WorldWideScience

Sample records for hall generators

  1. Bulk electron spin polarization generated by the spin Hall current

    OpenAIRE

    Korenev, V. L.

    2005-01-01

    It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  2. Bulk electron spin polarization generated by the spin Hall current

    Science.gov (United States)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  3. Experimental Evaluation of MHD Generators Operating at High Hall Coefficients

    International Nuclear Information System (INIS)

    Barthelemy, R.R.; Stephan, B.G.; Cooper, R.F.

    1966-01-01

    The experimental evaluation of such open-cycle MHD generator operation, particularly at large values of the Hall parameter and Mach number, is scarce. A flexible combustion-driven MHD generator test facility is being constructed to investigate various generator-operating parameters, generator configurations and designs, and component materials. The plasma source is a combustion chamber in which toluene, or another suitable fuel, is burned with gaseous oxygen diluted with nitrogen. Potassium hydroxide seed is injected with the fuel to produce the necessary plasma conductivity. The gas stream is accelerated in a supersonic nozzle and then flows through the channel. The Hall channel is constructed of water-cooled Inconel rings suitably grooved for the zirconia electrode material. The rings are insulated from each other with Teflon spacers which are shielded from the high temperature gas by a layer of alumina refractory. The channel consists of 54 water-cooled rings assembled in three independent sections. Provisions for instrumentation consist of 15 points for static pressure measurement along the nozzle, channel and diffuser; 20 thermocouple measurements; 3 split rings for transverse current measurements; a voltmeter panel for all 54 electrodes; and all necessary fluid and electrical monitoring instruments. The channel is followed by a diffuser in which some of the dynamic pressure of the gas stream is recovered. The magnet is an iron core design with coils wound of hollow conductor to permit of water-cooling for high power operation. The magnet can operate at field strengths of up to 23 kG. Details of the test programme planned for the generator (commissioning at the end of 1966) are given. (author)

  4. Spin Hall effects

    Science.gov (United States)

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  5. Shielding evaluation of neutron generator hall by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)

    2017-04-01

    A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)

  6. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  7. Hall devices improve electric motor efficiency

    Science.gov (United States)

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  8. Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers

    International Nuclear Information System (INIS)

    Schreier, Michael; Lotze, Johannes; Gross, Rudolf; Goennenwein, Sebastian T B; Bauer, Gerrit E W; Uchida, Ken-ichi; Daimon, Shunsuke; Kikkawa, Takashi; Saitoh, Eiji; Vasyuchka, Vitaliy I; Lauer, Viktor; Chumak, Andrii V; Serga, Alexander A; Hillebrands, Burkard; Flipse, Joost; Van Wees, Bart J

    2015-01-01

    We carried out a concerted effort to determine the absolute sign of the inverse spin Hall effect voltage generated by spin currents injected into a normal metal. We focus on yttrium iron garnet (YIG)∣platinum bilayers at room temperature, generating spin currents by microwaves and temperature gradients. We find consistent results for different samples and measurement setups that agree with theory. We suggest a right-hand-rule to define a positive spin Hall angle corresponding to the voltage expected for the simple case of scattering of free electrons from repulsive Coulomb charges. (paper)

  9. Effect of non-uniform Hall parameter on the electrode voltage drop in Faraday-type combustion MHD generators

    International Nuclear Information System (INIS)

    Gupta, G.P.; Rohatgi, V.K.

    1982-01-01

    Following a simplified approach, an expression is derived for the gas-dynamic voltage drop in a finitely segmented Faraday-type combustion MHD generator, taking into account the non-uniform Hall parameter across the channel. Combining the electrical sheath voltage drop, discussed briefly, with the gas-dynamic voltage drop, the effect of a non-uniform Hall parameter on the electrode voltage drop is studied using the theoretical and experimental input parameters of the Indian MHD channel test. The condition for the validity of the usual assumption of uniform Hall parameter across the channel is pointed out. Analysis of the measured electrode voltage drop predicts the real gas conductivity in the core to be in the range of 60 to 75 per cent of the theoretically calculated core conductivity. (author)

  10. ac spin-Hall effect

    International Nuclear Information System (INIS)

    Entin-Wohlman, O.

    2005-01-01

    Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other

  11. Hall Effect Gyrators and Circulators

    Science.gov (United States)

    Viola, Giovanni; DiVincenzo, David P.

    2014-04-01

    The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  12. Elementary theory of quantum Hall effect

    Directory of Open Access Journals (Sweden)

    Keshav N. Shrivastava

    2008-04-01

    Full Text Available The Hall effect is the generation of a current perpendicular to both the direction of the applied electric as well as magnetic field in a metal or in a semiconductor. It is used to determine the concentration of electrons. The quantum Hall effect with integer quantization was discovered by von Klitzing and fractionally charged states were found by Tsui, Stormer and Gossard. Robert Laughlin explained the quantization of Hall current by using “flux quantization” and introduced incompressibility to obtain the fractional charge. We have developed the theory of the quantum Hall effect by using the theory of angular momentum. Our predicted fractions are in accord with those measured. We emphasize our explanation of the observed phenomena. We use spin to explain the fractional charge and hence we discover spin-charge locking.

  13. Hamaoka Atomic Energy Hall, Chubu Electric Power Co. , Inc

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Y [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1979-10-01

    Hamaoka Nuclear Power Station was constructed in the very large site of about 1.6 million m/sup 2/ surrounded by sand dunes and pine forests at the southern tip of Shizuoka Prefecture. Hamaoka Atomic Energy Hall was built on the right side of this power station. This hall had been planned as a part of the works commemorating the 20th anniversary of the founding of the company, and was opened in August, 1972. The building is of steel frame type, and has two floors of 1135 m/sup 2/ total area. The first floor comprises cinema room, power generation corner and open gallery, and the second floor comprises meeting room, native land corner and observation room. Moreover, there is observation platform on the roof. The purpose of the hall is coexistence and coprosperity with the regional residents, and 13 persons make explanations to visitors having reached to 1.9 million as of the end of June, 1979. It is incorporated in the sightseeing route centering around the Omaezaki lighthouse. The cinema hall accommodates 120 men, and the films concerning nuclear power generation and the construction of a nuclear power plant are shown. In the power generation corner, the explanation on nuclear power generation is made with models and panels. The third hall is being built now as energy corner, and it will be completed in autumn, 1979.

  14. Hamaoka Atomic Energy Hall, Chubu Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Kawasaki, Yukio

    1979-01-01

    Hamaoka Nuclear Power Station was constructed in the very large site of about 1.6 million m 2 surrounded by sand dunes and pine forests at the southern tip of Shizuoka Prefecture. Hamaoka Atomic Energy Hall was built on the right side of this power station. This hall had been planned as a part of the works commemorating the 20th anniversary of the founding of the company, and was opened in August, 1972. The building is of steel frame type, and has two floors of 1135 m 2 total area. The first floor comprises cinema room, power generation corner and open gallery, and the second floor comprises meeting room, native land corner and observation room. Moreover, there is observation platform on the roof. The purpose of the hall is coexistence and coprosperity with the regional residents, and 13 persons make explanations to visitors having reached to 1.9 million as of the end of June, 1979. It is incorporated in the sightseeing route centering around the Omaezaki lighthouse. The cinema hall accommodates 120 men, and the films concerning nuclear power generation and the construction of a nuclear power plant are shown. In the power generation corner, the explanation on nuclear power generation is made with models and panels. The third hall is being built now as energy corner, and it will be completed in autumn, 1979. (Kako, I.)

  15. Resonant Hall effect under generation of a self-sustaining mode of spin current in nonmagnetic bipolar conductors with identical characters between holes and electrons

    Science.gov (United States)

    Sakai, Masamichi; Takao, Hiraku; Matsunaga, Tomoyoshi; Nishimagi, Makoto; Iizasa, Keitaro; Sakuraba, Takahito; Higuchi, Koji; Kitajima, Akira; Hasegawa, Shigehiko; Nakamura, Osamu; Kurokawa, Yuichiro; Awano, Hiroyuki

    2018-03-01

    We have proposed an enhancement mechanism of the Hall effect, the signal of which is amplified due to the generation of a sustaining mode of spin current. Our analytic derivations of the Hall resistivity revealed the conditions indispensable for the observation of the effect: (i) the presence of the transverse component of an effective electric field due to spin splitting in chemical potential in addition to the longitudinal component; (ii) the simultaneous presence of holes and electrons each having approximately the same characteristics; (iii) spin-polarized current injection from magnetized electrodes; (iv) the boundary condition for the transverse current (J c, y = 0). The model proposed in this study was experimentally verified by using van der Pauw-type Hall devices consisting of the nonmagnetic bipolar conductor YH x (x ≃ 2) and TbFeCo electrodes. Replacing Au electrodes with TbFeCo electrodes alters the Hall resistivity from the ordinary Hall effect to the anomalous Hall-like effect with an enhancement factor of approximately 50 at 4 T. We interpreted the enhancement phenomenon in terms of the present model.

  16. Intrinsic superspin Hall current

    Science.gov (United States)

    Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle

    2017-09-01

    We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.

  17. W∞ gauge theory and the quantum Hall effect

    International Nuclear Information System (INIS)

    Shizuya, K.

    1994-05-01

    It is shown that a planar system of Hall electrons coupled to an applied electromagnetic field is written in the form of a W ∞ gauge theory. The associated W ∞ gauge field is expressed nonlinearly in terms of an infinite set of multipoles of the electromagnetic field. The W ∞ transformations generate mixing among the Landau levels. They provide a systematic way to classify the electromagnetic characteristics of the Hall system according to the resolution of external probes. In particular, an exact long-wavelength connection is derived between the carrier density and the Hall conductance in the presence of electron-electron interactions. Our approach is complementary to an earlier one and reveals a dual role the W ∞ gauge symmetry plays in the Hall dynamics. (author)

  18. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2015-09-16

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.

  19. Hall Sensor Output Signal Fault-Detection & Safety Implementation Logic

    Directory of Open Access Journals (Sweden)

    Lee SangHun

    2016-01-01

    Full Text Available Recently BLDC motors have been popular in various industrial applications and electric mobility. Recently BLDC motors have been popular in various industrial applications and electric mobility. In most brushless direct current (BLDC motor drives, there are three hall sensors as a position reference. Low resolution hall effect sensor is popularly used to estimate the rotor position because of its good comprehensive performance such as low cost, high reliability and sufficient precision. Various possible faults may happen in a hall effect sensor. This paper presents a fault-tolerant operation method that allows the control of a BLDC motor with one faulty hall sensor and presents the hall sensor output fault-tolerant control strategy. The situations considered are when the output from a hall sensor stays continuously at low or high levels, or a short-time pulse appears on a hall sensor signal. For fault detection, identification of a faulty signal and generating a substitute signal, this method only needs the information from the hall sensors. There are a few research work on hall effect sensor failure of BLDC motor. The conventional fault diagnosis methods are signal analysis, model based analysis and knowledge based analysis. The proposed method is signal based analysis using a compensation signal for reconfiguration and therefore fault diagnosis can be fast. The proposed method is validated to execute the simulation using PSIM.

  20. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun; Grigoryan, Vahram L.; Maekawa, Sadamichi; Wang, Xuhui; Xiao, Jiang

    2015-01-01

    induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  1. Adomian decomposition method for Hall and ion-slip effects on mixed convection flow of a chemically reacting Newtonian fluid between parallel plates with heat generation/absorption

    Directory of Open Access Journals (Sweden)

    Ch.Ram Reddy

    2017-12-01

    Full Text Available This paper analyzes the heat and mass transfer characteristics on mixed convective fully developed flow in an electrically conducting Newtonian fluid between vertical parallel plates. The chemical reaction, heat generation, Hall and ion-slip effects are taken into consideration. By using similarity transformations the nonlinear governing equations are reduced into dimensionless form and hence solved using Adomian decomposition method (ADM. The influence of magnetic parameter, Hall parameter, ion-slip parameter, chemical reaction parameter, and heat generation/absorption parameter on non-dimensional velocities, temperature and concentration profiles are exhibited graphically. In addition, the numerical data for skin friction, heat and mass transfer rates are shown in tabular form.

  2. Extrinsic spin Hall effect in graphene

    Science.gov (United States)

    Rappoport, Tatiana

    The intrinsic spin-orbit coupling in graphene is extremely weak, making it a promising spin conductor for spintronic devices. In addition, many applications also require the generation of spin currents in graphene. Theoretical predictions and recent experimental results suggest one can engineer the spin Hall effect in graphene by greatly enhancing the spin-orbit coupling in the vicinity of an impurity. The extrinsic spin Hall effect then results from the spin-dependent skew scattering of electrons by impurities in the presence of spin-orbit interaction. This effect can be used to efficiently convert charge currents into spin-polarized currents. I will discuss recent experimental results on spin Hall effect in graphene decorated with adatoms and metallic cluster and show that a large spin Hall effect can appear due to skew scattering. While this spin-orbit coupling is small if compared with what it is found in metals, the effect is strongly enhanced in the presence of resonant scattering, giving rise to robust spin Hall angles. I will present our single impurity scattering calculations done with exact partial-wave expansions and complement the analysis with numerical results from a novel real-space implementation of the Kubo formalism for tight-binding Hamiltonians. The author acknowledges the Brazilian agencies CNPq, CAPES, FAPERJ and INCT de Nanoestruturas de Carbono for financial support.

  3. Experimental halls workshop summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    On May 26 and 27, 1976, approximately 50 people met for an informal workshop on plans for experimental halls for ISABELLE. Plans as they exist in the May 1976 version of the ISABELLE proposal were presented. Discussions were held on the following four general topics by separate working groups: (1) pros and cons of open areas as compared with enclosed halls; (2) experimental hall needs of ep, anti pp, and other options; (3) hall for the lepton detector; and (4) hall for the hadron spectrometer. The planning for experimental halls at PEP, the hall for the lepton detector, the hadron spectrometer, and open areas are discussed

  4. Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)

    2012-05-15

    We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.

  5. Diagnostics Systems for Permanent Hall Thrusters Development

    Science.gov (United States)

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  6. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  7. General vibration monitoring: Experimental hall

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1993-01-01

    The reported vibration data were generated from measurements made on the experimental hall floor on December 2, 1992. At the time of the measurements, the ESRF hydrolevel was set-up in the Early Assembly Area (EAA) of the experimental hall and was being used to measure static displacement (settlement) of the floor. The vibration measurement area was on and adjacent to the EAA, in the vicinity of the ESRF hydrolevel test which was in progress. This report summarizes the objectives, instrumentation, measurement locations, observations, and conclusions, and provides selected results in the form of RMS vs. time plots, and power spectral densities from which frequency information can be derived. Measured response amplitudes were within the vibration criteria established for the APS

  8. Experimental halls workshop summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    A brief discussion is given of: (1) pros and cons of open areas as compared with enclosed halls; (2) experimental hall needs of ep, anti p p, and other options; (3) hall for the lepton detector; and, (4) hall for the hadron spectrometer

  9. Experimental halls workshop summary

    International Nuclear Information System (INIS)

    Thorndike, A.

    1976-01-01

    At the experimental halls workshop, discussions were held on: (1) open areas as compared with enclosed halls; (2) the needs of ep, anti pp, and other options; (3) the hall for the lepton detector; and (4) the hall for the hadron spectrometer. The value of different possibilities for the future experimental program was explored. A number of suggestions emerged which will be used as the design of the experimental halls progresses

  10. Effect of Hall current and chemical reaction on MHD flow along an exponentially accelerated porous flat plate with internal heat absorption/generation

    International Nuclear Information System (INIS)

    Rath, Pravat Kumar; Dash, G.C.; Patra, Ajit Kumar

    2010-01-01

    Effect of Hall current on the unsteady free convection flow of an electrically conducting incompressible viscous fluid past an exponentially accelerated vertical porous flat plate with internal heat absorption/generation in the presence of foreign gases (such as H 2 , CO 2 , H 2 O, NH 3 ) and chemical reaction has been investigated. An uniform magnetic field transverse to the plate has been applied. The effects of the Hall current m, the hydromagnetic parameter Mt, the chemical reaction parameter K c the Grashof number for heat transfer G r , the Grashof number for mass transfer G c , the Schmidt number S c , the Prandtl number P r and the transpiration parameter α are discussed in detail. (author)

  11. Hypernuclear Spectroscopy at JLab Hall C

    International Nuclear Information System (INIS)

    Hashimoto, Osamu; Chiba, Atsushi; Doi, Daisuke; Fujii, Yu; Toshiyuki, Gogami; Kanda, Hiroki; Kaneta, M.; Kawama, Daisuke; Maeda, Kazushige; Maruta, Tomofumi; Matsumura, Akihiko; Nagao, Sho; Nakamura, Satoshi; Shichijo, Ayako; Tamura, Hirokazu; Taniya, Naotaka; Yamamoto, Taku; Yokota, Kosuke; Kato, S.; Sato, Yoshinori; Takahashi, Toshiyuki; Noumi, Hiroyuki; Motoba, T.; Hiyama, E.; Albayrak, Ibrahim; Ates, Ozgur; Chen, Chunhua; Christy, Michael; Keppel, Cynthia; Kohl, Karl; Li, Ya; Liyanage, Anusha Habarakada; Tang, Liguang; Walton, T.; Ye, Zhihong; Yuan, Lulin; Zhu, Lingyan; Baturin, Pavlo; Boeglin, Werner; Dhamija, Seema; Markowitz, Pete; Raue, Brian; Reinhold, Joerg; Hungerford, Ed; Ent, Rolf; Fenker, Howard; Gaskell, David; Horn, Tanja; Jones, Mark; Smith, Gregory; Vulcan, William; Wood, Stephen; Johnston, C.; Simicevic, Neven; Wells, Stephen; Samanta, Chhanda; Hu, Bitao; Shen, Ji; Wang, W.; Zhang, Xiaozhuo; Zhang, Yi; Feng, Jing; Fu, Y.; Zhou, Jian; Zhou, S.; Jiang, Yi; Lu, H.; Yan, Xinhu; Ye, Yunxiu; Gan, Liping; Ahmidouch, Abdellah; Danagoulian, Samuel; Gasparian, Ashot; Elaasar, Mostafa; Wesselmann, Frank; Asaturyan, Arshak; Margaryan, Amur; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Tadevosyan, Vardan; Androic, Darko; Furic, Miroslav; Petkovic, Tomislav; Seva, Tomislav; Niculescu, Gabriel; Niculescu, Maria-Ioana; Rodriguez, Victor; Cisbani, Evaristo; Cusanno, Francesco; Garibaldi, Franco; Urciuoli, Guido; De Leo, Raffaele; Maronne, S.; Achenbach, Carsten; Pochodzalla, J.

    2010-01-01

    Since the 1st generation experiment, E89-009, which was successfully carried out as a pilot experiment of (e,e(prime)K + ) hypernuclear spectroscopy at JLab Hall C in 2000, precision hypernuclear spectroscopy by the (e,e(prime)K + ) reactions made considerable progress. It has evolved to the 2nd generation experiment, E01-011, in which a newly constructed high resolution kaon spectrometer (HKS) was installed and the 'Tilt method' was adopted in order to suppress large electromagnetic background and to run with high luminosity. Preliminary high-resolution spectra of 7 ΛHe and 28 ΛAl together with that of 12 ΛB that achieved resolution better than 500 keV(FWHM) were obtained. The third generation experiment, E05-115, has completed data taking with an experimental setup combining a new splitter magnet, high resolution electron spectrometer (HES) and the HKS used in the 2nd generation experiment. The data were accumulated with targets of 7 Li, 9 Be, 10 B, 12 C and 52 Cr as well as with those of CH 2 and H 2 O for calibration. The analysis is under way with particular emphasis of determining precision absolute hypernuclear masses. In this article, hypernuclear spectroscopy program in the wide mass range at JLab Hall C that has undergone three generation is described.

  12. The quantum Hall effect in quantum dot systems

    International Nuclear Information System (INIS)

    Beltukov, Y M; Greshnov, A A

    2014-01-01

    It is proposed to use quantum dots in order to increase the temperatures suitable for observation of the integer quantum Hall effect. A simple estimation using Fock-Darwin spectrum of a quantum dot shows that good part of carriers localized in quantum dots generate the intervals of plateaus robust against elevated temperatures. Numerical calculations employing local trigonometric basis and highly efficient kernel polynomial method adopted for computing the Hall conductivity reveal that quantum dots may enhance peak temperature for the effect by an order of magnitude, possibly above 77 K. Requirements to potentials, quality and arrangement of the quantum dots essential for practical realization of such enhancement are indicated. Comparison of our theoretical results with the quantum Hall measurements in InAs quantum dot systems from two experimental groups is also given

  13. Topological Hall and spin Hall effects in disordered skyrmionic textures

    KAUST Repository

    Ndiaye, Papa Birame; Akosa, Collins Ashu; Manchon, Aurelien

    2017-01-01

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  14. Topological Hall and spin Hall effects in disordered skyrmionic textures

    KAUST Repository

    Ndiaye, Papa Birame

    2017-02-24

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  15. In-plane current induced domain wall nucleation and its stochasticity in perpendicular magnetic anisotropy Hall cross structures

    International Nuclear Information System (INIS)

    Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.

    2015-01-01

    Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation

  16. Interaction Induced Quantum Valley Hall Effect in Graphene

    Directory of Open Access Journals (Sweden)

    E. C. Marino

    2015-03-01

    Full Text Available We use pseudo-quantum electrodynamics in order to describe the full electromagnetic interaction of the p electrons in graphene in a consistent 2D formulation. We first consider the effect of this interaction in the vacuum polarization tensor or, equivalently, in the current correlator. This allows us to obtain the T→0 conductivity after a smooth zero-frequency limit is taken in Kubo’s formula. Thereby, we obtain the usual expression for the minimal conductivity plus corrections due to the interaction that bring it closer to the experimental value. We then predict the onset of an interaction-driven spontaneous quantum valley Hall effect below an activation temperature of the order of 2 K. The transverse (Hall valley conductivity is evaluated exactly and shown to coincide with the one in the usual quantum Hall effect. Finally, by considering the effects of pseudo-quantum electrodynamics, we show that the electron self-energy is such that a set of P- and T-symmetric gapped electron energy eigenstates are dynamically generated, in association with the quantum valley Hall effect.

  17. Hall effect in hopping regime

    International Nuclear Information System (INIS)

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-01-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  18. Hall effect in hopping regime

    Energy Technology Data Exchange (ETDEWEB)

    Avdonin, A., E-mail: avdonin@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Skupiński, P. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Grasza, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa (Poland)

    2016-02-15

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  19. Contribution of the study of the Hall Effect. Hall Effect of powder products

    International Nuclear Information System (INIS)

    Cherville, Jean

    1961-01-01

    This research thesis reports the development of an apparatus aimed at measuring the Hall Effect and the magneto-resistance of powders at room temperature and at the liquid nitrogen temperature. The author also proposes a theoretical contribution to the Hall Effect and reports the calculation of conditions to be met to obtain a correct value for the Hall constant. Results are experimentally verified. The method is then applied to the study of a set of powdered pre-graphitic graphites. The author shows that their Hall coefficient confirms the model already proposed by Mrozowski. The study of the Hall Effect of any kind of powders can thus be performed, and the Hall Effect can therefore be a mean to study mineral and organic compounds, and notably powdered biological molecules [fr

  20. Cryogenic microsize Hall sensors

    International Nuclear Information System (INIS)

    Kvitkovic, J.; Polak, M.

    1993-01-01

    Hall sensors have a variety of applications in magnetic field measurements. The active area of the Hall sensor does not play an important role in measuring of homogeneous magnetic field. Actually Hall sensors are widely used to measure profiles of magnetic fields produced by magnetization currents in samples of HTC superconductors, as well as of LTC ones. Similar techniques are used to measure magnetization of both HTC and LTC superconductors. In these cases Hall sensor operates in highly inhomogeneous magnetic fields. Because of that, Hall sensors with very small active area are required. We developed and tested Hall sensors with active area 100 μm x 100 μm - type M and 50 μm x 50 μm - type V. Here we report on the most imporant parameters of these units, as well as on their properties as differential magnetometer. (orig.)

  1. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    OpenAIRE

    N'diaye, P. B.; Akosa, C. A.; Manchon, A.

    2016-01-01

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-B\\"uttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic a...

  2. Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. Y.; Yang, G. [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, S. G., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, J. L. [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Wang, R. M. [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Amsellem, E.; Kohn, A. [Department of Materials Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Yu, G. H., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-04-13

    Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.

  3. The infrared Hall effect in YBCO: Temperature and frequency dependence of Hall scattering

    International Nuclear Information System (INIS)

    Grayson, M.; Cerne, J.; Drew, H.D.; Schmadel, D.C.; Hughes, R.; Preston, J.S.; Kung, P.J.; Vale, L.

    1999-01-01

    The authors measure the Hall angle, θ H , in YBCO films in the far- and mid-infrared to determine the temperature and frequency dependence of the Hall scattering. Using novel modulation techniques they measure both the Faraday rotation and ellipticity induced by these films in high magnetic fields to deduce the complex conductivity tensor. They observe a strong temperature dependence of the mid-infrared Hall conductivity in sharp contrast to the weak dependence of the longitudinal conductivity. By fitting the frequency dependent normal state Hall angle to a Lorentzian θ H (ω) = ω H /(γ H minus iω) they find the Hall frequency, ω H , is nearly independent of temperature. The Hall scattering rate, γ H , is consistent with γ H ∼ T 2 up to 200 K and is remarkably independent of IR frequency suggesting non-Fermi liquid behavior

  4. Metal Hall sensors for the new generation fusion reactors of DEMO scale

    Science.gov (United States)

    Bolshakova, I.; Bulavin, M.; Kargin, N.; Kost, Ya.; Kuech, T.; Kulikov, S.; Radishevskiy, M.; Shurygin, F.; Strikhanov, M.; Vasil'evskii, I.; Vasyliev, A.

    2017-11-01

    For the first time, the results of on-line testing of metal Hall sensors based on nano-thickness (50-70) nm gold films, which was conducted under irradiation by high-energy neutrons up to the high fluences of 1 · 1024 n · m-2, are presented. The testing has been carried out in the IBR-2 fast pulsed reactor in the neutron flux with the intensity of 1.5 · 1017 n · m-2 · s-1 at the Joint Institute for Nuclear Research. The energy spectrum of neutron flux was very close to that expected for the ex-vessel sensors locations in the ITER experimental reactor. The magnetic field sensitivity of the gold sensors was stable within the whole fluence range under research. Also, sensitivity values at the start and at the end of irradiation session were equal within the measurement error (<1%). The results obtained make it possible to recommend gold sensors for magnetic diagnostics in the new generation fusion reactors of DEMO scale.

  5. The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-02-15

    Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.

  6. Skyrmions and Hall viscosity

    Science.gov (United States)

    Kim, Bom Soo

    2018-05-01

    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.

  7. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  8. Energy consumption of sport halls

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The energy consumption of Finland's sports halls (ball games halls, ice hockey halls and swimming halls) represent approximately 1% of that of the country's whole building stock. In the light of the facts revealed by the energy study the potential energy saving rate in sports halls is 15-25%. The total savings would be something like FIM 30-40 million per annum, of which about a half would be achieved without energy-economic investments only by changing utilization habits and by automatic control measures. The energy-economic investments are for the most part connected with ventilation and their repayment period is from one to five years. On the basis of the energy study the following specific consumption are presented as target values: swimming halls: heat (kWh/m*H3/a)100, electricity (kWh/m*H3/a)35, water (l/m*H3/a)1000 icehockey halls (warm): heat (kWh/m*H3/a)25, electricity (kWh/m*H3/a)15, water (l/m*H3/a)200, ball games halls (multi-purpose halls): heat (kWh/m*H3/a)30, electricity (kWh/m*H3/a)25, water (l/m*H3/a)130. In the study the following points proved to be the central areas of energy saving in sports halls: 1. Flexible regulation of the temperature in sports spaces on the basis of the sport in question. 2. The ventilation of swimming halls should be adjusted in such a way that the humidity of the hall air would comply with the limit humidity curve determined by the quality of structures and the temperature of the outdoor air. 3. An ice skating hall is an establishment producing condensing energy from 8 to 9 months a year worth of approx. 100.000-150.000 Finnmarks. The development of the recovery of condensing energy has become more important. 4. The ventilation of ball games halls may account for over 50% of the energy consumption of the whole building. Therefore special attention should be paid to the optimatization of ventilation as a whole.

  9. Magnus force on quantum Hall skyrmions and vortices

    International Nuclear Information System (INIS)

    Dhar, S.; Basu, B.; Bandyopadhyay, P.

    2003-01-01

    We have discussed here the Magnus force acting on the vortices and skyrmions in the quantum Hall systems. We have found that it is generated by the chirality of the system which is associated with the Berry phase and is same for both the cases

  10. Transit-time instability in Hall thrusters

    International Nuclear Information System (INIS)

    Barral, Serge; Makowski, Karol; Peradzynski, Zbigniew; Dudeck, Michel

    2005-01-01

    Longitudinal waves characterized by a phase velocity of the order of the velocity of ions have been recurrently observed in Hall thruster experiments and simulations. The origin of this so-called ion transit-time instability is investigated with a simple one-dimensional fluid model of a Hall thruster discharge in which cold ions are accelerated between two electrodes within a quasineutral plasma. A short-wave asymptotics applied to linearized equations shows that plasma perturbations in such a device consist of quasineutral ion acoustic waves superimposed on a background standing wave generated by discharge current oscillations. Under adequate circumstances and, in particular, at high ionization levels, acoustic waves are amplified as they propagate, inducing strong perturbation of the ion density and velocity. Responding to the subsequent perturbation of the column resistivity, the discharge current generates a standing wave, the reflection of which sustains the generation of acoustic waves at the inlet boundary. A calculation of the frequency and growth rate of this resonance mechanism for a supersonic ion flow is proposed, which illustrates the influence of the ionization degree on their onset and the approximate scaling of the frequency with the ion transit time. Consistent with experimental reports, the traveling wave can be observed on plasma density and velocity perturbations, while the plasma potential ostensibly oscillates in phase along the discharge

  11. Elastic gauge fields and Hall viscosity of Dirac magnons

    Science.gov (United States)

    Ferreiros, Yago; Vozmediano, María A. H.

    2018-02-01

    We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.

  12. Framing anomaly in the effective theory of the fractional quantum Hall effect.

    Science.gov (United States)

    Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo

    2015-01-09

    We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.

  13. Scanning vector Hall probe microscopy

    International Nuclear Information System (INIS)

    Cambel, V.; Gregusova, D.; Fedor, J.; Kudela, R.; Bending, S.J.

    2004-01-01

    We have developed a scanning vector Hall probe microscope for mapping magnetic field vector over magnetic samples. The microscope is based on a micromachined Hall sensor and the cryostat with scanning system. The vector Hall sensor active area is ∼5x5 μm 2 . It is realized by patterning three Hall probes on the tilted faces of GaAs pyramids. Data from these 'tilted' Hall probes are used to reconstruct the full magnetic field vector. The scanning area of the microscope is 5x5 mm 2 , space resolution 2.5 μm, field resolution ∼1 μT Hz -1/2 at temperatures 10-300 K

  14. Two dimensional Hall MHD modeling of a plasma opening switch with density inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Zabaidullin, O [Kurchatov Institute, Moscow (Russian Federation); Chuvatin, A; Etlicher, B [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The results of two-dimensional numerical modeling of the Plasma Opening Switch in the MHD framework with Hall effect are presented. An enhanced Hall diffusion coefficient was used in the simulations. Recent experiments justify the application of this approach. The result of the modeling also correlates better with the experiment than in the case of the classical diffusion coefficient. Numerically generated pictures propose a switching scenario in which the translation between the conduction and opening phases can be explained by an abrupt `switching on` and further domination of the Hall effect at the end of the conduction phase. (author). 3 figs., 6 refs.

  15. DISK FORMATION IN MAGNETIZED CLOUDS ENABLED BY THE HALL EFFECT

    International Nuclear Information System (INIS)

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun

    2011-01-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. A dynamically important magnetic field presents a significant obstacle to the formation of protostellar disks. Recent studies have shown that magnetic braking is strong enough to suppress the formation of rotationally supported disks in the ideal MHD limit. Whether non-ideal MHD effects can enable disk formation remains unsettled. We carry out a first study on how disk formation in magnetic clouds is modified by the Hall effect, the least explored of the three non-ideal MHD effects in star formation (the other two being ambipolar diffusion and Ohmic dissipation). For illustrative purposes, we consider a simplified problem of a non-self-gravitating, magnetized envelope collapsing onto a central protostar of fixed mass. We find that the Hall effect can spin up the inner part of the collapsing flow to Keplerian speed, producing a rotationally supported disk. The disk is generated through a Hall-induced magnetic torque. Disk formation occurs even when the envelope is initially non-rotating, provided that the Hall coefficient is large enough. When the magnetic field orientation is flipped, the direction of disk rotation is reversed as well. The implication is that the Hall effect can in principle produce both regularly rotating and counter-rotating disks around protostars. The Hall coefficient expected in dense cores is about one order of magnitude smaller than that needed for efficient spin-up in these models. We conclude that the Hall effect is an important factor to consider in studying the angular momentum evolution of magnetized star formation in general and disk formation in particular.

  16. Nonlinear response of the quantum Hall system to a strong electromagnetic radiation

    International Nuclear Information System (INIS)

    Avetissian, H.K.; Mkrtchian, G.F.

    2016-01-01

    We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility. - Highlights: • Nonlinear optical response of a quantum Hall system has specific plateaus feature. • This effect remains robust against the significant broadening of Landau levels. • It can be observed via the third harmonic signal and the nonlinear Faraday effect.

  17. Service hall in Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc

    International Nuclear Information System (INIS)

    Tawara, Shigesuke

    1979-01-01

    There are six BWR type nuclear power plants in the Number 1 Fukushima Nuclear Power Station, Tokyo Electric Power Company, Inc. The service hall of the station is located near the entrance of the station. In the center of this service hall, there is the model of a nuclear reactor of full scale. This mock-up shows the core region in the reactor pressure vessel for the number one plant. The diameter and the thickness of the pressure vessel are about 5 m and 16 cm, respectively. The fuel assemblies and control rods are set just like the actual reactor, and the start-up operation of the reactor is shown colorfully and dynamically by pushing a button. When the control rods are pulled out, the boiling of water is demonstrated. The 1/50 scale model of the sixth plant with the power generating capacity of 1100 MWe is set, and this model is linked to the mock-up of reactor written above. The operations of a recirculating loop, a turbine and a condenser are shown by switching on and off lamps. The other exhibitions are shielding concrete wall, ECCS model, and many kinds of panels and models. This service hall is incorporated in the course of study and observation of civics. The good environmental effects to fishes and shells are explained in this service hall. Official buildings and schools are built near the service hall utilizing the tax and grant concerning power generation. This service hall contributes to give much freedom from anxiety to the public by the tour. (Nakai, Y.)

  18. Not your grandfather's concert hall

    Science.gov (United States)

    Cooper, Russell; Malenka, Richard; Griffith, Charles; Friedlander, Steven

    2004-05-01

    The opening of Judy and Arthur Zankel Hall on 12 September 2003, restores Andrew Carnegie's original 1891 concept of having three outstanding auditoriums of different sizes under one roof, and creates a 21st-century venue for music performance and education. With concerts ranging from early music to avant-garde multimedia productions, from jazz to world music, and from solo recitals to chamber music, Zankel Hall expands the breadth and depth of Carnegie Hall's offerings. It allows for the integration of programming across three halls with minifestivals tailored both to the size and strengths of each hall and to the artists and music to be performed. The new flexible space also provides Carnegie Hall with an education center equipped with advanced communications technology. This paper discusses the unique program planned for this facility and how the architects, theatre consultants, and acousticians developed a design that fulfilled the client's expectations and coordinated the construction of the facility under the floor of the main Isaac Stern Auditorium without having to cancel a single performance.

  19. Report of experimental hall subworking group

    International Nuclear Information System (INIS)

    Miyake, K.; Ohama, T.; Takahashi, K.

    1982-01-01

    The general plan of constructing the TRISTAN e + e - colliding beam experimental halls may be divided into two parts. The first step is to construct two test-experimental halls associated with the 6.5 GeV x 6.5 GeV e + e - accumulator ring, and the second step is to build four experimental halls at the 30 GeV x 30 GeV e + e - TRISTAN main ring. At this workshop, extensive discussions on the detailed design of the four main ring experimental halls have been made. Four experimental areas will be built at the main ring, and two test-experimental halls at the accumulating ring. Among the four areas at the main ring, two will be used for electron-proton possible as well as electron-positron colliding beam experiment. The other two will be used exclusively for e + e - colliding experiments. Only a preliminary design has been made for these four experimental areas. A tentative plan of a larger experimental hall includes a counting and data processing room, a utility room, and a radiation safety control room. Two smaller halls have simpler structure. The figures of the experimental halls are presented. The two test-experimental halls at the accumulator ring will be used to test the detectors for e + e - colliding experiments before the final installation. The utility rooms designed for the halls are used to supply coolant and electric power of superconducting magnets. At the workshop, various ideas concerning the preliminary plan are presented. (Kato, T.)

  20. 75 FR 7467 - Gary E. Hall and Rita C. Hall; Notice of Application Accepted for Filing With the Commision...

    Science.gov (United States)

    2010-02-19

    ... Rita C. Hall; Notice of Application Accepted for Filing With the Commision, Soliciting Motions To.... Project No.: 13652-000. c. Date filed: January 11, 2010. d. Applicant: Gary E. Hall and Rita C. Hall. e... Policies Act of 1978, 16 U.S.C. 2705, 2708. h. Applicant Contact: Mr. Gary E. Hall and Ms. Rita C. Hall, P...

