season and by the discharge of some technogenic chemicals from industry. The desalinated/treated wastewater were used to irrigate high value crops and the waste brine is transformed into a resource that was used to grow aquatic species (fish, algae) and irrigate halophytic species with benefits for livestock, farmers and

  6. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis.

    Science.gov (United States)

    Wali, Mariem; Gunsè, Benet; Llugany, Mercè; Corrales, Isabel; Abdelly, Chedly; Poschenrieder, Charlotte; Ghnaya, Tahar

    2016-08-01

    NaCl alleviates Cd toxicity in Sesvium portulacastrum by maintaining plant water status and redox balance, protecting chloroplasts structure and inducing some potential Cd (2+) chelators as GSH and proline. It has been demonstrated that NaCl alleviates Cd-induced growth inhibition in the halophyte Sesuvium portulacastrum. However, the processes that mediate this effect are still unclear. In this work we combined physiological, biochemical and ultrastructural studies to highlight the effects of salt on the redox balance and photosynthesis in Cd-stressed plants. Seedlings were exposed to different Cd concentrations (0, 25 and 50 µM Cd) combined with low (0.09 mM) (LS), or high (200 mM) NaCl (HS) in hydroponic culture. Plant-water relations, photosynthesis rate, leaf gas exchange, chlorophyll fluorescence, chloroplast ultrastructure, and proline and glutathione concentrations were analyzed after 1 month of treatment. In addition, the endogenous levels of stress-related hormones were determined in plants subjected to 25 µM Cd combined with both NaCl concentrations. In plants with low salt supply (LS), Cd reduced growth, induced plant dehydration, disrupted chloroplast structure and functioning, decreased net CO2 assimilation rate (A) and transpiration rate (E), inhibited the maximum potential quantum efficiency (Fv/Fm) and the quantum yield efficiency (Φ PSII) of PSII, and enhanced the non-photochemical quenching (NPQ). The addition of 200 mM NaCl (HS) to the Cd-containing medium culture significantly mitigated Cd phytotoxicity. Hence, even at similar internal Cd concentrations, HS-Cd plants were less affected by Cd than LS-Cd ones. Hence, 200 mM NaCl significantly alleviates Cd-induced toxicity symptoms, growth inhibition, and photosynthesis disturbances. The cell ultrastructure was better preserved in HS-Cd plants but affected in LS-Cd plants. The HS-Cd plants showed also higher concentrations of reduced glutathione (GSH), proline and jasmonic acid (JA

  7. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    Science.gov (United States)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere.

  8. ABA, GA(3), and nitrate may control seed germination of Crithmum maritimum (Apiaceae) under saline conditions.

    Science.gov (United States)

    Atia, Abdallah; Debez, Ahmed; Barhoumi, Zouhaier; Smaoui, Abderrazak; Abdelly, Chedly

    2009-08-01

    Impaired germination is common among halophyte seeds exposed to salt stress, partly resulting from the salt-induced reduction of the growth regulator contents in seeds. Thus, the understanding of hormonal regulation during the germination process is a main key: (i) to overcome the mechanisms by which NaCl-salinity inhibit germination; and (ii) to improve the germination of these species when challenged with NaCl. In the present investigation, the effects of ABA, GA(3), NO(-)(3), and NH(+)(4) on the germination of the oilseed halophyte Crithmum maritimum (Apiaceae) were assessed under NaCl-salinity (up to 200 mM NaCl). Seeds were collected from Tabarka rocky coasts (N-W of Tunisia). The exogenous application of GA(3), nitrate (either as NaNO(3) or KNO(3)), and NH(4)Cl enhanced germination under NaCl salinity. The beneficial impact of KNO(3) on germination upon seed exposure to NaCl salinity was rather due to NO(-)(3) than to K(+), since KCl failed to significantly stimulate germination. Under optimal conditions for germination (0 mM NaCl), ABA inhibited germination over time in a dose dependent manner, but KNO(3) completely restored the germination parameters. Under NaCl salinity, the application of fluridone (FLU) an inhibitor of ABA biosynthesis, stimulated substantially seed germination. Taken together, our results point out that NO(-)(3) and GA(3) mitigate the NaCl-induced reduction of seed germination, and that NO(-)(3) counteracts the inhibitory effect of ABA on germination of C. maritimum.

  9. Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.).

    Science.gov (United States)

    Maughan, P J; Turner, T B; Coleman, C E; Elzinga, D B; Jellen, E N; Morales, J A; Udall, J A; Fairbanks, D J; Bonifacio, A

    2009-07-01

    Salt tolerance is an agronomically important trait that affects plant species around the globe. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in germination and growth of plants in saline environments. Quinoa (Chenopodium quinoa Willd.) is a halophytic, allotetraploid grain crop of the family Amaranthaceae with impressive nutritional content and an increasing worldwide market. Many quinoa varieties have considerable salt tolerance, and research suggests quinoa may utilize novel mechanisms to confer salt tolerance. Here we report the cloning and characterization of two homoeologous SOS1 loci (cqSOS1A and cqSOS1B) from C. quinoa, including full-length cDNA sequences, genomic sequences, relative expression levels, fluorescent in situ hybridization (FISH) analysis, and a phylogenetic analysis of SOS1 genes from 13 plant taxa. The cqSOS1A and cqSOS1B genes each span 23 exons spread over 3477 bp and 3486 bp of coding sequence, respectively. These sequences share a high level of similarity with SOS1 homologs of other species and contain two conserved domains, a Nhap cation-antiporter domain and a cyclic-nucleotide binding domain. Genomic sequence analysis of two BAC clones (98 357 bp and 132 770 bp) containing the homoeologous SOS1 genes suggests possible conservation of synteny across the C. quinoa sub-genomes. This report represents the first molecular characterization of salt-tolerance genes in a halophytic species in the Amaranthaceae as well as the first comparative analysis of coding and non-coding DNA sequences of the two homoeologous genomes of C. quinoa.

  10. Recombination in liquid filled ionisation chambers with multiple charge carrier species: Theoretical and numerical results

    International Nuclear Information System (INIS)

    Aguiar, P.; González-Castaño, D.M.; Gómez, F.; Pardo-Montero, J.

    2014-01-01

    Liquid-filled ionisation chambers (LICs) are used in radiotherapy for dosimetry and quality assurance. Volume recombination can be quite important in LICs for moderate dose rates, causing non-linearities in the dose rate response of these detectors, and needs to be corrected for. This effect is usually described with Greening and Boag models for continuous and pulsed radiation respectively. Such models assume that the charge is carried by two different species, positive and negative ions, each of those species with a given mobility. However, LICs operating in non-ultrapure mode can contain different types of electronegative impurities with different mobilities, thus increasing the number of different charge carriers. If this is the case, Greening and Boag models can be no longer valid and need to be reformulated. In this work we present a theoretical and numerical study of volume recombination in parallel-plate LICs with multiple charge carrier species, extending Boag and Greening models. Results from a recent publication that reported three different mobilities in an isooctane-filled LIC have been used to study the effect of extra carrier species on recombination. We have found that in pulsed beams the inclusion of extra mobilities does not affect volume recombination much, a behaviour that was expected because Boag formula for charge collection efficiency does not depend on the mobilities of the charge carriers if the Debye relationship between mobilities and recombination constant holds. This is not the case in continuous radiation, where the presence of extra charge carrier species significantly affects the amount of volume recombination. - Highlights: • Analytical extension of Greening and Boag theories to multiple charge carriers. • Detailed numerical study of process of volume recombination in LICs. • Recombination in pulsed beams is independent of number and mobilities of carriers. • Multiple charge carriers have a significant effect in continuous

  11. Sort of agricultural species introducing in production resulting of mutation breeding programs in cuba

    International Nuclear Information System (INIS)

    Perez Talavera, Susana

    1999-01-01

    Radiomutant varieties of important species used in the Cuban agricultural productions are shown. They were obtained by INIFAT specialists as authors or co-author with the aid of radiomutation techniques in plant breeding programs. Several dates concerning the procedure and some of the features rendering varieties more useful are given. The introduction and acceptability by farmers are also commented. The information was collected from members of the scientific staff involving in the results and from the available literature

  12. Arbuscular mycorrhizal fungi (AMF on a sandbank plant formation: ecology and potential for hydrocarbon oil mycorrhizoremediation

    Directory of Open Access Journals (Sweden)

    Ocimar Ferreira de Andrade

    2016-04-01

    Full Text Available The sources of contamination related to the exploration, production, storage, transport, distribution and disposal of petroleum, and its products, carry risks that threaten fragile coastal environments, little studied and, thus, in need of attention from the scientific community. On the other hand, symbiont mechanisms essential for the very existence of many plant species, and their relation to contaminated soils, remain unknown. Despite the identification of several species of AMF halophytes soil communities in sandbanks, one can infer their bioremediation potential from studies in other types of soil, which, however, report the same genera of fungi as participants in mycorrhizoremediation processes of polluted soil. This study focuses on the application of biotechnology using Arbuscular Mycorrhizal Fungi (AMF in soils impacted by petroleum hydrocarbons.

  13. CO adsorption on N2-precovered NaY faujasite: a FTIR analysis of the resulting adsorbed species.

    Science.gov (United States)

    Cairon, Olivier

    2013-08-26

    To productively complete the information regarding the reversible adsorption of a gas mixture on the micropores of cationic zeolites, the adsorption of the two gases N2 and CO on NaY faujasite is taken as a model case study. We analyze herein CO adsorption (77 K) on two distinct N2-precovered NaY sets (low and medium). We outline the continuous desorption of N2 adducts during CO admittance to full N2 desorption for the highest CO loadings. These features contrast with preceding results obtained for N2 loading on CO-precovered NaY. By comparing these results with the sole CO admission and combining both studies regarding the co-adsorption sets, we demonstrate the influence of the basic strength of the two gases regarding the nature of the surface-adsorbed species formed. We also propose and discuss a hypothesis regarding the formation of adsorbed mixed species having both N2 and CO as ligands. These new findings strengthen the statistical response of IR signatures as a helpful proposal for analyzing adsorbed species and their assignments. This survey completes the molecular understanding of gas-mixture adsorption that lacks experimental data to date. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Emerging Species of Concern Resulting from Urbanization Encroachment Near Military Installations

    National Research Council Canada - National Science Library

    MacDonald, Daniel P; Lozar, Robert C

    2006-01-01

    Using data from a DoD Species of Concern (SOC) report and recent evaluations of urbanization encroachment trends near military installations, a prediction of the effect of that urbanization to 2020 on the SOC was made...

  15. Maximum sustainable yield and species extinction in a prey-predator system: some new results.

    Science.gov (United States)

    Ghosh, Bapan; Kar, T K

    2013-06-01

    Though the maximum sustainable yield (MSY) approach has been legally adopted for the management of world fisheries, it does not provide any guarantee against from species extinction in multispecies communities. In the present article, we describe the appropriateness of the MSY policy in a Holling-Tanner prey-predator system with different types of functional responses. It is observed that for both type I and type II functional responses, harvesting of either prey or predator species at the MSY level is a sustainable fishing policy. In the case of combined harvesting, both the species coexist at the maximum sustainable total yield (MSTY) level if the biotic potential of the prey species is greater than a threshold value. Further, increase of the biotic potential beyond the threshold value affects the persistence of the system.

  16. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira Santillá n, Marí a José ; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  17. Salicornia strobilacea (synonym of Halocnemum strobilaceum) Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-04-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  18. Role of Plants in a Constructed Wetland: Current and New Perspectives

    Directory of Open Access Journals (Sweden)

    Amit Gross

    2013-04-01

    Full Text Available The role of plants in the treatment of effluents by constructed wetland (CW systems is under debate. Here, we review ways in which plants can affect CW processes and suggest two novel functions for plants in CWs. The first is salt phytoremediation by halophytes. We have strong evidence that halophytic plants can reduce wastewater salinity by accumulating salts in their tissues. Our studies have shown that Bassia indica, a halophytic annual, is capable of salt phytoremediation, accumulating sodium to up to 10% of its dry weight. The second novel use of plants in CWs is as phytoindicators of water quality. We demonstrate that accumulation of H2O2, a marker for plant stress, is reduced in the in successive treatment stages, where water quality is improved. It is recommended that monitoring and management of CWs consider the potential of plants as phytoremediators and phytoindicators.

  19. Introgression of the SbASR-1 Gene Cloned from a Halophyte Salicornia brachiata Enhances Salinity and Drought Endurance in Transgenic Groundnut (Arachis hypogaea) and Acts as a Transcription Factor

    Science.gov (United States)

    Tiwari, Vivekanand; Chaturvedi, Amit Kumar; Mishra, Avinash; Jha, Bhavanath

    2015-01-01

    The SbASR-1 gene, cloned from a halophyte Salicornia brachiata, encodes a plant-specific hydrophilic and stress responsive protein. The genome of S. brachiata has two paralogs of the SbASR-1 gene (2549 bp), which is comprised of a single intron of 1611 bp, the largest intron of the  abscisic acid stress ripening [ASR] gene family yet reported. In silico analysis of the 843-bp putative promoter revealed the presence of ABA, biotic stress, dehydration, phytohormone, salinity, and sugar responsive cis-regulatory motifs. The SbASR-1 protein belongs to Group 7 LEA protein family with different amino acid composition compared to their glycophytic homologs. Bipartite Nuclear Localization Signal (NLS) was found on the C-terminal end of protein and localization study confirmed that SbASR-1 is a nuclear protein. Furthermore, transgenic groundnut (Arachis hypogaea) plants over-expressing the SbASR-1 gene constitutively showed enhanced salinity and drought stress tolerance in the T1 generation. Leaves of transgenic lines exhibited higher chlorophyll and relative water contents and lower electrolyte leakage, malondialdehyde content, proline, sugars, and starch accumulation under stress treatments than wild-type (Wt) plants. Also, lower accumulation of H2O2 and O2.- radicals was detected in transgenic lines compared to Wt plants under stress conditions. Transcript expression of APX (ascorbate peroxidase) and CAT (catalase) genes were higher in Wt plants, whereas the SOD (superoxide dismutase) transcripts were higher in transgenic lines under stress. Electrophoretic mobility shift assay (EMSA) confirmed that the SbASR-1 protein binds at the consensus sequence (C/G/A)(G/T)CC(C/G)(C/G/A)(A/T). Based on results of the present study, it may be concluded that SbASR-1 enhances the salinity and drought stress tolerance in transgenic groundnut by functioning as a LEA (late embryogenesis abundant) protein and a transcription factor. PMID:26158616

  20. Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa).

    Science.gov (United States)

    Shabala, Lana; Mackay, Alex; Tian, Yu; Jacobsen, Sven-Erik; Zhou, Daowei; Shabala, Sergey

    2012-09-01

    Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions. Copyright © Physiologia Plantarum 2012.

  1. Assessing species boundaries using multilocus species delimitation in a morphologically conserved group of neotropical freshwater fishes, the Poecilia sphenops species complex (Poeciliidae.

    Directory of Open Access Journals (Sweden)

    Justin C Bagley

    Full Text Available Accurately delimiting species is fundamentally important for understanding species diversity and distributions and devising effective strategies to conserve biodiversity. However, species delimitation is problematic in many taxa, including 'non-adaptive radiations' containing morphologically cryptic lineages. Fortunately, coalescent-based species delimitation methods hold promise for objectively estimating species limits in such radiations, using multilocus genetic data. Using coalescent-based approaches, we delimit species and infer evolutionary relationships in a morphologically conserved group of Central American freshwater fishes, the Poecilia sphenops species complex. Phylogenetic analyses of multiple genetic markers (sequences of two mitochondrial DNA genes and five nuclear loci from 10/15 species and genetic lineages recognized in the group support the P. sphenops species complex as monophyletic with respect to outgroups, with eight mitochondrial 'major-lineages' diverged by ≥2% pairwise genetic distances. From general mixed Yule-coalescent models, we discovered (conservatively 10 species within our concatenated mitochondrial DNA dataset, 9 of which were strongly supported by subsequent multilocus Bayesian species delimitation and species tree analyses. Results suggested species-level diversity is underestimated or overestimated by at least ~15% in different lineages in the complex. Nonparametric statistics and coalescent simulations indicate genealogical discordance among our gene tree results has mainly derived from interspecific hybridization in the nuclear genome. However, mitochondrial DNA show little evidence for introgression, and our species delimitation results appear robust to effects of this process. Overall, our findings support the utility of combining multiple lines of genetic evidence and broad phylogeographical sampling to discover and validate species using coalescent-based methods. Our study also highlights the

  2. Indicator species of essential forest tree species in the Burdur district.

    Science.gov (United States)

    Negiz, Mehmet Güvenç; Eser, Yunus; Kuzugüdenll, Emre; Izkan, Kürşad

    2015-01-01

    The forests of Burdur district for long have been subjected to over grazing and individual selection. As a result of this, majority of the forest areas in the district were degraded. In the district, afforestation efforts included majority of forestry implementations. It is well known that selecting suitable species plays an important role for achieving afforestation efforts. In this context, knowing the indicator species among the target species would be used in afforestation efforts, studies on the interrelationships between environmental factors and target species distribution is vital for selecting suitable species for a given area. In this study, Anatolian Black pine (Pinus nigra), Red pine (Pinus brutia), Crimean juniper (Juniperus excelsa) and Taurus cedar (Cedrus libani), essential tree species, were considered as target species. The data taken from 100 sample plots in Burdur district was used. Interspecific correlation analysis was performed to determine the positive and negative indicator species among each of the target species. As a result of ICA, 2 positive (Berberis crataegina, Juniperus oxycedrus), 2 negative (Phillyrea latifolia, Quercus coccifera) for Crimean Juniper, I positive (Juniperus oxycedrus), 3 negative (Onopordium acanthium, Fraxinus ornus, Phillyrea latifolia) for Anatolian black pine, 3 positive (Paliurus spina-christi, Quercus coccifer, Crataegus orientalis), 2 negative (Berberis crataegina, Astragalus nanus) for Red pine and 3 positive (Berberis crataegina, Rhamnus oleoides, Astragalus prusianus) 2 negative (Paliurus spina-christi, Quercus cerris) for Taurus cedarwere defined as indicator plant species. In this way, practical information was obtained for selecting the most suitable species, among the target species, for afforestation efforts in Burdur district.

  3. New species of Diabrotica Chevrolat (Coleoptera: Chrysomelidae: Galerucinae and a key to Diabrotica and related genera: results of a synopsis of North and Central American Diabrotica species

    Directory of Open Access Journals (Sweden)

    Alexander Derunkov

    2015-02-01

    Full Text Available The following 18 new species of Diabrotica are described and illustrated as a result of the synopsis of North and Central American species: D. barclayi sp. nov., Guatemala; D. caveyi sp. nov., Costa Rica; D. costaricensis sp. nov., Costa Rica; D. dmitryogloblini sp. nov., Mexico; D. duckworthorum sp. nov., Honduras; D. hartjei sp. nov., Panama; D. josephbalyi sp. nov., Costa Rica; D. lawrencei sp. nov., Mexico; D. mantillerii sp. nov., Panama; D. martinjacobyi sp. nov., Honduras; D. mitteri sp. nov., Panama; D. perkinsi sp. nov., Guatemala; D. redfordae sp. nov., Costa Rica; D. reysmithi sp. nov., Costa Rica; D. salvadorensis sp. nov., El Salvador; D. sel sp. nov., Panama; D. spangleri sp. nov., Costa Rica; D. waltersi sp. nov., Panama. In addition, a key to separate Diabrotica from related genera is presented.

  4. Implications for U.S. trade and nonindigenous species risk resulting from increased economic integration of the Asia-Pacific Region

    Science.gov (United States)

    Amanda M. Countryman; Travis Warziniack; Erin Grey

    2018-01-01

    This work investigates how potential changes in trade patterns resulting from increased economic integration in the Asia-Pacific region may affect the risk for nonindigenous species spread to the United States. We construct an invasion risk index utilizing the results from a global economic modeling framework in tandem with data for climate similarities between trade...

  5. Species delimitation in the Stenocereus griseus (Cactaceae) species complex reveals a new species, S. huastecorum.

    Science.gov (United States)

    Alvarado-Sizzo, Hernán; Casas, Alejandro; Parra, Fabiola; Arreola-Nava, Hilda Julieta; Terrazas, Teresa; Sánchez, Cristian

    2018-01-01

    The Stenocereus griseus species complex (SGSC) has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC.

  6. Species delimitation in the Stenocereus griseus (Cactaceae species complex reveals a new species, S. huastecorum.

    Directory of Open Access Journals (Sweden)

    Hernán Alvarado-Sizzo

    Full Text Available The Stenocereus griseus species complex (SGSC has long been considered taxonomically challenging because the number of taxa belonging to the complex and their geographical boundaries remain poorly understood. Bayesian clustering and genetic distance-based methods were used based on nine microsatellite loci in 377 individuals of three main putative species of the complex. The resulting genetic clusters were assessed for ecological niche divergence and areolar morphology, particularly spination patterns. We based our species boundaries on concordance between genetic, ecological, and morphological data, and were able to resolve four species, three of them corresponding to S. pruinosus from central Mexico, S. laevigatus from southern Mexico, and S. griseus from northern South America. A fourth species, previously considered to be S. griseus and commonly misidentified as S. pruinosus in northern Mexico showed significant genetic, ecological, and morphological differentiation suggesting that it should be considered a new species, S. huastecorum, which we describe here. We show that population genetic analyses, ecological niche modeling, and morphological studies are complementary approaches for delimiting species in taxonomically challenging plant groups such as the SGSC.

  7. Extraction of inland Nypa fruticans (Nipa Palm) using Support Vector Machine

    Science.gov (United States)

    Alberto, R. T.; Serrano, S. C.; Damian, G. B.; Camaso, E. E.; Biagtan, A. R.; Panuyas, N. Z.; Quibuyen, J. S.

    2017-09-01

    Mangroves are considered as one of the major habitats in coastal ecosystem, providing a lot of economic and ecological services in human society. Nypa fruticans (Nipa palm) is one of the important species of mangroves because of its versatility and uniqueness as halophytic palm. However, nipas are not only adaptable in saline areas, they can also managed to thrive away from the coastline depending on the favorable soil types available in the area. Because of this, mapping of this species are not limited alone in the near shore areas, but in areas where this species are present as well. The extraction process of Nypa fruticans were carried out using the available LiDAR data. Support Vector Machine (SVM) classification process was used to extract nipas in inland areas. The SVM classification process in mapping Nypa fruticans produced high accuracy of 95+%. The Support Vector Machine classification process to extract inland nipas was proven to be effective by utilizing different terrain derivatives from LiDAR data.

  8. Salicornia strobilacea (synonym of Halocnemum strobilaceum Grown Under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    Directory of Open Access Journals (Sweden)

    Ramona Marasco

    2016-08-01

    Full Text Available Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the PGP potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  9. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    Science.gov (United States)

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  10. Impact of logging on a mangrove swamp in South Mexico: cost / benefit analysis

    Directory of Open Access Journals (Sweden)

    Cristian Tovilla Hernández

    2001-06-01

    Full Text Available Environmental changes caused by logging in a mangrove swamp were studied in Barra de Tecoanapa, Guerrero, Mexico. Original forest included Rhizophora mangle, Laguncularia racemosa, Avicennia germinans and halophytic vegetation, and produced wood (164.03 m3/ha and organic matter (3.9 g/m2/day. A total of 3.5 tons of wood per year were harvested from this area. Later, an average of 2 555 kg of maize per planting cycle were obtained (market value of 88 USD. Succession when the area was abandoned included strictly facultative and glycophyte halophytes (16 families, Cyperaceae and Poaceae were the best represented. After logging, temperatures increased 13 °C in the soil and 11°C in the air, whereas salinity reached 52 psu in the dry season. These modified soil color and sand content increased from 42.6 to 63.4%. Logging was deleterious to species, habitat, biogeochemical and biological cycles, organic matter production, seeds, young plants, genetic exchange conservation of soil and its fertility, coastal protection, and aesthetic value; 3 000 m2 had eroded as the river advanced towards the deforested area (the cost/benefit analysis showed a ratio of 246: 1. There was long-term economic loss for the community and only 30% of the site has recovered after five years.

  11. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J.; Fusi, Marco; Bariselli, Paola; Reddy, Muppala P.; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  12. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth

    KAUST Repository

    Marasco, Ramona

    2016-08-22

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  13. De novo sequencing, assembly, and analysis of Iris lactea var. chinensis roots' transcriptome in response to salt stress.

    Science.gov (United States)

    Gu, Chunsun; Xu, Sheng; Wang, Zhiquan; Liu, Liangqin; Zhang, Yongxia; Deng, Yanming; Huang, Suzhen

    2018-04-01

    As a halophyte, Iris lactea var. chinensis (I. lactea var. chinensis) is widely distributed and has good drought and heavy metal resistance. Moreover, it is an excellent ornamental plant. I. lactea var. chinensis has extensive application prospects owing to the global impacts of salinization. To better understand its molecular mechanism involved in salt resistance, the de novo sequencing, assembly, and analysis of I. lactea var. chinensis roots' transcriptome in response to salt-stress conditions was performed. On average, 74.17% of the clean reads were mapped to unigenes. A total of 121,093 unigenes were constructed and 56,398 (46.57%) were annotated. Among these, 13,522 differentially expressed genes (DEGs) were identified between salt-treated and control samples Compared to the transcriptional level of control, 7037 DEGs were up-regulated and 6539 down-regulated. In addition, 129 up-regulated and 1609 down-regulated genes were simultaneously detected in all three pairwise comparisons between control and salt-stressed libraries. At least 247 and 250 DEGs encoding transcription factors and transporter proteins were identified. Meanwhile, 130 DEGs regarding reactive oxygen species (ROS) scavenging system were also summarized. Based on real-time quantitative RT-PCR, we verified the changes in the expression patterns of 10 unigenes. Our study identified potential salt-responsive candidate genes and increased the understanding of halophyte responses to salinity stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value

    Science.gov (United States)

    Zou, Changsong; Chen, Aojun; Xiao, Lihong; Muller, Heike M; Ache, Peter; Haberer, Georg; Zhang, Meiling; Jia, Wei; Deng, Ping; Huang, Ru; Lang, Daniel; Li, Feng; Zhan, Dongliang; Wu, Xiangyun; Zhang, Hui; Bohm, Jennifer; Liu, Renyi; Shabala, Sergey; Hedrich, Rainer; Zhu, Jian-Kang; Zhang, Heng

    2017-01-01

    Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the γ paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa. PMID:28994416

  15. Orthogonius species and diversity in Thailand (Coleoptera, Caraboidea, Orthogoniini, a result from the TIGER project

    Directory of Open Access Journals (Sweden)

    Mingyi Tian

    2012-01-01

    Full Text Available The carabid genus Orthogonius MacLeay is treated, based mainly on materials collected in Thailand through the TIGER project (the Thailand Inventory Group for Entomological Research. Among 290 specimens, 20 species are identified in total, 10 of them are new species: O. taghavianae sp. n. (Nakhon Nayok: Khao Yai National Park, O. coomanioides sp. n. (Phetchabun: Thung Salaeng Luang National Park, O. similaris sp. n. (Phetchabun: Thung Salaeng Luang National Park; Loei: Phu Kradueng National Park, O. setosopalpiger sp. n. (Phetchabun: Thung Salaeng Luang National Park, O. gracililamella sp. n. (Loei: Phu Kradueng National Park; Chaiyaphum: Tat Tone National Park, O. pseudochaudoiri sp. n. (Phetchabum: Thung Salaeng Luang National Park; Nakhon Nayok: Khao Yai National Park, O. constrictus sp. n. (Phetchabum: Thung Salaeng Luang National Park, O. pinophilus sp. n. (Phetchabum: Thung Salaeng Luang National Park, O. vari sp. n. (Cambodia: Siem Reap; Thailand: Ubon Ratchathani: Pha Taem National Park; Phetchabun: Thung Salaeng Luang National Park and O. variabilis sp. n. (Thailand: Phetchabun: Thung Salaeng Luang National Park; Nakhon Nayok: Khao Yai National Park; Phetchabun: Nam Nao National Park; China: Yunnan. In addition, O. mouhoti Chaudoir, 1871 and O. kirirom Tian & Deuve, 2008 are recorded in Thailand for the first time. In total, 30 species of Orthogonius have been recorded from Thailand, indicating that Thailand holds one of the richest Orthogonius faunas in the world. A provisional key to all Thai species is provided. A majority of Thai Orthogonius species are endemic. Among the ten national parks in which orthogonine beetles were collected, Thung Salaeng Luang holds the richest fauna, including 16 species.

  16. Invasive non-native species' provision of refugia for endangered native species.

    Science.gov (United States)

    Chiba, Satoshi

    2010-08-01

    The influence of non-native species on native ecosystems is not predicted easily when interspecific interactions are complex. Species removal can result in unexpected and undesired changes to other ecosystem components. I examined whether invasive non-native species may both harm and provide refugia for endangered native species. The invasive non-native plant Casuarina stricta has damaged the native flora and caused decline of the snail fauna on the Ogasawara Islands, Japan. On Anijima in 2006 and 2009, I examined endemic land snails in the genus Ogasawarana. I compared the density of live specimens and frequency of predation scars (from black rats [Rattus rattus]) on empty shells in native vegetation and Casuarina forests. The density of land snails was greater in native vegetation than in Casuarina forests in 2006. Nevertheless, radical declines in the density of land snails occurred in native vegetation since 2006 in association with increasing predation by black rats. In contrast, abundance of Ogasawarana did not decline in the Casuarina forest, where shells with predation scars from rats were rare. As a result, the density of snails was greater in the Casuarina forest than in native vegetation. Removal of Casuarina was associated with an increased proportion of shells with predation scars from rats and a decrease in the density of Ogasawarana. The thick and dense litter of Casuarina appears to provide refugia for native land snails by protecting them from predation by rats; thus, eradication of rats should precede eradication of Casuarina. Adaptive strategies, particularly those that consider the removal order of non-native species, are crucial to minimizing the unintended effects of eradication on native species. In addition, my results suggested that in some cases a given non-native species can be used to mitigate the impacts of other non-native species on native species.

  17. Ring species as demonstrations of the continuum of species formation

    DEFF Research Database (Denmark)

    Pereira, Ricardo José Do Nascimento; Wake, David B.

    2015-01-01

    In the mid-20th century, Ernst Mayr (1942) and Theodosius Dobzhansky (1958) championed the significance of 'circular overlaps' or 'ring species' as the perfect demonstration of the gradual nature of species formation. As an ancestral species expands its range, wrapping around a geographic barrier......? What conditions favour their formation? Modelling studies have attempted to address these knowledge gaps by estimating the biological parameters that result in stable ring species (Martins et al. 2013), and determining the necessary topographic parameters of the barriers encircled (Monahan et al. 2012......). However, any generalization is undermined by a major limitation: only a handful of ring species are known to exist in nature. In addition, many of them have been broken into multiple species presumed to be evolving independently, usually obscuring the evolutionary dynamics that generate diversity. A paper...

  18. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  19. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes

    Directory of Open Access Journals (Sweden)

    Dekoum V. M. Assaha

    2017-07-01

    Full Text Available Ionic stress is one of the most important components of salinity and is brought about by excess Na+ accumulation, especially in the aerial parts of plants. Since Na+ interferes with K+ homeostasis, and especially given its involvement in numerous metabolic processes, maintaining a balanced cytosolic Na+/K+ ratio has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires the activity of Na+ and K+ transporters and/or channels. The mechanism of Na+ and K+ uptake and translocation in glycophytes and halophytes is essentially the same, but glycophytes are more susceptible to ionic stress than halophytes. The transport mechanisms involve Na+ and/or K+ transporters and channels as well as non-selective cation channels. Thus, the question arises of whether the difference in salt tolerance between glycophytes and halophytes could be the result of differences in the proteins or in the expression of genes coding the transporters. The aim of this review is to seek answers to this question by examining the role of major Na+ and K+ transporters and channels in Na+ and K+ uptake, translocation and intracellular homeostasis in glycophytes. It turns out that these transporters and channels are equally important for the adaptation of glycophytes as they are for halophytes, but differential gene expression, structural differences in the proteins (single nucleotide substitutions, impacting affinity and post-translational modifications (phosphorylation account for the differences in their activity and hence the differences in tolerance between the two groups. Furthermore, lack of the ability to maintain stable plasma membrane (PM potentials following Na+-induced depolarization is also crucial for salt stress tolerance. This stable membrane potential is sustained by the activity of Na+/H+ antiporters such as SOS1 at the PM. Moreover, novel regulators of Na+ and K+ transport pathways including the Nax1 and Nax2 loci regulation of SOS1

  20. A Monte Carlo Study of the Momentum Dependence on the Results of Tracking Unknown Particle Species in the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Sewerynek, Stephen; /British Columbia U.

    2007-04-06

    The BABAR experiment is composed of an international collaboration that will test the Standard Model prediction of CP violation. To accomplish this a new detector was constructed at the asymmetric B Factory, located at the Stanford Linear Accelerator Center. The tests will shed some light on the origins of CP violation, which is an important aspect in explaining the matter/antimatter asymmetry in the universe. In particular, the BABAR experiment will measure CP violation in the neutral B meson system. In order to succeed, the BABAR experiment requires excellent track fitting and particle species identification. Prior to the current study, track fitting was done using only one particle species--the pion. But given the momentum dependence on the accuracy of the results from this choice of particle species, a better algorithm needed to be developed. Monte Carlo simulations were carried out and a new algorithm utilizing all five particle species present in the BABAR detector was created.

  1. OA Experimental Results - Species response experiments on the effects of ocean acidification, climate change, and deoxygenation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NWFSC Ocean Acidification (OA) team will conduct a series of species-exposure experiments in the acidification research facility on N. Pacific species of...

  2. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes.

    Science.gov (United States)

    Volkov, Vadim

    2015-01-01

    Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and

  3. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes

    Directory of Open Access Journals (Sweden)

    Vadim eVolkov

    2015-10-01

    Full Text Available Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarises current data concerning Na+ and K+ concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows to choose specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX and SOS1 proteins. Comparison between nonselective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is

  4. The nuclear question: rethinking species importance in multi-species animal groups.

    Science.gov (United States)

    Srinivasan, Umesh; Raza, Rashid Hasnain; Quader, Suhel

    2010-09-01

    1. Animals group for various benefits, and may form either simple single-species groups, or more complex multi-species associations. Multi-species groups are thought to provide anti-predator and foraging benefits to participant individuals. 2. Despite detailed studies on multi-species animal groups, the importance of species in group initiation and maintenance is still rated qualitatively as 'nuclear' (maintaining groups) or 'attendant' (species following nuclear species) based on species-specific traits. This overly simplifies and limits understanding of inherently complex associations, and is biologically unrealistic, because species roles in multi-species groups are: (i) likely to be context-specific and not simply a fixed species property, and (ii) much more variable than this dichotomy indicates. 3. We propose a new view of species importance (measured as number of inter-species associations), along a continuum from 'most nuclear' to 'least nuclear'. Using mixed-species bird flocks from a tropical rainforest in India as an example, we derive inter-species association measures from randomizations on bird species abundance data (which takes into account species 'availability') and data on 86 mixed-species flocks from two different flock types. Our results show that the number and average strength of inter-species associations covary positively, and we argue that species with many, strong associations are the most nuclear. 4. From our data, group size and foraging method are ecological and behavioural traits of species that best explain nuclearity in mixed-species bird flocks. Parallels have been observed in multi-species fish shoals, in which group size and foraging method, as well as diet, have been shown to correlate with nuclearity. Further, the context in which multi-species groups occur, in conjunction with species-specific traits, influences the role played by a species in a multi-species group, and this highlights the importance of extrinsic factors in

  5. Enzymatic regulation of organic acid metabolism in an alkali-tolerant ...

    African Journals Online (AJOL)

    Chloris virgata, an alkali-tolerant halophyte, was chosen as the test material for our research. The seedlings of C. virgata were treated with varying salt and alkali stress. First, the composition and content of organic acids in shoots were analyzed and the results indicated that there was not only a significant increase in total ...

  6. Identification of listeria species isolated in Tunisia by Microarray based assay : results of a preliminary study

    International Nuclear Information System (INIS)

    Hmaied, Fatma; Helel, Salma; Barkallah, Insaf; Leberre, V.; Francois, J.M.; Kechrid, A.

    2008-01-01

    Microarray-based assay is a new molecular approach for genetic screening and identification of microorganisms. We have developed a rapid microarray-based assay for the reliable detection and discrimination of Listeria spp. in food and clinical isolates from Tunisia. The method used in the present study is based on the PCR amplification of a virulence factor gene (iap gene). the PCR mixture contained cyanine Cy5labeled dCTP. Therefore, The PCR products were fluorescently labeled. The presence of multiple species-specific sequences within the iap gene enabled us to design different oligoprobes per species. The species-specific sequences of the iap gene used in this study were obtained from genBank and then aligned for phylogenetic analysis in order to identify and retrieve the sequences of homologues of the amplified iap gene analysed. 20 probes were used for detection and identification of 22 food isolates and clinical isolates of Listeria spp (L. monocytogenes, L. ivanovi), L. welshimeri, L. seeligeri, and L. grayi). Each bacterial gene was identified by hybridization to oligoprobes specific for each Listeria species and immobilized on a glass surface. The microarray analysis showed that 5 clinical isolates and 2 food isolates were identified listeria monocytogenes. Concerning the remaining 15 food isolates; 13 were identified listeria innocua and 2 isolates could not be identified by microarray based assay. Further phylogenetic and molecular analysis are required to design more species-specific probes for the identification of Listeria spp. Microarray-based assay is a simple and rapid method used for Listeria species discrimination

  7. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    Science.gov (United States)

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  8. Core-satellite species hypothesis and native versus exotic species in secondary succession

    Science.gov (United States)

    Martinez, Kelsey A.; Gibson, David J.; Middleton, Beth A.

    2015-01-01

    A number of hypotheses exist to explain species’ distributions in a landscape, but these hypotheses are not frequently utilized to explain the differences in native and exotic species distributions. The core-satellite species (CSS) hypothesis predicts species occupancy will be bimodally distributed, i.e., many species will be common and many species will be rare, but does not explicitly consider exotic species distributions. The parallel dynamics (PD) hypothesis predicts that regional occurrence patterns of exotic species will be similar to native species. Together, the CSS and PD hypotheses may increase our understanding of exotic species’ distribution relative to natives. We selected an old field undergoing secondary succession to study the CSS and PD hypotheses in conjunction with each other. The ratio of exotic to native species (richness and abundance) was observed through 17 years of secondary succession. We predicted species would be bimodally distributed and that exotic:native species ratios would remain steady or decrease through time under frequent disturbance. In contrast to the CSS and PD hypotheses, native species occupancies were not bimodally distributed at the site, but exotic species were. The exotic:native species ratios for both richness (E:Nrichness) and abundance (E:Ncover) generally decreased or remained constant throughout supporting the PD hypothesis. Our results suggest exotic species exhibit metapopulation structure in old field landscapes, but that metapopulation structures of native species are disrupted, perhaps because these species are dispersal limited in the fragmented landscape.

  9. A survey of wild plant species for food use in Sicily (Italy) - results of a 3-year study in four Regional Parks.

    Science.gov (United States)

    Licata, Mario; Tuttolomondo, Teresa; Leto, Claudio; Virga, Giuseppe; Bonsangue, Giuseppe; Cammalleri, Ignazio; Gennaro, Maria Cristina; La Bella, Salvatore

    2016-02-09

    This paper illustrates the results of a study carried out in four Regional Parks of Sicily (Italy), concerning traditional knowledge on food use of wild plant species. The main aims of the paper were: (i) to verify which wild plant species are used for food purpose in the local culture based on information provided by elderly inhabitants (ii) to verify the presence of wild plant species which have not been cited for food use in previous studies in the Mediterranean area (iii) to determine how many of the most frequently cited wild plant species are cultivated by the local population in the four Sicilian Parks. Semi-structured interviews were carried out in the local communities of the four Regional Parks between 2007 and 2010. A total of 802 people over the age of 60 were interviewed. Cultural Importance Index was used to evaluate the level of importance given to any wild plant species as a food in the local culture. The level of appreciation of the wild plant species and the possible effects of wild plants on human health were also investigated. Local communities currently use a total number of 119 wild species for food purposes. Asteraceae and Brassicaceae were the most represented botanical families. In each of the four Sicilian Parks, Cichorium intybus L. and Foeniculum vulgare Mill. obtained the highest Cultural Importance Index values. Sixty-four species were indicated as also having medicinal properties. Leaves and other aerial plant parts were the parts most-used for the preparation of traditional recipes. The research shows that the level of traditional knowledge on the food uses of wild plant species in the study area is poor. The food uses of plants which are most likely to survive over time are those at the interface of food and medicine. Further agronomic studies are needed for a number of species with a view to introducing them as a crop into non-intensive agricultural systems.

  10. Structure of Living Soil Cover of the White Sea

    Directory of Open Access Journals (Sweden)

    Moseev Dmitriy Sergeevich

    2016-12-01

    Full Text Available The living soil of the Dry Sea gulf's coast in the South-East part of the White Sea's Dvina Bay is practically a blind spot. The bay is a unique water body in respect of plant communities. The majority of halophytes typical for the White Sea coast grows here. There are differences between plant communities of the East and West shores of the Dry Sea gulf. The East coast has developed communities with domination of Phragmites australis, the West coast is occupied by communities of psammophytonis levees with a predominance of Leymus arenarius. For the first time ever, the article provides a classification of halophytic vegetation of the gulf's marshes, which highlighted the prodromus containing ten associations, consisting of seven formations of the type grass vegetation, many of which are rare. The research results can be used to develop environmental protection measures during the construction of a deep sea port in the Dry Sea gulf.

  11. A Methodological Approach for Testing the Viability of Seeds Stored in Short-Term Seed Banks

    Directory of Open Access Journals (Sweden)

    Jose A. FORTE GIL

    2017-12-01

    Full Text Available Efficient management of ‘active’ seed banks – specifically aimed at the short-term storage at room temperature of seeds to be used locally in conservation/regeneration programmes of endemic or endangered plant species – requires establishing the optimal storage time to maintain high seed viability, for each stored species. In this work, germination of seeds of the halophytes Thalictrum maritimum, Centaurea dracunculifolia and Linum maritimum has been investigated. The seeds had been stored for different periods of time in the seed bank of ‘La Albufera’ Natural Park (Valencia, SE Spain after collection in salt marshes of the Park, where small populations of the three species are present. Seeds of T. maritimum and C. dracunculifolia have a relatively short period of viability at room temperature, and should not be stored for more than three years. On the other hand, L. maritimum seeds maintain a high germination percentage and can be kept at room temperature for up to 10 years. T. maritimum seeds, in contrast to those of the other two species, did not germinate in in vitro tests nor when sown directly on a standard substrate, unless a pre-treatment of the seeds was applied, mechanical scarification being the most effective. These results will help to improve the management of the seed bank, to generate more efficiently new plants for reintroduction and reinforcement of populations of these species in their natural ecosystems within the Natural Park.

  12. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density

    DEFF Research Database (Denmark)

    Shabala, Sergey; Hariadi, Yuda; Jacobsen, Sven-Erik

    2013-01-01

    old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially...... increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups...... to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family....

  13. Alien species recorded in the United Arab Emirates: an initial list of terrestrial and freshwater species

    Directory of Open Access Journals (Sweden)

    Pritpal Soorae

    2015-10-01

    Full Text Available Little is documented on the alien terrestrial and freshwater species in the United Arab Emirates. To address this, an assessment of terrestrial and freshwater alien species was conducted using various techniques such as a questionnaire, fieldwork data, networking with relevant people, and a detailed literature review. The results of the initial assessment show that there are 146 alien species recorded in the following seven major taxonomic groups: invertebrates 49 species, freshwater fish five species, amphibian one species, reptiles six species, birds 71 species, mammals six species and plants eight species. To inform decision makers a full list of the 146 species identified in this assessment is presented. 

  14. Why some plant species are rare.

    Science.gov (United States)

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  15. Valuing local endangered species. The role of intra-species substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Maria L. [Department of Economic Analysis, Universidade de Santiago (Spain); IDEGA, Universidade de Santiago de Compostela, Campus Sur, Avda das Ciencias, S/N. 15782, Santiago de Compostela (Spain); Ojea, Elena [IDEGA, Universidade de Santiago de Compostela, Campus Sur, Avda das Ciencias, S/N. 15782, Santiago de Compostela (Spain)

    2008-12-01

    Valuation of endangered species is important in many circumstances, and particularly when assessing the impact of large accidental oil spills. Previous studies have tested the effects of including in the contingent valuation survey reminders about the existence of diverse substitutes (in terms of other natural resources also in danger of extinction in the same area, other programs to be valued, or alternative uses of money). We include a reminder about the existence of the same biological species not being under danger of extinction elsewhere. We believe this reminder allows individuals to make an easy assessment of the biological scarcity of the species they are supposed to value. Thus, the key difference with previous studies is that valuation of endangered species is combined with an assessment of preferences towards conservation of local and native species. Our WTP results are not sensitive to the information provided about other foreign substitutes. Implications of this finding are discussed. (author)

  16. Valuing local endangered species. The role of intra-species substitutes

    International Nuclear Information System (INIS)

    Loureiro, Maria L.; Ojea, Elena

    2008-01-01

    Valuation of endangered species is important in many circumstances, and particularly when assessing the impact of large accidental oil spills. Previous studies have tested the effects of including in the contingent valuation survey reminders about the existence of diverse substitutes (in terms of other natural resources also in danger of extinction in the same area, other programs to be valued, or alternative uses of money). We include a reminder about the existence of the same biological species not being under danger of extinction elsewhere. We believe this reminder allows individuals to make an easy assessment of the biological scarcity of the species they are supposed to value. Thus, the key difference with previous studies is that valuation of endangered species is combined with an assessment of preferences towards conservation of local and native species. Our WTP results are not sensitive to the information provided about other foreign substitutes. Implications of this finding are discussed. (author)

  17. Endangered Species Day | Endangered Species Coalition

    Science.gov (United States)

    Annual Top 10 Report Protecting the Endangered Species Act Wildlife Voices Stand for Wolves Endangered Campaigns Wildlife Voices Protecting the Endangered Species Act Annual Top 10 Report Endangered Species Day Stand for Wolves Vanishing BOOK: A Wild Success The Endangered Species Act at 40 Endangered Species The

  18. Comparison of the identification results of Candida species obtained by BD Phoenix™ and Maldi-TOF (Bruker Microflex LT Biotyper 3.1).

    Science.gov (United States)

    Marucco, Andrea P; Minervini, Patricia; Snitman, Gabriela V; Sorge, Adriana; Guelfand, Liliana I; Moral, Laura López

    2018-02-05

    In patients with invasive fungal infections, the accurate and rapid identification of the genus Candida is of utmost importance since antimycotic sensitivity is closely related to the species. The aim of the present study was to compare the identification results of species of the genus Candida obtained by BD Phoenix™ (Becton Dickinson [BD]) and Maldi-TOF MS (Bruker Microflex LT Biotyper 3.1). A total of 192 isolates from the strain collection belonging to the Mycology Network of the Autonomous City of Buenos Aires, Argentina, were analyzed. The observed concordance was 95%. Only 10 strains (5%) were not correctly identified by the BD Phoenix™ system. The average identification time with the Yeast ID panels was 8h 22min. The BD Phoenix™ system proved to be a simple, reliable and effective method for identifying the main species of the genus Candida. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. The Life Cycle of Entzia, an Agglutinated Foraminifer from the Salt Marshes in Transylvania

    Science.gov (United States)

    Kaminski, Michael; Telespan, Andreea; Balc, Ramona; Filipescu, Sorin; Varga, Ildiko; Görög, Agnes

    2013-04-01

    The small salt marshes associated with Miocene salt domes in Transylvania are host to a variety of marine organisms, including communities of halophytic plants as well as an agglutinated foraminifer that is normally found in coastal salt marshes worldwide. Originally described as the species Entzia tetrastoma by Daday (1884), the foraminifer is more widely known by the name Jadammina macrescens (Brady, 1870). Because the genus name Entzia has priority over Jadammina, the valid name of this taxon is Entzia macrescens (Brady, 1870). In 2007, we discovered a living population of Entzia inhabiting a small salt marsh just outside the town of Turda in central Transylvania, only a kilometer from the famous Maria Theresa Salt Mine. This is the first discovery of a living population of Entzia in Transylvania since the species was originally described in 1884. To determine whether or not the specimens we found represent a breeding population, samples were collected from the marsh on a monthly basis over the span of a year. This species can be found among the roots of the halophytic plants, in the uppermost one or two centimeters of the mud. Sediment samples were preserved in Vodka with Rose Bengal to distinguish living and dead specimens, and examined quantitatively. To document the life cycle of the species the following metrics were carried out: test size, abundance, number of chambers, ratio between live and dead specimens, and the diameter of the proloculus. An increase in the mean diameter of specimens was found from October to December. However the mean diameter decreased again in January, which suggests that asexual reproduction had apparently taken place. Small specimens again appeared in March, when sexual reproduction is presumed to have taken place. The median proloculus diameter was smallest in April and May, but the monthly changes in mean proloculus size within the population over the span of a year are not significant. However, specimens with largest

  20. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    Science.gov (United States)

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  1. Mental representations of animal and plant species in their social contexts: Results from a survey across Europe

    NARCIS (Netherlands)

    Fischer, A.; Langers, F.; Bednar-Friedl, B.; Geamana, N.; Skogen, K.

    2011-01-01

    Despite a growing body of literature on public views on biodiversity and nature, our understanding of public attitudes towards animal and plant species is still rudimentary. This study investigates mental representations, constituted by beliefs, of three types of species (a large mammal, a spider

  2. Palynomorphological features of Suaeda acuminata (C.A. Mey. Moq., Suaeda prostrata Pall. and Tamarix ramosissima Ledeb.

    Directory of Open Access Journals (Sweden)

    Tatyana I. Tsymbalyuk

    2012-03-01

    Full Text Available The pollen morphology of Suaeda acuminata , S. prostratа and Tamarix ramosissima from Ukrainian flora has been studied with light and scanning electron microscopy. The main morphological features of pollen grains of three taxa, which spread within halophytes vegetation, are determined. The results has considered as potential useful for identification of the fossil pollen under paleopalynological or paleoecological study.

  3. Preliminary results of studies on the distribution of invasive alien vascular plant species occurring in semi-natural and natural habitats in NW Poland

    Directory of Open Access Journals (Sweden)

    Popiela Agnieszka

    2015-03-01

    -natural and natural habitats is two times lower, while that of holoagriophytes and hemiagriophytes is 56.3% and 43.7%, respectively. It seems that in the case of some invasive and potentially invasive species, a decrease in the number of their locations may be observed from the west to the east (e.g. for Acer negundo, Bromus carinatus, Clematis vitalba, Helianthus tuberosus, Lycium barbarum, Reynoutria japonica, Rosa rugosa, Vicia grandiflora. Distribution patterns for some species (e.g. for Parthenocytisus inserta or Xanthium albinum are indicative of a likely major role of the Odra River valley in the spreading of invasive species. It should be kept in mind that the area of the North-West Poland is poorly examined in terms of its flora, so the results provided in this paper are tentative. Nevertheless, the maps illustrate colonisation trends and directions and, moreover, have been so far the only attempt to synthesise this problem in NW Poland.

  4. On the salty side of life: molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats.

    Science.gov (United States)

    Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed. © 2014 John Wiley & Sons Ltd.

  5. Stable Agrobacterium -mediated transformation of the halophytic ...

    African Journals Online (AJOL)

    RT-RCR analysis was conducted using salt stressed transgenic plants, and the results suggested that 2-Cys Prx had low transcription levels under non-stressed conditions, and increased transcription after 6 h of 200 mM NaCl stress. This gene continued to demonstrate high levels of transcription until 6 h after withdrawal of ...

  6. Species-specific associations between overstory and understory tree species in a semideciduous tropical forest

    Directory of Open Access Journals (Sweden)

    Flaviana Maluf Souza

    2015-03-01

    Full Text Available We investigated the occurrence of associations between overstory and understory tree species in a semideciduous tropical forest. We identified and measured all trees of nine canopy species with diameter at breast height ≥4.8 cm in a 10.24 ha plot and recorded all individuals beneath their canopies ("understory individuals" within the same diameter class. The total density of understory individuals did not significantly differ under different overstory species. One overstory species (Ceiba speciosa showed higher understory species richness compared with five other species. There was a strong positive association between three overstory species (Esenbeckia leiocarpa, Savia dictyocarpa, and C. speciosa and the density of seven understory species (Balfourodendron riedelianum, Chrysophyllum gonocarpum, E. leiocarpa, Holocalyx balansae, Machaerium stipitatum, Rhaminidium elaeocarpum, and S. dictyocarpa. These results probably reflect the outcome of a complex set of interactions including facilitation and competition, and further studies are necessary to better understand the magnitude and type of the effects of individual overstory species on understory species. The occurrence of species-specific associations shown here reinforces the importance of non-random processes in structuring plant communities and suggest that the influence of overstory species on understory species in high-diversity forests may be more significant than previously thought.

  7. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States.

    Science.gov (United States)

    Taniguchi, Takeshi; Imada, Shogo; Acharya, Kumud; Iwanaga, Fumiko; Yamanaka, Norikazu

    2015-01-01

    Tamarix ramosissima is a tree species that is highly resistant to salt and drought. The Tamarix species survives in a broad range of environmental salt levels, and invades major river systems in southwestern United States. It may affect root-associated bacteria (RB) by increasing soil salts and nutrients. The effects of RB on host plants may vary even under saline conditions, and the relationship may be important for T. ramosissima. However, to the best of our knowledge, there have been no reports relating to T. ramosissima RB and its association with salinity and nutrient levels. In this study, we have examined this association and the effect of arbuscular mycorrhizal colonization of T. ramosissima on RB because a previous study has reported that colonization of arbuscular mycorrhizal fungi affected the rhizobacterial community (Marschner et al., 2001). T. ramosissima roots were collected from five locations with varying soil salinity and nutrient levels. RB community structures were examined by terminal restriction fragment (T-RF) length polymorphism, cloning, and sequencing analyses. The results suggest that RB richness, or the diversity of T. ramosissima, have significant negative relationships with electrical conductivity (EC), sodium concentration (Na), and the colonization of arbuscular mycorrhizal fungi, but have a significant positive relationship with phosphorus in the soil. However, at each T-RF level, positive correlations between the emergence of some T-RFs and EC or Na were observed. These results indicate that high salinity decreased the total number of RB species, but some saline-tolerant RB species multiplied with increasing salinity levels. The ordination scores of nonmetric multidimensional scale analysis of RB community composition show significant relationships with water content, calcium concentration, available phosphorus, and total nitrogen. These results indicate that the RB diversity and community composition of T. ramosissima are affected

  8. The use of lichens in post-smelting dumps reclamation - preliminary results of experimental cultivation of selected species on slag substrate

    Science.gov (United States)

    Rola, Kaja; Osyczka, Piotr

    2017-11-01

    Conventional reclamation interventions of post-smelting slag dumps being undertaken so far either failed or produced poor results. Certain lichens, especially of the genus Cladonia, are known as effective colonisers of bare ground in anthropogenic habitats. The paper presents preliminary results of the experiment aimed at the evaluation of lichen usefulness in reclamation interventions. The cultivation in vivo involving transplantation of lichens directly on slag substrate was established in 2015. Five species, i.e. Cladonia rei, C. cariosa, C. pyxidata, C. subulata, C. macilenta, were transplanted into 32 cuvettes filled with sterilised slag substrate. The sample weight of 2 and 6 g were used and half of cuvettes were regularly supplied with 2% malt solution. The first important symptoms at the present stage of the experiment are as follow: the growth of thalli has appeared only in the case of first three species; C. rei shows the most effective development; cuvettes with 6 g sample weight are characterized by higher coverage of fresh lichen thalli; lichen biomass are visually higher in cuvettes treated with malt solution. The results give us reason to believe that lichens could be successfully used as an alternative element during planning of slag dumps reclamation in the future.

  9. Genetic sorting of subordinate species in grassland modulated by intraspecific variation in dominant species.

    Directory of Open Access Journals (Sweden)

    Danny J Gustafson

    Full Text Available Genetic variation in a single species can have predictable and heritable effects on associated communities and ecosystem processes, however little is known about how genetic variation of a dominant species affects plant community assembly. We characterized the genetic structure of a dominant grass (Sorghastrum nutans and two subordinate species (Chamaecrista fasciculata, Silphium integrifolium, during the third growing season in grassland communities established with genetically distinct (cultivated varieties or local ecotypes seed sources of the dominant grasses. There were genetic differences between subordinate species growing in the cultivar versus local ecotype communities, indicating that intraspecific genetic variation in the dominant grasses affected the genetic composition of subordinate species during community assembly. A positive association between genetic diversity of S. nutans, C. fasciculata, and S. integrifolium and species diversity established the role of an intraspecific biotic filter during community assembly. Our results show that intraspecific variation in dominant species can significantly modulate the genetic composition of subordinate species.

  10. Lichen species preference by reindeer

    Energy Technology Data Exchange (ETDEWEB)

    Holleman, D F; Luick, J R

    1977-08-01

    The preference by reindeer for five species of lichens commonly found on Central Alaska rangelands was tested under controlled laboratory conditions. Results indicate that reindeer are strongly selective species in their lichen grazing habits. The five tested species ranged as follows in order of decreasing acceptibility: Caldonia alpestris, C. rangiferina, Stereocaulon paschale, Cetraria richardsonii, and Peltigera aphthosa.

  11. Species associations in a species-rich subtropical forest were not well-explained by stochastic geometry of biodiversity.

    Science.gov (United States)

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.

  12. Species associations in a species-rich subtropical forest were not well-explained by stochastic geometry of biodiversity.

    Directory of Open Access Journals (Sweden)

    Qinggang Wang

    Full Text Available The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1 the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2 The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3 Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47% of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4 We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66% than shrub species (18%. We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.

  13. Modeling of the Ionic Multi-Species Transport Phenomena in Electrokinetic Processes and Comparison with Experimental Results

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2010-01-01

    A model to predict the transport of ionic species within the pore solution of porous materials, under the effect of an external electric field has been developed. A Finite Elements method was implemented and used for the integration of the Nernst-Plank equations for each ionic species considered....... Electrical neutrality was continuously assured in the model by the inclusion of the Poisson-Boltzmann equation to the system of governing equations. Voltage differences were applied across the sample as boundary conditions in order to evaluate the competition between diffusion and electromigration terms...

  14. No universal scale-dependent impacts of invasive species on native plant species richness.

    Science.gov (United States)

    Stohlgren, Thomas J; Rejmánek, Marcel

    2014-01-01

    A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species-area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316-318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness-log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.

  15. Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate

    Directory of Open Access Journals (Sweden)

    Apurva K Pathak

    2012-02-01

    Full Text Available OBJECTIVE: In polymicrobial biofilms bacteria extensively interact with Candida species, but the interaction among the different species of the Candida is yet to be completely evaluated. In the present study, the difference in biofilm formation ability of clinical isolates of four species of Candida in both single-species and multi-species combinations on the surface of dental acrylic resin strips was evaluated. MATERIAL AND METHODS: The species of Candida, isolated from multiple species oral candidiasis of the neutropenic patients, were used for the experiment. Organisms were cultured on Sabouraud dextrose broth with 8% glucose (SDB. Biofilm production on the acrylic resins strips was determined by crystal violet assay. Student's t-test and ANOVA were used to compare in vitro biofilm formation for the individual species of Candida and its different multi-species combinations. RESULTS: In the present study, differences between the mean values of the biofilm-forming ability of individual species (C. glabrata>C. krusei>C. tropicalis>C. albicans and in its multi-species' combinations (the highest for C. albicans with C. glabrata and the lowest for all the four species combination were reported. CONCLUSIONS: The findings of this study showed that biofilm-forming ability was found greater for non-Candida albicans Candida species (NCAC than for C. albicans species with intra-species variation. Presence of C. albicans in multi-species biofilms increased, whereas; C. tropicalis decreased the biofilm production with all other NCAC species.

  16. Enolonium Species-Umpoled Enolates

    DEFF Research Database (Denmark)

    Arava, Shlomy; Kumar, Jayprakash N.; Maksymenko, Shimon

    2017-01-01

    Enolonium species/iodo(III) enolates of carbonyl compounds have been suggested to be intermediates in a wide variety of hypervalent iodine induced chemical transformations of ketones, including α-C-O, α-C-N, α-C-C, and alpha-carbon- halide bond formation, but they have never been characterized. We...... report that these elusive umpoled enolates may be made as discrete species that are stable for several minutes at-78 degrees C, and report the first spectroscopic identification of such species. It is shown that enolonium species are direct intermediates in C-O, C-N, C-Cl, and C-C bond forming reactions....... Our results open up chemical space for designing a variety of new transformations. We showcase the ability of enolonium species to react with prenyl, crotyl, cinnamyl, and allyl silanes with absolute regioselectivity in up to 92% yield....

  17. Predicting Environmental Suitability for a Rare and Threatened Species (Lao Newt, Laotriton laoensis) Using Validated Species Distribution Models

    Science.gov (United States)

    Chunco, Amanda J.; Phimmachak, Somphouthone; Sivongxay, Niane; Stuart, Bryan L.

    2013-01-01

    The Lao newt (Laotriton laoensis) is a recently described species currently known only from northern Laos. Little is known about the species, but it is threatened as a result of overharvesting. We integrated field survey results with climate and altitude data to predict the geographic distribution of this species using the niche modeling program Maxent, and we validated these predictions by using interviews with local residents to confirm model predictions of presence and absence. The results of the validated Maxent models were then used to characterize the environmental conditions of areas predicted suitable for L. laoensis. Finally, we overlaid the resulting model with a map of current national protected areas in Laos to determine whether or not any land predicted to be suitable for this species is coincident with a national protected area. We found that both area under the curve (AUC) values and interview data provided strong support for the predictive power of these models, and we suggest that interview data could be used more widely in species distribution niche modeling. Our results further indicated that this species is mostly likely geographically restricted to high altitude regions (i.e., over 1,000 m elevation) in northern Laos and that only a minute fraction of suitable habitat is currently protected. This work thus emphasizes that increased protection efforts, including listing this species as endangered and the establishment of protected areas in the region predicted to be suitable for L. laoensis, are urgently needed. PMID:23555808

  18. Integrative taxonomy by molecular species delimitation: multi-locus data corroborate a new species of Balkan Drusinae micro-endemics.

    Science.gov (United States)

    Vitecek, Simon; Kučinić, Mladen; Previšić, Ana; Živić, Ivana; Stojanović, Katarina; Keresztes, Lujza; Bálint, Miklós; Hoppeler, Felicitas; Waringer, Johann; Graf, Wolfram; Pauls, Steffen U

    2017-06-06

    Taxonomy offers precise species identification and delimitation and thus provides basic information for biological research, e.g. through assessment of species richness. The importance of molecular taxonomy, i.e., the identification and delimitation of taxa based on molecular markers, has increased in the past decade. Recently developed exploratory tools now allow estimating species-level diversity in multi-locus molecular datasets. Here we use molecular species delimitation tools that either quantify differences in intra- and interspecific variability of loci, or divergence times within and between species, or perform coalescent species tree inference to estimate species-level entities in molecular genetic datasets. We benchmark results from these methods against 14 morphologically readily differentiable species of a well-defined subgroup of the diverse Drusinae subfamily (Trichoptera, Limnephilidae). Using a 3798 bp (6 loci) molecular data set we aim to corroborate a geographically isolated new species by integrating comparative morphological studies and molecular taxonomy. Our results indicate that only multi-locus species delimitation provides taxonomically relevant information. The data further corroborate the new species Drusus zivici sp. nov. We provide differential diagnostic characters and describe the male, female and larva of this new species and discuss diversity patterns of Drusinae in the Balkans. We further discuss potential and significance of molecular species delimitation. Finally we argue that enhancing collaborative integrative taxonomy will accelerate assessment of global diversity and completion of reference libraries for applied fields, e.g., conservation and biomonitoring.

  19. Twenty-year-old results from a bottomland oak species comparison trial in western Kentucky

    Science.gov (United States)

    Randall J. Rousseau

    2008-01-01

    A 20-year-old trial of five bottomland oak species (cherrybark, Nuttall, pin, water, and willow oaks) located in western Kentucky showed little difference in survival and growth but considerable difference in form characteristics. Mortality was highest between ages 1 and 3 years during plantation establishment until tree-to-tree competition began increasing between the...

  20. Recent saltmarsh foraminiferal assemblages from Iceland

    Science.gov (United States)

    Lübbers, Julia; Schönfeld, Joachim

    2018-01-01

    This study reports for the first time boreal to subarctic intertidal foraminiferal assemblages from saltmarshes at Borgarnes and Faskrudsfjördur on Iceland. The composition of living and dead foraminiferal assemblages was investigated along transects from the tidal flat to the highest reach of halophytic plants. The foraminiferal assemblages from Borgarnes showed 18 species in the total foraminiferal assemblage of which only 7 species were recorded in the living fauna. The assemblages were dominated by agglutinated taxa, whereas 3 calcareous species were recorded, of which only Haynesina orbicularis was found in the living fauna. The distribution limit of calcifying species corresponds to the lower boundary of the lower saltmarsh vegetation zone. Furthermore, calcareous tests showed many features of dissolution, which is an indication of a carbonate corrosive environment. The species forming the dead assemblages were mainly derived from the ambient intertidal areas and were displaced by tidal currents into the saltmarsh. The foraminiferal assemblages from Faskrudsfjördur showed two species, of which only one species was recorded in the living fauna. The assemblage was dominated by the agglutinated foraminifer Trochaminita irregularis. The foraminiferal species recorded on Iceland were the same as commonly found elsewhere in Europa. Since no species was found which is endemic to North America, Iceland is considered part of the European bio province. The foraminiferal could have been immigrated to Iceland from Europe through warm water currents, migratory birds or marine traffic since the last Ice Age.

  1. The use of lichens in post-smelting dumps reclamation – preliminary results of experimental cultivation of selected species on slag substrate

    Directory of Open Access Journals (Sweden)

    Rola Kaja

    2017-01-01

    Full Text Available Conventional reclamation interventions of post-smelting slag dumps being undertaken so far either failed or produced poor results. Certain lichens, especially of the genus Cladonia, are known as effective colonisers of bare ground in anthropogenic habitats. The paper presents preliminary results of the experiment aimed at the evaluation of lichen usefulness in reclamation interventions. The cultivation in vivo involving transplantation of lichens directly on slag substrate was established in 2015. Five species, i.e. Cladonia rei, C. cariosa, C. pyxidata, C. subulata, C. macilenta, were transplanted into 32 cuvettes filled with sterilised slag substrate. The sample weight of 2 and 6 g were used and half of cuvettes were regularly supplied with 2% malt solution. The first important symptoms at the present stage of the experiment are as follow: the growth of thalli has appeared only in the case of first three species; C. rei shows the most effective development; cuvettes with 6 g sample weight are characterized by higher coverage of fresh lichen thalli; lichen biomass are visually higher in cuvettes treated with malt solution. The results give us reason to believe that lichens could be successfully used as an alternative element during planning of slag dumps reclamation in the future.

  2. The plasma membrane transport systems and adaptation to salinity.

    Science.gov (United States)

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Biodiversity in the cyclic competition system of three species according to the emergence of mutant species

    Science.gov (United States)

    Park, Junpyo

    2018-05-01

    Understanding mechanisms which promote or hinder existing ecosystems are important issues in ecological sciences. In addition to fundamental interactions such as competition and migration among native species, existing ecosystems can be easily disturbed by external factors, and the emergence of new species may be an example in such cases. The new species which does not exist in a current ecosystem can be regarded as either alien species entered from outside or mutant species born by mutation in existing normal species. Recently, as existing ecosystems are getting influenced by various physical/chemical external factors, mutation due to anthropogenic and environmental factors can occur more frequently and is thus attracting much attention for the maintenance of ecosystems. In this paper, we consider emergences of mutant species among self-competing three species in the cyclic dominance. By defining mutation as the birth of mutant species, we investigate how mutant species can affect biodiversity in the existing ecosystem. Through microscopic and macroscopic approaches, we have found that the society of existing normal species can be disturbed by mutant species either the society is maintained accompanying with the coexistence of all species or jeopardized by occupying of mutant species. Due to the birth of mutant species, the existing society may be more complex by constituting two different groups of normal and mutant species, and our results can be contributed to analyze complex ecosystems of many species. We hope our findings may propose a new insight on mutation in cyclic competition systems of many species.

  4. Species richness and faunistic affinities of the Gammaridea and Corophiidea (Amphipoda from shallow waters of southern Tierra del Fuego, Argentina: preliminary results

    Directory of Open Access Journals (Sweden)

    Ignacio Luis Chiesa

    2005-12-01

    Full Text Available Species richness and faunistic affinities of gammaridean and corophiidean amphipods from southern Tierra del Fuego were studied. The material was collected with dredges and grabs at 7 locations (15 sampling stations in a range of 5 to 35 m depth. A total of 61 species belonging to 20 families and 43 genera were identified. The genera Cephalophoxoides, Ceradocopsis and Photis are reported for the first time from the Magellan region and 3 species belonging to Atylus, Ischyrocerus and Photis appear to be new to science. Most of the species collected belong to Phoxocephalidae, whereas most individuals were contained in the Stenothoidae and Lysianassidae s.l. The analysis of the faunistic affinities showed that 16 species (39% are endemic to the Magellan region, 9 species (22% extend to the south, 5 species (12.2% to the north and 5 other species (12.2% to both the north and south. In addition, 6 species extend beyond the Magellan region as far as Oceania.