  1. Familial Pallister-Hall in adulthood.

    Science.gov (United States)

    Talsania, Mitali; Sharma, Rohan; Sughrue, Michael E; Scofield, R Hal; Lim, Jonea

    2017-10-01

    Pallister Hall syndrome is autosomal dominant disorder usually diagnosed in infants and children. Current diagnostic criteria include presence of hypothalamic hamartoma, post axial polydactyly and positive family history, but the disease has variable manifestations. Herein we report Pallister Hall syndrome diagnosed in a family where both patients were adults. A 59 year old man developed seizures 4 years prior to our evaluation of him, at which time imaging showed a hypothalamic hamartoma. The seizures were controlled medically. He did well until he had visual changes after a traumatic head injury. Repeat MRI showed slight expansion of the mass with formal visual field testing demonstrating bitemporal hemianopsia. There was no evidence of pituitary dysfunction except for large urine volume. He underwent surgery to debulk the hamartoma and the visual field defects improved. There was no hypopituitarism post-operatively, and the polydyspia resolved. His 29 year old daughter also had seizures and hypothalamic hamartoma. Both patients had had polydactyly with prior surgical correction in childhood. The daughter underwent genetic testing, which revealed a previously undescribed heterozygous single base pair deletion in exon 13 of the GLI3 gene causing a frameshift mutation. Further investigation into family history revealed multiple members in previous generations with polydactyly and/or seizures. Pallister-Hall syndrome is caused by an inherited autosomal dominant or de novo mutation in GLI3 gene. This rare syndrome has not had prevalence defined, however. Generally, diagnoses are made in the pediatric population. Our report adds to the few cases detected in adulthood.

  2. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    Energy Technology Data Exchange (ETDEWEB)

    Owerre, S. A., E-mail: solomon@aims.ac.za [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa and Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada)

    2016-07-28

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κ{sup xy} changes sign as a function of magnetic field or temperature on the kagome lattice, and κ{sup xy} changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κ{sup xy} has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T{sup 2} law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  3. Tunneling Anomalous and Spin Hall Effects.

    Science.gov (United States)

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  4. Quantum hall effect. A perspective

    International Nuclear Information System (INIS)

    Aoki, Hideo

    2006-01-01

    Novel concepts and phenomena are emerging recently in the physics of quantum Hall effect. This article gives an overview, which starts from the fractional quantum Hall system viewed as an extremely strongly correlated system, and move on to present various phenomena involving internal degrees of freedom (spin and layer), non-equilibrium and optical properties, and finally the spinoff to anomalous Hall effect and the rotating Bose-Einstein condensate. (author)

  5. Quasiparticle Aggregation in the Fractional Quantum Hall Effect

    Science.gov (United States)

    Laughlin, R. B.

    1984-10-10

    Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin`s multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction. (auth)

  6. Planar Hall effect bridge magnetic field sensors

    DEFF Research Database (Denmark)

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....

  7. Hall viscosity of hierarchical quantum Hall states

    Science.gov (United States)

    Fremling, M.; Hansson, T. H.; Suorsa, J.

    2014-03-01

    Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.

  8. Anomalous Hall effect in ZrTe5

    Science.gov (United States)

    Liang, Tian; Lin, Jingjing; Gibson, Quinn; Kushwaha, Satya; Liu, Minhao; Wang, Wudi; Xiong, Hongyu; Sobota, Jonathan A.; Hashimoto, Makoto; Kirchmann, Patrick S.; Shen, Zhi-Xun; Cava, R. J.; Ong, N. P.

    2018-05-01

    Research in topological matter has expanded to include the Dirac and Weyl semimetals1-10, which feature three-dimensional Dirac states protected by symmetry. Zirconium pentatelluride has been of recent interest as a potential Dirac or Weyl semimetal material. Here, we report the results of experiments performed by in situ three-dimensional double-axis rotation to extract the full 4π solid angular dependence of the transport properties. A clear anomalous Hall effect is detected in every sample studied, with no magnetic ordering observed in the system to the experimental sensitivity of torque magnetometry. Large anomalous Hall signals develop when the magnetic field is rotated in the plane of the stacked quasi-two-dimensional layers, with the values vanishing above about 60 K, where the negative longitudinal magnetoresistance also disappears. This suggests a close relation in their origins, which we attribute to the Berry curvature generated by the Weyl nodes.

  9. Gauge invariance and fractional quantized Hall effect

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1984-01-01

    It is shown that gauge invariance arguments imply the possibility of fractional quantized Hall effect; the Hall conductance is accurately quantized to a rational value. The ground state of a system showing the fractional quantized Hall effect must be degenerate; the non-degenerate ground state can only produce the integral quantized Hall effect. 12 references

  10. Magnetic microbead detection using the planar Hall effect

    International Nuclear Information System (INIS)

    Ejsing, Louise; Hansen, Mikkel F.; Menon, Aric K.; Ferreira, Hugo A.; Graham, Daniel L.; Freitas, Paulo P.

    2005-01-01

    Magnetic sensors based on the planar Hall effect of exchanged-biased permalloy have been fabricated and characterized. It is demonstrated that the sensors are feasible for detecting just a few commercial 2.0 μm magnetic beads commonly used for bioseparation (Micromer-M, Micromod, Germany) and that the sensor sense current is sufficient to generate a signal from the beads

  11. Nondestructive hall coefficient measurements using ACPD techniques

    Science.gov (United States)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  12. Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2

    Science.gov (United States)

    Firoz Islam, SK; Benjamin, Colin

    2016-09-01

    The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.

  13. Rooftop photovoltaic (PV) systems for industrial halls: Achieving economic benefit via lowering energy demand

    NARCIS (Netherlands)

    Lee, B.; Trcka, M.; Hensen, J.L.M.

    2012-01-01

    Industrial halls are characterized with their relatively high roof-to-floor ratio, which facilitates ready deployment of renewable energy generation, such as photovoltaic (PV) systems, on the rooftop. To promote deployment of renewable energy generation, feed-in tariff (FIT) higher than the

  14. Audience noise in concert halls during musical performances

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Marie, Pierre; Brunskog, Jonas

    2012-01-01

    functions of the sound pressure levels were obtained in octave bands, which were fitted with three Gaussian distribution curves. The Gaussian distribution curve with the lowest mean value corresponds to a mixture of the technical background noise and audience generated noise, which is named the mixed...... background noise. Finally, the audience noise distribution is extracted by energy subtraction of the technical background noise levels measured in an empty condition from the mixed background noise levels. As a single index, L-90 of the audience noise distribution is named the audience noise level. Empirical...... prediction models were made using the four orchestra concert halls, revealing that the audience noise level is significantly correlated with the technical background noise level. It is therefore concluded that a relaxation of the current background noise recommendations for concert halls is not recommended...

  15. Audience noise in concert halls during musical performances

    DEFF Research Database (Denmark)

    Marie, Pierre; Jeong, Cheol-Ho; Brunskog, Jonas

    2012-01-01

    functions of the sound pressure levels were obtained in octave bands, which were fitted with three Gaussian distribution curves. The Gaussian distribution curve with the lowest mean value corresponds to a mixture of the technical background noise and audience generated noise, which is named the mixed...... background noise. Finally, the audience noise distribution is extracted by energy subtraction of the technical background noise levels measured in an empty condition from the mixed background noise levels. As a single index, L90 of the audience noise distribution is named the audience noise level. Empirical...... prediction models were made using the four orchestra concert halls, revealing that the audience noise level is significantly correlated with the technical background noise level. It is therefore concluded that a relaxation of the current background noise recommendations for concert halls is not recommended....

  16. Second law analysis of an infinitely segmented magnetohydrodynamic generator

    Energy Technology Data Exchange (ETDEWEB)

    Arash, Ardeshir [Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Saidi, Mohammad Hassan [Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran (Iran, Islamic Republic of); Najafi, Mohammad [Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-03-15

    The performance of an infinitely segmented magnetohydrodynamic generator is analyzed using the second law of thermodynamics entropy generation criterion. The exact analytical solution of the velocity and temperature fields are provided by applying the modified Hartmann flow model, taking into account the occurrence of the Hall effect in the considered generator. Contributions of heat transfer, fluid friction, and ohmic dissipation to the destruction of useful available work are found, and the nature of irreversibilities in the considered generator is determined. In addition, the electrical isotropic efficiency scheme is used to evaluate the generator performance. Finally, the implication of the Hall parameter, Hartmann number, and load factor for the entropy generation and the generator performance are studied and the optimal operating conditions are determined. The results show that the heat transfer has the smallest contribution to the entropy generation compared to that of the friction and ohmic dissipation. The application of the Hall effect on the system showed an appreciable augmentation of entropy generation rate which is along with what the logic implies. A parametric study is conducted and its results provide the generated entropy and also efficiency diagrams which show the influence of the Hall effect on the considered generator. - Highlights: • The modified Hartmann flow in a segmented MHD generator has been analyzed. • Heat transfer has the smallest contribution to the entropy generation. • The optimum working conditions of the generator are discussed. • The significant adverse effect of taking into account the Hall effect is discussed. • The entropy generation increases while implementing modified Hartmann model.

  17. Valley Hall effect and Nernst effect in strain engineered graphene

    Science.gov (United States)

    Niu, Zhi Ping; Yao, Jian-ming

    2018-04-01

    We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.

  18. Hall effect in the coma of 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Huang, Z.; Tóth, G.; Gombosi, T. I.; Jia, X.; Combi, M. R.; Hansen, K. C.; Fougere, N.; Shou, Y.; Tenishev, V.; Altwegg, K.; Rubin, M.

    2018-04-01

    Magnetohydrodynamics simulations have been carried out in studying the solar wind and cometary plasma interactions for decades. Various plasma boundaries have been simulated and compared well with observations for comet 1P/Halley. The Rosetta mission, which studies comet 67P/Churyumov-Gerasimenko, challenges our understanding of the solar wind and comet interactions. The Rosetta Plasma Consortium observed regions of very weak magnetic field outside the predicted diamagnetic cavity. In this paper, we simulate the inner coma with the Hall magnetohydrodynamics equations and show that the Hall effect is important in the inner coma environment. The magnetic field topology becomes complex and magnetic reconnection occurs on the dayside when the Hall effect is taken into account. The magnetic reconnection on the dayside can generate weak magnetic field regions outside the global diamagnetic cavity, which may explain the Rosetta Plasma Consortium observations. We conclude that the substantial change in the inner coma environment is due to the fact that the ion inertial length (or gyro radius) is not much smaller than the size of the diamagnetic cavity.

  19. Quantum Hall effect in epitaxial graphene with permanent magnets.

    Science.gov (United States)

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  20. Quantum Hall effect in epitaxial graphene with permanent magnets

    Science.gov (United States)

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-12-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  1. Hall C

    Data.gov (United States)

    Federal Laboratory Consortium — Hall C's initial complement of equipment (shown in the figure), includes two general-purpose magnetic spectrometers. The High Momentum Spectrometer (HMS) has a large...

  2. Hall A

    Data.gov (United States)

    Federal Laboratory Consortium — The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electroand photo-induced reactions at very high luminosity...

  3. Giant spin Hall angle from topological insulator BixSe(1 - x) thin films

    Science.gov (United States)

    Dc, Mahendra; Jamali, Mahdi; Chen, Junyang; Hickey, Danielle; Zhang, Delin; Zhao, Zhengyang; Li, Hongshi; Quarterman, Patrick; Lv, Yang; Mkhyon, Andre; Wang, Jian-Ping

    Investigation on the spin-orbit torque (SOT) from large spin-orbit coupling materials has been attracting interest because of its low power switching of the magnetization and ultra-fast driving of the domain wall motion that can be used in future spin based memory and logic devices. We investigated SOT from topological insulator BixSe(1 - x) thin film in BixSe(1 - x) /CoFeB heterostructure by using the dc planar Hall method, where BixSe(1 - x) thin films were prepared by a unique industry-compatible deposition process. The angle dependent Hall resistance was measured in the presence of a rotating external in-plane magnetic field at bipolar currents. The spin Hall angle (SHA) from this BixSe(1 - x) thin film was found to be as large as 22.41, which is the largest ever reported at room temperature (RT). The giant SHA and large spin Hall conductivity (SHC) make this BixSe(1 - x) thin film a very strong candidate as an SOT generator in SOT based memory and logic devices.

  4. 75 FR 22770 - Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13652-000-Montana] Gary E. Hall and Rita Hall; Notice of Availability of Environmental Assessment April 22, 2010. In accordance with the National Environmental Policy Act of 1969, as amended, and the Federal Energy Regulatory...

  5. Charge carrier coherence and Hall effect in organic semiconductors

    Science.gov (United States)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  6. Charge carrier coherence and Hall effect in organic semiconductors.

    Science.gov (United States)

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  7. Guild Hall retrofit

    Energy Technology Data Exchange (ETDEWEB)

    1984-08-01

    This report demonstrates the economic viability of an exterior rewrap retrofit performed on a public community facility for the performing arts. This facility originally consisted of two mess halls built by the American army. The exterior retrofit consisted of constructing a super-insulated passageway to link the two halls as well as completely wrapping the facility with six millimetre polyethylene to provide an airtight barrier. The roofs and walls were reinsulated and insulation levels were increased to RSI 10.5 in the ceilings and RSI 7.7 in the walls. The installation of a propane fuelled furnace was also included in the retrofit package. Prior to the renovations and retrofitting, the Guild Hall facility was almost unusable. The demonstration project transformed the cold, drafty buildings into an attractive, comfortable and functional centre for the performing arts. Heating requirements have been reduced to 500 MJ/m {sup 2} of floor space annually compared to a predicted 1,760 MJ/m{sup 2} of floor space based on HOTCAN analysis of the heating requirements without the energy conservation measures. 9 figs., 10 tabs.

  8. Laurance David Hall.

    Science.gov (United States)

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Generation Z: Educating and Engaging the Next Generation of Students

    Science.gov (United States)

    Seemiller, Corey; Grace, Meghan

    2017-01-01

    In 1995, the Internet was born. So, too, was Generation Z. The oldest of this post-Millennial generation arrived to college in 2013, and more than four years later, Generation Z students fill the nation's classrooms, campus programs, and residence halls. In order to recruit, educate, and graduate this new generational cohort effectively, educators…

  10. Quadratic dependence of the spin-induced Hall voltage on longitudinal electric field

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2008-01-01

    The effect of optically induced spins in semiconductors in the low electric field is investigated. Here we report an experiment which investigates the effect of a longitudinal electric field (E) on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a spin-induced anomalous Hall voltage (V AH ) resulting from spin-carrier electrons accumulating at the transverse edges of the sample. Unlike the ordinary Hall effect, a quadratic dependence of V AH on E is observed, which agrees with the results of the recent theoretical investigations. It is also found that V AH depends on the doping density. The results are discussed

  11. The Other Hall Effect: College Board Physics

    Science.gov (United States)

    Sheppard, Keith; Gunning, Amanda M.

    2013-01-01

    Edwin Herbert Hall (1855-1938), discoverer of the Hall effect, was one of the first winners of the AAPT Oersted Medal for his contributions to the teaching of physics. While Hall's role in establishing laboratory work in high schools is widely acknowledged, his position as chair of the physics section of the Committee on College Entrance…

  12. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  13. SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene

    Science.gov (United States)

    Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike

    2017-03-01

    A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.

  14. Temperature dependence of collapse of quantized hall resistance

    International Nuclear Information System (INIS)

    Tanaka, Hiroyasu; Kawashima, Hironori; Iizuka, Hisamitsu; Fukuda, Hideaki; Kawaji, Shinji

    2006-01-01

    Similarity is observed in the deviation of Hall resistance from the quantized value with the increase in the source-drain current I SD in our butterfly-type Hall bars and in the Hall bars used by Jeanneret et al., while changes in the diagonal resistivity ρ xx with I SD are significantly different between these Hall bars. The temperature dependence of the critical Hall electric field F cr (T) for the collapse of R H (4) measured in these Hall bars is approximated using F cr (T) = F cr (0)(1 - (T/T cr ) 2 ). Here, the critical Hall electric field at zero temperature depends on the magnetic field B as F cr (0) ∝ B 3/2 . Theoretical considerations are given on F cr (T) on the basis of a temperature-dependent mobility edge model and a schema of temperature-dependent inter-Landau level tunneling probability arising from the Fermi distribution function. The former does not fit in with the I SD dependence of activation energy in ρ xx . (author)

  15. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    Science.gov (United States)

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  16. The quantum hall effect

    International Nuclear Information System (INIS)

    El-Arabi, N. M.

    1993-01-01

    Transport phenomena in two dimensional semiconductors have revealed unusual properties. In this thesis these systems are considered and discussed. The theories explain the Integral Quantum Hall Effect (IQHE) and the Fractional Quantum Hall Effect (FQHE). The thesis is composed of five chapters. The first and the second chapters lay down the theory of the IQHE, the third and fourth consider the theory of the FQHE. Chapter five deals with the statistics of particles in two dimension. (author). Refs

  17. Paired Hall states

    International Nuclear Information System (INIS)

    Greiter, M.

    1992-01-01

    This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8

  18. Prediction of transverse asymmetries in MHD ducts with zero net Hall current

    International Nuclear Information System (INIS)

    Swean, T.F. Jr.; Oliver, D.A.; Maxwell, C.D.; Demetriades, S.T.

    1981-01-01

    A new class of fluid-electrical asymmetries in MHD generator channel flow are predicted. It is shown that the existence of interelectrode asymmetries is not confined to generators in which there exists a nonzero net axial current, but rather they are induced even in the case of the Faraday generators. Also demonstrated is the impact of these asymmetries upon the generator and diffuser flow. It is concluded that in MHD generators, the net axial current in the cross plane is identically zero, while at any given point in the plane, the local Hall current density is in general nonzero

  19. Dr. Hall and the work cure.

    Science.gov (United States)

    Reed, Kathlyn L

    2005-01-01

    Herbert James Hall, MD (1870-1923), was a pioneer in the systematic and organized study of occupation as therapy for persons with nervous and mental disorders that he called the "work cure." He began his work in 1904 during the early years of the Arts and Crafts Movement in the United States. His primary interest was the disorder neurasthenia, a condition with many symptoms including chronic fatigue, stress, and inability to work or perform everyday tasks. The prevailing treatment of the day was absolute bed rest known as the "rest cure." Hall believed that neurasthenia was not caused by overwork but by faulty living habits that could be corrected through an ordered life schedule and selected occupations. He identified several principles of therapy that are still used today including graded activity and energy conservation. Dr. Adolph Meyer credits Hall for organizing the ideas on the therapeutic use of occupation (Meyer, 1922). Hall also provided the name American Occupational Therapy Association for the professional organization and served as the fourth president. For his many contributions to the profession Hall deserves to be recognized as a major contributor to the development and organization of occupational therapy.

  20. Investigations of Probe Induced Perturbations in a Hall Thruster

    International Nuclear Information System (INIS)

    D. Staack; Y. Raitses; N.J. Fisch

    2002-01-01

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities

  1. Hall effect in non-ideal plasma of argon and xenon

    International Nuclear Information System (INIS)

    Shilkin, N.S.; Dudin, S.V.; Gryaznov, V.K.; Mintsev, V.B.; Fortov, V.E.

    2003-01-01

    The first data on the measurement of the electron concentration (10 16 -10 20 cm -3 ) of the low-temperature (0.5-1 eV) non-ideal (0.01 -6 -10 -1 ) inert gases plasma are presented. The measurements of the Hall constant and electric conductivity in the non-ideal partially ionized plasma of argon and xenon are carried out through the sounding methods. The plasma generation was accomplished behind the shock waves front through the linear explosive generators. The obtained results are compared with a number of the plasma models [ru

  2. Quadratic dependence of the spin-induced Hall voltage on longitudinal electric field

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-10-15

    The effect of optically induced spins in semiconductors in the low electric field is investigated. Here we report an experiment which investigates the effect of a longitudinal electric field (E) on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a spin-induced anomalous Hall voltage (V{sub AH}) resulting from spin-carrier electrons accumulating at the transverse edges of the sample. Unlike the ordinary Hall effect, a quadratic dependence of V{sub AH} on E is observed, which agrees with the results of the recent theoretical investigations. It is also found that V{sub AH} depends on the doping density. The results are discussed.

  3. Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2013-05-28

    Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

  4. Magnetoresistance in quantum Hall metals due to Pancharatnam ...

    Indian Academy of Sciences (India)

    Abstract. We derive the trial Hall resistance formula for the quantum Hall metals to address both the integer and fractional quantum Hall effects. Within the degenerate (and crossed) Landau levels, and in the presence of changing magnetic field strength, one can invoke two physical processes responsible for the electron ...

  5. Spin hall effect associated with SU(2) gauge field

    Science.gov (United States)

    Tao, Y.

    2010-01-01

    In this paper, we focus on the connection between spin Hall effect and spin force. Here we investigate that the spin force due to spin-orbit coupling, which, in two-dimensional system, is equivalent to forces of Hirsch and Chudnovsky besides constant factors 3 and frac{3}{2} respectively, is a part of classic Anandan force, and that the spin Hall effect is an anomalous Hall effect. Furthermore, we develop the method of AC phase to derive the expression for the spin force, and note that the most basic spin Hall effect indeed originate from the AC phase and is therefore an intrinsic quantum mechanical property of spin. This method differs from approach of Berry phase in the study of anomalous Hall effect , which is the intrinsic property of the perfect crystal. On the other hand, we use an elegant skill to show that the Chudnovsky-Drude model is reasonable. Here we have improved the theoretical values of spin Hall conductivity of Chudnovsky. Compared to the theoretical values of spin Hall conductivity in the Chudnovsky-Drude model, ours are in better agreement with experimentation. Finally, we discuss the relation between spin Hall effect and fractional statistics.

  6. Scheme for generating and transporting THz radiation to the X-ray experimental hall at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Decking, Winfried; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2011-12-15

    The design of a THz edge radiation source for the European XFEL is presented.We consider generation of THz radiation from the spent electron beam downstream of the SASE2 undulator in the electron beam dump area. In this way, the THz output must propagate at least for 250 meters through the photon beam tunnel to the experimental hall to reach the SASE2 X-ray hutches. We propose to use an open beam waveguide such as an iris guide as transmission line. In order to efficiently couple radiation into the iris transmission line, generation of the THz radiation pulse can be performed directly within the iris guide. The line transporting the THz radiation to the SASE2 X-ray hutches introduces a path delay of about 20 m. Since THz pump/X-ray probe experiments should be enabled, we propose to exploit the European XFEL baseline multi-bunch mode of operation, with 222 ns electron bunch separation, in order to cope with the delay between THz and X-ray pulses. We present start-to-end simulations for 1 nC bunch operation-parameters, optimized for THz pump/X-ray probe experiments.Detailed characterization of the THz and SASE X-ray radiation pulses is performed. Highly focused THz beams will approach the high field limit of 1 V/atomic size. (orig.)

  7. The quantized Hall effect

    International Nuclear Information System (INIS)

    Klitzing von, K.

    1989-01-01

    The quantized Hall effect is theoretically explained in detail as are its basic properties. The explanation is completed with the pertinent mathematical relations and illustrative figures. Experimental data are critically assessed obtained by quantum transport measurement in a magnetic field on two-dimensional systems. The results are reported for a MOSFET silicon transistor and for GaAs-Al x Ga 1-x As heterostructures. The application is discussed of the quantized Hall effect in determining the fine structure constant or in implementing the resistance standard. (M.D.). 27 figs., 57 refs

  8. Optically induced Hall effect in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M; Gray, E Mac A, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)

    2009-03-01

    We describe an experiment which investigates the effect of a longitudinal electric field on the spin-polarized carriers generated by a circularly polarized light in semiconductors. Our experiment observes the effect as a Hall voltage resulting from nonequilibrium magnetization induced by the spin-carrier electrons accumulating at the transverse boundaries of the sample as a result of asymmetries in scattering for spin-up and spin-down electrons in the presence of spin-orbit interaction. It is found that the effect depends on the longitudinal electric field and doping density as well as on temperature. The results are presented by discussing the dominant spin relaxation mechanisms in semiconductors.

  9. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    Science.gov (United States)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  10. Valley-chiral quantum Hall state in graphene superlattice structure

    Science.gov (United States)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  11. 14 GHz longitudinally detected electron spin resonance using microHall sensors

    Science.gov (United States)

    Bouterfas, M.; Mouaziz, S.; Popovic, R. S.

    2017-09-01

    In this work we developed a home-made LOngitudinally Detected Electron Spin Resonance (LODESR) spectrometer based on a microsize Hall sensor. A coplanar waveguide (CPW)-resonator is used to induce microwave-excitation on the sample at 14 GHz. We used InSb cross-shaped Hall devices with active areas of (10 μm × 10 μm) and (5 μm × 5 μm) . Signal intensities of the longitudinal magnetization component of DPPH and YIG samples of volumes about (10 μm) 3 and (5 μm) 3 , are measured under amplitude and frequency modulated microwave magnetic field generated by the CPW-resonator. At room temperature, 109spins /G √Hz sensitivity is achieved for 0.2mT linewidth, a result which is still better than most of inductive detected LODESR sensitivities.

  12. Air temperature gradient in large industrial hall

    Science.gov (United States)

    Karpuk, Michał; Pełech, Aleksander; Przydróżny, Edward; Walaszczyk, Juliusz; Szczęśniak, Sylwia

    2017-11-01

    In the rooms with dominant sensible heat load, volume airflow depends on many factors incl. pre-established temperature difference between exhaust and supply airflow. As the temperature difference is getting higher, airflow volume drops down, consequently, the cost of AHU is reduced. In high industrial halls with air exhaust grids located under the ceiling additional temperature gradient above working zone should be taken into consideration. In this regard, experimental research of the vertical air temperature gradient in high industrial halls were carried out for the case of mixing ventilation system The paper presents the results of air temperature distribution measurements in high technological hall (mechanically ventilated) under significant sensible heat load conditions. The supply airflow was delivered to the hall with the help of the swirl diffusers while exhaust grids were located under the hall ceiling. Basing on the air temperature distribution measurements performed on the seven pre-established levels, air temperature gradient in the area between 2.0 and 7.0 m above the floor was calculated and analysed.

  13. A new CMOS Hall angular position sensor

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, R.S.; Drljaca, P. [Swiss Federal Inst. of Tech., Lausanne (Switzerland); Schott, C.; Racz, R. [SENTRON AG, Zug (Switzerland)

    2001-06-01

    The new angular position sensor consists of a combination of a permanent magnet attached to a shaft and of a two-axis magnetic sensor. The permanent magnet produces a magnetic field parallel with the magnetic sensor plane. As the shaft rotates, the magnetic field also rotates. The magnetic sensor is an integrated combination of a CMOS Hall integrated circuit and a thin ferromagnetic disk. The CMOS part of the system contains two or more conventional Hall devices positioned under the periphery of the disk. The ferromagnetic disk converts locally a magnetic field parallel with the chip surface into a field perpendicular to the chip surface. Therefore, a conventional Hall element can detect an external magnetic field parallel with the chip surface. As the direction of the external magnetic field rotates in the chip plane, the output voltage of the Hall element varies as the cosine of the rotation angle. By placing the Hall elements at the appropriate places under the disk periphery, we may obtain the cosine signals shifted by 90 , 120 , or by any other angle. (orig.)

  14. The quantum Hall effects: Philosophical approach

    Science.gov (United States)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  15. Quantum critical Hall exponents

    CERN Document Server

    Lütken, C A

    2014-01-01

    We investigate a finite size "double scaling" hypothesis using data from an experiment on a quantum Hall system with short range disorder [1-3]. For Hall bars of width w at temperature T the scaling form is w(-mu)T(-kappa), where the critical exponent mu approximate to 0.23 we extract from the data is comparable to the multi-fractal exponent alpha(0) - 2 obtained from the Chalker-Coddington (CC) model [4]. We also use the data to find the approximate location (in the resistivity plane) of seven quantum critical points, all of which closely agree with the predictions derived long ago from the modular symmetry of a toroidal sigma-model with m matter fields [5]. The value nu(8) = 2.60513 ... of the localisation exponent obtained from the m = 8 model is in excellent agreement with the best available numerical value nu(num) = 2.607 +/- 0.004 derived from the CC-model [6]. Existing experimental data appear to favour the m = 9 model, suggesting that the quantum Hall system is not in the same universality class as th...

  16. Graphene and the universality of the quantum Hall effect

    DEFF Research Database (Denmark)

    Tzalenchuk, A.; Janssen, T. J.B.M.; Kazakova, O.

    2013-01-01

    The quantum Hall effect allows the standard for resistance to be defined in terms of the elementary charge and Planck's constant alone. The effect comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of RK=h/e2=25812.8074434(84) Ω (Mohr P. J....... the unconventional quantum Hall effect and then present in detail the route, which led to the most precise quantum Hall resistance universality test ever performed.......The quantum Hall effect allows the standard for resistance to be defined in terms of the elementary charge and Planck's constant alone. The effect comprises the quantization of the Hall resistance in two-dimensional electron systems in rational fractions of RK=h/e2=25812.8074434(84) Ω (Mohr P. J....... et al., Rev. Mod. Phys., 84 (2012) 1527), the resistance quantum. Despite 30 years of research into the quantum Hall effect, the level of precision necessary for metrology, a few parts per billion, has been achieved only in silicon and III-V heterostructure devices. In this lecture we show...

  17. Unconventional quantum Hall effect in Floquet topological insulators

    KAUST Repository

    Tahir, M.

    2016-07-27

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.

  18. Unconventional quantum Hall effect in Floquet topological insulators

    KAUST Repository

    Tahir, M.; Vasilopoulos, P.; Schwingenschlö gl, Udo

    2016-01-01

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the lights polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity αyx = 0 at zero Fermi energy, to a Hall insulator state with αyx = e2/2h. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at (±1/2,±3/2,±5/2, ...)e2/h. © 2016 IOP Publishing Ltd Printed in the UK.

  19. Accurate micro Hall effect measurements on scribe line pads

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Petersen, Dirch Hjorth; Wang, Fei

    2009-01-01

    Hall mobility and sheet carrier density are important parameters to monitor in advanced semiconductor production. If micro Hall effect measurements are done on small pads in scribe lines, these parameters may be measured without using valuable test wafers. We report how Hall mobility can...... be extracted from micro four-point measurements performed on a rectangular pad. The dimension of the investigated pad is 400 × 430 ¿m2, and the probe pitches range from 20 ¿m to 50 ¿m. The Monte Carlo method is used to find the optimal way to perform the Hall measurement and extract Hall mobility most...

  20. Hall current effects in dynamic magnetic reconnection solutions

    International Nuclear Information System (INIS)

    Craig, I.J.D.; Heerikhuisen, J.; Watson, P.G.

    2003-01-01

    The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies c H >η, where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular 'separator' component in the magnetic field. Only if the stronger condition c H 2 >η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c H 2 >η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is 'head-on' (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced

  1. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  2. Optimization of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  3. Excitons in the Fractional Quantum Hall Effect

    Science.gov (United States)

    Laughlin, R. B.

    1984-09-01

    Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.

  4. Spin-singlet hierarchy in the fractional quantum Hall effect

    OpenAIRE

    Ino, Kazusumi

    1999-01-01

    We show that the so-called permanent quantum Hall states are formed by the integer quantum Hall effects on the Haldane-Rezayi quantum Hall state. Novel conformal field theory description along with this picture is deduced. The odd denominator plateaux observed around $\

  5. Quantum hall conductivity in a Landau type model with a realistic geometry II

    International Nuclear Information System (INIS)

    Chandelier, F.; Georgelin, Y.; Masson, T.; Wallet, J.-C.

    2004-01-01

    We use a mathematical framework that we introduced in a previous paper to study geometrical and quantum mechanical aspects of a Hall system with finite size and general boundary conditions. Geometrical structures control possibly the integral or fractional quantization of the Hall conductivity depending on the value of NB/2π (N is the number of charge carriers and B is the magnetic field). When NB/2π is irrational, we show that monovaluated wave functions can be constructed only on the graph of a free group with two generators. When NB/2π is rational, the relevant space becomes a punctured Riemann surface. We finally discuss our results from a phenomenological viewpoint

  6. Anisotropic intrinsic spin Hall effect in quantum wires

    International Nuclear Information System (INIS)

    Cummings, A W; Akis, R; Ferry, D K

    2011-01-01

    We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [1-bar 10] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications. (paper)

  7. The Hall module of an exact category with duality

    OpenAIRE

    Young, Matthew B.

    2012-01-01

    We construct from a finitary exact category with duality a module over its Hall algebra, called the Hall module, encoding the first order self-dual extension structure of the category. We study in detail Hall modules arising from the representation theory of a quiver with involution. In this case we show that the Hall module is naturally a module over the specialized reduced sigma-analogue of the quantum Kac-Moody algebra attached to the quiver. For finite type quivers, we explicitly determin...

  8. Theory of spin Hall effect

    OpenAIRE

    Chudnovsky, Eugene M.

    2007-01-01

    An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...

  9. Anode sheath in Hall thrusters

    International Nuclear Information System (INIS)

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  10. Quantum Hall effect in quantum electrodynamics

    International Nuclear Information System (INIS)

    Penin, Alexander A.

    2009-01-01

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted

  11. Quantized Hall conductance as a topological invariant

    International Nuclear Information System (INIS)

    Niu, Q.; Thouless, Ds.J.; Wu, Y.S.

    1984-10-01

    Whenever the Fermi level lies in a gap (or mobility gap) the bulk Hall conductance can be expressed in a topologically invariant form showing the quantization explicitly. The new formulation generalizes the earlier result by TKNN to the situation where many body interaction and substrate disorder are also present. When applying to the fractional quantized Hall effect we draw the conclusion that there must be a symmetry breaking in the many body ground state. The possibility of writing the fractionally quantized Hall conductance as a topological invariant is also carefully discussed. 19 references

  12. Commemorative Symposium on the Hall Effect and its Applications

    CERN Document Server

    Westgate, C

    1980-01-01

    In 1879, while a graduate student under Henry Rowland at the Physics Department of The Johns Hopkins University, Edwin Herbert Hall discovered what is now universally known as the Hall effect. A symposium was held at The Johns Hopkins University on November 13, 1979 to commemorate the lOOth anniversary of the discovery. Over 170 participants attended the symposium which included eleven in­ vited lectures and three speeches during the luncheon. During the past one hundred years, we have witnessed ever ex­ panding activities in the field of the Hall effect. The Hall effect is now an indispensable tool in the studies of many branches of condensed matter physics, especially in metals, semiconductors, and magnetic solids. Various components (over 200 million!) that utilize the Hall effect have been successfully incorporated into such devices as keyboards, automobile ignitions, gaussmeters, and satellites. This volume attempts to capture the important aspects of the Hall effect and its applications. It includes t...

  13. Halls Lake 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  14. Nobel Prize in physics 1985: Quantum Hall effect

    International Nuclear Information System (INIS)

    Herrmann, R.

    1986-01-01

    The conditions (like very strong magnetic fields, ultralow temperatures, and occurrence of a two-dimensional electron gas in microelectronic structures) for the measurement of the quantum Hall effect are explained. Two possible measuring methods are described. Measuring results for p-Si-MOSFET, GaAs/AlGaAs heterojuntions and grain boundaries in InSb crystals are reported. Differences between normal (integer) and fractional quantum Hall effect are discussed. One of the important consequences is that by means of the quantum Hall effect the value h/e 2 can be determined with very high accuracy. In 1985 Klaus von Klitzing was awarded the Nobel Prize for his work on the quantum Hall effect

  15. Impurity-generated non-Abelions

    Science.gov (United States)

    Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.

    2018-06-01

    Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by

  16. The quantum Hall's effect: A quantum electrodynamic phenomenon

    International Nuclear Information System (INIS)

    Arbab, A. I.

    2012-01-01

    We have applied Maxwell's equations to study the physics of quantum Hall's effect. The electromagnetic properties of this system are obtained. The Hall's voltage, V H = 2πħ 2 n s /em, where n s is the electron number density, for a 2-dimensional system, and h = 2πħ is the Planck's constant, is found to coincide with the voltage drop across the quantum capacitor. Consideration of the cyclotronic motion of electrons is found to give rise to Hall's resistance. Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached. At a fundamental level, the Hall's effect is found to be equivalent to a resonant LCR circuit with L H = 2π m/e 2 n s and C H = me 2 /2πħ 2 n s satisfying the resonance condition with resonant frequency equal to the inverse of the scattering (relaxation) time, τ s . The Hall's resistance is found to be R H = √L H /C H . The Hall's resistance may be connected with the impedance that the electron wave experiences when it propagates in the 2-dimensional gas. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Breakdown of the dissipationless quantum Hall state: Quantised steps and analogies with classical and quantum fluid dynamics

    International Nuclear Information System (INIS)

    Eaves, L.

    2001-01-01

    The breakdown of the integer quantum Hall effect at high currents sometimes occurs a series of regular steps in the dissipative voltage drop bars used to maintain the US Resistance Standard, but have also been reported in other devices. It is proposed that the origin of the steps can be understood in terms of instability in the dissipationless flow at high electron drift velocities. The instability is induced by impurity- or defect- related inter-Landau level scattering processes in local macroscopic regions of the Hall bar. Electron-hole pairs (magneto-excitons) are generated in the quantum Hall fluid in these regions and that the electronic motion can be envisaged as a quantum analogue of the Karman vortex street which forms when a classical fluid flows past an obstacle. (author)

  18. Unidirectional spin Hall magnetoresistance in topological insulator/ferromagnetic layer heterostructures

    Science.gov (United States)

    Kally, James; Lv, Yang; Zhang, Delin; Lee, Joon Sue; Samarth, Nitin; Wang, Jian-Ping; Department of Electrical; Computer Engineering, University of Minnesota, Minneapolis Collaboration; Department of Physics, Pennsylvania State University Collaboration

    The surface states of topological insulators offer a potentially very efficient way to generate spins and spin-orbit torques to magnetic moments in proximity. The switching by spin-orbit torque itself only requires two terminals so that a charge current can be applied. However, a third terminal with additional magnetic tunneling junction structure is needed to sense the magnetization state if such devices are used for memory and logic applications. The recent discovery of unidirectional spin Hall magnetoresistance in heavy metal/ferromagnetic and topological insulator/magnetically doped topological insulator systems offers an alternative way to sense magnetization while still keeping the number of terminals to minimal two. The unidirectional spin Hall magnetoresistance in topological insulator/strong ferromagnetic layer heterostructure system has yet not been reported. In this work, we report our experimental observations of such magnetoresistance. It is found to be present and comparable to the best result of the previous reported Ta/Co systems in terms of magnetoresistance per current density per total resistance.