  5. Attempted integration of multiple species of turaco into a mixed-species aviary.

    Science.gov (United States)

    Valuska, Annie J; Leighty, Katherine A; Ferrie, Gina M; Nichols, Valerie D; Tybor, Cheryl L; Plassé, Chelle; Bettinger, Tamara L

    2013-03-01

    Mixed-species exhibits offer a variety of benefits but can be challenging to maintain due to difficulty in managing interspecific interactions. This is particularly true when little has been documented on the behavior of the species being mixed. This was the case when we attempted to house three species of turaco (family: Musophagidae) together with other species in a walk-through aviary. To learn more about the behavior of great blue turacos, violaceous turacos, and white-bellied gray go-away birds, we supplemented opportunistic keeper observations with systematic data collection on their behavior, location, distance from other birds, and visibility to visitors. Keepers reported high levels of aggression among turacos, usually initiated by a go-away bird or a violaceous turaco. Most aggression occurred during feedings or when pairs were defending nest sites. Attempts to reduce aggression by temporarily removing birds to holding areas and reintroducing them days later were ineffective. Systematic data collection revealed increased social behavior, including aggression, during breeding season in the violaceous turacos, as well as greater location fidelity. These behavioral cues may be useful in predicting breeding behavior in the future. Ultimately, we were only able to house three species of turaco together for a short time, and prohibitively high levels of conflict occurred when pairs were breeding. We conclude that mixing these three turaco species is challenging and may not be the most appropriate housing situation for them, particularly during breeding season. However, changes in turaco species composition, sex composition, or exhibit design may result in more compatible mixed-turaco species groups. © 2012 Wiley Periodicals, Inc.

  6. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S.; Roivainen, Paeivi, E-mail: paivi.roivainen@uef.fi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-12-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R{sup 2}-values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  7. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    International Nuclear Information System (INIS)

    Tuovinen, Tiina S.; Roivainen, Päivi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-01-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R 2 -values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  8. Species composition and abundance of Brevipalpus spp. on different citrus species in Mexican orchards.

    Science.gov (United States)

    Salinas-Vargas, D; Santillán-Galicia, M T; Valdez-Carrasco, J; Mora-Aguilera, G; Atanacio-Serrano, Y; Romero-Pescador, P

    2013-08-01

    We studied the abundance of Brevipalpus spp. in citrus orchards in the Mexican states of Yucatan, Quintana Roo and Campeche. Mites were collected from 100 trees containing a mixture of citrus species where sweet orange was always the main species. Eight collections were made at each location from February 2010 to February 2011. Mites from the genus Brevipalpus were separated from other mites surveyed and their abundance and relationships with the different citrus species were quantified throughout the collection period. A subsample of 25% of the total Brevipalpus mites collected were identified to species level and the interaction of mite species and citrus species were described. Brevipalpus spp. were present on all collection dates and their relative abundance was similar on all citrus species studies. The smallest number of mites collected was during the rainy season. Brevipalpus phoenicis (Geijskes) and Brevipalpus californicus (Banks) were the only two species present and they were found in all locations except Campeche, where only B. phoenicis was present. Yucatan and Campeche are at greater risk of leprosis virus transmission than Quintana Roo because the main vector, B. phoenicis, was more abundant than B. californicus. The implications of our results for the design of more accurate sampling and control methods for Brevipalpus spp. are discussed.

  9. Vulnerability of species to climate change in the Southwest: threatened, endangered, and at-risk species at Fort Huachuca, Arizona

    Science.gov (United States)

    Karen E. Bagne; Deborah M. Finch

    2013-01-01

    Future climate change is anticipated to result in ecosystem changes, and consequently, many species are expected to become increasingly vulnerable to extinction. This scenario is of particular concern for threatened, endangered, and at-risk species (TER-S) or other rare species. The response of species to climate change is uncertain and will be the outcome of complex...

  10. Antioxidative response mechanisms in halophytes: their role in ...

    Indian Academy of Sciences (India)

    changes in ionic and water balance cause molecular damage and growth arrest. ... An optimal supply of CO2 determines the availability of. NADP to leaves via the ...... plasts in the plant cell, but could also leak into the cytosol, resulting in ...

  11. Species richness, area and climate correlates

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Bastos Araujo, Miguel

    2006-01-01

    affects: (1) the selection of climate variables entering a species richness model; and (2) the accuracy of models in predicting species richness in unsampled grid cells. Location Western Europe. Methods Models are developed for European plant, breeding bird, mammal and herptile species richness using...... seven climate variables. Generalized additive models are used to relate species richness, climate and area. Results We found that variation in the grid cell area was large (50 × 50 km: 8-3311 km2; 220 × 220: 193-55,100 km2), but this did not affect the selection of variables in the models. Similarly...... support the assumption that variation in near-equal area cells may be of second-order importance for models explaining or predicting species richness in relation to climate, although there is a possibility that drops in accuracy might increase with grid cell size. The results are, however, contingent...

  12. Integrating DNA-based data into bioassessments improves our understanding of species distributions and species habitat relationships

    Science.gov (United States)

    The integration of DNA-based identification methods into bioassessments could result in more accurate representations of species distributions and species-habitat relationships. DNA-based approaches may be particularly informative for tracking the distributions of rare and/or inv...

  13. White pine blister rust resistance in North American, Asian and european species - results from artificial inoculartion trials in Oregon

    Directory of Open Access Journals (Sweden)

    R.A. Sniezko

    2013-12-01

    Full Text Available Dorena Genetic Resource Center (DGRC has used artificial inoculation trials to evaluate progenies of thousands of Pinus monticola and P. lambertiana selections from Oregon and Washington for resistance to white pine blister rust caused by Cronartium ribicola. In addition, early results are now available for P. albicaulis and P. strobiformis. DGRC has also recently evaluated seed orchard progenies of P. strobus, as well as bulked seedlots from P. armandii and P. peuce. The majority of P. monticola, P. lambertiana, P. albicaulis, and P. strobus progenies are very susceptible to blister rust. However, resistance exists in all these species. P. strobiformis showed relatively high levels of resistance for the eight progenies tested. Resistance in P. armandii was mainly reflected in the very low percentage of cankered seedlings; for P. peuce, the high percentage of cankered seedlings alive three years after inoculation was notable. R-genes are present in some of the North American five-needle pine species, but partial resistance traits (e.g. bark reaction will play a major role in breeding activities for P. monticola and P. lambertiana and will likely be the key to developing durable resistance.

  14. Phylogenetic patterns in populations of Chilean species of the genus Orestias (Teleostei: Cyprinodontidae): results of mitochondrial DNA analysis.

    Science.gov (United States)

    Lüssen, Arne; Falk, Thomas M; Villwock, Wolfgang

    2003-10-01

    Patterns of molecular genetic differentiation among taxa of the "agassii species complex" (Parenti, 1984) were analysed based on partial mtDNA control region sequences. Special attention has been paid to Chilean populations of Orestias agassii and species from isolated lakes of northern Chile, e.g., O. agassii, Orestias chungarensis, Orestias parinacotensis, Orestias laucaensis, and Orestias ascotanensis. Orestias tschudii, Orestias luteus, and Orestias ispi were analysed comparatively. Our findings support the utility of mtDNA control region sequences for phylogenetic studies within the "agassii species complex" and confirmed the monophyly of this particular lineage, excluding O. luteus. However, the monophyly of further morphologically defined lineages within the "agassii complex" appears doubtful. No support was found for the utility of these data sets for inferring phylogenetic relationships between more distantly related taxa originating from Lake Titicaca.

  15. Biochemical and photochemical feedbacks of acute Cd toxicity in Juncus acutus seedlings: The role of non-functional Cd-chlorophylls

    Science.gov (United States)

    Santos, D.; Duarte, B.; Caçador, I.

    2015-12-01

    The increasing metal pollution in salt marshes and its influence on the plants that inhabit these ecosystems, has become a major concern with serious implications on the species establishment. Juncus acutus is a highly common halophyte specie in Portuguese marshes. Seeds from his specie were exposed to a range of different Cd concentrations (0.05, 0.1, 0.5 and 1 μM) in order to evaluate the effects of acute Cd stress on seed germination and growth as well as on seedling pigment composition, photosynthetic apparatus and oxidative stress biomarkers. Seedling length was higher than in control in every Cd treatment, however biomass showed a decrease. It was also observed that increasing Cd treatments, lead to a proportional increase in the Cd tissue concentration. Also the Cd-substituted chlorophylls showed an increase with increasing Cd doses that were applied. This substitution results in a non-functional chlorophyll molecule, highly unstable under moderate light intensities which inevitably reduces the efficiency of the LHC II. As consequence, there was a decrease in the use-efficiency of the harvested energy, leading to a decay in the photosynthetic capacity and energy accumulation, which was dissipated as heat. As for the antioxidant enzymes, SOD and APX presented higher activity, responding to increasing cadmium concentrations. Thus, becomes evident that Cd affects negatively, both biochemically and photochemically, the establishment by seed process of J. acutus highlighting the potential of the use of this specie seed as potential sentinel and ecotoxicity test in extreme conditions.

  16. Estimation of the yield of poplars in plantations of fast-growing species within current results

    Directory of Open Access Journals (Sweden)

    Martin Fajman

    2009-01-01

    Full Text Available Current results are presented of allometric yield estimates of the poplar short rotation coppice. According to a literature review it is obvious that yield estimates, based on measurable quantities of a growing stand, depend not only on the selected tree specie or its clone, but also on the site location. The Jap-105 poplar clone (P. nigra x P. maximowiczii allometric relations were analyzed by regression methods aimed at the creation of the yield estimation methodology at a testing site in Domanínek. Altogether, the twelve polynomial dependences of particular measured quantities approved the high empirical data conformity with the tested regression model (correlation index from 0.9033 to 0.9967. Within the forward stepwise regression, factors were selected, which explain best examined estimates of the total biomass DM; i.e. d.b.h. and stem height. Furthermore, the KESTEMONT’s (1971 mo­del was verified with a satisfying conformity as well. Approving presented yield estimation methods, the presented models will be checked in a large-scale field trial.

  17. The Pleurobemini (Bivalvia: Unionida) revisited: Molecular species delineation using a mitochondrial DNA gene reveals multiple conspecifics and undescribed species

    Science.gov (United States)

    Inoue, Kentaro; Hayes, David M.; Harris, John L.; Johnson, Nathan A.; Morrison, Cheryl L.; Eackles, Michael S.; King, Tim; Jones, Jess W.; Hallerman, Eric M.; Christian, Alan D.; Randklev, Charles R.

    2018-01-01

    The Pleurobemini (Bivalvia: Unionida) represent approximately one-third of freshwater mussel diversity in North America. Species identification within this group is challenging due to morphological convergence and phenotypic plasticity. Accurate species identification, including characterization of currently unrecognized taxa, is required to develop effective conservation strategies because many species in the group are imperiled. We examined 573 cox1 sequences from 110 currently recognized species (including 13 Fusconaia and 21 Pleurobema species) to understand phylogenetic relationships among pleurobemine species (mainly Fusconaia and Pleurobema) and to delineate species boundaries. The results of phylogenetic analyses showed no geographic structure within widespread species and illustrated a close relationship between Elliptio lanceolata and Parvaspina collina. Constraint tests supported monophyly of the genera Fusconaia and Pleurobema, including the subgenus P. (Sintoxia). Furthermore, results revealed multiple conspecifics, including P. hanleyianum and P. troschelianum, P. chattanoogaense and P. decisum, P. clava and P. oviforme, P. rubrum and P. sintoxia, F. askewi and F. lananensis, and F. cerina and F. flava. Species delimitation analyses identified three currently unrecognized taxa (two in Fusconaia and one in Pleurobema). Further investigation using additional genetic markers and other lines of evidence (e.g., morphology, life history, ecology) are necessary before any taxonomic changes are formalized.

  18. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  19. Biological species in the viral world.

    Science.gov (United States)

    Bobay, Louis-Marie; Ochman, Howard

    2018-06-05

    Due to their dependence on cellular organisms for metabolism and replication, viruses are typically named and assigned to species according to their genome structure and the original host that they infect. But because viruses often infect multiple hosts and the numbers of distinct lineages within a host can be vast, their delineation into species is often dictated by arbitrary sequence thresholds, which are highly inconsistent across lineages. Here we apply an approach to determine the boundaries of viral species based on the detection of gene flow within populations, thereby defining viral species according to the biological species concept (BSC). Despite the potential for gene transfer between highly divergent genomes, viruses, like the cellular organisms they infect, assort into reproductively isolated groups and can be organized into biological species. This approach revealed that BSC-defined viral species are often congruent with the taxonomic partitioning based on shared gene contents and host tropism, and that bacteriophages can similarly be classified in biological species. These results open the possibility to use a single, universal definition of species that is applicable across cellular and acellular lifeforms.

  20. Fuzzy species among recombinogenic bacteria

    Directory of Open Access Journals (Sweden)

    Fraser Christophe

    2005-03-01

    Full Text Available Abstract Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.

  1. Endangered Species & Biodiversity: A Classroom Project & Theme

    Science.gov (United States)

    Lauro, Brook

    2012-01-01

    Students discover the factors contributing to species losses worldwide by conducting a project about endangered species as a component of a larger classroom theme of biodiversity. Groups conduct research using online endangered- species databases and present results to the class using PowerPoint. Students will improve computer research abilities…

  2. Endangered Species

    Science.gov (United States)

    EPA's Endangered Species Protection Program helps promote recovery of listed species. The ESPP determines if pesticide use in a geographic area may affect any listed species. Find needed limits on pesticide use in Endangered Species Protection Bulletins.

  3. Seasonal species interactions minimize the impact of species turnover on the likelihood of community persistence.

    Science.gov (United States)

    Saavedra, Serguei; Rohr, Rudolf P; Fortuna, Miguel A; Selva, Nuria; Bascompte, Jordi

    2016-04-01

    Many of the observed species interactions embedded in ecological communities are not permanent, but are characterized by temporal changes that are observed along with abiotic and biotic variations. While work has been done describing and quantifying these changes, little is known about their consequences for species coexistence. Here, we investigate the extent to which changes of species composition impact the likelihood of persistence of the predator-prey community in the highly seasonal Białowieza Primeval Forest (northeast Poland), and the extent to which seasonal changes of species interactions (predator diet) modulate the expected impact. This likelihood is estimated extending recent developments on the study of structural stability in ecological communities. We find that the observed species turnover strongly varies the likelihood of community persistence between summer and winter. Importantly, we demonstrate that the observed seasonal interaction changes minimize the variation in the likelihood of persistence associated with species turnover across the year. We find that these community dynamics can be explained as the coupling of individual species to their environment by minimizing both the variation in persistence conditions and the interaction changes between seasons. Our results provide a homeostatic explanation for seasonal species interactions and suggest that monitoring the association of interactions changes with the level of variation in community dynamics can provide a good indicator of the response of species to environmental pressures.

  4. Pitfalls in quantifying species turnover: the residency effect

    Directory of Open Access Journals (Sweden)

    Kevin Chase Burns

    2014-03-01

    Full Text Available The composition of ecological communities changes continuously through time and space. Understanding this turnover in species composition is a central goal in biogeography, but quantifying species turnover can be problematic. Here, I describe an underappreciated source of bias in quantifying species turnover, namely ‘the residency effect’, which occurs when the contiguous distributions of species across sampling domains are small relative to census intervals. I present the results of a simulation model that illustrates the problem theoretically and then I demonstrate the problem empirically using a long-term dataset of plant species turnover on islands. Results from both exercises indicate that empirical estimates of species turnover may be susceptible to significant observer bias, which may potentially cloud a better understanding of how the composition of ecological communities changes through time.

  5. Ability of salt marsh plants for TBT remediation in sediments

    OpenAIRE

    Carvalho, P. N.; Basto, M. C.; Moreira da Silva, M.; Machado, A.; Bordalo, A.; Vasconcelos, M. T.

    2010-01-01

    The capability of Halimione portulacoides, Spartina maritima, and Sarcocornia fruticosa (halophytes very commonly found in salt marshes from Mediterranean areas) for enhancing remediation of tributyltin (TBT) from estuarine sediments was investigated, using different experimental conditions.

  6. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J., E-mail: ben.kefford@uts.edu.a [School of Applied Sciences, RMIT University, Victoria (Australia); Centre for Environmental Sustainability, Department of Environmental Science, University of Technology Sydney, New South Wales (Australia); Marchant, Richard [Department of Entomology, Museum of Victoria, Victoria (Australia); Schaefer, Ralf B. [School of Applied Sciences, RMIT University, Victoria (Australia); Metzeling, Leon [EPA Victoria, Macleod, Victoria (Australia); Dunlop, Jason E. [Department of Environment and Resource Management, Indooroopilly, Queensland (Australia); National Research Centre for Environmental Toxicology, University of Queensland, Coopers Plains, Queensland (Australia); Choy, Satish C. [Department of Environment and Resource Management, Indooroopilly, Queensland (Australia); Goonan, Peter [South Australia Environment Protection Authority, Adelaide, South Australia (Australia)

    2011-01-15

    The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PC{sub p} value). However, at the PC{sub p} value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r{sup 2} {>=} 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable. - Definitions of species richness inherit in SSDs and biomonitoring are for salinity in south-east Australia commensurable.

  7. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Marchant, Richard; Schaefer, Ralf B.; Metzeling, Leon; Dunlop, Jason E.; Choy, Satish C.; Goonan, Peter

    2011-01-01

    The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PC p value). However, at the PC p value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r 2 ≥ 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable. - Definitions of species richness inherit in SSDs and biomonitoring are for salinity in south-east Australia commensurable.

  8. Distribution and Invasion Potential of Limonium ramosissimum subsp. provinciale in San Francisco Estuary Salt Marshes

    Directory of Open Access Journals (Sweden)

    Gavin Archbald

    2014-06-01

    Full Text Available Non-native sea lavenders (Limonium spp. are invasive in salt marshes of southern California and were first documented in the San Francisco Estuary (the estuary in 2007. In this study, we mapped distributions of L. ramosissimum subsp. provinciale (LIRA and L. duriusculum within the estuary and investigated how the invasion potential of the more common species, LIRA, varies with elevation and edaphic conditions. We contacted colleagues and conducted field searches to find and then map sea lavender populations. In addition, we measured LIRA’s elevational range at three salt marshes. Across this range we measured (1 soil properties: salinity, moisture, bulk density, and texture; and (2 indicators of invasion potential: LIRA size, seed production, percent cover, spread (over 1 year, recruitment, and competition with native halophytes (over 6 months. We found LIRA in 15,144 m2 of upper salt marsh habitat in central and south San Francisco bays and L. duriusculum in 511 m2 in Richardson and San Pablo bays. LIRA was distributed from mean high water (MHW to 0.42 m above mean higher high water (MHHW. In both spring and summer, soil moisture and salinity were lowest at higher elevations within LIRA’s range, which corresponded with greater rosette size, inflorescence and seed production (up to 17,400 seeds per plant, percent cover, and recruitment. LIRA cover increased on average by 11% in 1 year across marshes and elevations. Cover of the native halophytes Salicornia pacifica, Jaumea carnosa, and Distichlis spicata declined significantly at all elevations if LIRA were present in plots (over a 6-month, fall–winter period. Results suggest LIRA’s invasion potential is highest above MHHW where salinity and moisture are lower, but that LIRA competes with native plants from MHW to above MHHW. We recommend removal efforts with emphasis on the salt marsh-terrestrial ecotone where LIRA seed output is highest.

  9. Quantifying the invasiveness of species

    Directory of Open Access Journals (Sweden)

    Robert Colautti

    2014-04-01

    Full Text Available The success of invasive species has been explained by two contrasting but non-exclusive views: (i intrinsic factors make some species inherently good invaders; (ii species become invasive as a result of extrinsic ecological and genetic influences such as release from natural enemies, hybridization or other novel ecological and evolutionary interactions. These viewpoints are rarely distinguished but hinge on distinct mechanisms leading to different management scenarios. To improve tests of these hypotheses of invasion success we introduce a simple mathematical framework to quantify the invasiveness of species along two axes: (i interspecific differences in performance among native and introduced species within a region, and (ii intraspecific differences between populations of a species in its native and introduced ranges. Applying these equations to a sample dataset of occurrences of 1,416 plant species across Europe, Argentina, and South Africa, we found that many species are common in their native range but become rare following introduction; only a few introduced species become more common. Biogeographical factors limiting spread (e.g. biotic resistance, time of invasion therefore appear more common than those promoting invasion (e.g. enemy release. Invasiveness, as measured by occurrence data, is better explained by inter-specific variation in invasion potential than biogeographical changes in performance. We discuss how applying these comparisons to more detailed performance data would improve hypothesis testing in invasion biology and potentially lead to more efficient management strategies.

  10. Cross-species amplification of microsatellite loci developed for Passiflora edulis Sims. in related Passiflora Species

    Directory of Open Access Journals (Sweden)

    Gilmara Alvarenga Fachardo Oliveira

    2013-10-01

    Full Text Available The aim of this study was to evaluate the selected 41 SSR markers developed for yellow passion fruit (Passiflora edulis f. flavicarpa Sims. for their transferability to 11 different Passiflora species. Twenty-one SSR were successfully amplified in 10 wild species of passion fruit producing 101 bands. All the markers were amplifiable for at least one species. The mean transferability was 68,8%, ranging from 15,4% (primer PE11 to 100 % (PE13, PE18, PE37, PE41 and PE88. Transferability was higher for the species from the Passiflora subgenus than for those from the Decaloba and Dysosmia subgenus. The results indicated a high level of nucleotide sequence conservation of the primer regions in the species evaluated, and consequently, they could potentially be used for the establishment of molecular strategies for use in passion fruit breeding and genetics.

  11. Species-delimitation and phylogenetic analyses of some cosmopolitan species of Hypnea (Rhodophyta) reveal synonyms and misapplied names to H. cervicornis, including a new species from Brazil.

    Science.gov (United States)

    de Jesus, Priscila Barreto; Nauer, Fabio; Lyra, Goia de Mattos; Cassano, Valéria; Oliveira, Mariana Cabral; Nunes, José Marcos de Castro; Schnadelbach, Alessandra Selbach

    2016-10-01

    Hypnea has an intricate nomenclatural history due to a wide pantropical distribution and considerable morphological variation. Recent molecular studies have provided further clarification on the systematics of the genus; however, species of uncertain affinities remain due to flawed taxonomic identification. Detailed analyses coupled with literature review indicated a strong relationship among H. aspera, H. cervicornis, H. flexicaulis, and H. tenuis, suggesting a need for further taxonomic studies. Here, we analyzed sequences from two molecular markers (COI-5P and rbcL) and performed several DNA-based delimitation methods (mBGD, ABGD, SPN, PTP and GMYC). These molecular approaches were contrasted with morphological and phylogenetic evidence from type specimens and/or topotype collections of related species under a conservative approach. Our results demonstrate that H. aspera and H. flexicaulis represent heterotypic synonyms of H. cervicornis and indicate the existence of a misidentified Hypnea species, widely distributed on the Brazilian coast, described here as a new species: H. brasiliensis. Finally, inconsistencies observed among our results based on six different species delimitation methods evidence the need for adequate sampling and marker choice for different methods. © 2016 Phycological Society of America.

  12. Looking beyond rare species as umbrella species: Northern Bobwhites (Colinus virginianus) and conservation of grassland and shrubland birds

    Science.gov (United States)

    Crosby, Andrew D.; Elmore, R.D.; Leslie,, David M.; Will, Rodney E.

    2015-01-01

    Changes in land use and land cover throughout the eastern half of North America have caused substantial declines in populations of birds that rely on grassland and shrubland vegetation types, including socially and economically important game birds such as the Northern Bobwhite (Colinus virginianus; hereafter bobwhites). As much attention is focused on habitat management and restoration for bobwhites, they may act as an umbrella species for other bird species with similar habitat requirements. We quantified the relationship of bobwhites to the overall bird community and evaluated the potential for bobwhites to act as an umbrella species for grassland and shrubland birds. We monitored bobwhite presence and bird community composition within 31 sample units on selected private lands in the south-central United States from 2009 to 2011. Bobwhites were strongly associated with other grassland and shrubland birds and were a significant positive predictor for 9 species. Seven of these, including Bell's Vireo (Vireo bell), Dicksissel (Spiza americana), and Grasshopper Sparrow (Ammodramus savannarum), are listed as species of conservation concern. Species richness and occupancy probability of grassland and shrubland birds were higher relative to the overall bird community in sample units occupied by bobwhites. Our results show that bobwhites can act as an umbrella species for grassland and shrubland birds, although the specific species in any given situation will depend on region and management objectives. These results suggest that efficiency in conservation funding can be increased by using public interest in popular game species to leverage resources to meet multiple conservation objectives.

  13. PLYWOOD MANUFACTURE FROM FIVE SPECIES OF TROPICAL PINE

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2010-08-01

    Full Text Available This research was developed aiming at evaluating the feasibility of the use of 5 species of tropical pine to plywood manufacture. The following species were studied: Pinus caribaea, Pinus chiapensis, Pinus maximinoi, Pinus oocarpa, Pinus tecunumannii and Pinus taeda, being the last used as the referential species. Plywood were manufactured with 5 plies, bonded with urea-formaldheyde and fenol-formaldheyde resin. The results of thickness sweeling and recovering were the same for all species studied, with exception to thickness sweeling for the boards glued with fenol-formaldheyde resin. The boards made from Pinus maximinoi and Pinus oocarpa, showed the higher values in modulus of elasticity. The boards  of Pinus maximinoi, Pinus oocarpa and Pinus taeda, glued with fenol-formaldheyde resin, resulted in higher values of the modulus of rupture, in comparison to other species. For the glue line strength, the boards of Pinus maximinoi, Pinus taeda and Pinus chiapensis, showed the better results. Based on the general results of this research it, could be said that the Pinus maximinoi and Pinus oocarpa present the high potentiality to plywood manufacture.

  14. ConSpeciFix: Classifying prokaryotic species based on gene flow.

    Science.gov (United States)

    Bobay, Louis-Marie; Ellis, Brian Shin-Hua; Ochman, Howard

    2018-05-16

    Classification of prokaryotic species is usually based on sequence similarity thresholds, which are easy to apply but lack a biologically-relevant foundation. Here, we present ConSpeciFix, a program that classifies prokaryotes into species using criteria set forth by the Biological Species Concept, thereby unifying species definition in all domains of life. ConSpeciFix's webserver is freely available at www.conspecifix.com. The local version of the program can be freely downloaded from https://github.com/Bobay-Ochman/ConSpeciFix. ConSpeciFix is written in Python 2.7 and requires the following dependencies: Usearch, MCL, MAFFT and RAxML. ljbobay@uncg.edu.

  15. Previously unknown species of Aspergillus.

    Science.gov (United States)

    Gautier, M; Normand, A-C; Ranque, S

    2016-08-01

    The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care. Copyright © 2016 European Society of Clinical Microbiology and

  16. Competition between species of small mammals

    International Nuclear Information System (INIS)

    Grant, P.R.

    1978-01-01

    Interspecific competition has often been inferred from its results. In evolutionary time it has been responsible for patterns of regularity in the structure of mammalian communities, and in the morphological and ecological characteristics of the constituent species. In contemporary time it gives rise to reciprocal (complementary) numbers and distributions of two or more species. These inferences are strengthened by recent experimental demonstrations of competition between species of North American rodents. Recent observations and experiments are reviewed. The most thoroughly studied competitors are two species of microtine rodents, Microtus pennsylvanicus and Clethrionomys gapperi. Species which compete for space have been studied experimentally more often than have food competitors. Overt aggression is frequently implicated, but its importance in nature in relation to other means of interaction (e.g. through vocal or scent communication) is not known. The definitive study of competition for food between mammal species has yet to be performed

  17. An analysis of species boundaries and biogeographic patterns in a cryptic species complex: the rotifer--Brachionus plicatilis.

    Science.gov (United States)

    Suatoni, Elizabeth; Vicario, Saverio; Rice, Sean; Snell, Terry; Caccone, Adalgisa

    2006-10-01

    Since the advent of molecular phylogenetics, there is increasing evidence that many small aquatic and marine invertebrates--once believed to be single, cosmopolitan species--are in fact cryptic species complexes. Although the application of the biological species concept is central to the identification of species boundaries in these cryptic complexes, tests of reproductive isolation do not frequently accompany phylogenetic studies. Because different species concepts generally identify different boundaries in cryptic complexes, studies that apply multiple species concepts are needed to gain a more detailed understanding of patterns of diversification in these taxa. Here we explore different methods of empirically delimiting species boundaries in the salt water rotifer Brachionus plicatilis by comparing reproductive data (i.e., the traditional biological species concept) to phylogenetic data (the genealogical species concept). Based on a high degree of molecular sequence divergence and largely concordant genetic patterns in COI and ITS1, the genealogical species hypothesis indicates the existence of at least 14 species--the highest estimate for the group thus far. A test of the genealogical species concept with biological crosses shows a fairly high level of concordance, depending on the degree of reproductive success used to draw boundaries. The convergence of species concepts in this group suggests that many of the species within the group may be old. Although the diversity of the group is higher than previously understood, geographic distributions remain broad. Efficient passive dispersal has resulted in global distributions for many species with some evidence of isolation by distance over large geographic scales. These patterns concur with expectations that micro-meiofauna (0.1-1mm) have biogeographies intermediate to microbial organisms and large vertebrates. Sympatry of genetically distant strains is common.

  18. The Pleurobemini (Bivalvia: Unionida) revisited: Molecular species delineation using a mitochondrial DNA gene reveals multiple conspecifics and undescribed species

    Science.gov (United States)

    Inoue, Kentaro; Hayes, David M.; Harris, John L.; Johnson, Nathan A.; Morrison, Cheryl L.; Eackles, Michael S.; King, Tim; Jones, Jess W.; Hallerman, Eric M.; Christian, Alan D.; Randklev, Charles R.

    2018-01-01

    The Pleurobemini (Bivalvia: Unionida) represent approximately one-third of freshwater mussel diversity in North America. Species identification within this group is challenging due to morphological convergence and phenotypic plasticity. Accurate species identification, including characterisation of currently unrecognised taxa, is required to develop effective conservation strategies because many species in the group are imperiled. We examined 575 cox1 sequences from 110 currently recognised species (including 13 Fusconaia and 21 Pleurobema species) to understand phylogenetic relationships among pleurobemine species (mainly Fusconaia and Pleurobema) and to delineate species boundaries. The results of phylogenetic analyses showed no geographic structure within widespread species and illustrated a close relationship between Elliptio lanceolata and Parvaspina collina. Constraint tests supported monophyly of the genera Fusconaia and Pleurobema, including the subgenus P. (Sintoxia). Furthermore, results revealed multiple conspecifics, including P. hanleyianum and P. troschelianum, P. chattanoogaense and P. decisum, P. clava and P. oviforme, P. rubrum and P. sintoxia, F. askewi and F. lananensis, and F. cerina and F. flava. Species delimitation analyses identified three currently unrecognised taxa (two in Fusconaia and one in Pleurobema). Further investigation using additional genetic markers and other lines of evidence (e.g. morphology, life history, ecology) are necessary before any taxonomic changes are formalised.

  19. CpDNA-based species identification and phylogeography: application to African tropical tree species.

    Science.gov (United States)

    Duminil, J; Heuertz, M; Doucet, J-L; Bourland, N; Cruaud, C; Gavory, F; Doumenge, C; Navascués, M; Hardy, O J

    2010-12-01

    Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their history and the processes that have structured their biodiversity are understood poorly. With respect to past demographic processes, new insights can be gained through characterizing the distribution of genetic diversity. However, few studies of this type have been conducted in Central Africa, where the identification of species in the field can be difficult. We examine here the distribution of chloroplast DNA (cpDNA) diversity in Lower Guinea in two tree species that are difficult to distinguish, Erythrophleum ivorense and Erythrophleum suaveolens (Fabaceae). By using a blind-sampling approach and comparing molecular and morphological markers, we first identified retrospectively all sampled individuals and determined the limits of the distribution of each species. We then performed a phylogeographic study using the same genetic data set. The two species displayed essentially parapatric distributions that were correlated well with the rainfall gradient, which indicated different ecological requirements. In addition, a phylogeographic structure was found for E. suaveolens and, for both species, substantially higher levels of diversity and allelic endemism were observed in the south (Gabon) than in the north (Cameroon) of the Lower Guinea region. This finding indicated different histories of population demographics for the two species, which might reflect different responses to Quaternary climate changes. We suggest that a recent period of forest perturbation, which might have been caused by humans, favoured the spread of these two species and that their poor recruitment at present results from natural succession in their forest formations. © 2010 Blackwell Publishing Ltd.

  20. Estimating Effects of Species Interactions on Populations of Endangered Species.

    Science.gov (United States)

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management.

  1. Discordance between morphological and molecular species boundaries among Caribbean species of the reef sponge Callyspongia.

    Science.gov (United States)

    DeBiasse, Melissa B; Hellberg, Michael E

    2015-02-01

    Sponges are among the most species-rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model-based approach. Based on sequence data from one mitochondrial (COI), one ribosomal (28S), and two single-copy nuclear protein-coding genes, we found evolutionarily distinct lineages were not concordant with current species designations in Callyspongia. While C. fallax,C. tenerrima, and C. plicifera were reciprocally monophyletic, four taxa with different morphologies (C. armigera,C. longissima,C. eschrichtii, and C. vaginalis) formed a monophyletic group and genetic distances among these taxa overlapped distances within them. A model-based method of species delimitation supported collapsing these four into a single evolutionary lineage. Variation in spicule size among these four taxa was partitioned geographically, not by current species designations, indicating that in Callyspongia, these key taxonomic characters are poor indicators of genetic differentiation. Taken together, our results suggest a complex relationship between morphology and species boundaries in sponges.

  2. RESULTS CONCERNING THE USE OF THE‚NERISTIN’ SYNTHETIC HORMONE IN THE ARTIFICIAL REPRODUCTION OF THE HYPOPHTHALMYCHTYS MOLITRIX (VAL SPECIES

    Directory of Open Access Journals (Sweden)

    ADINA SIRBU

    2009-10-01

    Full Text Available The paper presents data about the artificial reproduction of the H. molitrix species. The artificial reproduction took place in the station destined to the reproduction of the phytoplanktonophag fish of the Carja 1 fish farm – Vaslui. The annual batch of breeders came from the personal stock of the Carja 1 farm.The experimental work took place between 2005-2007, following the work methodology and the phases of the technological process. The stimulation of the maturation was done with neristin and carp hypophysis, watching through comparison the technological indicators specific to the artificial reproduction.The results of the experiments are presented in tables and in graphs.

  3. A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana

    KAUST Repository

    Orsini, Francesco; D'Urzo, Matilde Paino; Inan, Gunsu; Serra, Sara; Oh, Dong-Ha; Mickelbart, Michael V.; Consiglio, Federica; Li, Xia; Jeong, Jae Cheol; Yun, Dae-Jin; Bohnert, Hans J.; Bressan, Ray A.; Maggio, Albino

    2010-01-01

    improved owing to active development of advanced tools in molecular, genomics, and bioinformatics analyses. However, the full potential of investigative power has not been fully exploited, because the use of halophytes as model systems in plant salt

  4. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sexual conflict in plants · N. G. Prasad S. .... Single-nucleotide polymorphisms in the B7H3 gene are not associated with human autoimmune myasthenia gravis ... Antioxidative response mechanisms in halophytes: their role in stress defence.