  19. Spontaneous Hall effect in a chiral p-wave superconductor

    Science.gov (United States)

    Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred

    2001-08-01

    In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.

  20. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.; Zhang, Bei; Liu, Z. X.; Wang, Z.; Li, W.; Wu, Z. B.; Yu, R. H.; Zhang, Xixiang

    2010-01-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  1. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.

    2010-04-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  2. Anomalous Hall effect

    Czech Academy of Sciences Publication Activity Database

    Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.

    2010-01-01

    Roč. 82, č. 2 (2010), s. 1539-1592 ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010

  3. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-01-01

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  4. Photonic topological boundary pumping as a probe of 4D quantum Hall physics.

    Science.gov (United States)

    Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P; Kraus, Yaacov E; Rechtsman, Mikael C

    2018-01-03

    When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

  5. Photonic topological boundary pumping as a probe of 4D quantum Hall physics

    Science.gov (United States)

    Zilberberg, Oded; Huang, Sheng; Guglielmon, Jonathan; Wang, Mohan; Chen, Kevin P.; Kraus, Yaacov E.; Rechtsman, Mikael C.

    2018-01-01

    When a two-dimensional (2D) electron gas is placed in a perpendicular magnetic field, its in-plane transverse conductance becomes quantized; this is known as the quantum Hall effect. It arises from the non-trivial topology of the electronic band structure of the system, where an integer topological invariant (the first Chern number) leads to quantized Hall conductance. It has been shown theoretically that the quantum Hall effect can be generalized to four spatial dimensions, but so far this has not been realized experimentally because experimental systems are limited to three spatial dimensions. Here we use tunable 2D arrays of photonic waveguides to realize a dynamically generated four-dimensional (4D) quantum Hall system experimentally. The inter-waveguide separation in the array is constructed in such a way that the propagation of light through the device samples over momenta in two additional synthetic dimensions, thus realizing a 2D topological pump. As a result, the band structure has 4D topological invariants (known as second Chern numbers) that support a quantized bulk Hall response with 4D symmetry. In a finite-sized system, the 4D topological bulk response is carried by localized edge modes that cross the sample when the synthetic momenta are modulated. We observe this crossing directly through photon pumping of our system from edge to edge and corner to corner. These crossings are equivalent to charge pumping across a 4D system from one three-dimensional hypersurface to the spatially opposite one and from one 2D hyperedge to another. Our results provide a platform for the study of higher-dimensional topological physics.

  6. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    Science.gov (United States)

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  7. Destruction of the fractional quantum Hall effect by disorder

    International Nuclear Information System (INIS)

    Laughlin, R.B.

    1985-07-01

    It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs

  8. A Hall probe technique for characterizing high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang, J.; Sheldon, P.; Ahrenkiel, R.K.

    1992-01-01

    Thin-film GaAs Hall probes were fabricated by molecular beam epitaxy technology. A contactless technique was developed to characterize thin-film, high-temperature superconducting (HTSC) materials. The Hall probes detected the ac magnetic flux penetration through the high-temperature superconducting materials. The Hall detector has advantages over the mutual inductance magnetic flux detector

  9. Intrinsic quantum spin Hall and anomalous Hall effects in h-Sb/Bi epitaxial growth on a ferromagnetic MnO2 thin film.

    Science.gov (United States)

    Zhou, Jian; Sun, Qiang; Wang, Qian; Kawazoe, Yoshiyuki; Jena, Puru

    2016-06-07

    Exploring a two-dimensional intrinsic quantum spin Hall state with a large band gap as well as an anomalous Hall state in realizable materials is one of the most fundamental and important goals for future applications in spintronics, valleytronics, and quantum computing. Here, by combining first-principles calculations with a tight-binding model, we predict that Sb or Bi can epitaxially grow on a stable and ferromagnetic MnO2 thin film substrate, forming a flat honeycomb sheet. The flatness of Sb or Bi provides an opportunity for the existence of Dirac points in the Brillouin zone, with its position effectively tuned by surface hydrogenation. The Dirac points in spin up and spin down channels split due to the proximity effects induced by MnO2. In the presence of both intrinsic and Rashba spin-orbit coupling, we find two band gaps exhibiting a large band gap quantum spin Hall state and a nearly quantized anomalous Hall state which can be tuned by adjusting the Fermi level. Our findings provide an efficient way to realize both quantized intrinsic spin Hall conductivity and anomalous Hall conductivity in a single material.

  10. Plasmon Geometric Phase and Plasmon Hall Shift

    Science.gov (United States)

    Shi, Li-kun; Song, Justin C. W.

    2018-04-01

    The collective plasmonic modes of a metal comprise a simple pattern of oscillating charge density that yields enhanced light-matter interaction. Here we unveil that beneath this familiar facade plasmons possess a hidden internal structure that fundamentally alters its dynamics. In particular, we find that metals with nonzero Hall conductivity host plasmons with an intricate current density configuration that sharply departs from that of ordinary zero Hall conductivity metals. This nontrivial internal structure dramatically enriches the dynamics of plasmon propagation, enabling plasmon wave packets to acquire geometric phases as they scatter. At boundaries, these phases accumulate allowing plasmon waves that reflect off to experience a nonreciprocal parallel shift. This plasmon Hall shift, tunable by Hall conductivity as well as plasmon wavelength, displaces the incident and reflected plasmon trajectories and can be readily probed by near-field photonics techniques. Anomalous plasmon geometric phases dramatically enrich the nanophotonics toolbox, and yield radical new means for directing plasmonic beams.

  11. Signal conditioning and processing for metallic Hall sensors.

    Czech Academy of Sciences Publication Activity Database

    Entler, Slavomír; Ďuran, Ivan; Sládek, P.; Vayakis, G.; Kočan, M.

    2017-01-01

    Roč. 123, November (2017), s. 783-786 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] R&D Projects: GA MŠk LG14002 Institutional support: RVO:61389021 Keywords : Hall sensor * Lock-in * Synchronous detection * Current spinning * Hall effect * Planar hall effect suppression Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617305070

  12. Spin disorder effect in anomalous Hall effect in MnGa

    Science.gov (United States)

    Mendonça, A. P. A.; Varalda, J.; Schreiner, W. H.; Mosca, D. H.

    2017-12-01

    We report on resistivity and Hall effect in MnGa thin films grown by molecular beam epitaxy on GaAs substrates. Highly (1 1 1)-textured MnGa film with L10 structure exhibits hard magnetic properties with coercivities as high as 20 kOe and spin disorder mechanisms contributing to the Hall conductivity at room temperature. Density functional theory calculations were performed to determine the intrinsic Berry curvature in the momentum space with chiral spin structure that results in an anomalous Hall conductivity of 127 (Ωcm)-1 comparable to that measured at low temperature. In addition to residual and side-jump contributions, which are enhanced by thermal activation, both anomalous Hall conductivity and Hall angle increase between 100 K and room temperature. The present results reinforce the potential of Mn-Ga system for developing Hall effect-based spintronic devices.

  13. L'effet Hall Quantique

    Science.gov (United States)

    Samson, Thomas

    Nous proposons une methode permettant d'obtenir une expression pour la conductivite de Hall de structures electroniques bidimensionnelles et nous examinons celle -ci a la limite d'une temperature nulle dans le but de verifier l'effet Hall quantique. Nous allons nous interesser essentiellement a l'effet Hall quantique entier et aux effets fractionnaires inferieurs a un. Le systeme considere est forme d'un gaz d'electrons en interaction faible avec les impuretes de l'echantillon. Le modele du gaz d'electrons consiste en un gaz bidimensionnel d'electrons sans spin expose perpendiculairement a un champ magnetique uniforme. Ce dernier est decrit par le potentiel vecteur vec{rm A} defini dans la jauge de Dingle ou jauge symetrique. Conformement au formalisme de la seconde quantification, l'hamiltonien de ce gaz est represente dans la base des etats a un-corps de Dingle |n,m> et exprime ainsi en terme des operateurs de creation et d'annihilation correspondants a_sp{ rm n m}{dag} et a _{rm n m}. Nous supposons de plus que les electrons du niveau fondamental de Dingle interagissent entre eux via le potentiel coulombien. La methode utilisee fait appel a une equation mai tresse a N-corps, de nature quantique et statistique, et verifiant le second principe de la thermodynamique. A partir de celle-ci, nous obtenons un systeme d'equations differentielles appele hierarchie d'equations quantique dont la resolution nous permet de determiner une equation a un-corps, dite de Boltzmann quantique, et dictant l'evolution de la moyenne statistique de l'operateur non-diagonal a _sp{rm n m}{dag } a_{rm n}, _{rm m}, sous l'action du champ electrique applique vec{rm E}(t). C'est sa solution Tr(p(t) a _sp{rm n m}{dag} a_{rm n},_ {rm m}), qui definit la relation de convolution entre la densite courant de Hall vec{rm J}_{rm H }(t) et le champ electrique vec {rm E}(t) dont la transformee de Laplace-Fourier du noyau nous fournit l'expression de la conductivite de Hall desiree. Pour une valeur de

  14. Piezo Voltage Controlled Planar Hall Effect Devices.

    Science.gov (United States)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  15. Higher fractions theory of fractional hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.; Popov, V.N.

    1985-07-01

    A theory of fractional quantum Hall effect is generalized to higher fractions. N-particle model interaction is used and the gap is expressed through n-particles wave function. The excitation spectrum in general and the mean field critical behaviour are determined. The Hall conductivity is calculated from first principles. (author)

  16. Experimental test of 200 W Hall thruster with titanium wall

    Science.gov (United States)

    Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren

    2017-05-01

    We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.

  17. Composite fermions in the quantum Hall effect

    International Nuclear Information System (INIS)

    Johnson, B.L.; Kirczenow, G.

    1997-01-01

    The quantum Hall effect and associated quantum transport phenomena in low-dimensional systems have been the focus of much attention for more than a decade. Recent theoretical development of interesting quasiparticles - 'composite fermions' - has led to significant advances in understanding and predicting the behaviour of two-dimensional electron systems under high transverse magnetic fields. Composite fermions may be viewed as fermions carrying attached (fictitious) magnetic flux. Here we review models of the integer and fractional quantum Hall effects, including the development of a unified picture of the integer and fractional effects based upon composite fermions. The composite fermion picture predicts remarkable new physics: the formation of a Fermi surface at high magnetic fields, and anomalous ballistic transport, thermopower, and surface acoustic wave behaviour. The specific theoretical predictions of the model, as well as the body of experimental evidence for these phenomena are reviewed. We also review recent edge-state models for magnetotransport in low-dimensional devices based on the composite fermion picture. These models explain the fractional quantum Hall effect and transport phenomena in nanoscale devices in a unified framework that also includes edge state models of the integer quantum Hall effect. The features of the composite fermion edge-state model are compared and contrasted with those of other recent edge-state models of the fractional quantum Hall effect. (author)

  18. Magnetic Measurements of the Background Field in the Undulator Hall

    International Nuclear Information System (INIS)

    Fisher, Andrew

    2010-01-01

    The steel present in the construction of the undulator hall facility has the potential for changing the ambient fields present in the undulator hall. This note describes a measurement done to make a comparison between the fields in the hall and in the Magnetic Measurement Facility. In order for the undulators to have the proper tuning, the background magnetic field in the Undulator Hall should agree with the background field in the Magnetic Measurements Facility within .5 gauss. In order to verify that this was the case measurements were taken along the length of the undulator hall, and the point measurements were compared to the mean field which was measured on the MMF test bench.

  19. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  20. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  1. Trends in preference, programming and design of concert halls for symphonic music

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    2008-01-01

    This paper discusses the evolution in taste regarding concert hall acoustics and how this can be reflected in the new halls being built today. The clients' and listener's preferences are not only based on listening in existing halls; but also on listening to reproduced music recorded with microph......This paper discusses the evolution in taste regarding concert hall acoustics and how this can be reflected in the new halls being built today. The clients' and listener's preferences are not only based on listening in existing halls; but also on listening to reproduced music recorded...

  2. Hall effect in organic layered conductors

    Directory of Open Access Journals (Sweden)

    R.A.Hasan

    2006-01-01

    Full Text Available The Hall effect in organic layered conductors with a multisheeted Fermi surfaces was considered. It is shown that the experimental study of Hall effect and magnetoresistance anisotropy at different orientations of current and a quantizing magnetic field relative to the layers makes it possible to determine the contribution of various charge carriers groups to the conductivity, and to find out the character of Fermi surface anisotropy in the plane of layers.

  3. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    Science.gov (United States)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).

  4. Shielding consideration for the SSCL experimental halls

    International Nuclear Information System (INIS)

    Bull, J.; Coyne, J.; Mokhov, N.; Stapleton, G.

    1994-03-01

    The Superconducting Super Collider which is being designed and built in Waxahachie, Texas consists Of series of proton accelerators, culminating in a 20 Te proton on proton collider. The collider will be in a tunnel which will be 87 km in circumference and. on average about 30 meters underground. The present design calls for two large interaction halls on the east side of the ring. The shielding for these halls is being designed for an interaction rate of 10 9 Hz or 10 16 interactions per year, based on 10 7 seconds per operational year. SSC guidelines require that the shielding be designed to meet the criterion of 1mSv per year for open areas off site 2mSv per year for open areas on site, and 2mSv per year for controlled areas. Only radiation workers will be routinely allowed to work in controlled areas. It should be pointed that there is a potential for an accidental full beam loss in either of the experimental halls, and this event would consist of the loss of the full circulating beam up to 4 x 10 14 protons. With the present design. the calculated dose equivalent for this event is about 10% of the annual dose equivalent for the normal p-p interactions, so that die accident condition does not control the shielding. If, for instance, local shielding within the experimental hall is introduced into the calculations, this could change. The shielding requirements presented here are controlled by the normal p-p interactions. Three important questions were addressed in the present calculations. They are (1) the thickness of the roof over the experimental halls, (2) the configuration of the shafts and adits which give access to the halls, and (3) the problem of ground water and air activation

  5. Precision of single-engage micro Hall effect measurements

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann; Hansen, Ole; Kjær, Daniel

    2014-01-01

    Recently a novel microscale Hall effect measurement technique has been developed to extract sheet resistance (RS), Hall sheet carrier density (NHS) and Hall mobility (μH) from collinear micro 4-point probe measurements in the vicinity of an insulating boundary [1]. The technique measures in less...... than a minute directly the local transport properties, which enables in-line production monitoring on scribe line test pads [2]. To increase measurement speed and reliability, a method in which 4-point measurements are performed using two different electrode pitches has been developed [3......]. In this study we calculate the measurement error on RS, NHS and μH resulting from electrode position errors, probe placement, sample size and Hall signal magnitude. We show the relationship between measurement precision and electrode pitch, which is important when down-scaling the micro 4-point probe to fit...

  6. Localization in a quantum spin Hall system.

    Science.gov (United States)

    Onoda, Masaru; Avishai, Yshai; Nagaosa, Naoto

    2007-02-16

    The localization problem of electronic states in a two-dimensional quantum spin Hall system (that is, a symplectic ensemble with topological term) is studied by the transfer matrix method. The phase diagram in the plane of energy and disorder strength is exposed, and demonstrates "levitation" and "pair annihilation" of the domains of extended states analogous to that of the integer quantum Hall system. The critical exponent nu for the divergence of the localization length is estimated as nu congruent with 1.6, which is distinct from both exponents pertaining to the conventional symplectic and the unitary quantum Hall systems. Our analysis strongly suggests a different universality class related to the topology of the pertinent system.

  7. Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    NARCIS (Netherlands)

    Mosendz, O.; Vlaminck, V.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.

    2010-01-01

    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in nonmagnetic conductors. Here we study the spin-pumping-induced

  8. Observation of the anomalous Hall effect in GaAs

    International Nuclear Information System (INIS)

    Miah, M Idrish

    2007-01-01

    Devices for the direct detection of the spin current, based on the anomalous Hall effect (AHE), are fabricated on n-type GaAs bulk semiconductor materials. The AHE is observed in the device when the photoinduced spin-polarized electrons are injected into it, and it is found that the effect depends on the applied electric field. The origin of the field-dependent observed Hall effect is discussed based on the D'yakonov-Perel' (DP) spin relaxation mechanism. The spin-dependent Hall effect is also found to be enhanced with increasing doping concentration. The present experimental results might have potential applications in semiconductor spintronic devices since the effect is closely related to the spin Hall effect

  9. Observation of the anomalous Hall effect in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M Idrish [Nanoscale Science and Technology Centre, School of Science, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong - 4331 (Bangladesh)

    2007-03-21

    Devices for the direct detection of the spin current, based on the anomalous Hall effect (AHE), are fabricated on n-type GaAs bulk semiconductor materials. The AHE is observed in the device when the photoinduced spin-polarized electrons are injected into it, and it is found that the effect depends on the applied electric field. The origin of the field-dependent observed Hall effect is discussed based on the D'yakonov-Perel' (DP) spin relaxation mechanism. The spin-dependent Hall effect is also found to be enhanced with increasing doping concentration. The present experimental results might have potential applications in semiconductor spintronic devices since the effect is closely related to the spin Hall effect.

  10. Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Pearson, John E.; Hoffmann, Axel [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Vlaminck, Vincent [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Colegio de Ciencias e Ingenería, Universidad San Fransciso de Quito, Quito (Ecuador); Divan, Ralu [Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States); Bader, Samuel D. [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, Illinois 60439 (United States)

    2013-12-09

    The spin diffusion length of Pt at room temperature and at 8 K is experimentally determined via spin pumping and spin Hall effect in permalloy/Pt bilayers. Voltages generated during excitation of ferromagnetic resonance from the inverse spin Hall effect and anisotropic magnetoresistance effect were investigated with a broadband approach. Varying the Pt layer thickness gives rise to an evolution of the voltage line shape due to the superposition of the above two effects. By studying the ratio of the two voltage components with the Pt layer thickness, the spin diffusion length of Pt can be directly extracted. We obtain a spin diffusion length of ∼1.2 nm at room temperature and ∼1.6 nm at 8 K.

  11. A holographic model for the fractional quantum Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, Matthew [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, 1090GL Amsterdam (Netherlands); Meyer, René [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,Kashiwa, Chiba 277-8568 (Japan); Taliotis, Anastasios [Theoretische Natuurkunde, Vrije Universiteit Brussel andThe International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2015-01-08

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ{sub 0}(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an SL(2,ℤ)-invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the SL(2,ℤ) action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  12. A holographic model for the fractional quantum Hall effect

    Science.gov (United States)

    Lippert, Matthew; Meyer, René; Taliotis, Anastasios

    2015-01-01

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  13. The Topological Structure of the SU(2) Chern–Simons Topological Current in the Four-Dimensional Quantum Hall Effect

    International Nuclear Information System (INIS)

    Xiu-Ming, Zhang; Yi-Shi, Duan

    2010-01-01

    In the light of the decomposition of the SU(2) gauge potential for I = 1/2, we obtain the SU(2) Chern-Simons current over S 4 , i.e. the vortex current in the effective field for the four-dimensional quantum Hall effect. Similar to the vortex excitations in the two-dimensional quantum Hall effect (2D FQH) which are generated from the zero points of the complex scalar field, in the 4D FQH, we show that the SU(2) Chern–Simons vortices are generated from the zero points of the two-component wave functions Ψ, and their topological charges are quantized in terms of the Hopf indices and Brouwer degrees of φ-mapping under the condition that the zero points of field Ψ are regular points. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  14. Quantum Hall Ferroelectrics and Nematics in Multivalley Systems

    Science.gov (United States)

    Sodemann, Inti; Zhu, Zheng; Fu, Liang

    2017-10-01

    We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.

  15. A Novel Hall Effect Sensor Using Elaborate Offset Cancellation Method

    Directory of Open Access Journals (Sweden)

    Vlassis N. Petoussis

    2009-01-01

    Full Text Available The Hall effect is caused by a traverse force that is formed in the electrons or holes of metal element or semiconductor when are polarized by current source and simultaneously all the system it is found vertical in external magnetic field. Result is finally the production of difference of potential (Hall voltage in address vertical in that of current and magnetic field directions. In the present work is presented a new Hall sensor exploiting the former operation. In combination with his pioneering form and using dynamic spinning current technique with an elaborate sequence, it leads to satisfactory results of produced Hall voltage with small noise in a presence of external magnetic field. Anyone can see both the spinning current and anti-Hall technique in the same sensor simultaneously.

  16. Digital technology impacts on the Arnhem transfer hall structural design

    NARCIS (Netherlands)

    Van de Straat, R.; Hofman, S.; Coenders, J.L.; Paul, J.C.

    2015-01-01

    The new Transfer Hall in Arnhem is one of the key projects to prepare the Dutch railways for the increased future demands for capacity. UNStudio developed a master plan in 1996 for the station area of which the completion of the Transfer Hall in 2015 will be a final milestone. The Transfer Hall is a

  17. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  18. Acoustic investigations of concert halls for rock music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    Objective measurement data and subjective evaluations have been collected from 20 small-/medium-sized halls in Denmark used for amplified rhythmic music concerts (pop, rock, jazz). The purpose of the study was to obtain knowledge about optimum acoustic conditions for this type of hall. The study...... is motivated by the fact that most concert tickets sold in Denmark relate to concerts within these genres in this kind of venue. The subjective evaluations were carried out by professional musicians and sound engineers who responded on the basis of their experiences working in these (and other) halls. From...

  19. Magnetohydrodynamic simulations of Gamble I POS with Hall effect

    International Nuclear Information System (INIS)

    Roderick, N.F.; Frese, M.H.; Peterkin, R.E.; Payne, S.S.

    1989-01-01

    Two dimensional single fluid magnetohydrodynamic simulations have been conducted to investigate the effects of the Hall electric field on magnetic field transport in plasma opening switches of the type used on Gamble I. The Hall terms were included in the magnetic field transport equation in the two dimensional simulation code MACH2 through the use of a generalized Ohm's law. Calculations show the Hall terms augment the field transport previously observed to occur through ion fluid motion and diffusion. For modest values of microturbulent collision frequency, board current channels were observed . Results also show the magnetic field transport to be affected by the cathode boundary conditions with the Hall terms included. In all cases center of mass motion was slight

  20. Spin Hall effect on a noncommutative space

    International Nuclear Information System (INIS)

    Ma Kai; Dulat, Sayipjamal

    2011-01-01

    We study the spin-orbital interaction and the spin Hall effect of an electron moving on a noncommutative space under the influence of a vector potential A(vector sign). On a noncommutative space, we find that the commutator between the vector potential A(vector sign) and the electric potential V 1 (r(vector sign)) of the lattice induces a new term, which can be treated as an effective electric field, and the spin Hall conductivity obtains some correction. On a noncommutative space, the spin current and spin Hall conductivity have distinct values in different directions, and depend explicitly on the noncommutative parameter. Once this spin Hall conductivity in different directions can be measured experimentally with a high level of accuracy, the data can then be used to impose bounds on the value of the space noncommutativity parameter. We have also defined a new parameter, σ=ρθ (ρ is the electron concentration, θ is the noncommutativity parameter), which can be measured experimentally. Our approach is based on the Foldy-Wouthuysen transformation, which gives a general Hamiltonian of a nonrelativistic electron moving on a noncommutative space.

  1. Hole mobilities and the effective Hall factor in p-type GaAs

    Science.gov (United States)

    Wenzel, M.; Irmer, G.; Monecke, J.; Siegel, W.

    1997-06-01

    We prove the effective Hall factor in p-GaAs to be larger than values discussed in the literature up to now. The scattering rates for the relevant scattering mechanisms in p-GaAs have been recalculated after critical testing the existing models. These calculations allow to deduce theoretical drift and theoretical Hall mobilities as functions of temperature which can be compared with measured data. Theoretical Hall factors in the heavy and light hole bands and an effective Hall factor result. The calculated room temperature values of the drift mobility and of the effective Hall factor are 118 cm2/V s and 3.6, respectively. The fitted acoustic deformation potential E1=7.9 eV and the fitted optical coupling constant DK=1.24×1011 eV/m are close to values published before. It is shown that the measured strong dependence of the Hall mobility on the Hall concentration is not mainly caused by scattering by ionized impurities but by the dependence of the effective Hall factor on the hole concentration.

  2. Field theory approach to quantum hall effect

    International Nuclear Information System (INIS)

    Cabo, A.; Chaichian, M.

    1990-07-01

    The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig

  3. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    Science.gov (United States)

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  4. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    International Nuclear Information System (INIS)

    Mani, Arjun; Benjamin, Colin

    2016-01-01

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin–orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case. (paper)

  5. Performance Comparison of Cross-Like Hall Plates with Different Covering Layers

    Directory of Open Access Journals (Sweden)

    Fei Lyu

    2014-12-01

    Full Text Available This paper studies the effects of the covering layers on the performance of a cross-like Hall plate. Three different structures of a cross-like Hall plate in various sizes are designed and analyzed. The Hall plate sensitivity and offset are characterized using a self-built measurement system. The effect of the P-type region over the active area on the current-related sensitivity is studied for different Hall plate designs. In addition, the correlation between the P-type covering layer and offset is analyzed. The best structure out of three designs is determined. Besides, a modified eight-resistor circuit model for the Hall plate is presented with improved accuracy by taking the offset into account.

  6. Enhanced Performance of Cylindrical Hall Thrusters

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2007-01-01

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma

  7. Theory of fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1984-09-01

    A theory of the fractional quantum Hall effect is constructed by introducing 3-particle interactions breaking the symmetry for ν=1/3 according to a degeneracy theorem proved here. An order parameter is introduced and a gap in the single particle spectrum is found. The critical temperature, critical filling number and critical behaviour are determined as well as the Ginzburg-Landau equation coefficients. A first principle calculation of the Hall current is given. 3, 5, 7 electron tunneling and Josephson interference effects are predicted. (author)

  8. ε-iron nitrides: Intrinsic anomalous Hall ferromagnets

    Directory of Open Access Journals (Sweden)

    Guo-Ke Li

    2015-02-01

    Full Text Available The anomalous Hall effect in ε-iron nitrides (ε-Fe3-xN, 0 ≤ x ≤ 1 has been systematically investigated taking advantage of the fact that the exchange splitting of ε-Fe3-xN can be continuously tuned through the nitrogen concentration. It has been found that the anomalous Hall conductivity, σ x y A H , is proportional to the saturation magnetization MS, i.e., σ x y A H = S H M S , across significant variations in the saturation magnetization (96–1146 emu/cc. This relationship is in excellent agreement with the intrinsic mechanism as well as with the unified theory of AHE. Our results also demonstrate that the anomalous Hall conductivity is sensitive to the exchange splitting of the band structure.

  9. Signatures of lattice geometry in quantum and topological Hall effect

    International Nuclear Information System (INIS)

    Göbel, Börge; Mook, Alexander; Mertig, Ingrid; Henk, Jürgen

    2017-01-01

    The topological Hall effect (THE) of electrons in skyrmion crystals (SkXs) is strongly related to the quantum Hall effect (QHE) on lattices. This relation suggests to revisit the QHE because its Hall conductivity can be unconventionally quantized. It exhibits a jump and changes sign abruptly if the Fermi level crosses a van Hove singularity. In this Paper, we investigate the unconventional QHE features by discussing band structures, Hall conductivities, and topological edge states for square and triangular lattices; their origin are Chern numbers of bands in the SkX (THE) or of the corresponding Landau levels (QHE). Striking features in the energy dependence of the Hall conductivities are traced back to the band structure without magnetic field whose properties are dictated by the lattice geometry. Based on these findings, we derive an approximation that allows us to determine the energy dependence of the topological Hall conductivity on any two-dimensional lattice. The validity of this approximation is proven for the honeycomb lattice. We conclude that SkXs lend themselves for experiments to validate our findings for the THE and—indirectly—the QHE. (paper)

  10. Hall conductance and topological invariant for open systems.

    Science.gov (United States)

    Shen, H Z; Wang, W; Yi, X X

    2014-09-24

    The Hall conductivity given by the Kubo formula is a linear response of quantum transverse transport to a weak electric field. It has been intensively studied for quantum systems without decoherence, but it is barely explored for systems subject to decoherence. In this paper, we develop a formulism to deal with this issue for topological insulators. The Hall conductance of a topological insulator coupled to an environment is derived, the derivation is based on a linear response theory developed for open systems in this paper. As an application, the Hall conductance of a two-band topological insulator and a two-dimensional lattice is presented and discussed.

  11. Determination of intrinsic spin Hall angle in Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 117576 (Singapore)

    2014-10-13

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  12. Determination of intrinsic spin Hall angle in Pt

    International Nuclear Information System (INIS)

    Wang, Yi; Deorani, Praveen; Qiu, Xuepeng; Kwon, Jae Hyun; Yang, Hyunsoo

    2014-01-01

    The spin Hall angle in Pt is evaluated in Pt/NiFe bilayers by spin torque ferromagnetic resonance measurements and is found to increase with increasing the NiFe thickness. To extract the intrinsic spin Hall angle in Pt by estimating the total spin current injected into NiFe from Pt, the NiFe thickness dependent measurements are performed and the spin diffusion in the NiFe layer is taken into account. The intrinsic spin Hall angle of Pt is determined to be 0.068 at room temperature and is found to be almost constant in the temperature range of 13–300 K.

  13. Fast surface waves in an ideal Hall-magnetohydrodynamic plasma slab

    International Nuclear Information System (INIS)

    Zhelyazkov, I.; Debosscher, A.; Goossens, M.

    1996-01-01

    The propagation of fast sausage and kink magnetohydrodynamic (MHD) surface waves in an ideal magnetized plasma slab is studied taking into account the Hall term in the generalized Ohm close-quote s law. It is found that the Hall effect modifies the dispersion characteristics of MHD surface modes when the Hall term scaling length is not negligible (less than, but comparable to the slab thickness). The dispersion relations for both modes have been derived for parallel propagation (along the ambient equilibrium magnetic field lines).The Hall term imposes some limits on the possible wave number range. It turns out that the space distribution of almost all perturbed quantities in sausage and kink surface waves with Hall effect is rather complicated as compared to that of usual fast MHD surface waves. The applicability to solar wind aspects of the results obtained, is briefly discussed. copyright 1996 American Institute of Physics

  14. Migrants and Their Experiences of Time: Edward T. Hall Revisited

    Directory of Open Access Journals (Sweden)

    Elisabeth Schilling

    2009-01-01

    Full Text Available In this paper we reassess the scientific heritage of Edward T. HALL and his contribution to the area of intercultural communication. The key objectives of our study are to demonstrate the applicability of HALL's theory of culture to empirical research and to establish its compatibility with other methods. Specifically, we propose that Alfred SCHÜTZ's phenomenology of sociality be taken as an extension to HALL. The connection between HALL and SCHÜTZ is made possible by the mutual emphases on the temporal dimension of culture and the temporal aspects of migration. With these foci we analyze six narratives by two groups of migrants: German and Russian. By combining HALL's theory of the cultural time with SCHÜTZ's phenomenological perspective on time and the Other and then applying them to empirical data, we show the terms in which different cultures experience time. URN: urn:nbn:de:0114-fqs0901357

  15. Critical current in the Integral Quantum Hall Effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    A multiparticle theory of the Integral Quantum Hall Effect (IQHE) was constructed operating with pairs wave function as an order parameter. The IQHE is described with bosonic macroscopic states while the fractional QHE with fermionic ones. The calculation of the critical current and Hall conductivity temperature dependence is presented. (author)

  16. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.

    Science.gov (United States)

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-10-27

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  17. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics

    Directory of Open Access Journals (Sweden)

    Haiyun Huang

    2015-10-01

    Full Text Available This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  18. The ISOLDE hall

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Since 1992, after its move from the 600 MeV SC, ISOLDE is a customer of the Booster (then 1 GeV, now 1.4 GeV). The intense Booster beam (some 3E13 protons per pulse) is directed onto a target, from which a mixture of isotopes emanates. After ionization and electrostatic acceleration to 60 keV, they enter one of the 2 spectrometers (General Purpose Separator: GPS, and High Resolution Separator: HRS) from which the selected ions are directed to the experiments. The photos show: the REX-ISOLDE post accelerator; the mini-ball experiment; an overview of the ISOLDE hall. In the picture (_12) of the hall, the separators are behind the wall. From either of them, beams can be directed into any of the many beamlines towards the experiments, some of which are visible in the foreground. The elevated cubicle at the left is EBIS (Electron Beam Ion Source), which acts as a charge-state multiplier for the REX facility. The ions are further mass analzyzed and passed on to the linac which accelerates them to higher energies. T...

  19. Prototype dining hall energy efficiency study

    Energy Technology Data Exchange (ETDEWEB)

    Mazzucchi, R.P.; Bailey, S.A.; Zimmerman, P.W.

    1988-06-01

    The energy consumption of food service facilities is among the highest of any commercial building type, owing to the special requirements for food preparation, sanitation, and ventilation. Consequently, the US Air Force Engineering and Services Center (AFESC) contracted with Pacific Northwest Laboratory (PNL) to collect and analyze end-use energy consumption data for a prototypical dining hall and make specific recommendations on cost-effective energy conservation options. This information will be used to establish or update criteria for dining hall designs and retrofits as appropriate. 6 refs., 21 figs., 23 tabs.

  20. Proton knock-out in Hall A

    International Nuclear Information System (INIS)

    Jager, K. de

    2003-01-01

    Proton knock-out is studied in a broad program in Hall A at Jefferson Lab. The first experiment performed in Hall A studied the 16 O(e,e'p) reaction. Since then proton knock-out experiments have studied a variety of aspects of that reaction, from single-nucleon properties to its mechanism, such as final-state interactions and two-body currents, in nuclei from 2 H to 16 O. In this review the accomplishments of this program will be summarized and an outlook given of expected future results. (orig.)

  1. Mechanism of power generation - the MHD way

    International Nuclear Information System (INIS)

    Rangachari, S.; Ramash, V.R.; Subramanian, C.K.

    1975-01-01

    The basic physical principles of magnetohydrodynamics and the application of this principle for power generation (direct energy conversion) are explained. A magnetohydrodynamic generator (MHDG) is described both in the Faraday and Hall modes. The advantages of the Faraday mode and the Hall mode for different geometries of the generator are mentioned. The conductor used is a fluid - an ionised gas (plasma) or a liquid metal at high temperature. The difficulties in maintaining high temperature and high velocity for the gas and very low temperature at the same time side by side for superconducting magnets to produce a strong magnetic field, are pointed out. The most commonly used gas is purified air. The advantages of MHD generators and the present power crisis have compelled further research in this field in spite of the high costs involved. (A.K.)

  2. Bound values for Hall conductivity of heterogeneous medium under ...

    Indian Academy of Sciences (India)

    - ditions in inhomogeneous medium has been studied. It is shown that bound values for. Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect ...

  3. Hall Sweet Home

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2011-01-01

    Many urban and commuter universities have their sights set on students who are unlikely to connect with the college and likely to fail unless the right strategies are put in place to help them graduate. In efforts to improve retention rates, commuter colleges are looking to an unusual suspect: residence halls. The author discusses how these…

  4. Design and development of DC high current sensor using Hall-Effect method

    Science.gov (United States)

    Dewi, Sasti Dwi Tungga; Panatarani, C.; Joni, I. Made

    2016-02-01

    This paper report a newly developed high DC current sensor by using a Hall effect method and also the measurement system. The Hall effect sensor receive the magnetic field generated by a current carrying conductor wire. The SS49E (Honeywell) magnetoresistive sensor was employed to sense the magnetic field from the field concentrator. The voltage received from SS49E then converted into digital by using analog to digital converter (ADC-10 bit). The digital data then processed in the microcontroller to be displayed as the value of the electric current in the LCD display. In addition the measurement was interfaced into Personal Computer (PC) using the communication protocols of RS232 which was finally displayed in real-time graphical form on the PC display. The performance test on the range ± 40 Ampere showed that the maximum relative error is 5.26%. It is concluded that the sensors and the measurement system worked properly according to the design with acceptable accuracy.

  5. G. Stanley Hall, Child Study, and the American Public.

    Science.gov (United States)

    Young, Jacy L

    2016-01-01

    In the final decades of the 19th century psychologist Granville Stanley Hall was among the most prominent pedagogical experts in the nation. The author explores Hall's carefully crafted persona as an educational expert, and his engagements with the American public, from 1880 to 1900, arguably the height of his influence. Drawing from accounts of Hall's lecture circuit in the popular press, a map of his talks across the nation is constructed to assess the geographic scope of his influence. These talks to educators on the psychology underlying childhood and pedagogy, and his views and research on child life more generally, were regularly discussed in newspapers and popular periodicals. The venues in which Hall's ideas were disseminated, discussed, and in some cases, dismissed are described. His efforts to mobilize popular support for, and assistance with, his research endeavors in child study are also discussed. Such efforts were controversial both within the burgeoning field of psychology and among the public. Through his various involvements in pedagogy, and concerted efforts to engage with the American public, Hall helped establish psychology's relevance to parenting and educational practices.

  6. Four-dimensional Hall mechanics as a particle on CP3

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Casteill, Pierre-Yves; Nersessian, Armen

    2003-01-01

    In order to establish an explicit connection between four-dimensional Hall effect on S 4 and six-dimensional Hall effect on CP 3 , we perform the Hamiltonian reduction of a particle moving on CP 3 in a constant magnetic field to the four-dimensional Hall mechanics (i.e., a-bar particle on S 4 in a SU(2) instanton field). This reduction corresponds to fixing the isospin of the latter system

  7. Spin Hall Effect in Doped Semiconductor Structures

    Science.gov (United States)

    Tse, Wang-Kong; Das Sarma, Sankar

    2006-03-01

    We present a microscopic theory of the extrinsic spin Hall effect based on the diagrammatic perturbation theory. Side-jump (SJ) and skew-scattering (SS) contributions are explicitly taken into account to calculate the spin Hall conductivity, and we show their effects scale as σxy^SJ/σxy^SS ˜(/τ)/ɛF, where τ being the transport relaxation time. Motivated by recent experimental work we apply our theory to n-doped and p-doped 3D and 2D GaAs structures, obtaining analytical formulas for the SJ and SS contributions. Moreover, the ratio of the spin Hall conductivity to longitudinal conductivity is found as σs/σc˜10-3-10-4, in reasonable agreement with the recent experimental results of Kato et al. [Science 306, 1910 (2004)] in n-doped 3D GaAs system.