  5. Evaluating Hypotheses of Plant Species Invasions on Mediterranean Islands: Inverse Patterns between Alien and Endemic Species

    Directory of Open Access Journals (Sweden)

    Alexander Bjarnason

    2017-08-01

    Full Text Available Invasive alien species cause major changes to ecosystem functioning and patterns of biodiversity, and the main factors involved in invasion success remain contested. Using the Mediterranean island of Crete, Greece as a case study, we suggest a framework for analyzing spatial data of alien species distributions, based on environmental predictors, aiming to gain an understanding of their spatial patterns and spread. Mediterranean islands are under strong ecological pressure from invading species due to their restricted size and increased human impact. Four hypotheses of invasibility, the “propagule pressure hypothesis” (H1, “biotic resistance hypothesis vs. acceptance hypothesis” (H2, “disturbance-mediated hypothesis” (H3, and “environmental heterogeneity hypothesis” (H4 were tested. Using data from alien, native, and endemic vascular plant species, the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and environmental heterogeneity hypotheses were tested with Generalized Additive Modeling (GAM of 39 models. Based on model selection, the optimal model includes the positive covariates of native species richness, the negative covariates of endemic species richness, and land area. Variance partitioning between the four hypotheses indicated that the biotic resistance vs. acceptance hypothesis explained the vast majority of the total variance. These results show that areas of high species richness have greater invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of alien species. The negative correlation between alien and endemic species appears to be predominantly driven by altitude, with fewer alien and more endemic species at greater altitudes, and habitat richness. The negative relationship between alien and endemic species richness provides potential for understanding patterns of endemic and alien species on islands, contributing to more effective conservation

  6. Confronting species distribution model predictions with species functional traits.

    Science.gov (United States)

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  7. Terrestrial Ecosystem Responses to Species Gains and Losses

    NARCIS (Netherlands)

    Wardle, D.A.; Bardgett, R.D.; Callaway, R.; Putten, van der W.H.

    2011-01-01

    Ecosystems worldwide are losing some species and gaining others, resulting in an interchange of species that is having profound impacts on how these ecosystems function. However, research on the effects of species gains and losses has developed largely independently of one another. Recent conceptual

  8. Terrestrial ecosystem responses to species gains and losses

    NARCIS (Netherlands)

    Wardle, D.A.; Bardgett, R.D.; Callaway, R.M.; Van der Putten, W.H.

    2011-01-01

    Ecosystems worldwide are losing some species and gaining others, resulting in an interchange of species that is having profound impacts on how these ecosystems function. However, research on the effects of species gains and losses has developed largely independently of one another. Recent conceptual

  9. Characterization of Aspergillus species associated with ...

    African Journals Online (AJOL)

    About 82 triphala powder samples were analyzed for the association of different fungi. Results reveal the predominance of Aspergillus as the major genera with six predominant species namely, A. niger, A. flavus, A. fumigatus, A. terreus, A. nidulans and A. amstelodami. Therefore, these six isolated Aspergillus species were ...

  10. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  11. Plant Survival and Mortality during Drought Can be Mediated by Co-occurring Species' Physiological and Morphological Traits: Results from a Model

    Science.gov (United States)

    Tai, X.; Mackay, D. S.

    2015-12-01

    susceptibility to cavitation. The results showed that co-occurring species' morphological traits could alleviate or aggravate stress imposed by drought and should therefore be considered together with plant physiological traits in predicting plant mortality and ecosystem structural shift under future climate conditions.

  12. Systematics of the Dendropsophus leucophyllatus species complex (Anura: Hylidae): Cryptic diversity and the description of two new species

    Science.gov (United States)

    Caminer, Marcel A.; Milá, Borja; Jansen, Martin; Fouquet, Antoine; Venegas, Pablo J.; Chávez, Germán; Lougheed, Stephen C.

    2017-01-01

    Genetic data in studies of systematics of Amazonian amphibians frequently reveal that purportedly widespread single species in reality comprise species complexes. This means that real species richness may be significantly higher than current estimates. Here we combine genetic, morphological, and bioacoustic data to assess the phylogenetic relationships and species boundaries of two Amazonian species of the Dendropsophus leucophyllatus species group: D. leucophyllatus and D. triangulum. Our results uncovered the existence of five confirmed and four unconfirmed candidate species. Among the confirmed candidate species, three have available names: Dendropsophus leucophyllatus, Dendropsophus triangulum, and Dendropsophus reticulatus, this last being removed from the synonymy of D. triangulum. A neotype of D. leucophyllatus is designated. We describe the remaining two confirmed candidate species, one from Bolivia and another from Peru. All confirmed candidate species are morphologically distinct and have much smaller geographic ranges than those previously reported for D. leucophyllatus and D. triangulum sensu lato. Dendropsophus leucophyllatus sensu stricto occurs in the Guianan region. Dendropsophus reticulatus comb. nov. corresponds to populations in the Amazon basin of Brazil, Ecuador, and Peru previously referred to as D. triangulum. Dendropsophus triangulum sensu stricto is the most widely distributed species; it occurs in Amazonian Ecuador, Peru and Brazil, reaching the state of Pará. We provide accounts for all described species including an assessment of their conservation status. PMID:28248998

  13. The Candida Pathogenic Species Complex

    Science.gov (United States)

    Turner, Siobhán A.; Butler, Geraldine

    2014-01-01

    Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855

  14. Save Our Species: Protecting Endangered Species from Pesticides.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This full-size poster profiles 11 wildlife species that are endangered. Color illustrations of animals and plants are accompanied by narrative describing their habitats and reasons for endangerment. The reverse side of the poster contains information on the Endangered Species Act, why protecting endangered and threatened species is important, how…

  15. Profiling of antioxidant potential and phytoconstituents of Plantago coronopus

    Directory of Open Access Journals (Sweden)

    C. G. Pereira

    Full Text Available Abstract The halophyte species Plantago coronopus has several described ethnomedicinal uses, but few reported biological activities. This work carried out for the first time a comparative analysis of P. coronopus organs in terms of phenolic composition and antioxidant activity of organic and water extracts from roots, leaves and flowers. The leaves contents in selected nutrients, namely amino acids and minerals, are also described. Roots (ethyl acetate and methanol extracts had the highest radical scavenging activity (RSA towards 1,1-diphenyl-2-picrylhydrazyl (DPPH and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS radicals, while leaves (hexane extract had higher RSA on nitric oxide radical and iron chelating ability. High performance liquid chromatography (HPLC analysis identified eighteen phenolics from which salicylic acid and epicatechin are here firstly described in Plantago species. Leaves had mineral levels similar to those of most vegetables, proving to be a good source for elements like calcium, sodium, iron and magnesium, and also for several of the essential amino acids justifying it use as food. Our results, especially those regarding the phenolics composition, can explain the main traditional uses given to this plantain and, altogether, emphasize the potential of P. coronopus as a source of bioactive molecules particularly useful for the prevention of oxidative stress-related diseases.

  16. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Science.gov (United States)

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  17. Three new species of Asclepiadaceae from peninsular Malaya

    NARCIS (Netherlands)

    Rintz, R.E.

    1979-01-01

    Recent intensive exploration in peninsular Malaya for members of the Asclepiadaceae has resulted in the collection of many rare species and new records of species formerly known only from Thailand. In addition, the following 3 new species were also collected. I wish to express my thanks to Mrs.

  18. Vulnerability of species to climate change in the Southwest: threatened, endangered, and at-risk species at the Barry M. Goldwater Range, Arizona

    Science.gov (United States)

    Karen E. Bagne; Deborah M. Finch

    2012-01-01

    Future climate change is anticipated to result in ecosystem changes, and consequently, many species are expected to become increasingly vulnerable to extinction. This scenario is of particular concern for threatened, endangered, and at-risk species (TER-S) or other rare species. The response of species to climate change is uncertain and will be the outcome of complex...

  19. Modulation of pumping rate by two species of marine bivalve molluscs in response to neurotransmitters: Comparison of in vitro and in vivo results.

    Science.gov (United States)

    Frank, Dana M; Deaton, Lewis; Shumway, Sandra E; Holohan, Bridget A; Ward, J Evan

    2015-07-01

    Most studies regarding the neuroanatomy and neurophysiology of molluscan ctenidia have focused on isolated ctenidial tissue preparations. This study investigated how bivalve molluscs modulate their feeding rates by examining the effects of a variety of neurotransmitters, including serotonin, dopamine, and the dopamine agonist apomorphine on both isolated ctenidial tissue and in intact members of two commercially important bivalve species: the blue mussel, Mytilus edulis; and the bay scallop Argopecten irradians. In particular, we examined the effect of changes in: 1) beat of the lateral cilia (in vitro), 2) distance between ctenidial filaments and/or plicae (in vivo), and 3) diameter of the siphonal openings (in vivo) on alteration of bulk water flow through the mantle cavity. Important differences were found between isolated tissue and whole animals, and between species. Drugs that stimulated ciliary beat in vitro did not increase water processing rate in vivo. None of the treatments increased water flow through the mantle cavity of intact animals. Results suggest that A. irradians was primarily modulating lateral ciliary activity, while M. edulis appeared to have a number of ways to control water processing activity, signifying that the two species may have different compensatory and regulatory mechanisms controlling feeding activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Spatial Complementarity and the Coexistence of Species

    Science.gov (United States)

    Velázquez, Jorge; Garrahan, Juan P.; Eichhorn, Markus P.

    2014-01-01

    Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each

  1. Effects of habitat structure and altitudinal gradients on avian species ...

    African Journals Online (AJOL)

    ... effect on bird species diversity. Bird species diversity increased with increase in tree height. A significant decline in bird species diversity with increased number of trees and canopy cover was noted. This result probably suggests an accumulation of forest edge species and generalist species in the less forested habitat.

  2. Hydraulic lift and tolerance to salinity of semiarid species: consequences for species interactions.

    Science.gov (United States)

    Armas, Cristina; Padilla, Francisco M; Pugnaire, Francisco I; Jackson, Robert B

    2010-01-01

    The different abilities of plant species to use ephemeral or permanent water sources strongly affect physiological performance and species coexistence in water-limited ecosystems. In addition to withstanding drought, plants in coastal habitats often have to withstand highly saline soils, an additional ecological stress. Here we tested whether observed competitive abilities and C-water relations of two interacting shrub species from an arid coastal system were more related to differences in root architecture or salinity tolerance. We explored water sources of interacting Juniperus phoenicea Guss. and Pistacia lentiscus L. plants by conducting physiology measurements, including water relations, CO2 exchange, photochemical efficiency, sap osmolality, and water and C isotopes. We also conducted parallel soil analyses that included electrical conductivity, humidity, and water isotopes. During drought, Pistacia shrubs relied primarily on permanent salty groundwater, while isolated Juniperus plants took up the scarce and relatively fresh water stored in upper soil layers. As drought progressed further, the physiological activity of Juniperus plants nearly stopped while Pistacia plants were only slightly affected. Juniperus plants growing with Pistacia had stem-water isotopes that matched Pistacia, unlike values for isolated Juniperus plants. This result suggests that Pistacia shrubs supplied water to nearby Juniperus plants through hydraulic lift. This lifted water, however, did not appear to benefit Juniperus plants, as their physiological performance with co-occurring Pistacia plants was poor, including lower water potentials and rates of photosynthesis than isolated plants. Juniperus was more salt sensitive than Pistacia, which withstood salinity levels similar to that of groundwater. Overall, the different abilities of the two species to use salty water appear to drive the outcome of their interaction, resulting in asymmetric competition where Juniperus is negatively

  3. Species identification of archaeological skin objects from Danish bogs

    DEFF Research Database (Denmark)

    Brandt, Luise Ørsted; Schmidt, Anne Lisbeth; Mannering, Ulla

    2014-01-01

    environment of peat bogs leading to morphological and molecular degradation within the samples. We compared species assignment results of twelve archaeological skin samples from Danish bogs using Mass Spectrometry (MS)-based peptide sequencing, against results obtained using light and scanning electron...... microscopy. While it was difficult to obtain reliable results using microscopy, MS enabled the identification of several species-diagnostic peptides, mostly from collagen and keratins, allowing confident species discrimination even among taxonomically close organisms, such as sheep and goat. Unlike previous...

  4. The results of intergeneric pollination of Fragaria x ananassa Duch. and Fragaria virginiana Duch. by Potentilla species

    Directory of Open Access Journals (Sweden)

    Krystyna Niemirowicz-Szczytt

    2014-01-01

    Full Text Available Female varieties of Fragaria X ananassa (Sonja, Freja, Mieze Schilndler, Dir. Wallbaum, Reine des Precoces, Pozdnaya Slodkaya and others and, tentatively, one female clone, F. virginiana "Scheldon", were pollinated with nineteen Potentilla species in the course of four years (1977-1980. A total of 99194 seeds was obtained, and from them, 739 seedlings (0.75%. After the first year of growth, a mean 24% of seedlings survived (178 Vegetatively mature plants were obtained from the above named octoploid maternal forms (Reine des Precoces excepted with six Potentilla species (the diploid P. rupestris, P. purpureoides, P. geoides, P. glandulosa and P. fruticosa as well as the hexaploid P. fragiformis. F. X ananassa var. Sonja X P. rupestris was classified as the best combination in producing surviving plants.

  5. Species choice, provenance and species trials among native Brazilian species

    Energy Technology Data Exchange (ETDEWEB)

    Drumond, M A

    1982-01-01

    Six papers from the conference are presented. Drumond, M.A., Potential of species native to the semi-arid tropics, 766-781, (Refs. 18), reports on Anadenanthera macrocarpa, Mimosa species, Schinopsis brasiliensis, Spondias tuberosa, Ziziphus joazeiro, Cnidoscolus phyllacanthus, Bursera leptophleos (leptophloeos), Tabebuia impetiginosa, Astronium urundeuva, and Mimosa caesalpinia. Monteiro, R.F.R., Speltz, R.M., Gurgel, J.T. do A.; Silvicultural performance of 24 provenances of Araucaria angustifolia in Parana, 814-824, (Refs. 8). Pires, C.L. da S., Kalil Filho, A.N., Rosa, P.R.F. da, Parente, P.R., Zanatto, A.C.S.; Provenance trials of Cordia alliodora in the State of Sao Paulo, 988-995, (Refs. 9). Nogueira, J.C.B., Siqueira, A.C.M.F., Garrido, M.A.O., Gurgel Garrido, L.M. do A., Rosa, P.R.F., Moraes, J.L. de, Zandarin, M.A., Gurgel Filho, O.A., Trials of some native species in various regions of the State of Sao Paulo, 1051-1063, (Refs. 9) describes Centrolobium tomentosum, Peltophorum dubium, Tabebuia vellosoi, Cariniana legalis, and Balfourodendron riedelianum. Batista, M.P., Borges, J.F., Franco, M.A.B.; Early growth of a native species in comparison with exotics in northeastern Para, Brazil, 1105-1110, (Refs. 3). Jacaranda copaia is compared with Gmelina arborea, Pinus caribaea various hondurensis, Eucalyptus deglupta, and E. urophylla. Lima, P.C.F., Souza, S.M. de, Drumond, M.A.; Trials of native forest species at Petrolina, Pernambuco, 1139-1148, (Refs. 8), deals with Anadenanthera macrocarpa, Piptadenia obliqua, Pithecellobium foliolosum, Astronium urundeuva, Schinopsis brasiliensis, Cassia excelsa, Caesalpinia pyramidalis, Parkia platycephala, Pseudobombax simplicifolium, Tabebuia impetiginosa, Caesalpinia ferrea, and Aspidosperma pyrifolium. 18 references.

  6. The transformer species of the Ukrainian Polissya

    Directory of Open Access Journals (Sweden)

    Protopopova Vira V.

    2015-09-01

    Full Text Available The investigation results of the transformer species participation (Echinocystis lobata (Michx. Torr. & A. Gray, Heracleum sosnowskyi Manden., Impatiens glandulifera Royle, I. parviflora DC., Reynoutria japonica Houtt., Robinia pseudoacacia L. in different plant communities of the Ukrainian Polissya (Forest zone of Ukraine are presented. All the abovementioned species are strong edificators in the region that can significantly change important species composition parameters of communities and character of landscape.

  7. Environmental variability uncovers disruptive effects of species' interactions on population dynamics.

    Science.gov (United States)

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-08-07

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species-species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. © 2015 The Author(s).

  8. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    Science.gov (United States)

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Molecular and morphological approaches for species delimitation and hybridization investigations of two Cichla species

    Directory of Open Access Journals (Sweden)

    Andrea A. F. Mourão

    Full Text Available ABSTRACT The hybridization is a widely-discussed issue in several studies with fish species. For some authors, hybridization may be related with diversification and speciation of several groups, or also with the extinction of populations or species. Difficulties to differentiate species and hybrids may be a problem to correctly apply a management of wild species, because hybrid lineages, especially the advanced ones, may resemble the parental species. The genus Cichla Bloch & Schneider, 1801 constitutes an interesting experimental model, considering that hybridization and taxonomic uncertainties hinder a correct identification. Considering these problems, in this study, we developed genetic methodologies and applied meristic and morphometric approaches in wild samples in order to identify species and for test a possible hybridization between Cichla kelberi Kullander & Ferreira, 2006 and Cichla piquiti Kullander & Ferreira, 2006. For this, C. kelberi, C. piquiti and potential hybrid ( carijó individuals were collected in Paraná and Tietê rivers (SP, Brazil. For meristic and morphometric methods, the individuals were analyzed using the statistical software Pcord 5:31, while for molecular methods, primers for PCR-multiplex were designed and enzyme for PCR-RFLP were selected, under the species-specific nucleotide. All results indicated that the carijó is not an interspecific hybrid, because it presented identical genetic pattern and morphology closed to C. piquiti. Thus, we propose that carijó is a C. piquiti morphotype. In addition, this study promotes a new molecular tool that could be used in future research, monitoring and management programs of the genus Cichla.

  10. Ecological impacts of non-native species

    Science.gov (United States)

    Wilkinson, John W.

    2012-01-01

    management of non-native species has only just begun but some promising results have already emerged (see below), giving hope to a very difficult conservation issue. This chapter provides an overview of the role of non-native species in amphibian declines and summarizes the current state of knowledge of non-native species that are known, or considered to be, a threat to amphibian species and populations. The biological and socio-economic issues of non-native species control are examined and brief case studies of successful eradication programmes are provided.

  11. Hvězdnice sivá (Aster canus), Christian Ferdinand Hochstetter a dva málo známé prameny ke květeně Moravy

    Czech Academy of Sciences Publication Activity Database

    Danihelka, Jiří

    2008-01-01

    Roč. 43, č. 1 (2008), s. 1-16 ISSN 1211-5258 R&D Projects: GA MŠk(CZ) LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : history of botany * halophytes * exsiccate series Subject RIV: EF - Botanics

  12. Comparative effects of neutral salt and alkaline salt stress on seed ...

    African Journals Online (AJOL)

    ajl user 4

    2012-04-27

    Apr 27, 2012 ... 0991-8583259. Abbreviations: AsA, Ascorbic acid; Car, carotenoids; CAT, ... the most critical stages in the life cycle of plants when ... 2008a). The mechanisms for adaptation of the halophyte to salt ..... Plant Soil, 39: 205-207.

  13. Transport of soluble species in backfill and rock

    International Nuclear Information System (INIS)

    Chambre, P.L.; Lee, W.W.L.; Light, W.B.; Pigford, T.H.

    1992-03-01

    In this report we study the release and transport of soluble species from spent nuclear fuel. By soluble species we mean a fraction of certain fission product species. Our previously developed methods for calculating release rates of solubility-limited species need to be revised for these soluble species. Here we provide methods of calculating release rates of soluble species directly into rock and into backfill and then into rock. Section 2 gives a brief discussion of the physics of fission products dissolution from U0 2 spent fuel. Section 3 presents the mathematics for calculating release rates of soluble species into backfill and then into rock. The calculation of release rates directly into rock is a special case. Section 4 presents numerical illustrations of the analytic results

  14. DNA-based species detection capabilities using laser transmission spectroscopy.

    Science.gov (United States)

    Mahon, A R; Barnes, M A; Li, F; Egan, S P; Tanner, C E; Ruggiero, S T; Feder, J L; Lodge, D M

    2013-01-06

    Early detection of invasive species is critical for effective biocontrol to mitigate potential ecological and economic damage. Laser transmission spectroscopy (LTS) is a powerful solution offering real-time, DNA-based species detection in the field. LTS can measure the size, shape and number of nanoparticles in a solution and was used here to detect size shifts resulting from hybridization of the polymerase chain reaction product to nanoparticles functionalized with species-specific oligonucleotide probes or with the species-specific oligonucleotide probes alone. We carried out a series of DNA detection experiments using the invasive freshwater quagga mussel (Dreissena bugensis) to evaluate the capability of the LTS platform for invasive species detection. Specifically, we tested LTS sensitivity to (i) DNA concentrations of a single target species, (ii) the presence of a target species within a mixed sample of other closely related species, (iii) species-specific functionalized nanoparticles versus species-specific oligonucleotide probes alone, and (iv) amplified DNA fragments versus unamplified genomic DNA. We demonstrate that LTS is a highly sensitive technique for rapid target species detection, with detection limits in the picomolar range, capable of successful identification in multispecies samples containing target and non-target species DNA. These results indicate that the LTS DNA detection platform will be useful for field application of target species. Additionally, we find that LTS detection is effective with species-specific oligonucleotide tags alone or when they are attached to polystyrene nanobeads and with both amplified and unamplified DNA, indicating that the technique may also have versatility for broader applications.

  15. Terrestrial animals as invasive species and as species at risk from invasions

    Science.gov (United States)

    Deborah M. Finch; Dean Pearson; Joseph Wunderle; Wayne Arendt

    2010-01-01

    Including terrestrial animal species in the invasive species strategy plan is an important step in invasive species management. Invasions by nonindigenous species threaten nearly 50 percent of imperiled native species in the United States and are the Nation's second leading cause of species endangerment. Invasion and conversion of native habitats by exotic species...

  16. Finessing atlas data for species distribution models

    NARCIS (Netherlands)

    Niamir, A.; Skidmore, A.K.; Toxopeus, A.G.; Munoz, A.R.; Real, R.

    2011-01-01

    Aim The spatial resolution of species atlases and therefore resulting model predictions are often too coarse for local applications. Collecting distribution data at a finer resolution for large numbers of species requires a comprehensive sampling effort, making it impractical and expensive. This

  17. Diversification of Cercopithifilaria species (Nematoda: Filarioidea in Japanese wild ruminants with description of two new species

    Directory of Open Access Journals (Sweden)

    Uni S.

    2002-12-01

    Full Text Available Twelve of the 17 Cervus nippon nippon deer from Kyushu Island, Japan, that we examined were infected with one or two Cercopithifilaria species. C. longa n. sp. adults were in the subcutaneous tissues of limbs and the abdomen, and C. crassa n. sp. adults were in the skin, mainly in the anterior part of the back ; the distribution of the dermal microfilariae generally matched that of the adult worms. The two new species were assigned to the group of primitive Cercopithifilaria species that parasitize ruminants (bovids and cervids, but the new species could readily be distinguished from others morphologically. C. longa was more primitive and resembled C. bulboidea, one of the five species from the serow Capricornis crispus, a Japanese member of the Caprinae, and species from Bovidae in Africa. C. crassa had a thick body and large spicules like C. rugosicauda from Capreolus capreolus in Europe, the only previously known Cercopithifilaria species from cervids, but it also had one or two hypertrophied pairs of caudal papillae, an unusual character found so far only in Japanese parasites. Among the 12 species known from ruminants, four are African, one is European and more highly evolved, and seven are Japanese, with some being primitive and some more evolved. The great diversity of Cercopithifilaria species in the two wild ruminants that live in Japan seems to have resulted from local speciation, which occurred during the Pleistocene, from a primitive form of the C. longa type derived from Eurasiatic ancestors, which has disappeared or, more probably, not yet been discovered.

  18. Rare species contribute disproportionately to the functional structure of species assemblages.

    Science.gov (United States)

    Leitão, Rafael P; Zuanon, Jansen; Villéger, Sébastien; Williams, Stephen E; Baraloto, Christopher; Fortunel, Claire; Mendonça, Fernando P; Mouillot, David

    2016-04-13

    There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions. © 2016 The Author(s).

  19. Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci

    Directory of Open Access Journals (Sweden)

    Caroline E. Dubé

    2017-02-01

    Full Text Available Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla, an important reef-builder of Indo-Pacific reefs. We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2–13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71% and polymorphism (59% of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean species M. complanata due to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323–0.496 and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoan Millepora species creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs.

  20. Phylogeny and species delineation in European species of the genus Steganacarus (Acari, Oribatida) using mitochondrial and nuclear markers.

    Science.gov (United States)

    Kreipe, Victoria; Corral-Hernández, Elena; Scheu, Stefan; Schaefer, Ina; Maraun, Mark

    2015-06-01

    Species of the genus Steganacarus are soil-living oribatid mites (Acari, Phthiracaridae) with a ptychoid body. The phylogeny and species status of the species of Steganacarus are not resolved, some authors group all ten German species of Steganacarus within the genus Steganacarus whereas others split them into three subgenera, Steganacarus, Tropacarus and Atropacarus. Additionally, two species, S. magnus and T. carinatus, comprise morphotypes of questionable species status. We investigated the phylogeny and species status of ten European Steganacarus species, i.e. S. applicatus, S. herculeanus, S. magnus forma magna, S. magnus forma anomala, S. spinosus, Tropacarus brevipilus, T. carinatus forma carinata, T. carinatus forma pulcherrima, Atropacarus striculus and Rhacaplacarus ortizi. We used two molecular markers, a 251 bp fragment of the nuclear gene 28S rDNA (D3) and a 477 bp fragment of the mitochondrial COI region. The phylogeny based on a combined analysis of D3 and COI separated four subgenera (Steganacarus, Tropacarus and Atropacarus, Rhacaplacarus) indicating that they form monophyletic groups. The COI region separated all ten species of the genus Steganacarus and showed variation within some species often correlating with the geographic origin of the species. Resolution of the more conserved D3 region was limited, indicating that radiation events are rather recent. Overall, our results indicate that both genes alone cannot be used for phylogeny and barcoding since variation is too low in D3 and too high in COI. However, when used in combination these genes provide reliable insight into the phylogeny, radiation and species status of taxa of the genus Steganacarus.

  1. Photosynthetic response of two seaweed species along an urban pollution gradient: evidence of selection of pollution-tolerant species.

    Science.gov (United States)

    Scherner, F; Bonomi Barufi, J; Horta, P A

    2012-11-01

    Urbanization leads to the expansion of ephemeral seaweed species and the decline of important perennial, canopy-forming seaweed species. Understanding the mechanisms that lead to these changes is a current challenge. In the present study, laboratory assays and field transplantations were performed with two seaweed species: the perennial, canopy-forming seaweed Sargassum stenophyllum and the ephemeral seaweed Ulva lactuca. Photosynthetic efficiency was assessed using modulated chlorophyll fluorometry. Brief exposure to urban waters does not appear to be a major stressor to the photosynthetic efficiency of either species. However, after 26 days of transplantation in urban waters, S. stenophyllum declined, whereas U. lactuca had enhanced photosynthetic efficiency. This difference reflects their divergent abilities to regulate the energy distribution at the PSII and shows that urban stressors alter these mechanisms. Our results provide evidence of the physiological causes for the decline of Sargassum species and the expansion of Ulva species in impacted urban areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Two new species of the Pterostichus macrogenys species group (Coleoptera, Carabidae discovered in shallow subterranean habitats in northern Honshu, Japan

    Directory of Open Access Journals (Sweden)

    Kôji Sasakawa

    2017-01-01

    Full Text Available Shallow subterranean environments have recently received attention as a habitat for Carabidae beetles, and many new species have been discovered using collection techniques devised for this habitat. We report the discovery of two new species of the macrogenys species group of the Pterostichus subgenus Nialoe Tanaka, 1958, collected by subterranean baited traps in northern Honshu, Japan. Pterostichus shinbodakensis Sasakawa & Itô, sp. n. is described from Mt. Shinbodake, Niigata Prefecture, and P. tateishiyamanus Sasakawa & Itô, sp. n. is described from the southeastern foot of Mt. Tateishiyama, Fukushima Prefecture. Comparative male genital morphology shows that among the known species, the two new species are most closely related to P. falcispinus Sasakawa, 2005 and P. chokaisanus Sasakawa, 2009, respectively. In addition, sympatric occurrence of P. shinbodakensis with a smaller, unidentified species of the species group was also confirmed. The implications of these results for future studies of the macrogenys species group, as well as those of Nialoe, are discussed.

  3. Two-species occupancy modeling accounting for species misidentification and nondetection

    Science.gov (United States)

    Chambert, Thierry; Grant, Evan H. Campbell; Miller, David A. W.; Nichols, James; Mulder, Kevin P.; Brand, Adrianne B,

    2018-01-01

    1. In occupancy studies, species misidentification can lead to false positive detections, which can cause severe estimator biases. Currently, all models that account for false positive errors only consider omnibus sources of false detections and are limited to single species occupancy. 2. However, false detections for a given species often occur because of the misidentification with another, closely-related species. To exploit this explicit source of false positive detection error, we develop a two-species occupancy model that accounts for misidentifications between two species of interest. As with other false positive models, identifiability is greatly improved by the availability of unambiguous detections at a subset of site-occasions. Here, we consider the case where some of the field observations can be confirmed using laboratory or other independent identification methods (“confirmatory data”). 3. We performed three simulation studies to (1) assess the model’s performance under various realistic scenarios, (2) investigate the influence of the proportion of confirmatory data on estimator accuracy, and (3) compare the performance of this two-species model with that of the single-species false positive model. The model shows good performance under all scenarios, even when only small proportions of detections are confirmed (e.g., 5%). It also clearly outperforms the single-species model.

  4. Is Drosophila-microbe association species-specific or region specific? A study undertaken involving six Indian Drosophila species.

    Science.gov (United States)

    Singhal, Kopal; Khanna, Radhika; Mohanty, Sujata

    2017-06-01

    The present work aims to identify the microbial diversity associated with six Indian Drosophila species using next generation sequencing (NGS) technology and to discover the nature of their distribution across species and eco-geographic regions. Whole fly gDNA of six Drosophila species were used to generate sequences in an Illumina platform using NGS technology. De novo based assembled raw reads were blasted against the NR database of NCBI using BLASTn for identification of their bacterial loads. We have tried to include Drosophila species from different taxonomical groups and subgroups and from three different eco-climatic regions India; four species belong to Central India, while the rest two, D. melanogaster and D. ananassae, belong to West and South India to determine both their species-wise and region-wide distribution. We detected the presence of 33 bacterial genera across all six study species, predominated by the class Proteobacteria. Amongst all, D. melanogaster was found to be the most diverse by carrying around 85% of the bacterial diversity. Our findings infer both species-specific and environment-specific nature of the bacterial species inhabiting the Drosophila host. Though the present results are consistent with most of the earlier studies, they also remain incoherent with some. The present study outcome on the host-bacteria association and their species specific adaptation may provide some insight to understand the host-microbial interactions and the phenotypic implications of microbes on the host physiology. The knowledge gained may be importantly applied into the recent insect and pest population control strategy going to implement through gut microflora in India and abroad.

  5. Rare species support vulnerable functions in high-diversity ecosystems.

    Science.gov (United States)

    Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  6. Three new species of the characid genus Cynopotamus Valenciennes, 1849, with remarks on the remaining species (Pisces, Characiformes)

    NARCIS (Netherlands)

    Menezes, Naercio A.

    1987-01-01

    Three new species of Cynopotamus Valenciennes, 1849 are described, C. gouldingi n. sp., C. juruenae n. sp. and C. tocantinensis n. sp. New diagnoses and synonymies are provided for most species of this genus as a consequence of the results from a study of recently collected specimens. A revised key

  7. Does temperature-mediated reproductive success drive the direction of species displacement in two invasive species of leafminer fly?

    Directory of Open Access Journals (Sweden)

    Haihong Wang

    Full Text Available Liriomyza sativae and L. trifolii (Diptera: Agromyzidae are two highly invasive species of leafmining flies, which have become established as pests of horticultural crops throughout the world. In certain regions where both species have been introduced, L. sativae has displaced L. trifolii, whereas the opposite has occurred in other regions. These opposing outcomes suggest that neither species is an inherently superior competitor. The regions where these displacements have been observed (southern China, Japan and western USA are climatically different. We determined whether temperature differentially affects the reproductive success of these species and therefore if climatic differences could affect the outcome of interspecific interactions where these species are sympatric. The results of life table parameters indicate that both species can develop successfully at all tested temperatures (20, 25, 31, 33°C. L. sativae had consistently higher fecundities at all temperatures, but L. trifolii developed to reproductive age faster. Age-stage specific survival rates were higher for L. sativae at low temperatures, but these were higher for L. trifolii at higher temperatures. We then compared the net reproductive rates (R0 for both species in pure and mixed cultures maintained at the same four constant temperatures. Both species had significantly lower net reproductive rates in mixed species cultures compared with their respective pure species cultures, indicating that both species are subject to intense interspecific competition. Net reproductive rates were significantly greater for L. sativae than for L. trifolii in mixed species groups at the lower temperatures, whereas the opposite occurred at the higher temperature. Therefore, interactions between the species are temperature dependent and small differences could shift the competitive balance between the species. These temperature mediated effects may contribute to the current ongoing displacement

  8. Quantifying species recovery and conservation success to develop an IUCN Green List of Species.

    Science.gov (United States)

    Akçakaya, H Resit; Bennett, Elizabeth L; Brooks, Thomas M; Grace, Molly K; Heath, Anna; Hedges, Simon; Hilton-Taylor, Craig; Hoffmann, Michael; Keith, David A; Long, Barney; Mallon, David P; Meijaard, Erik; Milner-Gulland, E J; Rodrigues, Ana S L; Rodriguez, Jon Paul; Stephenson, P J; Stuart, Simon N; Young, Richard P

    2018-03-26

    Stopping declines in biodiversity is critically important, but it is only a first step toward achieving more ambitious conservation goals. The absence of an objective and practical definition of species recovery that is applicable across taxonomic groups leads to inconsistent targets in recovery plans and frustrates reporting and maximization of conservation impact. We devised a framework for comprehensively assessing species recovery and conservation success. We propose a definition of a fully recovered species that emphasizes viability, ecological functionality, and representation; and use counterfactual approaches to quantify degree of recovery. This allowed us to calculate a set of 4 conservation metrics that demonstrate impacts of conservation efforts to date (conservation legacy); identify dependence of a species on conservation actions (conservation dependence); quantify expected gains resulting from conservation action in the medium term (conservation gain); and specify requirements to achieve maximum plausible recovery over the long term (recovery potential). These metrics can incentivize the establishment and achievement of ambitious conservation targets. We illustrate their use by applying the framework to a vertebrate, an invertebrate, and a woody and an herbaceous plant. Our approach is a preliminary framework for an International Union for Conservation of Nature (IUCN) Green List of Species, which was mandated by a resolution of IUCN members in 2012. Although there are several challenges in applying our proposed framework to a wide range of species, we believe its further development, implementation, and integration with the IUCN Red List of Threatened Species will help catalyze a positive and ambitious vision for conservation that will drive sustained conservation action. © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  9. Geomorphic controls on elevational gradients of species richness.

    Science.gov (United States)

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-02-16

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.

  10. An exactly solvable coarse-grained model for species diversity

    Science.gov (United States)

    Suweis, Samir; Rinaldo, Andrea; Maritan, Amos

    2012-07-01

    We present novel analytical results concerning ecosystem species diversity that stem from a proposed coarse-grained neutral model based on birth-death processes. The relevance of the problem lies in the urgency for understanding and synthesizing both theoretical results from ecological neutral theory and empirical evidence on species diversity preservation. The neutral model of biodiversity deals with ecosystems at the same trophic level, where per capita vital rates are assumed to be species independent. Closed-form analytical solutions for the neutral theory are obtained within a coarse-grained model, where the only input is the species persistence time distribution. Our results pertain to: the probability distribution function of the number of species in the ecosystem, both in transient and in stationary states; the n-point connected time correlation function; and the survival probability, defined as the distribution of time spans to local extinction for a species randomly sampled from the community. Analytical predictions are also tested on empirical data from an estuarine fish ecosystem. We find that emerging properties of the ecosystem are very robust and do not depend on specific details of the model, with implications for biodiversity and conservation biology.

  11. An exactly solvable coarse-grained model for species diversity

    International Nuclear Information System (INIS)

    Suweis, Samir; Maritan, Amos; Rinaldo, Andrea

    2012-01-01

    We present novel analytical results concerning ecosystem species diversity that stem from a proposed coarse-grained neutral model based on birth–death processes. The relevance of the problem lies in the urgency for understanding and synthesizing both theoretical results from ecological neutral theory and empirical evidence on species diversity preservation. The neutral model of biodiversity deals with ecosystems at the same trophic level, where per capita vital rates are assumed to be species independent. Closed-form analytical solutions for the neutral theory are obtained within a coarse-grained model, where the only input is the species persistence time distribution. Our results pertain to: the probability distribution function of the number of species in the ecosystem, both in transient and in stationary states; the n-point connected time correlation function; and the survival probability, defined as the distribution of time spans to local extinction for a species randomly sampled from the community. Analytical predictions are also tested on empirical data from an estuarine fish ecosystem. We find that emerging properties of the ecosystem are very robust and do not depend on specific details of the model, with implications for biodiversity and conservation biology. (paper)

  12. An empirical assessment of the focal species hypothesis.

    Science.gov (United States)

    Lindenmayer, D B; Lane, P W; Westgate, M J; Crane, M; Michael, D; Okada, S; Barton, P S

    2014-12-01

    Biodiversity surrogates and indicators are commonly used in conservation management. The focal species approach (FSA) is one method for identifying biodiversity surrogates, and it is underpinned by the hypothesis that management aimed at a particular focal species will confer protection on co-occurring species. This concept has been the subject of much debate, in part because the validity of the FSA has not been subject to detailed empirical assessment of the extent to which a given focal species actually co-occurs with other species in an assemblage. To address this knowledge gap, we used large-scale, long-term data sets of temperate woodland birds to select focal species associated with threatening processes such as habitat isolation and loss of key vegetation attributes. We quantified co-occurrence patterns among focal species, species in the wider bird assemblage, and species of conservation concern. Some, but not all, focal species were associated with high levels of species richness. One of our selected focal species was negatively associated with the occurrence of other species (i.e., it was an antisurrogate)-a previously undescribed property of nominated focal species. Furthermore, combinations of focal species were not associated with substantially elevated levels of bird species richness, relative to levels associated with individual species. Our results suggest that although there is some merit to the underpinning concept of the FSA, there is also a need to ensure that actions are sufficiently flexible because management tightly focused on a given focal species may not benefit some other species, including species of conservation concern, such of which might not occur in species-rich assemblages. © 2014 Society for Conservation Biology.

  13. Agroforestry Species Switchboard

    DEFF Research Database (Denmark)

    Kindt, R.; John, I.; Ordonez, J.

    2016-01-01

    The current version of the Agroforestry Species Switchboard documents the presence of a total of 26,135 plant species (33,813 species including synonyms) across 19 web-based databases. When available, hyperlinks to information on the selected species in particular databases are provided. In total...

  14. Analysis of a Fishery Model with two competing prey species in the presence of a predator species for Optimal Harvesting

    Science.gov (United States)

    Sutimin; Khabibah, Siti; Munawwaroh, Dita Anis

    2018-02-01

    A harvesting fishery model is proposed to analyze the effects of the presence of red devil fish population, as a predator in an ecosystem. In this paper, we consider an ecological model of three species by taking into account two competing species and presence of a predator (red devil), the third species, which incorporates the harvesting efforts of each fish species. The stability of the dynamical system is discussed and the existence of biological and bionomic equilibrium is examined. The optimal harvest policy is studied and the solution is derived in the equilibrium case applying Pontryagin's maximal principle. The simulation results is presented to simulate the dynamical behavior of the model and show that the optimal equilibrium solution is globally asymptotically stable. The results show that the optimal harvesting effort is obtained regarding to bionomic and biological equilibrium.

  15. Collective behaviour across animal species.

    Science.gov (United States)

    DeLellis, Pietro; Polverino, Giovanni; Ustuner, Gozde; Abaid, Nicole; Macrì, Simone; Bollt, Erik M; Porfiri, Maurizio

    2014-01-16

    We posit a new geometric perspective to define, detect, and classify inherent patterns of collective behaviour across a variety of animal species. We show that machine learning techniques, and specifically the isometric mapping algorithm, allow the identification and interpretation of different types of collective behaviour in five social animal species. These results offer a first glimpse at the transformative potential of machine learning for ethology, similar to its impact on robotics, where it enabled robots to recognize objects and navigate the environment.

  16. Occurrence of organohalogens at the Dead Sea Basin

    Science.gov (United States)

    Tubbesing, Christoph; Kotte, Karsten; Keppler, Frank; Krause, Torsten; Bahlmann, Enno; Schöler, Heinfried

    2013-04-01

    constructed to encase branches of halophytic plants to estimate their organohalogen emissions using adsorbent tubes or vacuum cans, respectively. Our results show that several halocarbons are ubiquitous at the Dead Sea basin and their formation depends on environmental factors such as salinity and vegetation. [1] Kotte et al., 2012, Biogeosciences, 9, 1225-1235

  17. Wing pattern morphology of three closely related Melitaea (Lepidoptera, Nymphalidae species reveals highly inaccurate external morphology-based species identification

    Directory of Open Access Journals (Sweden)

    Jure Jugovic

    2014-06-01

    Full Text Available Wing morphology of the three closely related species of Melitaea – M. athalia (Rottemburg, 1775, M. aurelia (Nickerl, 1850 and M. britomartis Assmann, 1847 – co-occurring in the Balkans (SE Europe was investigated in detail through visual inspection, morphometric analysis and multivariate statistical analysis. Results are compared to recent phylogenetic studies, searching for concordant patterns and discrepancies between the two approaches. The morphology of the genitalic structures is also compared with the results of the other two approaches. The main conclusions are as follows: (1 small albeit significant differences in wing morphology exist among the three species and (2 while the structure of male genitalia and phylogenetic position of the three species are concordant, they are (3 in discordance with the wing morphology. The present study represents another example where identification based on external morphology would lead to highly unreliable determinations, hence identification based on phylogenetic studies and/or genitalia is strongly recommended not only for the three studied species but also more broadly within the genus. Furthermore, we show that some of the characters generally used in the identification of these three Melitaea species should be avoided in future.

  18. Microbial species delineation using whole genome sequences.

    Science.gov (United States)

    Varghese, Neha J; Mukherjee, Supratim; Ivanova, Natalia; Konstantinidis, Konstantinos T; Mavrommatis, Kostas; Kyrpides, Nikos C; Pati, Amrita

    2015-08-18

    Increased sequencing of microbial genomes has revealed that prevailing prokaryotic species assignments can be inconsistent with whole genome information for a significant number of species. The long-standing need for a systematic and scalable species assignment technique can be met by the genome-wide Average Nucleotide Identity (gANI) metric, which is widely acknowledged as a robust measure of genomic relatedness. In this work, we demonstrate that the combination of gANI and the alignment fraction (AF) between two genomes accurately reflects their genomic relatedness. We introduce an efficient implementation of AF,gANI and discuss its successful application to 86.5M genome pairs between 13,151 prokaryotic genomes assigned to 3032 species. Subsequently, by comparing the genome clusters obtained from complete linkage clustering of these pairs to existing taxonomy, we observed that nearly 18% of all prokaryotic species suffer from anomalies in species definition. Our results can be used to explore central questions such as whether microorganisms form a continuum of genetic diversity or distinct species represented by distinct genetic signatures. We propose that this precise and objective AF,gANI-based species definition: the MiSI (Microbial Species Identifier) method, be used to address previous inconsistencies in species classification and as the primary guide for new taxonomic species assignment, supplemented by the traditional polyphasic approach, as required. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    Science.gov (United States)

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between

  20. A comparison of fisheries biological reference points estimated from temperature-specific multi-species and single-species climate-enhanced stock assessment models

    Science.gov (United States)

    Holsman, Kirstin K.; Ianelli, James; Aydin, Kerim; Punt, André E.; Moffitt, Elizabeth A.

    2016-12-01

    Multi-species statistical catch at age models (MSCAA) can quantify interacting effects of climate and fisheries harvest on species populations, and evaluate management trade-offs for fisheries that target several species in a food web. We modified an existing MSCAA model to include temperature-specific growth and predation rates and applied the modified model to three fish species, walleye pollock (Gadus chalcogrammus), Pacific cod (Gadus macrocephalus) and arrowtooth flounder (Atheresthes stomias), from the eastern Bering Sea (USA). We fit the model to data from 1979 through 2012, with and without trophic interactions and temperature effects, and use projections to derive single- and multi-species biological reference points (BRP and MBRP, respectively) for fisheries management. The multi-species model achieved a higher over-all goodness of fit to the data (i.e. lower negative log-likelihood) for pollock and Pacific cod. Variability from water temperature typically resulted in 5-15% changes in spawning, survey, and total biomasses, but did not strongly impact recruitment estimates or mortality. Despite this, inclusion of temperature in projections did have a strong effect on BRPs, including recommended yield, which were higher in single-species models for Pacific cod and arrowtooth flounder that included temperature compared to the same models without temperature effects. While the temperature-driven multi-species model resulted in higher yield MBPRs for arrowtooth flounder than the same model without temperature, we did not observe the same patterns in multi-species models for pollock and Pacific cod, where variability between harvest scenarios and predation greatly exceeded temperature-driven variability in yield MBRPs. Annual predation on juvenile pollock (primarily cannibalism) in the multi-species model was 2-5 times the annual harvest of adult fish in the system, thus predation represents a strong control on population dynamics that exceeds temperature

  1. Species hybridization in the genus Pinus

    Science.gov (United States)

    Peter W. Garrett

    1979-01-01

    Results of a breeding program in which a large number of pine species were tested indicate that a number of species and hybrids may be useful in the northeastern United States. Austrian black pine x Japanese black pine and hybrids containing Japanese red pine all had good growth rates. While none of the soft pines grew faster than eastern white pine, a number of...

  2. A new Cernosvitoviella species (Clitellata: Enchytraeidae) and its comparison with other Cernosvitoviella species from Sphagnum mires in Hungary.

    Science.gov (United States)

    Dózsa-Farkas, Klára; Csitári, Bianka; Felföldi, Tamás

    2017-04-18

    Results of a comparative investigation on five Cernosvitoviella species from Hungarian Sphagnum mires including their distribution and the description of a new species, Cernosvitoviella farkasi sp. n., are presented in this paper. Cernosvitoviella atrata, C. aggtelekiensis, C. crassoductus and C. farkasi sp. n. could be easily distinguished from each other based on both morphological and molecular taxonomic analyses. However, C. minor seems to be a species complex on the basis of these investigations, so it was referred as C. minor sensu lato. The status of the C. minor variants requires further studies.

  3. Species concept and speciation

    Directory of Open Access Journals (Sweden)

    Amal Y. Aldhebiani

    2018-03-01

    Full Text Available Defining and recognizing a species has been a controversial issue for a long time. To determine the variation and the limitation between species, many concepts have been proposed. When a taxonomist study a particular taxa, he/she must adopted a species concept and provide a species limitation to define this taxa. In this paper some of species concepts are discussed starting from the typological species concepts to the phylogenetic concept. Positive and negative aspects of these concepts are represented in addition to their application. Keywords: Species concept, Species limitation, Species, Taxonomy, Classification

  4. Simultaneous discrimination of species and strains in Lactobacillus rhamnosus using species-specific PCR combined with multiplex mini-sequencing technology.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2015-12-01

    This study described the use of species-specific PCR in combination with SNaPshot mini-sequencing to achieve species identification and strain differentiation in Lactobacillus rhamnosus. To develop species-specific PCR and strain subtyping primers, the dnaJ gene was used as a target, and its corresponding sequences were analyzed both in Lb. rhamnosus and in a subset of its phylogenetically closest species. The results indicated that the species-specific primer pair was indeed specific for Lb. rhamnosus, and the mini-sequencing assay was able to unambiguously distinguish Lb. rhamnosus strains into different haplotypes. In conclusion, we have successfully developed a rapid, accurate and cost-effective assay for inter- and intraspecies discrimination of Lb. rhamnosus, which can be applied to achieve efficient quality control of probiotic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The influence of oral Veillonella species on biofilms formed by Streptococcus species.

    Science.gov (United States)

    Mashima, Izumi; Nakazawa, Futoshi

    2014-08-01

    Oral Veillonella, Veillonella atypica, Veillonella denticariosi, Veillonella dispar, Veillonella parvula, Veillonella rogosae, and Veillonella tobetsuensis are known as early colonizers in oral biofilm formation. To investigate the role of oral Veillonella, biofilms formed by the co-culture of Streptococcus gordonii, Streptococcus mutans, Streptococcus salivarius, or Streptococcus sanguinis, with oral Veillonella were examined at the species level. The amount of biofilm formed by S. mutans, S. gordonii, and S. salivarius in the presence of the six Veillonella species was greater than that formed in the control experiments, with the exception of S. mutans with V. dispar. In contrast, in the case of biofilm formation by S. sanguinis, the presence of Veillonella species reduced the amount of the biofilm, with the exception of V. parvula and V. dispar. The time-dependent changes in the amount of biofilm and the number of planktonic cells were grouped into four patterns over the 24 combinations. Only that of S. gordonii with V. tobetsuensis showed a unique pattern. These results indicate that the mode of action of this combination differed from that of the other combinations with respect to biofilm formation. It is possible that there may be several factors involved in the interaction between Streptococcus and Veillonella species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A cross-species alignment tool (CAT)

    DEFF Research Database (Denmark)

    Li, Heng; Guan, Liang; Liu, Tao

    2007-01-01

    BACKGROUND: The main two sorts of automatic gene annotation frameworks are ab initio and alignment-based, the latter splitting into two sub-groups. The first group is used for intra-species alignments, among which are successful ones with high specificity and speed. The other group contains more...... sensitive methods which are usually applied in aligning inter-species sequences. RESULTS: Here we present a new algorithm called CAT (for Cross-species Alignment Tool). It is designed to align mRNA sequences to mammalian-sized genomes. CAT is implemented using C scripts and is freely available on the web...... at http://xat.sourceforge.net/. CONCLUSIONS: Examined from different angles, CAT outperforms other extant alignment tools. Tested against all available mouse-human and zebrafish-human orthologs, we demonstrate that CAT combines the specificity and speed of the best intra-species algorithms, like BLAT...

  7. Use of Animal Species Data in Environmental Impact Assessments

    Science.gov (United States)

    Knegtering, Edo; Drees, J. Marijke; Geertsema, Paul; Huitema, Hans J.; Uiterkamp, Anton J. M. Schoot

    2005-12-01

    Environmental Impact Assessments (EIAs) should ideally help minimize adverse effects on biological diversity by considering impacts of projects on wide ranges of species. This paper investigates how recent Dutch EIAs included the species comprising animal diversity. We present results of two studies on fauna data used in the EIAs. Objectives were to determine for different taxa (a) the relative representation of species in Environmental Impact Statements (EISs); (b) the extent to which EISs referred to specific species and the accuracy of survey data referred to; and (c) apparent roles of different EIA actors in species inclusion. EIAs were found to use data on various taxa but on limited numbers of species. The frequency with which taxa were included varied significantly. Birds were most frequently included, followed by mammals, amphibians, and other species groups. The quality of data on birds exceeded that regarding other vertebrates. Our results indicate that (a) EIA working groups of independent experts were the most influential in determining the data to be used; (b) on average, proponents included data more often than required by guidelines; and (c) in 30 to 40% of the EIAs, the participation of nongovernmental organizations prompted use of data. Despite the key role of experts in data inclusion, the taxon rankings found in the EIAs showed little deviation from those observed in studies on people’s preferences for species. Given the limited ranges of species considered, it is doubtful that the EIAs examined effectively contributed to conserving animal species diversity.

  8. Rare species support vulnerable functions in high-diversity ecosystems.

    Directory of Open Access Journals (Sweden)

    David Mouillot

    Full Text Available Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees, we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by

  9. Annual atmospheric mercury species in downtown Toronto, Canada.

    Science.gov (United States)

    Song, Xinjie; Cheng, Irene; Lu, Julia

    2009-03-01

    Real-time concentrations of atmospheric gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and mercury associated with particles having sizes RGM were 4.5 +/- 3.1 ng m(-3) (99.2%), 21.5 +/- 16.4 pg m(-3) (0.5%) and 14.2 +/- 13.2 pg m(-3) (0.3%), respectively. The concentrations for all the measured Hg species were highly variable throughout the year and were lower in winter than in the other three seasons. The maximum concentrations of Hg species were observed in June and were a result of the high number of Hg spikes (using [GEM] >10 ng m(-3) as an indicator) that occurred in the month. Nighttime (between 9pm-6am) concentrations of Hg species were higher than those of daytime. The results revealed: (1) an urban area is a continuous source of Hg species that have the potential to pose impacts on local, regional and global scales; (2) local/regional anthropogenic sources contributed significantly to the levels and the distributions of the Hg species in the urban atmosphere. More studies are needed to identify and quantify the anthropogenic sources of Hg and the Hg species emitted from these sources; (3) surface emission and photochemical reactions (including the reactions involving ozone) did not have significant influence on the levels of Hg species and their distribution in the urban atmosphere.

  10. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California

    Science.gov (United States)

    Franklin, J.; Wejnert, K.E.; Hathaway, S.A.; Rochester, C.J.; Fisher, R.N.

    2009-01-01

    Aim: Several studies have found that more accurate predictive models of species' occurrences can be developed for rarer species; however, one recent study found the relationship between range size and model performance to be an artefact of sample prevalence, that is, the proportion of presence versus absence observations in the data used to train the model. We examined the effect of model type, species rarity class, species' survey frequency, detectability and manipulated sample prevalence on the accuracy of distribution models developed for 30 reptile and amphibian species. Location: Coastal southern California, USA. Methods: Classification trees, generalized additive models and generalized linear models were developed using species presence and absence data from 420 locations. Model performance was measured using sensitivity, specificity and the area under the curve (AUC) of the receiver-operating characteristic (ROC) plot based on twofold cross-validation, or on bootstrapping. Predictors included climate, terrain, soil and vegetation variables. Species were assigned to rarity classes by experts. The data were sampled to generate subsets with varying ratios of presences and absences to test for the effect of sample prevalence. Join count statistics were used to characterize spatial dependence in the prediction errors. Results: Species in classes with higher rarity were more accurately predicted than common species, and this effect was independent of sample prevalence. Although positive spatial autocorrelation remained in the prediction errors, it was weaker than was observed in the species occurrence data. The differences in accuracy among model types were slight. Main conclusions: Using a variety of modelling methods, more accurate species distribution models were developed for rarer than for more common species. This was presumably because it is difficult to discriminate suitable from unsuitable habitat for habitat generalists, and not as an artefact of the

  11. Gesteelde zoutmelde [Halimione pedunculata (L.) Aellen] op Texel

    NARCIS (Netherlands)

    Westhoff, V.; Schaminée, J.H.J.

    1989-01-01

    Halimione pedunculata, one of the rarest halophytes of the Netherlands, was known from the southwestern estuaries, as well as from the Westfriesian islands of Terschelling, Ameland and Schiermonnikoog. Its absence from Texel was remarkable. On 6 September 1988, the authors observed and collected the

  12. Molecular responses and expression analysis of genes in a ...

    African Journals Online (AJOL)

    Haloxylon ammodendron (C.A Mey.) Bunge is a xero-halophytic desert shrub with excellent drought resistance and salt tolerance. To decipher the molecular responses involved in its drought resistance, the cDNA-AFLP (amplified fragment length polymorphism) technique was employed to identify genes expressed ...

  13. Exploring similarities among many species distributions

    Science.gov (United States)

    Simmerman, Scott; Wang, Jingyuan; Osborne, James; Shook, Kimberly; Huang, Jian; Godsoe, William; Simons, Theodore R.

    2012-01-01

    Collecting species presence data and then building models to predict species distribution has been long practiced in the field of ecology for the purpose of improving our understanding of species relationships with each other and with the environment. Due to limitations of computing power as well as limited means of using modeling software on HPC facilities, past species distribution studies have been unable to fully explore diverse data sets. We build a system that can, for the first time to our knowledge, leverage HPC to support effective exploration of species similarities in distribution as well as their dependencies on common environmental conditions. Our system can also compute and reveal uncertainties in the modeling results enabling domain experts to make informed judgments about the data. Our work was motivated by and centered around data collection efforts within the Great Smoky Mountains National Park that date back to the 1940s. Our findings present new research opportunities in ecology and produce actionable field-work items for biodiversity management personnel to include in their planning of daily management activities.

  14. Species-area relationships are controlled by species traits.

    Science.gov (United States)

    Franzén, Markus; Schweiger, Oliver; Betzholtz, Per-Eric

    2012-01-01

    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope = 0.82), narrow dietary niche (slope= 0.59), low abundance (slope= 0.52), and low reproductive potential (slope = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions.

  15. DNA barcoding of shark meats identify species composition and CITES-listed species from the markets in Taiwan.

    Directory of Open Access Journals (Sweden)

    Shang-Yin Vanson Liu

    Full Text Available BACKGROUND: An increasing awareness of the vulnerability of sharks to exploitation by shark finning has contributed to a growing concern about an unsustainable shark fishery. Taiwan's fleet has the 4th largest shark catch in the world, accounting for almost 6% of the global figures. Revealing the diversity of sharks consumed by Taiwanese is important in designing conservation plans. However, fins make up less than 5% of the total body weight of a shark, and their bodies are sold as filets in the market, making it difficult or impossible to identify species using morphological traits. METHODS: In the present study, we adopted a DNA barcoding technique using a 391-bp fragment of the mitochondrial cytochrome oxidase I (COI gene to examine the diversity of shark filets and fins collected from markets and restaurants island-wide in Taiwan. RESULTS: Amongst the 548 tissue samples collected and sequenced, 20 major clusters were apparent by phylogenetic analyses, each of them containing individuals belonging to the same species (most with more than 95% bootstrap values, corresponding to 20 species of sharks. Additionally, Alopias pelagicus, Carcharhinus falciformis, Isurus oxyrinchus, and Prionace glauca consisted of 80% of the samples we collected, indicating that these species might be heavily consumed in Taiwan. Approximately 5% of the tissue samples used in this study were identified as species listed in CITES Appendix II, including two species of Sphyrna, C. longimanus and Carcharodon carcharias. CONCLUSION: DNA barcoding provides an alternative method for understanding shark species composition when species-specific data is unavailable. Considering the global population decline, stock assessments of Appendix II species and highly consumed species are needed to accomplish the ultimate goal of shark conservation.

  16. Nutrient cycling in salt marshes: An ecosystem service to reduce eutrophication

    DEFF Research Database (Denmark)

    Lillebø, A. I.; Sousa, A. I.; Flindt, M. R.

    2013-01-01

    and sequestration in salt marshes. This chapter will thus emphasise that salt marsh halophytes have a crucial role on nutrient cycling and sequestration, providing ecological services that contribute to maintain the ecosystem health. © 2012 Nova Science Publishers, Inc. All rights reserved.......Salt marshes are classified as sensitive habitat under the Habitats Directive (92/43/EEC), which aims to promote the maintenance of biodiversity. Worldwide, the reduction of salt marsh areas, as a result of anthropogenic disturbance is of major concern, and several studies on the ecology...

  17. When Are Native Species Inappropriate for Conservation Plantings

    Science.gov (United States)

    Conservation agencies and organizations are generally reluctant to encourage the use of invasive plant species in conservation programs. Harsh lessons learned in the past have resulted in tougher screening protocols for non-indigenous species introductions and removal of many no...

  18. Species Diversity of Shallow Water Zoanthids (Cnidaria: Anthozoa: Hexacorallia in Florida

    Directory of Open Access Journals (Sweden)

    James Davis Reimer

    2012-01-01

    Full Text Available Shallow water zooxanthellate zoanthids are a common component of the coral reef ecosystems of the Caribbean. Despite this, their species diversity remains poorly understood. In this study, collected Palythoa, Zoanthus, Isaurus, and Terrazoanthus specimens from the waters of Florida were phylogenetically examined to obtain a better understanding of zoanthid species diversity in the Caribbean. Surprisingly, the results from analyses utilizing three DNA markers (mitochondrial 16S ribosomal DNA, cytochrome oxidase subunit I, and the internal transcribed spacer of ribosomal DNA showed the presence of at least eleven species, of which up to four appear undescribed. Additionally, the presence of the genus Terrazoanthus in the Caribbean was confirmed for the first time. Attempts to match phylogenetic species or clades with original literature were hampered by vague and short original descriptions, and it is clear that for Atlantic Palythoa and Zoanthus species an in-depth and multidisciplinary investigation is needed to reconcile recent phylogenetic results such as in this study with traditional taxonomy. Furthermore, most shallow water zoanthid species from Florida were observed to have close, sister-species relationships with previously investigated species in the Pacific Ocean. These results indicate that many brachycnemic zoanthid species likely had a Caribbean-Pacific distribution until the formation of the Isthmus of Panama. However, due to inadvertent redescriptions, overall species diversity in these two common genera is likely much lower than literature indicates.

  19. Recent advances in probabilistic species pool delineations

    Directory of Open Access Journals (Sweden)

    Dirk Nikolaus Karger

    2016-07-01

    Full Text Available A species pool is the set of species that could potentially colonize and establish within a community. It has been a commonly used concept in biogeography since the early days of MacArthur and Wilson’s work on Island Biogeography. Despite their simple and appealing definition, an operational application of species pools is bundled with a multitude of problems, which have often resulted in arbitrary decisions and workarounds when defining species pools. Two recently published papers address the operational problems of species pool delineations, and show ways of delineating them in a probabilistic fashion. In both papers, species pools were delineated using a process-based, mechanistical approach, which opens the door for a multitude of new applications in biogeography. Such applications include detecting the hidden signature of biotic interactions, disentangling the geographical structure of community assembly processes, and incorporating a temporal extent into species pools. Although similar in their conclusions, both ‘probabilistic approaches’ differ in their implementation and definitions. Here I give a brief overview of the differences and similarities of both approaches, and identify the challenges and advantages in their application.

  20. Pushing the pace of tree species migration.

    Directory of Open Access Journals (Sweden)

    Eli D Lazarus

    Full Text Available Plants and animals have responded to past climate changes by migrating with habitable environments, sometimes shifting the boundaries of their geographic ranges by tens of kilometers per year or more. Species migrating in response to present climate conditions, however, must contend with landscapes fragmented by anthropogenic disturbance. We consider this problem in the context of wind-dispersed tree species. Mechanisms of long-distance seed dispersal make these species capable of rapid migration rates. Models of species-front migration suggest that even tree species with the capacity for long-distance dispersal will be unable to keep pace with future spatial changes in temperature gradients, exclusive of habitat fragmentation effects. Here we present a numerical model that captures the salient dynamics of migration by long-distance dispersal for a generic tree species. We then use the model to explore the possible effects of assisted colonization within a fragmented landscape under a simulated tree-planting scheme. Our results suggest that an assisted-colonization program could accelerate species-front migration rates enough to match the speed of climate change, but such a program would involve an environmental-sustainability intervention at a massive scale.

  1. Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna

    Directory of Open Access Journals (Sweden)

    Dang Zhen-hua

    2013-01-01

    represent a genetic resource for the discovery of genes related to salt tolerance in this species, and may be a useful source of reference sequences for closely related taxa. These results can also further our understanding of salt tolerance in other halophytes surviving under sodic stress.

  2. Real-time mapping of salt glands on the leaf surface of Cynodon dactylon L. using scanning electrochemical microscopy.

    Science.gov (United States)

    Parthasarathy, Meera; Pemaiah, Brindha; Natesan, Ravichandran; Padmavathy, Saralla R; Pachiappan, Jayaraman

    2015-02-01

    Salt glands are specialized organelles present in the leaf tissues of halophytes, which impart salt-tolerance capability to the plant species. These glands are usually identified only by their morphology using conventional staining procedures coupled with optical microscopy. In this work, we have employed scanning electrochemical microscopy to identify the salt glands not only by their morphology but also by their salt excretion behavior. Bermuda grass (Cynodon dactylon L.) species was chosen for the study as they are known to be salt-tolerant and contain salt glands on leaf surfaces. Scanning electrochemical microscopy performed in sodium chloride medium in the presence and absence of potassium ferrocyanide as redox mediator, reveals the identity of salt glands. More insight into the ion expulsion behavior of these glands was obtained by mapping lateral and vertical variations in ion concentrations using surface impedance measurements which indicated five times higher resistance over the salt glands compared to the surrounding tissues and bulk solution. The protocol could be used to understand the developmental processes in plants grown in different soil/water conditions in order to improve salt tolerance of food crops by genetic engineering and hence improve their agricultural productivity.

  3. Species Boundaries and Interrelationships of Solanum Sect. Petota (Wild and Cultivated Potatoes) are Drastically Altered as a Result of PBI-Funded Research

    Science.gov (United States)

    In 1990, the latest comprehensive taxonomic monograph of Solanum section Petota Dumort recognized 232 species partitioned into 21 series. PBI-sponsored research has drastically altered knowledge of their species boundaries and interrelationships. The series contains diploids (2n = 2x = 24), tetraplo...

  4. Phylogenetic Molecular Species Delimitations Unravel Potential New Species in the Pest Genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae)

    Science.gov (United States)

    Dumas, Pascaline; Barbut, Jérôme; Le Ru, Bruno; Silvain, Jean-François; Clamens, Anne-Laure; d’Alençon, Emmanuelle; Kergoat, Gael J.

    2015-01-01

    Nowadays molecular species delimitation methods promote the identification of species boundaries within complex taxonomic groups by adopting innovative species concepts and theories (e.g. branching patterns, coalescence). As some of them can efficiently deal with large single-locus datasets, they could speed up the process of species discovery compared to more time consuming molecular methods, and benefit from the existence of large public datasets; these methods can also particularly favour scientific research and actions dealing with threatened or economically important taxa. In this study we aim to investigate and clarify the status of economically important moths species belonging to the genus Spodoptera (Lepidoptera, Noctuidae), a complex group in which previous phylogenetic analyses and integrative approaches already suggested the possible occurrence of cryptic species and taxonomic ambiguities. In this work, the effectiveness of innovative (and faster) species delimitation approaches to infer putative species boundaries has been successfully tested in Spodoptera, by processing the most comprehensive dataset (in terms of number of species and specimens) ever achieved; results are congruent and reliable, irrespective of the set of parameters and phylogenetic models applied. Our analyses confirm the existence of three potential new species clusters (for S. exigua (Hübner, 1808), S. frugiperda (J.E. Smith, 1797) and S. mauritia (Boisduval, 1833)) and support the synonymy of S. marima (Schaus, 1904) with S. ornithogalli (Guenée, 1852). They also highlight the ambiguity of the status of S. cosmiodes (Walker, 1858) and S. descoinsi Lalanne-Cassou & Silvain, 1994. This case study highlights the interest of molecular species delimitation methods as valuable tools for species discovery and to emphasize taxonomic ambiguities. PMID:25853412

  5. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae.

    Directory of Open Access Journals (Sweden)

    Pascaline Dumas

    Full Text Available Nowadays molecular species delimitation methods promote the identification of species boundaries within complex taxonomic groups by adopting innovative species concepts and theories (e.g. branching patterns, coalescence. As some of them can efficiently deal with large single-locus datasets, they could speed up the process of species discovery compared to more time consuming molecular methods, and benefit from the existence of large public datasets; these methods can also particularly favour scientific research and actions dealing with threatened or economically important taxa. In this study we aim to investigate and clarify the status of economically important moths species belonging to the genus Spodoptera (Lepidoptera, Noctuidae, a complex group in which previous phylogenetic analyses and integrative approaches already suggested the possible occurrence of cryptic species and taxonomic ambiguities. In this work, the effectiveness of innovative (and faster species delimitation approaches to infer putative species boundaries has been successfully tested in Spodoptera, by processing the most comprehensive dataset (in terms of number of species and specimens ever achieved; results are congruent and reliable, irrespective of the set of parameters and phylogenetic models applied. Our analyses confirm the existence of three potential new species clusters (for S. exigua (Hübner, 1808, S. frugiperda (J.E. Smith, 1797 and S. mauritia (Boisduval, 1833 and support the synonymy of S. marima (Schaus, 1904 with S. ornithogalli (Guenée, 1852. They also highlight the ambiguity of the status of S. cosmiodes (Walker, 1858 and S. descoinsi Lalanne-Cassou & Silvain, 1994. This case study highlights the interest of molecular species delimitation methods as valuable tools for species discovery and to emphasize taxonomic ambiguities.

  6. Synopsis of the Oxyethira flavicornis species group with new Japanese Oxyethira species (Trichoptera, Hydroptilidae

    Directory of Open Access Journals (Sweden)

    Oláh, J.

    2013-06-01

    Full Text Available A brief synopsis of the Oxyethira flavicornis species group is produced by the examination of type materials. Diagrammatic drawings with similar style were prepared for all the known and for the new species. Short description of genus Oxyethira, subgenus Oxyethira, species group of Oxyethira flavicornis are presented together with the description of five species clusters: O. datra new species cluster, O. ecornuta new species cluster, O. flavicornis new species cluster, O. hiroshima new species cluster, O. tiunovae new species cluster. Five new species are described from the O. flavicornis species group: O chitosea sp. n., O. hena sp. n., O. hiroshima sp. n., O. kakida sp. n., O. mekunna sp. n. One new species is described from the Oxyethira grisea species group: Oxyethira ozea sp. n. and two new species from the Oxyethira ramosa species group: Oxyethira miea sp. n., Oxyethira okinawa sp. n.

  7. Why abundant tropical tree species are phylogenetically old.

    Science.gov (United States)

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community.

  8. Biodiversity hotspots house most undiscovered plant species.

    Science.gov (United States)

    Joppa, Lucas N; Roberts, David L; Myers, Norman; Pimm, Stuart L

    2011-08-09

    For most organisms, the number of described species considerably underestimates how many exist. This is itself a problem and causes secondary complications given present high rates of species extinction. Known numbers of flowering plants form the basis of biodiversity "hotspots"--places where high levels of endemism and habitat loss coincide to produce high extinction rates. How different would conservation priorities be if the catalog were complete? Approximately 15% more species of flowering plant are likely still undiscovered. They are almost certainly rare, and depending on where they live, suffer high risks of extinction from habitat loss and global climate disruption. By using a model that incorporates taxonomic effort over time, regions predicted to contain large numbers of undiscovered species are already conservation priorities. Our results leave global conservation priorities more or less intact, but suggest considerably higher levels of species imperilment than previously acknowledged.