  8. What is the Hallé? | Smith | Philosophical Papers

    African Journals Online (AJOL)

    The bulk of the paper examines the difficulty of reconciling the view that the Hallé is several individuals with two prima facie plausible theses about the manner of its persistence through time. The paper is structured around some remarks made by Peter Simons about groups, and the Hallé in particular, in his Parts.

  9. Hall effects and related phenomena in disordered Rashba 2DEG

    International Nuclear Information System (INIS)

    Inoue, Jun-ichiro; Kato, Takashi; Bauer, Gerrit E W; Molenkamp, Laurens W

    2009-01-01

    We review our recent work on the spin and anomalous Hall effects and other related phenomena caused by the intrinsic spin–orbit interaction. We focus our attention on disorder effects on these transport properties by adopting a model of a two-dimensional electron gas with a Rashba-type spin–orbit interaction. A spin-polarized model is adopted to calculate the anomalous Hall effect and anisotropic magnetoresistance. It is shown that the spin Hall conductivity in the ballistic transport regime is cancelled by the so-called vertex corrections for the disorder scattering, and that the anomalous Hall conductivity and anisotropic magnetoresistance vanish unless the lifetime is spin dependent. We further present results on spin accumulation under an electric field

  10. Theory of the quantum hall effects in lattice systems

    International Nuclear Information System (INIS)

    Kliros, G.S.

    1990-06-01

    The Fractional Quantum Hall Effect is identified as an Integral Quantum Hall Effect of electrons on a lattice with an even number of statistical flux quanta. A variational wavefunction in terms of the Hofstadter lattice eigenstates is proposed. (author). 21 refs

  11. Resonant spin Hall effect in two dimensional electron gas

    Science.gov (United States)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  12. The Isolde experimental hall

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    General view of the Isotope-Separator On-Line (ISOLDE) hall. ISOLDE is dedicated to the production of a large variety of radioactive ion beams for many different experiments. Rare isotopes can be produced allowing the study of spectra for neutrino beam production.

  13. Bulk Versus Edge in the Quantum Hall Effect

    OpenAIRE

    Kao, Y. -C.; Lee, D. -H.

    1996-01-01

    The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, $\\sxy$ should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.

  14. An evaluation of krypton propellant in Hall thrusters

    Science.gov (United States)

    Linnell, Jesse Allen

    Due to its high specific impulse and low price, krypton has long sparked interest as an alternate Hall thruster propellant. Unfortunately at the moment, krypton's relatively poor performance precludes it as a legitimate option. This thesis presents a detailed investigation into krypton operation in Hall thrusters. These findings suggest that the performance gap can be decreased to 4% and krypton can finally become a realistic propellant option. Although krypton has demonstrated superior specific impulse, the xenon-krypton absolute efficiency gap ranges between 2 and 15%. A phenomenological performance model indicates that the main contributors to the efficiency gap are propellant utilization and beam divergence. Propellant utilization and beam divergence have relative efficiency deficits of 5 and 8%, respectively. A detailed characterization of internal phenomena is conducted to better understand the xenon-krypton efficiency gap. Krypton's large beam divergence is found to be related to a defocusing equipotential structure and a weaker magnetic field topology. Ionization processes are shown to be linked to the Hall current, the magnetic mirror topology, and the perpendicular gradient of the magnetic field. Several thruster design and operational suggestions are made to optimize krypton efficiency. Krypton performance is optimized for discharge voltages above 500 V and flow rates corresponding to an a greater than 0.015 mg/(mm-s), where alpha is a function of flow rate and discharge channel dimensions (alpha = m˙alphab/Ach). Performance can be further improved by increasing channel length or decreasing channel width for a given flow rate. Also, several magnetic field design suggestions are made to enhance ionization and beam focusing. Several findings are presented that improve the understanding of general Hall thruster physics. Excellent agreement is shown between equipotential lines and magnetic field lines. The trim coil is shown to enhance beam focusing

  15. Magnetic field deformation due to electron drift in a Hall thruster

    Directory of Open Access Journals (Sweden)

    Han Liang

    2017-01-01

    Full Text Available The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM. The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.

  16. Current Percolation in Medium with Boundaries under Quantum Hall Effect Conditions

    Directory of Open Access Journals (Sweden)

    M. U. Malakeeva

    2012-01-01

    Full Text Available The current percolation has been considered in the medium with boundaries under quantum Hall effect conditions. It has been shown that in that case the effective Hall conductivity has a nonzero value due to percolation of the Hall current through the finite number of singular points (in our model these are corners at the phase joints.

  17. Developments in Scanning Hall Probe Microscopy

    Science.gov (United States)

    Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David

    2009-05-01

    Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.

  18. Fractional statistics and fractional quantized Hall effect

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1985-01-01

    The authors suggest that the origin of the odd-denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which govern quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics do not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus, no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references

  19. High-performance LED luminaire for sports hall

    Science.gov (United States)

    Lee, Xuan-Hao; Yang, Jin-Tsung; Chien, Wei-Ting; Chang, Jung-Hsuan; Lo, Yi-Chien; Lin, Che-Chu; Sun, Ching-Cherng

    2015-09-01

    In this paper, we present a luminaire design with anti-glare and energy-saving effects for sports hall. Compared with traditional lamps using in a badminton court, the average illuminance on the ground of the proposed LED luminaire is enhanced about 300%. Besides, the uniformity is obviously enhanced and improved. The switch-on speed of lighting in sports hall is greatly reduced from 5-10 minutes to 1 second. The simulation analysis and the corresponding experiment results are demonstrated.

  20. First e⁻/γ Commissioning Results for the GlueX Experiment/Hall D at CEBAF

    Energy Technology Data Exchange (ETDEWEB)

    McCaughan, Michael D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Satogata, Todd J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Roblin, Yves R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Benesch, Jay F. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2015-09-01

    Experimental Hall D, with flagship experiment GlueX, was constructed as part of the 12 GeV CEBAF upgrade. A new magnetically extracted electron beam line was installed to support this hall. Bremsstrahlung photons from retractable radiators are delivered to the experiment through a series of collimators following a long drift to allow for beam convergence. Coherent Bremsstrahlung generated by interaction with a diamond radiator will achieve a nominal 40% linear polarization and photon energies between 8.5 and 9 GeV from 12.1 GeV electrons, which are then tagged or diverted to a medium power 60kW electron dump. The expected photon flux is 107-108 Hz. This paper discusses the experimental line design, commissioning experience gained since first beam in spring 2014, and the present results of beam commissioning by the experiment.

  1. All Optical Measurement Proposed for the Photovoltaic Hall Effect

    International Nuclear Information System (INIS)

    Oka, Takashi; Aoki, Hideo

    2011-01-01

    We propose an all optical way to measure the recently proposed p hotovoltaic Hall effect , i.e., a Hall effect induced by a circularly polarized light in the absence of static magnetic fields. This is done in a pump-probe experiment with the Faraday rotation angle being the probe. The Floquet extended Kubo formula for photo-induced optical response is formulated and the ac-Hall conductivity is calculated. We also point out the possibility of observing the effect in two layered graphene, three-dimensional graphite, and more generally in multi-band systems such as materials described by the dp-model.

  2. Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal

    OpenAIRE

    Liu, Enke; Sun, Yan; Müchler, Lukas; Sun, Aili; Jiao, Lin; Kroder, Johannes; Süß, Vicky; Borrmann, Horst; Wang, Wenhong; Schnelle, Walter; Wirth, Steffen; Goennenwein, Sebastian T. B.; Felser, Claudia

    2017-01-01

    Magnetic Weyl semimetals (WSMs) with time reversal symmetry breaking exhibit Weyl nodes that act as monopoles of Berry curvature and are thus expected to generate a large intrinsic anomalous Hall effect (AHE). However, in most magnetic WSMs, the Weyl nodes are located far from the Fermi energy, making it difficult to observe the Weyl-node dominated intrinsic AHE in experiments. Here we report a novel half-metallic magnetic WSM in the Kagome-lattice Shandite compound Co3Sn2S2. The Weyl nodes, ...

  3. Inverted end-Hall-type low-energy high-current gaseous ion source

    International Nuclear Information System (INIS)

    Oks, E. M.; Vizir, A. V.; Shandrikov, M. V.; Yushkov, G. Yu.; Grishin, D. M.; Anders, A.; Baldwin, D. A.

    2008-01-01

    A novel approach to low-energy, high-current, gaseous ion beam generation was explored and an ion source based on this technique has been developed. The source utilizes a dc high-current (up to 20 A) gaseous discharge with electron injection into the region of ion generation. Compared to the conventional end-Hall ion source, the locations of the discharge anode and cathode are inverted: the cathode is placed inside the source and the anode outside, and correspondingly, the discharge current is in the opposite direction. The discharge operates in a diverging axial magnetic field, similar to the end-Hall source. Electron generation and injection is accomplished by using an additional arc discharge with a ''cold'' (filamentless) hollow cathode. Low plasma contamination is achieved by using a low discharge voltage (avoidance of sputtering), as well as by a special geometric configuration of the emitter discharge electrodes, thereby filtering (removing) the erosion products stemming from the emitter cathode. The device produces a dc ion flow with energy below 20 eV and current up to 2.5 A onto a collector of 500 cm 2 at 25 cm from the source edge, at a pressure ≥0.02 Pa and gas flow rate ≥14 SCCM. The ion energy spread is 2 to 3 eV (rms). The source is characterized by high reliability, low maintenance, and long lifetime. The beam contains less than 0.1% of metallic ions. The specific electric energy consumption is 400 eV per ion registered at the collector. The source operates with noble gases, nitrogen, oxygen, and hydrocarbons. Utilizing biasing, it can be used for plasma sputtering, etching, and other ion technologies

  4. Useful Pedagogical Applications of the Classical Hall Effect

    Science.gov (United States)

    Houari, Ahmed

    2007-01-01

    One of the most known phenomena in physics is the Hall effect. This is mainly due to its simplicity and to the wide range of its theoretical and practical applications. To complete the pedagogical utility of the Hall effect in physics teaching, I will apply it here to determine the Faraday constant as a fundamental physical number and the number…

  5. Single particle detection: Phase control in submicron Hall sensors

    International Nuclear Information System (INIS)

    Di Michele, Lorenzo; Shelly, Connor; Gallop, John; Kazakova, Olga

    2010-01-01

    We present a phase-sensitive ac-dc Hall magnetometry method which allows a clear and reliable separation of real and parasitic magnetic signals of a very small magnitude. High-sensitivity semiconductor-based Hall crosses are generally accepted as a preferential solution for non-invasive detection of superparamagnetic nanobeads used in molecular biology, nanomedicine, and nanochemistry. However, detection of such small beads is often hindered by inductive pick-up and other spurious signals. The present work demonstrates an unambiguous experimental route for detection of small magnetic moments and provides a simple theoretical background for it. The reliability of the method has been tested for a variety of InSb Hall sensors in the range 600 nm-5 μm. Complete characterization of empty devices, involving Hall coefficients and noise measurements, has been performed and detection of a single FePt bead with diameter of 140 nm and magnetic moment of μ≅10 8 μ B has been achieved with a 600 nm-wide sensor.

  6. Detection of fractional solitons in quantum spin Hall systems

    Science.gov (United States)

    Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.

    2018-03-01

    We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.

  7. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    Science.gov (United States)

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  8. Inverse spin Hall effect by spin injection

    Science.gov (United States)

    Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.

    2007-09-01

    Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.

  9. Are tent halls subject to property tax?

    Directory of Open Access Journals (Sweden)

    Mariusz Macudziński

    2016-12-01

    Full Text Available The presented publication is a response to currently asked questions and interpretative doubts of taxpayers and tax authorities, namely whether tent halls are subject to property tax. General issues connected with an entity and a subject of taxation of this tax are presented herein. The answer to the question asked is then provided through the qualification of constructions works and the allocation of tent halls in the proper category of the works, with the use of the current law.

  10. Resistive Instabilities in Hall Current Plasma Discharge

    International Nuclear Information System (INIS)

    Litvak, Andrei A.; Fisch, Nathaniel J.

    2000-01-01

    Plasma perturbations in the acceleration channel of a Hall thruster are found to be unstable in the presence of collisions. Both electrostatic lower-hybrid waves and electromagnetic Alfven waves transverse to the applied electric and magnetic field are found to be unstable due to collisions in the E X B electron flow. These results are obtained assuming a two-fluid hydrodynamic model in slab geometry. The characteristic frequencies of these modes are consistent with experimental observations in Hall current plasma thrusters

  11. Hall Conductivity in a Quasi-Two-Dimensional Disordered Electron System

    Institute of Scientific and Technical Information of China (English)

    YANG Yong-Hong; WANG Yong-Gang; LIU Mei

    2002-01-01

    By making use of the diagrammatic techniques in perturbation theory,we have investigated the Hall effect in a quasi-two-dimensional disordered electron system.In the weakly localized regime,the analytical expression for quantum correction to Hall conductivity has been obtained using the Kubo formalism and quasiclassical approximation.The relevant dimensional crossover behavior from three dimensions to two dimensions with decreasing the interlayer hopping energy is discussed.The quantum interference effect is shown to have a vanishing correction t,o the Hall coefficient.

  12. Algorithm and exploratory study of the Hall MHD Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Gardiner, Thomas Anthony

    2010-01-01

    This report is concerned with the influence of the Hall term on the nonlinear evolution of the Rayleigh-Taylor (RT) instability. This begins with a review of the magnetohydrodynamic (MHD) equations including the Hall term and the wave modes which are present in the system on time scales short enough that the plasma can be approximated as being stationary. In this limit one obtains what are known as the electron MHD (EMHD) equations which support two characteristic wave modes known as the whistler and Hall drift modes. Each of these modes is considered in some detail in order to draw attention to their key features. This analysis also serves to provide a background for testing the numerical algorithms used in this work. The numerical methods are briefly described and the EMHD solver is then tested for the evolution of whistler and Hall drift modes. These methods are then applied to study the nonlinear evolution of the MHD RT instability with and without the Hall term for two different configurations. The influence of the Hall term on the mixing and bubble growth rate are analyzed.

  13. G. Stanley Hall and The Journal of Genetic Psychology: A Note.

    Science.gov (United States)

    Hogan, John D

    2016-01-01

    The Journal of Genetic Psychology (originally called The Pedagogical Seminary) has a complicated history. Known primarily as a journal of development psychology, it was originally intended to be a journal of higher education. In addition, G. Stanley Hall created it, at least in part, to curry favor with Jonas Clark, the benefactor of Clark University. The journal had a cumbersome start, with irregular issues for most of its first decade. Hall was a hands-on editor, often contributing articles and reviews as well as the texts of many of his speeches. A substantial number of additional articles were written by Clark University faculty and fellows where Hall was president. After Hall.s death, the editor became Carl Murchison who eventually left Clark University with the journal and continued to publish it privately until his death. Through the years, the journal has been the source for many classic articles in developmental psychology.

  14. Hall probe magnetometer for SSC magnet cables

    International Nuclear Information System (INIS)

    Cross, R.W.; Goldfarb, R.B.

    1991-01-01

    The authors of this paper constructed a Hall probe magnetometer to measure the magnetization hysteresis loops of Superconducting Super Collider magnet cables. The instrument uses two Hall-effect field sensors to measure the applied field H and the magnetic induction B. Magnetization M is calculated from the difference of the two quantities. The Hall probes are centered coaxially in the bore of a superconducting solenoid with the B probe against the sample's broad surface. An alternative probe arrangement, in which M is measured directly, aligns the sample probe parallel to the field. The authors measured M as a function of H and field cycle rate both with and without a dc transport current. Flux creep as a function of current was measured from the dependence of ac loss on the cycling rate and from the decay of magnetization with time. Transport currents up to 20% of the critical current have minimal effect on magnetization and flux creep

  15. The STEM Lecture Hall: A Study of Effective Instructional Practices for Diverse Learners

    Science.gov (United States)

    Reimer, Lynn Christine

    First-generation, low-income, underrepresented minority (URM) and female undergraduates are matriculating into science, technology, engineering, and math (STEM) majors at unprecedented levels. However, a disproportionate number of these students end up graduating in non-STEM disciplines. Attrition rates have been observed to spike in conjunction with introductory STEM courses in chemistry, biology, and physics. These "gateway" courses tend to be housed in large, impersonal lecture halls. First-generation and URM students struggle in this environment, possibly because of instructors' reliance on lecture-based content delivery and rote memorization. Recent social psychological studies suggest the problem may be related to cultural mismatch, or misalignment between independent learning norms typical of American universities and interdependent learning expectancies for first-generation and URM students. Value-affirming and utility-value interventions yield impressive academic achievement gains for these students. These findings overlap with a second body of literature on culturally responsive instruction. Active gateway learning practices that emphasize interactive instruction, frequent assessment, and epistemological instruction can be successful because of their propensity to incorporate values affirming and utility-value techniques. The present study observed instruction for gateway STEM courses over a three-year period at the University of California, Irvine (N = 13,856 undergraduates in 168 courses). Exploratory polychoric factor analysis was used to identify latent variables for observational data on gateway STEM instructional practices. Variables were regressed on institutional student data. Practices implemented in large lecture halls fall into three general categories: Faculty-Student Interaction, Epistemological Instruction, and Peer Interaction . The present study found that Faculty-Student Interaction was negatively associated with student outcomes for

  16. Experimental and theoretical studies of the effects of nonuniformities in equilibrium MHD generators

    International Nuclear Information System (INIS)

    Rosenbaum, M.; Shamma, S.E.; Louis, J.F.

    1980-01-01

    An experimental study of the effects of thermal and velocity nonuniformities is performed in an equilibrium plasma for a range of Hall parameters. An electrodeless MHD disk generator with radial flow is chosen as the ideal geometry for these experiments. By introducing equally spaced cold blades in the flow, it is possible to create well defined two-dimensional wake nonuniformities with strong variations of the plasma properties in the direction normal to the magnetic field and the flow. This type of nonuniformity is predicted to provide the strongest reduction of Hall coefficient and effective conductivity for high values of Hall parameter. This degradation is controlled by both the level of nonuniformities and the value of the ideal Hall parameter. The former is dependent upon the number of blades (root mean square deviation of the conductivity), and the latter is dependent upon the values of the magnetic field intensities. The results provide basic quantitative information about the effects of conductivity and velocity nonuniformities on the performance of equilibrium MHD generators over a wide range of Hall coefficients, between 2 and 7. Reduction formulae are established between the effective and ideal Hall parameters for different levels of nonuniformities intensities. Theoretical predictions are derived from a detailed two-dimensional electrodynamic analysis and a simplified engineering model based on a generalization of Rosa's layer model. These experiments validate the analytical studies and support the use of the theoretical layer models in describing the effect of boundary layers on the performance of linear generators

  17. Topological approach to quantum Hall effects and its important applications: higher Landau levels, graphene and its bilayer

    Science.gov (United States)

    Jacak, Janusz; Łydżba, Patrycja; Jacak, Lucjan

    2017-05-01

    In this paper the topological approach to quantum Hall effects is carefully described. Commensurability conditions together with proposed generators of a system braid group are employed to establish the fractional quantum Hall effect hierarchies of conventional semiconductors, monolayer and bilayer graphene structures. Obtained filling factors are compared with experimental data and a very good agreement is achieved. Preliminary constructions of ground-state wave functions in the lowest Landau level are put forward. Furthermore, this work explains why pyramids of fillings from higher bands are not counterparts of the well-known composite-fermion hierarchy - it provides with the cause for an intriguing robustness of ν = 7/3 , 8/3 and 5/2 states (also in graphene). The argumentation why paired states can be developed in two-subband systems (wide quantum wells) only when the Fermi energy lies in the first Landau level is specified. Finally, the paper also clarifies how an additional surface in bilayer systems contributes to an observation of the fractional quantum Hall effect near half-filling, ν = 1/2 .

  18. Quantum Hall conductivity in a Landau type model with a realistic geometry

    International Nuclear Information System (INIS)

    Chandelier, F.; Georgelin, Y.; Masson, T.; Wallet, J.-C.

    2003-01-01

    In this paper, we revisit some quantum mechanical aspects related to the quantum Hall effect. We consider a Landau type model, paying a special attention to the experimental and geometrical features of quantum Hall experiments. The resulting formalism is then used to compute explicitly the Hall conductivity from a Kubo formula

  19. "Hall mees" Linnateatris / Triin Sinissaar

    Index Scriptorium Estoniae

    Sinissaar, Triin

    1999-01-01

    Tallinn Linnateatri ja Raadioteatri ühislavastus "Hall mees" Gill Adamsi näidendi järgi, lavastaja Eero Spriit, osades Helene Vannari ja Väino Laes, kunstnik Kustav - Agu Püüman. Esietendus 22. okt

  20. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2004-01-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures

  1. Radiation conditions in the ring hall of the IHEP proton synchrotron

    International Nuclear Information System (INIS)

    Borodin, V.E.; Ermolenko, L.S.; Obryashchikova, L.P.

    1975-01-01

    The paper presents the results on studying the radiation conditions caused by induced radioactivity of the accelerator units in the ring hall. The data on the induced radioactivity level just on the ring vacuum chamber are reported. Radiation conditions in the most characteristic areas of the hall are considered. The changes in time of the dose rate at the internal target and at the entrance to the hall are shown

  2. The Monty Hall Dilemma.

    Science.gov (United States)

    Granberg, Donald; Brown, Thad A.

    1995-01-01

    Examines people's behavior in the Monty Hall Dilemma (MHD), in which a person must make two decisions to win a prize. In a series of five studies, found that people misapprehend probabilities in the MHD. Discusses the MHD's relation to illusion of control, belief perseverance, and the status quo bias. (RJM)

  3. Suitable reverberation time for halls for rock and pop music

    DEFF Research Database (Denmark)

    Adelman-Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2010-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of popular music, including rock and pop. Objective measurements were made of the acoustics of 20 rock music venues in Denmark....... The best-rated halls in the study have reverberation times that are approximately frequency independent from 0.6 to 1.2 s for hall volumes from 1000 to 6000 m3. The worst rated halls in the study had significantly higher reverberation times in the 63 and 125 Hz bands. Since most audiences at rock concerts...... are standing, absorption coefficients were measured with a standing audience from 63 Hz to 4 kHz. These measurements showed that a standing audience absorbs about five times as much energy in mid-/high-frequency bands as in low-frequency bands....

  4. Low-Cost, High-Performance Hall Thruster Support System

    Science.gov (United States)

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  5. A Small Modular Laboratory Hall Effect Thruster

    Science.gov (United States)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  6. The Hall-induced stability of gravitating fluids

    Science.gov (United States)

    Karmakar, P. K.; Goutam, H. P.

    2018-05-01

    We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.

  7. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    Science.gov (United States)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  8. Mary E. Hall: Dawn of the Professional School Librarian

    Science.gov (United States)

    Alto, Teresa

    2012-01-01

    A century ago, a woman named Mary E. Hall convinced school leaders of the need for the professional school librarian--a librarian who cultivated a love of reading, academic achievement, and independent learning skills. After graduating from New York City's Pratt Institute Library School in 1895, Hall developed her vision for the high school…

  9. Acoustics in rock and pop music halls

    DEFF Research Database (Denmark)

    Larsen, Niels Werner; Thompson, Eric Robert; Gade, Anders Christian

    2007-01-01

    The existing body of literature regarding the acoustic design of concert halls has focused almost exclusively on classical music, although there are many more performances of rhythmic music, including rock and pop. Objective measurements were made of the acoustics of twenty rock music venues...... in Denmark and a questionnaire was used in a subjective assessment of those venues with professional rock musicians and sound engineers. Correlations between the objective and subjective results lead, among others, to a recommendation for reverberation time as a function of hall volume. Since the bass...

  10. Experimental and theoretical studies of cylindrical Hall thrusters

    International Nuclear Information System (INIS)

    Smirnov, Artem; Raitses, Yegeny; Fisch, Nathaniel J.

    2007-01-01

    The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation

  11. Novel Hall sensors developed for magnetic field imaging systems

    International Nuclear Information System (INIS)

    Cambel, Vladimir; Karapetrov, Goran; Novosad, Valentyn; Bartolome, Elena; Gregusova, Dagmar; Fedor, Jan; Kudela, Robert; Soltys, Jan

    2007-01-01

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat

  12. Hall effect in noncommutative coordinates

    International Nuclear Information System (INIS)

    Dayi, Oemer F.; Jellal, Ahmed

    2002-01-01

    We consider electrons in uniform external magnetic and electric fields which move on a plane whose coordinates are noncommuting. Spectrum and eigenfunctions of the related Hamiltonian are obtained. We derive the electric current whose expectation value gives the Hall effect in terms of an effective magnetic field. We present a receipt to find the action which can be utilized in path integrals for noncommuting coordinates. In terms of this action we calculate the related Aharonov-Bohm phase and show that it also yields the same effective magnetic field. When magnetic field is strong enough this phase becomes independent of magnetic field. Measurement of it may give some hints on spatial noncommutativity. The noncommutativity parameter θ can be tuned such that electrons moving in noncommutative coordinates are interpreted as either leading to the fractional quantum Hall effect or composite fermions in the usual coordinates

  13. Judy Estes Hall (1940-2015).

    Science.gov (United States)

    Sammons, Morgan T; Boucher, Andrew

    2016-01-01

    Presents an obituary for Judy Estes Hall, who passed away on November 24, 2015. Hall served as the Executive Officer of the National Register of Health Service Psychologists until her retirement in 2013. She is a recognized expert in the development of education and training standards for the profession of psychology, she also made significant contributions in the field of international psychology, where she was a renowned expert in cross-national credentialing and an advocate for commonality in licensing standards. She was the coauthor of one edited volume and author of more than 60 journal articles, book chapters, and professional publications. A passionate advocate for the advancement of women in psychology, a devoted mother and grandmother, a connoisseur of wine and international traveler extraordinaire, she touched the personal and professional lives of many. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Effect of hall currents on thermal instability of dusty couple stress fluid

    Directory of Open Access Journals (Sweden)

    Aggarwal Amrish Kumar

    2016-09-01

    Full Text Available In this paper, effect of Hall currents on the thermal instability of couple-stress fluid permeated with dust particles has been considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary convection, dust particles and Hall currents are found to have destabilizing effect while couple stresses have stabilizing effect on the system. Magnetic field induced by Hall currents has stabilizing/destabilizing effect under certain conditions. It is found that due to the presence of Hall currents (hence magnetic field, oscillatory modes are produced which were non-existent in their absence.

  15. Electron Cross-field Transport in a Miniaturized Cylindrical Hall Thruster

    International Nuclear Information System (INIS)

    Smirnov Artem; Raitses Yevgeny; Fisch Nathaniel J

    2005-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. The present paper gives a review of the experimental and numerical investigations of electron crossfield transport in the 2.6 cm miniaturized cylindrical Hall thruster (100 W power level). We show that, in order to explain the discharge current observed for the typical operating conditions, the electron anomalous collision frequency ν b has to be on the order of the Bohm value, ν B ∼ ω c /16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The optimal regimes of thruster operation at low background pressure (below 10 -5 Torr) in the vacuum tank appear to be different from those at higher pressure (∼ 10 -4 Torr)

  16. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Science.gov (United States)

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  17. Quantum Hall bilayers and the chiral sine-Gordon equation

    International Nuclear Information System (INIS)

    Naud, J.D.; Pryadko, Leonid P.; Sondhi, S.L.

    2000-01-01

    The edge state theory of a class of symmetric double-layer quantum Hall systems with interlayer electron tunneling reduces to the sum of a free field theory and a field theory of a chiral Bose field with a self-interaction of the sine-Gordon form. We argue that the perturbative renormalization group flow of this chiral sine-Gordon theory is distinct from the standard (non-chiral) sine-Gordon theory, contrary to a previous assertion by Renn, and that the theory is manifestly sensible only at a discrete set of values of the inverse period of the cosine interaction (β-circumflex). We obtain exact solutions for the spectra and correlation functions of the chiral sine-Gordon theory at the two values of β-circumflex at which electron tunneling in bilayers is not irrelevant. Of these, the marginal case (β-circumflex 2 =4) is of greatest interest: the spectrum of the interacting theory is that of two Majorana fermions with different, dynamically generated, velocities. For the experimentally observed bilayer 331 state at filling factor 1/2, this implies the trifurcation of electrons added to the edge. We also present a method for fermionizing the theory at the discrete points (β-circumflex 2 is an element of Z + ) by the introduction of auxiliary degrees of freedom that could prove useful in other problems involving quantum Hall multi-layers

  18. Magnetotransport properties of 8-Pmmn borophene: effects of Hall field and strain.

    Science.gov (United States)

    Islam, S K Firoz

    2018-07-11

    The polymorph of 8-Pmmn borophene is an anisotropic Dirac material with tilted Dirac cones at two valleys. The tilting of the Dirac cones at two valleys are in opposite directions, which manifests itself via the valley dependent Landau levels in presence of an in-plane electric field (Hall field). The valley dependent Landau levels cause valley polarized magnetotransport properties in presence of the Hall field, which is in contrast to the monolayer graphene with isotropic non-tilted Dirac cones. The longitudinal conductivity and Hall conductivity are evaluated by using linear response theory in low temperature regime. An analytical approximate form of the longitudinal conductivity is also obtained. It is observed that the tilting of the Dirac cones amplifies the frequency of the longitudinal conductivity oscillation (Shubnikov-de Haas). On the other hand, the Hall conductivity exhibits graphene-like plateaus except the appearance of valley dependent steps which are purely attributed to the Hall field induced lifting of the valley degeneracy in the Landau levels. Finally we look into the different cases when the Hall field is applied to the strained borophene and find that valley dependency is fully dominated by strain rather than Hall field. Another noticeable point is that if the real magnetic field is replaced by the strain induced pseudo magnetic field then the electric field looses its ability to cause valley polarized transport.

  19. Anode Fall Formation in a Hall Thruster

    International Nuclear Information System (INIS)

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  20. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.

    2017-12-08

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  1. Spin Hall and spin swapping torques in diffusive ferromagnets

    KAUST Repository

    Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.

    2017-01-01

    A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.

  2. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  3. Fractional statistics and fractional quantized Hall effect. Revision

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1984-01-01

    We suggest that the origin of the odd denominator rule observed in the fractional quantized Hall effect (FQHE) may lie in fractional statistics which governs quasiparticles in FQHE. A theorem concerning statistics of clusters of quasiparticles implies that fractional statistics does not allow coexistence of a large number of quasiparticles at fillings with an even denominator. Thus no Hall plateau can be formed at these fillings, regardless of the presence of an energy gap. 15 references

  4. Evaluation of Pressure Changes in HANARO Reactor Hall after a Reactor Shutdown

    International Nuclear Information System (INIS)

    Han, Geeyang; Han, Jaesam; Ahn, Gukhoon; Jung, Hoansung

    2013-01-01

    The major objective of this work is intended to evaluate the characteristics of the thermal behavior regarding how the decay heat will be affected by the reactor hall pressure change and the increase of pool water temperature induced in the primary coolant after a reactor shutdown. The particular reactor pool water temperature at the surface where it is evaporated owing to the decay heat resulting in the local heat transfer rate is related to the pressure change response in the reactor hall associated with the primary cooling system because of the reduction of the heat exchanger to remove the heat. The increase in the pool water temperature is proportional to the heat transfer rate in the reactor pool. Consequently, any limit on the reactor pool water temperature imposes a corresponding limit on the reactor hall pressure. At HANARO, the decay heat after a reactor shutdown is mainly removed by the natural circulation cooling in the reactor pool. This paper is written for the safety feature of the pressure change related leakage rate from the reactor hall. The calculation results show that the increase of pressure in the reactor hall will not cause any serious problems to the safety limits although the reactor hall pressure is slightly increased. Therefore, it was concluded that the pool water temperature increase is not so rapid as to cause the pressure to vary significantly in the reactor hall. Furthermore, the mathematical model developed in this work can be a useful analytical tool for scoping and parametric studies in the area of thermal transient analysis, with its proper representation of the interaction between the temperature and pressure in the reactor hall

  5. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    International Nuclear Information System (INIS)

    Hernández, C.; Consejo, C.; Chaubet, C.; Degiovanni, P.

    2014-01-01

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor

  6. Admittance of multiterminal quantum Hall conductors at kilohertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, C. [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 101-80 Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C., E-mail: christophe.chaubet@univ-montp2.fr [Université Montpellier 2, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier, France and CNRS, Laboratoire Charles Coulomb UMR5221, F-34095 Montpellier (France); Degiovanni, P. [Université de Lyon, Fédération de Physique Andrée Marie Ampère, CNRS, Laboratoire de Physique de l' Ecole Normale Supérieure de Lyon, 46 allée d' Italie, 69364 Lyon Cedex 07 (France)

    2014-03-28

    We present an experimental study of the low frequency admittance of quantum Hall conductors in the [100 Hz, 1 MHz] frequency range. We show that the frequency dependence of the admittance of the sample strongly depends on the topology of the contacts connections. Our experimental results are well explained within the Christen and Büttiker approach for finite frequency transport in quantum Hall edge channels taking into account the influence of the coaxial cables capacitance. In the Hall bar geometry, we demonstrate that there exists a configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the sample and observe its dependence on the filling factor.

  7. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    Science.gov (United States)

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  8. Edge states and integer quantum Hall effect in topological insulator thin films.

    Science.gov (United States)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  9. Spin-Hall nano-oscillator: A micromagnetic study

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, A.; Azzerboni, B.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, C.da di Dio, I-98166 Messina (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, via E. Orabona 4, I-70125 Bari (Italy); Laudani, A. [Department of Engineering, University of Roma Tre, via V. Volterra 62, I-00146 Roma (Italy); Gubbiotti, G. [Istituto Officina dei Materiali del CNR (CNR-IOM), Unità di Perugia c/o Dipartimento di Fisica e Geologia, Via A. Pascoli, 06123 Perugia (Italy)

    2014-07-28

    This Letter studies the dynamical behavior of spin-Hall nanoscillators from a micromagnetic point of view. The model parameters have been identified by reproducing recent experimental data quantitatively. Our results indicate that a strongly localized mode is observed for in-plane bias fields such as in the experiments, while predict the excitation of an asymmetric propagating mode for large enough out-of plane bias field similarly to what observed in spin-torque nanocontact oscillators. Our findings show that spin-Hall nanoscillators can find application as spin-wave emitters for magnonic applications where spin waves are used for transmission and processing information on nanoscale.

  10. Magnetoacoustic Waves and Instabilities in a Hall-Effect-Dominated Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Palmgren, S

    1970-05-15

    The dispersion equation is studied for small-amplitude plane harmonic waves in a compressible plasma moving perpendicular to a magnetic field with a constant fractional ionization. The modes of propagation are analysed mainly from a qualitative point of view and one of them is shown to be unstable due to the Hall effect. This mode has been previously analysed by other authors in connection with MHD power generators but in a more restricted and isolated sense. The present work not only generalizes and modifies their results on this special mode, but also makes it possible to picture the whole spectrum of propagation modes in a simple and physically intelligible way.

  11. Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line

    Science.gov (United States)

    Spies, Günther O.; Faghihi, Mustafa

    1987-06-01

    To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.

  12. Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line

    International Nuclear Information System (INIS)

    Spies, G.O.; Faghihi, M.

    1987-01-01

    To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter

  13. Influence of energy bands on the Hall effect in degenerate semiconductors

    International Nuclear Information System (INIS)

    Wu, Chhi-Chong; Tsai, Jensan

    1989-01-01

    The influence of energy bands on the Hall effect and transverse magnetoresistance has been investigated according to the scattering processes of carriers in degenerate semiconductors such as InSb. Results show that the Hall angle, Hall coefficient, and transverse magnetoresistance depend on the dc magnetic field for both parabolic and nonparabolic band structures of semiconductors and also depend on the scattering processes of carriers in semiconductors due to the energy-dependent relaxation time. From their numerical analysis for the Hall effect, it is shown that the conduction electrons in degenerate semiconductors play a major role for the carrier transport phenomenon. By comparing with experimental data of the transverse magnetoresistance, it shows that the nonparabolic band model is better in agreement with the experimental work than the parabolic band model of semiconductors

  14. 1000 Hours of Testing Completed on 10-kW Hall Thruster

    Science.gov (United States)

    Mason, Lee S.

    2001-01-01

    Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.

  15. Mesoscopic spin Hall effect in semiconductor nanostructures

    Science.gov (United States)

    Zarbo, Liviu

    , appeared in 1970s, it is only in the past few years that advances in optical detection of nonequilibrium magnetization in semiconductors have made possible the detection of such extrinsic SHE in groundbreaking experiments. The experimental pursuits of SHE have, in fact, been largely motivated by very recent theoretical speculations for several order of magnitude greater spin Hall currents driven by intrinsic SO mechanisms due to SO couplings existing not only around the impurity but also throughout the sample. The homogeneous intrinsic SO couplings are capable of spin-splitting the band structure and appear as momentum-dependent magnetic field within the sample which causes spin non-conservation due to precession of injected spins which are not in the eigenstates of the corresponding Zeeman term. Besides deepening our understanding of subtle relativistic effects in solids, SHE has attracted a lot of attention since it offers an all-electrical way of generating pure spin currents in semiconductors. (Abstract shortened by UMI.)

  16. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  17. Observation of the fractional quantum Hall effect in graphene.

    Science.gov (United States)

    Bolotin, Kirill I; Ghahari, Fereshte; Shulman, Michael D; Stormer, Horst L; Kim, Philip

    2009-11-12

    When electrons are confined in two dimensions and subject to strong magnetic fields, the Coulomb interactions between them can become very strong, leading to the formation of correlated states of matter, such as the fractional quantum Hall liquid. In this strong quantum regime, electrons and magnetic flux quanta bind to form complex composite quasiparticles with fractional electronic charge; these are manifest in transport measurements of the Hall conductivity as rational fractions of the elementary conductance quantum. The experimental discovery of an anomalous integer quantum Hall effect in graphene has enabled the study of a correlated two-dimensional electronic system, in which the interacting electrons behave like massless chiral fermions. However, owing to the prevailing disorder, graphene has so far exhibited only weak signatures of correlated electron phenomena, despite intense experimental and theoretical efforts. Here we report the observation of the fractional quantum Hall effect in ultraclean, suspended graphene. In addition, we show that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap. These newly discovered quantum states offer the opportunity to study correlated Dirac fermions in graphene in the presence of large magnetic fields.

  18. Quantifying Spin Hall Angles from Spin Pumping : Experiments and Theory

    NARCIS (Netherlands)

    Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.

    2010-01-01

    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar

  19. Hall effect in the two-dimensional Luttinger liquid

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1991-01-01

    The temperature dependence of the Hall effect in the normal state is a commom theme of all the cuprate superconductors and has been one of the more puzzling observations on these puzzling materials. We describe a general scheme within the Luttinger liquid theory of these two-dimensional quantum fluids which corrrelates the anomalous Hall and resistivity observations on a wide variety of both pure and doped single crystals, especially the data in the accompanying Letter of Chien, Wang, and Ong

  20. Risks of turbine generators at WWER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Virolainen, T.; Marttila, J.; Aulamo, H.

    1998-01-01

    Many serious fires and incidents have occurred in the turbine halls of nuclear power plants, resulting in serious damage and long shutdown outages. Some of these incidents have endangered the safe shutdown of the plants because of the location of lack of vital fire protection safety systems. A detailed analysis is necessary for all those plants that have equipment important for safe shutdown located in the turbine hall or its vicinity without strict fire separation by fire rated barriers. A reduction in the fire frequencies of the turbine hall is an additional way of improving safety. This is possible by improving all aspects of turbine generator operation. (author)

  1. Main Parameters Characterization of Bulk CMOS Cross-Like Hall Structures

    Directory of Open Access Journals (Sweden)

    Maria-Alexandra Paun

    2016-01-01

    Full Text Available A detailed analysis of the cross-like Hall cells integrated in regular bulk CMOS technological process is performed. To this purpose their main parameters have been evaluated. A three-dimensional physical model was employed in order to evaluate the structures. On this occasion, numerical information on the input resistance, Hall voltage, conduction current, and electrical potential distribution has been obtained. Experimental results for the absolute sensitivity, offset, and offset temperature drift have also been provided. A quadratic behavior of the residual offset with the temperature was obtained and the temperature points leading to the minimum offset for the three Hall cells were identified.

  2. Spin Hall effect for anyons

    International Nuclear Information System (INIS)

    Dhar, S.; Basu, B.; Ghosh, Subir

    2007-01-01

    We explain the intrinsic spin Hall effect from generic anyon dynamics in the presence of external electromagnetic field. The free anyon is represented as a spinning particle with an underlying non-commutative configuration space. The Berry curvature plays a major role in the analysis

  3. Effects of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers

    KAUST Repository

    Guo, Zaibing

    2012-09-27

    In this paper, we report the results of surface and interface scattering on anomalous Hall effect in Co/Pd multilayers with perpendicular magnetic anisotropy. The surface scattering effect has been extracted from the total anomalous Hall effect. By scaling surface scattering contribution with ρAHs∼ργss, the exponent γ has been found to decrease with the increase of surface scattering resistivity, which could account for the thickness-dependent anomalous Hall effect. Interface diffusion induced by rapid thermal annealing modifies not only the magnetization and longitudinal resistivity but also the anomalous Hall effect; a large exponent γ ∼ 5.7 has been attributed to interface scattering-dominated anomalous Hall effect.

  4. On-tip sub-micrometer Hall probes for magnetic microscopy prepared by AFM lithography

    International Nuclear Information System (INIS)

    Gregusova, D.; Martaus, J.; Fedor, J.; Kudela, R.; Kostic, I.; Cambel, V.

    2009-01-01

    We developed a technology of sub-micrometer Hall probes for future application in scanning hall probe microscopy (SHPM) and magnetic force microscopy (MFM). First, the Hall probes of ∼9-μm dimensions are prepared on the top of high-aspect-ratio GaAs pyramids with an InGaP/AlGaAs/GaAs active layer using wet-chemical etching and non-planar lithography. Then we show that the active area of planar Hall probes can be downsized to sub-micrometer dimensions by local anodic oxidation technique using an atomic force microscope. Such planar probes are tested and their noise and magnetic field sensitivity are evaluated. Finally, the two technologies are combined to fabricate sub-micrometer Hall probes on the top of high-aspect ratio mesa for future SHPM and MFM techniques.

  5. Room acoustic enhancement in a small hall with very low natural reverberation time

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    natural combinations of room acoustic properties. Consequently, the natural reverberation time in a newly opened 350 seat multipurpose hall in Denmark was designed as low as 0.7 sec. Two different reverberation enhancement systems were considered and tested in the hall. The objective and subjective...... testing results are reported and compared with previous results obtained in another small hall supplied with a similar enhancement system. The results concerning 'realism' are also compared with acoustic properties found in 'natural' halls of different sizes and reverberation times.......In small multipurpose halls to be equipped with electronic reverberation enhancement systems, selecting a very low natural reverberation time is advantageous for several reasons. It will 1) reduce the risk of feedback, 2) increase the possible range of room acoustic variation and 3) allow for more...

  6. The Hall coefficient: a tool for characterizing graphene field effect transistors

    International Nuclear Information System (INIS)

    Wehrfritz, Peter; Seyller, Thomas

    2014-01-01

    Graphene field effect transistors are considered as a candidate for future high-frequency applications. For their realization, the optimal combination of substrate, graphene preparation, and insulator deposition and composition is required. This optimization must be based on an in-depth characterization of the obtained graphene insulator metal (GIM) stack. Hall effect measurements are frequently employed to study such systems, thereby focussing primarily on the charge carrier mobility. In this work we show how an analysis of the sheet Hall coefficient can reveal further important properties of the GIM stack, like, e.g., the interface trap density and the spacial charge inhomogeneity. To that end, we provide an extensive description of the GIM diode, which leads to an accurate calculation of the sheet Hall coefficient dependent on temperature and gate voltage. The gate dependent inverse sheet Hall coefficient is discussed in detail before we introduce the concept of an equivalent temperature, which is a measure of the spacial charge inhomogeneity. In order to test the concept, we apply it to evaluate already measured Hall data taken from the literature. This evaluation allows us to determine the Drude mobility, even at the charge neutrality point, which is inaccessible with a simple one band Hall mobility analysis, and to shed light on the spacial charge inhomogeneity. The formalism is easily adaptable and provides experimentalists a powerful tool for the characterization of their graphene field effect devices. (paper)

  7. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Science.gov (United States)

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  8. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    Science.gov (United States)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  9. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    International Nuclear Information System (INIS)

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  10. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C., E-mail: acbruno@puc-rio.br

    2017-03-15

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10{sup −7} Am{sup 2}. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am{sup 2}/kg (i.e 0.4%) at saturation and below 0.5 Am{sup 2}/kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  11. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C.

    2017-01-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10 −7 Am 2 . We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am 2 /kg (i.e 0.4%) at saturation and below 0.5 Am 2 /kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  12. Hallé SHINE on Manchester: Evaluation Report and Executive Summary

    Science.gov (United States)

    Menzies, Victoria; Kasim, Adetayo; Kokotsaki, Dimitra; Hewitt, Catherine; Akhter, Nasima; Collyer, Clare; Younger, Kirsty; Wiggins, Andy; Torgerson, Carole

    2016-01-01

    The "Hallé SHINE on Manchester" (HSoM) programme is a Saturday school educational programme designed to increase the reading and maths attainment, as well as engagement with school, of underachieving and disadvantaged pupils at Key Stage 2. Developed in collaboration between the SHINE Trust and Hallé Orchestra, the intervention provides…

  13. Josephson tunneling in bilayer quantum Hall system

    International Nuclear Information System (INIS)

    Ezawa, Z.F.; Tsitsishvili, G.; Sawada, A.

    2012-01-01

    A Bose–Einstein condensation is formed by composite bosons in the quantum Hall state. A composite boson carries the fundamental charge (−e). We investigate Josephson tunneling of such charges in the bilayer quantum Hall system at the total filling ν=1. We show the existence of the critical current for the tunneling current to be coherent and dissipationless. Our results explain recent experiments due to [L. Tiemann, Y. Yoon, W. Dietsche, K. von Klitzing, W. Wegscheider, Phys. Rev. B 80 (2009) 165120] and due to [Y. Yoon, L. Tiemann, S. Schmult, W. Dietsche, K. von Klitzing, Phys. Rev. Lett. 104 (2010) 116802]. We predict also how the critical current changes as the sample is tilted in the magnetic field. -- Highlights: ► Composite bosons undergo Bose–Einstein condensation to form the bilayer quantum Hall state. ► A composite boson is a single electron bound to a flux quantum and carries one unit charge. ► Quantum coherence develops due to the condensation. ► Quantum coherence drives the supercurrent in each layer and the tunneling current. ► There exists the critical input current so that the tunneling current is coherent and dissipationless.

  14. Linear waves in a resistive plasma with Hall current

    International Nuclear Information System (INIS)

    Almaguer, J.A.

    1992-01-01

    Dispersion relations for the case of a magnetized plasma are determined taking into account the Hall current and a constant resistivity, η, in Ohm's law. It is found that the Hall effect is relevant only for parallel (to the equilibrium magnetic field) wave numbers in the case of uniform plasmas, giving place to a dispersive behavior. In particular, the cases of η→0 and small (nonzero) resistivity are discussed

  15. Thermoelectric and Hall-effect studies in hydrogenerated nickel foils

    International Nuclear Information System (INIS)

    Rani, R.; Nigam, A.N.

    1978-01-01

    Thermo e.m.f. and Hall constant of hydrogenerated nickel foils have been measured. Termo e.m.f. shows a sign reversal which is not due to the change in sign of the charge carriers, as indicated by the Hall-effect measurements. To account for the sign reversal of thermo e.m.f., it is found necessary to take into account the surface states of chemisorbed hydrogen on nickel

  16. Hall probe for measuring high currents in superconducting coils

    International Nuclear Information System (INIS)

    Ferendeci, A.M.

    1986-01-01

    Constructional details of a compact Hall probe for measuring high currents in superconducting coils are given. The Hall probe is easy to assemble and can be inserted or removed from the system without breaking the superconducting loop. Upper current limit of the probe can be increased by using larger magnetic core material. Shielding becomes necessary if the probe holder is to be placed near large current dependent magnetic fields

  17. Multi-region relaxed Hall magnetohydrodynamics with flow

    Energy Technology Data Exchange (ETDEWEB)

    Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Abdelhamid, Hamdi M., E-mail: hamdi@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Hudson, Stuart R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)

    2016-08-15

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.

  18. Mini array of quantum Hall devices based on epitaxial graphene

    International Nuclear Information System (INIS)

    Novikov, S.; Lebedeva, N.; Hämäläinen, J.; Iisakka, I.; Immonen, P.; Manninen, A. J.; Satrapinski, A.

    2016-01-01

    Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux R H,2 at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed that the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×R H,2  = 2 h/e 2 was smaller than the relative standard uncertainty of the measurement (<1 × 10 −7 ) limited by the used resistance bridge.

  19. Music hall Markneukirchen; Musikhalle in Markneukirchen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-01-01

    The article presents the new building of the music hall Markneukirchen. From the planned use of the building result very high demands on the ventilation system in order to keep to a sound power level of less than 30 dB(A) in the hall. The building services are dealt with using numerous flowsheets and diagrams: Heat supply, ventilation system, sanitary system, building management, instrumentation and control, electric and lighting systems. (BWI) [Deutsch] Der vorliegende Beitrag stellt den Neubau der Musikhalle Markneukirchen vor. Durch das Nutzungskonzept ergeben sich fuer die Einhaltung eines Schalleistungspegels von weniger als 30 dB(A) im Saalbereich an die Lueftungsanlage sehr hohe Ansprueche. Es werden die raumlufttechnischen Anlagen anhand zahlreicher Flussbilder und Abbildungen vorgestellt: Waermeversorgung, Lueftungstechnik, Sanitaertechnik, Gebaeudeleit- und MSR-Technik, Elektro- und Lichttechnik. (BWI)

  20. Assembly Hall de la Universidad de Illinois, USA

    Directory of Open Access Journals (Sweden)

    Harrison & Abramovitz, Arquitectos

    1970-05-01

    Full Text Available The Assembly Hall of Illinois University has been constructed with an original reinforced and prestressed concrete structure. It has a seating capacity for 15,565 spectators, in addition to space for press, radio and TV. staff, for the performers, and for invalid spectators who use wheeled chairs. The seating capacity can be further extended by providing 1,500 portable chairs. This hall can be adapted to many uses, and has suitable equipment and installations for assemblies, theatrical and musical performances, ice skating, sports competitions and circus shows. The provision of this magnificent hall has made it possible to organise at the University of Illinois many activities that were not practicable before.Con una original estructura realizada a base de hormigón armado y pretensado ha sido construido el «Assembly Hall», de la Universidad de Illinois, con capacidad para 15.565 espectadores sentados —además de los espacios reservados a los representantes de la prensa, radio y T.V., artistas y espectadores inválidos que acudan en carritos de ruedas—. Puede ser ampliada colocando unas 1.500 sillas portátiles. El edificio está destinado a múltiples usos y dispone de los equipos e instalaciones adecuadas para todo tipo de celebraciones: asambleas, representaciones teatrales y musicales; espectáculos de: circo, patinaje sobre hielo, competiciones deportivas, etc., y ha permitido organizar, en el seno de la Universidad de Illinois, una serie de actividades que antes resultaban imposibles.

  1. Hall Thruster Thermal Modeling and Test Data Correlation

    Science.gov (United States)

    Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren

    2016-01-01

    The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.

  2. 2D massless QED Hall half-integer conductivity and graphene

    International Nuclear Information System (INIS)

    Martínez, A Pérez; Querts, E Rodriguez; Rojas, H Pérez; Gaitan, R; Rodriguez-Romo, S

    2011-01-01

    Starting from the photon self-energy tensor in a magnetized medium, the 3D complete antisymmetric form of the conductivity tensor is found in the static limit of a fermion system C-non-invariant under fermion–antifermion exchange. The massless relativistic 2D fermion limit in QED is derived by using the compactification along the dimension parallel to the magnetic field. In the static limit and at zero temperature, the main features of the quantum Hall effect (QHE) are obtained: the half-integer QHE and the minimum value proportional to e 2 /h for the Hall conductivity. For typical values of graphene the plateaus of the Hall conductivity are also reproduced. (paper)

  3. Modular invariance, universality and crossover in the quantum Hall effect

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    1999-01-01

    An analytic form for the conductivity tensor in crossover between two quantum Hall plateaux is derived, which appears to be in good agreement with existing experimental data. The derivation relies on an assumed symmetry between quantum Hall states, a generalisation of the law of corresponding states from rational filling factors to complex conductivity, which has a mathematical expression in terms of an action of the modular group on the upper-half complex conductivity plane. This symmetry implies universality in quantum Hall crossovers. The assumption that the β-function for the complex conductivity is a complex analytic function, together with some experimental constraints, results in an analytic expression for the crossover, as a function of the external magnetic field

  4. Crossover between spin swapping and Hall effect in disordered systems

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2015-07-16

    We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.

  5. Diaphragm Effect of Steel Space Roof Systems in Hall Structures

    Directory of Open Access Journals (Sweden)

    Mehmet FENKLİ

    2015-09-01

    Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively

  6. Crossover between spin swapping and Hall effect in disordered systems

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Otani, Y.; Manchon, Aurelien

    2015-01-01

    We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.

  7. High temperature hall effect measurement system design, measurement and analysis

    Science.gov (United States)

    Berkun, Isil

    -toxic thermoelectric materials made from abundant elements and are suited for power generation application in the intermediate temperature range of (600 K - 800 K). In this work the thermoelectric materials were synthesized by a solid-state reac- tion using a molten-salt sealing method. The ingots produced were then powder processed, followed by pulsed electric sintering (PECS) densification. A set of Mg2.08Si0.4--x Sn0.6Sbx (0 ≤ x ≤ 0.072) compounds were investigated and a peak ZT of 1.50 was obtained at 716 K in Mg2.08Si 0.364Sn0.6Sb0.036 [2]. The high ZT value is related to a high electrical conductivity in these samples, which are possibly caused by a magnesium deficiency in the final prod- uct. Analysis of the measured results using LabVIEW and MATLAB developed programs showed good agreement with expected results and gave insight on mixed carrier dopant concentrations. [1] I. Berkun, S. N. Demlow, N. Suwanmonkha, T. P. Hogan, and T. A. Grotjohn, "Hall Effect Measurement System for Characterization of Doped Single Crystal Diamond," in MRS Proceedings, vol. 1511, Cambridge Univ Press, 2013. [2] P. Gao, I. Berkun, R. D. Schmidt, M. F. Luzenski, X. Lu, P. B. Sarac, E. D. Case, and T. P. Hogan, "Transport and Mechanical Properties of High-ZT Mg2. 08si0. 4- x Sn0. 6sb x Thermoelectric Materials," Journal of Electronic Materials, pp. 1--14, 2013.

  8. A Residential Paradox?: Residence Hall Attributes and College Student Outcomes

    Science.gov (United States)

    Bronkema, Ryan; Bowman, Nicholas A.

    2017-01-01

    The researchers of this brief observed that few environments have the potential to shape the outcomes of college students as much as residence halls. As a result, residence halls have the capacity to foster a strong sense of community as well as other important outcomes such as college satisfaction and academic achievement. However, given the high…

  9. Voltage transients in thin-film InSb Hall sensor

    Directory of Open Access Journals (Sweden)

    Alexey Bardin

    Full Text Available The work is reached to study temperature transients in thin-film Hall sensors. We experimentally study InSb thin-film Hall sensor. We find transients of voltage with amplitude about 10 μV on the sensor ports after current switching. We demonstrate by direct measurements that the transients is caused by thermo-e.m.f., and both non-stationarity and heterogeneity of temperature in the film. We find significant asymmetry of temperature field for different direction of the current, which is probably related to Peltier effect. The result can be useful for wide range of scientist who works with switching of high density currents in any thin semiconductor films. 2000 MSC: 41A05, 41A10, 65D05, 65D17, Keywords: Thin-films, Semiconductors, Hall sensor, InSb, thermo-e.m.f.

  10. Complex scattering dynamics and the quantum Hall effects

    International Nuclear Information System (INIS)

    Trugman, S.A.

    1994-01-01

    We review both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the quantum Hall effect. Classical scattering is complex, due to the approach of scattering states to an infinite number of dynamically bound states. Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances in place of the classical bound states. Extended scatterers provide a quantitative explanation for the breakdown of the QHE at a comparatively small Hall voltage as seen by Kawaji et al., and possibly for noise effects

  11. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  12. Efficient switching of 3-terminal magnetic tunnel junctions by the giant spin Hall effect of Pt85Hf15 alloy

    Science.gov (United States)

    Nguyen, Minh-Hai; Shi, Shengjie; Rowlands, Graham E.; Aradhya, Sriharsha V.; Jermain, Colin L.; Ralph, D. C.; Buhrman, R. A.

    2018-02-01

    Recent research has indicated that introducing impurities that increase the resistivity of Pt can enhance the efficiency of the spin Hall torque it generates. Here, we directly demonstrate the usefulness of this strategy by fabricating prototype 3-terminal in-plane-magnetized magnetic tunnel junctions that utilize the spin Hall torque from a Pt85Hf15 alloy and measuring the critical currents for switching. We find that Pt85Hf15 reduces the switching current densities compared to pure Pt by approximately a factor of 2 for both quasi-static ramped current biases and nanosecond-scale current pulses, thereby proving the feasibility of this approach in assisting the development of efficient embedded magnetic memory technologies.

  13. On electrostatic acceleration of plasmas with the Hall effect using electrode shaping

    International Nuclear Information System (INIS)

    Wang, Zhehui; Barnes, Cris W.

    2001-01-01

    Resistive magnetohydrodynamics (MHD) is used to model the electromagnetic acceleration of plasmas in coaxial channels. When the Hall effect is considered, the inclusion of resistivity is necessary to obtain physically meaningful solutions. In resistive MHD with the Hall effect, if and only if the electric current and the plasma flow are orthogonal (J·U=0), then there is a conserved quantity, in the form of U 2 /2+w+eΦ/M, along the flow, where U is the flow velocity, Φ is the electric potential, w is the enthalpy, and M is the ion mass. New solutions suggest that in coaxial geometry the Hall effect along the axial plasma flow can be balanced by proper shaping of conducting electrodes, with acceleration then caused by an electrostatic potential drop along the streamlines of the flow. The Hall effect separation of ion and electron flow then just cancels the electrostatic charge separation. Assuming particle ionization increases with energy density in the system, the resulting particle flow rates (J p ) scales with accelerator bias (V bias ) as J p ∝V bias 2 , exceeding the Child--Langmuir limit. The magnitude of the Hall effect (as determined by the Morozov Hall parameter, Ξ, which is defined as the ratio of electric current to particle current) is related to the energy needed for the creation of each ion--electron pair

  14. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  15. Hall effects on hydromagnetic flow of an Oldroyd 6-constant fluid between concentric cylinders

    International Nuclear Information System (INIS)

    Rana, M.A.; Siddiqui, A.M.; Qamar, Rashid

    2009-01-01

    The hydromagnetic flow of an electrically conducting, incompressible Oldroyd 6-constant fluid between two concentric cylinders is investigated. The flow is generated by moving inner cylinder and/or application of the constant pressure gradient. Two non-linear boundary value problems are solved numerically. The effects of material parameters, pressure gradient, magnetic field and Hall parameter on the velocity are studied. The graphical representation of velocity reveals that characteristics for shear thinning/shear thickening behaviour of a fluid is dependent upon the rheological properties

  16. Hall effects on hydromagnetic flow of an Oldroyd 6-constant fluid between concentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Rana, M.A. [Management Information System, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)], E-mail: mafzalrana@yahoo.com; Siddiqui, A.M. [Department of Mathematics, Pennsylvania State University, York Campus, York, PA 17403 (United States); Qamar, Rashid [Management Information System, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)

    2009-01-15

    The hydromagnetic flow of an electrically conducting, incompressible Oldroyd 6-constant fluid between two concentric cylinders is investigated. The flow is generated by moving inner cylinder and/or application of the constant pressure gradient. Two non-linear boundary value problems are solved numerically. The effects of material parameters, pressure gradient, magnetic field and Hall parameter on the velocity are studied. The graphical representation of velocity reveals that characteristics for shear thinning/shear thickening behaviour of a fluid is dependent upon the rheological properties.

  17. Hall mobility of free charge carriers in highly compensated p-Germanium

    International Nuclear Information System (INIS)

    Gavrilyuk, V.Yi.; Kirnas, Yi.G.; Balakyin, V.D.

    2000-01-01

    Hall mobility of free charge carriers in initial detectors Ge (Ga) is studied. It is established that an increase in the compensation factor results in the enlargement of Hall mobility in germanium highly compensated by introduction of Li ions during their drift in an electrical field

  18. Quasi-one-dimensional Hall physics in the Harper–Hofstadter–Mott model

    Science.gov (United States)

    Kozarski, Filip; Hügel, Dario; Pollet, Lode

    2018-04-01

    We study the ground-state phase diagram of the strongly interacting Harper–Hofstadter–Mott model at quarter flux on a quasi-one-dimensional lattice consisting of a single magnetic flux quantum in y-direction. In addition to superfluid phases with various density patterns, the ground-state phase diagram features quasi-one-dimensional analogs of fractional quantum Hall phases at fillings ν = 1/2 and 3/2, where the latter is only found thanks to the hopping anisotropy and the quasi-one-dimensional geometry. At integer fillings—where in the full two-dimensional system the ground-state is expected to be gapless—we observe gapped non-degenerate ground-states: at ν = 1 it shows an odd ‘fermionic’ Hall conductance, while the Hall response at ν = 2 consists of the transverse transport of a single particle–hole pair, resulting in a net zero Hall conductance. The results are obtained by exact diagonalization and in the reciprocal mean-field approximation.

  19. Paired quantum Hall states on noncommutative two-tori

    Energy Technology Data Exchange (ETDEWEB)

    Marotta, Vincenzo [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN, Sezione di Napoli, Compl. universitario M. Sant' Angelo, Via Cinthia, 80126 Napoli (Italy); Naddeo, Adele, E-mail: naddeo@sa.infn.i [CNISM, Unita di Ricerca di Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Via Salvador Allende, 84081 Baronissi (Italy)

    2010-08-01

    By exploiting the notion of Morita equivalence for field theories on noncommutative tori and choosing rational values of the noncommutativity parameter theta (in appropriate units), a one-to-one correspondence between an Abelian noncommutative field theory (NCFT) and a non-Abelian theory of twisted fields on ordinary space can be established. Starting from this general result, we focus on the conformal field theory (CFT) describing a quantum Hall fluid (QHF) at paired states fillings nu=m/(pm+2) Cristofano et al. (2000) , recently obtained by means of m-reduction procedure, and show that it is the Morita equivalent of a NCFT. In this way we extend the construction proposed in Marotta and Naddeo (2008) for the Jain series nu=m/(2pm+1) . The case m=2 is explicitly discussed and the role of noncommutativity in the physics of quantum Hall bilayers is emphasized. Our results represent a step forward the construction of a new effective low energy description of certain condensed matter phenomena and help to clarify the relationship between noncommutativity and quantum Hall fluids.

  20. ADHM and the 4d quantum Hall effect

    Science.gov (United States)

    Barns-Graham, Alec; Dorey, Nick; Lohitsiri, Nakarin; Tong, David; Turner, Carl

    2018-04-01

    Yang-Mills instantons are solitonic particles in d = 4 + 1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions for both Abelian and non-Abelian quantum Hall states. Although our model is purely bosonic, we show that the excitations of this 4d quantum Hall state are governed by the Nekrasov partition function of a certain five dimensional supersymmetric gauge theory with Chern-Simons term. The partition function can also be interpreted as a variant of the Hilbert series of the instanton moduli space, counting holomorphic sections rather than holomorphic functions. It is known that the Hilbert series of the instanton moduli space can be rewritten using mirror symmetry of 3d gauge theories in terms of Coulomb branch variables. We generalise this approach to include the effect of a five dimensional Chern-Simons term. We demonstrate that the resulting Coulomb branch formula coincides with the corresponding Higgs branch Molien integral which, in turn, reproduces the standard formula for the Nekrasov partition function.

  1. Mission and System Advantages of Iodine Hall Thrusters

    Science.gov (United States)

    Dankanich, John W.; Szabo, James; Pote, Bruce; Oleson, Steve; Kamhawi, Hani

    2014-01-01

    The exploration of alternative propellants for Hall thrusters continues to be of interest to the community. Investments have been made and continue for the maturation of iodine based Hall thrusters. Iodine testing has shown comparable performance to xenon. However, iodine has a higher storage density and resulting higher ?V capability for volume constrained systems. Iodine's vapor pressure is low enough to permit low-pressure storage, but high enough to minimize potential adverse spacecraft-thruster interactions. The low vapor pressure also means that iodine does not condense inside the thruster at ordinary operating temperatures. Iodine is safe, it stores at sub-atmospheric pressure, and can be stored unregulated for years on end; whether on the ground or on orbit. Iodine fills a niche for both low power (10kW) electric propulsion regimes. A range of missions have been evaluated for direct comparison of Iodine and Xenon options. The results show advantages of iodine Hall systems for both small and microsatellite application and for very large exploration class missions.

  2. Stuart Hall and Cultural Studies, circa 1983

    Directory of Open Access Journals (Sweden)

    Ann Curthoys

    2017-11-01

    Full Text Available Stuart Hall sought to internationalise theoretical debates and to create Cultural Studies as interdisciplinary. We chart his theoretical journey through a detailed examination of a series of lectures delivered in 1983 and now published for the first time. In these lectures, he discusses theorists such as E.P. Thompson, Raymond Williams, Louis Althusser, Levi Strauss and Antonio Gramsci, and explores the relationship between ideas and social structure, the specificities of class and race, and the legacies of slavery. We note his turn towards metaphors of divergence and dispersal and highlight how autobiographical and deeply personal Hall is in these lectures, especially in his ego histoire moment of traumatic memory recovery.

  3. Hall magnetohydrodynamics: Conservation laws and Lyapunov stability

    International Nuclear Information System (INIS)

    Holm, D.D.

    1987-01-01

    Hall electric fields produce circulating mass flow in confined ideal-fluid plasmas. The conservation laws, Hamiltonian structure, equilibrium state relations, and Lyapunov stability conditions are presented here for ideal Hall magnetohydrodynamics (HMHD) in two and three dimensions. The approach here is to use the remarkable array of nonlinear conservation laws for HMHD that follow from its Hamiltonian structure in order to construct explicit Lyapunov functionals for the HMHD equilibrium states. In this way, the Lyapunov stability analysis provides classes of HMHD equilibria that are stable and whose linearized initial-value problems are well posed (in the sense of possessing continuous dependence on initial conditions). Several examples are discussed in both two and three dimensions

  4. Coulomb blockade in hierarchical quantum Hall droplets

    International Nuclear Information System (INIS)

    Cappelli, Andrea; Georgiev, Lachezar S; Zemba, Guillermo R

    2009-01-01

    The degeneracy of energy levels in a quantum dot of Hall fluid, leading to conductance peaks, can be readily derived from the partition functions of conformal field theory. Their complete expressions can be found for Hall states with both Abelian and non-Abelian statistics, upon adapting known results for the annulus geometry. We analyze the Abelian states with hierarchical filling fractions, ν = m/(mp ± 1), and find a non-trivial pattern of conductance peaks. In particular, each one of them occurs with a characteristic multiplicity, which is due to the extended symmetry of the m-folded edge. Experimental tests of the multiplicity can shed more light on the dynamics of this composite edge. (fast track communication)

  5. Stuart Hall on Racism and the Importance of Diasporic Thinking

    Science.gov (United States)

    Rizvi, Fazal

    2015-01-01

    In this article, I want to show how my initial encounter with the work of Stuart Hall was grounded in my reading of the later philosophy of Ludwig Wittgenstein, and was shaped by my interest in understanding the nature of racism across the three countries in which I had lived. Over the years, Hall's various writings have helped me to make sense of…

  6. Theory of fractional quantum hall effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-08-01

    A theory of the Fractional Quantum Hall Effect is constructed based on magnetic flux fractionization, which lead to instability of the system against selfcompression. A theorem is proved stating that arbitrary potentials fail to lift a specific degeneracy of the Landau level. For the case of 1/3 fractional filling a model 3-particles interaction is constructed breaking the symmetry. The rigid 3-particles wave function plays the role of order parameter. In a BCS type of theory the gap in the single particles spectrum is produced by the 3-particles interaction. The mean field critical behaviour and critical parameters are determined as well as the Ginsburg-Landau equation coefficients. The Hall conductivity is calculated from the first principles and its temperature dependence is found. The simultaneous tunnelling of 3,5,7 etc. electrons and quantum interference effects are predicted. (author)

  7. ATLAS Assembly Hall Open Day

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.

  8. Geometrical Description of fractional quantum Hall quasiparticles

    Science.gov (United States)

    Park, Yeje; Yang, Bo; Haldane, F. D. M.

    2012-02-01

    We examine a description of fractional quantum Hall quasiparticles and quasiholes suggested by a recent geometrical approach (F. D. M. Haldane, Phys. Rev. Lett. 108, 116801 (2011)) to FQH systems, where the local excess electric charge density in the incompressible state is given by a topologically-quantized ``guiding-center spin'' times the Gaussian curvature of a ``guiding-center metric tensor'' that characterizes the local shape of the correlation hole around electrons in the fluid. We use a phenomenological energy function with two ingredients: the shear distortion energy of area-preserving distortions of the fluid, and a local (short-range) approximation to the Coulomb energy of the fluctuation of charge density associated with the Gaussian curvature. Quasiparticles and quasiholes of the 1/3 Laughlin state are modeled as ``punctures'' in the incompressible fluid which then relax by geometric distortion which generates Gaussian curvature, giving rise to the charge-density profile around the topological excitation.

  9. Q-balls of quasi-particles in a (2,0)-theory model of the fractional quantum Hall effect

    NARCIS (Netherlands)

    Ganor, O.J.; Hong, Y.P.; Moore, N.; Sun, H.Y.; Tan, H.S.; Torres-Chicon, N.R.

    2015-01-01

    A toy model of the fractional quantum Hall effect appears as part of the low-energy description of the Coulomb branch of the A(1) (2, 0)-theory formulated on (S-1 x R-2)/Z(k), where the generator of Z(k) acts as a combination of translation on S-1 and rotation by 2 pi/k on R-2. At low energy the

  10. Finite element and network electrical simulation of rotating magnetofluid flow in nonlinear porous media with inclined magnetic field and hall currents

    Directory of Open Access Journals (Sweden)

    Bég Anwar O.

    2014-01-01

    Full Text Available A mathematical model is presented for viscous hydromagnetic flow through a hybrid non-Darcy porous media rotating generator. The system is simulated as steady, incompressible flow through a nonlinear porous regime intercalated between parallel plates of the generator in a rotating frame of reference in the presence of a strong, inclined magnetic field A pressure gradient term is included which is a function of the longitudinal coordinate. The general equations for rotating viscous magnetohydrodynamic flow are presented and neglecting convective acceleration effects, the two-dimensional viscous flow equations are derived incorporating current density components, porous media drag effects, Lorentz drag force components and Hall current effects. Using an appropriate group of dimensionless variables, the momentum equations for primary and secondary flow are rendered nondimensional and shown to be controlled by six physical parameters-Hartmann number (Ha, Hall current parameter (Nh, Darcy number (Da, Forchheimer number (Fs, Ekman number (Ek and dimensionless pressure gradient parameter (Np, in addition to one geometric parameter-the orientation of the applied magnetic field (θ . Several special cases are extracted from the general model, including the non-porous case studied earlier by Ghosh and Pop (2006. A numerical solution is presented to the nonlinear coupled ordinary differential equations using both the Network Simulation Method and Finite Element Method, achieving excellent agreement. Additionally very good agreement is also obtained with the earlier analytical solutions of Ghosh and Pop (2006. for selected Ha, Ek and Nh values. We examine in detail the effects of magnetic field, rotation, Hall current, bulk porous matrix drag, second order porous impedance, pressure gradient and magnetic field inclination on primary and secondary velocity distributions and also frictional shear stresses at the plates. Primary velocity is seen to decrease

  11. Field theory of anyons and the fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Viefers, S.F.

    1997-11-01

    The thesis is devoted to a theoretical study of anyons, i.e. particles with fractional statistics moving in two space dimensions, and the quantum Hall effect. The latter constitutes the only known experimental realization of anyons in that the quasiparticle excitations in the fractional quantum Hall system are believed to obey fractional statistics. First, the properties of ideal quantum gases in two dimensions and in particular the equation of state of the free anyons gas are discussed. Then, a field theory formulation of anyons in a strong magnetic field is presented and later extended to a system with several species of anyons. The relation of this model to fractional exclusion statistics, i.e. intermediate statistics introduced by a generalization of the Pauli principle, and to the low-energy excitations at the edge of the quantum Hall system is discussed. Finally, the Chern-Simons-Landau-Ginzburg theory of the fractional quantum Hall effect is studied, mainly focusing on edge effects; both the ground state and the low-energy edge excitations are examined in the simple one-component model and in an extended model which includes spin effects

  12. Methods and instrumentation for investigating Hall sensors during their irradiation in nuclear research reactors

    International Nuclear Information System (INIS)

    Bolshakova, I.; Holyaka, R.; Makido, E.; Marusenkov, A.; Shurygin, F.; Yerashok, V.; Moreau, P. J.; Vayakis, G.; Duran, I.; Stockel, J.; Chekanov, V.; Konopleva, R.; Nazarkin, I.; Kulikov, S.; Leroy, C.

    2009-01-01

    Present work discusses the issues of creating the instrumentation for testing the semiconductor magnetic field sensors during their irradiation with neutrons in nuclear reactors up to fluences similar to neutron fluences in steady-state sensor locations in ITER. The novelty of the work consists in Hall sensor parameters being investigated: first, directly during the irradiation (in real time), and, second, at high irradiation levels (fast neutron fluence > 10 18 n/cm 2 ). Developed instrumentation has been successfully tested and applied in the research experiments on radiation stability of magnetic sensors in IBR-2 (JINR, Dubna) and VVR-M (PNPI, Saint-Petersburg) reactors. The 'Remote-Rad' bench consists of 2 heads (head 1 and head 2) bearing investigated sensors put in a ceramic setting, of electronic unit, of personal computer and of signal lines. Each head contains 6 Hall sensors and a coil for generating test magnetic field. Moreover head 1 contains thermocouples for temperature measurement while the temperature of head 2 is measured by thermo-resistive method. The heads are placed in the reactor channel

  13. Sensitivity Enhancement of a Vertical-Type CMOS Hall Device for a Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Sein Oh

    2018-01-01

    Full Text Available This study presents a vertical-type CMOS Hall device with improved sensitivity to detect a 3D magnetic field in various types of sensors or communication devices. To improve sensitivity, trenches are implanted next to the current input terminal, so that the Hall current becomes maximum. The effect of the dimension and location of trenches on sensitivity is simulated in the COMSOL simulator. A vertical-type Hall device with a width of 16 μm and a height of 2 μm is optimized for maximum sensitivity. The simulation result shows that it has a 23% better result than a conventional vertical-type CMOS Hall device without a trench.