  9. Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands

    Science.gov (United States)

    Keeley, Jon E.

    2003-01-01

    Based on both theoretical and empirical studies there is evidence that different species abundance distributions underlie different species-area relationships. Here I show that Australian and Californian shrubland communities (at the scale from 1 to 1000 m2) exhibit different species-area relationships and different species abundance patterns. The species-area relationship in Australian heathlands best fits an exponential model and species abundance (based on both density and cover) follows a narrow log normal distribution. In contrast, the species-area relationship in Californian shrublands is best fit with the power model and, although species abundance appears to fit a log normal distribution, the distribution is much broader than in Australian heathlands. I hypothesize that the primary driver of these differences is the abundance of small-stature annual species in California and the lack of annuals in Australian heathlands. Species-area is best fit by an exponential model in Australian heathlands because the bulk of the species are common and thus the species-area curves initially rise rapidly between 1 and 100 m2. Annuals in Californian shrublands generate very broad species abundance distributions with many uncommon or rare species. The power function is a better model in these communities because richness increases slowly from 1 to 100 m2 but more rapidly between 100 and 1000 m2due to the abundance of rare or uncommon species that are more likely to be encountered at coarser spatial scales. The implications of this study are that both the exponential and power function models are legitimate representations of species-area relationships in different plant communities. Also, structural differences in community organization, arising from different species abundance distributions, may lead to different species-area curves, and this may be tied to patterns of life form distribution.

  10. SPECIES DIVERSITY AND COMMUNITY STRUCTURE OF SUCKING LICE IN YUNNAN, CHINA

    Institute of Scientific and Technical Information of China (English)

    Xian-guoGuo; Ti-junQian; Li-junGuo; JingWang; Wen-geDong; LiZhang; Zhi-minMa; andWeiLi

    2004-01-01

    On the basis of investigating 9 counties (towns) in Yunnan Province of China, the species diversity and community structure of sucking lice on the body surface of small mammal hosts are studied in the paper. Species richness (S) is used to stand for the species diversity. The calculation of community diversity index and evenness are based on Shannon-Wiener's method. 2745 small mammals captured from the investigated sites belong to 10 families, 25 genera and 41 species in 5 orders (Rodentia, Insectivora, Scandentia, Logomorpha and Carnivora) while 18165 individuals of sucking lice collected from the body surface of the small mammal hosts are identified into 4 families, 6 genera and 22 species. The species of sucking lice are much less than the species of their hosts. Most species of small mammals have their fixed sucking lice on their body surface. One species of small mammals usually have few species of sucking lice (1 to 4 species). The close species of the hosts in the taxonomy are found to have the same or similar dominant species of sucking lice on their body surface. The results reveal that the species diversity of sucking lice on small mammals is very low with a very simple community structure. The results also imply there may be a close co-evolution relationship between the lice and the hosts.

  11. Competition, predation and species responses to environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lin; Kulczychi, A. [Rutgers Univ., Cook College, Dept. of Ecology, Evolution and Natural Resources, New Brunswick, NJ (United States)

    2004-08-01

    Despite much effort over the past decade on the ecological consequences of global warming, ecologists still have little understanding of the importance of interspecific interactions in species responses to environmental change. Models predict that predation should mitigate species responses to environmental change, and that interspecific competition should aggravate species responses to environmental change. To test this prediction, we studied how predation and competition affected the responses of two ciliates, Colpidiumstriatum and Parameciumtetraurelia, to temperature change in laboratory microcosms. We found that neither predation nor competition altered the responses of Colpidiumstratum to temperature change, and that competition but not predation altered the responses of Paramecium tetraurelia to temperature change. Asymmetric interactions and temperature-dependent interactions may have contributed to the disparity between model predictions and experimental results. Our results suggest that models ignoring inherent complexities in ecological communities may be inadequate in forecasting species responses to environmental change. (au)

  12. PREDICTING FIELD PERFORMANCE OF HERBACEOUS SPECIES FOR PHYTOREMEDIATION OF PERCHLORATE

    Science.gov (United States)

    Results of these short-term experiments coupled with ecological knowledge of the nine herbaceous plant species tested suggest that several species may by successful in on-site remediation of perchlorate. The two wetland species which appear to be most suitable for field experimen...

  13. Use of species-specific PCR for the identification of 10 sea cucumber species

    Science.gov (United States)

    Wen, Jing; Zeng, Ling

    2014-11-01

    We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species. Ten reverse species-specific primers designed from the 16S rRNA gene, in combination with one forward universal primer, generated PCR fragments of ca. 270 bp length for each species. The specificity of the PCR assay was tested with DNA of samples of 21 sea cucumber species. Amplification was observed in specific species only. The species-specific PCR method we developed was successfully applied to authenticate species of commercial products of dehydrated sea cucumber, and was proven to be a useful, rapid, and low-cost technique to identify the origin of the sea cucumber product.

  14. Facile N...N coupling of manganese(V) imido species.

    Science.gov (United States)

    Yiu, Shek-Man; Lam, William W Y; Ho, Chi-Ming; Lau, Tai-Chu

    2007-01-31

    (Salen)manganese(V) nitrido species are activated by electrophiles such as trifluoroacetic anhydride (TFAA) or trifluoroacetic acid (TFA) to produce N2. Mechanistic studies suggest that the manganese(V) nitrido species first react with TFAA or TFA to produce an imido species, which then undergoes N...N coupling. It is proposed that the resulting manganese(III) mu-diazene species decomposes via internal redox to give N2 and manganese(II). The manganese(II) species is then rapidly oxidized by manganese(V) imide to give manganese(III) and CF3CONH2 (for TFAA) or NH3 (for TFA).

  15. Toxoplasmosis in prey species and consequences for prevalence in feral cats: not all prey species are equal.

    Science.gov (United States)

    Afonso, E; Thulliez, P; Pontier, D; Gilot-Fromont, E

    2007-12-01

    Toxoplasma gondii is largely transmitted to definitive felid hosts through predation. Not all prey species represent identical risks of infection for cats because of differences in prey susceptibility, exposure and/or lifespan. Previously published studies have shown that prevalence in rodent and lagomorph species is positively correlated with body mass. We tested the hypothesis that different prey species have different infection risks by comparing infection dynamics of feral cats at 4 sites in the sub-Antarctic Kerguelen archipelago which differed in prey availability. Cats were trapped from 1994 to 2004 and anti-T. gondii IgG antibodies were detected using the modified agglutination test (> or =1:40). Overall seroprevalence was 51.09%. Antibody prevalence differed between sites, depending on diet and also on sex, after taking into account the effect of age. Males were more often infected than females and the difference between the sexes tended to be more pronounced in the site where more prey species were available. A difference in predation efficiency between male and female cats may explain this result. Overall, our results suggest that the composition of prey items in cat diet influences the risk of T. gondii infection. Prey compositon should therefore be considered important in any understanding of infection dynamics of T. gondii.

  16. Seed dimorphism nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects.

    NARCIS (Netherlands)

    Wang, L.; Baskin, J.M.; Baskin, C.C.; Cornelissen, J.H.C.; Dong, M.; Huang, Z.Y.

    2012-01-01

    Background: Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural

  17. Species delimitation in lemurs: multiple genetic loci reveal low levels of species diversity in the genus Cheirogaleus

    Directory of Open Access Journals (Sweden)

    Rasoloarison Rodin M

    2009-02-01

    Full Text Available Abstract Background Species are viewed as the fundamental unit in most subdisciplines of biology. To conservationists this unit represents the currency for global biodiversity assessments. Even though Madagascar belongs to one of the top eight biodiversity hotspots of the world, the taxonomy of its charismatic lemuriform primates is not stable. Within the last 25 years, the number of described lemur species has more than doubled, with many newly described species identified among the nocturnal and small-bodied cheirogaleids. Here, we characterize the diversity of the dwarf lemurs (genus Cheirogaleus and assess the status of the seven described species, based on phylogenetic and population genetic analysis of mtDNA (cytb + cox2 and three nuclear markers (adora3, fiba and vWF. Results This study identified three distinct evolutionary lineages within the genus Cheirogaleus. Population genetic cluster analyses revealed a further layer of population divergence with six distinct genotypic clusters. Conclusion Based on the general metapopulation lineage concept and multiple concordant data sets, we identify three exclusive groups of dwarf lemur populations that correspond to three of the seven named species: C. major, C. medius and C. crossleyi. These three species were found to be genealogically exclusive in both mtDNA and nDNA loci and are morphologically distinguishable. The molecular and morphometric data indicate that C. adipicaudatus and C. ravus are synonymous with C. medius and C. major, respectively. Cheirogaleus sibreei falls into the C. medius mtDNA clade, but in morphological analyses the membership is not clearly resolved. We do not have sufficient data to assess the status of C. minusculus. Although additional patterns of population differentiation are evident, there are no clear subdivisions that would warrant additional specific status. We propose that ecological and more geographic data should be collected to confirm these results.

  18. Placing invasive species management in a spatiotemporal context.

    Science.gov (United States)

    Baker, Christopher M; Bode, Michael

    2016-04-01

    Invasive species are a worldwide issue, both ecologically and economically. A large body of work focuses on various aspects of invasive species control, including how to allocate control efforts to eradicate an invasive population as cost effectively as possible: There are a diverse range of invasive species management problems, and past mathematical analyses generally focus on isolated examples, making it hard to identify and understand parallels between the different contexts. In this study, we use a single spatiotemporal model to tackle the problem of allocating control effort for invasive species when suppressing an island invasive species, and for long-term spatial suppression projects. Using feral cat suppression as an illustrative example, we identify the optimal resource allocation for island and mainland suppression projects. Our results demonstrate how using a single model to solve different problems reveals similar characteristics of the solutions in different scenarios. As well as illustrating the insights offered by linking problems through a spatiotemporal model, we also derive novel and practically applicable results for our case studies. For temporal suppression projects on islands, we find that lengthy projects are more cost effective and that rapid control projects are only economically cost effective when population growth rates are high or diminishing returns on control effort are low. When suppressing invasive species around conservation assets (e.g., national parks or exclusion fences), we find that the size of buffer zones should depend on the ratio of the species growth and spread rate.

  19. Diversity of cuticular wax among Salix species and Populus species hybrids.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Bevilacqua, Eddie; Smart, Lawrence B

    2002-08-01

    The leaf cuticular waxes of three Salix species and two Populus species hybrids, selected for their ability to produce high amounts of biomass, were characterized. Samples were extracted in CH(2)Cl(2) three times over the growing season. Low kV SEM was utilized to observe differences in the ultrastructure of leaf surfaces from each clone. Homologous series of wax components were classified into organic groups, and the variation in wax components due to clone, sample time, and their interaction was identified. All Salix species and Populus species hybrids showed differences in total wax load at each sampling period, whereas the pattern of wax deposition over time differed only between the Salix species. A strong positive relationship was identified between the entire homologous series of alcohols and total wax load in all clones. Similarly strong relationships were observed between fatty acids and total wax load as well as fatty acids and alcohols in two Salix species and one Populus species hybrid. One Salix species, S. dasyclados, also displayed a strong positive relationship between alcohols and alkanes. These data indicate that species grown under the same environmental conditions produce measurably different cuticular waxes and that regulation of wax production appears to be different in each species. The important roles cuticular waxes play in drought tolerance, pest, and pathogen resistance, as well as the ease of wax extraction and analysis, strongly suggest that the characteristics of the cuticular wax may prove to be useful selectable traits in a breeding program.

  20. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    Science.gov (United States)

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  1. Woody Species Diversity in Traditional Agroforestry Practices of Dellomenna District, Southeastern Ethiopia: Implication for Maintaining Native Woody Species

    Directory of Open Access Journals (Sweden)

    Abiot Molla

    2015-01-01

    Full Text Available The major impact of humans on forest ecosystems including loss of forest area, habitat fragmentation, and soil degradation leads to losses of biodiversity. These problems can be addressed by integration of agriculture with forests and maintaining the existing forests. This study was initiated to assess woody species diversity of traditional agroforestry practices. Three study sites (Burkitu, Chire, and Erba were selected based on the presence of agroforestry practice. Forty-eight (48 sample quadrants having an area of 20 m × 20 m, 16 sample quadrants in each study site, were systematically laid using four transect lines at different distance. The diversity of woody species was analyzed by using different diversity indices. A total of 55 woody species belonging to 31 families were identified and documented. There were significantly different (P<0.05 among the study Kebeles (peasant associations. Mangifera indica, Entada abyssinica, and Croton macrostachyus were found to have the highest Important Value Index. The results confirmed that traditional agroforestry plays a major role in the conservation of native woody species. However, threats to woody species were observed. Therefore, there is a need to undertake conservation practices before the loss of species.

  2. A Revision of Lasionycta Aurivillius (Lepidoptera: Noctuidae for North America and notes on Eurasian species, with descriptions of 17 new species, 6 new subspecies, a new genus, and two new species of Tricholita Grote

    Directory of Open Access Journals (Sweden)

    Lars Crabo

    2009-12-01

    Full Text Available The North American species of Lasionycta Aurivillius are revised to include 43 species and 13 subspecies using traditional methods and mitochondrial cytochrome oxidase subunit 1 (CO1 DNA sequence (barcode analysis. Seven species-groups are recognized, and one group is further divided into seven sub-groups. Seventeen species and six subspecies of Lasionycta are described: L. anthracina Crabo & Lafontaine, L. benjamini medaminosa Crabo & Lafontaine, L. brunnea Crabo & Lafontaine, L. caesia Crabo & Lafontaine, L. carolynae Crabo, L. coracina Crabo & Lafontaine, L. fergusoni Crabo & Lafontaine, L. frigida Crabo & Lafontaine, L. gelida Crabo & Lafontaine, L. haida Crabo & Lafontaine, L. illima Crabo & Lafontaine, L. mono Crabo & Lafontaine, L. uniformis fusca Crabo & Lafontaine, L. uniformis handfieldi Crabo & Lafontaine, L. uniformis multicolor Crabo & Lafontaine, L. uniformis shasta Crabo & Lafontaine, L. perplexella Crabo & Lafontaine, L. pulverea Crabo & Lafontaine, L. sasquatch Crabo & Lafontaine, L. sierra Crabo & Lafontaine, L. silacea Crabo & Lafontaine, L. subalpina Crabo & Lafontaine, and L. subfuscula livida Crabo & Lafontaine. Lasionycta coloradensis (Richards, L. dolosaL. flanda (Barnes & Benjamin, (Smith, L. poca (Barnes & Benjamin, and L. subfumosa (Gibson are elevated to species. The following new synonyms are recognized: Scotogramma albinuda Smith (= Lasiestra phoca Möschler, Lasiestra klotsi Richards (= Scotogramma discolor Smith, Scotogramma infuscata Smith (= Mamestra promulsa Morrison, Lasionycta alberta Barnes & Benjamin and Anytus marloffi Smith (= Scotogramma perplexa Smith, Scotogramma sedilis Smith (= Scotogramma subfuscula Grote, Mamestra rainieri Smith (= Mamestra mutilata Smith, Anarta zemblica Hampson (= Anarta staudingeri Aurivillius, and Anarta etacta Smith (= Mamestra arietis Grote. The Eurasian species are reviewed resulting in the following changes: Lasionhada proxima (Hübner, comb. rev., Eriopygodes imbecilla

  3. Short Communication: Autelogical studies on grass species in ...

    African Journals Online (AJOL)

    A literature survey of autecological studies on southern African grass species was undertaken. Results revealed that there is a comparative lack of autecological versus community studies. Where autecological studies have been conducted, most of the attention was focused on 'pasture' or 'desirable' species with ...

  4. Species coexistence: macroevolutionary relationships and the contingency of historical interactions.

    Science.gov (United States)

    Germain, Rachel M; Weir, Jason T; Gilbert, Benjamin

    2016-03-30

    Evolutionary biologists since Darwin have hypothesized that closely related species compete more intensely and are therefore less likely to coexist. However, recent theory posits that species diverge in two ways: either through the evolution of 'stabilizing differences' that promote coexistence by causing individuals to compete more strongly with conspecifics than individuals of other species, or through the evolution of 'fitness differences' that cause species to differ in competitive ability and lead to exclusion of the weaker competitor. We tested macroevolutionary patterns of divergence by competing pairs of annual plant species that differ in their phylogenetic relationships, and in whether they have historically occurred in the same region or different regions (sympatric versus allopatric occurrence). For sympatrically occurring species pairs, stabilizing differences rapidly increased with phylogenetic distance. However, fitness differences also increased with phylogenetic distance, resulting in coexistence outcomes that were unpredictable based on phylogenetic relationships. For allopatric species, stabilizing differences showed no trend with phylogenetic distance, whereas fitness differences increased, causing coexistence to become less likely among distant relatives. Our results illustrate the role of species' historical interactions in shaping how phylogenetic relationships structure competitive dynamics, and offer an explanation for the evolution of invasion potential of non-native species. © 2016 The Author(s).

  5. Priority setting for invasive species management: risk assessment of Ponto-Caspian invasive species into Great Britain.

    Science.gov (United States)

    Gallardo, Belinda; Aldridge, David C

    2013-03-01

    Invasive species drive important ecological and economic losses across wide geographies, with some regions supporting especially large numbers of nonnative species and consequently suffering relatively high impacts. For this reason, integrated risk assessments able to screen a suite of multiple invaders over large geographic areas are needed for prioritizing the allocation of limited resources. A total of 16 Ponto-Caspian aquatic species (10 gammarids, one isopod, two mysids, and three fishes) have been short-listed as recent or potential future invaders of British waters, whose introduction and spread is of high concern. In this study, we use multiple modeling techniques to assess their risk of establishment and spread into Great Britain. Climate suitability maps for these 16 species differed depending on the eastern and western distribution of species in continental Europe, which was related to their respective migration corridor: southern (Danube-Rhine rivers), and northern (Don and Volga rivers and Baltic lakes). Species whose suitability was high across large parts of Great Britain included four gammarids (Cheliorophium robustum, Dikerogammarus bispinosus, D. villosus, and Echinogammarus trichiatus) and a mysid (Hemimysis anomala). A climatic "heat map" combining the results of all 16 species together pointed to the southeast of England as the area most vulnerable to multiple invasions, particularly the Thames, Anglian, Severn, and Humber river basin districts. Regression models further suggested that alkalinity concentration > 120 mg/L in southeast England may favor the establishment of Ponto-Caspian invaders. The production of integrated risk maps for future invaders provides a means for the scientifically informed prioritization of resources toward particular species and geographic regions. Such tools have great utility in helping environmental managers focus efforts on the most effective prevention, management, and monitoring programs.

  6. Redescriptions and reestablishments of some species belonging to the genus Prionospio (Polychaeta, Spionidae) and descriptions of three new species

    Science.gov (United States)

    Delgado-Blas, V. H.

    2014-03-01

    Available type material of Prionospio heterobranchia Moore, 1907, P. ( Prionospio) texana Hartman, 1951, P. spongicola Wesenberg-Lund, 1958 and P. ( P.) newportensis Reish, 1959, as well as newly collected material from the Southern Gulf of Mexico and Chetumal Bay in the Caribbean Sea, was examined. Several important differences were found between P. heterobranchia, P. ( Prionospio) texana, P. spongicola and P. ( P.) newportensis, and as a result, these three species are removed from synonymy with P. heterobranchia Moore, 1907, and redescribed and reinstated as valid species. In addition, three new species were identified and described: P. caribensis sp. nov., P. rosariae sp. nov. and P. jamaicensis sp. nov. A key to all species of Prionospio with five pairs of branchiae is provided.

  7. Aviation Fueling: A Cleaner, Greener Approach

    Science.gov (United States)

    Hendricks, Robert C.; Bushnell, Dennis M.; Shouse, Dale T.

    2010-01-01

    Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels sourced from halophytes, algae, cyanobacteria, and weeds using wastelands, waste water, and seawater have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solves the aviation CO2 emissions issue and do not compete with food or freshwater needs. They are not detrimental to the social or environmental fabric and use the existing fuels infrastructure. Cost and sustainable supply remains the major impediments to alternate fuels. Halophytes are the near-term solution to biomass/biofuels capacity at reasonable costs; they simply involve more farming, at usual farming costs. Biofuels represent a win-win approach, proffering as they do at least the ones we are studying massive capacity, climate neutral-to-some sequestration, and ultimately, reasonable costs.

  8. Aviation Fueling: A Cleaner, Greener Approach

    Directory of Open Access Journals (Sweden)

    Robert C. Hendricks

    2011-01-01

    Full Text Available Projected growth of aviation depends on fueling where specific needs must be met. Safety is paramount, and along with political, social, environmental, and legacy transport systems requirements, alternate aviation fueling becomes an opportunity of enormous proportions. Biofuels—sourced from halophytes, algae, cyanobacteria, and “weeds” using wastelands, waste water, and seawater—have the capacity to be drop-in fuel replacements for petroleum fuels. Biojet fuels from such sources solve the aviation CO2 emissions issue and do not compete with food or freshwater needs. They are not detrimental to the social or environmental fabric and use the existing fuels infrastructure. Cost and sustainable supply remain the major impediments to alternate fuels. Halophytes are the near-term solution to biomass/biofuels capacity at reasonable costs; they simply involve more farming, at usual farming costs. Biofuels represent a win-win approach, proffering as they do—at least the ones we are studying—massive capacity, climate neutral-to-some sequestration, and ultimately, reasonable costs.

  9. Scale dependence in species turnover reflects variance in species occupancy.

    Science.gov (United States)

    McGlinn, Daniel J; Hurlbert, Allen H

    2012-02-01

    Patterns of species turnover may reflect the processes driving community dynamics across scales. While the majority of studies on species turnover have examined pairwise comparison metrics (e.g., the average Jaccard dissimilarity), it has been proposed that the species-area relationship (SAR) also offers insight into patterns of species turnover because these two patterns may be analytically linked. However, these previous links only apply in a special case where turnover is scale invariant, and we demonstrate across three different plant communities that over 90% of the pairwise turnover values are larger than expected based on scale-invariant predictions from the SAR. Furthermore, the degree of scale dependence in turnover was negatively related to the degree of variance in the occupancy frequency distribution (OFD). These findings suggest that species turnover diverges from scale invariance, and as such pairwise turnover and the slope of the SAR are not redundant. Furthermore, models developed to explain the OFD should be linked with those developed to explain species turnover to achieve a more unified understanding of community structure.

  10. Cryptic species as a window into the paradigm shift of the species concept.

    Science.gov (United States)

    Fišer, Cene; Robinson, Christopher T; Malard, Florian

    2018-02-01

    The species concept is the cornerstone of biodiversity science, and any paradigm shift in the delimitation of species affects many research fields. Many biologists now are embracing a new "species" paradigm as separately evolving populations using different delimitation criteria. Individual criteria can emerge during different periods of speciation; some may never evolve. As such, a paradigm shift in the species concept relates to this inherent heterogeneity in the speciation process and species category-which is fundamentally overlooked in biodiversity research. Cryptic species fall within this paradigm shift: they are continuously being reported from diverse animal phyla but are poorly considered in current tests of ecological and evolutionary theory. The aim of this review is to integrate cryptic species in biodiversity science. In the first section, we address that the absence of morphological diversification is an evolutionary phenomenon, a "process" counterpart to the long-studied mechanisms of morphological diversification. In the next section regarding taxonomy, we show that molecular delimitation of cryptic species is heavily biased towards distance-based methods. We also stress the importance of formally naming of cryptic species for better integration into research fields that use species as units of analysis. Finally, we show that incorporating cryptic species leads to novel insights regarding biodiversity patterns and processes, including large-scale biodiversity assessments, geographic variation in species distribution and species coexistence. It is time for incorporating multicriteria species approaches aiming to understand speciation across space and taxa, thus allowing integration into biodiversity conservation while accommodating for species uncertainty. © 2018 John Wiley & Sons Ltd.

  11. Comparative molecular species delimitation in the charismatic Nawab butterflies (Nymphalidae, Charaxinae, Polyura).

    Science.gov (United States)

    Toussaint, Emmanuel F A; Morinière, Jérôme; Müller, Chris J; Kunte, Krushnamegh; Turlin, Bernard; Hausmann, Axel; Balke, Michael

    2015-10-01

    The charismatic tropical Polyura Nawab butterflies are distributed across twelve biodiversity hotspots in the Indomalayan/Australasian archipelago. In this study, we tested an array of species delimitation methods and compared the results to existing morphology-based taxonomy. We sequenced two mitochondrial and two nuclear gene fragments to reconstruct phylogenetic relationships within Polyura using both Bayesian inference and maximum likelihood. Based on this phylogenetic framework, we used the recently introduced bGMYC, BPP and PTP methods to investigate species boundaries. Based on our results, we describe two new species Polyura paulettae Toussaint sp. n. and Polyura smilesi Toussaint sp. n., propose one synonym, and five populations are raised to species status. Most of the newly recognized species are single-island endemics likely resulting from the recent highly complex geological history of the Indomalayan-Australasian archipelago. Surprisingly, we also find two newly recognized species in the Indomalayan region where additional biotic or abiotic factors have fostered speciation. Species delimitation methods were largely congruent and succeeded to cross-validate most extant morphological species. PTP and BPP seem to yield more consistent and robust estimations of species boundaries with respect to morphological characters while bGMYC delivered contrasting results depending on the different gene trees considered. Our findings demonstrate the efficiency of comparative approaches using molecular species delimitation methods on empirical data. They also pave the way for the investigation of less well-known groups to unveil patterns of species richness and catalogue Earth's concealed, therefore unappreciated diversity. Published by Elsevier Inc.

  12. No change in subordinate butterflyfish diets following removal of behaviourally dominant species

    Science.gov (United States)

    Blowes, Shane A.; Pratchett, Morgan S.; Connolly, Sean R.

    2017-03-01

    Direct interference interactions between species are often mediated by aggression and related to resource use. Interference interactions are frequently asymmetric, whereby one species wins the majority of interactions; however, the effect of this asymmetry on the diet of subordinate species has not received the same attention as the impact of interference on habitat use. Here we experimentally evaluated whether release from asymmetric interference led to increased use of a preferred dietary resource by subordinate species, using coral-feeding butterflyfishes as a model system. Following experimental removal of the behaviourally dominant species, we found no change in diet breadth or foraging on the preferred resource by subordinate species. Our results suggest that release from asymmetric interspecific interference does not necessarily result in changes to subordinate species' diets, at least not over the course of our study. Rather, consistently asymmetric interactions may contribute to behavioural conditioning of subordinate species, meaning that even in the absence of dominants, subordinate individuals maintain established feeding patterns. Additionally, our results suggest that antagonistic interactions between butterflyfishes may have contributed to niche partitioning and conservatism over evolutionary time scales.

  13. Cooperation and the Endangered Species Act

    International Nuclear Information System (INIS)

    Palmer, S.C.

    1991-01-01

    Passage of the Endangered Species Act in 1973 set the stage for some of the nations most polemic environmental battles. One of these is in the Colorado River Basin which is home to four native and rare fish species. Acrimonious confrontation has characterized the consultations under the ESA regarding these fish species. In 1983, the U.S. Fish and Wildlife Service announced that no new water depletions such as for hydropower plants, from the Upper Colorado River Basin would be allowed. This created no small stir among basin states and water developers and a negotiated solution was sought. The result was the Recovery Implementation Program for Endangered Fish Species in the Upper Colorado River Basin. This paper reports that models of political negotiation indicate conceptually, that the Recovery Program with its decisions made by unanimity of consensus, its open process and sharing of information, its shared budget and users fees, is a vehicle of political compromise and cooperation

  14. Metabolomic analysis of three Mollicute species.

    Directory of Open Access Journals (Sweden)

    Anna A Vanyushkina

    Full Text Available We present a systematic study of three bacterial species that belong to the class Mollicutes, the smallest and simplest bacteria, Spiroplasma melliferum, Mycoplasma gallisepticum, and Acholeplasma laidlawii. To understand the difference in the basic principles of metabolism regulation and adaptation to environmental conditions in the three species, we analyzed the metabolome of these bacteria. Metabolic pathways were reconstructed using the proteogenomic annotation data provided by our lab. The results of metabolome, proteome and genome profiling suggest a fundamental difference in the adaptation of the three closely related Mollicute species to stress conditions. As the transaldolase is not annotated in Mollicutes, we propose variants of the pentose phosphate pathway catalyzed by annotated enzymes for three species. For metabolite detection we employed high performance liquid chromatography coupled with mass spectrometry. We used liquid chromatography method - hydrophilic interaction chromatography with silica column - as it effectively separates highly polar cellular metabolites prior to their detection by mass spectrometer.

  15. Effects of biotic interactions and dispersal on the presence-absence of multiple species

    International Nuclear Information System (INIS)

    Mohd, Mohd Hafiz; Murray, Rua; Plank, Michael J.; Godsoe, William

    2017-01-01

    One of the important issues in ecology is to predict which species will be present (or absent) across a geographical region. Dispersal is thought to have an important influence on the range limits of species, and understanding this problem in a multi-species community with priority effects (i.e. initial abundances determine species presence-absence) is a challenging task because dispersal also interacts with biotic and abiotic factors. Here, we propose a simple multi-species model to investigate the joint effects of biotic interactions and dispersal on species presence-absence. Our results show that dispersal can substantially expand species ranges when biotic and abiotic forces are present; consequently, coexistence of multiple species is possible. The model also exhibits ecologically interesting priority effects, mediated by intense biotic interactions. In the absence of dispersal, competitive exclusion of all but one species occurs. We find that dispersal reduces competitive exclusion effects that occur in no-dispersal case and promotes coexistence of multiple species. These results also show that priority effects are still prevalent in multi-species communities in the presence of dispersal process. We also illustrate the existence of threshold values of competitive strength (i.e. transcritical bifurcations), which results in different species presence-absence in multi-species communities with and without dispersal.

  16. SPECIES DIVERSITY AND STABILITY OF BIRD COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Matsyura M.V.

    2011-12-01

    Full Text Available When comparing the suggested stability indicators, we obtained statistically significant correlations for indicators of annual stability of species and total number and standard deviation of the logarithm of the number. Annual Stability Index can be applied with a high degree of reliability as a characteristic of the averaged structure of the community and its pyramid of abundances. The results of correlation analysis confirm our assumptions about the correlation between stability over the years and indices of species diversity and relative uniformity.The final task of the study was to create a mathematical model of stability, where the independent variables are the indices of species diversity. The calculation of these indices allows forecasting birds’ community stability. According to the result of multiple regression for the indicators of diversity and stability of the breeding birds’ community highest correlation coefficients were obtained fro Shannon index and Simpson's dominance Index.Community stability could be determined by its overall species diversity. When considering the stability of community its diversity should be considered as a combination of uniformity of their total number and number of species. The most suitable predictors for the community stability were the nonparametric index of dominance and information-statistical indices, since they considered simultaneously evenness and richness. The community stability is subject of the complexity of its internal communications pattern.

  17. A globally-distributed alien invasive species poses risks to United States imperiled species.

    Science.gov (United States)

    McClure, Meredith L; Burdett, Christopher L; Farnsworth, Matthew L; Sweeney, Steven J; Miller, Ryan S

    2018-03-28

    In the midst of Earth's sixth mass extinction event, non-native species are a driving factor in many imperiled species' declines. One of the most widespread and destructive alien invasive species in the world, wild pigs (Sus scrofa) threaten native species through predation, habitat destruction, competition, and disease transmission. We show that wild pigs co-occur with up to 87.2% of imperiled species in the contiguous U.S. identified as susceptible to their direct impacts, and we project increases in both the number of species at risk and the geographic extent of risks by 2025. Wild pigs may therefore present a severe threat to U.S. imperiled species, with serious implications for management of at-risk species throughout wild pigs' global distribution. We offer guidance for efficient allocation of research effort and conservation resources across species and regions using a simple approach that can be applied to wild pigs and other alien invasive species globally.

  18. Natural hybridization and reproductive isolation between two Primula speciesFA

    Institute of Scientific and Technical Information of China (English)

    Yanping Xie; Xingfu Zhu; Yongpeng Ma; Jianli Zhao; Li Li; Qingjun Li

    2017-01-01

    Natural hybridization frequently occurs in plants and can facilitate gene flow between species,possibly resulting in species refusion.However,various reproductive barriers block the formation of hybrids and maintain species integrity.Here,we conducted a field survey to examine natural hybridization and reproductive isolation (RI) between sympatric populations of Primula secundiflora and P.poissonii using ten nuclear simple sequence repeat (SSR) loci.Although introgressive hybridization occurred,species boundaries between P.secundiflora and P.poissonii were maintained through nearly complete reproductive isolation.These interfertile species provide an excellent model for studying the RI mechanisms and evolutionary forces that maintain species boundaries.

  19. Are temperate canopy spiders tree-species specific?

    Science.gov (United States)

    Mupepele, Anne-Christine; Müller, Tobias; Dittrich, Marcus; Floren, Andreas

    2014-01-01

    Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood.

  20. Discrimination of grassland species and their classification in botanical families by laboratory scale hyperspectral imaging NIR: preliminary results

    Science.gov (United States)

    The objective of this study was to discriminate by on-line hyperspectral imaging, taxonomic plant families comprised of different grassland species. Plants were collected from semi-natural meadows of the National Apuseni Park, Apuseni Mountains, Gârda area (Romania) according to botanical families. ...

  1. Inducible Clindamycin Resistance in Staphylococcus Species

    International Nuclear Information System (INIS)

    Afridi, F. I.; Zeb, M.; Farooqi, B. J.; Murtaza, G.; Hussain, A.

    2014-01-01

    Objective: To determine the frequency of inducible clindamycin resistance in clinical isolates of Staphylococcus species by phenotypic D-test. Study Design: Observational study. Place and Duration of Study: Ziauddin University Hospital, Karachi, from July to December 2011. Methodology: Consecutive clinical isolates of Staphylococcus species were collected and identified by conventional microbiological techniques. Antimicrobial susceptibility testing and inducible clindamycin resistance was carried out by performing D-test using CLSI criteria. Methicillin resistance was detected by using Cefoxitin disk as a surrogate marker. Statistical analysis was performed by SPSS version-17. Results: A total of 667 clinical isolates of Staphylococcus species were obtained during the study period. In these isolates, 177 (26.5%) were Staphylococcus aureus, and 490 (73.5%) were coagulase negative Staphylococci. The total frequency of inducible clindamycin resistance among isolates of Staphylococcus species was 120/667 (18%). Frequency of inducible clindamycin resistance among coagulase negative Staphylococci group and Staphylococcus aureus group were 18.57% and 16.38% respectively. Median age of patients in D-test positive group was 19.5 (1 - 54) years. Conclusion: The frequency of inducible clindamycin resistance among Staphylococcus species may differ in different hospital setup. Clinical microbiology laboratories should implement testing simple and effective D-test on all Staphylococcus species. D-test positive isolates should be reported clindamycin resistant to decrease treatment failure. (author)

  2. CALORIFIC PROPERTIES OF WASTES FROM SOME EXOTIC WOOD SPECIES

    Directory of Open Access Journals (Sweden)

    Aurel LUNGULEASA

    2016-03-01

    Full Text Available This paper aims to present some results about the calorific properties of biomass wastes from exotic species used as fuels. There are presented the main characteristics of biomass energy, respectively the low and high calorific value, burning speed and energy efficiency. Methodology takes into consideration the equipment, wooden species and relationships for calorific determination. The final conclusion resulting from the experiments is that the biomass of exotic species is as good as any other woody biomass, when is used as fuel, because the calorific properties are closely, even slightly higher than of classical fuels.