  14. Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Parijat; Bellotti, Enrico [Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215 (United States)

    2016-05-23

    We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; the spin Hall conductivity of WSe{sub 2} was found to be larger.

  15. Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center

    Science.gov (United States)

    Kamhawi, Hani; Benavides, Gabriel; Haag, Thomas; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry; hide

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek BHT-200-I, 200 W and the continued development of the BHT-600-I Hall thruster propulsion systems. This presentation presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.

  16. Hall viscosity of a chiral two-orbital superconductor at finite temperatures

    Science.gov (United States)

    Yazdani-Hamid, Meghdad; Shahzamanian, Mohammad Ali

    2018-06-01

    The Hall viscosity known as the anti-symmetric part of the viscosity fourth-rank tensor. Such dissipationless response which appears for systems with broken time reversal symmetry. We calculate this non-dissipative quantity for a chiral two-orbital superconductor placed in a viscoelastic magnetic field using the linear response theory and apply our calculations to the putative multiband chiral superconductor Sr2RuO4. The chirality origin of a multiband superconductor arises from the interorbital coupling of the superconducting state. This feature leads to the robustness of the Hall viscosity against temperature and impurity effects. We study the temperature effect on the Hall viscosity at the one-loop approximation.

  17. AA under construction in its hall

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    The Antiproton Accumulator was installed in a specially built hall. Here we see it at an "early" stage of installation, just a few magnets on the floor, no vacuum chamber at all, but: 3 months later there was circulating beam !

  18. Complex dynamics of the integer quantum Hall effect

    International Nuclear Information System (INIS)

    Trugman, S.A.; Nicopoulos, V.N.; Florida Univ., Gainesville, FL

    1991-01-01

    We investigate both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the integer quantum Hall effect. Classical scattering is complex, due in one case to the approach of scattering states to an infinite number of bound states. We show that bound states are generic, and occur for all but extremely smooth scattering potentials (|rvec ∇| → 0). Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances rather than classical bound states. Extended scatterers provide an explanation for the breakdown of the QHE at a comparatively small Hall voltage. 16 refs., 14 figs

  19. Theory of the quantized Hall effect. Pt. 3

    International Nuclear Information System (INIS)

    Levine, H.; Pruisken, A.M.M.; Libby, S.B.

    1984-01-01

    In the previous paper, we have demonstrated the need for a phase transition as a function of theta in the non-liner sigma-model describing the quantized Hall effect. In this work, we present arguments for the occurrence of exactly such a transition. We make use of a dilute gas instanton approximation as well as present a more rigorous duality argument to show that the usual scaling of the conductivity to zero at large distances is altered whenever sigmasub(xy)sup((0)) approx.= 1/2ne 2 /h, n integer. This then completes our theory of the quantized Hall effect. (orig.)

  20. Quantum hall fluid on fuzzy two dimensional sphere

    International Nuclear Information System (INIS)

    Luo Xudong; Peng Dantao

    2004-01-01

    After reviewing the Haldane's description about the quantum Hall effect on the fuzzy two-sphere S 2 , authors construct the noncommutative algebra on the fuzzy sphere S 2 and the Moyal structure of the Hilbert space. By constructing noncommutative Chern-Simons theory of the incompressible Hall fluid on the fuzzy sphere and solving the Gaussian constraint with quasiparticle source, authors find the Calogero matrix on S 2 and the complete set of the Laughlin wave function for the lowest Landau level, and this wave function is expressed by the generalized Jack polynomials in terms of spinor coordinates. (author)

  1. Terahertz Coherent Synchrotron Radiation in the MIT-Bates South Hall Ring

    CERN Document Server

    Wang, Fuhua; Cheever, Dan; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Ihloff, Ernie; Podobedov, Boris; Sannibale, Fernando; Tschalär, C; Wang, Defa; Wang, Dong; Zwart, Townsend; van der Laan, Jan

    2005-01-01

    We investigate the terahertz coherent synchrotron radiation (CSR) potential of the South Hall Ring (SHR) at MIT-Bates Linear Accelerator Center. The SHR is equipped with a unique single cavity, 2.856 GHz RF system. The high RF frequency is advantageous for producing short bunch length and for having higher bunch current threshold to generate stable CSR. Combining with other techniques such as external pulse stacking cavity, femtosecond laser slicing, the potential for generating ultra-stable, high power, broadband terahertz CSR is very attractive. Beam dynamics issues related to short bunch length operation, and may associated with the high frequency RF system, such as multi-bunch instability are concerned. They could affect bunch length, bunch intensity and beam stability. The SHR is ideal for experimental exploration of these problems. Results of initial test of low momentum compaction lattice and bunch length measurements are presented and compared to expectations.

  2. Universal intrinsic spin Hall effect

    Czech Academy of Sciences Publication Activity Database

    Sinova, J.; Culcer, D.; Sinitsyn, N. A.; Niu, Q.; Jungwirth, Tomáš; MacDonald, A. H.

    2004-01-01

    Roč. 92, č. 12 (2004), 126603/1-126603/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor quantum wells * spin-orbit interaction * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  3. SUSTAINED LIVEABILITY: A FRAMEWORK BEYOND ENERGY CONSCIOUS BUILDING CONSERVATION OF MARKET HALLS

    Directory of Open Access Journals (Sweden)

    Neveen Hamza

    2017-11-01

    Full Text Available Market halls are commonly found in  contexts of cultural and heritage value. Positioned in urban centres and transport networks, these unique buildings were originally constructed in the 19th century to ensure better food distribution in growing European cities, then copied to other territories such as Egypt.  We argue that leaving market halls, with their large spanning structures and indoor open space, for dilapidation is a lost opportunity for sustaining community engagement, and educating the public on the original sustainability, neighbourhood regeneration and cultural thinking that underpinned these buildings. The proposed framework extends current sustainable ‘heritage conservation frameworks’ beyond concepts of adding renewable energy technologies, recycling and sustainable goods movement,  to ‘sustaining liveability and social inclusion’. We argue that market halls offer the opportunities to merge the daily activities of buying and selling food with creating local creative economies such as culinary art exhibitions, and culinary schools. The paper consists of two parts: the first discusses the historical urban context of market halls in Cairo; the second proposes a sustainable heritage conservation model for market halls.

  4. AdS/QHE: towards a holographic description of quantum Hall experiments

    International Nuclear Information System (INIS)

    Bayntun, Allan; Burgess, C P; Lee, Sung-Sik; Dolan, Brian P

    2011-01-01

    Transitions among quantum Hall plateaux share a suite of remarkable experimental features, such as semicircle laws and duality relations, whose accuracy and robustness are difficult to explain directly in terms of the detailed dynamics of the microscopic electrons. They would naturally follow if the low-energy transport properties were governed by an emergent discrete duality group relating the different plateaux, but no explicit examples of interacting systems having such a group are known. Recent progress using the AdS/CFT correspondence has identified examples with similar duality groups, but without the dc ohmic conductivity characteristic of quantum Hall experiments. We use this to propose a simple holographic model for low-energy quantum Hall systems, with a nonzero dc conductivity that automatically exhibits all of the observed consequences of duality, including the existence of the plateaux and the semicircle transitions between them. The model can be regarded as a strongly coupled analogue of the old 'composite boson' picture of quantum Hall systems. Non-universal features of the model can be used to test whether it describes actual materials, and we comment on some of these in our proposed model. In particular, the model indicates the value 2/5 for low-temperature scaling exponents for transitions among quantum Hall plateaux, in agreement with the measured value 0.42±0.01.

  5. Magnetic properties and Hall effect of single-crystalline YMn6Sn6

    International Nuclear Information System (INIS)

    Uhlirova, K.; Sechovsky, V.; Boer, F.R. de; Yoshii, S.; Yamamoto, T.; Hagiwara, M.; Lefevre, C.; Venturini, G.

    2007-01-01

    Magnetization behavior and Hall resistivity of YMn 6 Sn 6 , which crystallizes in the hexagonal HfFe 6 Ge 6 -type of structure, have been investigated on single crystals at various temperatures in the ordered magnetic state. The field dependence of the Hall resistivity shows anomalies, which are related to the field-induced spin reorientations occurring in YMn 6 Sn 6 . It is also found that the Hall resistivity cannot simply be described by the anomalous contribution proportional to the magnetization, but that an additional field-dependent contribution is present

  6. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2013-01-01

    encountered for graphene, in particular the zero band gap and weak spin orbit interaction. We demonstrate a valley polarized quantum Hall effect and topological insulator phase transitions. We use the Kubo formalism to discuss the Hall conductivity and address

  7. Axial Hall effect and universality of holographic Weyl semi-metals

    Energy Technology Data Exchange (ETDEWEB)

    Copetti, Christian; Fernández-Pendás, Jorge; Landsteiner, Karl [Instituto de Física Teórica UAM/CSIC,c/ Nicolás Cabrera 13-15, Cantoblanco, 28049 Madrid (Spain)

    2017-02-28

    The holographic Weyl semimetal is a model of a strongly coupled topological semi-metal. A topological quantum phase transition separates a topological phase with non-vanishing anomalous Hall conductivity from a trivial state. We investigate how this phase transition depends on the parameters of the scalar potential (mass and quartic self coupling) finding that the quantum phase transition persists for a large region in parameter space. We then compute the axial Hall conductivity. The algebraic structure of the axial anomaly predicts it to be 1/3 of the electric Hall conductivity. We find that this holds once a non-trivial renormalization effect on the external axial gauge fields is taken into account. Finally we show that the phase transition also occurs in a top-down model based on a consistent truncation of type IIB supergravity.

  8. Can ensemble condition in a hall be improved and measured?

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1988-01-01

    of the ceiling reflectors; and (c) changing the position of the orchestra on the platform. These variables were then tested in full scale experiments in the hall including subjective evaluation by the orchestra in order to verify their effects under practical conditions. New objective parameters, which showed......In collaboration with the Danish Broadcasting Corporation an extensive series of experiments has been carried out in The Danish Radio Concert Hall with the practical purpose of trying to improve the ensemble conditions on the platform for the resident symphony orchestra. First, a series...... very high correlations with the subjective data, also made it possible to compare the improvements with conditions as recently measured in famous European Halls. Besides providing the needed results, the experiments also shed some light on how musicians change their criteria for judging acoustic...

  9. Understanding and Interrupting Hegemonic Projects in Education: Learning from Stuart Hall

    Science.gov (United States)

    Apple, Michael W.

    2015-01-01

    Stuart Hall had a significant impact on critical analyses of rightist mobilizations in education. This is very visible in my own work, for example, in such volumes as "Official Knowledge" (2014) and "Educating the 'Right' Way" (2006). After describing an important series of lectures that Stuart Hall gave at the Havens Center…

  10. Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.

    Science.gov (United States)

    Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G

    2013-01-04

    We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern.

  11. An edge index for the quantum spin-Hall effect

    International Nuclear Information System (INIS)

    Prodan, Emil

    2009-01-01

    Quantum spin-Hall systems are topological insulators displaying dissipationless spin currents flowing at the edges of the samples. In contradistinction to the quantum Hall systems where the charge conductance of the edge modes is quantized, the spin conductance is not and it remained an open problem to find the observable whose edge current is quantized. In this paper, we define a particular observable and the edge current corresponding to this observable. We show that this current is quantized and that the quantization is given by the index of a certain Fredholm operator. This provides a new topological invariant that is shown to take the generic values 0 and 2, in line with the Z 2 topological classification of time-reversal invariant systems. The result gives an effective tool for the investigation of the edge structure in quantum spin-Hall systems. Based on a reasonable assumption, we also show that the edge conducting channels are not destroyed by a random edge. (fast track communication)

  12. Resistivity and Hall voltage in gold thin films deposited on mica at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bahamondes, Sebastián; Donoso, Sebastián; Ibañez-Landeta, Antonio; Flores, Marcos [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago (Chile); Henriquez, Ricardo, E-mail: ricardo.henriquez@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile)

    2015-03-30

    Highlights: • We determined the 4 K thickness dependence of resistivity for a family of gold thin films. • We determined the thickness dependence of resistivity during the growth process. • Both behaviors are well represented by the Mayadas–Shatzkes theory. • We determined Hall tangent and Hall resistance at 4 K and up to 4.5 T. • Hall mobility is always higher than the drift mobility. - Abstract: We report the thickness dependence of the resistivity measured at 4 K of gold films grown onto mica at room temperature (RT), for thickness ranging from 8 to 100 nm. This dependence was compared to the one obtained for a sample during its growth process at RT. Both behaviors are well represented by the Mayadas–Shatzkes theory. Using this model, we found comparable contributions of electron surface and electron grain boundary scattering to the resistivity at 4 K. Hall effect measurements were performed using a variable transverse magnetic field up to 4.5 T. Hall tangent and Hall resistance exhibit a linear dependence on the magnetic field. For this magnetic field range, the Hall mobility is always larger than the drift mobility. This result is explained through the presence of the above-mentioned scattering mechanisms acting on the galvanomagnetic coefficients. In addition, we report the temperature dependence of the resistivity between 4 and 70 K.

  13. Giant photonic Hall effect in magnetophotonic crystals.

    Science.gov (United States)

    Merzlikin, A M; Vinogradov, A P; Inoue, M; Granovsky, A B

    2005-10-01

    We have considered a simple, square, two-dimensional (2D) PC built of a magneto-optic matrix with square holes. It is shown that using such a magnetophotonic crystal it is possible to deflect a light beam at very large angles by applying a nonzero external magnetic field. The effect is called the giant photonic Hall effect (GPHE) or the magnetic superprism effect. The GPHE is based on magneto-optical properties, as is the photonic Hall effect [B. A. van Tiggelen and G. L. J. A. Rikken, in, edited by V. M. Shalaev (Springer-Verlag, Berlin, 2002), p. 275]; however GPHE is not caused by asymmetrical light scattering but rather by the influence of an external magnetic field on the photonic band structure.

  14. The Influence Of Switching-Off The Big Lamps On The Humidity Operation Hall

    International Nuclear Information System (INIS)

    Wiranto, Slamet; Sriawan

    2001-01-01

    When there is no activity in the Operation Hall, the big lamps in this are switched off. Due to the water trap of ventilation system is not in good function, the humidity of the Operation Hall increases. In any point of time the humidity rise over the permitted limit value. To avoid this problem it is needed to investigate the characteristic by measuring the humidity of the Operation Hall at various condition and situation. From the characteristic, it can be determined that for normal condition, the Operation Hall big lamps should be switched off, and 2 days before start-up reactor, the all operation building lamps should be switched on for about 5 days as the operation building humidity back to normal value

  15. Spin Hall effect in a 2DEG in the presence of magnetic couplings

    International Nuclear Information System (INIS)

    Gorini, C; Schwab, P; Dzierzawa, M; Raimondi, R; Milletari, M

    2009-01-01

    It is now well established that the peculiar linear-in-momentum dependence of the Rashba (and of the Dresselhaus) spin-orbit coupling leads to the vanishing of the spin Hall conductivity in the bulk of a two-dimensional electron gas (2DEG). In this paper we discuss how generic magnetic couplings change this behaviour providing then a potential handle on the spin Hall effect. In particular we examine the influence of magnetic impurities and an in-plane magnetic field. We find that in both cases there is a finite spin Hall effect and we provide explicit expressions for the spin Hall conductivity. The results can be obtained by means of the quasiclassical Green function approach, that we have recently extended to spin-orbit coupled electron systems.

  16. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra

    International Nuclear Information System (INIS)

    Duran, I.; Bolshakova, I.; Holyaka, R.; Viererbl, L.; Lahodova, Z.; Sentkerestiova, J.; Bem, P.

    2010-01-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10 16 cm -2 was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  17. Parity effect of bipolar quantum Hall edge transport around graphene antidots.

    Science.gov (United States)

    Matsuo, Sadashige; Nakaharai, Shu; Komatsu, Katsuyoshi; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke

    2015-06-30

    Parity effect, which means that even-odd property of an integer physical parameter results in an essential difference, ubiquitously appears and enables us to grasp its physical essence as the microscopic mechanism is less significant in coarse graining. Here we report a new parity effect of quantum Hall edge transport in graphene antidot devices with pn junctions (PNJs). We found and experimentally verified that the bipolar quantum Hall edge transport is drastically affected by the parity of the number of PNJs. This parity effect is universal in bipolar quantum Hall edge transport of not only graphene but also massless Dirac electron systems. These results offer a promising way to design electron interferometers in graphene.

  18. Mode transition of a Hall thruster discharge plasma

    International Nuclear Information System (INIS)

    Hara, Kentaro; Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-01-01

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  19. Disorder effect on chiral edge modes and anomalous Hall conductance in Weyl semimetals

    International Nuclear Information System (INIS)

    Takane, Yositake

    2016-01-01

    Typical Weyl semimetals host chiral surface states and hence show an anomalous Hall response. Although a Weyl semimetal phase is known to be robust against weak disorder, the effect of disorder on chiral states has not been fully clarified so far. We study the behavior of such chiral states in the presence of disorder and its consequences on an anomalous Hall response, focusing on a thin slab of Weyl semimetal with chiral surface states along its edge. It is shown that weak disorder does not disrupt chiral edge states but crucially affects them owing to the renormalization of a mass parameter: the number of chiral edge states changes depending on the strength of disorder. It is also shown that the Hall conductance is quantized when the Fermi level is located near Weyl nodes within a finite-size gap. This quantization of the Hall conductance collapses once the strength of disorder exceeds a critical value, suggesting that it serves as a probe to distinguish a Weyl semimetal phase from a diffusive anomalous Hall metal phase. (author)

  20. The role of the men's hall in the development of the Anglo-Saxon superego.

    Science.gov (United States)

    Earl, J W

    1983-05-01

    This paper is a historical study of ritual space--a bit of psychoanalytic anthropology applied to a particular case, the evolution of the men's hall among the early Anglo-Saxons. I focus particularly on the ritual functions of poetry in the hall, the same poetry which is our major evidence regarding the hall, especially the epic Beowulf. I define the hall as a cultural institution, and redefine the native poetic tradition in relation to the hall's varied ritual life, with which the poetry is so occupied. Though my argument is focused on the hall, it includes a framework of theoretical concerns. Early Anglo-Saxon culture is of anthropological interest chiefly because of its rapid and dramatic emergence from Germanic tribal prehistory into a leading role in the civilization of Christian Europe. The conquest of Britain by the Anglo-Saxons in the fifth and sixth centuries, and their conversion soon afterward, is a case history of the transformations of a tribal society suddenly introduced to the special forces of civilization and the higher religions that control them. The Anglo-Saxons are fascinating in this regard because of the fortuitous developments that prepared for this transformation and made it so successful.

  1. Anomalous Hall conductivity: Local orbitals approach

    Czech Academy of Sciences Publication Activity Database

    Středa, Pavel

    2010-01-01

    Roč. 82, č. 4 (2010), 045115/1-045115/9 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * Berry phase correction * orbital polarization momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  2. Parametric studies of the Hall Thruster at Soreq

    International Nuclear Information System (INIS)

    Ashkenazy, J.; Rattses, Y.; Appelbaum, G.

    1997-01-01

    An electric propulsion program was initiated at Soreq a few years ago, aiming at the research and development of advanced Hall thrusters for various space applications. The Hall thruster accelerates a plasma jet by an axial electric field and an applied radial magnetic field in an annular ceramic channel. A relatively large current density (> 0.1 A/cm 2 ) can be obtained, since the acceleration mechanism is not limited by space charge effects. Such a device can be used as a small rocket engine onboard spacecraft with the advantage of a large jet velocity compared with conventional rocket engines (10,000-30,000 m/s vs. 2,000-4,800 m/s). An experimental Hall thruster was constructed at Soreq and operated under a broad range of operating conditions and under various configurational variations. Electrical, magnetic and plasma diagnostics, as well as accurate thrust and gas flow rate measurements, have been used to investigate the dependence of thruster behavior on the applied voltage, gas flow rate, magnetic field, channel geometry and wall material. Representative results highlighting the major findings of the studies conducted so far are presented

  3. Dynamical quantum Hall effect in the parameter space.

    Science.gov (United States)

    Gritsev, V; Polkovnikov, A

    2012-04-24

    Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect.

  4. Extraordinary Hall effect in Co implanted GaAs hybrid magnetic semiconductors

    International Nuclear Information System (INIS)

    Honda, S.; Tateishi, K.; Nawate, M.; Sakamoto, I.

    2004-01-01

    Hybrid Co/GaAs ferromagnetic semiconductors have been prepared by implantation method. In these samples, sheet resistance shows weak temperature dependence, and the extraordinary Hall effect with positive coefficient is observed. In small Co content samples, Hall resistance increases with decreasing temperature and maximum value of 3.6x10 -2 Ω is obtained at 150 K

  5. Exploring 4D quantum Hall physics with a 2D topological charge pump.

    Science.gov (United States)

    Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel

    2018-01-03

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  6. Exploring 4D quantum Hall physics with a 2D topological charge pump

    Science.gov (United States)

    Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel

    2018-01-01

    The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.

  7. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    Science.gov (United States)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  8. Hall-magnetohydrodynamic waves in flowing ideal incompressible solar-wind plasmas

    International Nuclear Information System (INIS)

    Zhelyazkov, I

    2010-01-01

    It is well established now that the solar atmosphere, from the photosphere to the corona and the solar wind, is a highly structured medium. Satellite observations have confirmed the presence of steady flows there. Here, we investigate the propagation of magnetohydrodynamic (MHD) eigenmodes (kink and sausage surface waves) travelling along an ideal incompressible flowing plasma cylinder (flux tube) surrounded by a flowing plasma environment in the framework of the Hall magnetohydrodynamics. The propagation characteristics of the waves are studied in a reference frame moving with the mass flow outside the tube. In general, the flows change the waves' phase velocities compared with their magnitudes in a static MHD flux tube and the Hall effect extends the number of the possible wave dispersion curves. It turns out that while the kink waves, considered in the context of the standard magnetohydrodynamics, are unstable against the Kelvin-Helmholtz instability, they become stable when the Hall term in the generalized Ohm's law is taken into account. The sausage waves are stable in both considerations. All results concerning the waves' propagation and their stability/instability status are obtained on the basis of the linearized Hall-magnetohydrodynamic equations and are applicable mainly to the solar wind plasmas.

  9. A New Design of a Single-Device 3D Hall Sensor: Cross-Shaped 3D Hall Sensor

    Directory of Open Access Journals (Sweden)

    Wei Tang

    2018-04-01

    Full Text Available In this paper, a new single-device three-dimensional (3D Hall sensor called a cross-shaped 3D Hall device is designed based on the five-contact vertical Hall device. Some of the device parameters are based on 0.18 μm BCDliteTM technology provided by GLOBALFOUNDRIES. Two-dimensional (2D and 3D finite element models implemented in COMSOL are applied to understand the device behavior under a constant magnetic field. Besides this, the influence of the sensing contacts, active region’s depth, and P-type layers are taken into account by analyzing the distribution of the voltage along the top edge and the current density inside the devices. Due to the short-circuiting effect, the sensing contacts lead to degradation in sensitivities. The P-type layers and a deeper active region in turn are responsible for the improvement of sensitivities. To distinguish the P-type layer from the active region which plays the dominant role in reducing the short-circuiting effect, the current-related sensitivity of the top edge (Stop is defined. It is found that the short-circuiting effect fades as the depth of the active region grows. Despite the P-type layers, the behavior changes a little. When the depth of the active region is 7 μm and the thickness of the P-type layers is 3 μm, the sensitivities in the x, y, and z directions can reach 91.70 V/AT, 92.36 V/AT, and 87.10 V/AT, respectively.

  10. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.

    2013-04-26

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  11. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene

    KAUST Repository

    Tahir, M.; Manchon, Aurelien; Sabeeh, K.; Schwingenschlö gl, Udo

    2013-01-01

    We present a theoretical realization of quantum spin and quantum valley Hall effects in silicene. We show that combination of an electric field and intrinsic spin-orbit interaction leads to quantum phase transitions at the charge neutrality point. This phase transition from a two dimensional topological insulator to a trivial insulating state is accompanied by a quenching of the quantum spin Hall effect and the onset of a quantum valley Hall effect, providing a tool to experimentally tune the topological state of silicene. In contrast to graphene and other conventional topological insulators, the proposed effects in silicene are accessible to experiments.

  12. Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?

    Science.gov (United States)

    Pandey, B. P.

    2018-05-01

    In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.

  13. A system for pulse Hall effect measurements

    International Nuclear Information System (INIS)

    Orzechowski, T.; Kupczak, R.

    1975-01-01

    Measuring system for fast Hall-voltage changes in an n-type germanium sample irradiated at liquid nitrogen temperature with a high-energy electron-beam from the Van de Graaff accelerator is described. (author)

  14. Carl Gustav Jung and Granville Stanley Hall on Religious Experience.

    Science.gov (United States)

    Kim, Chae Young

    2016-08-01

    Granville Stanley Hall (1844-1924) with William James (1842-1910) is the key founder of psychology of religion movement and the first American experimental or genetic psychologist, and Carl Gustav Jung (1875-1961) is the founder of the analytical psychology concerned sympathetically about the religious dimension rooted in the human subject. Their fundamental works are mutually connected. Among other things, both Hall and Jung were deeply interested in how the study of religious experience is indispensable for the depth understanding of human subject. Nevertheless, except for the slight indication, this common interest between them has not yet been examined in academic research paper. So this paper aims to articulate preliminary evidence of affinities focusing on the locus and its function of the inner deep psychic dimension as the religious in the work of Hall and Jung.

  15. Spin Hall effect transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  16. Structure of the electromagnetic field in three-dimensional Hall magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Dmitruk, Pablo; Matthaeus, W.H.

    2006-01-01

    Numerical simulations of freely evolving three-dimensional compressible magnetohydrodynamics (MHD) are performed, with and without the Hall term in Ohm's law. The parameter controlling the presence of the Hall term is the ratio of the ion skin depth to the macroscopic scale of the turbulence. The ion skin depth is set to be slightly larger than the dissipation length scale (controlled by the resistivity) for the Hall MHD simulations, while it is set to zero for non-Hall MHD simulations. Small initial cross helicity, hybrid helicity, and magnetic helicity are considered. The system is left to evolve for a few turbulent characteristic times and the magnetic field and electric field are analyzed in real and wavenumber space. Distributions (histograms) of the fields are also computed. It is found that the turbulent magnetic field (as well as the velocity field) is almost unaffected by the presence of the Hall term, while the electric field is affected at scales smaller than the ion skin depth, that is, close to the dissipation range in these simulations. The importance of each term in Ohm's law for the electric field is analyzed in wavenumber space. Furthermore, reconnection-like zones are identified, where the importance of each term in Ohm's law can be seen in real space. Reconnection-like zones with magnetic field B=0 (or small) and B≠0 are found within the turbulent state of the system

  17. Spectroscopy of snake states using a graphene Hall bar

    Energy Technology Data Exchange (ETDEWEB)

    Milovanović, S. P., E-mail: slavisa.milovanovic@gmail.com; Ramezani Masir, M., E-mail: mrmphys@gmail.com; Peeters, F. M., E-mail: francois.peeters@ua.ac.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2013-12-02

    An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore, depending on the value of the magnetic field and applied potential, we can control the lead in which the electrons will end up and hence control the response of the system.

  18. Effect of Anode Dielectric Coating on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Dorf, L.; Raitses, Y.; Fisch, N.J.; Semenov, V.

    2003-01-01

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode

  19. Comparisons of auditorium acoustics measurements as a function of location in halls (A)

    DEFF Research Database (Denmark)

    Bradley, J. S.; Gade, Anders Christian; Siebein, G W

    1993-01-01

    In a measurement tour of nine U.S. concert halls measurements were made at 30 or more combinations of source and receiver position in each hall. Each of the three measurement teams (the University of Florida, the Danish Technical University, and the National Research Council of Canada) made paral....... The measurement results were also used to examine the influence of different measurement equipment and measurement procedures on the within hall variations of the various acoustical quantities. [Work partially supported by the Concert Hall Research Group.]...... parallel measurements of a number of modern room acoustics quantities using different equipment and measurement procedures. These results are compared on a seat-by-seat basis and the differences are explained in terms of earlier systematic studies of the effects of measurement procedure details...

  20. Room acoustic properties of concert halls

    DEFF Research Database (Denmark)

    Gade, Anders Christian

    1996-01-01

    A large database of values of various room acoustic parameters has provided the basis for statistical analyses of how and how much the acoustic properties of concert halls are influenced by their size, shape, and absorption area (as deduced from measured reverberation time). The data have been...

  1. Analysis of Linear MHD Power Generators

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E A

    1965-02-15

    The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.

  2. High precision micro-scale Hall Effect characterization method using in-line micro four-point probes

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Hansen, Ole; Lin, Rong

    2008-01-01

    Accurate characterization of ultra shallow junctions (USJ) is important in order to understand the principles of junction formation and to develop the appropriate implant and annealing technologies. We investigate the capabilities of a new micro-scale Hall effect measurement method where Hall...... effect is measured with collinear micro four-point probes (M4PP). We derive the sensitivity to electrode position errors and describe a position error suppression method to enable rapid reliable Hall effect measurements with just two measurement points. We show with both Monte Carlo simulations...... and experimental measurements, that the repeatability of a micro-scale Hall effect measurement is better than 1 %. We demonstrate the ability to spatially resolve Hall effect on micro-scale by characterization of an USJ with a single laser stripe anneal. The micro sheet resistance variations resulting from...

  3. Effect of anisotropy on anomalous Hall effect in Tb-Fe thin films

    International Nuclear Information System (INIS)

    Babu, V. Hari; Markandeyulu, G.; Subrahmanyam, A.

    2009-01-01

    The electrical and Hall resistivities of Tb x Fe 100-x thin films in the temperature range 13-300 K were investigated. The sign of Hall resistivity at 300 K is found to change from positive for x=28 film to negative for x=30 film, in accordance with the compensation of Tb and Fe moments. All the films are seen to have planar magnetic anisotropy at 13 K. The temperature coefficients of electrical resistivities of the amorphous films with 19≤x≤51 are seen to be negative. The temperature dependence of Hall resistivity of these films is explained on the basis of random magnetic anisotropy model. The temperature dependences of Hall resistivities of the x=22 and 41 films are seen to exhibit a nonmonotonous behavior due to change in anisotropy from perpendicular to planar. The same behavior is considered for the explanation regarding the probable formation of Berry phase curvature in these films.

  4. Welcome to USA 15, the first large underground hall for the LHC

    CERN Multimedia

    2001-01-01

    The first of the four huge underground halls for LHC is ready. USA 15 will be the service hall for ATLAS. It has taken three years to finish the first underground hall for LHC. It is 62 metres long and 20 metres diameter. USA 15 could be called the 'new world' for LHC construction. Although the acronym has nothing to do with the United States. In the terminology of the underground construction for the future accelerator, USA stands for Underground Service ATLAS. This is the first of the four big underground halls for LHC to be finished. Wednesday 8 August, it was officially handed over to the ST division by the collaboration of contractors and consultants who carried out the work. These are CCC (CERN civil contractors) composed of the companies Porr-Asdag (Austria), Baresel (Germany) and Zschokke-Locher (Switzerland) and the consultant EDF-KP composed of EDF (France) and Knight and Piésold (United Kingdom). For three years these firms excavated and concreted the undergro...

  5. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shafique, Maryam [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Tanveer, A., E-mail: anum@math.qau.edu.pk [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects. - Highlights: • Peristalsis in the presence of Jeffery nanofluid is formulated. • Compliant properties of channel walls are addressed. • Impact of Hall and ion slip effects is outlined. • Influence of Joule heating and radiation is investigated. • Mixed convection for both heat and mass transfer is present.

  6. Magnetoresistivity and Hall resistivity of a YBCO thin film in a tilted magnetic field

    International Nuclear Information System (INIS)

    Amirfeiz, M.; Cimberle, M. R.; Ferdeghini, C.; Giannini, E.; Grassano, G.; Marre', D.; Putti, M.; Siri, A. S.

    1997-01-01

    In this paper they present magnetoresistivity and Hall effect measurements performed on a YBCO epitaxial film as a function of the angle θ between the external magnetic field and the a-b planes. The resistivity and Hall effect measurements are analyzed in term of the general scaling approach proposed by Blatter and coworkers; the Hall conductivity data are examined to separate the contributions due to vortices and quasi particles

  7. Novel optical probe for quantum Hall system

    Indian Academy of Sciences (India)

    to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped ... Keywords. Surface photovoltage spectroscopy; quantum Hall effect; Landau levels; edge states. ... An optical fibre carries light from tunable diode laser.

  8. Tritium monitoring within the reactor hall of a DT fusion reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1983-01-01

    Monitoring the reactor hall atmosphere of DT-fueled fusion reactors will probably be performed with conventional ion chamber and proportional counter instruments modified as necessry to deal with the background radiation. Background includes external neutron and gamma radiation and internal beta-gamma radiation from the activated atmosphere. Although locating instruments in remote areas of the reactor hall and adding local shielding and electronic compensation may be feasible, placing the instruments in accessible low-background areas outside of the reactor hall and doing remote sampling is preferable and solves most of the radiation problems. The remaining problem of the activated atmosphere may be solved by recently developed instruments in conjunction with the use of semi-permeable membranes currently under development and evaluation

  9. Hall MHD Modeling of Two-dimensional Reconnection: Application to MRX Experiment

    International Nuclear Information System (INIS)

    Lukin, V.S.; Jardin, S.C.

    2003-01-01

    Two-dimensional resistive Hall magnetohydrodynamics (MHD) code is used to investigate the dynamical evolution of driven reconnection in the Magnetic Reconnection Experiment (MRX). The initial conditions and dimensionless parameters of the simulation are set to be similar to the experimental values. We successfully reproduce many features of the time evolution of magnetic configurations for both co- and counter-helicity reconnection in MRX. The Hall effect is shown to be important during the early dynamic X-phase of MRX reconnection, while effectively negligible during the late ''steady-state'' Y-phase, when plasma heating takes place. Based on simple symmetry considerations, an experiment to directly measure the Hall effect in MRX configuration is proposed and numerical evidence for the expected outcome is given

  10. Scaling of the anomalous Hall current in Fe100−x(SiO2)x films

    KAUST Repository

    Xu, W. J.

    2011-05-20

    To study the origin of the anomalous Hall effect, Fe100−x(SiO2)x granular films with a volume fraction of SiO2 (0 ⩽ x ⩽ 40.51) were fabricated using cosputtering. Hall and longitudinal resistivities were measured in the temperature range of 5–350 K with magnetic fields up to 5 T. As x increased from 0 to 40.51, the anomalous Hall resistivity and longitudinal resistivity increased by about four and three orders in magnitude, respectively. Analysis of the results revealed that the normalized anomalous Hall conductivity is a constant for all of the samples, which may suggest a scattering-independent anomalous Hall conductivity in Fe.

  11. Hall effect mobility for SiC MOSFETs with increasing dose of nitrogen implantation into channel region

    Science.gov (United States)

    Noguchi, Munetaka; Iwamatsu, Toshiaki; Amishiro, Hiroyuki; Watanabe, Hiroshi; Kita, Koji; Yamakawa, Satoshi

    2018-04-01

    The Hall effect mobility (μHall) of the Si-face 4H-SiC metal–oxide–semiconductor field effect transistor (MOSFET) with a nitrogen (N)-implanted channel region was investigated by increasing the N dose. The μHall in the channel region was systematically examined regarding channel structures, that is, the surface and buried channels. It was experimentally demonstrated that increasing the N dose results in an improvement in μHall in the channel region due to the formation of the buried channel. However, further increase in N dose was found to decrease the μHall in the channel region, owing to the decrease in the electron mobility in the N-implanted bulk region.

  12. Stability of the Hall sensors performance under neutron irradiation

    International Nuclear Information System (INIS)

    Duran, I.; Hron, M.; Stockel, J.; Viererbl, L.; Vsolak, R.; Cerva, V.; Bolshakova, I.; Holyaka, R.; Vayakis, G.

    2004-01-01

    A principally new diagnostic method must be developed for magnetic measurements in steady state regime of operation of fusion reactor. One of the options is the use of transducers based on Hall effect. The use of Hall sensors in ITER is presently limited by their questionable radiation and thermal stability. Issues of reliable operation in ITER like radiation and thermal environment are addressed in the paper. The results of irradiation tests of candidate Hall sensors in LVR-15 and IBR-2 experimental fission reactors are presented. Stable operation (deterioration of sensitivity below one percent) of the specially prepared sensors was demonstrated during irradiation by the total fluence of 3.10 16 n/cm 2 in IBR-2 reactor. Increasing the total neutron fluence up to 3.10 17 n/cm 2 resulted in deterioration of the best sensor's output still below 10% as demonstrated during irradiation in LVR-15 fission reactor. This level of neutron is already higher than the expected ITER life time neutron fluence for a sensor location just outside the ITER vessel. (authors)

  13. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator

    Science.gov (United States)

    Kandala, Abhinav; Richardella, Anthony; Kempinger, Susan; Liu, Chao-Xing; Samarth, Nitin

    2015-01-01

    When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)2−xTe3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer–Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization. PMID:26151318

  14. Direct comparison of fractional and integer quantized Hall resistance

    Science.gov (United States)

    Ahlers, Franz J.; Götz, Martin; Pierz, Klaus

    2017-08-01

    We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3  ±  6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.

  15. Status of the MIT-Bates South Hall Ring commissioning

    International Nuclear Information System (INIS)

    Flanz, J.B.; Jacobs, K.D.; McAllister, B.; Averill, R.; Bradley, S.; Carter, A.; Dow, K.; Farkondeh, M.; Ihloff, E.; Kowalski, S.

    1993-01-01

    The MIT-Bates South Hall Ring construction project is now nearly complete. At this time the Energy Compression System, the SHR Injection Line and the South Hall Ring itself are complete. The SHR Extraction Line is complete but has not been connected to the ring. Commissioning with beam of the completed beam lines has been started. The MIT-Bates South Hall Ring (SHR) is an electron storage ring used with the 1 GeV Bates electron accelerator to increase the effective duty factor and luminosity. A beam can be stored for use with an internal target, thus allowing for high duty factor, high luminosity experiments. External beams with high duty factor can be obtained using resonant extraction. The new systems associated with the SHR include the Energy Compression System (ECS), the Injection line, and the Extraction line. The authors have commissioned the ECS, the new injection line and the SHR without RF. This includes transporting beam, measuring beam phase space parameters using critical injection elements including a high voltage electrostatic septum, a fast beam kicker, and storing a beam in the SHR

  16. Control of the electric-field profile in the Hall thruster

    International Nuclear Information System (INIS)

    Fruchtman, A.; Fisch, N.J.; Raitses, Y.

    2001-01-01

    Control of the electric-field profile in the Hall thruster through the positioning of an additional electrode along the channel is shown theoretically to enhance the efficiency. The reduction of the potential drop near the anode by use of the additional electrode increases the plasma density there, through the increase of the electron and ion transit times, causing the ionization in the vicinity of the anode to increase. The resulting separation of the ionization and acceleration regions increases the propellant and energy utilizations. An abrupt sonic transition is forced to occur at the axial location of the additional electrode, accompanied by the generation of a large (theoretically infinite) electric field. This ability to generate a large electric field at a specific location along the channel, in addition to the ability to specify the electric potential there, allows us further control of the electric-field profile in the thruster. In particular, when the electron temperature is high, a large abrupt voltage drop is induced at the vicinity of the additional electrode, a voltage drop that can comprise a significant part of the applied voltage

  17. Alcohol Trajectories over Three Years in a Swedish Residence Hall Student Population

    Directory of Open Access Journals (Sweden)

    Henriettae Ståhlbrandt

    2010-03-01

    Full Text Available Although it is known that college students have a high alcohol consumption, less is known about the long-term drinking trajectories amongst college students and, in particular, students living in residence halls, known to be high-risk drinkers. Over four consecutive years, the drinking habits of 556 Swedish residence hall students were analyzed. The main instruments for measuring outcome were AUDIT (Alcohol Use Identification Disorders Test, SIP (Short Index of Problems and eBAC (estimated Blood Alcohol Concentration. The drinking trajectories among Swedish residence hall students showed stable and decreasing drinking patterns, with age and gender being predictors of group membership.

  18. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures

    Science.gov (United States)

    Savero Torres, W.; Sierra, J. F.; Benítez, L. A.; Bonell, F.; Costache, M. V.; Valenzuela, S. O.

    2017-12-01

    Spin Hall effects have surged as promising phenomena for spin logics operations without ferromagnets. However, the magnitude of the detected electric signals at room temperature in metallic systems has been so far underwhelming. Here, we demonstrate a two-order of magnitude enhancement of the signal in monolayer graphene/Pt devices when compared to their fully metallic counterparts. The enhancement stems in part from efficient spin injection and the large spin resistance of graphene but we also observe 100% spin absorption in Pt and find an unusually large effective spin Hall angle of up to 0.15. The large spin-to-charge conversion allows us to characterise spin precession in graphene under the presence of a magnetic field. Furthermore, by developing an analytical model based on the 1D diffusive spin-transport, we demonstrate that the effective spin-relaxation time in graphene can be accurately determined using the (inverse) spin Hall effect as a means of detection. This is a necessary step to gather full understanding of the consequences of spin absorption in spin Hall devices, which is known to suppress effective spin lifetimes in both metallic and graphene systems.

  19. Magnetotransport properties of Ni-Mn-In Heusler Alloys: Giant Hall angle

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, I; Pathak, A K; Ali, N [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Kovarskii, Y A; Prudnikov, V N; Perov, N S; Granovsky, A B, E-mail: granov@magn.r [Faculty of Physics, Moscow State University, Moscow, 111991 (Russian Federation)

    2010-01-01

    We report experimental results on phase transitions, magnetic properties, resistivity, and Hall effect in Ni{sub 50}Mn{sub 50-x}In{sub x} (15Hall resistivity {rho}{sub H}(at H = 15 kOe) is positive in martensitic and negative in austenitic phase, sharply increases in the vicinity of T{sub M} up to {rho}{sub H}(15 kOe)= 50 {mu}{Omega}{center_dot}cm. This value is almost two orders of magnitude larger than that observed at high temperature (T{approx}200 K) for any common magnetic materials, and comparable to the giant Hall effect resistivity in magnetic nanogranular alloys. The Hall angle {Theta}{sub H}=tan{sup -} {sup 1}({rho}{sub H}/{rho}) close to T{sub M} reaches tan{sup -1}(0.5) which is the highest value for known magnetic materials.

  20. Experimental approach of plasma supersonic expansion physics and of Hall effect propulsion systems

    International Nuclear Information System (INIS)

    Mazouffre, Stephane

    2009-01-01

    This report for accreditation to supervise research (HDR) proposes a synthesis of scientific and research works performed by the author during about ten years. Thus, a first part addresses studies on plasma rarefied supersonic flows: expansion through a sonic hole and through a Laval nozzle. The next part addresses the study of plasma propulsion for spacecraft, and more particularly electric propulsion based on the Hall effect: phenomena of ionic and atomic transport, characteristics of the electric field, energy deposition on walls, basic scale laws, related works, hybrid Hall-RF propulsion systems. The third part presents perspectives and projects related to propulsion by Hall effect (research topics, planned researches, a European project on high power, hybrid Hall-RF propulsion) and to ions-ions plasma (the PEGASES concept, the NExET test installation, RF source of negative ions and magnetic trap)

  1. Unconventional scaling of the anomalous Hall effect accompanying electron localization correction in the dirty regime

    KAUST Repository

    Lu, Y. M.

    2013-03-05

    Scaling of the anomalous Hall conductivity to longitudinal conductivity σAH∝σ2xx has been observed in the dirty regime of two-dimensional weak and strong localization regions in ultrathin, polycrystalline, chemically disordered, ferromagnetic FePt films. The relationship between electron transport and temperature reveals a quantitatively insignificant Coulomb interaction in these films, while the temperature dependent anomalous Hall conductivity experiences quantum correction from electron localization. At the onset of this correction, the low-temperature anomalous Hall resistivity begins to be saturated when the thickness of the FePt film is reduced, and the corresponding Hall conductivity scaling exponent becomes 2, which is above the recent unified theory of 1.6 (σAH∝σ1.6xx). Our results strongly suggest that the correction of the electron localization modulates the scaling exponent of the anomalous Hall effect.

  2. Development of a micro-Hall magnetometer and studies of individual Fe-filled carbon nanotubes

    OpenAIRE

    Lipert, Kamil

    2011-01-01

    This work presents Hall magnetometry studies on individual Fe-filled carbon nanotubes (CNT). For this approach high sensitivity micro Hall sensors based on a GaAs/AlGaAs heterostructure with two dimensional electron gas (2DEG) were developed. Electron beam lithography and wet chemical etching were utilized for patterning Hall sensors onto the heterostructure surface. The devices were characterized by means of scanning electron microscopy, atomic force microscopy and transport measurements. In...

  3. Theoretical analysis of transcranial Hall-effect stimulation based on passive cable model

    International Nuclear Information System (INIS)

    Yuan Yi; Li Xiao-Li

    2015-01-01

    Transcranial Hall-effect stimulation (THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field (due to Lorentz force). In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then, based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders. (paper)

  4. Mesoscopic effects in the quantum Hall regime

    Indian Academy of Sciences (India)

    . When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior for strong disorder. This behavior may be of relevance ...

  5. Quantum Hall effect

    International Nuclear Information System (INIS)

    Joynt, R.J.

    1982-01-01

    A general investigation of the electronic structure of two dimensional systems is undertaken with a view towards understanding the quantum Hall effect. The work is limited to the case of a strong perpendicular magnetic field, with a disordered potential and an externally applied electric field. The electrons are treated as noninteracting. First, the scattering theory of the system is worked out. The surprising result is found that a wavepacket will reform after scattering from an isolated potential. Also it will tend to be accelerated in the neighborhood of the scatterer if the potential has bound states. Fredholm theory can then be used to show that the extended states carry an additional current which compensates for the zero current of the bound states. Together, these give the quantized conductance. The complementary case of a smooth random potential is treated by a path-integral approach which exploits the analogies to the classical equations of motion. The Green's function can be calculated approximately, which gives the general character of both the bound and extended states. Also the ratio of these two types of states can be computed for a given potential. The charge density is uniform in first approximation, and the Hall conductance is quantized. Higher-order corrections for more rapidly fluctuating potential are calculated. The most general conditions under which the conductance is quantized are discussed. Because of the peculiar scattering properties of the system, numerical solution of the Schroedinger equation is of interest, both to confirm the analytical results, and for pedagogical reasons. The stability and convergence problems inherent in the computer solution of the problem are analyzed. Results for some model scattering potentials are presented

  6. Electric field control photo-induced Hall currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-10-15

    We generate spin-polarized carrier populations in GaAs and low temperature-grown GaAs (LT-GaAs) by circularly polarized optical beams and pull them by external electric fields to create spin-polarized currents. In the presence of the optically generated spin currents, anomalous Hall currents with an enhancement with increasing doping are observed and found to be almost steady in moderate electric fields up to {approx}120 mV {mu}m{sup -1}, indicating that photo-induced spin orientation of electrons is preserved in these systems. However, a field {approx}300 mV {mu}m{sup -1} completely destroys the electron spin polarization due to an increase of the D'yakonov-Perel' spin precession frequency of the hot electrons. This suggests that high field carrier transport conditions might not be suitable for spin-based technology with GaAs and LT-GaAs. It is also demonstrated that the presence of the excess arsenic sites in LT-GaAs might not affect the spin relaxation by Bir-Aronov-Pikus mechanism owing to a large number of electrons in n-doped materials.

  7. Generic superweak chaos induced by Hall effect

    Science.gov (United States)

    Ben-Harush, Moti; Dana, Itzhack

    2016-05-01

    We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B ) and electric (E ) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ2 rather than κ . For E =0 , SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ . In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.

  8. Comment on 'Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov A.; Fisch, N.J.

    2008-01-01

    It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al

  9. Infinite symmetry in the quantum Hall effect

    Directory of Open Access Journals (Sweden)

    Lütken C.A.

    2014-04-01

    Full Text Available The new states of matter and concomitant quantum critical phenomena revealed by the quantum Hall effect appear to be accompanied by an emergent modular symmetry. The extreme rigidity of this infinite symmetry makes it easy to falsify, but two decades of experiments have failed to do so, and the location of quantum critical points predicted by the symmetry is in increasingly accurate agreement with scaling experiments. The symmetry severely constrains the structure of the effective quantum field theory that encodes the low energy limit of quantum electrodynamics of 1010 charges in two dirty dimensions. If this is a non-linear σ-model the target space is a torus, rather than the more familiar sphere. One of the simplest toroidal models gives a critical (correlation length exponent that agrees with the value obtained from numerical simulations of the quantum Hall effect.

  10. Hall measurements and grain-size effects in polycrystalline silicon

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Rose, A.; Maruska, H.P.; Eustace, D.J.; Feng, T.

    1980-01-01

    The effects of grain size on Hall measurements in polycrystalline silicon are analyzed and interpreted, with some modifications, using the model proposed by Bube. This modified model predicts that the measured effective Hall voltage is composed of components originating from the bulk and space-charge regions. For materials with large grain sizes, the carrier concentration is independent of the intergrain boundary barrier, whereas the mobility is dependent on it. However, for small grains, both the carrier density and mobility depend on the barrier. These predictions are consistent with experimental results of mm-size Wacker and μm-size neutron-transmutation-doped polycrystalline silicon

  11. Exchange magnon induced resistance asymmetry in permalloy spin-Hall oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Langenfeld, S. [Microelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE (United Kingdom); Walter Schottky Institut and Physik-Department, Technische Universität München, 85748 Garching (Germany); Tshitoyan, V.; Fang, Z.; Ferguson, A. J., E-mail: ajf1006@cam.ac.uk [Microelectronics Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE (United Kingdom); Wells, A.; Moore, T. A. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom)

    2016-05-09

    We investigate magnetization dynamics in a spin-Hall oscillator using a direct current measurement as well as conventional microwave spectrum analysis. When the current applies an anti-damping spin-transfer torque, we observe a change in resistance which we ascribe mainly to the excitation of incoherent exchange magnons. A simple model is developed based on the reduction of the effective saturation magnetization, quantitatively explaining the data. The observed phenomena highlight the importance of exchange magnons on the operation of spin-Hall oscillators.

  12. Anomalous Hall effect in disordered multiband metals

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Sinova, Jairo; Tserkovnyak, Y.

    2010-01-01

    Roč. 105, č. 3 (2010), 036601/1-036601/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.621, year: 2010

  13. Quantum Hall effect and hopping conductivity in n-InGaAs/InAlAs nanoheterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gudina, S. V., E-mail: svpopova@imp.uran.ru; Arapov, Yu. G.; Saveliev, A. P.; Neverov, V. N.; Podgornykh, S. M.; Shelushinina, N. G.; Yakunin, M. V. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation); Vasil’evskii, I. S.; Vinichenko, A. N. [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    The longitudinal and Hall magnetoresistances are measured in the quantum Hall effect regime in the n-InGaAs/InAlAs heterostructures at temperatures of T = (1.8–30) K in magnetic fields up to B = 9 T. Temperature-induced transport in the region of the longitudinal resistance minima, corresponding to the plateau regions at Hall resistance, is investigated within the framework of the concept of hopping conductivity in a strongly localized electron system. The analysis of variable-range hopping conductivity in the region of the second, third, and fourth plateau of the quantum Hall effect provides the possibility of determining the localization length exponent.

  14. June 1992 Hall B collaboation meeting

    International Nuclear Information System (INIS)

    Dennis, L.

    1992-01-01

    The Hall B collaboration meeting at the CEBAF 1992 Summer Workshop consisted of technical and physics working group meetings, a special beam line devices working group meeting the first meeting of the membership committee, a technical representatives meeting and a full collaboration meeting. Highlights of these meetings are presented in this report

  15. Hall Current Plasma Source Having a Center-Mounted or a Surface-Mounted Cathode

    Science.gov (United States)

    Martinez, Rafael A. (Inventor); Williams, John D. (Inventor); Moritz, Jr., Joel A. (Inventor); Farnell, Casey C. (Inventor)

    2018-01-01

    A miniature Hall current plasma source apparatus having magnetic shielding of the walls from ionized plasma, an integrated discharge channel and gas distributor, an instant-start hollow cathode mounted to the plasma source, and an externally mounted keeper, is described. The apparatus offers advantages over other Hall current plasma sources having similar power levels, including: lower mass, longer lifetime, lower part count including fewer power supplies, and the ability to be continuously adjustable to lower average power levels using pulsed operation and adjustment of the pulse duty cycle. The Hall current plasma source can provide propulsion for small spacecraft that either do not have sufficient power to accommodate a propulsion system or do not have available volume to incorporate the larger propulsion systems currently available. The present low-power Hall current plasma source can be used to provide energetic ions to assist the deposition of thin films in plasma processing applications.

  16. Precision Electron Beam Polarimetry in Hall C at Jefferson Lab

    Science.gov (United States)

    Gaskell, David

    2013-10-01

    The electron beam polarization in experimental Hall C at Jefferson Lab is measured using two devices. The Hall-C/Basel Møller polarimeter measures the beam polarization via electron-electron scattering and utilizes a novel target system in which a pure iron foil is driven to magnetic saturation (out of plane) using a superconducting solenoid. A Compton polarimeter measures the polarization via electron-photon scattering, where the photons are provided by a high-power, CW laser coupled to a low gain Fabry-Perot cavity. In this case, both the Compton-scattered electrons and backscattered photons provide measurements of the beam polarization. Results from both polarimeters, acquired during the Q-Weak experiment in Hall C, will be presented. In particular, the results of a test in which the Møller and Compton polarimeters made interleaving measurements at identical beam currents will be shown. In addition, plans for operation of both devices after completion of the Jefferson Lab 12 GeV Upgrade will also be discussed.

  17. Hall kirjandus võrgustunud maailmas / Anneli Kuiv

    Index Scriptorium Estoniae

    Kuiv, Anneli

    2003-01-01

    1997. aasta määratluse kohaselt on hall kirjandus "kirjandus, mida toodetakse kõikidel tasanditel valitsus- ja teadusasutuste, äri- ja tootmisringkondade poolt nii trükituna kui ka elektroonselt, kuid mis ei ole kirjastustööstuse kontrolli all"

  18. Generation and spectroscopic signatures of a fractional quantum Hall liquid of photons in an incoherently pumped optical cavity

    Science.gov (United States)

    Umucalılar, R. O.; Carusotto, I.

    2017-11-01

    We investigate theoretically a driven dissipative model of strongly interacting photons in a nonlinear optical cavity in the presence of a synthetic magnetic field. We show the possibility of using a frequency-dependent incoherent pump to create a strongly correlated ν =1 /2 bosonic Laughlin state of light: Due to the incompressibility of the Laughlin state, fluctuations in the total particle number and excitation of edge modes can be tamed by imposing a suitable external potential profile for photons. We further propose angular-momentum-selective spectroscopy of the emitted light as a tool to obtain unambiguous signatures of the microscopic physics of the quantum Hall liquid of light.

  19. Hořava-Lifshitz gravity and effective theory of the fractional quantum Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chaolun [Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States); Wu, Shao-Feng [Department of Physics, Shanghai University,Shanghai 200444 (China); Kadanoff Center for Theoretical Physics and Enrico Fermi Institute, University of Chicago,Chicago, Illinois 60637 (United States)

    2015-01-22

    We show that Hořava-Lifshitz gravity theory can be employed as a covariant framework to build an effective field theory for the fractional quantum Hall effect that respects all the spacetime symmetries such as non-relativistic diffeomorphism invariance and anisotropic Weyl invariance as well as the gauge symmetry. The key to this formalism is a set of correspondence relations that maps all the field degrees of freedom in the Hořava-Lifshitz gravity theory to external background (source) fields among others in the effective action of the quantum Hall effect, according to their symmetry transformation properties. We originally derive the map as a holographic dictionary, but its form is independent of the existence of holographic duality. This paves the way for the application of Hořava-Lifshitz holography on fractional quantum Hall effect. Using the simplest holographic Chern-Simons model, we compute the low energy effective action at leading orders and show that it captures universal electromagnetic and geometric properties of quantum Hall states, including the Wen-Zee shift, Hall viscosity, angular momentum density and their relations. We identify the shift function in Hořava-Lifshitz gravity theory as minus of guiding center velocity and conjugate to guiding center momentum. This enables us to distinguish guiding center angular momentum density from the internal one, which is the sum of Landau orbit spin and intrinsic (topological) spin of the composite particles. Our effective action shows that Hall viscosity is minus half of the internal angular momentum density and proportional to Wen-Zee shift, and Hall bulk viscosity is half of the guiding center angular momentum density.

  20. Detection and Solution of Indoor Air Quality Problems in a Danish Town Hall

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik; Brohus, Henrik

    In connection with the research programme "Healthy Buildings", a building with indoor air quality problems was selected for further investigations. A Danish town hall was chosen because of many complaints over several years. A full-scale mock-up of a typical town hall office was built...... in the climate laboratory. A new heating and ventilating system and a new control strategy were chosen and implemented into the town hall. It was found that air supply upwards along a window may make it nearly impossible to achieve comfort and a good air quality the year round without full-scale measurements....

  1. Hall mobility maps for 4H-silicon carbide by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Woźny, J; Lisik, Z; Podgórski, J

    2014-01-01

    The Monte Carlo Single Particle approach was used to analyze electron transport in 4H-SiC taking into account the influence of the magnetic field. Within the numerical approach it was possible to evaluate electron Hall mobility and the Hall factor for the wide range of donor concentrations and temperatures varying from 300 K up to 700 K

  2. Interplay of Rashba effect and spin Hall effect in perpendicular Pt/Co/MgO magnetic multilayers

    Institute of Scientific and Technical Information of China (English)

    赵云驰; 杨光; 董博闻; 王守国; 王超; 孙阳; 张静言; 于广华

    2016-01-01

    The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotropy. The above two effects were analyzed based on Hall measurements under external magnetic fields longitudinal and vertical to dc current, respectively. The coercive field as a function of dc current in vertical mode with only the Rashba effect involved decreases due to thermal annealing. Meanwhile, spin orbit torques calculated from Hall resistance with only the spin Hall effect involved in the longitudinal mode decrease in the annealed sample. The experimental results prove that the bottom Pt/Co interface rather than the Co/MgO top one plays a more critical role in both Rashba effect and spin Hall effect.

  3. Quantum Hall Electron Nematics

    Science.gov (United States)

    MacDonald, Allan

    In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.

  4. Investigation of the Hall MHD channel operating with the ionized instable plasma of inert gases

    International Nuclear Information System (INIS)

    Vasi'leva, R.V.; D'yakova, E.A.; Erofeev, A.V.; Zuev, A.D.; Lapushkina, T.A.; Markhotok, A.A.

    1997-01-01

    Possibility of applying ionization-instable plasma of pure inert gases as perspective working substance for closed-cycle MHD generators is studied. The experiment was produced in the model of the disk Hall MHD channel. The ionized gas flux was produced in a shock tube. Xenon was used as a working substance. Gas pressure, flux velocity, electron concentration and temperature, azimuthal current density, potential distribution in the channel and near-electrode voltage drop values were measured in the experiment. Volt-ampere characteristics were taken by various indices of magnetic field and load resistance

  5. Quantum Hall Conductivity and Topological Invariants

    Science.gov (United States)

    Reyes, Andres

    2001-04-01

    A short survey of the theory of the Quantum Hall effect is given emphasizing topological aspects of the quantization of the conductivity and showing how topological invariants can be derived from the hamiltonian. We express these invariants in terms of Chern numbers and show in precise mathematical terms how this relates to the Kubo formula.

  6. Error modelling of quantum Hall array resistance standards

    Science.gov (United States)

    Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa

    2018-04-01

    Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.

  7. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Gur, Leah; Tirosh, Einat [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Segal, Amir [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Markovich, Gil, E-mail: gilmar@post.tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Gerber, Alexander, E-mail: gerber@post.tau.ac.il [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel)

    2017-03-15

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field. - Highlights: • Ni nanoparticle ink capable of forming conductive films on drying. • The Ni nanoparticle films exhibit significant extraordinary Hall effect. • This system could be used for preparing printed magnetic field sensors integrated in 3D printed structures.

  8. Edge states in quantum Hall effect in graphene

    International Nuclear Information System (INIS)

    Gusynin, V.P.; Miransky, V.A.; Sharapov, S.G.; Shovkovy, I.A.

    2008-01-01

    We review recent results concerning the spectrum of edge states in the quantum Hall effect in graphene. In particular, special attention is paid to the derivation of the conditions under which gapless edge states exist in the spectrum of graphene with 'zigzag' and 'armchair' edges. It is found that in the case of a half-plane or a ribbon with zigzag edges, there are gapless edge states only when a spin gap dominates over a Dirac mass gap. In the case of a half-plane with an armchair edge, the existence of the gapless edge states depends on the specific type of Dirac mass gaps. The implications of these results for the dynamics in the quantum Hall effect in graphene are discussed

  9. Optimal Volume for Concert Halls Based on Ando’s Subjective Preference and Barron Revised Theories

    Directory of Open Access Journals (Sweden)

    Salvador Cerdá

    2014-03-01

    Full Text Available The Ando-Beranek’s model, a linear version of Ando’s subjective preference theory, obtained by the authors in a recent work, was combined with Barron revised theory. An optimal volume region for each reverberation time was obtained for classical music in symphony orchestra concert halls. The obtained relation was tested with good agreement with the top rated halls reported by Beranek and other halls with reported anomalies.

  10. A model study of present-day Hall-effect circulators

    International Nuclear Information System (INIS)

    Placke, B.; Bosco, S.; DiVincenzo, D.P.

    2017-01-01

    Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ_H = tan"-"1 σ_x_y/σ_x_x always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ_H = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)

  11. Assessment of elevator rope using Hall Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Lee, Jong Ku [Pukyung National University, Pusan (Korea, Republic of)

    2003-07-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4 mm and 1 mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2 mm in depth at 4 mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  12. Assesment of elevator rope using hall sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jung Woo; Lee, Jong Ku [Pukyong National University, Pusan (Korea, Republic of)

    2003-05-15

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4mm and 1mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2mm in depth at 4mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  13. Assessment of elevator rope using Hall Sensor

    International Nuclear Information System (INIS)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo; Lee, Jong Ku

    2003-01-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4 mm and 1 mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2 mm in depth at 4 mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  14. Assesment of elevator rope using hall sensor

    International Nuclear Information System (INIS)

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo; Lee, Jong Ku

    2003-01-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4mm and 1mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2mm in depth at 4mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  15. Hall-Effect Sensors for Real-Time Monitoring Pier Scour

    Directory of Open Access Journals (Sweden)

    Chen-Chia CHEN

    2015-01-01

    Full Text Available Scour around bridge pier is a major cause of bridge failure such as collapse resulted in loss of life and property. Most of available sensors and approaches for monitoring bridge pier scour are very expensive, which is a main challenge for mass deployment of numerous bridges. Our proposed scour monitoring system utilized low-cost commercial sensors, hall-effect sensors (unit price< $1 that are capable of real-time measuring bridge pier scour with resolution of ~ 2.5 cm, and overall cost for single sensor node of our proposed work is at least 40 % less expensive than existing work. The hall- effect sensor is evaluated under controlled conditions in two laboratory flumes. After scour event, the typical voltage change of the hall-effect sensor is ~ 300 mV, and the system achieve signal-to-noise ratio performance of ~ 60 dB. Finally, we also provide an equation to predict the time variation of scour depth around pier model. Moreover, the master-slave architecture of bridge pier scour monitoring system has scalability and flexibility for mass deployment. This technique has the potential for further widespread implementation in the field.

  16. Strong quasi-particle tunneling study in the paired quantum Hall states

    OpenAIRE

    Nomura, Kentaro; Yoshioka, Daijiro

    2001-01-01

    The quasi-particle tunneling phenomena in the paired fractional quantum Hall states are studied. A single point-contact system is first considered. Because of relevancy of the quasi-particle tunneling term, the strong tunneling regime should be investigated. Using the instanton method it is shown that the strong quasi-particle tunneling regime is described as the weak electron tunneling regime effectively. Expanding to the network model the paired quantum Hall liquid to insulator transition i...

  17. Prediction of a quantum anomalous Hall state in Co-decorated silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-01-09

    Based on first-principles calculations, we demonstrate that Co-decorated silicene can host a quantum anomalous Hall state. The exchange field induced by the Co atoms combined with the strong spin-orbit coupling of the silicene opens a nontrivial band gap at the K point. As compared to other transition metals, Co-decorated silicene is unique in this respect, since usually hybridization and spin-polarization induced in the silicene suppress a quantum anomalous Hall state.

  18. Prediction of a quantum anomalous Hall state in Co-decorated silicene

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo; Singh, Nirpendra

    2014-01-01

    Based on first-principles calculations, we demonstrate that Co-decorated silicene can host a quantum anomalous Hall state. The exchange field induced by the Co atoms combined with the strong spin-orbit coupling of the silicene opens a nontrivial band gap at the K point. As compared to other transition metals, Co-decorated silicene is unique in this respect, since usually hybridization and spin-polarization induced in the silicene suppress a quantum anomalous Hall state.

  19. Voltage transients in thin-film InSb Hall sensor

    Science.gov (United States)

    Bardin, Alexey; Ignatjev, Vyacheslav; Orlov, Andrey; Perchenko, Sergey

    The work is reached to study temperature transients in thin-film Hall sensors. We experimentally study InSb thin-film Hall sensor. We find transients of voltage with amplitude about 10 μ V on the sensor ports after current switching. We demonstrate by direct measurements that the transients is caused by thermo-e.m.f., and both non-stationarity and heterogeneity of temperature in the film. We find significant asymmetry of temperature field for different direction of the current, which is probably related to Peltier effect. The result can be useful for wide range of scientist who works with switching of high density currents in any thin semiconductor films.

  20. Fractional quantum Hall states of atoms in optical lattices

    International Nuclear Information System (INIS)

    Soerensen, Anders S.; Demler, Eugene; Lukin, Mikhail D.

    2005-01-01

    We describe a method to create fractional quantum Hall states of atoms confined in optical lattices. We show that the dynamics of the atoms in the lattice is analogous to the motion of a charged particle in a magnetic field if an oscillating quadrupole potential is applied together with a periodic modulation of the tunneling between lattice sites. In a suitable parameter regime the ground state in the lattice is of the fractional quantum Hall type, and we show how these states can be reached by melting a Mott-insulator state in a superlattice potential. Finally, we discuss techniques to observe these strongly correlated states

  1. Hall effects on MHD flow past an accelerated plate

    Directory of Open Access Journals (Sweden)

    Deka R.K.

    2008-01-01

    Full Text Available The simultaneous effects of rotation and Hall current on the hydromagnetic flow past an accelerated horizontal plate relative to a rotating fluid is presented. It is found that for given values of m (Hall parameter, M (Hartmann number and an imposed rotation parameter Ω satisfying Ω = M 2m/(1 + m2, the transverse motion (transverse to the main flow disappears and the fluid moves in the direction of the plate only. The effects of the parameters m, M and Ω on the axial and transverse velocity profiles are shown graphically, whereas the effects of the parameters on the skin-friction components are shown by tabular values.

  2. Bingo halls and smoking: perspectives of First Nations women.

    Science.gov (United States)

    Bottorff, Joan L; Carey, Joanne; Mowatt, Roberta; Varcoe, Colleen; Johnson, Joy L; Hutchinson, Peter; Sullivan, Debbie; Williams, Wanda; Wardman, Dennis

    2009-12-01

    The purpose of this study was to examine bingo halls as a frequent site for exposure to secondhand cigarette smoke for First Nations women in rural communities. Thematic analysis of interviews with key informants, group discussions with young women, and observations in the study communities revealed that smoky bingo halls provided an important refuge from everyday experiences of stress and trauma, as well as increased women's risk for addiction, marginalization, and criticism. The findings illustrate how the bingo economy in isolated, rural First Nation communities influences tobacco use and second-hand smoke exposure, and how efforts to establish smoke-free bingos can be supported.

  3. Two-frequency method for measuring Hall emf in high-resistive materials with charge-carrier low mobility

    International Nuclear Information System (INIS)

    Aleksandrov, A.L.; Vedeneev, A.S.; Gulyaev, I.B.; Zhdan, A.G.

    1982-01-01

    A facility for measuring Hall emf in high-resistive materials with low mobility of charge carriers by the two-frequency method using digital synchronous integration is described. The facility permits to detect the minimum Hall emf approxamatety equat to 5 μV at approximatety equal to 1 T Ohm of the investigated.sample resistance during the measuring time of approximately equal to 2000 s. Sensitivity by Hall mobility makes up >= 0.01 cm 2 /Vxs at the same measuring time. Measuring results of the Hall emf on GaAs monocrystals, CdSe films and island film of gold are presented

  4. Three-dimensional simulations in optimal performance trial between two types of Hall sensors fabrication technologies

    Energy Technology Data Exchange (ETDEWEB)

    Paun, Maria-Alexandra, E-mail: map65@cam.ac.uk

    2015-10-01

    The main objective of the present work is to make a comparison between Hall devices integrated in regular bulk and Silicon-on-Insulator (SOI) CMOS technology. A three-dimensional model based on numerical estimation is provided for a particular XL Hall structure in two different technologies (the first one is XFAB XH 0.35 µm regular bulk CMOS and the second one is XFAB SOI XI10 1 µm non-fully depleted). In assessing the performance of the Hall Effect sensors included in the comparison, both three-dimensional physical simulations and measurements results will be used. In order to discriminate which category of sensors has the highest performance, their main characteristic parameters, including input resistance, Hall voltage, absolute sensitivity and their temperature drift, will be extracted and compared. Electrostatic potential and current density distribution are important aspects that are also investigated. The particular technology offering the highest sensor performance is identified. - Highlights: • A comparison between Hall devices integrated in regular bulk and SOI CMOS technologies is made. • A three-dimensional model for the XL Hall structure, in the two technologies, is provided. • The main characteristic parameters and the temperature drift are investigated. • The sensors performance is evaluated using 3D physical simulations and measurements data.

  5. Anomalous hall effect in ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Niu, Q.; MacDonald, A. H.

    2002-01-01

    Roč. 88, č. 20 (2002), s. 207208-1-207208-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anomalous Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.323, year: 2002

  6. Mikro-Hall-Magnetometrie an ferromagnetischen Nanostrukturen im Vortex- und Single-Domain-Regime

    OpenAIRE

    Stahl, Joachim

    2007-01-01

    Diese Arbeit beschäftigt sich mit der Untersuchung des Ummagnetisierungsverhaltens ferromagnetischer Permalloy-Kreisscheiben. Im Gegensatz zu integralen Methoden, die über eine Vielzahl nominell identischer Strukturen mitteln, wird das individuelle Schaltverhalten einzelner Strukturen analysiert. Die Untersuchungen erfolgten dabei mit Hilfe der Mikro-Hall-Magnetometrie und der Lorentz-Transmissions-Elektronen-Mikroskopie und werden mit mikromagnetischen Simulationen verglichen. Für die Hall-M...

  7. Hall effect driven by non-collinear magnetic polarons in diluted magnetic semiconductors

    Science.gov (United States)

    Denisov, K. S.; Averkiev, N. S.

    2018-04-01

    In this letter, we develop the theory of Hall effect driven by non-collinear magnetic textures (topological Hall effect—THE) in diluted magnetic semiconductors (DMSs). We show that a carrier spin-orbit interaction induces a chiral magnetic ordering inside a bound magnetic polaron (BMP). The inner structure of non-collinear BMP is controlled by the type of spin-orbit coupling, allowing us to create skyrmion- (Rashba) or antiskyrmion-like (Dresselhaus) configurations. The asymmetric scattering of itinerant carriers on polarons leads to the Hall response which exists in weak external magnetic fields and at low temperatures. We point out that DMS-based systems allow one to investigate experimentally the dependence of THE both on a carrier spin polarization and on a non-collinear magnetic texture shape.

  8. The effective action for edge states in higher-dimensional quantum Hall systems

    International Nuclear Information System (INIS)

    Karabali, Dimitra; Nair, V.P.

    2004-01-01

    We show that the effective action for the edge excitations of a quantum Hall droplet of fermions in higher dimensions is generically given by a chiral bosonic action. We explicitly analyze the quantum Hall effect on complex projective spaces CP k , with a U(1) background magnetic field. The edge excitations are described by Abelian bosonic fields on S 2k-1 with only one spatial direction along the boundary of the droplet relevant for the dynamics. Our analysis also leads to an action for edge excitations for the case of the Zhang-Hu four-dimensional quantum Hall effect defined on S 4 with an SU(2) background magnetic field, using the fact that CP 3 is an S 2 -bundle over S 4

  9. The Great British Music Hall: Its Importance to British Culture and ‘The Trivial’

    Directory of Open Access Journals (Sweden)

    Steven Gerrard

    2013-12-01

    Full Text Available By 1960, Britain’s once-thriving Music Hall industry was virtually dead. Theatres with their faded notions of Empire gave way to Cinema and the threat of Television. Where thousands once linked arms singing popular songs, watch acrobatics, see feats of strength, and listen to risqué jokes, now the echoes of those acts lay as whispers amongst the stalls’ threadbare seats. The Halls flourished in the 19th Century, but had their origins in the taverns of the 16th and 17th Centuries. Minstrels plied their trade egged on by drunken crowds. As time passed, the notoriety of the Music Hall acts and camaraderie produced grew. Entrepreneurial businessman tapped into this commerciality and had purpose-built status symbol theatres to provide a ‘home’ for acts and punters. With names like The Apollo giving gravitas approaching Olympian ideals, so the owners basked in wealth and glory. The Music Hall became the mass populist entertainment for the population. Every town had one, where everyone could be entertained by variety acts showing off the performers’ skills. The acts varied from singers, joke-tellers, comics, acrobats, to dancers. They all aimed to entertain. They enabled audiences to share a symbiotic relationship with one another; became recruitment officers for the Army; inspired War Poets; showed short films; and they and the halls reflected both the ideals and foibles of their era. By using Raymond Williams’ structures of feeling as its cornerstone, the article will give a brief history of the halls, whilst providing analysis into how they grew into mass populist entertainment that represented British culture. Case studies of famous artistes are given, plus an insight into how Music Hall segued into radio, film and television.

  10. Scanning vector Hall probe microscope

    Czech Academy of Sciences Publication Activity Database

    Fedor, J.; Cambel, V.; Gregušová, D.; Hanzelka, Pavel; Dérer, J.; Volko, J.