  3. Two new species of Hepatozoon (Apicomplexa: Hepatozoidae) parasitising species of Philothamnus (Ophidia: Colubridae) from South Africa.

    Science.gov (United States)

    Cook, Courtney Antonia; Netherlands, Edward Charles; As, Johann van; Jacobus Smit, Nico

    2018-04-03

    To date, only a few species of Hepatozoon Miller, 1908 have been described from amphibians and reptiles of South Africa, including two species from anuran hosts, three from saurians, one from chelonians, and two from ophidians. Hepatozoon bitis (Fantham, 1925) and Hepatozoon refringens (Sambon et Seligmann, 1907), parasitising Bitis arientans (Merrem) and Pseudoaspis cana (Linnaeus), respectively, were described in the early 1900s and since then there have been no further species of Hepatozoon described from snakes in South Africa. Blood smears, used in peripheral blood haemogregarine stage morphometrics, and whole blood used in molecular characterisation of haemogregarines were collected from the caudal vein of six snakes of three species, namely Philothamnus hoplogaster (Günther), Philothamnus semivariegatus (Smith) and Philothamnus natalensis natalensis (Smith). For comparison, a comprehensive table summarising available information on species of Hepatozoon from African snakes is presented. Haemogregarines found infecting the snakes from the present study were morphologically and molecularly different from any previously described from Africa and are thus here described as Hepatozoon angeladaviesae sp. n. and Hepatozoon cecilhoarei sp. n. Both haemogregarine species were observed to cause considerable dehaemoglobinisation of the host cell, in case of infection with H. angeladaviesae resulting in a characteristic peripheral undulation of the host cell membrane and karyorrhexis. To the authors' knowledge, these are the first haemogregarines parasitising snakes of the genus Philothamnus Smith described using both morphological and molecular characteristics in Africa.

  4. Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity.

    Science.gov (United States)

    Karimi, G; Jamaluddin, R; Mohtarrudin, N; Ahmad, Z; Khazaai, H; Parvaneh, M

    2017-10-01

    Recent studies have reported beneficial effects of specific probiotics on obesity. However, the difference in the anti-obesity effects of probiotics as single species and dual species is still uncertain. Therefore, we aimed to compare the efficacy of single and dual species of bacteria on markers of obesity in high-fat diet-induced obese rats. A total of 40 male Sprague-Dawley rats were assigned to one of five groups of varying diets as follows: standard diet, high fat diet (HFD), HFD supplemented with Lactobacillus casei strain Shirota, HFD supplemented with Bifidobacterium longum and HFD supplemented with a mixture of these two bacterial species. After 15 weeks of supplementation, the animals were examined for changes in body weight, body fat, total count of bacteria in fecal, blood serum lipid profile, leptin, adiponectin and inflammatory biomarkers. Histological analysis of the liver and adipose tissue was performed and the hepatic mRNA expression levels of genes related to lipid metabolism were measured. It was found that probiotic supplementation of either B. longum or a mixture of B. longum and LcS bacteria significantly reduced weight and triglycerides in the HFD groups. Supplementation of B. longum bacteria showed better results in terms of modulating leptin level, fat mass, adipocyte size and lipoprotein lipase expression, as well as increasing adiponectin and peroxisome proliferator-activated receptors-γ expression compared to dual species of bacteria. No significant differences were observed in the total count of fecal bacteria, glucose and inflammatory biomarker levels between supplemented groups. B. longum supplementation in obesity was more beneficial in metabolic profile changes than the mixture species. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B

  5. Laboratory synthesis of an independently reproducing vertebrate species.

    Science.gov (United States)

    Lutes, Aracely A; Baumann, Diana P; Neaves, William B; Baumann, Peter

    2011-06-14

    Speciation in animals commonly involves an extrinsic barrier to genetic exchange followed by the accumulation of sufficient genetic variation to impede subsequent productive interbreeding. All-female species of whiptail lizards, which originated by interspecific hybridization between sexual progenitors, are an exception to this rule. Here, the arising species instantaneously acquires a novel genotype combining distinctive alleles from two different species, and reproduction by parthenogenesis constitutes an effective intrinsic barrier to genetic exchange. Fertilization of diploid parthenogenetic females by males of sexual species has produced several triploid species, but these instantaneous speciation events have neither been observed in nature nor have they been reconstituted in the laboratory. Here we report the generation of four self-sustaining clonal lineages of a tetraploid species resulting from fertilization of triploid oocytes from a parthenogenetic Aspidoscelis exsanguis with haploid sperm from Aspidoscelis inornata. Molecular and cytological analysis confirmed the genetic identity of the hybrids and revealed that the females retain the capability of parthenogenetic reproduction characteristic of their triploid mothers. The tetraploid females have established self-perpetuating clonal lineages which are now in the third generation. Our results confirm the hypothesis that secondary hybridization events can lead to asexual lineages of increased ploidy when favorable combinations of parental genomes are assembled. We anticipate that these animals will be a critical tool in understanding the mechanisms underlying the origin and subsequent evolution of asexual amniotes.

  6. Allelopathic assessment of selected invasive species of pakistan

    International Nuclear Information System (INIS)

    Akhtar, S.

    2014-01-01

    Invader species are a great threat to local flora. Eight invader species of Pakistan were screened for their allelopathic activity through sandwich method. Toxic (inhibitory) and non-toxic (stimulatory) effects were assessed by recording their effect on germination and growth of lettuce. Radicle and plumule growth of lettuce were recorded at 5, 10 and 50 mg leaves concentrations of each species. Among all species the growth activity was found to be concentration dependent. Except Eutcalyptus glabra all species resulted in inhibitory effects at 5, 10 and 50 mg leaves concentrations. Xanthium strumarium and Cannabis sativa showed strong inhibitory effects on radicle and plumule growth of lettuce. Maximum inhibition was recorded at highest concentration; even growth of lettuce was stopped with 50 mg leaves concentration of C. sativa. (author)

  7. Allelopathic assessment of selected invasive species of pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, S. [International Islamic Univ., Islamabad (Pakistan). Dept. of Bioinformatics and Biotechnology; Bangash, N. [Pir Mehr Ali Shah Arid Agriculture Univ., Peshawar (Pakistan). Dept. of Environmental Sciences; Asghar, R. [Mirpur Univ. of Science and Technology, Azad Jammu and Kashmir (Pakistan)

    2014-10-15

    Invader species are a great threat to local flora. Eight invader species of Pakistan were screened for their allelopathic activity through sandwich method. Toxic (inhibitory) and non-toxic (stimulatory) effects were assessed by recording their effect on germination and growth of lettuce. Radicle and plumule growth of lettuce were recorded at 5, 10 and 50 mg leaves concentrations of each species. Among all species the growth activity was found to be concentration dependent. Except Eutcalyptus glabra all species resulted in inhibitory effects at 5, 10 and 50 mg leaves concentrations. Xanthium strumarium and Cannabis sativa showed strong inhibitory effects on radicle and plumule growth of lettuce. Maximum inhibition was recorded at highest concentration; even growth of lettuce was stopped with 50 mg leaves concentration of C. sativa. (author)

  8. Current understanding of multi-species biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong

    2011-01-01

    every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi......Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually......-species biofilm formation will facilitate the development of methods for combating bacterial biofilms in clinical, environmental, industrial, and agricultural areas. The most recent advances in the understanding of multi-species biofilms are summarized and discussed in the review....

  9. Chilli anthracnose disease caused by Colletotrichum species.

    Science.gov (United States)

    Than, Po Po; Prihastuti, Haryudian; Phoulivong, Sitthisack; Taylor, Paul W J; Hyde, Kevin D

    2008-10-01

    Anthracnose disease is one of the major economic constraints to chilli production worldwide, especially in tropical and subtropical regions. Accurate taxonomic information is necessary for effective disease control management. In the Colletotrichum patho-system, different Colletotrichum species can be associated with anthracnose of the same host. Little information is known concerning the interactions of the species associated with the chilli anthracnose although several Colletotrichum species have been reported as causal agents of chilli anthracnose disease worldwide. The ambiguous taxonomic status of Colletotrichum species has resulted in inaccurate identification which may cause practical problems in plant breeding and disease management. Although the management and control of anthracnose disease are still being extensively researched, commercial cultivars of Capsicum annuum that are resistant to the pathogens that cause chilli anthracnose have not yet been developed. This paper reviews the causal agents of chilli anthracnose, the disease cycle, conventional methods in identification of the pathogen and molecular approaches that have been used for the identification of Colletotrichum species. Pathogenetic variation and population structure of the causal agents of chilli anthracnose along with the current taxonomic status of Colletotrichum species are discussed. Future developments leading to the disease management strategies are suggested.

  10. Reproductive characterization of interspecific hybrids among Capsicum species

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo da Silva Monteiro

    2011-01-01

    Full Text Available The objective of this study was the reproductive characterization of Capsicum accessions as well as of interspecifichybrids, based on pollen viability. Hybrids were obtained between Capsicum species. Pollen viability was high in most accessions,indicating that meiosis is normal, resulting in viable pollen grains. The pollen viability of species C. pubescens was the lowest (27%. The interspecific hybrids had varying degrees of pollen viability, from fertile combinations (C. chinense x C. frutescens and C.annuum x C. baccatum to male sterile combinations. Pollen viability also varied within the hybrid combination according toaccessions used in the cross. Results indicate that male sterility is one of the incompatibility barriers among Capsicum species sincehybrids can be established, but may be male sterile.

  11. Multiple mechanisms enable invasive species to suppress native species.

    Science.gov (United States)

    Bennett, Alison E; Thomsen, Meredith; Strauss, Sharon Y

    2011-07-01

    Invasive plants represent a significant threat to ecosystem biodiversity. To decrease the impacts of invasive species, a major scientific undertaking of the last few decades has been aimed at understanding the mechanisms that drive invasive plant success. Most studies and theories have focused on a single mechanism for predicting the success of invasive plants and therefore cannot provide insight as to the relative importance of multiple interactions in predicting invasive species' success. We examine four mechanisms that potentially contribute to the success of invasive velvetgrass Holcus lanatus: direct competition, indirect competition mediated by mammalian herbivores, interference competition via allelopathy, and indirect competition mediated by changes in the soil community. Using a combination of field and greenhouse approaches, we focus on the effects of H. lanatus on a common species in California coastal prairies, Erigeron glaucus, where the invasion is most intense. We found that H. lanatus had the strongest effects on E. glaucus via direct competition, but it also influenced the soil community in ways that feed back to negatively influence E. glaucus and other native species after H. lanatus removal. This approach provided evidence for multiple mechanisms contributing to negative effects of invasive species, and it identified when particular strategies were most likely to be important. These mechanisms can be applied to eradication of H. lanatus and conservation of California coastal prairie systems, and they illustrate the utility of an integrated set of experiments for determining the potential mechanisms of invasive species' success.

  12. Species climate range influences hydraulic and stomatal traits in Eucalyptus species.

    Science.gov (United States)

    Bourne, Aimee E; Creek, Danielle; Peters, Jennifer M R; Ellsworth, David S; Choat, Brendan

    2017-07-01

    Plant hydraulic traits influence the capacity of species to grow and survive in water-limited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly ( P Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  13. Continental-wide distribution of crayfish species in Europe: update and maps

    Directory of Open Access Journals (Sweden)

    Kouba A.

    2014-01-01

    Full Text Available Recently published astacological studies substantially improved available data on distribution of crayfish in various European regions. At the same time, spread of invasive species has been recorded, additional non-indigenous species became established in various countries, and losses of populations of native species due to crayfish plague and other negative factors were observed. We overview recent advances in this knowledge, and provide updated colour maps of the distribution of all crayfish species present in Europe. These maps are originally based on the data from the Atlas of Crayfish in Europe published in 2006 as a result of the CRAYNET project, and were further updated from more recently published reports, grey literature, and especially thanks to contributions and feedback of over 70 specialists from 32 countries. Separate maps are available for all indigenous crayfish species in Europe as well as for three most widespread non-indigenous crayfish species. Additionally, two maps give locations of known findings of crayfish species introduced to Europe after 1980. These newly established alien species have so far restricted distributions; however, the frequency of recent reports suggests that findings of such species resulting from releases of aquarium pets will further increase.

  14. Palpi aplenty: New species in the Chrysotus longipalpus species group (Diptera: Dolichopodidae)

    Science.gov (United States)

    Justin B. Runyon; Renato S. Capellari

    2018-01-01

    Four new Nearctic species belonging to the Chrysotus longipalpus species group are described: Chrysotus keyensis sp. nov. (Florida), Chrysotus mccreadiei sp. nov. (Alabama), Chrysotus mystax sp. nov. (Alabama), and Chrysotus plumarista sp. nov. (Alabama). This brings the number of known species in this group to twelve. A key to species of males of the C. longipalpus...

  15. Fatal attraction: rare species in the spotlight.

    Science.gov (United States)

    Angulo, Elena; Deves, Anne-Laure; Saint Jalmes, Michel; Courchamp, Franck

    2009-04-07

    The exploitation of rare and endangered species can end in the species's extinction because the increased value people associate with rarity increases the economic incentive to exploit the last individuals, creating a positive feedback loop. This recently proposed concept, called the anthropogenic Allee effect (AAE), relies on the assumption that people do value rarity, but this remains to be established. Moreover, it also remains to be determined whether attraction to rarity is a trait confined to a minority of hobbyists (e.g. wildlife collectors, exotic pet owners) or characteristic of the general public. We estimated how much the general public valued rare species compared with common ones, using five different metrics related to personal investment: time spent, physical effort, unpleasantness, economic investment and risk. We surveyed the visitors of a zoo. To see the rare species, the visitors to the zoo invested more time in searching and contemplation, they were ready to expend more physical effort, they tolerated more unpleasant conditions, they were willing to pay more and, finally, they risked more to obtain (steal) a rare species. Our results provide substantial evidence of how the general public places more value on rare species, compared with common species. This confirms the AAE as an actual process, which in addition concerns a large part of the population. This has important consequences for the conservation of species that are rare now, or that could become so in the future.

  16. Species recovery in the United States: Increasing the effectiveness of the Endangered Species Act

    Science.gov (United States)

    Daniel M. Evans; Judy P. Che-Castaldo; Deborah Crouse; Frank W. Davis; Rebecca Epanchin-Niell; Curtis H. Flather; R. Kipp Frohlich; Dale D. Goble; Ya-Wei Li; Timothy D. Male; Lawrence L. Master; Matthew P. Moskwik; Maile C. Neel; Barry R. Noon; Camille Parmesan; Mark W. Schwartz; J. Michael Scott; Byron K. Williams

    2016-01-01

    The Endangered Species Act (ESA) has succeeded in shielding hundreds of species from extinction and improving species recovery over time. However, recovery for most species officially protected by the ESA - i.e., listed species - has been harder to achieve than initially envisioned. Threats to species are persistent and pervasive, funding has been insufficient...

  17. Species-free species distribution models describe macroecological properties of protected area networks.

    Science.gov (United States)

    Robinson, Jason L; Fordyce, James A

    2017-01-01

    Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework. At larger geographic domains and scales, protected area network units have spatial geoclimatic properties that can be described in the gap analysis typically used to measure or aggregate the geographic distributions of species (stacked species distribution models, or S-SDM). We extend the use of species distribution modeling techniques in order to model the climate envelope (or "footprint") of individual protected areas within a network of protected areas distributed across the 48 conterminous United States and managed by the US National Park System. In our approach we treat each protected area as the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated BioClim variables to model the geographic distribution of the climatic envelope associated with each protected area unit (modeling the geographic area of park units as the range of a species). We describe the individual and aggregated climate envelopes predicted by a large network of 163 protected areas and briefly illustrate how macroecological measures of geodiversity can be derived from our analysis of the landscape ecological context of protected areas. To estimate trajectories of change in the temporal distribution of climatic features within a protected area network, we projected the climate envelopes of protected areas in current conditions onto a dataset of predicted future climatic conditions. Our results suggest that the climate envelopes of some parks may be locally unique or have

  18. [Altitudinal patterns of species richness and species range size of vascular plants in Xiaolong- shan Reserve of Qinling Mountain: a test of Rapoport' s rule].

    Science.gov (United States)

    Zheng, Zhi; Gong, Da-Jie; Sun, Cheng-Xiang; Li, Xiao-Jun; Li, Wan-Jiang

    2014-09-01

    Altitudinal patterns of species richness and species range size and their underlying mechanisms have long been a key topic in biogeography and biodiversity research. Rapoport's rule stated that the species richness gradually declined with the increasing altitude, while the species ranges became larger. Using altitude-distribution database from Xiaolongshan Reverse, this study explored the altitudinal patterns of vascular plant species richness and species range in Qinling Xiaolongshan Reserve, and examined the relationships between species richness and their distributional middle points in altitudinal bands for different fauna, taxonomic units and growth forms and tested the Rapoport's rule by using Stevens' method, Pagel's method, mid-point method and cross-species method. The results showed that the species richness of vascular plants except small-range species showed a unimodal pattern along the altitude in Qinling Xiaolongshan Reserve and the highest proportion of small-range species was found at the lower altitudinal bands and at the higher altitudinal bands. Due to different assemblages and examining methods, the relationships between species distributing range sizes and the altitudes were different. Increasing taxonomic units was easier to support Rapoport's rule, which was related to niche differences that the different taxonomic units occupied. The mean species range size of angiosperms showed a unimodal pattern along the altitude, while those of the gymnosperms and pteridophytes were unclearly regular. The mean species range size of the climbers was wider with the increasing altitude, while that of the shrubs which could adapt to different environmental situations was not sensitive to the change of altitude. Pagel's method was easier to support the Rapoport's rule, and then was Steven's method. On the contrary, due to the mid-domain effect, the results of the test by using the mid-point method showed that the mean species range size varied in a unimodal

  19. Rapid and accurate species tree estimation for phylogeographic investigations using replicated subsampling.

    Science.gov (United States)

    Hird, Sarah; Kubatko, Laura; Carstens, Bryan

    2010-11-01

    We describe a method for estimating species trees that relies on replicated subsampling of large data matrices. One application of this method is phylogeographic research, which has long depended on large datasets that sample intensively from the geographic range of the focal species; these datasets allow systematicists to identify cryptic diversity and understand how contemporary and historical landscape forces influence genetic diversity. However, analyzing any large dataset can be computationally difficult, particularly when newly developed methods for species tree estimation are used. Here we explore the use of replicated subsampling, a potential solution to the problem posed by large datasets, with both a simulation study and an empirical analysis. In the simulations, we sample different numbers of alleles and loci, estimate species trees using STEM, and compare the estimated to the actual species tree. Our results indicate that subsampling three alleles per species for eight loci nearly always results in an accurate species tree topology, even in cases where the species tree was characterized by extremely rapid divergence. Even more modest subsampling effort, for example one allele per species and two loci, was more likely than not (>50%) to identify the correct species tree topology, indicating that in nearly all cases, computing the majority-rule consensus tree from replicated subsampling provides a good estimate of topology. These results were supported by estimating the correct species tree topology and reasonable branch lengths for an empirical 10-locus great ape dataset. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Depletion of heterogeneous source species pools predicts future invasion rates

    Science.gov (United States)

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Mark Kimberley; Jacqueline Beggs

    2017-01-01

    Predicting how increasing rates of global trade will result in new establishments of potentially damaging invasive species is a question of critical importance to the development of national and international policies aimed at minimizing future invasions. Centuries of historical movement and establishment of invading species may have depleted the supply of species...

  1. Ecological neighborhoods as a framework for umbrella species selection

    Science.gov (United States)

    Stuber, Erica F.; Fontaine, Joseph J.

    2018-01-01

    Umbrella species are typically chosen because they are expected to confer protection for other species assumed to have similar ecological requirements. Despite its popularity and substantial history, the value of the umbrella species concept has come into question because umbrella species chosen using heuristic methods, such as body or home range size, are not acting as adequate proxies for the metrics of interest: species richness or population abundance in a multi-species community for which protection is sought. How species associate with habitat across ecological scales has important implications for understanding population size and species richness, and therefore may be a better proxy for choosing an umbrella species. We determined the spatial scales of ecological neighborhoods important for predicting abundance of 8 potential umbrella species breeding in Nebraska using Bayesian latent indicator scale selection in N-mixture models accounting for imperfect detection. We compare the conservation value measured as collective avian abundance under different umbrella species selected following commonly used criteria and selected based on identifying spatial land cover characteristics within ecological neighborhoods that maximize collective abundance. Using traditional criteria to select an umbrella species resulted in sub-maximal expected collective abundance in 86% of cases compared to selecting an umbrella species based on land cover characteristics that maximized collective abundance directly. We conclude that directly assessing the expected quantitative outcomes, rather than ecological proxies, is likely the most efficient method to maximize the potential for conservation success under the umbrella species concept.

  2. Genomic resources for multiple species in the Drosophila ananassae species group.

    Science.gov (United States)

    Signor, Sarah; Seher, Thaddeus; Kopp, Artyom

    2013-01-01

    The development of genomic resources in non-model taxa is essential for understanding the genetic basis of biological diversity. Although the genomes of many Drosophila species have been sequenced, most of the phenotypic diversity in this genus remains to be explored. To facilitate the genetic analysis of interspecific and intraspecific variation, we have generated new genomic resources for seven species and subspecies in the D. ananassae species subgroup. We have generated large amounts of transcriptome sequence data for D. ercepeae, D. merina, D. bipectinata, D. malerkotliana malerkotliana, D. m. pallens, D. pseudoananassae pseudoananassae, and D. p. nigrens. de novo assembly resulted in contigs covering more than half of the predicted transcriptome and matching an average of 59% of annotated genes in the complete genome of D. ananassae. Most contigs, corresponding to an average of 49% of D. ananassae genes, contain sequence polymorphisms that can be used as genetic markers. Subsets of these markers were validated by genotyping the progeny of inter- and intraspecific crosses. The ananassae subgroup is an excellent model system for examining the molecular basis of speciation and phenotypic evolution. The new genomic resources will facilitate the genetic analysis of inter- and intraspecific differences in this lineage. Transcriptome sequencing provides a simple and cost-effective way to identify molecular markers at nearly single-gene density, and is equally applicable to any non-model taxa.

  3. Detection of cryptic species

    International Nuclear Information System (INIS)

    Cockburn, A.F.; Jensen, T.; Seawright, J.A.

    1998-01-01

    Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insect were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keen the individual genes homogeneous within a species. (author)

  4. Revisiting Darwin's hypothesis: Does greater intraspecific variability increase species' ecological breadth?

    Science.gov (United States)

    Sides, Colby B; Enquist, Brian J; Ebersole, James J; Smith, Marielle N; Henderson, Amanda N; Sloat, Lindsey L

    2014-01-01

    Darwin first proposed that species with larger ecological breadth have greater phenotypic variation. We tested this hypothesis by comparing intraspecific variation in specific leaf area (SLA) to species' local elevational range and by assessing how external (abiotic) filters may influence observed differences in ecological breadth among species. Understanding the patterns of individual variation within and between populations will help evaluate differing hypotheses for structuring of communities and distribution of species. We selected 21 species with varying elevational ranges and compared the coefficient of variation of SLA for each species against its local elevational range. We examined the influence of external filters on local trait composition by determining if intraspecific changes in SLA with elevation have the same direction and similar rates of change as the change in community mean SLA value. In support of Darwin's hypothesis, we found a positive relationship between species' coefficient of variation for SLA with species' local elevational range. Intraspecific changes in SLA had the same sign, but generally lower magnitude than the community mean SLA. The results indicate that wide-ranging species are indeed characterized by greater intraspecific variation and that species' phenotypes shift along environmental gradients in the same direction as the community phenotypes. However, across species, the rate of intraspecific trait change, reflecting plastic and/or adaptive changes across populations, is limited and prevents species from adjusting to environmental gradients as quickly as interspecific changes resulting from community assembly.

  5. Integrative taxonomy and preliminary assessment of species limits in the Liolaemus walkeri complex (Squamata, Liolaemidae with descriptions of three new species from Peru

    Directory of Open Access Journals (Sweden)

    Cesar Aguilar

    2013-12-01

    Full Text Available Species delimitation studies based on integrative taxonomic approaches have received considerable attention in the last few years, and have provided the strongest hypotheses of species boundaries. We used three lines of evidence (molecular, morphological, and niche envelopes to test for species boundaries in Peruvian populations of the Liolaemus walkeri complex. Our results show that different lines of evidence and analyses are congruent in different combinations, for unambiguous delimitation of three lineages that were “hidden” within known species, and now deserve species status. Our phylogenetic analysis shows that L. walkeri, L. tacnae and the three new species are strongly separated from other species assigned to the alticolor-bibronii group. Few conventional morphological characters distinguish the new species from closely related taxa and this highlights the need to integrate other sources of data to erect strong hypothesis of species limits. A taxonomic key for known Peruvian species of the subgenus Lioalemus is provided.

  6. Non-native Species in Floodplain Secondary Forests in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Nor Rasidah Hashim

    2010-01-01

    Full Text Available There is an increasing concern of alien species invading our tropical ecosystems because anthropogenic land use can create conditions in which non-native species thrive. This study is an assessment of bioinvasion using a quantitative survey of non-native plant species in floodplain secondary forests in Peninsular Malaysia. The study area is known to have a long cultivation and settlement history that provides ample time for non-native species introduction. The survey results showed that introduced species constituted 23% of all the identified species, with seven species unique to riparian forest strips and eleven species unique to abandoned paddy fields and the remaining five species being shared between the two secondary forest types. There existed some habitat preferences amongst the species implying both secondary forests were potentially susceptible to bioinvasion. Fourteen species are also invasive elsewhere (PIER invasives whereas fifteen species have acquired local uses such for traditional medicine and food products. The presence of these non-native species could alter native plant succession trajectory, and eventually leads to native species impoverishment if the exotics managed to outcompete the native species. As such, the findings of this study have a far-reaching application for the national biodiversity conservation efforts because it provides the required information on bioinvasion.

  7. Behavior of trace NO/sub X/ species in the nighttime urban atmosphere

    International Nuclear Information System (INIS)

    Killus, J.P.; Whitten, G.Z.

    1985-01-01

    Three trace NO/sub X/ species--HONO, NO 3 , and N 2 O 5 --may play important roles in urban smog formation. Alternative mechanisms for these species have recently been proposed. This report presents a brief analysis of simulation results indicating that the traditional chemistry for these species can still explain the results of some recent observational studies

  8. Endangered Species Program Naval Petroleum Reserves in California

    International Nuclear Information System (INIS)

    1992-03-01

    The Naval Petroleum Reserves in California (NPRC) are operated by the US Department of Energy (DOE) and Chevron USA. (CUSA). Four federally-listed endangered animal species and one threatened plant species are known to occur on NPRC: the San Joaquin kit fox (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides nitratoides) and Hoover's Wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act of 1973 (as amended) (Public Law 93-205), which declares that it is the policy of Congress that all Federal departments and agencies shall seek to conserve endangered and threatened species and shall utilize their authorities in furtherance of the purposes of the Act. DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The major objective of the Endangered Species Program on NPR-1 and NPR-2 is to provide DOE with the scientific expertise and continuity of programs necessary for the continued compliance with the Endangered Species Act. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during Fiscal Year 1991 (FY91)

  9. Climate change vulnerability for species-Assessing the assessments.

    Science.gov (United States)

    Wheatley, Christopher J; Beale, Colin M; Bradbury, Richard B; Pearce-Higgins, James W; Critchlow, Rob; Thomas, Chris D

    2017-09-01

    Climate change vulnerability assessments are commonly used to identify species at risk from global climate change, but the wide range of methodologies available makes it difficult for end users, such as conservation practitioners or policymakers, to decide which method to use as a basis for decision-making. In this study, we evaluate whether different assessments consistently assign species to the same risk categories and whether any of the existing methodologies perform well at identifying climate-threatened species. We compare the outputs of 12 climate change vulnerability assessment methodologies, using both real and simulated species, and validate the methods using historic data for British birds and butterflies (i.e. using historical data to assign risks and more recent data for validation). Our results show that the different vulnerability assessment methods are not consistent with one another; different risk categories are assigned for both the real and simulated sets of species. Validation of the different vulnerability assessments suggests that methods incorporating historic trend data into the assessment perform best at predicting distribution trends in subsequent time periods. This study demonstrates that climate change vulnerability assessments should not be used interchangeably due to the poor overall agreement between methods when considering the same species. The results of our validation provide more support for the use of trend-based rather than purely trait-based approaches, although further validation will be required as data become available. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  10. Species of Wadicosa (Araneae, Lycosidae): a new species from Madagascar.

    Science.gov (United States)

    Kronestedt, Torbjörn

    2017-05-10

    Since establishing the wolf spider genus Wadicosa Zyuzin, 1985 (Zyuzin 1985), eleven species have been accepted in it, either by transfer from Lycosa Latreille, 1804 or Pardosa C.L. Koch, 1847 or by original designation (WSC 2017). However, according to Kronestedt (1987), additional species wait to be formally transferred to Wadicosa. The genus is restricted to the Old World, with one species, Wadicosa jocquei Kronestedt, 2015, recently described from Madagascar and surrounding islands.

  11. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  12. First records of two species of mammals in the Huachuca Mountains: results of ecological stewardship at Fort Huachuca

    Science.gov (United States)

    Ronnie Sidner; H. Sheridan Stone

    2005-01-01

    We report the first voucher of the cliff chipmunk (Neotamias dorsalis) and observations of Brazilian free-tailed bats (Tadarida brasiliensis) from the Huachuca Mountains, Arizona, where these species had not been documented. While presence of T. brasiliensis was expected on Fort Huachuca, N. dorsalis was a surprise after a century...

  13. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3 and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  14. Tissue-specific and cation/anion-specific DNA methylation variations occurred in C. virgata in response to salinity stress.

    Science.gov (United States)

    Gao, Xiang; Cao, Donghui; Liu, Jie; Wang, Xiaoping; Geng, Shujuan; Liu, Bao; Shi, Decheng

    2013-01-01

    Salinity is a widespread environmental problem limiting productivity and growth of plants. Halophytes which can adapt and resist certain salt stress have various mechanisms to defend the higher salinity and alkalinity, and epigenetic mechanisms especially DNA methylation may play important roles in plant adaptability and plasticity. In this study, we aimed to investigate the different influences of various single salts (NaCl, Na2SO4, NaHCO3, Na2CO3) and their mixed salts on halophyte Chloris. virgata from the DNA methylation prospective, and discover the underlying relationships between specific DNA methylation variations and specific cations/anions through the methylation-sensitive amplification polymorphism analysis. The results showed that the effects on DNA methylation variations of single salts were ranked as follows: Na2CO3> NaHCO3> Na2SO4> NaCl, and their mixed salts exerted tissue-specific effects on C. virgata seedlings. Eight types of DNA methylation variations were detected and defined in C. virgata according to the specific cations/anions existed in stressful solutions; in addition, mix-specific and higher pH-specific bands were the main type in leaves and roots independently. These findings suggested that mixed salts were not the simple combination of single salts. Furthermore, not only single salts but also mixed salts showed tissue-specific and cations/anions-specific DNA methylation variations.

  15. Flora and vegetation of the Saint David and Lewis Springs Cienegas, Cochise County, Arizona

    Science.gov (United States)

    Elizabeth Makings

    2013-01-01

    In the Sky Island region, cienegas are rare marshlands amidst arid surroundings where groundwater perennially intersects the surface. Their unique physical properties give rise to a characteristic plant community dominated by wetland graminoids. Evaporation usually causes the water to be alkaline, and vegetation around a cienega commonly includes halophytes and other...

  16. The Dispersal and Persistence of Invasive Marine Species

    Science.gov (United States)

    Glick, E. R.; Pringle, J.

    2007-12-01

    The spread of invasive marine species is a continuing problem throughout the world, though not entirely understood. Why do some species invade more easily than the rest? How are the range limits of these species set? Recent research (Byers & Pringle 2006, Pringle & Wares 2007) has produced retention criteria that determine whether a coastal species with a benthic adult stage and planktonic larvae can be retained within its range and invade in the direction opposite that of the mean current experienced by the larvae (i.e. upstream). These results however, are only accurate for Gaussian dispersal kernels. For kernels whose kurtosis differs from a Gaussian's, the retention criteria becomes increasingly inaccurate as the mean current increases. Using recent results of Lutscher (2006), we find an improved retention criterion which is much more accurate for non- Gaussian dispersal kernels. The importance of considering non-Gaussian kernels is illustrated for a number of commonly used dispersal kernels, and the relevance of these calculations is illustrated by considering the northward limit of invasion of Hemigrapsus sanguineus, an important invader in the Gulf of Maine.

  17. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species.

    Directory of Open Access Journals (Sweden)

    Thibaud Rougier

    Full Text Available Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa, an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5. We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local

  18. Competitive intransitivity promotes species coexistence.

    Science.gov (United States)

    Laird, Robert A; Schamp, Brandon S

    2006-08-01

    Using a spatially explicit cellular automaton model with local competition, we investigate the potential for varied levels of competitive intransitivity (i.e., nonhierarchical competition) to promote species coexistence. As predicted, on average, increased levels of intransitivity result in more sustained coexistence within simulated communities, although the outcome of competition also becomes increasingly unpredictable. Interestingly, even a moderate degree of intransitivity within a community can promote coexistence, in terms of both the length of time until the first competitive exclusion and the number of species remaining in the community after 500 simulated generations. These results suggest that modest levels of intransitivity in nature, such as those that are thought to be characteristic of plant communities, can contribute to coexistence and, therefore, community-scale biodiversity. We explore a potential connection between competitive intransitivity and neutral theory, whereby competitive intransitivity may represent an important mechanism for "ecological equivalence."

  19. Detection of cryptic species

    Energy Technology Data Exchange (ETDEWEB)

    Cockburn, A F; Jensen, T; Seawright, J A [United States Dept. of Agriculture, Agricultural Research Service, Medical and Veterinary Entomology Research Lab., Gainesville, FL (United States)

    1998-01-01

    Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insect were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keen the individual genes homogeneous within a species. (author). 11 refs, 2 figs, 2 tabs.

  20. Scopulariopsis and scopulariopsis-like species from indoor environments

    Directory of Open Access Journals (Sweden)

    J.H.C. Woudenberg

    2017-09-01

    Full Text Available Scopulariopsis-like species are often reported from the indoor environment, as well as from clinical samples. The lack of type isolates and thorough phylogenetic studies in the Microascaceae hampered the correct identification of these isolates. Based on recent phylogenetic studies, which resulted in multiple name changes, the aim is to molecularly identify the Scopulariopsis and scopulariopsis-like species which occur in the indoor environment and give an overview of the current species in these genera and their habitats. Strains from the CBS culture collection were supplemented with almost 80 indoor strains of which the internal transcribed spacer 1 and 2 and intervening 5.8S nrDNA (ITS, beta-tubulin (tub2 and translation elongation factor 1-alpha (tef1 gene regions were sequenced for phylogenetic inference. The multi-gene phylogenies recognise 33 Microascus species and 12 Scopulariopsis species and showed that the recently established genus Fuscoannellis, typified by Scopulariopsis carbonaria, should be synonymized with the genus Yunnania. Seven new Microascus species, four new Scopulariopsis species, and one new Yunnania species, are described, and a new name in Microascus and two new name combinations (one in Microascus, and one in Yunnania are proposed. In the indoor environment 14 Microascus species and three Scopulariopsis species were found. Scopulariopsis brevicaulis (22 indoor isolates and Microascus melanosporus (19 indoor isolates are the most common indoor species, in number of isolates, followed by M. paisii (8 indoor isolates and S. candida (7 indoor isolates. A genus phylogeny based on the ITS, tef1 and the large subunit 28S nrDNA (LSU of the type or representative isolates of all here recognised species is provided depicting all species habitats. No correlation between phylogenetic relationship and habitat preference could be observed. Ten species which are found indoor are also found in relation with human-derived samples. A

  1. Solvable Catalyzed Birth-Death-Exchange Competition Model of Three Species

    International Nuclear Information System (INIS)

    Wang Haifeng; Gao Yan; Zhang Heng; Lin Zhenquan

    2009-01-01

    A competition model of three species in exchange-driven aggregation growth is proposed. In the model, three distinct aggregates grow by exchange of monomers and in parallel, birth of species A is catalyzed by species B and death of species A is catalyzed by species C. The rates for both catalysis processes are proportional to kj ν and kj ω respectively, where ν(Ω) is a parameter reflecting the dependence of the catalysis reaction rate of birth (death) on the catalyst aggregate's size. The kinetic evolution behaviors of the three species are investigated by the rate equation approach based on the mean-field theory. The form of the aggregate size distribution of A-species a k (t) is found to be dependent crucially on the two catalysis rate kernel parameters. The results show that (i) in case of μ ≤ 0, the form of a k (t) mainly depends on the competition between self-exchange of species A and species-C-catalyzed death of species A; (ii) in case of ν > 0, the form of a k (t) mainly depends on the competition between species-B-catalyzed birth of species A and species-C-catalyzed death of species A. (interdisciplinary physics and related areas of science and technology)

  2. Species delimitation in taxonomically difficult fungi: the case of Hymenogaster.

    Directory of Open Access Journals (Sweden)

    Benjamin Stielow

    2011-01-01

    Full Text Available False truffles are ecologically important as mycorrhizal partners of trees and evolutionarily highly interesting as the result of a shift from epigeous mushroom-like to underground fruiting bodies. Since its first description by Vittadini in 1831, inappropriate species concepts in the highly diverse false truffle genus Hymenogaster has led to continued confusion, caused by a large variety of prevailing taxonomical opinions.In this study, we reconsidered the species delimitations in Hymenogaster based on a comprehensive collection of Central European taxa comprising more than 140 fruiting bodies from 20 years of field work. The ITS rDNA sequence dataset was subjected to phylogenetic analysis as well as clustering optimization using OPTSIL software.Among distinct species concepts from the literature used to create reference partitions for clustering optimization, the broadest concept resulted in the highest agreement with the ITS data. Our results indicate a highly variable morphology of H. citrinus and H. griseus, most likely linked to environmental influences on the phenology (maturity, habitat, soil type and growing season. In particular, taxa described in the 19(th century frequently appear as conspecific. Conversely, H. niveus appears as species complex comprising seven cryptic species with almost identical macro- and micromorphology. H. intermedius and H. huthii are described as novel species, each of which with a distinct morphology intermediate between two species complexes. A revised taxonomy for one of the most taxonomically difficult genera of Basidiomycetes is proposed, including an updated identification key. The (semi-automated selection among species concepts used here is of importance for the revision of taxonomically problematic organism groups in general.

  3. Diversity of the Cryptococcus neoformans-Cryptococcus gattii species complex.

    NARCIS (Netherlands)

    Bovers, M.; Hagen, F.; Boekhout, T.

    2008-01-01

    More than 110 years of study of the Cryptococcus neoformans and Cryptococcus gattii species complex has resulted in an enormous accumulation of fundamental and applied biological and clinical knowledge. Recent developments in our understanding of the diversity within the species complex are

  4. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  5. Atmospheric Deposition Modeling Results

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on model results for dry and total deposition of sulfur, nitrogen and base cation species. Components include deposition velocities, dry...

  6. Ecological impacts of non-native species: Chapter 2

    Science.gov (United States)

    Pilliod, David S.; Griffiths, R.A.; Kuzmin, S.L.; Heatwole, Harold; Wilkinson, John W.

    2012-01-01

    management of non-native species has only just begun but some promising results have already emerged (see below), giving hope to a very difficult conservation issue. This chapter provides an overview of the role of non-native species in amphibian declines and summarizes the current state of knowledge of non-native species that are known, or considered to be, a threat to amphibian species and populations. The biological and socio-economic issues of non-native species control are examined and brief case studies of successful eradication programmes are provided.

  7. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.

    Science.gov (United States)

    Szczecińska, Monika; Sawicki, Jakub

    2015-09-15

    The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161-162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatilla vernalis. The determination of complete

  8. Phylogeny and species traits predict bird detectability

    Science.gov (United States)

    Solymos, Peter; Matsuoka, Steven M.; Stralberg, Diana; Barker, Nicole K. S.; Bayne, Erin M.

    2018-01-01

    Avian acoustic communication has resulted from evolutionary pressures and ecological constraints. We therefore expect that auditory detectability in birds might be predictable by species traits and phylogenetic relatedness. We evaluated the relationship between phylogeny, species traits, and field‐based estimates of the two processes that determine species detectability (singing rate and detection distance) for 141 bird species breeding in boreal North America. We used phylogenetic mixed models and cross‐validation to compare the relative merits of using trait data only, phylogeny only, or the combination of both to predict detectability. We found a strong phylogenetic signal in both singing rates and detection distances; however the strength of phylogenetic effects was less than expected under Brownian motion evolution. The evolution of behavioural traits that determine singing rates was found to be more labile, leaving more room for species to evolve independently, whereas detection distance was mostly determined by anatomy (i.e. body size) and thus the laws of physics. Our findings can help in disentangling how complex ecological and evolutionary mechanisms have shaped different aspects of detectability in boreal birds. Such information can greatly inform single‐ and multi‐species models but more work is required to better understand how to best correct possible biases in phylogenetic diversity and other community metrics.

  9. Invasive Species Science Branch: research and management tools for controlling invasive species

    Science.gov (United States)

    Reed, Robert N.; Walters, Katie D.

    2015-01-01

    Invasive, nonnative species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like “biological wildfires,” they can quickly spread and affect nearly all terrestrial and aquatic ecosystems. Invasive species have become one of the greatest environmental challenges of the 21st century in economic, environmental, and human health costs, with an estimated effect in the United States of more than $120 billion per year. Managers of the Department of the Interior and other public and private lands often rank invasive species as their top resource management problem. The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. To disseminate this information, branch scientists are developing platforms to share invasive species information with DOI cooperators, other agency partners, and the public. From these and other data, branch scientists are constructing models to understand and predict invasive species distributions for more effective management. The branch also has extensive herpetological and population biology expertise that is applied to harmful reptile invaders such as the Brown Treesnake on Guam and Burmese Python in Florida.

  10. Comparative microbial modules resource: generation and visualization of multi-species biclusters.

    Science.gov (United States)

    Kacmarczyk, Thadeous; Waltman, Peter; Bate, Ashley; Eichenberger, Patrick; Bonneau, Richard

    2011-12-01

    The increasing abundance of large-scale, high-throughput datasets for many closely related organisms provides opportunities for comparative analysis via the simultaneous biclustering of datasets from multiple species. These analyses require a reformulation of how to organize multi-species datasets and visualize comparative genomics data analyses results. Recently, we developed a method, multi-species cMonkey, which integrates heterogeneous high-throughput datatypes from multiple species to identify conserved regulatory modules. Here we present an integrated data visualization system, built upon the Gaggle, enabling exploration of our method's results (available at http://meatwad.bio.nyu.edu/cmmr.html). The system can also be used to explore other comparative genomics datasets and outputs from other data analysis procedures - results from other multiple-species clustering programs or from independent clustering of different single-species datasets. We provide an example use of our system for two bacteria, Escherichia coli and Salmonella Typhimurium. We illustrate the use of our system by exploring conserved biclusters involved in nitrogen metabolism, uncovering a putative function for yjjI, a currently uncharacterized gene that we predict to be involved in nitrogen assimilation. © 2011 Kacmarczyk et al.

  11. Comparative microbial modules resource: generation and visualization of multi-species biclusters.

    Directory of Open Access Journals (Sweden)

    Thadeous Kacmarczyk

    2011-12-01

    Full Text Available The increasing abundance of large-scale, high-throughput datasets for many closely related organisms provides opportunities for comparative analysis via the simultaneous biclustering of datasets from multiple species. These analyses require a reformulation of how to organize multi-species datasets and visualize comparative genomics data analyses results. Recently, we developed a method, multi-species cMonkey, which integrates heterogeneous high-throughput datatypes from multiple species to identify conserved regulatory modules. Here we present an integrated data visualization system, built upon the Gaggle, enabling exploration of our method's results (available at http://meatwad.bio.nyu.edu/cmmr.html. The system can also be used to explore other comparative genomics datasets and outputs from other data analysis procedures - results from other multiple-species clustering programs or from independent clustering of different single-species datasets. We provide an example use of our system for two bacteria, Escherichia coli and Salmonella Typhimurium. We illustrate the use of our system by exploring conserved biclusters involved in nitrogen metabolism, uncovering a putative function for yjjI, a currently uncharacterized gene that we predict to be involved in nitrogen assimilation.

  12. Species composition of insects in contaminated areas of Apsheron

    International Nuclear Information System (INIS)

    Guseynzadeh, G.A; Mamedova, T.G; Atakishiyeva, A.M; Hajiyeva, S.A

    2010-01-01

    Full text:The main area of the Apsheron Peninsula, semi-complete urbanization area, where as a result of human impact, in particular oil production and processing large areas of once fertile land have been ruined. As a result, formed locally contaminated sites where the oil soaks into the soil to a depth of 1m or more, the mold is completely ruined. The aim of our research was to study the species composition of bugs, beetles, butterflies, bees in these locally contaminated areas of Absheron, their relationships and nutritive degree of occurrence. Expeditionary trips were made in the following areas: Karadag, Seaside, Bibi Geybatsky, Surakhani, Sabunchu Oil Gas Mining Management, Ramaninsky iodine plant. These areas are divided into three gradations of anthropogenic strain:1) The weak degree of load-zone relatively clean; 2) The average degree of load-space of moderate economic use; A strong degree of load-immediately adjacent to the locally-contaminated sites. According to the results of environmental monitoring of terrestrial invertebrates group found: bugs, 22 species, 10 species of beetles, butterflies, eight species of bee-25, found food and the degree of occurrence of communication. Identified several types of bee-bioindicators: Zholletes similes, Schylaeus variegate, Andrew Flavipes. Identification of these species will provide an opportunity to determine in advance the impact of background radiation in this ecosystem and to conduct cleaning, remediation work. On the basis of faunal material collected in Table 1 shows the species composition of the above insects, food relations and the degree of occurrence.

  13. Polyphyly and gene flow between non-sibling Heliconius species

    Directory of Open Access Journals (Sweden)

    Jiggins Chris D

    2006-04-01

    Full Text Available Abstract Background The view that gene flow between related animal species is rare and evolutionarily unimportant largely antedates sensitive molecular techniques. Here we use DNA sequencing to investigate a pair of morphologically and ecologically divergent, non-sibling butterfly species, Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae, whose distributions overlap in Central and Northwestern South America. Results In these taxa, we sequenced 30–45 haplotypes per locus of a mitochondrial region containing the genes for cytochrome oxidase subunits I and II (CoI/CoII, and intron-spanning fragments of three unlinked nuclear loci: triose-phosphate isomerase (Tpi, mannose-6-phosphate isomerase (Mpi and cubitus interruptus (Ci genes. A fifth gene, dopa decarboxylase (Ddc produced sequence data likely to be from different duplicate loci in some of the taxa, and so was excluded. Mitochondrial and Tpi genealogies are consistent with reciprocal monophyly, whereas sympatric populations of the species in Panama share identical or similar Mpi and Ci haplotypes, giving rise to genealogical polyphyly at the species level despite evidence for rapid sequence divergence at these genes between geographic races of H. melpomene. Conclusion Recent transfer of Mpi haplotypes between species is strongly supported, but there is no evidence for introgression at the other three loci. Our results demonstrate that the boundaries between animal species can remain selectively porous to gene flow long after speciation, and that introgression, even between non-sibling species, can be an important factor in animal evolution. Interspecific gene flow is demonstrated here for the first time in Heliconius and may provide a route for the transfer of switch-gene adaptations for Müllerian mimicry. The results also forcefully demonstrate how reliance on a single locus may give an erroneous picture of the overall genealogical history of speciation and gene flow.

  14. Bioeconomic analysis supports the endangered species act.

    Science.gov (United States)

    Salau, Kehinde R; Fenichel, Eli P

    2015-10-01

    The United States Endangered Species Act (ESA) was enacted to protect and restore declining fish, wildlife, and plant populations. The ESA mandates endangered species protection irrespective of costs. This translates to the restriction of activities that harm endangered populations. We discuss criticisms of the ESA in the context of public land management and examine under what circumstance banning non-conservation activity on multiple use federal lands can be socially optimal. We develop a bioeconomic model to frame the species management problem under the ESA and identify scenarios where ESA-imposed regulations emerge as optimal strategies. Results suggest that banning harmful activities is a preferred strategy when valued endangered species are in decline or exposed to poor habitat quality. However, it is not optimal to sustain such a strategy in perpetuity. An optimal plan involves a switch to land-use practices characteristic of habitat conservation plans.

  15. A novel widespread cryptic species and phylogeographic patterns within several giant clam species (Cardiidae: Tridacna) from the Indo-Pacific Ocean.

    Science.gov (United States)

    Huelsken, Thomas; Keyse, Jude; Liggins, Libby; Penny, Shane; Treml, Eric A; Riginos, Cynthia

    2013-01-01

    Giant clams (genus Tridacna) are iconic coral reef animals of the Indian and Pacific Oceans, easily recognizable by their massive shells and vibrantly colored mantle tissue. Most Tridacna species are listed by CITES and the IUCN Redlist, as their populations have been extensively harvested and depleted in many regions. Here, we survey Tridacna crocea and Tridacna maxima from the eastern Indian and western Pacific Oceans for mitochondrial (COI and 16S) and nuclear (ITS) sequence variation and consolidate these data with previous published results using phylogenetic analyses. We find deep intraspecific differentiation within both T. crocea and T. maxima. In T. crocea we describe a previously undocumented phylogeographic division to the east of Cenderawasih Bay (northwest New Guinea), whereas for T. maxima the previously described, distinctive lineage of Cenderawasih Bay can be seen to also typify western Pacific populations. Furthermore, we find an undescribed, monophyletic group that is evolutionarily distinct from named Tridacna species at both mitochondrial and nuclear loci. This cryptic taxon is geographically widespread with a range extent that minimally includes much of the central Indo-Pacific region. Our results reinforce the emerging paradigm that cryptic species are common among marine invertebrates, even for conspicuous and culturally significant taxa. Additionally, our results add to identified locations of genetic differentiation across the central Indo-Pacific and highlight how phylogeographic patterns may differ even between closely related and co-distributed species.

  16. Null models for study Rotifers and Crustaceans Zooplankton species richness in Chilean Patagonian lakes

    OpenAIRE

    Escalante, Patricio de los Ríos

    2016-01-01

    Abstract Aims The Patagonian lakes are characterized by their oligotrophy that is the cause of low species number in their zooplankton assemblage. The aim of the present study is to analyze the crustacean and rotifers species number pattern in Patagonian lakes among a latitudinal gradient (40-51 °S). Results The results revealed that there are direct significant correlations between total species with rotifer species, and chlorophyll concentration with crustacean species number, and an inve...

  17. Accounting for Incomplete Species Detection in Fish Community Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University; Jager, Yetta [ORNL

    2013-01-01

    Riverine fish assemblages are heterogeneous and very difficult to characterize with a one-size-fits-all approach to sampling. Furthermore, detecting changes in fish assemblages over time requires accounting for variation in sampling designs. We present a modeling approach that permits heterogeneous sampling by accounting for site and sampling covariates (including method) in a model-based framework for estimation (versus a sampling-based framework). We snorkeled during three surveys and electrofished during a single survey in suite of delineated habitats stratified by reach types. We developed single-species occupancy models to determine covariates influencing patch occupancy and species detection probabilities whereas community occupancy models estimated species richness in light of incomplete detections. For most species, information-theoretic criteria showed higher support for models that included patch size and reach as covariates of occupancy. In addition, models including patch size and sampling method as covariates of detection probabilities also had higher support. Detection probability estimates for snorkeling surveys were higher for larger non-benthic species whereas electrofishing was more effective at detecting smaller benthic species. The number of sites and sampling occasions required to accurately estimate occupancy varied among fish species. For rare benthic species, our results suggested that higher number of occasions, and especially the addition of electrofishing, may be required to improve detection probabilities and obtain accurate occupancy estimates. Community models suggested that richness was 41% higher than the number of species actually observed and the addition of an electrofishing survey increased estimated richness by 13%. These results can be useful to future fish assemblage monitoring efforts by informing sampling designs, such as site selection (e.g. stratifying based on patch size) and determining effort required (e.g. number of

  18. Species identification and sex determination of the genus Nepenthes (Nepenthaceae).

    Science.gov (United States)

    Mokkamul, Piya; Chaveerach, Arunrat; Sudmoon, Runglawan; Tanee, Tawatchai

    2007-02-15

    Nepenthes species are well known for their ornamentally attractive pitchers. The species diversity was randomly surveyed in some conservation areas of Thailand and three species were found, namely N. gracilis Korth., N. mirabilis Druce. and N. smilesii Hemsl. Young plants as unknown species from Chatuchak market were added in plant sampled set. Thirty two Inter Simple Sequence Repeat (ISSR) primers were screened and 13 successful primers were used to produce DNA banding patterns for constructing a dendrogram. The dendrogram is potentially power tool to identify unknown species from Chatuchak market, differentiate species population, population by geographical areas and sex determination. The geographical area of N. mirabilis was specified to Southern and Northeastern regions and finally, subdivided into exact areas according to province. Male and female plants of N. gracilis at Phu Wua Wildlife Sanctuary and N. mirabilis at Bung Khonglong non-hunting area were determined. Two unknown species from Chatuchak market were analyzed to be N. mirabilis with the genetic similarities (S) 77.2 to 84.7. Be more sex specific in all sample studied, 37 Random Amplified Polymorphic DNA (RAPD) primers were investigated. The result shows that only one RAPD primer show high resolution results at about 750 bp specific male-related marker.

  19. Introduced and invasive cactus species: a global review

    Science.gov (United States)

    Novoa, Ana; Le Roux, Johannes J.; Robertson, Mark P.; Wilson, John R.U.; Richardson, David M.

    2015-01-01

    Understanding which species are introduced and become invasive, and why, are central questions in invasion science. Comparative studies on model taxa have provided important insights, but much more needs to be done to unravel the context dependencies of these findings. The cactus family (Cactaceae), one of the most popular horticultural plant groups, is an interesting case study. Hundreds of cactus species have been introduced outside their native ranges; a few of them are among the most damaging invasive plant species in the world. We reviewed the drivers of introductions and invasions in the family and seek insights that can be used to minimize future risks. We compiled a list of species in the family and determined which have been recorded as invasive. We also mapped current global distributions and modelled the potential global distributions based on distribution data of known invasive taxa. Finally, we identified whether invasiveness is phylogenetically clustered for cacti and whether particular traits are correlated with invasiveness. Only 57 of the 1922 cactus species recognized in this treatment have been recorded as invasive. There are three invasion hotspots: South Africa (35 invasive species recorded), Australia (26 species) and Spain (24 species). However, there are large areas of the world with climates suitable for cacti that are at risk of future invasion—in particular, parts of China, eastern Asia and central Africa. The invasive taxa represent an interesting subset of the total species pool. There is a significant phylogenetic signal: invasive species occur in 2 of the 3 major phylogenetic clades and in 13 of the 130 genera. This phylogenetic signal is not driven by human preference, i.e. horticultural trade, but all invasive species are from 5 of the 12 cactus growth forms. Finally, invasive species tend to have significantly larger native ranges than non-invasive species, and none of the invasive species are of conservation concern in their

  20. Separation of chemical species

    International Nuclear Information System (INIS)

    Rentzepis, P.M.

    1977-01-01

    Isotopic separation is accomplished by (1) a second photon irradiation step for selective ionization of a first isotopic species and (2) selective precipitation of a generally immiscible liquid from the saturating vapor phase on the ionized species. The first photon corresponds with a sharply defined spectral portion of the irradiation which exclusively excites the first species to a vibrational level. The second photon further excites this species to its ionization level. Selective precipitation is by coulombic attraction between the ionized species and the vapor. The procedure is applicable to any vapor phase ionizable material

  1. Comparative gene expression between two yeast species

    Directory of Open Access Journals (Sweden)

    Guan Yuanfang

    2013-01-01

    Full Text Available Abstract Background Comparative genomics brings insight into sequence evolution, but even more may be learned by coupling sequence analyses with experimental tests of gene function and regulation. However, the reliability of such comparisons is often limited by biased sampling of expression conditions and incomplete knowledge of gene functions across species. To address these challenges, we previously systematically generated expression profiles in Saccharomyces bayanus to maximize functional coverage as compared to an existing Saccharomyces cerevisiae data repository. Results In this paper, we take advantage of these two data repositories to compare patterns of ortholog expression in a wide variety of conditions. First, we developed a scalable metric for expression divergence that enabled us to detect a significant correlation between sequence and expression conservation on the global level, which previous smaller-scale expression studies failed to detect. Despite this global conservation trend, between-species gene expression neighborhoods were less well-conserved than within-species comparisons across different environmental perturbations, and approximately 4% of orthologs exhibited a significant change in co-expression partners. Furthermore, our analysis of matched perturbations collected in both species (such as diauxic shift and cell cycle synchrony demonstrated that approximately a quarter of orthologs exhibit condition-specific expression pattern differences. Conclusions Taken together, these analyses provide a global view of gene expression patterns between two species, both in terms of the conditions and timing of a gene's expression as well as co-expression partners. Our results provide testable hypotheses that will direct future experiments to determine how these changes may be specified in the genome.

  2. Taxonomic evaluation of species in the Streptomyces hirsutus clade using multi-locus sequence analysis and proposals to reclassify several species in this clade

    Science.gov (United States)

    Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...

  3. Combinatorial Cis-regulation in Saccharomyces Species

    Directory of Open Access Journals (Sweden)

    Aaron T. Spivak

    2016-03-01

    Full Text Available Transcriptional control of gene expression requires interactions between the cis-regulatory elements (CREs controlling gene promoters. We developed a sensitive computational method to identify CRE combinations with conserved spacing that does not require genome alignments. When applied to seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed some evidence of combinatorial transcriptional behavior in several existing datasets including: (1 chromatin immunoprecipitation data for colocalization of transcription factors, (2 gene expression data for coexpression of predicted regulatory targets, and (3 gene ontology databases for common pathway membership of predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipitation experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments confirmed that transcription factor (TF occupancy at the promoters of the CRE combination target genes depends on the predicted cofactor while occupancy of other promoters is independent of the predicted cofactor. Our method has the additional advantage of identifying regulatory differences between species. By analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation between the species and showed that the predicted changes in gene regulation explain several of the species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations appear to regulate genes involved in distinct biological processes in the two different species. The results of this research demonstrate that (1 combinatorial cis-regulation can be inferred by multi-genome analysis and (2 combinatorial cis-regulation can explain differences in gene expression between species.

  4. Endangered Species Program, Naval Petroleum Reserves in California

    International Nuclear Information System (INIS)

    1992-12-01

    Naval Petroleum Reserve No. 1 (NPR-1) is operated by the U. S. Department of Energy (DOE) and Chevron USA (CUSA). Four federally-listed endangered animal species and one federally-threatened plant species are known to occur on the Naval Petroleum Reserves in California (NPRC): the San Joaquin kit fox (Vulpes velox macrotis), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides nitratoides), and Hoover's wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act of 1973 (as amended) (Public Law 93-205), which declaresthat it is the policy of Congress that all Federal departments and agencies shall seek to conserve endangered and threatened species and shall utilize their authorities in furtherance of the purposes of the Act. DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The major objective of the EG ampersand G Energy Measurements, Inc. Endangered Species Program on NPR-1 and NPR-2 is to provide DOE with the scientific expertise and continuity of programs necessary for continued compliance with the Endangered SpeciesAct. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during Fiscal Year 1992 (FY92)

  5. RARE AND PROTECTED SPECIES IN URBAN FLORA OF GENICHESK

    Directory of Open Access Journals (Sweden)

    Maltseva S. Yu.

    2015-04-01

    Full Text Available Urbanization is one of the most characteristic features of scientific and technological progress, which is associated with the rapid growth of cities and the urban population. It leads to irreversible processes of transformation of the natural environment. It anthropogenic transformation in connection with the development of the city and the subsequent rapid urbanization deals a devastating blow to the remnants of natural fractions urbanflora, which is preserved in the vicinity of Genichesk and would threaten the survival of a number of rare species of plants that grow here only in small areas with a small number of individuals. The article studies the protected and rare species of plants growing in the urban environment Genichesk. The study was conducted by routing way, with the implementation of standard procedures for drying, installation and post-processing of herbarium specimens. The research resulted in found new habitats of species listed in the Red Book, such as Astragalus borysthenicus Klokov, Crambe maritima L., Tulipa gesneriana L., Astrodaucus littoralis (M. Bieb. Drude, Stipa ucrainica P. Smirn., Tamarix gracillis Willd. Also in the article provides a brief description of 11 species of vascular plants and their sozological value. Saving the plants, which listed in the Red Book of Ukraine, in the city Genichesk, is a difficult task. The main limiting factors are destruction of habitat, degradation of soil cover. As a result of anthropogenic activities, cultivation, creation of pastures and destruction of natural habitats are declining habitat and abundance of rare and endemic species. Collect flowers for bouquets also reduces the number of rare species. Every year in the spring on the outskirts of the city lit dry grass, which adversely affects the early-flowering plants, including rare, such as Tulipa gesneriana L., Adonis vernalis L., Convallia majalis L. Despite this, a significant number of these plants not only grows urboecotope

  6. Identification and diversity of Fusarium species isolated from tomato fruits

    Directory of Open Access Journals (Sweden)

    Murad Nur Baiti Abd

    2016-07-01

    Full Text Available Fruit rot of tomato is a serious disease caused by Fusarium species. Sampling was conducted throughout Selangor, Malaysia and fungal species identification was conducted based on morphological and gene encoding translation elongation factor 1-α (tef1-α sequence analysis. Five species of Fusarium were discovered namely F. oxysporum (including F. oxysporum f. sp. lycopersici, F. solani, F. equiseti, F. proliferatum and F. verticillioides. Our results provide additional information regarding the diversity of Fusarium species associated with fruit rot disease of tomato.

  7. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species

    Directory of Open Access Journals (Sweden)

    Hornett Emily A

    2012-08-01

    Full Text Available Abstract Background How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene coverage and expression analysis was further investigated in the non-model context by using increasingly divergent genomic reference species to group assembled contigs by unique genes. Results Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes. Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are relatively small. Conclusions Predicted gene sets from sequenced genomes of related species can provide a powerful method for grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to results obtained using gene models derived from a high quality genome, though biased towards conserved genes. Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.

  8. Short Communication Assessing the ability of fodder beet ( Beta ...

    African Journals Online (AJOL)

    A pot experiment was carried out to determine the sodium (Na) absorption ability of halophytic fodder beet (Beta vulgaris L. ʽBrigadierʼ) irrigated with water enriched to Na levels found in winery wastewater. Treatments comprised (1) soil without plants irrigated with untreated water or (2) Na-enriched water, and (3) fodder ...

  9. Localization and composition of seed oils of Crithmum maritimum L ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... 1Laboratoire d'Adaptation des Plantes aux Stress Abiotiques, Centre de ... was rich with oleic acid (78.6%), low level of palmitic acid (4.8%) and non negligible amount of linoleic ... soils, only some halophytes can support these conditions. ... Mature fruits were collected in December 2007 from plants in the.

  10. Endangered Species Program Naval Petroleum Reserves in California

    International Nuclear Information System (INIS)

    1992-02-01

    The Naval Petroleum Reserves in California (NPRC) are operated by the US Department of Energy (DOE). Construction and development activities, which are conducted by DOE at Naval Petroleum Reserve number-sign 1 (NPR-1) to comply with the Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258), potentially threaten the continued existence of four federally-listed endangered species: the San Joaquin kit fox, (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), and Tipton kangaroo rat (Dipodomys nitratoides nitratoides). All four are protected under the Endangered Species Act of 1973. The major objective of the Endangered Species Program on NPR-1 and NPR-2 is to provide DOE with the scientific expertise and continuity of programs necessary for continued compliance with the Endangered Species Act. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during Fiscal Year 1990 (FY90)

  11. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  12. Population Development of Baltic Bird Species: Great Cormorant (Phalacrocorax carbo sinensis) - Update with results from 2011

    DEFF Research Database (Denmark)

    Herrmann, Christof; Bregnballe, Thomas; Larsson, Kjell

    2011-01-01

    pair numbers started to increase during the second half of the 1970s. During the 1980s, the Cormorant started to expand its range towards the northern and eastern parts of the Baltic. Currently, the species is present in the whole Baltic Sea area, including the northern parts of the Gulf of Bothnia....... After a decade of exponential growth, the breeding population of the Cormorant has stabilized in the south-western Baltic (Denmark and the northern Federal States of Germany - Schleswig-Holstein and Mecklenburg-Western Pomerania) in the 1990s, but breeding populations are still growing in the central...

  13. Linking Keystone Species and Functional Groups: A New Operational Definition of the Keystone Species Concept

    OpenAIRE

    Robert D. Davic

    2003-01-01

    The concept of the "keystone species" is redefined to allow for the a priori prediction of these species within ecosystems. A keystone species is held to be a strongly interacting species whose top-down effect on species diversity and competition is large relative to its biomass dominance within a functional group. This operational definition links the community importance of keystone species to a specific ecosystem process, e.g., the regulation of species diversity, within functional groups ...

  14. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  15. Behavioral responses of three lemur species to different food enrichment devices.

    Science.gov (United States)

    Shapiro, Morgan E; Shapiro, Hannah G; Ehmke, Erin E

    2018-05-01

    Environmental enrichment is a tool used to promote the welfare and well-being of captive animals by encouraging the display of species-specific behaviors and reducing the stress or boredom induced by captive environments. Lemurs are highly endangered, yet few studies have analyzed the behavioral impacts of enrichment on captive populations. We studied the impacts of two novel enrichment devices on three lemur species (ring-tailed lemurs [Lemur catta], red-ruffed lemurs [Varecia rubra], and Coquerel's sifaka [Propithecus coquereli]) to determine both the overall and species-specific impacts of enrichment on lemur behavior. We recorded lemur behavior using the continuous sampling method to obtain behavior duration and analyzed our results using ANOVA Repeated Measures. Results showed enrichment effectiveness differed for each species and that different enrichment devices had varying impacts on lemur behavior across all species. We attributed the differences in species-specific responses to the unique locomotor patterns and methods of diet acquisition of each species, and the variances in behavioral responses across all species to the characteristics of each device. Our study highlights the importance of species-specific enrichment and encourages further research in this field in order to maximize the positive effects of enrichment, which in turn has the potential to affect the overall well-being of captive populations. © 2018 Wiley Periodicals, Inc.

  16. Species List and Status of Mammals and Birds in Sambisa Game ...

    African Journals Online (AJOL)

    This study determined the species list and status of mammals and birds in Sambisa Game Reserve. Species list was determined using direct sighting, animal signs and activities, information from hunters and visits to bush meat processing and selling centers. Results indicate that a total of seventeen (17) species of ...

  17. Bovine-associated CNS species resist phagocytosis differently

    Science.gov (United States)

    2013-01-01

    Background Coagulase-negative staphylococci (CNS) cause usually subclinical or mild clinical bovine mastitis, which often remains persistent. Symptoms are usually mild, mostly only comprising slight changes in the appearance of milk and possibly slight swelling. However, clinical mastitis with severe signs has also been reported. The reasons for the differences in clinical expression are largely unknown. Macrophages play an important role in the innate immunity of the udder. This study examined phagocytosis and killing by mouse macrophage cells of three CNS species: Staphylococcus chromogenes (15 isolates), Staphylococcus agnetis (6 isolates) and Staphylococcus simulans (15 isolates). Staphylococcus aureus (7 isolates) was also included as a control. Results All the studied CNS species were phagocytosed by macrophages, but S. simulans resisted phagocytosis more effectively than the other CNS species. Only S. chromogenes was substantially killed by macrophages. Significant variations between isolates were seen in both phagocytosis and killing by macrophages and were more common in the killing assays. Significant differences between single CNS species and S. aureus were observed in both assays. Conclusion This study demonstrated that differences in the phagocytosis and killing of mastitis-causing staphylococci by macrophages exist at both the species and isolate level. PMID:24207012

  18. Wildlife Species, Potential habitat layer for Forest Interior Dwelling Species in the State of Maryland. These data are only the results of a model depicting where FIDS habitat might occur based on certain criteria. These polygons have NOT been field tested or field verifi, Published in 2006, 1:63360 (1in=1mile) scale, Maryland Department of Natural Resources (DNR).

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Wildlife Species dataset current as of 2006. Potential habitat layer for Forest Interior Dwelling Species in the State of Maryland. These data are only the results...

  19. Faecal analysis suggests generalist diets in three species of ...

    African Journals Online (AJOL)

    The overlap in other arthropod taxa ingested was low across species and seasons, suggesting an opportunistic component to their foraging behaviour. We distinguished plant matter in faecal samples of all species in all seasons, reflecting either voluntary or accidental ingestion. The results of this study suggest that the ...

  20. Are species' responses to global change predicted by past niche evolution?

    Science.gov (United States)

    Lavergne, Sébastien; Evans, Margaret E. K.; Burfield, Ian J.; Jiguet, Frederic; Thuiller, Wilfried

    2013-01-01

    Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available phylogenetic and niche data. We examined the assemblage of 409 European bird species for which estimates of demographic trends between 1970 and 2000 are available, along with a species-level phylogeny and data on climatic, habitat and trophic niches. We found that species' proneness to demographic decline is associated with slow evolution of the habitat niche in the past, in addition to certain current-day life-history and ecological traits. A similar result was found at a higher taxonomic level, where families prone to decline have had a history of slower evolution of climatic and habitat niches. Our results support the view that niche conservatism can prevent some species from coping with environmental change. Thus, linking patterns of past niche evolution and contemporary species dynamics for large species samples may provide insights into how niche evolution may rescue certain lineages in the face of global change. PMID:23209172