    2003-01-01

    Roč. 74, č. 12 (2003), s. 5105 - 5110 ISSN 0034-6748 Institutional research plan: CEZ:AV0Z2065902 Keywords : VHPM * Hall sensor * Helium cryostat Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.343, year: 2003 http://web. ebscohost .com/ehost/pdf?vid=8&hid=115&sid=a7c0555a-21f4-4932-b1c6-a308ac4dd50b%40sessionmgr2

  11. Experiments on Quantum Hall Topological Phases in Ultra Low Temperatures

    International Nuclear Information System (INIS)

    Du, Rui-Rui

    2015-01-01

    This project is to cool electrons in semiconductors to extremely low temperatures and to study new states of matter formed by low-dimensional electrons (or holes). At such low temperatures (and with an intense magnetic field), electronic behavior differs completely from ordinary ones observed at room temperatures or regular low temperature. Studies of electrons at such low temperatures would open the door for fundamental discoveries in condensed matter physics. Present studies have been focused on topological phases in the fractional quantum Hall effect in GaAs/AlGaAs semiconductor heterostructures, and the newly discovered (by this group) quantum spin Hall effect in InAs/GaSb materials. This project consists of the following components: 1) Development of efficient sample cooling techniques and electron thermometry: Our goal is to reach 1 mK electron temperature and reasonable determination of electron temperature; 2) Experiments at ultra-low temperatures: Our goal is to understand the energy scale of competing quantum phases, by measuring the temperature-dependence of transport features. Focus will be placed on such issues as the energy gap of the 5/2 state, and those of 12/5 (and possible 13/5); resistive signature of instability near 1/2 at ultra-low temperatures; 3) Measurement of the 5/2 gaps in the limit of small or large Zeeman energies: Our goal is to gain physics insight of 5/2 state at limiting experimental parameters, especially those properties concerning the spin polarization; 4) Experiments on tuning the electron-electron interaction in a screened quantum Hall system: Our goal is to gain understanding of the formation of paired fractional quantum Hall state as the interaction pseudo-potential is being modified by a nearby screening electron layer; 5) Experiments on the quantized helical edge states under a strong magnetic field and ultralow temperatures: our goal is to investigate both the bulk and edge states in a quantum spin Hall insulator under

  12. Equivalence of donor and acceptor fits of temperature dependent Hall carrier density and Hall mobility data: Case of ZnO

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Feuillet, Guy; Pernot, Julien

    2014-01-01

    In this work, statistical formulations of the temperature dependence of ionized and neutral impurity concentrations in a semiconductor, needed in the charge balance equation and for carrier scattering calculations, have been developed. These formulations have been used in order to elucidate a confusing situation, appearing when compensating acceptor (donor) levels are located sufficiently close to the conduction (valence) band to be thermally ionized and thereby to emit (capture) an electron to (from) the conduction (valence) band. In this work, the temperature dependent Hall carrier density and Hall mobility data adjustments are performed in an attempt to distinguish the presence of a deep acceptor or a deep donor level, coexisting with a shallower donor level and located near the conduction band. Unfortunately, the present statistical developments, applied to an n-type hydrothermal ZnO sample, lead in both cases to consistent descriptions of experimental Hall carrier density and mobility data and thus do not allow to determine the nature, donor or acceptor, of the deep level. This demonstration shows that the emission of an electron in the conduction band, generally assigned to a (0/+1) donor transition from a donor level cannot be applied systematically and could also be attributed to a (−1/0) donor transition from an acceptor level. More generally, this result can be extended for any semiconductor and also for deep donor levels located close to the valence band (acceptor transition)

  13. Dual Mode Low Power Hall Thruster, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  14. Topological phase transitions and quantum Hall effect in the graphene family

    Science.gov (United States)

    Ledwith, P.; Kort-Kamp, W. J. M.; Dalvit, D. A. R.

    2018-04-01

    Monolayer staggered materials of the graphene family present intrinsic spin-orbit coupling and can be driven through several topological phase transitions using external circularly polarized lasers and static electric or magnetic fields. We show how topological features arising from photoinduced phase transitions and the magnetic-field-induced quantum Hall effect coexist in these materials and simultaneously impact their Hall conductivity through their corresponding charge Chern numbers. We also show that the spectral response of the longitudinal conductivity contains signatures of the various phase-transition boundaries, that the transverse conductivity encodes information about the topology of the band structure, and that both present resonant peaks which can be unequivocally associated with one of the four inequivalent Dirac cones present in these materials. This complex optoelectronic response can be probed with straightforward Faraday rotation experiments, allowing the study of the crossroads between quantum Hall physics, spintronics, and valleytronics.

  15. Admittance measurements in the quantum Hall effect regime

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, C., E-mail: carlos.hernandezr@unimilitar.edu.co [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 # 101-80, Bogotá D.C. (Colombia); Laboratorio de Magnetismo, Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C. [Laboratoire Charles Coulomb L2C, Université Montpellier II, Pl. E. Bataillon, 34095 Montpellier Cedex 5 (France)

    2014-11-15

    In this work we present an admittance study of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime. We have studied several Hall bars in different contacts configurations in the frequency range 100 Hz–1 MHz. Our interpretation is based on the Landauer–Büttiker theory and takes into account both the capacitance and the topology of the coaxial cables which are connected to the sample holder. We show that we always observe losses through the capacitive impedance of the coaxial cables, except in the two contacts configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the 2DEG and show its dependence with the filling factor ν.

  16. Growth of the magnetic field in Hall magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2004-10-01

    While the Hall magnetohydrodynamics (MHD) model has been explored in depth in connection with the dispersive waves relevant in magnetic reconnection, a theoretical study of the mathematical features of this system is lacking. We consider here the boundedness of the solutions of the Hall MHD equations. With Dirichlet boundary conditions the total energy of the system is maintained, and dissipated by diffusion, but the behaviour of the higher moments of the magnetic field is more complicated. It is found that certain unusual geometries of the initial condition may lead to a blow-up of the L{sup 3}-norm of the field. Nevertheless, reasonable assumptions upon the correlation between the size of the magnetic field and the curvature of field lines imply that the magnetic field remains uniformly bounded.

  17. Plasma pressure tensor effects on reconnection: Hybrid and Hall-magnetohydrodynamics simulations

    International Nuclear Information System (INIS)

    Yin Lin; Winske, Dan

    2003-01-01

    Collisionless reconnection is studied using two-dimensional (2-D) hybrid (particle ions, massless fluid electrons) and Hall-magnetohydrodynamics (Hall-MHD) simulations. Both use the full electron pressure tensor instead of a localized resistivity in Ohm's law to initiate reconnection; an initial perturbation or boundary driving to the equilibrium is used. The initial configurations include one-dimensional (1-D) and 2-D current sheets both with and without a guide field. Electron dynamics from the two calculations are compared, and overall agreement is found between the calculations in both reconnection rate and global configuration [L. Yin et al., J. Geophys. Res. 106, 10761 (2001)]. It is shown that the electron drifts in the small-transverse-scale fields near the X point cause the electron motion to decouple from the ion motion, and that reconnection occurs due to electron viscous effects contained in the off-diagonal terms of the electron pressure tensor. Comparing the hybrid and Hall-MHD simulations shows that effects of the off-diagonal terms in the ion pressure tensor, i.e., the ion gyro-radius effects, are necessary in order to model correctly the ion out-of-plane motion. It is shown that these effects can be modeled efficiently in a particle Hall-MHD simulation in which particle ions are used in a predictor/corrector manner to implement ion gyro-radius corrections [L. Yin et al., Phys. Plasmas 9, 2575 (2002)]. For modeling reconnection in large systems, a new integrated approach is examined in which Hall-MHD calculations using a full electron pressure tensor model is embedded inside a MHD simulation. The embedded simulation of current sheet thinning and reconnection dynamics in a realistic 2-D magnetotail equilibrium exhibits smooth transitions of plasma and field quantities between the two regions, with small-scale physics represented well in the compressed current sheet and in the near-X-point region

  18. Topological model of composite fermions in the cyclotron band generator picture: New insights

    Science.gov (United States)

    Staśkiewicz, Beata

    2018-03-01

    A combinatorial group theory in the braid groups is correlated with the unusual "anyon" statistic of particles in 2D Hall system in the fractional quantum regime well. On this background has been derived cyclotron band generator as a modification and generalization band generator, first established to solve the word and conjugacy problems in the braid group terms. Topological commensurability condition has been embraced by canonical factors - like, based on the concept of parallel descending cycles. Owing to this we can mathematically capture the general hierarchy of correlated states in the lowest Landau level, describing the fractional quantum Hall effect hierarchy, in terms of cyclotron band generators, especially for those being beyond conventional composite fermions model. It has been also shown that cyclotron braid subgroups, developed for interpretation of Laughlin correlations, are a special case of the right-angled Artin groups.

  19. A Redundancy Mechanism Design for Hall-Based Electronic Current Transformers

    Directory of Open Access Journals (Sweden)

    Kun-Long Chen

    2017-03-01

    Full Text Available Traditional current transformers (CTs suffer from DC and AC saturation and remanent magnetization in many industrial applications. Moreover, the drawbacks of traditional CTs, such as closed iron cores, bulky volume, and heavy weight, further limit the development of an intelligent power protection system. In order to compensate for these drawbacks, we proposed a novel current measurement method by using Hall sensors, which is called the Hall-effect current transformer (HCT. The existing commercial Hall sensors are electronic components, so the reliability of the HCT is normally worse than that of the traditional CT. Therefore, our study proposes a redundancy mechanism for the HCT to strengthen its reliability. With multiple sensor modules, the method has the ability to improve the accuracy of the HCT as well. Additionally, the proposed redundancy mechanism monitoring system provides a condition-based maintenance for the HCT. We verify our method with both simulations and an experimental test. The results demonstrate that the proposed HCT with a redundancy mechanism can almost achieve Class 0.2 for measuring CTs according to IEC Standard 60044-8.

  20. The Hall instability of unsteady inhomogeneous axially symmetric magnetized plasmas

    International Nuclear Information System (INIS)

    Shtemler, Yuri M.; Mond, Michael; Liverts, Edward

    2004-01-01

    The Hall instability in cylindrically symmetric resistive magnetized plasmas in vacuum is investigated. The unperturbed self-similar equilibrium solutions for imploding Z-pinches with time-dependent total current I t ∼t S ,S>1/3, are subjected by short-wave sausage perturbations. The instability criterion is derived in slow-time, frozen-radius approximation. In cylindrically symmetric configurations the instability is driven by the magnetic field curvature. The near-axis and near-edge branches of the neutral curve in the plane of the inverse Hall parameter and phase velocity with the frozen radial coordinate as a parameter are separated by the critical point, where the modified gradient from the unperturbed number density changes sign. The critical radius may be treated as a new characteristic size of the Z-pinch that emerges due to the instability: the pinch is envisaged restructured by the short-scale high-frequency Hall instability, in which a central stable core is surrounded by an outer shell. Such a modified equilibrium may explain the observed enhanced stability against magnetohydrodynamic modes

  1. The Dream Comes True in the Golden Hall

    Institute of Scientific and Technical Information of China (English)

    JianZhong; ChenJianguo

    2004-01-01

    Nanjing Traditional Music Ensemble has long dreamed of performing in Vienna's Golden Hall.Now the dream has come true.the whole troupe felt so exciting that they did not even sleep well during the flight.

  2. Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction

    Energy Technology Data Exchange (ETDEWEB)

    Milovanović, S. P., E-mail: slavisa.milovanovic@uantwerpen.be; Peeters, F. M., E-mail: francois.peeters@uantwerpen.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Ramezani Masir, M., E-mail: mrmphys@gmail.com [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Department of Physics, University of Texas at Austin, 2515 Speedway, C1600 Austin, Texas 78712-1192 (United States)

    2014-09-22

    The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.

  3. Anomalous Hall effect in Fe/Au multilayers

    KAUST Repository

    Zhang, Q.; Li, P.; Wen, Yan; Zhao, C.; Zhang, Junwei; Manchon, Aurelien; Mi, W. B.; Peng, Y.; Zhang, Xixiang

    2016-01-01

    To understand the interfacial scattering effect on the anomalous Hall effect (AHE), we prepared multilayers of (Fe(36/n)nm/Au(12/n)nm)n using an e-beam evaporator. This structure design allowed us to investigate the effect of interfacial scattering on the AHE, while keeping the samples' thickness and composition unchanged. We measured the (magneto)transport properties of the samples in a wide temperature range (10–310 K) with magnetic fields up to 50 kOe. We found that the scaling between the anomalous Hall resistivity (ρAHE) and longitudinal resistivity (ρxx) can be roughly described by ρAHE∼ργxx with γ=2.65±0.10 and 1.90 ± 0.04 for samples from n=1 to n=4 and samples from n=4 to n=12, respectively. Our quantitative analysis results showed that the interfacial scattering suppresses the contribution of the intrinsic mechanism and gives rise to a side-jump contribution.

  4. Anomalous Hall effect in Fe/Au multilayers

    KAUST Repository

    Zhang, Q.

    2016-07-22

    To understand the interfacial scattering effect on the anomalous Hall effect (AHE), we prepared multilayers of (Fe(36/n)nm/Au(12/n)nm)n using an e-beam evaporator. This structure design allowed us to investigate the effect of interfacial scattering on the AHE, while keeping the samples\\' thickness and composition unchanged. We measured the (magneto)transport properties of the samples in a wide temperature range (10–310 K) with magnetic fields up to 50 kOe. We found that the scaling between the anomalous Hall resistivity (ρAHE) and longitudinal resistivity (ρxx) can be roughly described by ρAHE∼ργxx with γ=2.65±0.10 and 1.90 ± 0.04 for samples from n=1 to n=4 and samples from n=4 to n=12, respectively. Our quantitative analysis results showed that the interfacial scattering suppresses the contribution of the intrinsic mechanism and gives rise to a side-jump contribution.

  5. A model study of present-day Hall-effect circulators

    Energy Technology Data Exchange (ETDEWEB)

    Placke, B. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Bosco, S. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); DiVincenzo, D.P. [RWTH Aachen University, Institute for Quantum Information, Aachen (Germany); Juelich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologiesh, Juelich (Germany); Peter Gruenberg Institute, Theoretical Nanoelectronics, Forschungszentrum Juelich, Juelich (Germany)

    2017-12-15

    Stimulated by the recent implementation of a three-port Hall-effect microwave circulator of Mahoney et al. (MEA), we present model studies of the performance of this device. Our calculations are based on the capacitive-coupling model of Viola and DiVincenzo (VD). Based on conductance data from a typical Hall-bar device obtained from a two-dimensional electron gas (2DEG) in a magnetic field, we numerically solve the coupled field-circuit equations to calculate the expected performance of the circulator, as determined by the S parameters of the device when coupled to 50Ω ports, as a function of frequency and magnetic field. Above magnetic fields of 1.5 T, for which a typical 2DEG enters the quantum Hall regime (corresponding to a Landau-level filling fraction ν of 20), the Hall angle θ{sub H} = tan{sup -1} σ{sub xy}/σ{sub xx} always remains close to 90 , and the S parameters are close to the analytic predictions of VD for θ{sub H} = π/2. As anticipated by VD, MEA find the device to have rather high (kΩ) impedance, and thus to be extremely mismatched to 50Ω, requiring the use of impedance matching. We incorporate the lumped matching circuits of MEA in our modeling and confirm that they can produce excellent circulation, although confined to a very small bandwidth. We predict that this bandwidth is significantly improved by working at lower magnetic field when the Landau index is high, e.g. ν = 20, and the impedance mismatch is correspondingly less extreme. Our modeling also confirms the observation of MEA that parasitic port-to-port capacitance can produce very interesting countercirculation effects. (orig.)

  6. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters

    Science.gov (United States)

    Hofer, Richard Robert

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000--3000 s range. While recent studies of commercially developed Hall thrusters demonstrated greater than 4000 s specific impulse, maximum efficiency occurred at less than 3000 s. It was hypothesized that the efficiency maximum resulted as a consequence of modern magnetic field designs, optimized for 1600 s, which were unsuitable at high-specific impulse. Motivated by the industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. The research divided into development and characterization phases. During the development phase, the laboratory-model NASA-173M Hall thrusters were designed with plasma lens magnetic field topographies and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens design by showing how changing the magnetic field topography at high-specific impulse improved efficiency. Experiments with the NASA-173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Between 300--1000 V, total specific impulse and total efficiency of the NASA-173Mv2 operating at 10 mg/s ranged from 1600--3400 s and 51--61%, respectively. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens design. During the characterization phase, additional plasma properties of the NASA-173Mv2 were measured and a performance model was derived accounting for a multiply-charged, partially-ionized plasma. Results from the model based on experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The

  7. Terahertz optical-Hall effect for multiple valley band materials: n-type silicon

    International Nuclear Information System (INIS)

    Kuehne, P.; Hofmann, T.; Herzinger, C.M.; Schubert, M.

    2011-01-01

    The optical-Hall effect comprises generalized ellipsometry at long wavelengths on samples with free-charge carriers placed within external magnetic fields. Measurement of the anisotropic magneto-optic response allows for the determination of the free-charge carrier properties including spatial anisotropy. In this work we employ the optical-Hall effect at terahertz frequencies for analysis of free-charge carrier properties in multiple valley band materials, for which the optical free-charge carrier contributions originate from multiple Brillouin-zone conduction or valence band minima or maxima, respectively. We investigate exemplarily the room temperature optical-Hall effect in low phosphorous-doped n-type silicon where free electrons are located in six equivalent conduction-band minima near the X-point. We simultaneously determine their free-charge carrier concentration, mobility, and longitudinal and transverse effective mass parameters.

  8. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-01-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster

  9. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien; Lee, K.-J.

    2011-01-01

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  10. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Asamitsu, A.; Miyasato, T.; Abe, N.; Fujii, T.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and calcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by rigorous unified theory assuming both intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets and this behavior is expected from a conventional Boltzmann transport theory

  11. Spin Hall effect-driven spin torque in magnetic textures

    KAUST Repository

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  12. Anomalous Hall effect and Nernst effect in itinerant ferromagnets

    International Nuclear Information System (INIS)

    Miyasato, T.; Abe, N.; Fujii, T.; Asamitsu, A.; Onose, Y.; Onoda, S.; Nagaosa, N.; Tokura, Y.

    2007-01-01

    Anomalous Hall effect (AHE) and anomalous Nernst effect (ANE) in many ferromagnetic metals including pure metals, oxides, and chalcogenides, are studied to obtain unified understandings of their origins. We show the universal behavior of anomalous Hall conductivity σ xy as a function of longitudinal conductivity σ xx over six orders of magnitude, which is well reproduced by a recent theory assuming both the intrinsic and extrinsic contributions to the AHE. ANE is closely related with AHE and gives us further information about the electronic state in the ground state of ferromagnets. The temperature dependence of transverse Peltier coefficient α xy shows almost similar behavior among various ferromagnets, and this behavior is expected from a conventional Boltzmann transport theory

  13. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    Science.gov (United States)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  14. Laser Safety for the Experimental Halls at SLAC_s Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Michael; Anthony, Perry; /SLAC; Barat, Ken; /LBL, Berkeley; Gilevich, Sasha; Hays, Greg; White, William E.; /SLAC

    2009-01-15

    The LCLS at the SLAC National Accelerator Laboratory will be the world's first source of an intense hard x-ray laser beam, generating x-rays with wavelengths of 1nm and pulse durations less than 100fs. The ultrafast x-ray pulses will be used in pump-probe experiments to take stop-motion pictures of atoms and molecules in motion, with pulses powerful enough to take diffraction images of single molecules, enabling scientists to elucidate fundamental processes of chemistry and biology. Ultrafast conventional lasers will be used as the pump. In 2009, LCLS will deliver beam to the Atomic Molecular and Optical (AMO) Experiment, located in one of 3 x-ray Hutches in the Near Experimental Hall (NEH). The NEH includes a centralized Laser Hall, containing up to three Class 4 laser systems, three x-ray Hutches for experiments and vacuum transport tubes for delivering laser beams to the Hutches. The main components of the NEH laser systems are a Ti:sapphire oscillator, a regen amplifier, green pump lasers for the oscillator and regen, a pulse compressor and a harmonics conversion unit. Laser safety considerations and controls for the ultrafast laser beams, multiple laser controlled areas, and user facility issues are discussed.

  15. Chapin Hall Projects and Publications. Autumn 1999.

    Science.gov (United States)

    Chicago Univ., IL. Chapin Hall Center for Children.

    This guide chronicles the ongoing work and writings of the Chapin Hall Center for Children at the University of Chicago, a policy research center dedicated to bringing sound information, rigorous analyses, innovative ideas, and an independent, multidisciplinary perspective to bear on policies and programs affecting children. This guide, organized…

  16. Attitudes toward the health of men that regularly occupy in a trainer hall.

    Directory of Open Access Journals (Sweden)

    Adamchhuk Ja.

    2012-02-01

    Full Text Available It is accepted to consider that by motivation for people that practice in a trainer hall is an improvement of health and original appearance. The aim of this research was to determine whether there is training by part of forming of positive attitude toward the health of men-sportsmen-amateurs that occupy in a trainer hall. In research took part 100 men that engage in the power training in one of three trainer halls of Warsaw. Investigational divided by two groups: 50 persons that occupy in a trainer hall more than one year, but no more than 3 years (group A and 50 persons that practice more than 3 (group B. It is well-proven that training positively influences on the emotional state of men. It was discovered at the same time, that than greater experience of sportsman-amateur, the considerably more often he used additions (including by a stimulant. There was no medical control in both groups. Positive influence of the power training shows that they can be the important element of prophylaxis and physiotherapy.

  17. Effective-field-theory model for the fractional quantum Hall effect

    International Nuclear Information System (INIS)

    Zhang, S.C.; Hansson, T.H.; Kivelson, S.

    1989-01-01

    Starting directly from the microscopic Hamiltonian, we derive a field-theory model for the fractional quantum hall effect. By considering an approximate coarse-grained version of the same model, we construct a Landau-Ginzburg theory similar to that of Girvin. The partition function of the model exhibits cusps as a function of density and the Hall conductance is quantized at filling factors ν = (2k-1)/sup -1/ with k an arbitrary integer. At these fractions the ground state is incompressible, and the quasiparticles and quasiholes have fractional charge and obey fractional statistics. Finally, we show that the collective density fluctuations are massive

  18. Sixteen-state magnetic memory based on the extraordinary Hall effect

    International Nuclear Information System (INIS)

    Segal, A.; Karpovski, M.; Gerber, A.

    2012-01-01

    We report on a proof-of-concept study of split-cell magnetic storage in which multi-bit magnetic memory cells are composed of several multilevel ferromagnetic dots with perpendicular magnetic anisotropy. Extraordinary Hall effect is used for reading the data. Feasibility of the approach is supported by realization of four-, eight- and sixteen- state cells. - Highlights: ► We propose a novel structure of multi-bit magnetic random access memory. ► Each cell contains several interconnected storage dots. ► Extraordinary Hall effect is used for reading the data. ► Four-, eight- and sixteen-state cells have been realized.

  19. Tondiraba jäähall = Tondiraba ice arena

    Index Scriptorium Estoniae

    2015-01-01

    Tondiraba jäähall Tallinnas Varraku tänav 14, valminud 2014. Arhitektid Ott Kadarik, Mihkel Tüür, Kadri Tamme (Kadarik Tüür Arhitektid OÜ), insener Paavo Pikand. Eesti Kultuurkapitali Arhitektuuri sihtkapitali aastapreemia 2014

  20. MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Schilling, M.; Fernández Scarioni, A.; Krzysteczko, P.; Dziomba, T.; Schumacher, H. W.; Menzel, D.; Süllow, S.

    2018-06-01

    We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out. Finally, we discuss our Hall effect data of nanostructured MnSi under consideration of the extrinsic contributions and with respect to the question of the detection of a topological Hall effect in a skyrmionic lattice.

  1. Nematic and Valley Ordering in Anisotropic Quantum Hall Systems

    Science.gov (United States)

    Parameswaran, S. A.; Abanin, D. A.; Kivelson, S. A.; Sondhi, S. L.

    2010-03-01

    We consider a multi-valley two dimensional electron system in the quantum Hall effect (QHE) regime. We focus on QHE states that arise due to spontaneous breaking of the valley symmetry by the Coulomb interactions. We show that the anisotropy of the Fermi surface in each valley, which is generally present in such systems, favors states where all the electrons reside in one of the valleys. In a clean system, the valley ordering occurs via a finite temperature Ising-like phase transition, which, owing to the Fermi surface anisotropy, is accompanied by the onset of nematic order. In a disordered system, domains of opposite polarization are formed, and therefore long-range valley order is destroyed, however, the resulting state is still compressible. We discuss the transport properties in ordered and disordered regimes, and point out the possible relation of our results to recent experiments in AlAs [1]. [1] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere, and M. Shayegan, Observation of Quantum Hall ``Valley Skyrmions", Phys. Rev. Lett. 95, 068809 (2005)[2] D.A. Abanin, S.A. Parameswaran, S.A. Kivelson and S.L. Sondhi, Nematic and Valley Ordering in Anisotropic Quantum Hall Systems, to be published.

  2. Angular dependencies of longitudinal magnetoresistivity and planar Hall effect of single and multilayered thin films

    International Nuclear Information System (INIS)

    Ko, T.W.; Lee, J.H.; Park, B.K.; Rhie, K.; Jang, P.W.; Hwang, D.G.; Lee, S.S.; Kim, M.Y.; Rhee, J.R.

    1998-01-01

    Magnetoresistivity and planar Hall effect of a Glass/Fe70A/[Co21A/Cu25A] 20 multilayer coupled antiferromagnetically a single layer (Co81Nb19) thin film, and NiO based Glass/Ni350A/Py50A/Cu20A/Py50A (Py = Ni 83 Fe 17 ) spin value are studied. Planar Hall resistivity is analysed concurrently with the resistivity of the sample. With variation of direction and strength of the applied fields, we found that the magnetization process affects significantly the planar Hall effect. We developed a simple method to find the easy axis of single layer magnetic thin films. We also observed the variation of magnetization of each layer separately for an antiferromagnetically coupled multilayer, and a NiO-based spin value with the planar Hall effect. (author)

  3. A review of the quantum Hall effects in MgZnO/ZnO heterostructures

    Science.gov (United States)

    Falson, Joseph; Kawasaki, Masashi

    2018-05-01

    This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the Mg x Zn1-x O/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility (μ > 1000 000 cm2 Vs‑1) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and spin susceptibility of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. We discuss in detail the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic.

  4. Fabry-Perot Interferometry in the Integer and Fractional Quantum Hall Regimes

    Science.gov (United States)

    McClure, Douglas; Chang, Willy; Kou, Angela; Marcus, Charles; Pfeiffer, Loren; West, Ken

    2011-03-01

    We present measurements of electronic Fabry-Perot interferometers in the integer and fractional quantum Hall regimes. Two classes of resistance oscillations may be seen as a function of magnetic field and gate voltage, as we have previously reported. In small interferometers in the integer regime, oscillations of the type associated with Coulomb interaction are ubiquitous, while those consistent with single-particle Aharonov-Bohm interference are seen to co-exist in some configurations. The amplitude scaling of both types with temperature and device size is consistent with a theoretical model. Oscillations are further observed in the fractional quantum Hall regime. Here the dependence of the period on the filling factors in the constrictions and bulk of the interferometer can shed light on the effective charge of the interfering quasiparticles, but care is needed to distinguish these oscillations from those associated with integer quantum Hall states. We acknowledge funding from Microsoft Project Q and IBM.

  5. Engineering the quantum anomalous Hall effect in graphene with uniaxial strains

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, G. S., E-mail: ginetom@gmail.com; Guassi, M. R. [Institute of Physics, University of Brasília, 70919-970 Brasília-DF (Brazil); Qu, F. [Institute of Physics, University of Brasília, 70919-970 Brasília-DF (Brazil); Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2013-12-28

    We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of the exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency.

  6. Engineering the quantum anomalous Hall effect in graphene with uniaxial strains

    International Nuclear Information System (INIS)

    Diniz, G. S.; Guassi, M. R.; Qu, F.

    2013-01-01

    We theoretically investigate the manipulation of the quantum anomalous Hall effect (QAHE) in graphene by means of the uniaxial strain. The values of Chern number and Hall conductance demonstrate that the strained graphene in presence of Rashba spin-orbit coupling and exchange field, for vanishing intrinsic spin-orbit coupling, possesses non-trivial topological phase, which is robust against the direction and modulus of the strain. Besides, we also find that the interplay between Rashba and intrinsic spin-orbit couplings results in a topological phase transition in the strained graphene. Remarkably, as the strain strength is increased beyond approximately 7%, the critical parameters of the exchange field for triggering the quantum anomalous Hall phase transition show distinct behaviors—decrease (increase) for strains along zigzag (armchair) direction. Our findings open up a new platform for manipulation of the QAHE by an experimentally accessible strain deformation of the graphene structure, with promising application on novel quantum electronic devices with high efficiency

  7. Dynamics Of Human Motion The Case Study of an Examination Hall

    Science.gov (United States)

    Ogunjo, Samuel; Ajayi, Oluwaseyi; Fuwape, Ibiyinka; Dansu, Emmanuel

    Human behaviour is difficult to characterize and generalize due to ITS complex nature. Advances in mathematical models have enabled human systems such as love interaction, alcohol abuse, admission problem to be described using models. This study investigates one of such problems, the dynamics of human motion in an examination hall with limited computer systems such that students write their examination in batches. The examination is characterized by time (t) allocated to each students and difficulty level (dl) associated with the examination. A stochastic model based on the difficulty level of the examination was developed for the prediction of student's motion around the examination hall. A good agreement was obtained between theoretical predictions and numerical simulation. The result obtained will help in better planning of examination session to maximize available resources. Furthermore, results obtained in the research can be extended to other areas such as banking hall, customer service points where available resources will be shared amongst many users.

  8. Giant Planar Hall Effect in the Dirac Semimetal ZrTe5

    KAUST Repository

    Li, Peng

    2018-03-03

    Exploration and understanding of exotic topics in quantum physics such as Dirac and Weyl semimetals have become highly popular in the area of condensed matter. It has recently been predicted that a theoretical giant planar Hall effect can be induced by a chiral anomaly in Dirac and Weyl semimetals. ZrTe5 is considered an intriguing Dirac semimetal at the boundary of weak and strong topological insulators, though this claim is still controversial. In this study, we report the observation in ZrTe5 of giant planar Hall resistivity. We have also noted three different dependences of this resistivity on the magnetic field, as predicted by theory, maximum planar Hall resistivity occurs at the Lifshitz transition temperature. In addition, we have discovered a nontrivial Berry phase, as well as a chiral-anomaly-induced negative longitudinal and a giant in-plane anisotropic magnetoresistance. All these experimental observations coherently demonstrate that ZrTe5 is a Dirac semimetal.

  9. Cylindrical Hall Thrusters with Permanent Magnets

    International Nuclear Information System (INIS)

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-01-01

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  10. Hall effect of K-doped superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Son, Eunseon; Lee, Nam Hoon; Kang, Won Nam [Dept. of physics, Sungkyunkwan University, Suwon (Korea, Republic of); Hwang, Tae Jong; Kim, Dong Ho [Dept. of physics, Yeungnam University, Gyeongsan(Korea, Republic of)

    2013-09-15

    We have studied Hall effect for potassium (K)-doped BaFe{sub 2}As{sub 2}superconducting thin films by analyzing the relation between the longitudinal resistivity (ρ{sub xy}) and the Hall resistivity (ρ{sub xy}). The thin films used in this study were fabricated on Al{sub O3} (000l) substrates by using an ex-situ pulsed laser deposition (PLD) technique under a high-vacuum condition of ∼10{sup -6} Torr. The samples showed the high superconducting transition temperatures (T{sub C}) of ∼40 K. The ρ{sub xx} and ρ{sub xy}the for K-doped BaFeAs{sub 2} thin films were measured by using a physical property measurement system (PPMS) with a temperature sweep (T-sweep) mode at an applied current density of 100 A/cm{sup 2} and at magnetic fields from 0 up to 9 T. We report the T-sweep results of the ρ{sub xx} and the ρ{sub xy} to investigate Hall scaling behavior on the basis of the relation of ρ{sub xy} = A(ρ{sub xy}){sup β}. The ρ{sub xx} values are 3.0 ± 0.2 in the c-axis-oriented K-doped BaFeAs{sub 2} thin films, whereas the thin films with various oriented-directions like a polycrystal showed slightly lower β than that of c-axis-oriented thin films. Interestingly, the β value is decreased with increasing magnetic fields.

  11. The Josephson and Quantum Hall effect in metrology

    International Nuclear Information System (INIS)

    Lifka, E.

    1990-01-01

    This first generation of DC voltage standards based upon the Josephson effect made use of one tunnel junction coupled with microwaves via an external resonator. The needed output voltage level of 1 V was derived either by means of room temperature resistive divider or the cryogenic current comparator from the quantized microwave-induced voltage drop on the Josephson tunnel junction. In order to increase the accuracy of th standard, series arrays of Josephson tunnel junctions, in which the quantized voltage drops are added together thus providing reference voltage of several hundreds mV, are commonly used in some national laboratories. As the radiating frequency used is 70 GHz or higher the actual sample containing tunnel junction array takes form of an millimeter wave integrated circuit feeded by the thin film fin-line. This improved DC voltage standard has relative uncertainty lower by an amount which equals to the contribution of the resistive divider and allied measuring circuitry. This paper traces the present and future of studies involving the use of the Josephson and Quantum Hall Effect in meteorology

  12. On the low-field Hall coefficient of graphite

    Directory of Open Access Journals (Sweden)

    P. Esquinazi

    2014-11-01

    Full Text Available We have measured the temperature and magnetic field dependence of the Hall coefficient (RH in three, several micrometer long multigraphene samples of thickness between ∼9 to ∼30 nm in the temperature range 0.1 to 200 K and up to 0.2 T field. The temperature dependence of the longitudinal resistance of two of the samples indicates the contribution from embedded interfaces running parallel to the graphene layers. At low enough temperatures and fields RH is positive in all samples, showing a crossover to negative values at high enough fields and/or temperatures in samples with interfaces contribution. The overall results are compatible with the reported superconducting behavior of embedded interfaces in the graphite structure and indicate that the negative low magnetic field Hall coefficient is not intrinsic of the ideal graphite structure.

  13. Theory of anomalous Hall effect in europium chalcogenides

    International Nuclear Information System (INIS)

    Sinkkonen, J.

    1976-04-01

    Considering the exchange interaction between the conduction electrons in a broad 5d-type band and the magnetic electrons in the localized 4f-shells, it is shown that in addition to the ordinary d-f exchange diagonal in band index, there is also a non-diagonal interaction representing a one particle transfer between the conduction and magnetic electrons. Including the spin-orbit coupling, an effective Hamiltonian for the conductionelectrons is obtained, which contains additional asymmetric scattering terms. The ordinary d-f exchange is treated as the dominating scattering interaction. The anomatous Hall effect results by skew scattering and side jump mechanisms. The density matrix method is used to derive the transport properties. The effect of the correlation of spins at different lattice sites is discussed. The model indicates that the anomatous Hall effect can be seen in heavily doped samples. (author)

  14. Carbon Back Sputter Modeling for Hall Thruster Testing

    Science.gov (United States)

    Gilland, James H.; Williams, George J.; Burt, Jonathan M.; Yim, John T.

    2016-01-01

    In support of wear testing for the Hall Effect Rocket with Magnetic Shielding (HERMeS) program, the back sputter from a Hall effect thruster plume has been modeled for the NASA Glenn Research Centers Vacuum Facility 5. The predicted wear at a near-worst case condition of 600 V, 12.5 kW was found to be on the order of 3 4 mkhour in a fully carbon-lined chamber. A more detailed numerical monte carlo code was also modified to estimate back sputter for a detailed facility and pumping configuration. This code demonstrated similar back sputter rate distributions, but is not yet accurately modeling the magnitudes. The modeling has been benchmarked to recent HERMeS wear testing, using multiple microbalance measurements. These recent measurements have yielded values, on the order of 1.5- 2 microns/khour.

  15. Pseudospin anisotropy classification of quantum Hall ferromagnets

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; MacDonald, A. H.

    2000-01-01

    Roč. 63, č. 3 (2000), s. 035305-1 - 035305-9 ISSN 0163-1829 R&D Projects: GA ČR GA202/98/0085 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.065, year: 2000

  16. Mr. John Hall (Debate on link between nuclear weapons testing and subsequent leukaemia in participants)

    International Nuclear Information System (INIS)

    Vaz, Keith; Hamilton, Archie.

    1992-01-01

    A debate in the House of Commons is recorded on the case of Mr John Hall, formerly a member of the British Armed Forces who was involved in the hydrogen bomb test at Christmas Island in 1958. Mr Hall is currently being treated for high-grade B-cell non-Hodgkin's lymphoma of the centribalistic type. The debate centred round the difficulty in establishing a causal link between participation in the weapons testing programme and any subsequent illness diagnosed in Mr Hall and other service men. (UK)

  17. General topological features and instanton vacuum in quantum Hall and spin liquids

    International Nuclear Information System (INIS)

    Pruisken, A.M.M.; Shankar, R.; Surendran, Naveen

    2005-01-01

    We introduce the concept of superuniversality in quantum Hall liquids and spin liquids. This concept has emerged from previous studies of the quantum Hall effect and states that all the fundamental features of the quantum Hall effect are generically displayed as general topological features of the θ parameter in nonlinear σ models in two dimensions. To establish superuniversality in spin liquids we revisit the mapping by Haldane who argued that the antiferromagnetic Heisenberg spin-s chain in 1+1 space-time dimensions is effectively described by the O(3) nonlinear σ model with a θ term. By combining the path integral representation for the dimerized spin s=1/2 chain with renormalization-group decimation techniques we generalize the Haldane approach to include a more complicated theory, the fermionic rotor chain, involving four different renormalization-group parameters. We show how the renormalization-group calculation technique can be used to build a bridge between the fermionic rotor chain and the O(3) nonlinear σ model with the θ term. As an integral and fundamental aspect of the mapping we establish the topological significance of the dangling spin at the edge of the chain. The edge spin in spin liquids is in all respects identical to the massless chiral edge excitations in quantum Hall liquids. We consider various different geometries of the spin chain such as open and closed chains, chains with an even and odd number of sides. We show that for each of the different geometries the θ term has a distinctly different physical meaning. We compare each case with a topologically equivalent quantum Hall liquid

  18. Homotopy arguments for quantized Hall conductivity

    CERN Document Server

    Richter, T

    2002-01-01

    Using the strong localization bounds obtained by the Aizenman-Molcanov method for a particle in a magnetic field and a disordered potential, we show that the zero-temperature Hall conductivity of a gas of such particles is quantized and constant as long as both Fermi energy and disorder coupling parameter vary in a region of strong localization of the corresponding two-dimensional phase diagram.

  19. SPS beam to the West Hall

    CERN Multimedia

    CERN PhotoLab

    1976-01-01

    One of the two target stations feeding the West Hall (see Annual Report 1976). After the proton beam was split into three branches, the outer two were directed on to targets in the cast iron shielding box, the centre one passing through the box to another target station downstream. Five different targets could be put in each beam, controlled by the mechanism seen on top.

  20. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    International Nuclear Information System (INIS)

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-01-01

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster