Bending strain engineering in quantum spin hall system for controlling spin currents
Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; Zhai, Feng; Mei, Jiawei; Liu, Feng
2017-06-01
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. Here the concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. We show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Furthermore, the curved quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.
DC resistance comparison between a current comparator bridge and the quantum Hall system at Inmetro
da Silva, M. C.; Carvalho, H. R.; Vasconcellos, R. T. B.
2016-07-01
This paper presents a comparison results between the Quantum Hall System (QHS) under development at the Quantum Electrical Metrology Laboratory (Lameq) and the current comparator calibration system, traceable to the Bureau International des Poids et Mesures (BIPM), at the Electrical Standardization Metrology Laboratory (Lampe), both part of the Electrical Metrology Division, at Inmetro. Comparisons were performed with 1 Ω, 10 Ω, 100 Ω, 1 kΩ and 10 kΩ resistors. The results obtained over two years of work are presented here, showing that the comparison contributed to improve the calibration systems of both Lampe and Lameq.
Effects of Hall current and radiation absorption on MHD micropolar fluid in a rotating system
P.V. Satya Narayana
2013-12-01
Full Text Available The objective of this paper is to study the effects of Hall current and radiation absorption on MHD free convection mass transfer flow of a micropolar fluid in a rotating frame of reference. A uniform magnetic field acts perpendicular to the porous surface in which absorbs micropolar fluid with a constant suction velocity. The entire system rotates about the axes normal to the plate with uniform angular velocity Ω. The dimensionless governing equations for this investigation are reduced to a system of linear differential equations using regular perturbation method, and equations are solved analytically. The influence of various flow parameters of the flow field has been discussed and explained graphically. The present study is of immediate interest in geophysical, cosmically fluid dynamics, medicine, biology, and all those processes which are greatly embellished by a strong magnetic field with a low density of the gas.
The Hall current system revealed as a statistical significant pattern during fast flows
K. Snekvik
2008-11-01
Full Text Available We have examined the dawn-dusk component of the magnetic field, B_{Y}, in the night side current sheet during fast flows in the neutral sheet. 237 h of Cluster data from the plasma sheet between 2 August 2002 and 2 October 2002 have been analysed. The spatial pattern of B_{Y} as a function of the distance from the centre of the current sheet has been estimated by using a Harris current sheet model. We have used the average slopes of these patterns to estimate earthward and tailward currents. For earthward fast flows there is a tailward current in the inner central plasma sheet and an earthward current in the outer central plasma sheet on average. For tailward fast flows the currents are oppositely directed. These observations are interpreted as signatures of Hall currents in the reconnection region or as field aligned currents which are connected with these currents. Although fast flows often are associated with a dawn-dusk current wedge, we believe that we have managed to filter out such currents from our statistical patterns.
XIONG Jian-Wen; HU Liang-Bin; ZHANG Zhen-Xi
2006-01-01
@@ Based on the Heisenberg equations of motion for the electron orbital and spin degrees of freedom in two-dimensional electronic systems with both Rashba and Dresselhaus spin-orbit couplings, we show that an ac electric field can cause an ac spin Hall current in such a system. In contrast to some previous theoretical prediction, the spin Hall current will be suppressed completely in the dc limit. We argue that the suppression of dc spin Hall currents in such a system is actually a much natural result of the dynamic spin evolution due to the combined action of a dc external electric field and the intrinsic spin-orbit coupling.
Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)
2014-01-01
An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.
The onset of MHD nanofluid convection with Hall current effect
Yadav, Dhananjay; Lee, Jinho
2015-08-01
In this paper, the combined effects of Hall current and magnetic field on the onset of convection in an electrically conducting nanofluid layer heated from below is investigated. A physically more realistic boundary condition on the nanoparticle volume fraction is taken i.e. the nanoparticle flux is assumed to be zero rather than prescribing a nanoparticle volume fraction on the rigid impermeable boundaries. The employed model incorporates the effects of Brownian motion and thermophoresis. The resulting eigenvalue problem is solved using the Galerkin method. The results obtained during the analysis are presented graphically for an alumina-water nanofluid. It is observed that the effect of smaller values of the Hall current parameter and the nanoparticle parameters accelerate the onset of convection, while larger values of the Hall current parameter (≥ 15) have no effect on the system stabilities.
Current correlations in quantum spin Hall insulators.
Schmidt, Thomas L
2011-08-26
We consider a four-terminal setup of a two-dimensional topological insulator (quantum spin Hall insulator) with local tunneling between the upper and lower edges. The edge modes are modeled as helical Luttinger liquids and the electron-electron interactions are taken into account exactly. Using perturbation theory in the tunneling, we derive the cumulant generating function for the interedge current. We show that different possible transport channels give rise to different signatures in the current noise and current cross correlations, which could be exploited in experiments to elucidate the interplay between electron-electron interactions and the helical nature of the edge states.
Higashikawa, K., E-mail: kohei@super.ees.kyushu-u.ac.jp [Department of Electrical Engineering, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Inoue, M.; Kawaguchi, T.; Shiohara, K.; Imamura, K.; Kiss, T. [Department of Electrical Engineering, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Iijima, Y.; Kakimoto, K.; Saitoh, T. [Material Technology Laboratory, Fujikura, 1-5-1, Kiba, Koto-ku, Tokyo 135-8512 (Japan); Izumi, T. [Superconductivity Research Laboratory, International Superconductivity Technology Center, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan)
2011-11-15
Nondestructive characterization method of in-plane distribution of critical current density for coated conductors. Current distribution in a coated conductor compared with that from theoretical analysis. Relationship between local critical current density and local magnetic field. We have developed a characterization method for two-dimensional imaging of critical current density in coated conductors (CCs) based on scanning Hall-probe microscopy (SHPM). The distributions of the magnetic field around a sample were measured for several different conditions of external magnetic fields, and then were converted to those of the sheet current density which flowed to shield the external magnetic field or to trap the penetrated magnetic field. As a result, it was found that the amplitude of the sheet current density corresponded to that of critical current density almost in all the area of the sample except for the region where current direction changed. This indicates that we could obtain an in-plane distribution of the critical current density with a spatial resolution of around 100 {mu}m in non-destructive manner by this method. We believe that this measurement will be a multifunctional and comprehensive characterization method for coated conductors.
Effect of hall currents on thermal instability of dusty couple stress fluid
Aggarwal Amrish Kumar
2016-09-01
Full Text Available In this paper, effect of Hall currents on the thermal instability of couple-stress fluid permeated with dust particles has been considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For the case of stationary convection, dust particles and Hall currents are found to have destabilizing effect while couple stresses have stabilizing effect on the system. Magnetic field induced by Hall currents has stabilizing/destabilizing effect under certain conditions. It is found that due to the presence of Hall currents (hence magnetic field, oscillatory modes are produced which were non-existent in their absence.
Neumann, L.; Meier, D.; Schmalhorst, J.; Rott, K.; Reiss, G.; Meinert, M.
2016-10-01
We investigated the temperature dependence of the switching current for a perpendicularly magnetized CoFeB film deposited on a nanocrystalline tungsten film with large oxygen content: nc-W(O). The effective spin Hall angle | ΘSH eff | ≈ 0.22 is independent of temperature, whereas the switching current increases strongly at low temperature. The increase indicates that the current induced switching itself is thermally activated, in agreement with a recent theoretical prediction. The dependence of the switching current on the in-plane assist field suggests the presence of an interfacial Dzyaloshinskii-Moriya interaction with D ≈ 0.23 mJ/m2, intermediate between the Pt/CoFe and Ta/CoFe systems. We show that the nc-W(O) is insensitive to annealing, which makes this system a good choice for the integration into magnetic memory or logic devices that require a high-temperature annealing process during fabrication.
Charge and Current in the Quantum Hall Matrix Model
2003-01-01
We extend the quantum Hall matrix model to include couplings to external electric and magnetic fields. The associated current suffers from matrix ordering ambiguities even at the classical level. We calculate the linear response at low momenta -- this is unambigously defined. In particular, we obtain the correct fractional quantum Hall conductivity, and the expected density modulations in response to a weak and slowly varying magnetic field. These results show that the classical quantum Hall ...
Diagnostics Systems for Permanent Hall Thrusters Development
Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela
This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall
Dissipationless spin-Hall current contribution in the extrinsic spin-Hall effect
Yan Yu-Zhen; Li Hui-Wu; Hu Liang-Bin
2009-01-01
This paper shows that a substantial amount of dissipationless spin-Hall current contribution may exist in the extrinsic spin-Hall effect, which originates from the spin-orbit coupling induced by the applied external electric field itself that drives the extrinsic spin-Hall effect in a nonmagnetic semiconductor (or metal). By assuming that the impurity density is in a moderate range such that the total scattering potential due to all randomly distributed impurities is a smooth function of the space coordinate, it is shown that this dissipationless contribution shall be of the same orders of magnitude as the usual extrinsic contribution from spin-orbit dependent impurity scatterings (or may even be larger than the latter one). The theoretical results obtained are in good agreement with recent relevant experimental results.
Noise reduction of a Libbrecht--Hall style current driver
Seck, Christopher M; Cook, Eryn C; Odom, Brian C; Steck, Daniel A
2016-01-01
The Libbrecht--Hall circuit is a well-known, low-noise current driver for narrow-linewidth diode lasers. An important feature of the circuit is a current limit to protect the laser diode. As the current approaches the maximum limit, however, the noise in the laser current increases dramatically. This paper documents this behavior and explores simple circuit modifications to alleviate this issue.
Edge reconstructions in fractional quantum Hall systems.
Joglekar, Yogesh; Nguyen, Hoang; Murthy, Ganpathy
2003-03-01
Two dimensional electron systems exhibiting fractional quantum Hall effects are characterized by a quantized Hall conductance and a dissipationless bulk. The transport in these systems occurs only at the edges where gapless excitations are possible [1]. We present a microscopic calculation of these egde-states at filling factors ν=1/3 and ν=2/5 using the Hamiltonian theory of the fractional quantum Hall effect [2]. We find that the quantum Hall egde undergoes a reconstruction as the confining potential, produced by the background charge density, softens [3,4]. Our results have implications to the tunneling experiments into the edge of a fractional quantum Hall system [5]. 1: X. G.Wen, Phys. Rev. Lett. 64, 2206 (1990). 2: R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997). 3: C. de C. Chamon and X. G. Wen, Phys. Rev. B 49, 8227 (1994). 4: X. Wan, K. Yang, and E. H. Razayi, Phys. Rev. Lett. 88, 056802 (2002). 5: A.M.Chang et al., Phys. Rev. Lett. 86, 143 (2000).
Diaphragm Effect of Steel Space Roof Systems in Hall Structures
Mehmet FENKLİ
2015-09-01
Full Text Available Hall structures have been used widely for different purposes. They have are reinforced concrete frames and shear wall with steel space roof systems. Earthquake response of hall structures is different from building type structures. One of the most critical nodes is diaphragm effect of steel space roof on earthquake response of hall structures. Diaphragm effect is depending on lateral stiffness capacity of steel space roof system. Lateral stiffness of steel space roof system is related to modulation geometry, support conditions, selected sections and system geometry. In current paper, three representative models which are commonly used in Turkey were taken in to account for investigation. Results of numerical tests were present comparatively
Overview of NASA Iodine Hall Thruster Propulsion System Development
Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James
2016-01-01
NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.
Gerhardts, Rolf R.
2017-01-01
Recent low-temperature scanning-force-microscopy experiments on narrow Hall bars, under the conditions of the integer quantum Hall effect (IQHE) and its breakdown, have revealed an interesting position dependence of the Hall potential, which changes drastically with the applied magnetic field and the strength of the imposed current through the sample. The present paper shows, that inclusion of Joule heating into an existing self-consistent theory of screening and magneto-transport, which assumes translation invariant Hall bars with a homogeneous background charge due to doping, can explain the experimental results on the breakdown of the IQHE in the so called edge-dominated regime.
Interfacial spin Hall current in a Josephson junction with Rashba spin-orbit coupling
Yang Zhi-Hong; Yang Yong-Hong; Wang Jun
2012-01-01
We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin orbit coupling considered in one of the superconducting leads.It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface.The physical origin of this is that the Rashba spin-orbit coupling can indnce a triplet order parameter in the s-wave superconductor.The interfacial spin Hall current dependences on the system parameters are also discussed.
TOPICAL REVIEW: Spin current, spin accumulation and spin Hall effect
Saburo Takahashi and Sadamichi Maekawa
2008-01-01
Full Text Available Nonlocal spin transport in nanostructured devices with ferromagnetic injector (F1 and detector (F2 electrodes connected to a normal conductor (N is studied. We reveal how the spin transport depends on interface resistance, electrode resistance, spin polarization and spin diffusion length, and obtain the conditions for efficient spin injection, spin accumulation and spin current in the device. It is demonstrated that the spin Hall effect is caused by spin–orbit scattering in nonmagnetic conductors and gives rise to the conversion between spin and charge currents in a nonlocal device. A method of evaluating spin–orbit coupling in nonmagnetic metals is proposed.
Current Percolation in Medium with Boundaries under Quantum Hall Effect Conditions
M. U. Malakeeva
2012-01-01
Full Text Available The current percolation has been considered in the medium with boundaries under quantum Hall effect conditions. It has been shown that in that case the effective Hall conductivity has a nonzero value due to percolation of the Hall current through the finite number of singular points (in our model these are corners at the phase joints.
Control of Hall angle of Skyrmion driven by electric current
Gao-Bin, Liu; Da, Li; de Chatel, P. F.; Jian, Wang; Wei, Liu; Zhi-Dong, Zhang
2016-06-01
Skyrmions are very promising for applications in spintronics and magnetic memory. It is desired to manipulate and operate a single skyrmion. Here we report on the thermal effect on the motion of current-driven magnetic Skyrmions in magnetic metal. The results show that the magnon current induced by the thermal gradient acts on Skyrmions via magnonic spin-transfer torque, an effect of the transverse and longitudinal Skyrmions drift velocities, thus leading to the effective manipulation of the Hall angle through the ratio of thermal gradient to electric current density, which can be used as a Skyrmion valve. Project supported by the National Natural Science Foundation of China (Grant No. 51331006) and the Fund from the Chinese Academy of Sciences (Grant No. KJZD-EW-M05).
Morozko, Zoe
A Hall thruster is an electric propulsion device that produces thrust electrostatically by accelerating propellant to velocities 5 to 10 times higher than is achievable using conventional chemical thrusters. This is accomplished through the application of static, crossed electric and magnetic fields that are concentrated in a region close to the exit plane of the thruster. During operation an azimuthal plasma-electron current develops in the region where the electric and magnetic fields are concentrated. This embedded plasma current is referred to as the Hall current. The thrust produced from accelerating the propellant is transferred to a satellite or spacecraft through interaction between the Hall current and the magnetic coils used to produce the static magnetic field within the thruster. The Hall current can be calculated and the thrust can be determined in real time by measuring the magnetic field produced by the Hall current using sensors located external to the thruster. This work investigates the feasibility of placing magnetic sensors in the regions close to the exit of the thruster to measure the external magnetic field and correlate it to the Hall current. A finite element magnetic solver was used to identify several locations outside of the thrust plume and near the pole piece where the magnetic field magnitude changes by several Gauss in a background field level of ˜50 Gauss. Magnetic sensors based on the giant magnetoresistive effect were identified as acceptable with regard to sensitivity, and measurements made with these sensors in a simulated high background magnetic field environment demonstrated that changes of 0.5 Gauss could be easily measured. This work also presents the development of a thrust stand that will be useful in future work to demonstrate the overall concept. Special focus was directed to the design of the data acquisition system and in-vacuum calibration system used to make measurements with the thrust stand.
Twisted CFT and bilayer Quantum Hall systems
Cristofano, G; Naddeo, A
2003-01-01
We identify the impurity interactions of the recently proposed CFT description of a bilayer Quantum Hall system at filling nu =m/(pm+2) in Mod. Phys. Lett. A 15 (2000) 1679. Such a CFT is obtained by m-reduction on the one layer system, with a resulting pairing symmetry and presence of quasi-holes. For the m=2 case boundary terms are shown to describe an impurity interaction which allows for a localized tunnel of the Kondo problem type. The presence of an anomalous fixed point is evidenced at finite coupling which is unstable with respect to unbalance and flows to a vacuum state with no quasi-holes.
Zhu, Yunpeng; Wang, Gang; Liu, Liyuan [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Yang, Xinsheng, E-mail: xsyang@swjtu.edu.cn [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Zhao, Yong [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney 2052, NSW (Australia)
2015-12-15
Abstract : HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate. - Highlight: • A continuous Hall sensor array system has been designed. • The inhomogeneity of YBCO tape with ferromagnetic substrate can be detected by HAS. • Finite element method is an effective method for calibrating the remanent field.
Duality in the quantum Hall system
Lütken, C. A.; Ross, G. G.
1992-05-01
We suggest that a unified description of the integer and fractional phases of the quantum Hall system may be possible if the scaling diagram of transport coefficients is invariant under linear fractional (modular) transformations. In this model the hierarchy of states, as well as the observed universality of critical exponents, are consequences of a discrete SL(2,openZ) symmetry acting on the parameter space of an effective quantum-field theory. Available scaling data on the position of delocalization fixed points in the integer case and the position of mobility fixed points in the fractional case agree with the model within experimental accuracy.
Hall current effects in mean-field dynamo theory
Lingam, Manasvi
2016-01-01
The role of the Hall term on large scale dynamo action is investigated by means of the First Order Smoothing Approximation. It is shown that the standard $\\alpha$ coefficient is altered, and is zero when a specific double Beltrami state is attained, in contrast to the Alfv\\'enic state for MHD dynamos. The $\\beta$ coefficient is no longer positive definite, and thereby enables dynamo action even if $\\alpha$-quenching were to operate. The similarities and differences with the (magnetic) shear-current effect are pointed out, and a mechanism that may be potentially responsible for $\\beta < 0$ is advanced. The results are compared against previous studies, and their astrophysical relevance is also highlighted.
Dissipationless Hall Current in Dense Quark Matter in a Magnetic Field
Ferrer, E J
2016-01-01
We show the realization of axion electrodynamics within the Dual Chiral Density Wave phase of dense quark matter in the presence of a magnetic field. The system exhibits an anomalous dissipantionless Hall current perpendicular to the magnetic field and an anomalous electric charge density. Connection to topological insulators and 3D optical lattices, as well as possible implications for heavy-ion collisions and neutron stars are outlined.
Rotating ferro-nanofluid over stretching plate under the effect of hall current and joule heating
Abdel-Wahed, Mohamed S.
2017-05-01
The behavior of boundary layer over a stretching plate filled with ferromagnetic Fe3O4 nanoparticles and subjected to magnetic field with hall current, joule heating and nonlinear thermal radiation has been investigated. The modeling based on nonlinear partial differential equations due to continuity, momentum and heat equations, these equations transformed to a system of nonlinear ordinary differential equations using similarity transformation technique then solved numerically. The effect of hall current, joule heating and thermal radiation on the physical quantities such as surface shear stress and heat flux have been investigated and discussed. Moreover, the velocities and temperature profiles of the boundary layer under the influence of the presented external forces plotted and discussed.
Hall effect in strongly correlated low dimensional systems
Leon Suros, Gladys Eliana; Berthod, Christophe; Giamarchi, Thierry
2006-01-01
We investigate the Hall effect in a quasi one-dimensional system made of weakly coupled Luttinger Liquids at half filling. Using a memory function approach, we compute the Hall coefficient as a function of temperature and frequency in the presence of umklapp scattering. We find a power-law correction to the free-fermion value (band value), with an exponent depending on the Luttinger parameter $K_{\\rho}$. At high enough temperature or frequency the Hall coefficient approaches the band value.
Anomalous Suppression of the Vortex Hall Current in Underdoped YBa2Cu3Ox
许祝安; 黄有兴; 赵彦立; 张宣嘉; 焦正宽
2001-01-01
The transport properties of underdoped YBa2 Cu3 Ox (YBCO) crystals with x = 6.95, 6.80 and 6.66 were measured and the effect of the pseudogap on the Hall conductivity was studied. In the normal state, the Hall angle remains unperturbed at the crossover temperature of resistivity for the underdoped samples. An anomalous suppression of the vortex Hall current was observed near Tc and the contribution of the vortices to the Hall current is absent above 40 K in 60 K YBCO (x = 6.66).
Origin of the hysteresis in bilayer 2D systems in the quantum Hall regime
Ho, L. H.; Taskinen, L. J.; Micolich, A.P.; Hamilton, A. R.; Atkinson, P.; Ritchie, D. A.
2010-01-01
The hysteresis observed in the magnetoresistance of bilayer 2D systems in the quantum Hall regime is generally attributed to the long time constant for charge transfer between the 2D systems due to the very low conductivity of the quantum Hall bulk states. We report electrometry measurements of a bilayer 2D system that demonstrate that the hysteresis is instead due to non-equilibrium induced current. This finding is consistent with magnetometry and electrometry measurements of single 2D syste...
Covariant effective action for a Galilean invariant quantum Hall system
Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.
2016-09-01
We construct effective field theories for gapped quantum Hall systems coupled to background geometries with local Galilean invariance i.e. Bargmann spacetimes. Along with an electromagnetic field, these backgrounds include the effects of curved Galilean spacetimes, including torsion and a gravitational field, allowing us to study charge, energy, stress and mass currents within a unified framework. A shift symmetry specific to single constituent theories constraints the effective action to couple to an effective background gauge field and spin connection that is solved for by a self-consistent equation, providing a manifestly covariant extension of Hoyos and Son's improvement terms to arbitrary order in m.
HALL CURRENT EFFECTS ON FREE CONVECTION MHD FLOW PAST A POROUS PLATE
G. Ramireddy
2011-06-01
Full Text Available Heat and mass transfer along a vertical porous plate under the combined buoyancy force effects of thermal and species diffusion is investigated in the presence of a transversely applied uniform magnetic field and the Hall currents are taken into account. The governing fundamental equations on the assumption of a small magnetic Reynolds number are approximated by a system of non-linear ordinary differential equations, which are integrated by fourth-order Runge–Kutta method. Velocity, temperature and concentration are shown on graphs. The numerical values of the local shear stress, the local Nusselt number Nu and the local Sherwood number Sh are entered in tables. The effects of the magnetic parameter, Hall parameter and the relative buoyancy force effect between species and thermal diffusion on the velocity, temperature and concentration are discussed. The results are compared with those known from the literature.
Effects of Hall Current in the Driven Reconnection with Various Scales
YANG Hong-Ang; JIN Shu-Ping
2004-01-01
In the driven reconnection process with various scales, the effect of Hall current is studied numerically using a Hall magnetohydrodynamics (MHD) code derived from a multi-step implicit scheme. In the cases with Lc/di ≤ 1.0 (Lcis the half-thickness of initial current layer, di is the ion inertial length), the features of Hall MHD reconnection are shown as follows: a quasi-steady single X-line reconnection is obtained, the By component with a quadrupolar structure is generated and the maximum reconnection rate is larger than 0.11. In the cases with Lc/di ＞ 1.0, the effect of Hall current on the reconnection dynamics weakens and Hall MHD reconnection is gradually transformed into resistive MHD reconnection as Lc/di increases.
Magnesium Hall Thruster for Solar System Exploration Project
National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...
Magnesium Hall Thruster for Solar System Exploration Project
National Aeronautics and Space Administration — Busek proposes to prove the feasibility of a Mg Hall effect thruster system that would open the door for In-Situ Resource Utilization (ISRU) based solar system...
Hall conductance and topological invariant for open systems.
Shen, H Z; Wang, W; Yi, X X
2014-09-24
The Hall conductivity given by the Kubo formula is a linear response of quantum transverse transport to a weak electric field. It has been intensively studied for quantum systems without decoherence, but it is barely explored for systems subject to decoherence. In this paper, we develop a formulism to deal with this issue for topological insulators. The Hall conductance of a topological insulator coupled to an environment is derived, the derivation is based on a linear response theory developed for open systems in this paper. As an application, the Hall conductance of a two-band topological insulator and a two-dimensional lattice is presented and discussed.
Torque engineering in trilayer spin-hall system
Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Liang, Gengchiau
2016-02-01
A trilayer system with perpendicularly magnetized metallic (FMM) free-layer, heavy metal (HM) with strong spin-hall effect and ferromagnetic insulating (FMI) substrate has been proposed to significantly enhance the torque acting on FMM. Its magnitude can be engineered by configuring the magnetization of the FMI. The analytical solution has been developed for four stable magnetization states (non-magnetic and magnetization along three Cartesian axes) of FMI to comprehensively appraise the anti-damping torque on FMM and the Gain factor. It is shown that the proposed system has much larger gain and torque compared to a bilayer system (or a trilayer system with non-magnetic substrate). The performance improvement may be extremely large for system with a thin HM. Device optimization is shown to be non-trivial and various constraints have been explained. These results would enable design of more efficient spin-orbit torque memories and logic with faster switching at yet lower current.
Unconventional spin Hall effect and axial current generation in a Dirac semimetal
Okuma, Nobuyuki; Ogata, Masao
2016-04-01
We investigate electrical transport in a three-dimensional massless Dirac fermion model that describes a Dirac semimetal state realized in topological materials. We derive a set of interdependent diffusion equations with eight local degrees of freedom, including the electric charge density and the spin density, that respond to an external electric field. By solving the diffusion equations for a system with a boundary, we demonstrate that a spin Hall effect with spin accumulation occurs even though the conventional spin current operator is zero. The Noether current associated with chiral symmetry, known as the axial current, is also discussed. We demonstrate that the axial current flows near the boundary and that it is perpendicular to the electric current.
Global regularity for generalized Hall magneto-hydrodynamics systems
Renhui Wan
2015-06-01
Full Text Available In this article, we consider the tridimensional generalized Hall magneto-hydrodynamics (Hall-MHD system, with $(-\\Delta^\\alpha u$ and $(-\\Delta^\\beta b$. For $\\alpha\\ge 5/4$, $\\beta\\ge 7/4$, we obtain the global regularity of classical solutions. For $0<\\alpha<5/4$ and $1/2<\\beta<7/4$, with small data, the system also possesses global classical solutions. In addition, for the standard Hall-MHD system, $\\alpha=\\beta=1$, by adding a suitable condition, we give a positive answer to the open question in [3]. At last, we study the regularity criterions of generalized Hall-MHD system. In particular, we prove the regularity criterion in terms of horizontal gradient $\
High temperature hall effect measurement system design, measurement and analysis
Berkun, Isil
A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non
Design and development of DC high current sensor using Hall-Effect method
Dewi, Sasti Dwi Tungga; Panatarani, C.; Joni, I. Made
2016-02-01
This paper report a newly developed high DC current sensor by using a Hall effect method and also the measurement system. The Hall effect sensor receive the magnetic field generated by a current carrying conductor wire. The SS49E (Honeywell) magnetoresistive sensor was employed to sense the magnetic field from the field concentrator. The voltage received from SS49E then converted into digital by using analog to digital converter (ADC-10 bit). The digital data then processed in the microcontroller to be displayed as the value of the electric current in the LCD display. In addition the measurement was interfaced into Personal Computer (PC) using the communication protocols of RS232 which was finally displayed in real-time graphical form on the PC display. The performance test on the range ± 40 Ampere showed that the maximum relative error is 5.26%. It is concluded that the sensors and the measurement system worked properly according to the design with acceptable accuracy.
On transport in quantum Hall systems with constrictions
Lal, S.
2007-10-01
We study edge transport in a simple model of a constricted quantum Hall system with a lowered local filling factor. The current backscattered from the constriction is explained from a matching of the properties of the edge-current excitations in the constriction (ν2) and bulk (ν1) regions. We develop a hydrodynamic theory for bosonic edge modes inspired by this model, finding that a competition between two tunneling process, related by a quasiparticle-quasihole symmetry, determines the fate of the low-bias transmission conductance. A novel generalisation of the Kane-Fisher quantum impurity model is found, describing transitions from a weak-coupling theory at partial transmission to strong-coupling theories for perfect transmission and reflection as well as a new symmetry dictated fixed point. These results provide satisfactory explanations for recent experimental results at filling factors of 1/3 and 1.
COUETTE FLOW PROBLEM FOR AN UNSTEADY MHD THIRD-GRADE FLUID WITH HALL CURRENTS
Muhammad Azram
2014-12-01
Full Text Available ABSTRACT: In this work, we analyze Coutte flow problem for an unsteady mangneto-hydrodynamic (MHD third-grade fluid in the presence of a pressure gradient and Hall currnts. Existing literature on the topic shows that the effecs of Hall current on Coutte flow of an unsteady MHD third-grade fluid with a prssure gradient has not yet been investigated. The arising non-linear problem is solved by the homotopy analysis method (HAM and the convergence of the obtained complex series solution is carefully analyzed. The effects of pressure number, Hartmann number and Hall parameter on unsteady velocity are discussed via analysis of plots. ABSTRAK: Kajian dijalan untuk menganalisa masalah aliran Coutte bagi bendalir MHD gred ketiga dan arus Hall. Bagi topik ini kesan arus Hall terhadap aliran Couette dalam bendalir MHD gred ketiga tak mantap dengan kecerunan tekanan, belum pernah dikaji selidik. Masalah tak linear berbangkit diselesaikan dengan kaedah analisis homotopi (HAM dan ketumpuan solusi rangkaian kompleks dianalisa dengan teliti. Kesan nilai tekanan, nombor Hartmann dan parameter Hall terhadap halaju tak mantap diperbincangkan melalui plot yang dianalisis.KEYWORDS: Cuette; flow; hall currents; unsteady; third-grade fluid; HAM
Urvashi GUPTA
2011-01-01
Full Text Available Effect of Hall currents and suspended particles is considered on the hydromagnetic stability of a compressible, electrically conducting Walters' (Model B' elastico-viscous fluid. After linearizing the relevant hydromagnetic equations, the perturbation equations are analyzed in terms of normal modes. A dispersion relation governing the effects of visco-elasticity, magnetic field, Hall currents and suspended particles is derived. It has been found that for stationary convection, the Walters' (Model B' fluid behaves like an ordinary Newtonian fluid due to the vanishing of the visco-elastic parameter. The compressibility and magnetic field have a stabilizing effect on the system, as such their effect is to postpone the onset of thermal instability whereas Hall currents and suspended particles are found to hasten the onset of thermal instability for permissible range of values of various parameters. Also, the dispersion relation is analyzed numerically and the results shown graphically. The critical Rayleigh numbers and the wavenumbers of the associated disturbances for the onset of instability as stationary convection are obtained and the behavior of various parameters on critical thermal Rayleigh numbers has been depicted graphically. The visco-elasticity, suspended particles and Hall currents (hence magnetic field introduce oscillatory modes in the system which were non-existent in their absence.
ZHANG XianGuo; PU ZuYin; MA ZhiWei; ZHOU XuZhi
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field,the generation and distribuering the contribution of ions to the initial current,the topology of the obtained magnetic field turns to be more complex. In some cases,it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region,which are inconsistent with the Hall MHD theory with the total initial current carried by electrons. Several other interesting features are also emerged. First,motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region,the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However,in the Hall effect region,magnetic field lines are bent in -y direction,mainly controlled by the motion of electrons,then By is generated. Second,FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results,the generated FACs shift in +y direction,
The Current Distribution in Bi-2223/Ag HTS Conductors: Comparing Hall Probe and Magnetic Knife
Demencik, E.; Dhalle, M.; Kate, ten H.H.J.; Polak, M.
2006-01-01
We analyzed the current distribution in three Bi-2223/Ag tapes with different filament lay-out, comparing the results of magnetic knife and Hall probe experiments. Detailed knowledge of the current distribution can be useful for the diagnostics of HTS conductors. The lateral current distribution was
Novel optical probe for quantum Hall system
Biswajit Karmakar; Brij Mohan Arora
2006-07-01
Surface photovoltage (SPV) spectroscopy has been used for the first time to explore Landau levels of a two-dimensional electron gas (2DEG) in modulation doped InP/InGaAs/InP QW in the quantum Hall regime. The technique gives spectroscopically distinct signals from the bulk Landau levels and the edge states. Evolution of the bulk Landau levels and the edge electronic states is investigated at 2.0 K for magnetic field up to 8 T using SPV spectroscopy.
Crossover between spin swapping and Hall effect in disordered systems
Saidaoui, Hamed Ben Mohamed
2015-07-16
We theoretically study the crossover between spin Hall effect and spin swapping, a recently predicted phenomenon that consists of the interchange between the current flow and its spin polarization directions [M. B. Lifshits and M. I. Dyakonov, Phys. Rev. Lett. 103, 186601 (2009)]. Using a tight-binding model with spin-orbit coupled disorder, spin Hall effect, spin relaxation, and spin swapping are treated on equal footing. We demonstrate that spin swapping and spin Hall effect present very different dependencies as a function of the spin-orbit coupling and disorder strengths and confirm that the former exceeds the latter in the parameter range considered. Three setups are proposed for the experimental observation of the spin swapping effect.
2008-01-01
A three-dimensional (3-D) Hall MHD simulation is carried out to study the roles of initial current carrier in the topology of magnetic field, the generation and distribu- tion of field aligned currents (FACs), and the appearance of Alfvén waves. Consid- ering the contribution of ions to the initial current, the topology of the obtained magnetic field turns to be more complex. In some cases, it is found that not only the traditional By quadrupole structure but also a reversal By quadrupole structure appears in the simulation box. This can explain the observational features near the diffusion region, which are inconsistent with the Hall MHD theory with the total ini- tial current carried by electrons. Several other interesting features are also emerged. First, motions of electrons and ions are decoupled from each other in the small plasma region (Hall effect region) with a scale less than or comparable with the ion inertial length or ion skin depth di=c/ωp. In the non-Hall effect region, the global magnetic structure is shifted in +y direction under the influence of ions with initial y directional motion. However, in the Hall effect region, magnetic field lines are bent in ?y direction, mainly controlled by the motion of electrons, then By is generated. Second, FACs emerge as a result of the appearance of By. Compared with the prior Hall MHD simulation results, the generated FACs shift in +y direction, and hence the dawn-dusk symmetry is broken. Third, the Walén relation in our simulations is consistent with the Walén relation in Hall plasma, thus the presence of Alfvén wave is confirmed.
Kawamura, Minoru; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Kawasaki, Masashi; Tokura, Yoshinori
2017-07-01
The instability of the quantum anomalous Hall (QAH) effect has been studied as a function of the electric current and temperature in ferromagnetic topological insulator thin films. We find that a characteristic current for the breakdown of the QAH effect is roughly proportional to the Hall-bar width, indicating that the Hall electric field is relevant to the breakdown. We also find that electron transport is dominated by variable range hopping (VRH) at low temperatures. Combining the current and temperature dependences of the conductivity in the VRH regime, the localization length of the QAH state is evaluated to be about 5 μ m . The long localization length suggests a marginally insulating nature of the QAH state due to a large number of in-gap states.
Topological edge state with zero Hall conductivity in quasi-one dimensional system
Xiao-Shan Ye
2016-09-01
Full Text Available We explore the structure of the energy spectra of quasi-one dimensional (Q1D system subjected to spin-density-wave SDW states. The structure of the energy spectra opens energy gaps with Zeeman field. Theses gaps result in plateaus for the Quantum Hall conductivity which is associated with edge states. Different from the SSH Hofstadter model, here we show that there are a doublet of edge states contribution to zero Hall conductivity. These edge states are allowed for magnetic control of spin currents. The topological effects predicted here could be tested directly in organic conductors system.
Topological edge state with zero Hall conductivity in quasi-one dimensional system
Ye, Xiao-Shan
2016-09-01
We explore the structure of the energy spectra of quasi-one dimensional (Q1D) system subjected to spin-density-wave SDW states. The structure of the energy spectra opens energy gaps with Zeeman field. Theses gaps result in plateaus for the Quantum Hall conductivity which is associated with edge states. Different from the SSH Hofstadter model, here we show that there are a doublet of edge states contribution to zero Hall conductivity. These edge states are allowed for magnetic control of spin currents. The topological effects predicted here could be tested directly in organic conductors system.
Nakagawa, Takahiro; Akera, Hiroshi; Suzuura, Hidekatsu
2005-06-01
Spatial variations of the electron temperature are calculated in the linear-response regime in a quantum Hall system with a potential discontinuity in the current direction. It is shown that the sign of the induced deviation of the electron temperature from the lattice temperature exhibits quantum oscillations.
Geometrically induced reversion of Hall current in a topological insulator cavity
Campos, W. H.; Moura-Melo, W. A.; Fonseca, J. M.
2017-02-01
An electric charge near the surface of a topological insulator induces an image magnetic monopole. Here, we show that if the topological insulator surface has a negative curvature, namely in the case of a semispherical cavity, the induced Hall current reverses its rotation as the electric charge crosses the semisphere geometric focus. Such a reversion is shown to be equivalent of inverting the charge of the image magnetic monopole. We also discuss upon the case of a semicylindrical cavity, where Hall current reversion appears to be feasible of probing in realistic experiments.
Novel Hall sensors developed for magnetic field imaging systems
Cambel, Vladimír; Karapetrov, Goran; Novosad, Valentyn; Bartolomé, Elena; Gregušová, Dagmar; Fedor, Ján; Kúdela, Robert; Šoltýs, Ján
2007-09-01
We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat.
Collective edge modes in fractional quantum Hall systems
Nguyen, Hoang K.; Joglekar, Yogesh N.; Murthy, Ganpathy
2004-07-01
Over the past few years one of us (Murthy) in collaboration with Shankar has developed an extended Hamiltonian formalism capable of describing the ground-state and low-energy excitations in the fractional quantum Hall regime. The Hamiltonian, expressed in terms of composite fermion operators, incorporates all the nonperturbative features of the fractional Hall regime, so that conventional many-body approximations such as Hartree-Fock and time-dependent Hartree-Fock are applicable. We apply this formalism to develop a microscopic theory of the collective edge modes in fractional quantum Hall regime. We present the results for edge mode dispersions at principal filling factors ν=1/3 , 1/5 , and 2/5 for systems with unreconstructed edges. The primary advantage of the method is that one works in the thermodynamic limit right from the beginning, thus avoiding the finite-size effects which ultimately limit exact diagonalization studies.
Effects of magnetic field and Hall current to the blood velocity and LDL transfer
Abdullah, I.; Naser, N.; Talib, A. H.; Mahali, S.
2015-09-01
The magnetic field and Hall current effects have been considered on blood velocity and concentration of low-density lipoprotein (LDL). It is important to observe those effects to the flowing blood in a stenosed artery. The analysis from the obtained results may be useful to some clinical procedures, such as MRI, where the radiologists may have more information in the investigations before cardiac operations could be done. In this study, the uniform magnetic field and Hall current are applied to the Newtonian blood flow through an artery having a cosine-shaped stenosis. The governing equations are coupled with mass transfer and solved employing a finite difference Marker and Cell (MAC) method with an appropriate initial and boundary conditions. The graphical results of velocity profiles and LDL concentration are presented in this paper and the results show that the velocity increases and concentration decreases as Hall parameter increased.
Light-induced electron localization in a quantum Hall system
Arikawa, T.; Hyodo, K.; Kadoya, Y.; Tanaka, K.
2017-07-01
An insulating bulk state is a prerequisite for the protection of topological edge states. In quantum Hall systems, the thermal excitation of delocalized electrons is the main route to breaking bulk insulation. In equilibrium, the only way to achieve a clear bulk gap is to use a high-quality crystal under high magnetic field at low temperature. However, bulk conduction could also be suppressed in a system driven out of equilibrium such that localized states in the Landau levels are selectively occupied. Here we report a transient suppression of bulk conduction induced by terahertz wave excitation between the Landau levels in a GaAs quantum Hall system. Strikingly, the Hall resistivity almost reaches the quantized value at a temperature where the exact quantization is normally disrupted by thermal fluctuations. The electron localization is realized by the long-range potential fluctuations, which are a unique and inherent feature of quantum Hall systems. Our results demonstrate a new means of effecting dynamical control of topology by manipulating bulk conduction using light.
Quantum energy teleportation in a quantum Hall system
Yusa, Go; Izumida, Wataru; Hotta, Masahiro [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
Hall Effects on Unsteady Hydromagnetic Flow Past an Accelerated Porous Plate in a Rotating System
Sanatan Das
2015-01-01
Full Text Available An unsteady hydromagnetic flow of a viscous incompressible electrically conducting fluid past an accelerated porous flat plate in the presence of a uniform transverse magnetic field in a rotating system taking the Hall effects into account have been presented. An analytical solution describing the flow at large and small times after the start is obtained by the use of Laplace transform technique. The influences of the physical parameters acting on the flow are discussed in detail with the help of several graphs. It is found that interplay of Coriolis force and hydromagnetic force in the presence of Hall currents plays an important role in characterizing the flow behavior.
Spintronic Oscillator Based on Spin-Current Feedback Using the Spin Hall Effect
Bhuktare, Swapnil; Singh, Hanuman; Bose, Arnab; Tulapurkar, Ashwin. A.
2017-01-01
We propose a radio-frequency nano-oscillator based on feedback of spin current into a magnetic tunnel junction (MTJ) with an in-plane magnetized pinned layer and an out-of-plane magnetized free layer. The MTJ is connected to a "feedback" strip of a material like tungsten with a giant spin Hall effect. On passing a dc current through the MTJ, the thermal fluctuations of its free layer produce an oscillatory voltage across itself owing to the magnetoresistance effect. This oscillatory voltage drives an oscillatory current into the tungsten strip which converts this charge current into spin current via the spin Hall effect and feeds it back to the MTJ. We show that this feedback can amplify the fluctuations further and drive the free layer into periodic precessional states. We also propose a way of implementing spin-current feedback by using a nanomagnet coupled to the free layer of the MTJ by dipolar magnetic field.
MHD Flow with Hall current and Joule Heating Effects over an Exponentially Stretching Sheet
Srinivasacharya, D.; Jagadeeshwar, P.
2017-06-01
The aim of the present paper is to study the influence of Hall current and Joule heating on flow, heat and mass transfer over an exponentially stretching sheet in a viscous fluid. Using similarity transformations the governing nonlinear coupled equations are converted into ordinary differential equations. These equations are linearized using the successive linearization method and then solved using the Chebyshev pseudo spectral method. The influence of magnetic parameter, Hall parameter, suction/injection parameter and slip parameter on the physical quantities are presented graphically. The obtained results are compared with the previously published results for special cases.
Hayat, T.; Zahir, Hina; Tanveer, Anum; Alsaedi, A.
2016-06-01
The objective of present analysis is to address the mixed convective peristaltic flow of Prandtl fluid in a planar channel with compliant walls. Effects of applied magnetic field and Hall current are retained. Heat transfer in fluid flow is characterized through convective boundary conditions. Impact of first order chemical reaction together with Soret effect is examined. Problems formulation in view of long wavelength and low Reynolds number consideration is developed. The graphs are obtained numerically for the velocity, temperature, concentration and heat transfer coefficient. Results for Hall parameter and Hartman number on velocity have opposite characteristics.
Inverse Solutions for a Second-Grade Fluid for Porous Medium Channel and Hall Current Effects
Muhammad R Mohyuddin; Ehsan Ellahi Ashraf
2004-02-01
Assuming certain forms of the stream function inverse solutions of an incompressible viscoelastic fluid for a porous medium channel in the presence of Hall currents are obtained. Expressions for streamlines, velocity components and pressure fields are described in each case and are compared with the known viscous and second-grade cases.
Li, Kai; Liu, Jun; Liu, Weiqiang
2017-01-01
Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.
Meron-Pair Excitations in Bilayer Quantum Hall System
Moon, Kyungsun
Bilayer two-dimensional electron gas systems can form unusual broken symmetry states with spontaneous inter-layer phase coherence at certain filling factors. At total filling factor νT = 1, the lowest energy charged excitation of the system is theoretically suggested to be a linearly-confined meron-pair, which is topologically identical to a single skyrmion. We will review how this remarkable excitation arises and can help unravel various experimental results demonstrated in bilayer quantum Hall system. In order to detect the linearly-confined meron-pair excitation directly, we propose a gated bilayer Hall bar experiment, where the magnitude and orientation of magnetic field B‖ applied parallel to the 2D plane can be controlled. We demonstrate a strong angle-dependent transport due to the anisotropic nature of linearly-confined meron-pairs and discuss how it would be manifested in experiment.
Eight Kilowatt Hall Thruster System Characterization
2013-08-01
730-V, 55-A power supply allowed to float with respect to facility ground. A 40- F capacitor bank was typically placed in parallel with the...and 2.41, respectively. 27 Discharge current oscillations were measured with a current probe and a digital oscilloscope. In this case, a capacitor ... bank shown in Figure 4 was not located in parallel with the discharge. Figure 12 shows predator-prey28 or breathing mode29 oscillations found when
Noise and current correlations in tunnel junctions of quantum spin Hall edge states
Dolcini, Fabrizio
2015-10-01
The edge channels of two-dimensional topological systems are protected from elastic reflection and are noiseless at low temperature. Yet, noise and cross correlations can be induced when electron waves partly transmit to the opposite edge via tunneling through a constriction. In particular, in a quantum spin Hall (QSH) system tunneling occurs via both spin-preserving (p ) and spin-flipping (f ) processes, each fulfilling time-reversal symmetry. We investigate the current correlations of a four-terminal QSH setup in the presence of a tunneling region, both at equilibrium and out of equilibrium. We find that, although p and f processes do not commute and the generic current correlation depends on both, under appropriate conditions a direct detection of two types of partition noise is possible. In particular, while the spin-preserving partitioning can be probed for any arbitrary tunnel junction with a specific configuration of terminal biases, the spin-flipping partitioning can be directly detected only under suitably designed setups and conditions. We describe two setups where these conditions can be fulfilled, and both types of partitioning can be detected and controlled.
Ion Current Density Study of the NASA-300M and NASA-457Mv2 Hall Thrusters
Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani
2012-01-01
NASA Glenn Research Center is developing a Hall thruster in the 15-50 kW range to support future NASA missions. As a part of the process, the performance and plume characteristics of the NASA-300M, a 20-kW Hall thruster, and the NASA-457Mv2, a 50-kW Hall thruster, were evaluated. The collected data will be used to improve the fidelity of the JPL modeling tool, Hall2De, which will then be used to aid the design of the 15-50 kW Hall thruster. This paper gives a detailed overview of the Faraday probe portion of the plume characterization study. The Faraday probe in this study is a near-field probe swept radially at many axial locations downstream of the thruster exit plane. Threshold-based integration limits with threshold values of 1/e, 1/e(sup 2), and 1/e(sup 3) times the local peak current density are tried for the purpose of ion current integration and divergence angle calculation. The NASA-300M is operated at 7 conditions and the NASA-457Mv2 at 14 conditions. These conditions span discharge voltages of 200 to 500 V and discharge power of 10 to 50 kW. The ion current density profiles of the near-field plume originating from the discharge channel are discovered to strongly resemble Gaussian distributions. A novel analysis approach involving a form of ray tracing is used to determine an effective point of origin for the near-field plume. In the process of performing this analysis, definitive evidence is discovered that showed the near-field plume is bending towards the thruster centerline.
Fast-to-Alfv\\'en Mode Conversion Mediated by Hall Current. I. Cold Plasma Model
Cally, Paul S
2015-01-01
The photospheric temperature minimum in the Sun and solar-like stars is very weakly ionized, with ionization fraction $f$ as low as $10^{-4}$. In galactic star forming regions, $f$ can be $10^{-10}$ or lower. Under these circumstances, the Hall current can couple low frequency Alfv\\'en and magneto\\-acoustic waves via the dimensionless Hall parameter $\\epsilon=\\omega/\\Omega_\\text{i}f$, where $\\omega$ is the wave frequency and $\\Omega_\\text{i}$ is the mean ion gyrofrequency. This is analysed in the context of a cold (zero-$\\beta$) plasma, and in less detail for a warm plasma. It is found that Hall coupling preferentially occurs where the wave vector is nearly field-aligned. In these circumstances, Hall coupling in theory produces a continual oscillation between fast and Alfv\\'en modes as the wave passes through the weakly ionized region. At low frequencies (mHz), characteristic of solar and stellar normal modes, $\\epsilon$ is probably too small for more than a fraction of one oscillation to occur. On the other ...
All-electrical generation of spin-polarized currents in quantum spin Hall insulators
Tao, L. L.; Cheung, K. T.; Zhang, L.; Wang, J.
2017-03-01
The control and generation of spin-polarized current (SPC) without magnetic materials and an external magnetic field is a big challenge in spintronics and normally requires a spin-flip mechanism. In this Rapid Communication, we show the theoretical discovery of all-electrical generation of SPC without relying on spin-flip spin-orbit coupling (SOC). We find that the SPC can be produced as long as an energy-dependent phase difference between the spin up and down electrons can be established. We verify this through quantum transport calculations on a gated stanene zigzag nanoribbon, which is a quantum spin Hall (QSH) insulator. Our calculations indicate that the transient current as well as ac conductance are significantly spin polarized, which results from the genetic phase difference between spin up and down electrons after traversing the system. Our results are robust against edge imperfections and generally valid for other QSH insulators, such as silicene and germanene, etc. These findings establish a different route for generating SPCs by purely electrical means and open the door for interesting applications of semiconductor spintronics.
Mission and System Advantages of Iodine Hall Thrusters
Dankanich, John W.; Szabo, James; Pote, Bruce; Oleson, Steve; Kamhawi, Hani
2014-01-01
The exploration of alternative propellants for Hall thrusters continues to be of interest to the community. Investments have been made and continue for the maturation of iodine based Hall thrusters. Iodine testing has shown comparable performance to xenon. However, iodine has a higher storage density and resulting higher ?V capability for volume constrained systems. Iodine's vapor pressure is low enough to permit low-pressure storage, but high enough to minimize potential adverse spacecraft-thruster interactions. The low vapor pressure also means that iodine does not condense inside the thruster at ordinary operating temperatures. Iodine is safe, it stores at sub-atmospheric pressure, and can be stored unregulated for years on end; whether on the ground or on orbit. Iodine fills a niche for both low power (10kW) electric propulsion regimes. A range of missions have been evaluated for direct comparison of Iodine and Xenon options. The results show advantages of iodine Hall systems for both small and microsatellite application and for very large exploration class missions.
Description of plasma focus current sheath as the Turner relaxed state of a Hall magnetofluid
Auluck, S. K. H.
2009-12-01
The central mystery of plasma focus research is the two orders-of-magnitude-higher-than-thermal fusion reaction rate and the fact that both the space-resolved neutron spectra and space-resolved reaction proton spectra show features which can be ascribed only to a rotational motion of the center-of-mass of the reacting deuteron population. It has been suggested earlier [S. K. H. Auluck, IEEE Trans. Plasma Sci. 25, 37 (1997)] that this and other experimental observations can be consistently explained in terms of a hypothesis involving rotation of the current carrying plasma annulus behind the imploding gas-dynamic shock. Such rotation (more generally, mass flow) is an in-built feature of relaxed state of a two-fluid plasma [R. N. Sudan, Phys. Rev. Lett. 42, 1277 (1979)]. Relaxation in the "Hall magnetofluid" approximation, in which the generalized Ohm's law includes the Hall effect term and the magnetic convection term but omits the contributions to the electric field from resistive dissipation, electron pressure gradient, thermoelectric effect, electron inertia, etc., has been extensively studied by many authors. In the present paper, Turner's [IEEE Trans. Plasma Sci. PS-14, 849 (1986)] degenerate solution for the relaxed state of the Hall magnetohydrodynamic plasma has been adapted to the case of an infinitely long annular current carrying plasma, a tractable idealization of the current sheath of a plasma focus. The resulting model is consistent with experimental values of ion kinetic energy and observation of predominantly radially directed neutron emission in good shots.
Optimal Geometry of CMOS Voltage-Mode and Current-Mode Vertical Magnetic Hall Sensors
2015-01-01
Four different geometries of a vertical Hall sensor\\ud are presented and studied in this paper. The current spinning\\ud technique compensates for the offset and the sensors, driven in\\ud current-mode, provide a differential signal current for a possible\\ud capacitive integration over a defined time-slot. The sensors have\\ud been fabricated using a 6-metal 0.18-μm CMOS technology and\\ud fully experimentally tested. The optimal solution will be further\\ud investigated for bendable electronics. ...
Hazem A Attia; W Abbas; Mostafa A M Abdeen; Ahmed A M Said
2015-02-01
The aim of the present paper is to study the unsteady magneto-hydrodynamic viscous Couette flow with heat transfer in a Darcy porous medium between two infinite parallel porous plates considering Hall effect, and temperature dependent physical properties under constant pressure gradient. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below while the fluid is flowing through a porous medium that is assumed to obey Darcy’s law. A numerical solution for the governing nonlinear partial differential equations coupled with set of momentum equations and the energy equation including the viscous and Joule dissipations is adopted. The effect of the porosity of the medium, the Hall current and the temperature dependent viscosity and thermal conductivity on both the velocity and temperature distributions are investigated. It is found that the porosity numberMhas a marked effect on decreasing the velocity distribution (owing to a simultaneous increase in Darcy porous drag). Also the temperature T is decreased considerably with increasing porosity number.With increasing Hall current parameter m, the velocity component u (x-direction) is considerably increased, whereas velocity component w (z-direction) is reduced. Temperatures are decreased in the early stages of flow but effectively increased in the steady state with increasing m.
Hall current sensor IC with integrated Co-based alloy thin film magnetic concentrator
Palumbo, V.; Marchesi, M.; Chiesi, V.; Paci, D.; Iuliano, P.; Toia, F.; Casoli, F.; Ranzieri, P.; Albertini, F.; Morelli, M.
2013-01-01
This work deals with a cobalt-based alloy thin film magnetic concentrator (MC) which is fully integrated on a Hall sensor integrated circuit (IC) developed in the 0.35 µm Bipolar CMOS DMOS (BCD) technology on 8" silicon wafer. An amorphous magnetic film with a thickness of 1µm, coercitive field Hc<10A/m and saturation magnetization (µ0MS) of 0.45T has been obtained with a sputtering process. The Hall sensor IC has shown sensitivity to magnetic field at room temperature of 240V/AT without concentrator and 2550V/AT with concentrator, gaining a factor of 10.5. A current sensor demonstrator has been realized showing linear response in the range -50 to 50A.
Hall current sensor IC with integrated Co-based alloy thin film magnetic concentrator
Albertini F.
2013-01-01
Full Text Available This work deals with a cobalt-based alloy thin film magnetic concentrator (MC which is fully integrated on a Hall sensor integrated circuit (IC developed in the 0.35 µm Bipolar CMOS DMOS (BCD technology on 8” silicon wafer. An amorphous magnetic film with a thickness of 1µm, coercitive field Hc<10A/m and saturation magnetization (µ0MS of 0.45T has been obtained with a sputtering process. The Hall sensor IC has shown sensitivity to magnetic field at room temperature of 240V/AT without concentrator and 2550V/AT with concentrator, gaining a factor of 10.5. A current sensor demonstrator has been realized showing linear response in the range -50 to 50A.
Hemant Poonia
2015-06-01
Full Text Available In this paper the effects of Hall current on MHD free convection flow in a vertical rotating channel filled with porous medium have been studied. A uniform magnetic field is applied in the direction normal to the plates. The entire system rotates about an axis normal to the planes of the plates with uniform angular velocity ' . The temperature of one of the plates varies periodically and the temperature difference of the plates is high enough to induce radiative heat transfer. The effects of various parameters on the velocity and temperature field are shown graphically. Also the results on Skin Frication and Nusselt Number are shown in tables.
Realization and optimization of bus bar current transducers based on Hall effect sensors
Blagojević, Marjan; Jovanović, Uglješa; Jovanović, Igor; Mančić, Dragan; Popović, Radivoje S.
2016-06-01
In this paper the realization and optimization of two coreless open-loop bus bar current transducers based on a Hall effect sensor are presented. Two types of bus bar are evaluated: flat rectangular and rectangular with a restrictive region in the middle. Both realized transducers are capable of measuring AC and DC currents up to 300 A and 10 kHz frequency with nonlinearity less than 0.3% in the entire range. Several methods for resolving issues with the skin effect and stray magnetic fields are presented along with the experimental test results. Some of the presented methods are novel and have never been evaluated.
Low-Mass, Low-Power Hall Thruster System
Pote, Bruce
2015-01-01
NASA is developing an electric propulsion system capable of producing 20 mN thrust with input power up to 1,000 W and specific impulse ranging from 1,600 to 3,500 seconds. The key technical challenge is the target mass of 1 kg for the thruster and 2 kg for the power processing unit (PPU). In Phase I, Busek Company, Inc., developed an overall subsystem design for the thruster/cathode, PPU, and xenon feed system. This project demonstrated the feasibility of a low-mass power processing architecture that replaces four of the DC-DC converters of a typical PPU with a single multifunctional converter and a low-mass Hall thruster design employing permanent magnets. In Phase II, the team developed an engineering prototype model of its low-mass BHT-600 Hall thruster system, with the primary focus on the low-mass PPU and thruster. The goal was to develop an electric propulsion thruster with the appropriate specific impulse and propellant throughput to enable radioisotope electric propulsion (REP). This is important because REP offers the benefits of nuclear electric propulsion without the need for an excessively large spacecraft and power system.
Crossed Andreev effects in two-dimensional quantum Hall systems
Hou, Zhe; Xing, Yanxia; Guo, Ai-Min; Sun, Qing-Feng
2016-08-01
We study the crossed Andreev effects in two-dimensional conductor/superconductor hybrid systems under a perpendicular magnetic field. Both a graphene/superconductor hybrid system and an electron gas/superconductor one are considered. It is shown that an exclusive crossed Andreev reflection, with other Andreev reflections being completely suppressed, is obtained in a high magnetic field because of the chiral edge states in the quantum Hall regime. Importantly, the exclusive crossed Andreev reflection not only holds for a wide range of system parameters, e.g., the size of system, the width of central superconductor, and the quality of coupling between the graphene and the superconductor, but also is very robust against disorder. When the applied bias is within the superconductor gap, a robust Cooper-pair splitting process with high-efficiency can be realized in this system.
Superpersistent Currents in Dirac Fermion Systems
2017-03-06
TITLE AND SUBTITLE Superpersistent Currents in Dirac Fermion Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-15-1-0151 5c. PROGRAM ELEMENT...currents in 2D Dirac material systems and pertinent phenomena in the emerging field of relativistic quantum nonlinear dynamics and chaos. Systematic...anomalous optical transitions, and spin control in topological insulator quantum dots, (4) the discovery of nonlinear dynamics induced anomalous Hall
Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters
Kamhawi, Hani; Van Noord, Jonathan
2012-01-01
NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.
Abiru, K.; Honda, Y.; Inoue, M. [Department of Electrical and Electronic Systems Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Kiss, T., E-mail: kiss@sc.kyushu-u.ac.j [Department of Electrical and Electronic Systems Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Iijima, Y.; Kakimoto, K.; Saitoh, T. [Fujikura Ltd., Tokyo 135-8512 (Japan); Nakao, K.; Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, Tokyo 135-0062 (Japan)
2009-10-15
We have visualized non-uniform current flow in RE123 coated conductors by using a scanning Hall-probe magnetic microscopy (SHPM). Newly developed SHPM system allows us to measure two-dimensional magnetic field distribution with high spatial resolution in micro-meter scale. Corresponding current density distribution can be obtained from the magnetic field image by solving inverted Biot-Savart's law. One of the most important advantages of the present system is to visualize the current density distribution in practical high transport current and also in wide scanning area. For example, the system has current leads with large capacity up to 500 A, and the operating distance can be 15 cm by 15 cm with a micro-meter step distance. Using the SHPM system, we have successfully visualized current density distributions in the coated conductor, and clarified different kinds of non-uniform current flow. Those insights are very useful to identify local defects as well as non-uniform tape quality. These results indicate that the SHPM system is a powerful diagnostic tool not only to observe spatial inhomogeneities of transport property but also to understand their reason in practical coated conductors.
Iodine Hall Thruster Propellant Feed System for a CubeSat
Polzin, Kurt A.
2014-01-01
There has been significant work recently in the development of iodine-fed Hall thrusters for in-space propulsion applications.1 The use of iodine as a propellant provides many advantages over present xenon-gas-fed Hall thruster systems. Iodine is a solid at ambient temperature (no pressurization required) and has no special handling requirements, making it safe for secondary flight opportunities. It has exceptionally high ?I sp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing system level advantages over mid-term high power electric propulsion options. Iodine provides thrust and efficiency that are comparable to xenonfed Hall thrusters while operating in the same discharge current and voltage regime, making it possible to leverage the development of flight-qualified xenon Hall thruster power processing units for the iodine application. Work at MSFC is presently aimed at designing, integrating, and demonstrating a flight-like iodine feed system suitable for the Hall thruster application. This effort represents a significant advancement in state-of-the-art. Though Iodine thrusters have demonstrated high performance with mission enabling potential, a flight-like feed system has never been demonstrated and iodine compatible components do not yet exist. Presented in this paper is the end-to-end integrated feed system demonstration. The system includes a propellant tank with active feedback-control heating, fill and drain interfaces, latching and proportional flow control valves (PFCV), flow resistors, and flight-like CubeSat power and control electronics. Hardware is integrated into a CubeSat-sized structure, calibrated and tested under vacuum conditions, and operated under under hot-fire conditions using a Busek BHT-200 thruster designed for iodine. Performance of the system is evaluated thorugh accurate measurement of thrust and a calibrated of mass flow rate measurement, which is a function of
Beam Loss Ion Chamber System Upgrade for Experimental Halls
Dotson, Danny W
2005-01-01
The Beam loss Ion Chamber System (BLICS) was developed to protect Jefferson Labs transport lines, targets and beam dumps from a catastrophic "burn through." Range changes and testing was accomplished manually requiring the experiment to be shut down. The new upgraded system is based around an "off the shelf" Programmable Logic Controller located in a single controll box supporting up to ten individual detectors. All functions that formerly required an entry into the experimental hall and manual adjustment can be accomplished from the Machine Control Center (MCC). A further innovation was the addition of a High Voltage "Brick" at the detector location. A single cable supplies the required voltage for the Brick and a return line for the ion chamber signal. The read back screens display range, trip point, and accumulated dose for each location. The new system is very cost effective and significantly reduces the amount of lost experimental time.
Sarritzu, Valerio; Sestu, Nicola; Marongiu, Daniela; Chang, Xueqing; Masi, Sofia; Rizzo, Aurora; Colella, Silvia; Quochi, Francesco; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni
2017-03-01
Metal-halide perovskite solar cells rival the best inorganic solar cells in power conversion efficiency, providing the outlook for efficient, cheap devices. In order for the technology to mature and approach the ideal Shockley-Queissier efficiency, experimental tools are needed to diagnose what processes limit performances, beyond simply measuring electrical characteristics often affected by parasitic effects and difficult to interpret. Here we study the microscopic origin of recombination currents causing photoconversion losses with an all-optical technique, measuring the electron-hole free energy as a function of the exciting light intensity. Our method allows assessing the ideality factor and breaks down the electron-hole recombination current into bulk defect and interface contributions, providing an estimate of the limit photoconversion efficiency, without any real charge current flowing through the device. We identify Shockley-Read-Hall recombination as the main decay process in insulated perovskite layers and quantify the additional performance degradation due to interface recombination in heterojunctions.
Chapman, S. C.; Kiyani, K. H.; Meyrand, R.; Sahraoui, F.; Osman, K.
2014-12-01
The distinct quantitative nature of the intermittency seen on fluid and kinetic scales in solar wind plasma turbulence is now well documented from an observational point of view. The classic high-order statistical signature rapidly transitions to a monoscaling signature as one crosses to sub-ion scales. How this scaling depends upon plasma conditions, and the underlying physical implications have yet to be fully explored. We present a study focusing on 28 intervals of solar wind magnetic field data from the Cluster spacecraft sampling a broad range of plasma parameters. We show how the scaling properties vary between these intervals and more importantly, if there are any correlations between the scaling exponents and the plasma parameter variations. We supplement this observational study with a computational investigation where we study spatial samples from an 1024^3 EMHD simulation -- a model for sub-ion scale magnetic field dynamics consisting solely of the Hall effect. From this, we show that the Hall-term can generate a topological change from current sheets at fluid scales to current filaments at sub-ion scales. We conjecture that this fundamental change in the coherent structures comprising the turbulence is also responsible for the change in the intermittency that we see from our observations; and which could also be responsible for dissipation at these scales.
Spin-Hall-Effect-Assisted Electroresistance in Antiferromagnets via 105 A/cm2 dc Current
Han, Jiahao; Wang, Yuyan; Pan, Feng; Song, Cheng
2016-08-01
Antiferromagnet (AFM) spintronics with reduced electrical current is greatly expected to process information with high integration and low power consumption. In Pt/FeMn and Ta/FeMn hybrids, we observe significant resistance variation (up to 7% of the total resistance) manipulated by 105 A/cm2 dc current. We have excluded the contribution of isotropic structural effects, and confirmed the critical role of the spin Hall injection from Pt (or Ta) to FeMn. This electrical current-manipulated resistance (i.e. electroresistance) is proposed to be attributed to the spin-Hall-effect-induced spin-orbit torque in FeMn. Similar results have also been detected in plain IrMn films, where the charge current generates spin current via the spin Hall effect with the existence of Ir atoms. All the measurements are free from external magnetic fields and ferromagnets. Our findings present an interesting step towards high-efficiency spintronic devices.
Experimental probes of emergent symmetries in the quantum Hall system
Lutken, C A
2011-01-01
Experiments studying renormalization group flows in the quantum Hall system provide significant evidence for the existence of an emergent holomorphic modular symmetry Gamma(0)(2). We briefly review this evidence and show that, for the lowest temperatures, the experimental determination of the position of the quantum critical points agrees to the parts per mille level with the prediction from Gamma(0)(2). We present evidence that experiments giving results that deviate substantially from the symmetry predictions are not cold enough to be in the quantum critical domain. We show how the modular symmetry extended by a non-holomorphic particle hole duality leads to an extensive web of dualities related to those in plateau insulator transitions, and we derive a formula relating dual pairs (B, B(d)) of magnetic field strengths across any transition. The experimental data obtained for the transition studied so far is in excellent agreement with the duality relations following from this emergent symmetry, and rule out...
4pi periodic Josephson current through a Quantum Spin-Hall edge
Dahlhaus, Jan; Beenakker, Carlo; Pikulin, Dmitry; Hyart, Timo; Schomerus, Henning
2014-03-01
The helical edge state of a quantum spin-Hall insulator can carry a supercurrent in equilibrium between two superconducting electrodes (separation L, coherence length ?). We calculate the maximum (critical) current Ic that can flow without dissipation along a single edge, going beyond the short-junction restriction L?? of earlier work, and find a dependence on the fermion parity of the ground state when L becomes larger than ?. Fermion-parity conservation doubles the critical current in the low-temperature, long-junction limit, while for a short junction Ic is the same with or without parity constraints. This provides a phase-insensitive, dc signature of the 4?-periodic Josephson effect.
Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.
2015-11-01
Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation.
Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S., E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore)
2015-11-09
Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation.
Lotz, Mikkel R.; Boll, Mads; Østerberg, Frederik W.; Hansen, Ole; Petersen, Dirch H.
2016-10-01
We have studied the behavior of micro four-point probe (M4PP) measurements on two-dimensional (2D) sheets composed of grains of varying size and grain boundary resistivity by Monte Carlo based finite element (FE) modelling. The 2D sheet of the FE model was constructed using Voronoi tessellation to emulate a polycrystalline sheet, and a square sample was cut from the tessellated surface. Four-point resistances and Hall effect signals were calculated for a probe placed in the center of the square sample as a function of grain density n and grain boundary resistivity ρ GB . We find that the dual configuration sheet resistance as well as the resistance measured between opposing edges of the square sample have a simple unique dependency on the dimension-less parameter √{ n } ρ GB G 0 , where G0 is the sheet conductance of a grain. The value of the ratio R A / R B between resistances measured in A- and B-configurations depends on the dimensionality of the current transport (i.e., one- or two-dimensional). At low grain density or low grain boundary resistivity, two-dimensional transport is observed. In contrast, at moderate grain density and high grain resistivity, one-dimensional transport is seen. Ultimately, this affects how measurements on defective systems should be interpreted in order to extract relevant sample parameters. The Hall effect response in all M4PP configurations was only significant for moderate grain densities and fairly large grain boundary resistivity.
MHD Flow with Hall Current and Ion-Slip Effects due to a Stretching Porous Disk
Faiza M. N. El-Fayez
2013-01-01
Full Text Available A partially ionized fluid is driven by a stretching disk, in the presence of a magnetic field that is strong enough to produce significant hall current and ion-slip effects. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the disk surface. The two-term expansions of the radial and azimuthal surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions, even at moderate magnetic fields. The effect of mass transfer (suction or injection through the disk is also considered.
Lotz, Mikkel Rønne; Boll, Mads; Østerberg, Frederik Westergaard
2016-01-01
We have studied the behavior of micro four-point probe (M4PP) measurements on two-dimensional (2D) sheets composed of grains of varying size and grain boundary resistivity by Monte Carlo based finite element (FE) modelling. The 2D sheet of the FE model was constructed using Voronoi tessellation......-configurations depends on the dimensionality of the current transport (i.e., one- or two-dimensional). At low grain density or low grain boundary resistivity, two-dimensional transport is observed. In contrast, at moderate grain density and high grain resistivity, one-dimensional transport is seen. Ultimately......, this affects how measurements on defective systems should be interpreted in order to extract relevant sample parameters. The Hall effect response in all M4PP configurations was only significant for moderate grain densities and fairly large grain boundary resistivity....
S. S. Motsa
2012-01-01
Full Text Available The problem of magnetomicropolar fluid flow, heat, and mass transfer with suction through a porous medium is numerically analyzed. The problem was studied under the effects of chemical reaction, Hall, ion-slip currents, and variable thermal diffusivity. The governing fundamental conservation equations of mass, momentum, angular momentum, energy, and concentration are converted into a system of nonlinear ordinary differential equations by means of similarity transformation. The resulting system of coupled nonlinear ordinary differential equations is the then solved using a fairly new technique known as the successive linearization method together with the Chebyshev collocation method. A parametric study illustrating the influence of the magnetic strength, Hall and ion-slip currents, Eckert number, chemical reaction and permeability on the Nusselt and Sherwood numbers, skin friction coefficients, velocities, temperature, and concentration was carried out.
Sarritzu, Valerio; Sestu, Nicola; Marongiu, Daniela; Chang, Xueqing; Masi, Sofia; Rizzo, Aurora; Colella, Silvia; Quochi, Francesco; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni
2017-01-01
Metal-halide perovskite solar cells rival the best inorganic solar cells in power conversion efficiency, providing the outlook for efficient, cheap devices. In order for the technology to mature and approach the ideal Shockley-Queissier efficiency, experimental tools are needed to diagnose what processes limit performances, beyond simply measuring electrical characteristics often affected by parasitic effects and difficult to interpret. Here we study the microscopic origin of recombination currents causing photoconversion losses with an all-optical technique, measuring the electron-hole free energy as a function of the exciting light intensity. Our method allows assessing the ideality factor and breaks down the electron-hole recombination current into bulk defect and interface contributions, providing an estimate of the limit photoconversion efficiency, without any real charge current flowing through the device. We identify Shockley-Read-Hall recombination as the main decay process in insulated perovskite layers and quantify the additional performance degradation due to interface recombination in heterojunctions. PMID:28317883
Multi-types of Skyrmions in SU(N) Quantum Hall System
LIU Xin; DUAN Yi-Shi; ZHANG Peng-Ming
2005-01-01
The skyrmions in SU(N) quantum Hall (QH) system are discussed. By analyzing the gauge field structure and the topological properties of this QH system it is pointed out that in the SU( N) QH system there can exist ( N - 1)types of skyrmion structures, instead of only one type of skyrmions. In this paper, by means of the Abelian projections according to the (N - 1) Cartan subalgebra local bases, we obtain the (N - 1) U(1) electromagnetic field tensors in the SU(N) gauge field of the QH system, and then derive (N - 1) types of skyrmion structures from these U(1) sub-field tensors. Furthermore, in light of the φ-mapping topological current method, the topological charges and the motion of these skyrmions are also discussed.
Long Life 600W Hall Thruster System for Radioisotope Electric Propulsion Project
National Aeronautics and Space Administration — Radioisotope Electric Propulsion (REP) offers the prospect for a variety of new science missions by enabling use of Hall Effect propulsion in the outer solar system,...
Design of a Solar Water Heating System for Kuti Hall, University of ...
Design of a Solar Water Heating System for Kuti Hall, University of Ibadan, Ibadan. ... an energy audit to determine daily heating load and energy eliminated by Solar ... of solar collector and Cold water temperature calculated from weather data ...
Mukherjee, Mina; Westphal, Alexander
2015-01-01
The case of Hall vs. Florida tested Florida's so called "bright line rule" in determining intellectual disability in capital cases. The Supreme Court Decision reflects a more general trend from categorical to dimensional approaches in psychiatric diagnostic systems.
Ion properties in a Hall current thruster operating at high voltage
Garrigues, L.
2016-04-01
Operation of a 5 kW-class Hall current Thruster for various voltages from 400 V to 800 V and a xenon mass flow rate of 6 mg s-1 have been studied with a quasi-neutral hybrid model. In this model, anomalous electron transport is fitted from ion mean velocity measurements, and energy losses due to electron-wall interactions are used as a tuned parameter to match expected electron temperature strength for same class of thruster. Doubly charged ions production has been taken into account and detailed collisions between heavy species included. As the electron temperature increases, the main channel of Xe2+ ion production becomes stepwise ionization of Xe+ ions. For an applied voltage of 800 V, the mass utilization efficiency is in the range of 0.8-1.1, and the current fraction of doubly charged ions varies between 0.1 and 0.2. Results show that the region of ion production of each species is located at the same place inside the thruster channel. Because collision processes mean free path is larger than the acceleration region, each type of ions experiences same potential drop, and ion energy distributions of singly and doubly charged are very similar.
Stochastic Hall-Magneto-hydrodynamics System in Three and Two and a Half Dimensions
Yamazaki, Kazuo
2017-01-01
We introduce the stochastic Hall-magneto-hydrodynamics (Hall-MHD) system in three and two and a half dimensions with infinite-dimensional multiplicative noise, white in time, and prove the global existence of a martingale solution via a stochastic Galerkin approximation and applications of Prokhorov's, Skorokhod's and martingale representation theorems, as well as the pressure term through de Rham's theorem adapted to processes. The Hall term represents mathematically a very singular nonlinear term, unprecedented in the previous work. The results extend many others on the deterministic Hall-MHD and stochastic MHD systems and Navier-Stokes equations. In contrast to the stochastic MHD system, the path-wise uniqueness in the two and a half dimensional case is an open problem.
Hall Conductivity in a Quasi-Two-Dimensional Disordered Electron System
YANG Yong-Hong; WANG Yong-Gang; LIU Mei
2002-01-01
By making use of the diagrammatic techniques in perturbation theory,we have investigated the Hall effect in a quasi-two-dimensional disordered electron system.In the weakly localized regime,the analytical expression for quantum correction to Hall conductivity has been obtained using the Kubo formalism and quasiclassical approximation.The relevant dimensional crossover behavior from three dimensions to two dimensions with decreasing the interlayer hopping energy is discussed.The quantum interference effect is shown to have a vanishing correction t,o the Hall coefficient.
Nonlinear response of the quantum Hall system to a strong electromagnetic radiation
Avetissian, H. K.; Mkrtchian, G. F.
2016-12-01
We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility.
P, Vineeth Mohanan; Ganesh, K. R.; Kumar, P. S. Anil
2017-09-01
A magnetic field free current-induced deterministic switching is demonstrated in a perpendicularly magnetized all-metallic Pt/Co/Pt thin film system with a small tilt in anisotropy axis. We realized this in devices where the ultrathin Co layer was grown using an oblique angle sputter deposition technique that had resulted in a small tilt of magnetic anisotropy from the film normal. By performing out-of-plane magnetization hysteresis measurements under bias magnetic field applied along various in-plane directions the tilt angle was estimated to be around 3 .3∘ (±0 .3∘ ). A deterministic current-induced magnetization switching could be achieved when the in-plane current was applied perpendicular to the anisotropy tilt axis, but the switching was stochastic when the current was applied in the direction of the tilt (in the tilt plane). By preparing Pt/Co/Pt stacks with unequal top and bottom Pt thickness, sufficient spin-orbit torque (SOT) could be applied to switch the magnetization of the Co layer at current densities as low as 1.5 ×107 A/cm2. The switching phase diagram (SPD) constructed by plotting the critical current density versus applied in-plane magnetic field (HxIB) confirms spin Hall effect based SOT mechanism to be responsible for the magnetization switching. The asymmetry observed in the SPD (about HxIB=0 ) is in agreement with the macrospin simulations and it suggests that the tilt in the magnetic anisotropy from the film normal makes the switching deterministic even without an in-plane magnetic field bias.
Oluwole D. Makinde
2015-11-01
Full Text Available In this paper, we employed both first and second laws of thermodynamics to analyze the flow and thermal decomposition in a variable viscosity Couette flow of a conducting fluid in a rotating system under the combined influence of magnetic field and Hall current. The non-linear governing differential equations are obtained and solved numerically using shooting method coupled with fourth order Runge–Kutta–Fehlberg integration technique. Numerical results obtained for velocities and temperature profiles are utilized to determine the entropy generation rate, skin fictions, Nusselt number and the Bejan number. By plotting the graphs of various values of thermophysical parameters, the features of the flow characteristics are analyzed in detail. It is found that fluid rotation increases the dominant effect of heat transfer irreversibility at the upper moving plate region while the entropy production is more at the lower fixed plate region.
Hall Effect Gyrators and Circulators
Viola, Giovanni; DiVincenzo, David P.
2014-04-01
The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.
Influence of magnetic field and Hall currents on blood flow through a stenotic artery
Kh. S. Mekheimer; M.A. El Kot
2008-01-01
A micropolar model for blood simulating magnetohydrodynamic flow through a horizontally nonsymmetric but vertically symmetric artery with a mild stenosis is pre- sented. To estimate the effect of the stenosis shape, a suitable geometry has been consid- ered such that the horizontal shape of the stenosis can easily be changed just by varying a parameter referred to as the shape parameter. Flow parameters, such as velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region, and its magnitude at the maximum height of the stenosis (stenosis throat), have been computed for different shape parameters, the Hartmann number and the Hall parameter. This shows that the resistance to flow decreases with the increasing values of the parameter determining the stenosis shape and the Hall parameter, while it increases with the increasing Hartmann number. The wall shear stress and the shearing stress on the wall at the maximum height of the stenosis possess an inverse characteristic to the resistance to flow with respect to any given value of the Hartmann number and the Hall parameter. Finally, the effect of the Hartmann number and the Hall parameter on the horizontal velocity is examined.
NONEQUILIBRIUM DISTRIBUTION OF EDGE AND BULK CURRENT IN A QUANTUM HALL CONDUCTOR
VANSON, PC; DEVRIES, FW; KLAPWIJK, TM
1991-01-01
A quantitative model is presented that accounts for the experimental observation that four-terminal resistances of a high-mobility quantum Hall conductor cannot be related directly to a single resistivity tensor. The key ingredient is that the highest (partly occupied) Landau level is completely dec
FEA Analysis of AP-0 Target Hall Collection Lens (Current Design)
Hurh, P.G.; Tang, Z.
2001-06-22
The AP-0 Target Hall Collection Lens is a pulsed device which focuses anti-protons just downstream of the Target. Since the angles at which the anti-protons depart the Target can be quite large, a very high focusing strength is required to maximize anti-proton capture into the downstream Debuncher Ring. The current design of the Collection Lens was designed to operate with a focusing gradient of 1,000 T/m. However, multiple failures of early devices resulted in lowering the normal operating gradient to about 750 T/m. At this gradient, the Lens design fares much better, lasting several million pulses, but ultimately still fails. A Finite Element Analysis (FEA) has been performed on this Collection Lens design to help determine the cause and/or nature of the failures. The Collection Lens magnetic field is created by passing high current through a central conductor cylinder. A uniform current distribution through the cylinder will create a tangential or azimuthal magnetic field that varies linearly from zero at the center of the cylinder to a maximum at the outer surface of the cylinder. Anti-proton particles passing through this cylinder (along the longitudinal direction) will see an inward focusing kick back toward the center of the cylinder proportional to the magnetic field strength. For the current Lens design a gradient of 1,000 T/m requires a current of about 580,000 amps. Since the DC power and cooling requirements would be prohibitive, the Lens is operated in a pulsed mode. Each pulse is half sine wave in shape with a pulse duration of about 350 microseconds. Because of the skin effect, the most uniform current density actually occurs about two-thirds of the way through the pulse. This means that the maximum current of the pulse is actually higher than that required in the DC case (about 670,000 amps). Since the beam must pass through the central conductor cylinder it must be made of a conducting material that is also very 'transparent' to the beam
Lao, M.; Hecher, J.; Sieger, M.; Pahlke, P.; Bauer, M.; Hühne, R.; Eisterer, M.
2017-02-01
The local distribution of the critical current density, J c, of coated conductors and YBa2Cu3O{}7-δ (YBCO) films on single crystalline substrate was investigated by scanning Hall probe microscopy. The high spatial resolution of the measurements enabled an assessment of dependence of the local J c on the local magnetic induction, B, and electric field, E. The derived J c(B)-dependence agreed well with the global J c obtained from magnetization loops and provided values of J c at very low fields, which are inaccessible to magnetization and transport measurements. The anisotropic current flow within the film plane was investigated in YBCO films on miscut SrTiO3 substrates and a GdBa2Cu3O{}7-δ film on an MgO buffer layer prepared by inclined substrate deposition on a Hastelloy substrate. The c-axis currents calculated from the Hall maps were significantly larger than previously reported data obtained from direct transport measurements. The planar current anisotropy at 77 K was found to be highly influenced by the microstructure which can either deteriorate the current flowing across the ab-planes or cause enhanced pinning and increase the critical current flowing parallel to the ab-planes.
Study of the Hall effect in two different strongly correlated fermion systems
León Surós, Gladys E.
2008-01-01
We investigate the Hall effect in two different theoretical models of strongly correlated systems: a system made of weakly coupled Luttinger liquids, in the presence of umklapp scattering, and the 2D triangular lattice, with nearest-neighbor hopping and a local Hubbard interaction. In the first model we use a memory function approach to compute the Hall coefficient as a function of temperature and frequency in the presence of umklapp scattering. We find a power-law correction to the free-ferm...
Cooling the largest events hall in the Benelux with an ATES system
Bakema, G. [IF Technology bv, Arnheim (Netherlands); Hengel, P.P.M. van den [BV Technical Management, Amersfoort (Netherlands)
1994-12-31
The cold storage to cool the new `De Prins van Oranje` hall of the Royal Netherlands Industries Fair in Utrecht, was started up early 1994. This system, with a cooling capacity of 2600 kW is the largest cold storage in an aquifer in the Netherlands. In the winter of 1994, this system stored 160 MWh cold energy. (orig.)
Quantum Hall effect in black phosphorus two-dimensional electron system.
Li, Likai; Yang, Fangyuan; Ye, Guo Jun; Zhang, Zuocheng; Zhu, Zengwei; Lou, Wenkai; Zhou, Xiaoying; Li, Liang; Watanabe, Kenji; Taniguchi, Takashi; Chang, Kai; Wang, Yayu; Chen, Xian Hui; Zhang, Yuanbo
2016-07-01
The development of new, high-quality functional materials has been at the forefront of condensed-matter research. The recent advent of two-dimensional black phosphorus has greatly enriched the materials base of two-dimensional electron systems (2DESs). Here, we report the observation of the integer quantum Hall effect in a high-quality black phosphorus 2DES. The high quality is achieved by embedding the black phosphorus 2DES in a van der Waals heterostructure close to a graphite back gate; the graphite gate screens the impurity potential in the 2DES and brings the carrier Hall mobility up to 6,000 cm(2) V(-1) s(-1). The exceptional mobility enabled us to observe the quantum Hall effect and to gain important information on the energetics of the spin-split Landau levels in black phosphorus. Our results set the stage for further study on quantum transport and device application in the ultrahigh mobility regime.
Emergent particle-hole symmetry in spinful bosonic quantum Hall systems
Geraedts, S. D.; Repellin, C.; Wang, Chong; Mong, Roger S. K.; Senthil, T.; Regnault, N.
2017-08-01
When a fermionic quantum Hall system is projected into the lowest Landau level, there is an exact particle-hole symmetry between filling fractions ν and 1 -ν . We investigate whether a similar symmetry can emerge in bosonic quantum Hall states, where it would connect states at filling fractions ν and 2 -ν . We begin by showing that the particle-hole conjugate to a composite fermion "Jain state" is another Jain state, obtained by reverse flux attachment. We show how information such as the shift and the edge theory can be obtained for states which are particle-hole conjugates. Using the techniques of exact diagonalization and infinite density matrix renormalization group, we study a system of two-component (i.e., spinful) bosons, interacting via a δ -function potential. We first obtain real-space entanglement spectra for the bosonic integer quantum Hall effect at ν =2 , which plays the role of a filled Landau level for the bosonic system. We then show that at ν =4 /3 the system is described by a Jain state which is the particle-hole conjugate of the Halperin (221) state at ν =2 /3 . We show a similar relationship between nonsinglet states at ν =1 /2 and 3 /2 . We also study the case of ν =1 , providing unambiguous evidence that the ground state is a composite Fermi liquid. Taken together our results demonstrate that there is indeed an emergent particle-hole symmetry in bosonic quantum Hall systems.
Mook, Alexander; Henk, Jürgen; Mertig, Ingrid
2016-11-01
We demonstrate theoretically that atomistic spin dynamics simulations of topological magnon insulators (TMIs) provide access to the magnon-mediated transport of both spin and heat. The TMIs, modeled by kagome ferromagnets with Dzyaloshinskii-Moriya interaction, exhibit nonzero transverse-current correlation functions from which conductivities are derived for the entire family of magnon Hall effects. Both longitudinal and transverse conductivities are studied in dependence on temperature and on an external magnetic field. A comparison between theoretical and experimental results for Cu(1,3-benzenedicarboxylate), a recently discovered TMI, is drawn.
Evaluation of a reverberation enhancement system installed in a small multi purpose hall
Gade, Anders Christian
1997-01-01
After design and installation of a reverberation enhancement system in new 400 seat multi purpose hall in Vejle, Denmark. room acoustic measurements and listening tests were performed in order to reveal the objective and subjective performance and limits of such a powerful tool for altering ''roo...
Simulation model for a silicon Hall sensor in an absolute digital position detection system
Pronk, F.A.; Groenland, J.P.J.; Lammerink, T.S.J.
1986-01-01
The performance of a digital position detection system with silicon Hall sensors for the detection of coded absolute position data has been investigated. The position information is fixed in one single track as a maximum length sequence of bits by means of longitudinal saturation recording in a hard
Ezawa, Z F; Hasebe, K
2003-01-01
Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of $N$-component electrons at the integer filling factor $\
Ziman, Timothy; Gu, Bo; Maekawa, Sadamichi
2017-01-01
The spin Hall effect is affected by the Coulomb interaction as well as spin-spin correlations in metals. Here we examine the enhancement in the effect caused by resonant skew scattering induced by electron correlations. For single-impurity scattering, local Coulomb correlations may significantly change the observed spin Hall angle. There may be additional effects because of the special atomic environment close to a surface — extra degeneracies compared to the bulk, enhanced correlations that move the relative d- or f-levels, and interference effects coming from the lower local dimension. Our results may explain the very large spin Hall angle observed in CuBi alloys. We discuss the impact on the spin Hall effect from cooperative effects, firstly in an itinerant ferromagnet where there is an anomaly near the Curie temperature originating from high-order spin fluctuations. The second case considered is a metallic spin glass, where exchange via slowly fluctuating magnetic moments may lead to the precession of an injected spin current. This decreases the net spin-charge conversion from skew scattering at temperatures below a value three or four times the freezing temperature.
Ye, Jinwu
2005-03-01
We study the interlayer coherent incompressible phase in trilayer quantum Hall systems (TLQH) at total filling factor νT=1 from three approaches: Mutual composite fermion (MCF), composite boson (CB), and wave function approach. Just like in bilayer quantum Hall system, CB approach is superior than MCF approach in studying TLQH with broken symmetry. The Hall and Hall drag resistivities are found to be quantized at h/e2 . Two neutral gapless modes with linear dispersion relations are identified and the ratio of the two velocities is close to 3 . The excitation spectra are classified into two classes, charge neutral bosonic two-body bound states and charge ±1 fermionic three-body bound states. In general, there are two two-body Kosterlize-Thouless (KT) transition temperatures and one three-body KT transition. The charge ±1 three-body fermionic bound states may be the main dissipation source of transport measurements. The broken symmetry in terms of SU (3) algebra is studied. The structure of excitons and their flowing patterns are given. The coupling between the two Goldstone modes will lead to the broadening in the zero-bias peak in the interlayer correlated tunnelings of the TLQH. Several interesting features unique to TLQH are outlined. Limitations of the CB approach are also pointed out.
Abdel-Wahed, Mohamed; Akl, Mohamed
2016-09-01
Analysis of the MHD Nanofluid boundary layer flow over a rotating disk with a constant velocity in the presence of hall current and non-linear thermal radiation has been covered in this work. The variation of viscosity and thermal conductivity of the fluid due to temperature and nanoparticles concentration and size is considered. The problem described by a system of P.D.E that converted to a system of ordinary differential equations by the similarity transformation technique, the obtained system solved analytically using Optimal Homotopy Asymptotic Method (OHAM) with association of mathematica program. The velocity profiles and temperature profiles of the boundary layer over the disk are plotted and investigated in details. Moreover, the surface shear stress, rate of heat transfer explained in details.
Compact High Current Rare-Earth Emitter Hollow Cathode for Hall Effect Thrusters
Hofer, Richard R. (Inventor); Goebel, Dan M. (Inventor); Watkins, Ronnie M. (Inventor)
2012-01-01
An apparatus and method for achieving an efficient central cathode in a Hall effect thruster is disclosed. A hollow insert disposed inside the end of a hollow conductive cathode comprises a rare-earth element and energized to emit electrons from an inner surface. The cathode employs an end opening having an area at least as large as the internal cross sectional area of the rare earth insert to enhance throughput from the cathode end. In addition, the cathode employs a high aspect ratio geometry based on the cathode length to width which mitigates heat transfer from the end. A gas flow through the cathode and insert may be impinged by the emitted electrons to yield a plasma. One or more optional auxiliary gas feeds may also be employed between the cathode and keeper wall and external to the keeper near the outlet.
Fujimoto, Keizo, E-mail: keizo.fujimoto@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Ohsawa, Mitaka, Tokyo 181-8588 (Japan); Takamoto, Makoto [Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo 114-0015 (Japan)
2016-01-15
We have investigated the ion and electron dynamics generating the Hall current in the reconnection exhaust far downstream of the x-line where the exhaust width is much larger than the ion gyro-radius. A large-scale particle-in-cell simulation shows that most ions are accelerated through the Speiser-type motion in the current sheet formed at the center of the exhaust. The transition layers formed at the exhaust boundary are not identified as slow mode shocks. (The layers satisfy mostly the Rankine-Hugoniot conditions for a slow mode shock, but the energy conversion hardly occurs there.) We find that the ion drift velocity is modified around the layer due to a finite Larmor radius effect. As a result, the ions are accumulated in the downstream side of the layer, so that collimated ion jets are generated. The electrons experience two steps of acceleration in the exhaust. The first is a parallel acceleration due to the out-of-plane electric field E{sub y} which has a parallel component in most area of the exhaust. The second is a perpendicular acceleration due to E{sub y} at the center of the current sheet and the motion is converted to the parallel direction. Because of the second acceleration, the electron outflow velocity becomes almost uniform over the exhaust. The difference in the outflow profile between the ions and electrons results in the Hall current in large area of the exhaust. The present study demonstrates the importance of the kinetic treatments for collisionless magnetic reconnection even far downstream from the x-line.
A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors
Schlageter, Vincent; Drljaca, Predrag; Popovic, Radivoje S.; KuČERA, Pavel
A tracking system with five degrees of freedom based on a 2D-array of 16 Hall sensors and a permanent magnet is presented in this paper. The sensitivity of the Hall sensors is increased by integrated micro- and external macro-flux-concentrators. Detection distance larger than 20cm (during one hour without calibration) is achieved using a magnet of 0.2cm3. This corresponds to a resolution of the sensors of 0.05µTrms. The position and orientation of the marker is displayed in real time at least 20 times per second. The sensing system is small enough to be hand-held and can be used in a normal environment. This presented tracking system has been successfully applied to follow a small swallowed magnet through the entire human digestive tube. This approach is extremely promising as a new non-invasive diagnostic technique in gastro-enterology.
B.I. Olajuwon
2014-12-01
Full Text Available Heat and mass transfer effects on unsteady flow of a viscoelastic micropolar fluid over an infinite moving permeable plate in a saturated porous medium in the presence of a transverse magnetic field with Hall effect and thermal radiation are studied. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using perturbation technique to obtain the expressions for velocity, microrotation, temperature and concentration. With the help of graphs, the effects of magnetic field parameter M, thermal radiation parameter Nr, Hall current parameter m, K, viscoelastic parameter a, and slip parameter h on the velocity, microrotation, temperature and concentration fields within the boundary layer are discussed. The result showed that increase in Nr and m increases translational velocity across the boundary layer while (a decreases translational velocity in the vicinity of the plate but the reverse happens when away from the plate. As h increases the translational velocity across the boundary layer increases. The higher the values of Nr, the higher the micro-rotational velocity effect while m lowers it. Also the effects n, a, m, Nr, Pr and Sc on the skin friction coefficient, Nusselt number and Sherwood numbers are presented numerically in tabular form. The result also revealed that increase in n reduces the skin friction coefficient. Pr enhances the rate of heat transfer while Sc enhances the rate of mass transfer.
Iodine Hall Thruster Propellant Feed System for a CubeSat
Polzin, Kurt A.; Peeples, Steven
2014-01-01
The components required for an in-space iodine vapor-fed Hall effect thruster propellant management system are described. A laboratory apparatus was assembled and used to produce iodine vapor and control the flow through the application of heating to the propellant reservoir and through the adjustment of the opening in a proportional flow control valve. Changing of the reservoir temperature altered the flowrate on the timescale of minutes while adjustment of the proportional flow control valve changed the flowrate immediately without an overshoot or undershoot in flowrate with the requisite recovery time associated with thermal control systems. The flowrates tested spanned a range from 0-1.5 mg/s of iodine, which is sufficient to feed a 200-W Hall effect thruster.
Stripe and bubble phases in quantum Hall systems
Fogler, MM
2001-01-01
We present a brief survey of the charge density wave phases of a two-dimensional electron liquid in moderate to weak magnetic fields where several higher Landau levels are occupied. The review follows the chronological development of this new and emerging field: from the ideas that led to the original theoretical prediction of the novel ground states, to their dramatic experimental discovery, to the currently pursued directions and open questions.
G.S. Seth
2014-06-01
Full Text Available An investigation of the effects of Hall current and rotation on unsteady hydromagnetic natural convection flow with heat and mass transfer of an electrically conducting, viscous, incompressible and optically thick radiating fluid past an impulsively moving vertical plate embedded in a fluid saturated porous medium, when temperature of the plate has a temporarily ramped profile, is carried out. Exact solution of the governing equations is obtained in closed form by Laplace transform technique. Exact solution is also obtained in case of unit Schmidt number. Expressions for skin friction due to primary and secondary flows and Nusselt number are derived for both ramped temperature and isothermal plates. Expression for Sherwood number is also derived. The numerical values of primary and secondary fluid velocities, fluid temperature and species concentration are displayed graphically whereas those of skin friction are presented in tabular form for various values of pertinent flow parameters.
Low Mass Low Power Hall Thruster System Project
National Aeronautics and Space Administration — In NASA is seeking an electric propulsion system capable of producing 20mN thrust with input power up to 1000W and specific impulse ranging from 1600-3500 seconds....
Low Mass Low Power Hall Thruster System Project
National Aeronautics and Space Administration — NASA is seeking electric propulsion systems capable of producing up to 20mN thrust, input power up to 1000W and specific impulse ranging from 1600-3500 seconds. The...
Bang, Do
2016-05-23
We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.
Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav
2014-01-01
The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.
Theory of Magnetic Response and Hall Effect in Bulk Rashba System
Ando, Tsuneya; Suzuura, Hidekatsu
2017-01-01
The magnetic susceptibility and transport quantities are calculated in a three-dimensional system with a giant Rashba spin-orbit interaction for scatterers with short-range potential in a self-consistent Born approximation. The susceptibility exhibits a sharp peak toward the diamagnetic direction at the band crossing, being broadened depending on disorder. No special feature appears in the diagonal conductivity in both in-plane and vertical directions. The orbital Hall conductivity due to cyclotron motion is considerably reduced from -(nec)-1 in the low-energy region and exhibits a small step-like jump at the band crossing, becoming almost the same as -(nec)-1, where n is the carrier concentration. The Hall conductivity due to the spin-Zeeman energy has a sharp peak at the band crossing, but is significantly reduced due to inter-band scattering.
Self-contained wireless Hall current sensor%自全式无线霍尔电流传感器
玉梅; 孙登峰; 李平; 张俊; 张自强
2014-01-01
The main monitoring parameters of power grid operation and electricity safety include current and temperature of the power line,which needs to be monitored extensively along the grid and electrical equipment.Wireless sensor is the first selection for the moni-toring.However,the application of wireless sensor is limited as it requires battery maintenance or external power supply.This paper presents a self-contained wireless Hall current sensor that implements signal sensing and energy harvesting on the same magnetic circuit. The Hall element is used to detect current;the coupling winding is used to harvest magnetic energy as the power supply for the sensing and wireless data transmission.The sensor is placed embracing the monitored cord in operation,and can realize permanent wireless cur-rent sensing without battery maintenance or external power supply.The experiment results show that the sensor exhibits a sensitivity of 15.10 mV/A,and the current detection and wireless data transmission for the current from 2 A to 100 A are achieved.%输/供电线的电流、温度等是电网运行和用电安全监测的重要参数，需要沿电网和伴随用电设备广泛监测。无线传感器是监测的首选，但是无线传感器的电池维护或者外接电源，限制了无线传感器应用。设计了一种自全式无线霍尔电流传感器，在同一磁路上实现传感和能量采集，利用霍尔元件传感电流，用线圈采集磁场能量为传感及数据无线发射提供电源。使用时传感器只需扣在被监测电线外包层，无需外接电源并免除电池维护，就可以持久实现无线传感。实验表明：该无线传感器的灵敏度达15．10 mV/A，可自主实现2～100 A的电流检测和无线数据传输。
Current limiter circuit system
Witcher, Joseph Brandon; Bredemann, Michael V.
2017-09-05
An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.
Dev Krishan Singh
2015-01-01
Full Text Available An analysis of an unsteady MHD convective flow of an electrically conducting viscous incompressible fluid through porous medium filled in a vertical porous channel is carried out. The two porous plates are subjected to a constant injection and suction velocity as shown in Fig. 1a, b. The temperature of the plate at y*= + 9 2 is assumed to be varying in space and time as T*(y*, z*, t* = T1 (y* + (T2 - T1COS (πz*d -ω*t*. A magnetic field of uniform strength is applied perpendicular to the plates of the channel. The temperature difference between the plates is high enough to induce the heat due to radiation. It is also assumed that the conducting fluid is opticallythin gray gas, absorbing/ emitting radiation and non-scattering. The Hall current effects have also been taken into account. Exact solution of the partial differential equations governing the flow under the prescribed boundary conditions has been obtained for the velocity and the temperature fields. The primary and secondary velocities, temperature and the skin-friction and Nusselt number for the rate of heat transfer in terms of their amplitudes and phase angles have been shown graphically to observe the effects of suction parameter λ, Grashof number Gr, Hartmann number M, Hall parameter H, the permeability of the porous medium K, Prandtl number Pr, radiation parameter N, pressure gradient A and the frequency of oscillation ω. The final results are then discussed in detail in the last section of the paper with the help of figures.
Electronic transport in two-dimensional systems in the quantum hall regime
Tarquini, Vinicio
The integer and the fractional quantum Hall effects are essential to the exploration of quantum matters characterized by topological phases. A quantum Hall system hosts one-dimensional (1D) chiral edge channels that manifest zero magnetoresistance, dissipationless due to the broken time reversal symmetry, and quantized Hall resistance vhe2 with v being the topological invariant (or Chern number). The 1-1 correspondence between the conducting gapless edge channels to the gapped incompressible bulk states is a defining character of a topological insulator (TI). Understanding this correspondence in real systems, especially the origin of its robustness (in terms of the limit of breakdown), is important both fundamentally and practically (i.e. in relation to spintronics). However, the breakdown mechanism, especially in light of the edge-bulk correlation, is still an open question. We adopt GaAs two-dimensional (2D) high-mobility hole systems confined in a 20 nm wide (100)-GaAs quantum wells and have perform transport measurement for a range of charge densities between 4 and 5 x 1010 cm -2 with a carrier mobility of 2 - 4 x 106 cm 2/V·s down to millikelvin temperatures. Systematic characterization of the 2D systems through Shubnikov-de Haas (SdH) oscillations yields an effective mass between 0.30 and 0.50me, in good agreement with the cyclotron resonance results. We then modify a regular Hall bar system into a unique anti-Hall bar geometry that provides an extra set of independent chiral edge channels without altering the topological invariant. We perform systematic measurement of quantum oscillations via chiral edges while simultaneously probing the bulk dynamics, through measuring across independent edges, in respond to the edge excitations. The edge-bulk correspondence reveals a non-equilibrium dynamical development of the incompressible bulk states that leads to a novel asymmetrical 1-0 Hall potential distribution. Moreover, probing the breakdown via inner and outer
Scaling of the anomalous Hall current in Fe100−x(SiO2)x films
Xu, W. J.
2011-05-20
To study the origin of the anomalous Hall effect, Fe100−x(SiO2)x granular films with a volume fraction of SiO2 (0 ⩽ x ⩽ 40.51) were fabricated using cosputtering. Hall and longitudinal resistivities were measured in the temperature range of 5–350 K with magnetic fields up to 5 T. As x increased from 0 to 40.51, the anomalous Hall resistivity and longitudinal resistivity increased by about four and three orders in magnitude, respectively. Analysis of the results revealed that the normalized anomalous Hall conductivity is a constant for all of the samples, which may suggest a scattering-independent anomalous Hall conductivity in Fe.
Spin-Hall effect in two-dimensional electron systems with Rashba spin-orbit coupling and disorder.
Sheng, L; Sheng, D N; Ting, C S
2005-01-14
Using the four-terminal Landauer-Bu ttiker formula and Green's function approach, we calculate numerically the spin-Hall conductance in a two-dimensional junction system with the Rashba spin-orbit (SO) coupling and disorder. We find that the spin-Hall conductance can be much greater or smaller than the universal value e/8pi, depending on the magnitude of the SO coupling, the electron Fermi energy, and the disorder strength. The spin-Hall conductance does not vanish with increasing sample size for a wide range of disorder strength. Our numerical calculation reveals that a nonzero SO coupling can induce electron delocalization for disorder strength smaller than a critical value, and the nonvanishing spin-Hall effect appears mainly in the metallic regime.
S. Savin
2006-01-01
cyclotron one, in extended turbulent zones are a promising alternative in place of the usual parallel electric fields invoked in the macro-reconnection scenarios. Further cascading towards electron scales is supposed to be due to unstable parallel electron currents, which neutralize the potential differences, either resulted from the ion- burst interactions or from the inertial drift. The complicated MP shape suggests its systematic velocity departure from the local normal towards the average one, inferring domination for the MP movement of the non-local processes over the small-scale local ones. The measured Poynting vector indicates energy transmission from the MP into the upstream region with the waves triggering impulsive downstream flows, providing an input into the local flow balance and the outward movement of the MP. Equating the transverse electric field inside the MP TCS by the Hall term in the Ohm's law implies a separation of the different plasmas primarily by the Hall current, driven by the respective part of the TCS surface charge. The Hall dynamics of TCS can operate either without or as a part of a macro-reconnection with the magnetic field annihilation.
Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z
2016-08-01
Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.
Sun, Dali; van Schooten, Kipp J.; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z.
2016-08-01
Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule’s surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.
Source and Extraction for Simultaneous Four-hall Beam Delivery System at CEBAF
Kazimi, Reza; Wang, Haipeng; Spata, Mike F.; Hansknecht, John C.
2013-06-01
A new design for simultaneous delivery of the electron beam to all four 12 GeV CEBAF experimental halls* requires a new 750 MHz RF separator system in the 5th pass extraction region, a 250 MHz repetition rate for its beams, and addition of a fourth laser at the photo-cathode gun. The proposed system works in tandem with the existing 500 MHz RF separators and beam repetition rate on the lower passes. The new 5th pass RF separators will have the same basic design but modified to run at 750 MHz. The change to the beam repetition rate will be at the photo-cathode gun through an innovative upgrade of the seed laser driver system using electro-optic modulators. The new laser system also allows addition of the fourth laser. The new RF separators, the new laser system and other hardware changes required to implement the Four-Hall operation delivery system will be discussed in this paper.
Coupled Dzyaloshinskii walls and their current-induced dynamics by the spin Hall effect
Martínez, Eduardo, E-mail: edumartinez@usal.es [Dpto. de Fisica Aplicada, Universidad de Salamanca, Plaza de los Caídos s/n, E-37008 Salamanca (Spain); Alejos, Óscar [Dpto. de Electricidad y Electrónica, Universidad de Valladolid, Paseo de Belén, 7, E-47011 Valladolid (Spain)
2014-07-14
The nucleation of domain walls in ultrathin ferromagnetic/heavy-metal bilayers is studied by means of micromagnetic simulations. In the presence of interfacial Dzyaloshinskii-Moriya interaction, the nucleated walls naturally adopt a homochiral configuration with internal magnetization pointing antiparallely. The interaction between these walls was analyzed and described in terms of a classical dipolar force between the magnetic moments of the walls, which couples their dynamics. Additionally, the current-induced motion of two homochiral walls in the presence of longitudinal fields was also studied by means of a simple one-dimensional model and micromagnetic modeling, considering both one free-defect strip and another one with random edge roughness. It is evidenced that in the presence of pinning due to edge roughness, the in-plane longitudinal field introduces an asymmetry in the current-induced depinning, in agreement with recent experimental results.
Masutomi, Ryuichi, E-mail: masutomi@phys.s.u-tokyo.ac.jp; Okamoto, Tohru [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2015-06-22
An adsorbate-induced quantum Hall system at the cleaved InSb surfaces is investigated in magnetic fields up to 14 T using low-temperature scanning tunneling microscopy and spectroscopy combined with transport measurements. We show that an enhanced Zeeman splitting in the Shubnikov-de Haas oscillations is explained by an exchange enhancement of spin splitting and potential disorder, both of which are obtained from the spatially averaged density of states (DOS). Moreover, the Altshuler–Aronov correlation gap is observed in the spatially averaged DOS at 0 T.
Time-periodic and stationary solutions to the compressible Hall-magnetohydrodynamic system
Cheng, Ming
2017-04-01
We are concerned with the 3-D compressible Hall-magnetohydrodynamic system with a time-periodic external force in a periodic domain, and establish the existence of a strong time-periodic solution under some smallness and symmetry assumptions by adapting a new approach. The basic idea of the proof is the following. First, we prove the existence of a time-periodic solution to the linearized system by applying the Tychonoff fixed point theorem combined with the energy method and the decay estimates. From the details of the proof, we see that the initial data of the time-periodic solution to the linearized system lies in some convex hull. Then, we construct a set-value function, such that the fixed point of this function is a time-periodic solution of the compressible Hall-magnetohydrodynamic system. The existence of the fixed point is obtained by the Kakutani fixed point theorem. Moreover, we establish the uniqueness of the time-periodic solution and the existence of the stationary solution.
He, S.; Tang, Z.; Yang, S.
2015-09-01
Baoguo Temple is located half way up Lingshan Mountain in Northern Ningbo, Zhejiang Province, China. The main hall of Baoguo Temple is Song dynasty wooden structure. As the oldest wooden architecture in Jiangnan, China, it is a national major protective historical relic. In 2005, Baoguo Temple Ancient Architecture Museum was set up and opens to the outside world. From 2007, to be able to protect it more effectively and foreseeably, Baoguo Temple Ancient Architecture Museum began to build information collecting systems towards historical architectures using modern information technology. After comparing correlated studies both at home and abroad, we found that: heritage protection abroad started earlier than us, and it has already established thorough protection system, relevant protection mechanism, and also issued relevant protection laws and regulations. The technology which was utilized in protection abroad was not only limited in RS, GIS, GPS, VR, but also included many emerging technology such as using a computational fluid dynamics model to simulate the condition of temperature and humidity. The main body of this paper are going to talk about four parts: the first one is existing information system. In this part, we'll introduce the information collecting system, which was preliminarily built in 2007 in Baoguo Temple Ancient Architecture Museum. Using the modern digital computer information technology, researchers can gradually check and acquire the information of the material of relics, the condition of the structure stress and the natural environmental information, which may probably affect the cultural architecture. And this part may be divided into information collection, information management and exhibition. The second part is update scheme design of original information collecting equipment and technology. Original information collecting system of microenvironment is relatively independent and data haven't been included in the management of the system
O. Anwar Bég
2016-03-01
Full Text Available A theoretical and numerical study is presented to analyze the nonlinear, non-isothermal, magnetohydrodynamic (MHD free convection boundary layer flow and heat transfer in a non-Darcian, isotropic, homogenous porous medium, in the presence of Hall currents, Ionslip currents, viscous heating and Joule heating. A power-law variation is used for the temperature at the wall. The governing nonlinear coupled partial differential equations for momentum conservation in the x and z directions and heat conservation, in the flow regime are transformed from an (x, y, z coordinate system to a (ξ,η coordinate system in terms of dimensionless x-direction velocity (∂F/∂η and z-direction velocity (G and dimensionless temperature function (H under appropriate boundary conditions. Both Darcian and Forchheimer porous impedances are incorporated in both momentum equations. Computations are also provided for the variation of the x and z direction shear stress components and also local Nusselt number. Excellent correlation is achieved with a Nakamura tridiagonal finite difference scheme (NTM. The model finds applications in magnetic materials processing, MHD power generators and purification of crude oils.
Kim, Bom Soo; Shapere, Alfred D.
2016-09-01
We derive a generalized set of Ward identities that captures the effects of topological charge on Hall transport. The Ward identities follow from the (2 +1 )-dimensional momentum algebra, which includes a central extension proportional to the topological charge density. In the presence of topological objects like Skyrmions, we observe that the central term leads to a direct relation between the thermal Hall conductivity and the topological charge density. We extend this relation to incorporate the effects of a magnetic field and an electric current. The topological charge density produces a distinct signature in the electric Hall conductivity, which is identified in existing experimental data and yields further novel predictions. For insulating materials with translation invariance, the Hall viscosity can be directly determined from the Skyrmion density and the thermal Hall conductivity to be measured as a function of momentum.
1999-04-01
The Balanced Scorecard Management System (BSMS) at Wilford Hall Medical Center (WHMC) is a strategic management and measurement system that...prompted the study to a look at the statement of the problem, the author explores the history and use of the balanced scorecard concept in civilian...was an Intranet-based, database automated, Balanced Scorecard Management System.
High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions
Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex
2013-01-01
NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.
The phonon Hall effect: theory and application
Zhang Lifa; Wang Jiansheng; Li Baowen [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542 (Singapore); Ren Jie [NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456 (Singapore)
2011-08-03
We present a systematic theory of the phonon Hall effect in a ballistic crystal lattice system, and apply it on the kagome lattice which is ubiquitous in various real materials. By proposing a proper second quantization for the non-Hermitian in the polarization-vector space, we obtain a new heat current density operator with two separate contributions: the normal velocity responsible for the longitudinal phonon transport, and the anomalous velocity manifesting itself as the Hall effect of transverse phonon transport. As exemplified in kagome lattices, our theory predicts that the direction of Hall conductivity at low magnetic field can be reversed by tuning the temperatures, which we hope can be verified by experiments in the future. Three phonon-Hall-conductivity singularities induced by phonon-band-topology change are discovered as well, which correspond to the degeneracies at three different symmetric center points, {Gamma}, K, X, in the wavevector space of the kagome lattice.
Anomalous Hall effect of heavy holes in Ⅲ-Ⅴ semiconductor quantum wells
Wang Zhi-Gang; Zhang Ping
2007-01-01
The anomalous Hall effect of heavy holes in semiconductor quantum wells is studied in the intrinsic transport regime, where the Berry curvature governs the Hall current properties. Based on the first-order perturbation of wave function the expression of the Hall conductivity the same as that from the semiclassical equation of motion of the Bloch particles is derived. The dependence of Hall conductivity on the system parameters is shown. The amplitude of Hall conductivity is found to be balanced by a competition between the Zeeman splitting and the spin-orbit splitting.
HLS bunch current measurement system
无
2011-01-01
Bunch current is an important parameter for studying the injection fill-pattern in the storage ring and the instability threshold of the bunch, and the bunch current monitor also is an indispensable tool for the top-up injection. A bunch current measurement (BCM) system has been developed to meet the needs of the upgrade project of Hefei Light Source (HLS). This paper presents the layout of the BCM system. The system based on a high-speed digital oscilloscope can be used to measure the bunch current and synchronous phase shift. To obtain the absolute value of bunch-by-bunch current, the calibration coefficient is measured and analyzed. Error analysis shows that the RMS of bunch current is less than 0.01 mA when bunch current is about 5 mA, which can meet project requirement.
Polzin, Kurt A.
2016-01-01
CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload, providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cu cm and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high (Delta)v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. 3, 4 Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high ?Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature (< 100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. Just as importantly, the current-voltage discharge characteristics of low power iodine-fed and xenon-fed thrusters are remarkably similar, potentially reducing development and qualifications costs by making it possible to use an already-qualified xenon-HET PPU in an iodine-fed system. Finally, a cold surface can be installed in a vacuum test chamber on which expended iodine propellant can deposit. In addition, the temperature doesn't have to be extremely cold to maintain a low vapor pressure in the vacuum
基于霍尔元件的大电流测定仪的设计%Design of High Current Tester Based on Hall Element
金雪尘; 黄亮; 张杰
2014-01-01
In this paper,a high current instrument is designed to measure AC/DC with Hall element, whose basic principle of the measurement is:showing the size of the measured current by measuring the size of magnetic field caused by measured current. The size of magnetic field is converted into the Hall voltage through the Hall sensor,and displayed on the LCD screen after a SCM processing. The current measurement ranges from 0. 1A to 500A and measurement accuracy is up to effective 3-digit figures. The instrument pro-vides the measurement of high DC with a better way.%利用霍尔元件设计一种能测量交、直流大电流的仪器，其基本测量原理是：通过测量被测电流的磁场大小来显示被测电流的大小，磁场大小通过霍尔传感器转换成霍尔电压，再经过单片机处理后在液晶屏上显示。电流测量范围为0．1~500 A，测量精度达3位有效数字。
Gauri Shanker Seth
2015-01-01
Full Text Available An investigation of unsteady hydromagnetic natural convection heat and mass trans fer flow with Hall current of a viscous, incompressible, electrically conducting, heat absorbing and optically thin radiating fluid past an accelerated moving vertical plate through fluid saturated porous medium in a rotating environment is carried out when temperature of the plate has a temporarily ramped profile. The exact solutions of momentum, energy and concentration equations are obtained in closed form by Laplace transform technique. The expressions of skin friction, Nusselt number and Sherwood number are also derived. For both ramped temperature and isothermal plates, Hall current tends to accelerate primary and secondary fluid velocities whereas heat absorption and radiation have reverse effect on it. Rotation tends to retard primary fluid velocity whereas it has a reverse effect on secondary fluid velocity. Heat absorption and radiation have tendency to enhance rate of heat transfer at the plate.
Low-Cost High-Performance Hall Thruster Support System Project
National Aeronautics and Space Administration — Colorado Power Electronics (CPE) has built an innovative modular power processing unit (PPU) for Hall Thrusters, including discharge, magnet, heater and keeper...
Ezawa, Z. F.; Tsitsishvili, G.; Hasebe, K.
2003-03-01
Noncommutative geometry governs the physics of quantum Hall (QH) effects. We introduce the Weyl ordering of the second quantized density operator to explore the dynamics of electrons in the lowest Landau level. We analyze QH systems made of N-component electrons at the integer filling factor ν=k⩽N. The basic algebra is the SU(N)-extended W∞. A specific feature is that noncommutative geometry leads to a spontaneous development of SU(N) quantum coherence by generating the exchange Coulomb interaction. The effective Hamiltonian is the Grassmannian GN,k sigma model, and the dynamical field is the Grassmannian GN,k field, describing k(N-k) complex Goldstone modes and one kind of topological solitons (Grassmannian solitons).
Jefferson Laboratory Hall A SuperBigBite Spectrometer Data Acquisition System
Camsonne, Alexandre; Hall A Collaboration; Hall A SuperBigBite Collaboration
2013-10-01
The SuperBigBite detector is a large acceptance spectrometer which is being built for Hall A at Jefferson Laboratory and planned for completion in 2017. Several experiments are approved for this detector ranging from form factors to nucleon structure. The detector consists mainly of a large dipole magnet and several plane of Gas Electron Multiplier trackers associated with calorimeters. In order to reduce the cost of the project the electronics used will be a mix of older Fastbus and newly developed electronics. I will present the layout of the system and how we plan to handle the high background rates seen by the different detectors for the different experiments. 12000 Jefferson Avenue Suite #4 Newport News VA 23606 USA.
基于大电流检测的霍尔传感器应用%Application of Hall sensor based on heavy current detection
郭军; 刘和平; 刘平
2011-01-01
Basic principle of conventional open-loop and close-loop Hall sensor are introduced. The conventional Hall sensor with magnetic ring is compared with a new kind of integrated magnetic concentrator Hall sensor in heavy current testing. The integrated magnetic concentrator Hall sensor MLX91205 is taken as an example to be researched on testing application in heavy current of electric vehicle' s motor controller. The result of experiment show it has advantage s,such as wide measurement range, high linearity,low magnetic hysteresis, high sensitivity,small bulk, low price and so on.%介绍了传统开环和闭环霍尔传感器的基本原理,并就传统霍尔传感器配合磁环的方法和新型磁集极霍尔传感器在大电流检测中的应用方案进行了对比,分析了它们的优缺点.以MLX91205磁集极霍尔传感器为例,重点研究了磁集极霍尔传感器在电动汽车中的电机控制器的大电流情况下的测量应用,实验结果表明:其具有测量范围宽、高线性度、低磁滞、高灵敏度、体积小、价格低等优点.
S. Abdul Gaffar
2016-06-01
Full Text Available A mathematical study is presented to analyze the nonlinear, non-isothermal, magnetohydrodynamic (MHD free convection boundary layer flow, heat and mass transfer of non-Newtonian Eyring–Powell fluid from a vertical surface in a non-Darcy, isotropic, homogenous porous medium, in the presence of Hall currents and ionslip currents. The governing nonlinear coupled partial differential equations for momentum conservation in the x, and z directions, heat and mass conservation, in the flow regime are transformed from an (x, y, z coordinate system to a (ξ, η coordinate system in terms of dimensionless x-direction velocity (f′ and z-direction velocity (G, dimensionless temperature and concentration functions (θ and ϕ under appropriate boundary conditions. Both Darcian and Forchheimer porous impedances are incorporated in both momentum equations. Computations are also provided for the variation of the x and z direction shear stress components and also heat and mass transfer rates. It is observed that with increasing ɛ, primary velocity, secondary velocity, heat and mass transfer rates are decreased whereas, the temperature, concentration and skin friction are increased. An increasing δ is found to increase primary and secondary velocities, skin friction, heat and mass transfer rates. But the temperature and concentration decrease. Increasing βe and βi are seen to increase primary velocity, skin friction, heat and mass transfer rates whereas secondary velocity, temperature and concentration are decreased. Excellent correlation is achieved with a Nakamura tridiagonal finite difference scheme (NTM. The model finds applications in magnetic materials processing, MHD power generators and purification of crude oils.
Bound values for Hall conductivity of heterogeneous medium under quantum Hall effect conditions
V E Arkhincheev
2008-02-01
Bound values for Hall conductivity under quantum Hall effect (QHE) conditions in inhomogeneous medium has been studied. It is shown that bound values for Hall conductivity differ from bound values for metallic conductivity. This is due to the unusual character of current percolation under quantum Hall effect conditions.
Snyder, John S.; Brophy, John R.; Hofer, Richard R.; Goebel, Dan M.; Katz, Ira
2012-01-01
As NASA considers future exploration missions, high-power solar-electric propulsion (SEP) plays a prominent role in achieving many mission goals. Studies of high-power SEP systems (i.e. tens to hundreds of kilowatts) suggest that significant mass savings may be realized by implementing a direct-drive power system, so NASA recently established the National Direct-Drive Testbed to examine technical issues identified by previous investigations. The testbed includes a 12-kW solar array and power control station designed to power single and multiple Hall thrusters over a wide range of voltages and currents. In this paper, single Hall thruster operation directly from solar array output at discharge voltages of 200 to 450 V and discharge powers of 1 to 10 kW is reported. Hall thruster control and operation is shown to be simple and no different than for operation on conventional power supplies. Thruster and power system electrical oscillations were investigated over a large range of operating conditions and with different filter capacitances. Thruster oscillations were the same as for conventional power supplies, did not adversely affect solar array operation, and were independent of filter capacitance from 8 to 80 ?F. Solar array current and voltage oscillations were very small compared to their mean values and showed a modest dependence on capacitor size. No instabilities or anomalous behavior were observed in the thruster or power system at any operating condition investigated, including near and at the array peak power point. Thruster startup using the anode propellant flow as the power 'switch' was shown to be simple and reliable with system transients mitigated by the proper selection of filter capacitance size. Shutdown via cutoff of propellant flow was also demonstrated. A simple electrical circuit model was developed and is shown to have good agreement with the experimental data.
Chen, Zhenyu; Liu, Yang; Fu, Zhenxian; Song, Shenmin; Tan, Jiubin
2016-06-14
To determine the planar motion of a 6-DOF precision stage, a measurement system based on three Hall sensors is adopted to obtain the X, Y, Rz motions of the stage. The machining and assembly errors in the actual mechanical system, which are difficult to measure directly, cause the parameters in the model of the Hall measurement system to deviate from their designed values. Additionally, the vertical movement of the stage will render the measurement model nonlinear. To guarantee the accuracy of the measurement, the parameters in the measurement model should be estimated and the nonlinearity compensated. In this paper, a novel approach based on self-adaptive hybrid TLBO (teaching-learning-based-optimization) is proposed to estimate the parameters in the Hall measurement model. The influences of zero deviations and vertical movements on the measurement accuracy are analyzed and compensated. The effectiveness of the proposed method is validated by experimental results obtained on a 6-DOF precision stage. Thanks to parameter estimation and calibration, the measurement error of the Hall sensor array is reduced to 6 micrometers.
Zhenyu Chen
2016-06-01
Full Text Available To determine the planar motion of a 6-DOF precision stage, a measurement system based on three Hall sensors is adopted to obtain the X, Y, Rz motions of the stage. The machining and assembly errors in the actual mechanical system, which are difficult to measure directly, cause the parameters in the model of the Hall measurement system to deviate from their designed values. Additionally, the vertical movement of the stage will render the measurement model nonlinear. To guarantee the accuracy of the measurement, the parameters in the measurement model should be estimated and the nonlinearity compensated. In this paper, a novel approach based on self-adaptive hybrid TLBO (teaching-learning-based-optimization is proposed to estimate the parameters in the Hall measurement model. The influences of zero deviations and vertical movements on the measurement accuracy are analyzed and compensated. The effectiveness of the proposed method is validated by experimental results obtained on a 6-DOF precision stage. Thanks to parameter estimation and calibration, the measurement error of the Hall sensor array is reduced to 6 micrometers.
Construction and Operation of a Differential Hall Element Magnetometer
Calkins, Matthew W.; Javernick, Philip D.; Quintero, Pedro A.; Calm, Yitzi M.; Meisel, Mark W.
2012-02-01
A Differential Hall Element Magnetometer (DHEM) was constructed to measure the magnetic saturation and coercive fields of small samples consisting of magnetic nanoparticles that may have biomedical applications. The device consists of two matched Hall elements that can be moved through the room temperature bore of a 9 Tesla superconducting magnet. The Hall elements are wired in opposition such that a null response, to within a small offset, is measured in the absence of a sample that may be located on top of one unit. A LabVIEW program controls the current through the Hall elements and measures the net Hall voltage while simultaneously moving the probe through the magnetic field by regulating a linear stepper motor. Ultimately, the system will be tested to obtain a figure of merit using successively smaller samples. Details of the apparatus will be provided along with preliminary data.
Nasseri, S. Ali; Moretti, Simone; Martinez, Eduardo; Serpico, Claudio; Durin, Gianfranco
2017-03-01
Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work.
Wheel of concert hall acoustics
Kuusinen, A.; Lokki, T.
2017-01-01
More than a hundred years of research on concert hall acoustics has provided an extensive list of attributes to describe and evaluate the perceptual aspects of sound in concert halls. This brief overview discusses the current knowledge, and presents a "wheel of concert hall acoustics" in which the main aspects are gathered together with the descriptive attributes that are commonly encountered in the research literature. Peer reviewed
Federal Laboratory Consortium — Hall C's initial complement of equipment (shown in the figure), includes two general-purpose magnetic spectrometers. The High Momentum Spectrometer (HMS) has a large...
Federal Laboratory Consortium — The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electroand photo-induced reactions at very high luminosity...
Burgess, C P
2001-01-01
We show how particle-vortex duality implies the existence of a large non-abelian discrete symmetry group which relates the electromagnetic response for dual two-dimensional systems in a magnetic field. For conductors with charge carriers satisfying Fermi statistics (or those related to fermions by the action of the group), the resulting group is known to imply many, if not all, of the remarkable features of Quantum Hall systems. For conductors with boson charge carriers (modulo group transformations) a different group is predicted, implying equally striking implications for the conductivities of these systems, including a super-universality of the critical exponents for conductor/insulator and superconductor/insulator transitions in two dimensions and a hierarchical structure, analogous to that of the quantum Hall effect but different in its details. Our derivation shows how this symmetry emerges at low energies, depending only weakly on the details of dynamics of the underlying systems.
RAKESH KUMAR,
2011-04-01
Full Text Available The purpose of this paper is to present a theoretical analysis of an unsteady hydromagnetic free convection flow of viscoelastic fluid (Walter’s B’ past an infinite vertical porous flat plate through porous medium. The temperature is assumed to be oscillating with time and the effect of the Hall current is taken into account. Assuming constant suction at the plate, closed form solutions have been obtained for velocity and temperature profiles. The effect of the various parameters, entering into the problem, on the primary, secondary velocity profiles, the axial and transverse components of skin-friction are shown graphically followed by quantitative discussion.
Hastings, M B
2010-01-01
We present a possible definition of a mobility gap for a many-body quantum system, in analogy to definitions of dynamical localization for single particle systems. Using this definition, we construct "corrected" quasi-adiabatic continuation operators. Under an appropriate definition of a unique ground state, we show how to introduce virtual fluxes. Armed with these results, we can directly carry over previous results in the case of a spectral gap. We present a proof of decay of correlation functions and we present a proof of Hall conductance quantization under very mild density-of-states assumptions defined later. We also generalize these definitions to the case of a "bulk mobility gap", in the case of a system with boundaries, and present a proof of Hall conductance quantization on an annulus under appropriate assumptions. Further, we present a new "optimized" quasi-adiabatic continuation operator which simplifies previous estimates and tightens bounds in certain cases. This is presented in an appendix which...
Sakhi, Said
Cette these est constituee de trois sujets de recherche distincts. Les deux premiers articles traitent du phenomene de supraconductivite dans un modele bidimensionnel, dans le troisieme article on etudie l'action effective d'un systeme electronique soumis a l'effet d'un champ magnetique (systeme de Hall) et le dernier article examine la quantification d'un systeme de particules identiques en deux dimensions d'espace et la possibilite des anyons. Le modele qu'on analyse dans les deux premiers articles est un systeme fermionique dont les particules chargees et de masse nulle interagissent entre elles avcc un couplage attractif et fort. L'analyse de l'action effective decrivant la physique a basse energie nous permet d'examiner la structure de l'espace de phase. A temperature nulle, le parametre d'ordre du systeme prend une valeur moyenne non nulle. Consequemment, la symetrie continue U(1) du modele est spontanement brisee et il en resulte l'apparition d'un mode de Goldstone. En presence d'un champ electromagnetique externe, ce mode disparait et le champ de jauge acquiert une masse donc l'effet Meissner caracteristique d'un supraconducteur. Bien que le modele ne soit pas renormalisable dans le sens perturbatif, on montre qu'il l'est dans le cadre du developpement en 1/N ou N est le nombre d'especes fermioniques. En outre, on montre que l'inclusion des effets thermiques change radicalement le mecanisme de supraconductivite. En effet, on montre que la brisure spontanee de la symetrie U(1) n'est plus possible a temperature finie a cause de tres severes divergences infrarouges. Par contre, la dynamique des tourbillons (vortex) existant dans le plan devient essentielle. On montre que le phenomene de supraconductivite resulte du confinement de ces objets topologiques et que la temperature critique s'identifie a celle de Kosterlitz -Thouless. Ce mecanisme de supraconductivite presente l'avantage d'aboutir a un rapport gap a la temperature critique plus eleve que celui du
High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration
Hofer, Richard R.
2013-01-01
This work describes the scaling and design attributes of Nested Hall Thrusters (NHT) with extremely large operational envelopes, including a wide range of throttleability in power and specific impulse at high efficiency (>50%). NHTs have the potential to provide the game changing performance, powerprocessing capabilities, and cost effectiveness required to enable missions that cannot otherwise be accomplished. NHTs were first identified in the electric propulsion community as a path to 100- kW class thrusters for human missions. This study aimed to identify the performance capabilities NHTs can provide for NASA robotic and human missions, with an emphasis on 10-kW class thrusters well-suited for robotic exploration. A key outcome of this work has been the identification of NHTs as nearly constant-efficiency devices over large power throttling ratios, especially in direct-drive power systems. NHT systems sized for robotic solar system exploration are predicted to be capable of high-efficiency operation over nearly their entire power throttling range. A traditional Annular Hall Thruster (AHT) consists of a single annular discharge chamber where the propellant is ionized and accelerated. In an NHT, multiple annular channels are concentrically stacked. The channels can be operated in unison or individually depending on the available power or required performance. When throttling an AHT, performance must be sacrificed since a single channel cannot satisfy the diverse design attributes needed to maintain high thrust efficiency. NHTs can satisfy these requirements by varying which channels are operated and thereby offer significant benefits in terms of thruster performance, especially under deep power throttling conditions where the efficiency of an AHT suffers since a single channel can only operate efficiently (>50%) over a narrow power throttling ratio (3:1). Designs for 10-kW class NHTs were developed and compared with AHT systems. Power processing systems were
霍尔器件参数测试系统%Design of Hall Sensor Parameters Measuring System
张艳清; 李勇滔; 夏洋; 李超波; 张东
2011-01-01
提出了一种基于微控制器的霍尔器件参数测试系统设计方案.描述了总体设计方案,并详细介绍了硬件部分的可调电压源和数据采集部分.给出了系统软件设计思想及部分参数的测试结果.该霍尔器件参数测试系统可以快速准确地测量霍尔器件的各项电参数和磁参数,并且具有测试和筛选功能,操作界面友好,使用方便.%A novel scheme for hall sensor parameters measuring system based on micro-controller is proposed. Firstly, the overall design scheme is depicted, and then hardware portion of measuring system which consists of adjustable voltage source and data acquisition part is described in details. Finally,the system software design and some test results are presented. The hall sensor parameters measuring system can measure electrical parameters and magnetic parameters of the hall sensor quickly and accurately, and its functions include testing and selecting. The system interface is convenient to use.
AN A. C. HALL EFFECT GAUSSMETER,
MEASURING INSTRUMENTS, MEASURING INSTRUMENTS, HALL EFFECT , MAGNETOMETERS, MEASUREMENT, GENERATORS, CIRCUITS, ALTERNATING CURRENT, GERMANIUM, SEMICONDUCTOR DIODES, GALVANOMETERS, VOLTAGE, DIRECT CURRENT, MAGNETIC FIELDS.
Allada Kalyan
2012-12-01
Full Text Available Measurement of single (SSA and double spin asymmetries (DSA in semiinclusive DIS reactions using polarized targets provide a powerful method to probe transverse momentum dependent parton distribution functions (TMDs. In particular, the experimentally measured SSA on nucleon targets can help in extracting the transversity and Sivers distribution functions of u and d-quarks. Similarly, the measured DSA are sensitive to the quark spin-orbital correlations, and provide an access to the TMD parton distribution function (g1T. A recent experiment conducted in Hall-A Jefferson Lab using transversely polarized 3He provide first such measurements on “effective” neutron target. The measurement was performed using 5.9 GeV beam from CEBAF and measured the target SSA/DSA in the SIDIS reaction 3He↑(e, e′π±X. The kinematical range, x = 0.19 ~ 0.34, at Q2 = 1.77 ~ 2.73 (GeV/c2, was focused on the valence quark region. The results from this measurement along with our plans for future high precision measurements in Hall-A are presented.
Magnetic Circuit Simulation for Zero-flux Hall Current Sensors%零磁通霍尔电流传感器磁路仿真
李傲梅; 王林森
2011-01-01
在分析霍尔电流传感器磁路的基础上,推导出零磁通霍尔电流传感器的直流传递函数,并根据这个传递函数,运用ANSYS对该类传感器的磁路进行三维空间电磁场仿真,得到了磁场强度和磁感应强度矢量的仿真模型,与磁路模型和传感器电路模型的分析结果进行对比,该模型可用于闭环霍尔电流传感器对极向场电源系统±15kA双向直流大电流的检测.%Basing on analyzing Hall current sensor magnetic circuit,the DC transfer function of zero-flux Hall current sensor was deduced. The magnetic field intensity and simulation model of magnetic induction vector-which basing on a three-dimensional electromagnetic field of sensor magnetic circuit of this kind and the deduced transfer function and ANSYS software can verify the theoretical calculation accuracy and can provid a reference for practical application.
System Design of Hall Magnetoelectric Odometer%霍尔式磁电里程仪系统设计
齐龙妹; 马戎; 李岁劳; 周博
2014-01-01
This paper design the scheme of hall magnetoelectric odometer using the hall sensor as the detecting department,carries on the detailed design respectively from magnetic circuit design, the hardware circuitry and the microprocessor.By experiment verify reliability and practical of the system,the non contact measuring distance can be improved,measure precision can reach to 0.015m.%设计了基于线性霍尔传感器的磁电式里程仪测试系统，主要从磁路、硬件电路和单片机3个方面进行了研究，通过实验验证了系统的可靠性和可行性，能够提高非接触测量的距离，最高测量精度可以达到0.015 m。
Matthes, L.; Küfner, S.; Furthmüller, J.; Bechstedt, F.
2016-03-01
Ab initio relativistic band structure calculations are performed for the frequency-dependent spin Hall conductivity of two-dimensional atomically thin crystals and one-dimensional nanoribbons. We study the influence of topology, quantization, and topological edge states. As model systems fully halogenated germanene, GeI, and its zigzag nanoribbons are investigated. GeI represents a topological insulator (TI). For comparison, also the TI germanene and the trivial insulator hydrogenated germanene are studied. For the TIs we demonstrate the quantization of the static spin Hall conductivity. It is hardly influenced by temperature and Fermi level shift. Its frequency dependence is governed by the band-structure details. Topological edge states influence the conductivity mainly for vanishing frequencies.
Tunnelling anomalous and planar Hall effects (Conference Presentation)
Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor
2016-10-01
We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).
Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.
1995-01-01
Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.
Xing, W.; Heinrich, B. [Simon Fraser Univ., British Columbia (Canada); Zhou, H. [CTF Systems, Inc., British Columbia (Canada)] [and others
1994-12-31
Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.
Sachin Kaothekar
2016-09-01
The effects of finite ion Larmor radius (FLR) corrections, Hall current and radiative heat--loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effects of finite electrical resistivity, thermal conductivity and permeability for star formation in interstellar medium have been investigated. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion gets modified into radiative instability criterion. The finite electrical resistivity removes the effect of magnetic field and the viscosity of the medium removes the effect of FLR from the condition of radiative instability. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. Numerical calculation shows stabilizing effect of viscosity, heat--loss function and FLR corrections, and destabilizing effect of finite resistivity and permeability on the thermal instability. The outcome of the problem discussed the formation of star in the interstellar medium.
Ben-Abdallah, Philippe
2015-01-01
A near-field thermal Hall effect (i.e.Righi-Leduc effect) in lattices of magneto-optical particles placed in a constant magnetic field is predicted. This effect is related to a symetry breaking in the system induced by the magnetic field which gives rise to preferential channels for the heat-transport by photon tunneling thanks to the particles anisotropy tuning.
贾少伟; 张郑; 王文; 王快社; 高雪
2015-01-01
晶粒细化是提高晶体材料力学性能的一种有效强化方式,Hall-Petch关系表明晶体材料的屈服强度和硬度随晶粒尺寸降低而增强.随着超细晶材料和纳米材料的深入研究,实验发现了反Hall-Petch现象,即随着晶粒尺寸的减小,材料性能下降.综述了反Hall-Petch现象中屈服强度、显微硬度及模拟现状,并指出了超细晶和纳米晶细化晶粒的研究方向.
Ward Identities for Hall Transport
Hoyos, Carlos; Oz, Yaron
2014-01-01
We derive quantum field theory Ward identities based on linear area preserving and conformal transformations in 2+1 dimensions. The identities relate Hall viscosities, Hall conductivities and the angular momentum. They apply both for relativistic and non relativistic systems, at zero and at finite temperature. We consider systems with or without translation invariance, and introduce an external magnetic field and viscous drag terms. A special case of the identities yields the well known relation between the Hall conductivity and half the angular momentum density.
Berry curvature and various thermal Hall effects
Zhang, Lifa
2016-10-01
Applying the approach of semiclassical wave packet dynamics, we study various thermal Hall effects where carriers can be electron, phonon, magnon, etc. A general formula of thermal Hall conductivity is obtained to provide an essential physics for various thermal Hall effects, where the Berry phase effect manifests naturally. All the formulas of electron thermal Hall effect, phonon Hall effect, and magnon Hall effect can be directly reproduced from the general formula. It is also found that the Strěda formula can not be directly applied to the thermal Hall effects, where only the edge magnetization contributes to the Hall effects. Furthermore, we obtain a combined formula for anomalous Hall conductivity, thermal Hall electronic conductivity and thermal Hall conductivity for electron systems, where the Berry curvature is weighted by a different function. Finally, we discuss particle magnetization and its relation to angular momentum of the carrier, change of which could induce a mechanical rotation; and possible experiments for thermal Hall effect associated with a mechanical rotation are also proposed.
Bason, Y.; Klein, L.; Yau, J. -B.; Hong, X.; Hoffman, J.; Ahn, C. H.
2005-01-01
We suggest a new type of magnetic random access memory (MRAM) that is based on the phenomenon of the planar Hall effect (PHE) in magnetic films, and we demonstrate this idea with manganite films. The PHE-MRAM is structurally simpler than currently developed MRAM that is based on magnetoresistance tunnel junctions (MTJ), with the tunnel junction structure being replaced by a single layer film.
Matthes, L.; Küfner, S.; Furthmüller, J.; Bechstedt, F.
2016-08-01
Ab initio relativistic band structure calculations are performed for the frequency-dependent spin Hall conductivity of three- (3D), two- (2D) and one-dimensional (1D) materials such as bulk semiconductors, atomically thin crystals, and their nanoribbons. Besides the influence of the dimensionality we also study differences between trivial and topological insulators (TIs). The frequency dependence of the conductivity is governed by the band-structure details, while its static value scales with the spin-orbit interaction in 3D but is quantized in units of e2/h for 2D TIs. 1D topological edge states influence the conductivity mainly for vanishing frequencies.
... A Week of Healthy Breakfasts Shyness Healthy Dining Hall Eating KidsHealth > For Teens > Healthy Dining Hall Eating ... likely to eat. previous continue Overcoming Common Dining Hall Mistakes Even the most attentive diners can still ...
Ferrantelli, Andrea; Räikkönen, Miska; Viljanen, Martti
2012-01-01
This work is the first of a series of articles addressing the energy optimization in ice hockey halls. Here we outline an analytic method to predict in which design and operating conditions the COP of the entire cooling system (refrigerator and cooling tower) ${\\rm COP}_{sys}$ is maximum. ${\\rm COP}_{sys}$ is investigated as a function of several variables, like electric consumption and brine physical properties. With this method, the best configuration and brine choices for the system can therefore be determined in advance. We estimate the optimal design of an average-sized ice rink, including pipe diameter, depth and brine type (ethylene glycol and ammonia). We also single out an optimal brine density and show the impact of the electric consumption of the pump on ${\\rm COP}_{sys}$. Our theoretical predictions are validated with heat flow measurement data obtained at an ice hockey hall in Finland. They are also confronted with technical and cost-related constraints, and implemented by simulations with the pr...
Moderate positive spin Hall angle in uranium
Singh, Simranjeet; Anguera, Marta; Barco, Enrique del, E-mail: delbarco@ucf.edu, E-mail: cwmsch@rit.edu [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Springell, Ross [H. H. Will Laboratory, University of Bristol, Bristol BS2 8BS (United Kingdom); Miller, Casey W., E-mail: delbarco@ucf.edu, E-mail: cwmsch@rit.edu [School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623 (United States)
2015-12-07
We report measurements of spin pumping and the inverse spin Hall effect in Ni{sub 80}Fe{sub 20}/uranium bilayers designed to study the efficiency of spin-charge interconversion in a super-heavy element. We employ broad-band ferromagnetic resonance on extended films to inject a spin current from the Ni{sub 80}Fe{sub 20} (permalloy) into the uranium layer, which is then converted into an electric field by the inverse spin Hall effect. Surprisingly, our results suggest a spin mixing conductance of order 2 × 10{sup 19} m{sup −2} and a positive spin Hall angle of 0.004, which are both merely comparable with those of several transition metals. These results thus support the idea that the electronic configuration may be at least as important as the atomic number in governing spin pumping across interfaces and subsequent spin Hall effects. In fact, given that both the magnitude and the sign are unexpected based on trends in d-electron systems, materials with unfilled f-electron orbitals may hold additional exploration avenues for spin physics.
Defining and resolving current systems in geospace
Ganushkina, N. Y.; Liemohn, M. W.; Dubyagin, S.; Daglis, I. A.; Dandouras, I.; De Zeeuw, D. L.; Ebihara, Y.; Ilie, R.; Katus, R.; Kubyshkina, M.; Milan, S. E.; Ohtani, S.; Ostgaard, N.; Reistad, J. P.; Tenfjord, P.; Toffoletto, F.; Zaharia, S.; Amariutei, O.
2015-11-01
Electric currents flowing through near-Earth space (R ≤ 12 RE) can support a highly distorted magnetic field topology, changing particle drift paths and therefore having a nonlinear feedback on the currents themselves. A number of current systems exist in the magnetosphere, most commonly defined as (1) the dayside magnetopause Chapman-Ferraro currents, (2) the Birkeland field-aligned currents with high-latitude "region 1" and lower-latitude "region 2" currents connected to the partial ring current, (3) the magnetotail currents, and (4) the symmetric ring current. In the near-Earth nightside region, however, several of these current systems flow in close proximity to each other. Moreover, the existence of other temporal current systems, such as the substorm current wedge or "banana" current, has been reported. It is very difficult to identify a local measurement as belonging to a specific system. Such identification is important, however, because how the current closes and how these loops change in space and time governs the magnetic topology of the magnetosphere and therefore controls the physical processes of geospace. Furthermore, many methods exist for identifying the regions of near-Earth space carrying each type of current. This study presents a robust collection of these definitions of current systems in geospace, particularly in the near-Earth nightside magnetosphere, as viewed from a variety of observational and computational analysis techniques. The influence of definitional choice on the resulting interpretation of physical processes governing geospace dynamics is presented and discussed.
2014-01-01
In bilayer system, consists of ferromagnetic insulator, high spin orbit coupling normal metal (FM|NM), a new ferromagnetic resonance (FMR) damping that depends on varying the thickness of the normal metal observed. This new enhancement in the damping attributed to magnetic proximity effect (MPE) at the interface, which is verified by the increases in the real part of spin mixing conductance. Spin pumping phenomena occurs when pure spin current can flow into the normal metal when the ferromagn...
A Magnetic Balance with Hall Effect Sensors
Sawada, Hideo; Kunimasu, Tetsuya; Suda, Shinichi; Mizoguti, Yasushi; Okada, Takumi
Magnetic force acting on a model fixed at the center of the JAXA 60cm MSBS was measured with an industry manufactured balance system when MSBS control coil currents were varied. At the same time, magnetic field intensity was also measured with 11 Hall sensors, which were arranged around the MSBS test section. From relations between coil currents and its corresponding controlled magnetic forces, regressive curves were given and maximum deviation from the curves was evaluated. From relations between Hall sensor outputs and the magnetic forces, regressive curves and deviation were also obtained. Obtained results show Hall sensor outputs are much better indexes of balance than the coil currents. The maximum deviations were reduced to a half or one-third times as much as those evaluated using the control coil currents. However, when couples acting on the model are controlled, they are not effective to reduce hysteresis phenomenon in the relation. The deviation can be reduced by decreasing the range of calibration. Then, the error of the balance of the MSBS was reduced to about 1% of the calibration range.
The spin Hall effect in a quantum gas.
Beeler, M C; Williams, R A; Jiménez-García, K; LeBlanc, L J; Perry, A R; Spielman, I B
2013-06-13
Electronic properties such as current flow are generally independent of the electron's spin angular momentum, an internal degree of freedom possessed by quantum particles. The spin Hall effect, first proposed 40 years ago, is an unusual class of phenomena in which flowing particles experience orthogonally directed, spin-dependent forces--analogous to the conventional Lorentz force that gives the Hall effect, but opposite in sign for two spin states. Spin Hall effects have been observed for electrons flowing in spin-orbit-coupled materials such as GaAs and InGaAs (refs 2, 3) and for laser light traversing dielectric junctions. Here we observe the spin Hall effect in a quantum-degenerate Bose gas, and use the resulting spin-dependent Lorentz forces to realize a cold-atom spin transistor. By engineering a spatially inhomogeneous spin-orbit coupling field for our quantum gas, we explicitly introduce and measure the requisite spin-dependent Lorentz forces, finding them to be in excellent agreement with our calculations. This 'atomtronic' transistor behaves as a type of velocity-insensitive adiabatic spin selector, with potential application in devices such as magnetic or inertial sensors. In addition, such techniques for creating and measuring the spin Hall effect are clear prerequisites for engineering topological insulators and detecting their associated quantized spin Hall effects in quantum gases. As implemented, our system realizes a laser-actuated analogue to the archetypal semiconductor spintronic device, the Datta-Das spin transistor.
Connan, Chloé; Brüggemann, Holger; Brueggemann, Holger; Mazuet, Christelle; Raffestin, Stéphanie; Cayet, Nadège; Popoff, Michel R
2012-01-01
Clostridium botulinum synthesizes a potent neurotoxin (BoNT) which associates with non-toxic proteins (ANTPs) to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs) and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes) have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs.
Chloé Connan
Full Text Available Clostridium botulinum synthesizes a potent neurotoxin (BoNT which associates with non-toxic proteins (ANTPs to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs.
Capua, Amir; Wang, Tianyu; Yang, See-Hun; Rettner, Charles; Phung, Timothy; Parkin, Stuart S. P.
2017-02-01
The conversion of charge current to spin current by the spin Hall effect is of considerable current interest from both fundamental and technological perspectives. Measurement of the spin Hall angle, especially for atomically thin systems with large magnetic anisotropies, is not straightforward. Here we demonstrate a hybrid phase-resolved optical-electrical ferromagnetic resonance method that we show can robustly determine the spin Hall angle in heavy-metal/ferromagnet bilayer systems with large perpendicular magnetic anisotropy. We present an analytical model of the ferromagnetic resonance spectrum in the presence of the spin Hall effect, in which the spin Hall angle can be directly determined from the changes in the amplitude response as a function of the spin current that is generated from a dc charge current passing through the heavy-metal layer. Increased sensitivity to the spin current is achieved by operation under conditions for which the magnetic potential is shallowest at the "Smit point." Study of the phase response reveals that the spin Hall angle can be reliably extracted from a simplified measurement that does not require scanning over time or magnetic field but rather only on the dc current. The method is applied to the Pt-Co/Ni/Co system whose spin Hall angle was to date characterized only indirectly and that is especially relevant for spin-orbit torque devices.
Lotz, Mikkel Rønne; Boll, Mads; Østerberg, Frederik Westergaard;
2016-01-01
configuration sheet resistance as well as the resistance measured between opposing edges of the square sample have a simple unique dependency on the dimension-less parameter √nρGBG0, where G0 is the sheet conductance of a grain. The value of the ratio RA/RB between resistances measured in A- and B......-configurations depends on the dimensionality of the current transport (i.e., one- or two-dimensional). At low grain density or low grain boundary resistivity, two-dimensional transport is observed. In contrast, at moderate grain density and high grain resistivity, one-dimensional transport is seen. Ultimately...
Spin Hall effect by surface roughness
Zhou, Lingjun
2015-01-08
The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.
Anderson Localization from the Berry-Curvature Interchange in Quantum Anomalous Hall Systems
Qiao, Zhenhua; Han, Yulei; Zhang, Lei; Wang, Ke; Deng, Xinzhou; Jiang, Hua; Yang, Shengyuan A.; Wang, Jian; Niu, Qian
2016-07-01
We theoretically investigate the localization mechanism of the quantum anomalous Hall effect (QAHE) in the presence of spin-flip disorders. We show that the QAHE stays quantized at weak disorders, then enters a Berry-curvature mediated metallic phase at moderate disorders, and finally goes into the Anderson insulating phase at strong disorders. From the phase diagram, we find that at the charge neutrality point although the QAHE is most robust against disorders, the corresponding metallic phase is much easier to be localized into the Anderson insulating phase due to the interchange of Berry curvatures carried, respectively, by the conduction and valence bands. In the end, we provide a phenomenological picture related to the topological charges to better understand the underlying physical origin of the QAHE Anderson localization.
Finite-temperature effective boundary theory of the quantized thermal Hall effect
Nakai, Ryota; Ryu, Shinsei; Nomura, Kentaro
2016-02-01
A finite-temperature effective free energy of the boundary of a quantized thermal Hall system is derived microscopically from the bulk two-dimensional Dirac fermion coupled with a gravitational field. In two spatial dimensions, the thermal Hall conductivity of fully gapped insulators and superconductors is quantized and given by the bulk Chern number, in analogy to the quantized electric Hall conductivity in quantum Hall systems. From the perspective of effective action functionals, two distinct types of the field theory have been proposed to describe the quantized thermal Hall effect. One of these, known as the gravitational Chern-Simons action, is a kind of topological field theory, and the other is a phenomenological theory relevant to the Strěda formula. In order to solve this problem, we derive microscopically an effective theory that accounts for the quantized thermal Hall effect. In this paper, the two-dimensional Dirac fermion under a static background gravitational field is considered in equilibrium at a finite temperature, from which an effective boundary free energy functional of the gravitational field is derived. This boundary theory is shown to explain the quantized thermal Hall conductivity and thermal Hall current in the bulk by assuming the Lorentz symmetry. The bulk effective theory is consistently determined via the boundary effective theory.
Topological Hall and spin Hall effects in disordered skyrmionic textures
Ndiaye, Papa Birame
2017-02-24
We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.
Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance
Zhang, J. Y.; Yang, G. [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, S. G., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, J. L. [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Wang, R. M. [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Amsellem, E.; Kohn, A. [Department of Materials Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Yu, G. H., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)
2015-04-13
Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.
Jun, Jong Woo; Lee, Jin Yi [Chosun University, Gwangju (Korea, Republic of); Park, Duk Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2007-10-15
Nondestructive testing (NDT) by using the electromagnetic methods are useful for detecting cracks on the surface and subsurface of the metal. However, when the material contains both ferromagnetic and paramagnetic materials, it is difficult for NDT to detect and analyze cracks using this method. In addition the existence of a partial ferromagnetic material can be incorrectly characterized as a crack in the several cases. On the other hand a large crack has sometimes been misunderstood as a partially magnetized region. Inconel 600 is an important material in atomic energy plant. A nickel film is coated when a crack a appears on an Inconel substrate. Cracks are difficult to detect on the combined material of an Inconel substrate with a nickel film, which are paramagnetic and ferromagnetic material respectively. In this paper, a scan type magnetic camera, which uses a complex induced current-magnetic flux leakage (CIC-MFL) method as a magnetic source and a linearly integrated Hall sensor array (LIHaS) on a wafer as the magnetic sensors, was examined for its ability to detect cracks on the combined material. The evaluation probability of a crack is discussed. In addition the detection probability of the minimum depth was reported
2008-09-23
in Fig. 1. An alternating current source operating at frequency f1 is attached to contacts B and D with a respective lock-in amplifier monitoring...that floats the signal and a transconductance amplifier . The input voltage of each lock-in amplifier is composed of two signals: the Hall voltage at...alternating current sources operating at frequencies f1 and f2 respectively. VAC and VDB are lock-in amplifiers set for the reference frequencies f2 and f1
Bo Zhao
2015-09-01
Full Text Available This paper presents the design and realization of a three degrees of freedom (DOFs displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system.
Nephrogenic systemic fibrosis: Current concepts
Prasanta Basak
2011-01-01
Full Text Available Nephrogenic systemic fibrosis (NSF was first described in 2000 as a scleromyxedema-like illness in patients on chronic hemodialysis. The relationship between NSF and gadolinium contrast during magnetic resonance imaging was postulated in 2006, and subsequently, virtually all published cases of NSF have had documented prior exposure to gadolinium-containing contrast agents. NSF has been reported in patients from a variety of ethnic backgrounds from America, Europe, Asia and Australia. Skin lesions may evolve into poorly demarcated thickened plaques that range from erythematous to hyperpigmented. With time, the skin becomes markedly indurated and tethered to the underlying fascia. Extracutaneous manifestations also occur. The diagnosis of NSF is based on the presence of characteristic clinical features in the setting of chronic kidney disease, and substantiated by skin histology. Differential diagnosis is with scleroderma, scleredema, scleromyxedema, graft-versus-host disease, etc. NSF has a relentlessly progressive course. While there is no consistently successful treatment for NSF, improving renal function seems to slow or arrest the progression of this condition. Because essentially all cases of NSF have developed following exposure to a gadolinium-containing contrast agent, prevention of this devastating condition involves the careful avoidance of administering these agents to individuals at risk.
Dunker, Ralf
2009-07-01
The cars produced by Wiesmann at Duelmen are traditionally-looking but equipped with state-of-the-art technology. The same is true for the building and its technical facilities. Ventilation systems of several decades work together to ensure clean and well-tempered air for the production hall, offices, and sales section. (orig.)
Castel, V.; Vlietstra, N.; Ben Youssef, J.; van Wees, B. J.
2012-01-01
We show the experimental observation of the platinum thickness dependence in a hybrid yttrium iron garnet/platinum system of the inverse spin-Hall effect from spin pumping, over a large frequency range and for different radio-frequency powers. From the measurement of the voltage at the resonant cond
Nematic fluctuations balancing the zoo of phases in half-filled quantum Hall systems
Mesaros, Andrej; Lawler, Michael J.; Kim, Eun-Ah
2017-03-01
Half-filled Landau levels form a zoo of strongly correlated phases. These include non-Fermi-liquids (NFLs), fractional quantum Hall (FQH) states, nematic phases, and FQH nematic phases. This diversity begs the following question: what keeps the balance between the seemingly unrelated phases? The answer is elusive because the Halperin-Lee-Read description that offers a natural departure point is inherently strongly coupled. However, the observed nematic phases suggest that nematic fluctuations play an important role. To study this possibility, we apply a recently formulated controlled double-expansion approach in large-N composite fermion flavors and small ɛ nonanalytic bosonic action to the case with both gauge and nematic boson fluctuations. In the vicinity of a nematic quantum critical line, we find that depending on the amount of screening of the gauge- and nematic-mediated interactions controlled by ɛ 's, the renormalization-group flow points to all four mentioned correlated phases. When pairing preempts the nematic phase, NFL behavior is possible at temperatures above the pairing transition. We conclude by discussing measurements at low tilt angles, which could reveal the stabilization of the FQH phase by nematic fluctuations.
Current and Future Flight Operating Systems
Cudmore, Alan
2007-01-01
This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.
Ferromagnetic/Nonmagnetic Nanostructures for the Electrical Measurement of the Spin Hall Effect.
Pham, Van Tuong; Vila, Laurent; Zahnd, Gilles; Marty, Alain; Savero-Torres, Williams; Jamet, Matthieu; Attané, Jean-Philippe
2016-11-09
Spin-orbitronics is based on the ability of spin-orbit interactions to achieve the conversion between charge currents and pure spin currents. As the precise evaluation of the conversion efficiency becomes a crucial issue, the need for straightforward ways to observe this conversion has emerged as one of the main challenges in spintronics. Here, we propose a simple device, akin to the ferromagnetic/nonmagnetic bilayers used in most spin-orbit torques experiments, and consisting of a spin Hall effect wire connected to two transverse ferromagnetic electrodes. We show that this system allows probing electrically the direct and inverse conversion in a spin Hall effect system and measuring both the spin Hall angle and the spin diffusion length. By applying this method to several spin Hall effect materials (Pt, Pd, Au, Ta, W), we show that it represents a promising tool for the metrology of spin-orbit materials.
Phonon Hall effect in four-terminal nano-junctions
Zhang Lifa; Wang Jiansheng; Li Baowen [Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, 117546 Singapore (Singapore)], E-mail: phylibw@nus.edu.sg
2009-11-15
Using an exact nonequilibrium Green's function formulation, the phonon Hall effect (PHE) for paramagnetic dielectrics is studied in a nanoscale four-terminal device setting. The temperature difference in the transverse direction of the heat current is calculated for two-dimensional models with the magnetic field perpendicular to the plane. We find that there is a PHE in nanoscale paramagnetic dielectrics, the magnitude of which is comparable to millimeter scale experiments. If the dynamic matrix of the system satisfies mirror reflection symmetry, the PHE disappears. The Hall temperature difference changes sign if the magnetic field is sufficiently large or if the size increases.
Spin current and polarization in impure two-dimensional electron systems with spin-orbit coupling.
Mishchenko, E G; Shytov, A V; Halperin, B I
2004-11-26
We derive the transport equations for two-dimensional electron systems with Rashba spin-orbit interaction and short-range spin-independent disorder. In the limit of slow spatial variations, we obtain coupled diffusion equations for the electron density and spin. Using these equations we calculate electric-field induced spin accumulation and spin current in a finite-size sample for an arbitrary ratio between spin-orbit energy splitting Delta and elastic scattering rate tau(-1). We demonstrate that the spin-Hall conductivity vanishes in an infinite system independent of this ratio.
Szabo, James J.
2015-01-01
This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.
Response Current from Spin-Vortex-Induced Loop Current System to Feeding Current
Morisaki, Tsubasa; Wakaura, Hikaru; Abou Ghantous, Michel; Koizumi, Hiroyasu
2017-07-01
The spin-vortex-induced loop current (SVILC) is a loop current generated around a spin-vortex formed by itinerant electrons. It is generated by a U(1) instanton created by the single-valued requirement of wave functions with respect to the coordinate, and protected by the topological number, "winding number". In a system with SVILCs, a macroscopic persistent current is generated as a collection of SVILCs. In the present work, we consider the situation where external currents are fed in the SVILC system and response currents are measured as spontaneous currents that flow through leads attached to the SVILC system. The response currents from SVILC systems are markedly different from the feeding currents in their directions and magnitude, and depend on the original current pattern of the SVILC system; thus, they may be used in the readout process in the recently proposed SVILC quantum computer, a quantum computer that utilizes SVILCs as qubits. We also consider the use of the response current to detect SVILCs.
Shumilin, Nikolay; Shumilin, Vladimir; Shumilin, Alexander
2014-10-01
In paper the simple model for the definition of interrelation between integral characteristics of Hall thrusters with an anode layer is offered. Concrete calculations were made for one of most often used Hall thrusters - TAL-WSF/D-55. While analysing the received theoretical dependences an attempt of comparison with results of an experimental research of thruster TAL-WSF/D-55 was made. With this purpose experimental dependence of specific impulse of Hall thruster TAL-WSF/D-55 on working voltage in range from 150 up to 350 V resulted in was used. It appeared, that these data contain some serious mistake and there is no reference to original works in this paper. In present report this mistake is corrected using original works. It is shown, that the offered simple model gives results close to a reality both qualitatively and quantitatively.
Nakamizo, A.; Yoshikawa, A.
2016-12-01
Whereas it is generally thought that Birkeland Currents (FACs) are generated in the magnetosphere and that the ionospheric convection reflects the magnetospheric convection, we present a possibility that the ionosphere drives FACs and the convection field in the M-I system. We apply this idea to the Harang Reversal (HR) for demonstration. By using an ionospheric potential solver we calculate the electrostatic field for given distributions of FACs and conductance. The result shows that a conspicuous structure resembling HR is generated even for a symmetric distribution of the R1-type FACs and that the Hall polarization field is produced at the equatorward boundary of the auroral region as the primary currents diverge/converge at the conductance gradient there, which causes the potential deformation (HR). Conventionally HR has been considered to be of the magnetospheric origin, and a ring current model actually produces the corresponding structure in the magnetosphere [e.g., Erickson et al., 1991]. Observationally the divE equivalent to HR is consistent with the premidnight upward-FAC seen in Iijima and Potemra's diagram. A recent theoretical study [Ohtani et al., 2016] proposes that HR is a required structure for the interchange stability of the magnetotail in the presence of the R1 and R2-FAC systems including a premidnight upward-FAC. Returning to our result, the important point is that HR is reproduced at the conductance edge by the ionospheric polarization field, for which the primary field originates from the R1-FACs distributed far from that region. We also suggest: (i) In a more realistic finite ΣA, the total ionospheric polarization is partly released by a FAC, which may be a part of the premidnight upward-FAC. (ii) However, existing simulation models do not allow this type of current closure, and accordingly they may enhance the HR structure in the magnetosphere. This discussion should hold generally and would promote the global M-I coupling studies to the
Tsuda, Shibun; Nguyen, Minh-Hai; Terasawa, Daiju; Fukuda, Akira; Sawada, Anju
2016-03-01
We investigate the huge longitudinal resistance (HLR) at which the magnetoresistance of the ν =2/3 fractional quantum Hall state (QHS) is increased with dynamic nuclear spin polarization. We measure the magnetoresistance temperature dependence in the resistively saturated HLR by increasing the temperature of the sample rapidly in order to prevent relaxation of the nuclear spin polarization. The obtained results indicate that the magnetoresistance decreases as the temperature increases. The Hall resistance in the HLR is also measured and found to exhibit a plateau close to a quantized value. We discuss the negative magnetoresistance temperature dependence with a stripe-shaped domain state deformed by the nuclear spin polarization.
Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals.
Sun, Yan; Zhang, Yang; Felser, Claudia; Yan, Binghai
2016-09-30
Since their discovery, topological insulators are expected to be ideal spintronic materials owing to the spin currents carried by surface states with spin-momentum locking. However, the bulk doping problem remains an obstacle that hinders such an application. In this work, we predict that a newly discovered family of topological materials, the Weyl semimetals, exhibits a large intrinsic spin Hall effect that can be utilized to generate and detect spin currents. Our ab initio calculations reveal a large spin Hall conductivity in the TaAs family of Weyl materials. Considering the low charge conductivity of semimetals, Weyl semimetals are believed to present a larger spin Hall angle (the ratio of the spin Hall conductivity over the charge conductivity) than that of conventional spin Hall systems such as the 4d and 5d transition metals. The spin Hall effect originates intrinsically from the bulk band structure of Weyl semimetals, which exhibit a large Berry curvature and spin-orbit coupling, so the bulk carrier problem in the topological insulators is naturally avoided. Our work not only paves the way for employing Weyl semimetals in spintronics, but also proposes a new guideline for searching for the spin Hall effect in various topological materials.
Quantitative Analysis of Spin Hall Effect in Nanostructures
S. Katiyal
2012-07-01
Full Text Available Spin transport in nano structured devices depends on interfaceresistance, electrode resistance, Spin polarization and Spindiffusion length. Spin Hall Effect (SHE, caused by Spin–orbitscattering in nonmagnetic conductors, gives rise to theconversion between Spin and charge currents in a non localdevice. Recently, SHE has been observed using non local Spininjection in metal-based nanostructured devices, which pavesthe way for future Spin electronic applications. In presentwork we have theoretically analyzed the SHE phenomenabased on experimental results obtained till date. We have usedthe Hamiltonian of two dimensional electron systems withRashba Spin-orbit coupling. We undertake the quantitativeanalysis of Spin Hall Effect in low dimensional materialsusing Spin dynamical equations and Spin Hall conductivity.
Dorelli, John C; Collinson, Glyn; Tóth, Gábor
2015-01-01
We present high resolution Hall MHD simulations of Ganymede's magnetosphere demonstrating that Hall electric fields in ion-scale magnetic reconnection layers have significant global effects not captured in resistive MHD simulations. Consistent with local kinetic simulations of magnetic reconnection, our global simulations show the development of intense field-aligned currents along the magnetic separatrices. These currents extend all the way down to the moon's surface, where they may contribute to Ganymede's aurora. Within the magnetopause and magnetotail current sheets, Hall currents in the reconnection plane accelerate ions to the local Alfv\\'en speed in the out-of-plane direction, producing a global system of ion drift belts that circulates Jovian magnetospheric plasma throughout Ganymede's magnetosphere. We discuss some observable consequences of these Hall-induced currents and ion drifts: the appearance of a sub-Jovian "double magnetopause" structure, an Alfv\\'enic ion jet extending across the upstream m...
Displacement ventilation in lecture halls
Egorov, Artem
2013-01-01
This thesis considers several important goals. The main purpose is to see how displacement ventilation sys-tem works in the lecture hall of M-building and compare obtained results with D2 and Indoor Climate Classi-fication. The second one is to analyze the function of the ventilation system. The last one is to realize when displacement ventilation is preferable to mixing ventilation. Analysis of the system was carried out with instruments from MUAS HVAC laboratory. In lecture hall were me...
Thermal currents in highly correlated systems
MORENO, J; Coleman, P.
1996-01-01
Conventional approaches to thermal conductivity in itinerant systems neglect the contribution to thermal current due to interactions. We derive this contribution to the thermal current and show how it produces important corrections to the thermal conductivity in anisotropic superconductors. We discuss the possible relevance of these corrections for the interpretation of the thermal conductivity of anisotropic superconductors.
Multiple Currents in the Gulf Stream System
Fuglister, F. C.
2011-01-01
A new interpretation of the accumulated temperature and salinity data from the Gulf Stream Area indicates that the System is made up of a series of overlapping currents. These currents are separated by relatively weak countercurrents. Data from a recent survey are presented as supporting this hypothesis.DOI: 10.1111/j.2153-3490.1951.tb00804.x
Current frontiers in systemic sclerosis pathogenesis
Ciechomska, Marzena; van Laar, Jacob; O'Reilly, Steven
2015-01-01
Systemic sclerosis is an autoimmune disease characterised by vascular dysfunction, impaired angiogenesis, inflammation and fibrosis. There is no currently accepted disease-modifying treatment with only autologous stem cell transplant showing clinically meaningful benefit. The lack of treatment optio
Concert halls with strong lateral reflections enhance musical dynamics.
Pätynen, Jukka; Tervo, Sakari; Robinson, Philip W; Lokki, Tapio
2014-03-25
One of the most thrilling cultural experiences is to hear live symphony-orchestra music build up from a whispering passage to a monumental fortissimo. The impact of such a crescendo has been thought to depend only on the musicians' skill, but here we show that interactions between the concert-hall acoustics and listeners' hearing also play a major role in musical dynamics. These interactions contribute to the shoebox-type concert hall's established success, but little prior research has been devoted to dynamic expression in this three-part transmission chain as a complete system. More forceful orchestral playing disproportionately excites high frequency harmonics more than those near the note's fundamental. This effect results in not only more sound energy, but also a different tone color. The concert hall transmits this sound, and the room geometry defines from which directions acoustic reflections arrive at the listener. Binaural directional hearing emphasizes high frequencies more when sound arrives from the sides of the head rather than from the median plane. Simultaneously, these same frequencies are emphasized by higher orchestral-playing dynamics. When the room geometry provides reflections from these directions, the perceived dynamic range is enhanced. Current room-acoustic evaluation methods assume linear behavior and thus neglect this effect. The hypothesis presented here is that the auditory excitation by reflections is emphasized with an orchestra forte most in concert halls with strong lateral reflections. The enhanced dynamic range provides an explanation for the success of rectangularly shaped concert-hall geometry.
Thoman, Cherie; Moore, Jerry E.
1977-01-01
This resource system consists of eight information and referral centers each housing a resource instrument (binders and flip chart), an operator, outreach staff, one mobile instrument, a systematic updating system and an evaluation system. (Author/DOW)
The Euler current and parity odd transport
Golkar, Siavash; Son, Dam T
2014-01-01
For a spacetime of odd dimensions endowed with a unit vector field, we introduce a new topological current that is identically conserved and whose charge is equal to the Euler character of the even dimensional spacelike foliations. The existence of this current allows us to introduce new Chern-Simons-type terms in the effective field theories describing relativistic quantum Hall states and (2+1) dimensional superfluids. Using effective field theory, we calculate various correlation functions and identify transport coefficients. In the quantum Hall case, this current provides the natural relativistic generalization of the Wen-Zee term, required to characterize the shift and Hall viscosity in quantum Hall systems. For the superfluid case this term is required to have nonzero Hall viscosity and to describe superfluids with non s-wave pairing.
Dorelli, J. C.; Glocer, Alex; Collinson, Glyn; Toth, Gabor
2015-01-01
We present high-resolution Hall MHD simulations of Ganymede's magnetosphere demonstrating that Hall electric fields in ion-scale magnetic reconnection layers have significant global effects not captured in resistive MHD simulations. Consistent with local kinetic simulations of magnetic reconnection, our global simulations show the development of intense field-aligned currents along the magnetic separatrices. These currents extend all the way down to the moon's surface, where they may contribute to Ganymede's aurora. Within the magnetopause and magnetotail current sheets, Hall J x B forces accelerate ions to the local Alfven speed in the out-of-plane direction, producing a global system of ion drift belts that circulates Jovian magnetospheric plasma throughout Ganymede's magnetosphere. We discuss some observable consequences of these Hall-induced currents and ion drifts: the appearance of a sub-Jovian 'double magnetopause' structure, an Alfvenic ion jet extending across the upstream magnetopause, and an asymmetric pattern of magnetopause Kelvin-Helmholtz waves.
The Scientific Humanism of G. Stanley Hall
Meyer, Donald H.
1971-01-01
This paper presents the humanistic psychology of the pioneer American psychologist Granville Stanley Hall (1844-1924), examining Hall's effort to develop a system of psychology that is at once rigorously scientific and, simultaneously, capable of verifying essential human values. (Author)
Medical Robots: Current Systems and Research Directions
Beasley, Ryan A.
2012-01-01
First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities ...
Spin-Hall magnetoresistance and spin Seebeck effect in Pt/CoCr2O4 bilayer system
Aqeel, Aisha; Vlietstra, Nynke; Heuver, Jeroen A.; Bauer, Gerrit E. W.; Noheda, Beatriz; van Wees, Bart J.; Palstra, Thomas T. M.
Recently, the spin-Hall Magnetoresistance (SMR) and the spin Seebeck effect (SSE) have attracted much interest in the field of spintronics. However, these effects have been studied only for collinear magnetic systems. The nature and sensitivity of these effects in non-collinear magnets is still unknown. Here, we investigate the SMR and the SSE in the Pt/CoCr2O4 heterostructure, by using a lock-in detection technique . CoCr2O4 (CCO) is a spinel with a collinear ferrimagnetic state below Tc = 94 K and non collinear magnetic phases at lower temperatures. We investigated the SMR and the SSE at different temperatures (5K-300K). We observe a large enhancement in SMR and SSE in the non-collinear phase of the CCO. Moreover, finite SMR and SSE signals are also observed above Tc, where CCO is in the paramagnetic state. Our results show that SMR and SSE are very sensitive to the different magnetic phases of the CCO
Hu, Zi-Xiang, E-mail: zihu@princeton.edu [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Physics, ChongQing University, ChongQing 400044 (China); Papić, Z.; Johri, S.; Bhatt, R.N. [Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 (United States); Schmitteckert, Peter [Institut für Nanotechnologie, Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany)
2012-06-18
We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian at ν=1/3 and ν=5/2 filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE. -- Highlights: ► FQHE is a two-dimensional physics. ► Density-matrix renormalization group method applied to FQH systems. ► Benchmark study both on sphere and cylinder geometry.
Joule heating in spin Hall geometry
Taniguchi, Tomohiro
2016-07-01
The theoretical formula for the entropy production rate in the presence of spin current is derived using the spin-dependent transport equation and thermodynamics. This theory is applicable regardless of the source of the spin current, for example, an electric field, a temperature gradient, or the Hall effect. It reproduces the result in a previous work on the dissipation formula when the relaxation time approximation is applied to the spin relaxation rate. By using the developed theory, it is found that the dissipation in the spin Hall geometry has a contribution proportional to the square of the spin Hall angle.
Are tent halls subject to property tax?
Mariusz Macudziński
2016-12-01
Full Text Available The presented publication is a response to currently asked questions and interpretative doubts of taxpayers and tax authorities, namely whether tent halls are subject to property tax. General issues connected with an entity and a subject of taxation of this tax are presented herein. The answer to the question asked is then provided through the qualification of constructions works and the allocation of tent halls in the proper category of the works, with the use of the current law.
Farsimadan, E.; Stec, W.; Howe, M.R. [Cundall LLP, Saffron House, 6-10 Kirby Street, London EC1N 8TS (United Kingdom)
2010-10-15
The paper describes the modelling and analysis of a 10 MW chilled water distribution system that is used for the cooling of parallel Data halls. During an unplanned site power failure, the Chillers may go offline for some minutes, affecting the temperature and delivery of chilled water to the Data hall cooling units. This may cause the air temperature within the Data halls to rise. The ultimate test of robustness is to ensure that the IT equipment is adequately cooled during this time. This work outlines the key findings from the thermal response of the cooling system to a site power failure. The entire chilled water network that comprised the primary and secondary plant was modelled, including components such as pumps, valves and Chillers. A transient analysis was conducted to predict the rise in water temperature at different locations in the system. Computational fluid dynamics was then adopted to predict the air temperature reaching the IT equipment, therefore confirming the capability of the design to steer clear of effects such as thermal runaway. The findings demonstrate that confidence in the omission of expensive buffer vessels and UPS backed plant could not have been achieved without the advanced transient analysis conducted here. (author)
Automatic system for ionization chamber current measurements.
Brancaccio, Franco; Dias, Mauro S; Koskinas, Marina F
2004-12-01
The present work describes an automatic system developed for current integration measurements at the Laboratório de Metrologia Nuclear of Instituto de Pesquisas Energéticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design.
Iodine Hall Thruster for Space Exploration Project
National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high power (high thrust) electric propulsion system featuring an iodine fueled Hall Effect Thruster (HET). The system to be...
Direct current power delivery system and method
Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin
2016-09-06
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.
Manger, Matthias
2008-07-01
This thesis is dedicated to the long wavelength collective excitations of quasi two-dimensional electron systems (Q2DEG) in GaAs under the influence of high magnetic fields. These excitations, which are classified into cyclotron resonances and magneto intersubband resonances, were experimentally investigated by means of far infrared Fourier spectroscopy. Cyclotron resonances were studied in a magnetic field range 0Hall Effects (FQHE) as well as to the regime of prominent polaron coupling at high temperatures. For the analysis and the interpretation of the experimental data, various theoretical models were presented and applied to the data. The theory took into account the multi-component character of cyclotron resonance in the presence of polaron coupling, bands nonparabolicity, and disorder under the combined influence of electronic screening and electron-electron coupling. The magneto intersubband resonances were investigated in the regime of the Integral Quantum Hall Effect. The grating coupler technique was used in order to couple the electromagnetic field to these collective excitations. Self consistent calculations of the subband structure and the collective modes were performed in the framework of the Hartree-Fock approximation scheme. These calculations were used for an interpretation of the experimental observations. (orig.)
CURRENT TRENDS IN PULSATILE DRUG DELIVERY SYSTEMS
S. R. Tajane et al.
2012-01-01
Full Text Available The purpose for this review on pulsatile drug delivery systems (PDDS is to compile the recent literatures with special focus on the different types and approaches involved in the development of the formulation. Pulsatile drug delivery system is the most interesting time and site-specific system. This system is designed for chronopharmacotherapy. Thus, to mimic the function of living systems and in view of emerging chronotherapeutic approaches, pulsatile delivery, which is meant to release a drug following programmed lag phase, has increasing interest in the recent years. Diseases wherein PDDS are promising include asthma, peptic ulcer, cardiovascular diseases, arthritis, and attention deficit syndrome in children, cancer, diabetes, and hypercholesterolemia. Pulsatile drug delivery system divided into 2 types’ preplanned systems and stimulus induced system, preplanned systems based on osmosis, rupturable layers, and erodible barrier coatings. Stimuli induced system based on electrical, temperature and chemically induced systems. This review also summarizes some current PDDS already available in the market. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.
Gender Representation in an Electronic City Hall: Female Adoption of Santa Monica's PEN System.
Collins-Jarvis, Lori A.
1993-01-01
Discussion of the use of electronic networking systems by women focuses on a study of their use of the Public Electronic Network (PEN) in Santa Monica (California). Characteristics of PEN that contributed to female adoption are described; gender, political participation, and motivation are examined; and future research is suggested. (46…
Medical Robots: Current Systems and Research Directions
Ryan A. Beasley
2012-01-01
Full Text Available First used medically in 1985, robots now make an impact in laparoscopy, neurosurgery, orthopedic surgery, emergency response, and various other medical disciplines. This paper provides a review of medical robot history and surveys the capabilities of current medical robot systems, primarily focusing on commercially available systems while covering a few prominent research projects. By examining robotic systems across time and disciplines, trends are discernible that imply future capabilities of medical robots, for example, increased usage of intraoperative images, improved robot arm design, and haptic feedback to guide the surgeon.
K. Sumathi
2016-07-01
Full Text Available This paper deals with the influence of Hall and ion slip effects on three dimensional unsteady MHD flow of a viscous ncompressible fluid between the vertical flat porous plates separated by a finite distance in a slip flow regime. The moving plate is subjected to a constant injection V0 and the stationary plate to a transverse sinusoidal suction velocity distribution, so that the flow becomes three dimensional. Approximate solutions for cross flow, main flow velocities, skin friction and rate of heat transfer were found using perturbation techniques. The effects of various parameters involved in the problem on flow characteristics were studied numerically.
Review of Current Nuclear Vacuum System Technologies
Carroll, M.; McCracken, J.; Shope, T.
2003-02-25
Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested.
井辉
2015-01-01
This article first analysis of the current dc current hall sensor has many problems, and based on this, advances the zero magnetic hall general formula digital dc current measurement circuit design. And gives the design idea of software, illustrates the design of each a piece of software. In addition in order to improve the accuracy of measurement, puts forward a way of using the reverse magnetic field offset method to improve measurement precision of the software design.%首先分析了目前直流电流霍尔传感器存在诸多问题,并在此基础上提出了零磁通式数字直流电流霍尔测量电路的设计.并且给出了软件的设计思路,说明了软件各个某块的设计.另外为了提高测量精度,提出了一种利用逆向磁场抵消的方式提高测量精度的软件设计方法.
基于电流补偿的低精度霍尔传感器位置估计%Position estimation of low-resolution Hall sensors based on current compensation
韩亮
2013-01-01
In order to cut the cost of servocontrol system of permanent-magnet synchronous motor,the paper used three low-resolution Hall sensors as position detecting device to estimate high-resolution rotor position information.The sensors reduced error of traditional low-resolution control technology at start-up and low-speed stage by using current compensation to estimate acceleration.The simulation results demonstrate that the method effectively improves stability of the motor at the low-speed stage,decreases estimation error of rotor position and gains favorable control performance in all-speed range.%为了降低永磁同步电动机伺服控制系统的成本,采用3个低精度开关型霍尔传感器作为转子位置检测装置来估算高精度的转子位置信息,并采取电流补偿的方法对启动及低速阶段的加速度进行估计,解决了传统的低精度控制技术在启动及低速阶段误差较大的问题.仿真结果表明,该方法能有效提高电动机在低速阶段的稳定性,减小转子位置估算误差,在全速范围内达到了良好的调速性能.
Pseudospin solitons in the coherent stripe phase of a bilayer quantum Hall system
Doiron, C. B.; Côté, R.; Fertig, H. A.
2006-08-01
In the Hartree-Fock approximation and at total filling factor ν=4N+1, the ground state of the two-dimensional electron gas in a double quantum well system in a quantizing magnetic field is, in some range of interlayer distances, a coherent striped phase. This stripe phase has one-dimensional coherent channels that support charged excitations in the form of pseudospin solitons. In this work, we compute the transport gap of the coherent striped phase due to the creation of soliton-antisoliton pairs using a supercell microscopic unrestricted Hartree-Fock approach. We study the energy gap as a function of interlayer distance and tunneling amplitude. Our calculations confirm that the soliton-antisoliton excitation energy is lower than the corresponding Hartree-Fock electron-hole pair energy.
Bernevig, B.Andrei; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
The quantum Hall liquid is a novel state of matter with profound emergent properties such as fractional charge and statistics. Existence of the quantum Hall effect requires breaking of the time reversal symmetry caused by an external magnetic field. In this work, we predict a quantized spin Hall effect in the absence of any magnetic field, where the intrinsic spin Hall conductance is quantized in units of 2 e/4{pi}. The degenerate quantum Landau levels are created by the spin-orbit coupling in conventional semiconductors in the presence of a strain gradient. This new state of matter has many profound correlated properties described by a topological field theory.
Current therapy of systemic sclerosis (scleroderma).
Müller-Ladner, U; Benning, K; Lang, B
1993-04-01
Treatment of systemic sclerosis (scleroderma) presents a challenge to both the patient and the physician. Established approaches include long-term physiotherapy, disease-modifying agents such as D-penicillamine, and treatment of organ involvement. These efforts are often unsatisfactory since the results are poor. However, recent advances include treatment of Raynaud's phenomenon (plasmapheresis, stanozolol, and prostacyclin analogues), scleroderma renal crisis (angiotensin-converting enzyme inhibitors), and gastric hypomotility (cisapride). This article covers the current approaches to the disease-modifying therapy including those related to the function of collagen-producing fibroblasts, vascular alterations, and the cellular and humoral immune system, as well as treatment of involved organs.
Observation of the magnon Hall effect.
Onose, Y; Ideue, T; Katsura, H; Shiomi, Y; Nagaosa, N; Tokura, Y
2010-07-16
The Hall effect usually occurs in conductors when the Lorentz force acts on a charge current in the presence of a perpendicular magnetic field. Neutral quasi-particles such as phonons and spins can, however, carry heat current and potentially exhibit the thermal Hall effect without resorting to the Lorentz force. We report experimental evidence for the anomalous thermal Hall effect caused by spin excitations (magnons) in an insulating ferromagnet with a pyrochlore lattice structure. Our theoretical analysis indicates that the propagation of the spin waves is influenced by the Dzyaloshinskii-Moriya spin-orbit interaction, which plays the role of the vector potential, much as in the intrinsic anomalous Hall effect in metallic ferromagnets.
Hall effect degradation of rail gun performance
Witalis, E. A.; Gunnarsson, Patrik
1993-01-01
The paper discusses the Hall effect and shows it to be significant in the low-density and high-field trailing part of a plasma armature. Without the Hall effect a simple armature model is derived. It exhibits properties expected from classical MHD theory and shows that the purely relativistic electric charge buildup on the rails is a fundamental gun property, leading to V(breech) = 1.5 V(muzzle). The mathematics involved in accounting for Hall effect phenomena is described. These are of two types: the Hall-skewing of the armature current and the superimposed plasma flow rotation. For decreasing gun current the two effects efficiently combine to eject armature plasma rearwards, thus creating conditions for arc separation and parasitic arcs.
Pai, Chi-Feng; Nguyen, Minh-Hai; Vilela-Leão, Luis Henrique; Buhrman, R. A., E-mail: rab8@cornell.edu [Cornell University, Ithaca, New York 14853 (United States); Belvin, Carina [Department of Physics, Wellesley College, Massachusetts 02481 (United States); Ralph, D. C. [Cornell University, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States)
2014-02-24
We report that strong perpendicular magnetic anisotropy of the ferromagnetic layer in a W/CoFeB/MgO multilayer structure can be established by inserting a Hf layer as thin as 0.25 nm between the W and CoFeB layers. The Hf spacer also allows transmission of spin currents generated by an in-plane charge current in the W layer to apply strong spin torque on the CoFeB, thereby enabling current-driven magnetic switching. The antidamping-like and field-like components of the spin torque exerted on a 1 nm CoFeB layer are of comparable magnitudes in this geometry. Both components originate from the spin Hall effect in the underlying W layer.
Hall effect in organic layered conductors
R.A.Hasan
2006-01-01
Full Text Available The Hall effect in organic layered conductors with a multisheeted Fermi surfaces was considered. It is shown that the experimental study of Hall effect and magnetoresistance anisotropy at different orientations of current and a quantizing magnetic field relative to the layers makes it possible to determine the contribution of various charge carriers groups to the conductivity, and to find out the character of Fermi surface anisotropy in the plane of layers.
Iodine Hall Thruster for Space Exploration Project
National Aeronautics and Space Administration — In the Phase I program, Busek Co. Inc. tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high flow iodine feed system,...
Driving and detecting ferromagnetic resonance in insulators with the spin Hall effect.
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; Chang, Houchen; Pearson, John E.; Wu, Mingzhong; Ketterson, John B.; Hoffmann, Axel
2015-11-06
We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/Y3Fe5O12 (YIG) bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc current through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. We find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.
Magnetic transport properties and Hall effect in Gd1-x Prx Ba2 Cu3O7- & delta system
H. Khosroabadi
2002-06-01
Full Text Available Single phase polycrystalline Gd1-xPrxBa2Cu3O7-δ samples with x=0.05 , 0.10, and 0.15 have been prepared by standard solid state reaction technique and characterized by XRD and SEM analysis. The electrical resistivity, Hall effect and magnetoresistance measurements have been on the samples. The electrical resistivity measurements indicate a reduction of transition temperature (Tc and an increase of superconducting transition width with increasing x. Hall measurements show anomalous temperature dependence for Hall coefficient (RH in the normal state. In Gd0.90Pr0.10Ba2Cu3O7- sample, we have seen an anomalous sign reversal in the Hall coefficient with respect to temperature. The magnetoresistance measurements in the range of 0 to 10 kOe also show small changes in the normal states, although the changes are large in the superconducting state. An anomaly at 260 K appears in the transverse magnetoresistance for x=0.1 sample, which is related to the presence of magnetic Gd ion. The superconducting transition width also increases with the magnetic field in all of the samples. An exponent behavior for Hc2 versus (1-T/T0(H and superconducting transition width versus H have been derived. Pinning energy (U has also been calculated from these measurements. Results show the reduction of pinning energy with the increase of magnetic field and x.Our results show that the exponent behavior of U α Hv , where v is independent of x.
Ballistic Spin Hall Transistor Using a Heterostructure Channel and Its Application to Logic Devices
Choi, Won Young; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol
2017-07-01
In a ballistic spin transport channel, spin Hall and Rashba effects are utilized to provide a gate-controlled spin Hall transistor. A ferromagnetic electrode and a spin Hall probe are employed for spin injection and detection, respectively, in a two-dimensional Rashba system. We utilize the spin current of which polarization direction is controlled by the gate electric field which determines the strength of the Rashba effective field. By observing the spin Hall voltage, spin injection and coherent spin precession are electrically monitored. From the original Datta-Das technique, we measure the channel conductance oscillation as the gate voltage is varied. When the magnetization orientation of the injector is reversed by 180°, the phase of the Datta-Das oscillation shifts by 180° as expected. Depending on the magnetization direction, the spin Hall transistor behaves as an n- or p-type transistor. Thus, we can implement the complementary transistors which are analogous to the conventional complementary metal oxide semiconductor transistors. Using the experimental data extracted from the spin Hall transistor, the logic operation is also presented.
Ballistic Spin Hall Transistor Using a Heterostructure Channel and Its Application to Logic Devices
Choi, Won Young; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Koo, Hyun Cheol
2016-09-01
In a ballistic spin transport channel, spin Hall and Rashba effects are utilized to provide a gate-controlled spin Hall transistor. A ferromagnetic electrode and a spin Hall probe are employed for spin injection and detection, respectively, in a two-dimensional Rashba system. We utilize the spin current of which polarization direction is controlled by the gate electric field which determines the strength of the Rashba effective field. By observing the spin Hall voltage, spin injection and coherent spin precession are electrically monitored. From the original Datta-Das technique, we measure the channel conductance oscillation as the gate voltage is varied. When the magnetization orientation of the injector is reversed by 180°, the phase of the Datta-Das oscillation shifts by 180° as expected. Depending on the magnetization direction, the spin Hall transistor behaves as an n- or p-type transistor. Thus, we can implement the complementary transistors which are analogous to the conventional complementary metal oxide semiconductor transistors. Using the experimental data extracted from the spin Hall transistor, the logic operation is also presented.
A High Performance Cathode Heater for Hall Thrusters Project
National Aeronautics and Space Administration — High current hollow cathodes are the baseline electron source for next generation high power Hall thrusters. Currently for electron sources providing current levels...
Optical Hall effect in strained graphene
Nguyen, V. Hung; Lherbier, A.; Charlier, J.-C.
2017-06-01
When passing an optical medium in the presence of a magnetic field, the polarization of light can be rotated either when reflected at the surface (Kerr effect) or when transmitted through the material (Faraday rotation). This phenomenon is a direct consequence of the optical Hall effect arising from the light-charge carrier interaction in solid state systems subjected to an external magnetic field, in analogy with the conventional Hall effect. The optical Hall effect has been explored in many thin films and also more recently in 2D layered materials. Here, an alternative approach based on strain engineering is proposed to achieve an optical Hall conductivity in graphene without magnetic field. Indeed, strain induces lattice symmetry breaking and hence can result in a finite optical Hall conductivity. First-principles calculations also predict this strain-induced optical Hall effect in other 2D materials. Combining with the possibility of tuning the light energy and polarization, the strain amplitude and direction, and the nature of the optical medium, large ranges of positive and negative optical Hall conductivities are predicted, thus opening the way to use these atomistic thin materials in novel specific opto-electro-mechanical devices.
Bulk Versus Edge in the Quantum Hall Effect
Kao, Y. -C.; Lee, D.-H.
1996-01-01
The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomaly {\\it is} the underlying principle of the ``edge approach'' of quantum Hall effect. In that approach, $\\sxy$ should not be taken as the conductance derived from the space-local current-current correlation function of the pure one-dimensional edge problem.
Understanding the physics of a possible non-Abelian fractional quantum hall effect state.
Pan, Wei; Crawford, Matthew; Tallakulam, Madhu; Ross, Anthony Joseph, III
2010-10-01
We wish to present in this report experimental results from a one-year Senior Council Tier-1 LDRD project that focused on understanding the physics of a possible non-Abelian fractional quantum Hall effect state. We first give a general introduction to the quantum Hall effect, and then present the experimental results on the edge-state transport in a special fractional quantum Hall effect state at Landau level filling {nu} = 5/2 - a possible non-Abelian quantum Hall state. This state has been at the center of current basic research due to its potential applications in fault-resistant topological quantum computation. We will also describe the semiconductor 'Hall-bar' devices we used in this project. Electron physics in low dimensional systems has been one of the most exciting fields in condensed matter physics for many years. This is especially true of quantum Hall effect (QHE) physics, which has seen its intellectual wealth applied in and has influenced many seemingly unrelated fields, such as the black hole physics, where a fractional QHE-like phase has been identified. Two Nobel prizes have been awarded for discoveries of quantum Hall effects: in 1985 to von Klitzing for the discovery of integer QHE, and in 1998 to Tsui, Stormer, and Laughlin for the discovery of fractional QHE. Today, QH physics remains one of the most vibrant research fields, and many unexpected novel quantum states continue to be discovered and to surprise us, such as utilizing an exotic, non-Abelian FQHE state at {nu} = 5/2 for fault resistant topological computation. Below we give a briefly introduction of the quantum Hall physics.
Catalytic currents in dithiophosphate-iodide systems
Gabdullin, M.G.; Garifzyanov, A.R.; Toropova, V.F.
1986-01-01
Catalytic currents of oxidizing agents are used to determinerate constants of simultaneous chemical reactions. In the present paper, the authors investigated electrochemical oxidation of iodide ions in the presence of a series of dithiophosphates (RO)/sub 2/PSS/sup -/ at a glassy carbon electrode n that (R=CH/sub 3/, C/sub 2/H/sub 5/, n-C/sub 3/H/sub 7/, n-C/sub 4/H/sub 9/, iso-C/sub 4/H/sub 9/, and sec-C/sub 4/H/sub 9/). It is know n that dithiophosphates (DTP) are strong reducing agents and are oxidized by iodine. At the same time, as shown previously, electrochemical oxidation of DTP occurs at more positive potentials in comparision with the oxidation potential of iodide ions. This suggested that it is possible for a catalytic effect to be manifested in DTP-I/sup -/ systems. Current-voltage curves are shown for solutions of I/sup -/ in the absence and in the presence of DTP. All data indicate a catalytic nature of the electrode process. The obtained data show that the rates of reactions of DTP with iodine decrease with increasing volume and branching of the substituents at the phosphorus atom.
Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters
L. Dorf; Y. Raitses; N.J. Fisch
2003-09-08
A diagnostic setup for characterization of near-anode processes in Hall-current plasma thrusters consisting of biased and emissive electrostatic probes, high-precision positioning system and low-noise electronic circuitry was developed and tested. Experimental results show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for accurate near-anode measurements.
Estimates of Quantities in a Hall Effect Geodynamo Theory
Annraoi M de Paor
2008-01-01
Full Text Available Currents, resistances, dynamo constant, Hall voltage coefficient and inductances are estimated for the author’s geodynamo theory incorporating the Hall Effect. It is concluded that the Hall Coefficient in the bulk liquid core of the Earth is approximately 1.512x10-1, orders of magnitude greater than in normal liquid metals. The ordering effect of enormous pressure is a possible cause.
Estimates of quantities in a Hall effect geodynamo theory
Annraoi M de Paor
2008-01-01
Currents, resistances, dynamo constant, Hall voltage coefficient and inductances are estimated for the author’s geodynamo theory incorporating the Hall Effect. It is concluded that the Hall Coefficient in the bulk liquid core of the Earth is approximately 1.512x10-1, orders of magnitude greater than in normal liquid metals. The ordering effect of enormous pressure is a possible cause.
Fragility of Nonlocal Edge-Mode Transport in the Quantum Spin Hall State
Mani, Arjun; Benjamin, Colin
2016-07-01
Nonlocal currents and voltages are better at withstanding the deleterious effects of dephasing than local currents and voltages in nanoscale systems. This hypothesis is known to be true in quantum Hall setups. We test this hypothesis in a four-terminal quantum spin Hall setup wherein we compare the local resistance measurement with the nonlocal one. In addition to inelastic-scattering-induced dephasing, we also test the resilience of the resistance measurements in the aforesaid setups to disorder and spin-flip scattering. We find the axiom that nonlocal resistance is less affected by the detrimental effects of disorder and dephasing to be untrue, in general, for the quantum spin Hall case. This has important consequences since it is widely communicated that nonlocal transport through edge channels in topological insulators have potential applications in low-power information processing.
Uddin Ziya
2014-01-01
Full Text Available In this paper a numerical model is developed to examine the effect of thermal radiation on magnetohydrodynamic heat transfer flow of a micropolar fluid past a non-conducting wedge in presence of heat source/sink. In the model it is assumed that the fluid is viscous, incompressible and electrically conducting. The Hall and ion slip effects have also been taken into consideration. The model contains highly non-linear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. These equations are then solved numerically by Shooting technique along with the Runge-Kutta-Fehlberg integration scheme for entire range of parameters with appropriate boundary conditions. The effects of various parameters involved in the problem have been studied with the help of graphs. Numerical values of skin friction coefficients and Nusselt number are presented in tabular form. The results showed that the micropolar fluids are better to reduce local skin drag as compared to Newtonian fluids and the presence of heat sink increases the heat transfer rate.
Direct comparison of fractional and integer quantized Hall resistance
Ahlers, Franz J.; Götz, Martin; Pierz, Klaus
2017-08-01
We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3 ± 6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.
Quantized Anomalous Hall Effect in Magnetic Topological Insulators
YU Rui
2011-01-01
@@ The Hall effect, the anomalous Hall effect (AHE) and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively.The AHE, in which a voltage transverse to the electric current appears even in the absence of an external magnetic field, was first detected in ferromagnetic (FM) metals in 1881 and later found to arise from the spin-orbit coupling (SOC) between the current and magnetic moments.Recent progress on the mechanism of AHE has established a link between the AHE and the topological nature of the Hall current by adopting the Berry-phase concepts in close analogy to the intrinsic spin Hall effect.Given the experimental discovery of the quantum Hall and the quantum spin Hall effects, it is natural to ask whether the AHE can also be quantized.In a quantized anomalous Hall (QAH) insulator, spontaneous magnetic moments and spin-orbit coupling combine to give rise to a topologically non-trivial electronic structure, leading to the quantized Hall effect without any external magnetic field.
Papadogianni, Alexandra; Bierwagen, Oliver [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany); White, Mark E.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Galazka, Zbigniew [Leibniz-Institut für Kristallzüchtung, Max-Born-Straße 2, D-12489 Berlin (Germany)
2015-12-21
We propose a simple method based on the combination of Hall and Seebeck measurements to estimate the thickness of a carrier system within a semiconductor film. As an example, this method can distinguish “bulk” carriers, with homogeneous depth distribution, from “sheet” carriers, that are accumulated within a thin layer. The thickness of the carrier system is calculated as the ratio of the integral sheet carrier concentration, extracted from Hall measurements, to the volume carrier concentration, derived from the measured Seebeck coefficient of the same sample. For rutile SnO{sub 2}, the necessary relation of Seebeck coefficient to volume electron concentration in the range of 3 × 10{sup 17} to 3 × 10{sup 20 }cm{sup −3} has been experimentally obtained from a set of single crystalline thin films doped with varying Sb-doping concentrations and unintentionally doped bulk samples, and is given as a “calibration curve.” Using this calibration curve, our method demonstrates the presence of interface electrons in homogeneously deep-acceptor (In) doped SnO{sub 2} films on sapphire substrates.
National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...
Generación de campos magnéticos en astrofísica en presencia de efecto Hall
Mininni, P. D.; Gómez, D. O.; Mahajan, S. M.
Magnetic field generation in astrophysical environments has been historically described within the framework of dynamo activity in magnetohydrodynamics. However, this canonical framework is not applicable in objects where kinetic effects, such as the Hall effect, are relevant. Some of the astrophysical systems where the Hall effect might be important are: turbulence in the early universe, white dwarfs, neutron stars, and accretion discs (specially in protostellar discs). In the present work, we present theoretical results and numerical simulations showing that the Hall currents have a profound effect on turbulent dynamo action. The results are compared with the classical dynamo theory. Depending on the strength of the Hall effect the generation of magnetic energy can strongly increase or decrease, reaching values much larger than those obtained in magnetohydrodynamic turbulent dynamos.
Electron dynamics in Hall thruster
Marini, Samuel; Pakter, Renato
2015-11-01
Hall thrusters are plasma engines those use an electromagnetic fields combination to confine electrons, generate and accelerate ions. Widely used by aerospace industries those thrusters stand out for its simple geometry, high specific impulse and low demand for electric power. Propulsion generated by those systems is due to acceleration of ions produced in an acceleration channel. The ions are generated by collision of electrons with propellant gas atoms. In this context, we can realize how important is characterizing the electronic dynamics. Using Hamiltonian formalism, we derive the electron motion equation in a simplified electromagnetic fields configuration observed in hall thrusters. We found conditions those must be satisfied by electromagnetic fields to have electronic confinement in acceleration channel. We present configurations of electromagnetic fields those maximize propellant gas ionization and thus make propulsion more efficient. This work was supported by CNPq.
General footage ISOLDE experimental hall
2016-01-01
Overview of the ISOLDE experimental hall. Equipment and experiments. Taken from the WITCH / EBIS platform: ISOLDE hall infrastructure, GHM line, LA1, LA2, LA0, central beamline, COLLAPS experiment, CRIS experiment, ISOLTRAP experiment, laser guidance from building 508 into the hall for laser spectroscopy COLLAPS and CRIS. Taken from the HIE ISOLDE shielding tunnel roof: ISOLDE hall infrastructure, WITCH experiment, VITO line, TAS experiment. General footage: High Tension room entrance and EBIS platform, staircases and passages in the experimental hall.
Dynamics of the southern California current system
di Lorenzo, Emanuele
The dynamics of seasonal to long-term variability of the Southern California Current System (SCCS) is studied using a four dimensional space-time analysis of the 52 year (1949--2000) California Cooperative Oceanic Fisheries Investigations (CalCOFI) hydrography combined with a sensitivity analysis of an eddy permitting primitive equation ocean model under various forcing scenarios. The dynamics of the seasonal cycle in the SCCS can be summarized as follows. In spring upwelling favorable winds force an upward tilt of the isopycnals along the coast (equatorward flow). Quasi-linear Rossby waves are excited by the ocean adjustment to the isopycnal displacement. In summer as these waves propagate offshore poleward flow develops at the coast and the Southern California Eddy (SCE) reaches its seasonal maxima. Positive wind stress curl in the Southern California Bight is important in maintaining poleward flow and locally reinforcing the SCE with an additional upward displacement of isopycnals through Ekman pumping. At the end of summer and throughout the fall instability processes within the SCE are a generating mechanism for mesoscale eddies, which fully develop in the offshore waters during winter. On decadal timescales a warming trend in temperature (1 C) and a deepening trend in the depth of the mean thermocline (20 m) between 1950 and 1998 are found to be primarily forced by large-scale decadal fluctuations in surface heat fluxes combined with horizontal advection by the mean currents. After 1998 the surface heat fluxes suggest the beginning of a period of cooling, which is consistent with colder observed ocean temperatures. The temporal and spatial distribution of the warming is coherent over the entire northeast Pacific Ocean. Salinity changes are decoupled from temperature and uncorrelated with indices of large-scale oceanic variability. Temporal modulation of southward horizontal advection by the California Current is the primary mechanism controlling local
Szabo, James
2015-01-01
Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).
Quantization of interface currents
Kotani, Motoko [AIMR, Tohoku University, Sendai (Japan); Schulz-Baldes, Hermann [Department Mathematik, Universität Erlangen-Nürnberg, Erlangen (Germany); Villegas-Blas, Carlos [Instituto de Matematicas, Cuernavaca, UNAM, Cuernavaca (Mexico)
2014-12-15
At the interface of two two-dimensional quantum systems, there may exist interface currents similar to edge currents in quantum Hall systems. It is proved that these interface currents are macroscopically quantized by an integer that is given by the difference of the Chern numbers of the two systems. It is also argued that at the interface between two time-reversal invariant systems with half-integer spin, one of which is trivial and the other non-trivial, there are dissipationless spin-polarized interface currents.
Current-potential characteristics of electrochemical systems
Battaglia, V.S.
1993-07-01
This dissertation contains investigations in three distinct areas. Chapters 1 and 2 provide an analysis of the effects of electromagnetic phenomena during the initial stages of cell discharge. Chapter 1 includes the solution to Maxwell`s equations for the penetration of the axial component of an electric field into an infinitely long cylindrical conductor. Chapter 2 contains the analysis of the conductor included in a radial circuit. Chapter 3 provides a complete description of the equations that describe the growth of an oxide film. A finite difference program was written to solve the equations. The system investigated is the iron/iron oxide in a basic, aqueous solution. Chapters 4 and 5 include the experimental attempts for replacing formaldehyde with an innocuous reducing agent for electroless deposition. In chapter 4, current-versus-voltage curves are provided for a sodium thiosulfate bath in the presence of a copper disk electrode. Also provided are the cathodic polarization curves of a copper/EDTA bath in the presence of a copper electrode. Chapter 5 contains the experimental results of work done with sodium hypophosphite as a reducing agent. Mixed-potential-versus-time curves for solutions containing various combinations of copper sulfate, nickel chloride, and hypophosphite in the presence of a palladium disk electrode provide an indication of the reducing power of the solutions.
Dynamic Feedback in Ferromagnet-Spin Hall Metal Heterostructures
Cheng, Ran; Zhu, Jian-Gang; Xiao, Di
2016-08-01
In ferromagnet-normal-metal heterostructures, spin pumping and spin-transfer torques are two reciprocal processes that occur concomitantly. Their interplay introduces a dynamic feedback effect interconnecting energy dissipation channels of both magnetization and current. By solving the spin diffusion process in the presence of the spin Hall effect in the normal metal, we show that the dynamic feedback gives rise to (i) a nonlinear magnetic damping that is crucial to sustain uniform steady-state oscillations of a spin Hall oscillator at large angles and (ii) a frequency-dependent spin Hall magnetoimpedance that reduces to the spin Hall magnetoresistance in the dc limit.
Graphene-based Hall Sensors for direct magnetic imaging by using Scanning Hall Probe Microscope
Sonusen, Selda; Aksoy, Seda; Dede, Munir; Oral, Ahmet
2013-03-01
Graphene has been attracting great interest due to its unique electronic and mechanical properties for both fundamental and experimental studies since 2004. Graphene is a promising material for many applications in high speed electronic and spintronic devices as well as sensors. Its high mobility makes graphene a good candidate for magnetic imaging in Scanning Hall Probe Microscope (SHPM). Hall probes are used to scan the magnetic samples to image magnetic domains in SHPM. In this work, single layer graphene produced by chemical vapor deposition technique is used to fabricate Hall sensors by optical and the e-beam lithography with sizes from 500 nm to a few micrometers. The Hall crosses are characterized by Raman mapping to make sure that they are made of a single layer graphene. The Graphene Hall Sensors noise spectra is measured as a function of different bias currents and carrier concentrations at 300 K, 77 K and 4.24K. The imaging performance of the Hall sensor will be demonstrated at different temperatures by imaging a garnet crystal using a Low Temperature Scanning Hall Probe Microscope (LT-SHPM).
杨鹏; 史旺旺; 沈楚焱
2012-01-01
An approach to non-linearity compensation of angle measurement system based on linear hall sensor was putted forward in this paper. This can be described that when some circles of coils were made in the fixed magnet, the magnetic field caused by the coils and caused by the magnet were both vertical. And the space magnetic field was stacked by the above two magnetic fields. By fixing the position of the hall sensor and keeping the control current constant, the angle generated by rotating the hall sensor changed while the output voltage of the hall sensor also changed. So theory analysis and simulation of two structures of increased coils and not increased coils were introduced in this paper. The results show that the linearity of the related curve between the voltage and angle was obviously increased and this method has excellent characteristics in angle measurement. At the same time, hardware circuit of hall sensor was also designed and measured. The results show that this method has excellent characteristics, such as the simple circuit, the quick survey speed, the strong anti-interference ability, the measuring accuracy and easy to install and operate.%本文提出了一种基于线性霍尔传感器的角度测量的非线性校正方法，在固定磁铁上绕制一定匝数的线圈，线圈产生的磁场与磁铁产生的磁场垂直，空间磁场为上述两个磁场的叠加，固定霍尔传感器的位置，同时保持控制电流不变，让磁铁绕霍尔传感器旋转产生角度的变换，霍尔传感器输出电压也将产生变化。对增加线圈和不增加线圈两种结构进行理论分析和仿真，从仿真结果看，霍尔电压与夹角的关系曲线明显线性增加，测量范围扩大，在角度测量中具有独特的优点。同时设计了传感器硬件电路，进行了实验测量，仿真和实测结果表明：该方法具有电路简单、实时性好、频率相应快、抗干扰能力强、安装调试方便等特点。
Mesoscopic spin Hall effect in semiconductor nanostructures
Zarbo, Liviu
The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities
Hall and Nernst effects in monolayer MoS2
Zhang, Yun-Hai; Zhang, Ming-Hua
2016-03-01
We study Hall and Nernst transports in monolayer MoS2 based on Green’s function formalism. We have derived analytical results for spin and valley Hall conductivities in the zero temperature and spin and valley Nernst conductivities in the low temperature. We found that tuning of the band gap and spin-orbit splitting can drive system transition from spin Hall insulator (SHI) to valley Hall insulator (VHI). When the system is subjected to a temperature gradient, the spin and valley Nernst conductivities are dependent on Berry curvature.
Wang, Haipeng [Jefferson Lab, Newport News, VA; Cheng, Guangfeng [Jefferson Lab, Newport News, VA; Turlington, Larry T. [Jefferson Lab, Newport News, VA; Wissmann, Mark J. [Jefferson Lab, Newport News, VA
2015-09-01
A short version of the original CEBAF normal conducting 4-rod separator cavity has been developed into a 750MHz one * since the concept of simultaneous 4-hall operation for CEBAF is introduced **. This work has been advanced further based on the EM design optimization, bench measurement and by conducting RF-thermal coupled simulation using CST and ANSYS to confirm the cavity tuning and thermal performance. The cavity fabrication used matured technology like copper plating and machining. The cavity flanges, couplers, tuners and cooling channels adopted consistent/compatible hardware with the existing 500MHz cavities. The electromagnetic and thermal design simulations have greatly reduced the prototyping and bench tuning time of the first prototype. Four production cavities have reached a typical 1.94MV kick voltage or 3.0kW wall loss on each cavity after a minor multipactoring or no processing, 7.5% overhead power than the design specification.
Keller, L.; Rhyner, R.
2004-07-01
A 70 kW photovoltaic installation has been constructed on the roof of the new Building 6 of Geneva Palexpo, a compound that hosts various conferences, exhibitions and sporting or other events, counting almost 1.5 million visitors a year, including the International Car Show, which alone attracts more than 700,000 visitors each year. The purpose of this installation is the indirect supply of recharging terminals for electric vehicles. The solar installation and the electric vehicle recharging terminals support an information campaign on solar energy and 'sustainable' mobility. For this purpose various explanatory signs have been placed inside the Geneva Palexpo halls and a promotional stand for renewable energy and 'sustainable' transport was placed inside the International Car Show 2003. This stand had some success: more than 4,000 people took part in the competition organised on this occasion. (author)
威廉斯堡音乐厅的音响系统%Sound System in Music Hall of Williamsburg
洪浚霆
2009-01-01
鲍艾里演出公司（Bowery Presents）是美国一家独立的音乐演出公司,旗下拥有多个演出场馆,其中包括水银音乐大厅（Mercury Lounge）、鲍艾里剧场（Bowery Ballroom）、韦伯斯特大厅（Webster Hall）以及可容纳3000观众的终端五剧场（Terminal Five）。2008年初，该公司又将业务领域扩展到了纽约的威廉斯堡音乐厅（Music Hall of Williamsburg）。该音乐厅可容纳550人，并因其优秀的音响效果而远近驰名。
Tafra, E; Čulo, M; Basletić, M
2012-01-01
We have measured the Hall effect on recently synthesized single crystals of the quasi-one-dimensional organic conductor TTF–TCNQ (tetrathiafulvalene–tetracyanoquinodimethane), a well known charge transfer complex that has two kinds of conductive stacks: the donor (TTF) and the acceptor (TCNQ......) chains. The measurements were performed in the temperature interval 30 K ... Hall effect measurements. Our results show, contrary to past belief, that the Hall coefficient does not depend on the geometry of measurements and that the Hall coefficient value is approximately zero in the high temperature region (T > 150 K), implying that there is no dominance of either the TTF...
Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet.
Hennel, Szymon; Braem, Beat A; Baer, Stephan; Tiemann, Lars; Sohi, Pirouz; Wehrli, Dominik; Hofmann, Andrea; Reichl, Christian; Wegscheider, Werner; Rössler, Clemens; Ihn, Thomas; Ensslin, Klaus; Rudner, Mark S; Rosenow, Bernd
2016-04-01
In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.
Nonlocal Anomalous Hall Effect
Zhang, Steven S.-L.; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect—the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt /YIG structures.
Conducting Wall Hall Thrusters
Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon
2013-01-01
A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.
Nonlocal Anomalous Hall Effect.
Zhang, Steven S-L; Vignale, Giovanni
2016-04-01
The anomalous Hall (AH) effect is deemed to be a unique transport property of ferromagnetic metals, caused by the concerted action of spin polarization and spin-orbit coupling. Nevertheless, recent experiments have shown that the effect also occurs in a nonmagnetic metal (Pt) in contact with a magnetic insulator [yttrium iron garnet (YIG)], even when precautions are taken to ensure that there is no induced magnetization in the metal. We propose a theory of this effect based on the combined action of spin-dependent scattering from the magnetic interface and the spin-Hall effect in the bulk of the metal. At variance with previous theories, we predict the effect to be of first order in the spin-orbit coupling, just as the conventional anomalous Hall effect-the only difference being the spatial separation of the spin-orbit interaction and the magnetization. For this reason we name this effect the nonlocal anomalous Hall effect and predict that its sign will be determined by the sign of the spin-Hall angle in the metal. The AH conductivity that we calculate from our theory is in order of magnitude agreement with the measured values in Pt/YIG structures.
Superconducting Current Leads for Cryogenic Systems Project
National Aeronautics and Space Administration — Space flight cryocoolers will be able to handle limited heat loads at their expected operating temperatures and the current leads may be the dominant contributor to...
马瑞卿; 邓钧君
2011-01-01
Adriving method of Brushless DC Motor (BLDCM) with sinusoidal current was presented. Space vector pulse width modulation ( SVPWM) techniques was adopted to generate sinusoidal current for motor three-phase windings according to the rotor position information provided by three-phase Hall sensors. The experimental results show that the approach is more effective for the minimization of the torque ripple and audible noise than the traditional square current driving method, and practical for quiet operation in low cost home appliances.%针对稀土永磁无刷直流电机( BLDCM),借助电机本体所固有的三相Hall转子位置传感器,通过空间矢量脉宽调制(SVPWM)控制技术,实现了BLDCM的正弦波电流驱动.实验结果表明,与方波电流驱动相比,采用正弦波驱动可有效减小BLDCM的运行噪声,降低转矩脉动,实现低成本家用电器等领域的静音运行.
Automated Micro Hall Effect measurements
Petersen, Dirch Hjorth; Henrichsen, Henrik Hartmann; Lin, Rong
2014-01-01
With increasing complexity of processes and variety of materials used for semiconductor devices, stringent control of the electronic properties is becoming ever more relevant. Collinear micro four-point probe (M4PP) based measurement systems have become high-end metrology methods for characteriza......With increasing complexity of processes and variety of materials used for semiconductor devices, stringent control of the electronic properties is becoming ever more relevant. Collinear micro four-point probe (M4PP) based measurement systems have become high-end metrology methods...... for characterization and monitoring of sheet resistance as well as sheet carrier density and mobility via the Micro Hall Effect (MHE) method....
Design and Development on Elevator Hall Door System%电梯厅门设计与系统开发探究
许耀光; 郑李明; 严曙辉
2016-01-01
Technological level of rising elevator industry has made great achievements with the rapid development of China's economy in China. Elevator landing door system is an important part of the elevator, the elevator’s safety and stable operations are closely linked. Business-to-elevator hoist way door design puts forward higher requirements due to fierce competition in the market at this stage. Based on the elevator hoist way door design and system development, we studies on the hall door design problems and improvement of lack, and the landing door system is constantly improved. With a view to the elevator hall doors provide some useful reference design for elevator safety, stable, fast operation to provide protection.%电梯厅门系统作为电梯的重要组成部分，对电梯的安全、稳定运行有着密切的联系。为了与环境协调一致，更为了安全，企业对电梯厅门的设计提出了更高、更个性化、成本更低的要求。基于此，本文对电梯厅门设计与系统开发进行了研究，对厅门设计中存在的问题与不足进行改进，提升厅门系统与电梯安全、稳定、快速运行协调一致，以期为电梯厅门设计提供一些有益参考。
The magneto-Hall difference and the planar extraordinary Hall balance
S. L. Zhang
2016-04-01
Full Text Available The extraordinary Hall balance (EHB is a general device concept that harnesses the net extraordinary Hall effect (EHE arising from two independent magnetic layers, which are electrically in parallel. Different EHB behavior can be achieved by tuning the strength and type of interlayer coupling, i.e., ferromagnetic or antiferromagnetic of varying strength, allowing for logic and memory applications. The physics of the EHE in such a multilayered systems, especially the interface-induced effect, will be discussed. A discrepancy between the magnetization and the Hall effect, called the magneto-Hall difference (MHD is found, which is not expected in conventional EHE systems. By taking advantage of the MHD effect, and by optimizing the materials structure, magnetoresistance ratios in excess of 40,000% can be achieved at room-temperature. We present a new design, the planar EHB, which has the potential to achieve significantly larger magnetoresistance ratios.
The magneto-Hall difference and the planar extraordinary Hall balance
Zhang, S. L.; Hesjedal, T.
2016-04-01
The extraordinary Hall balance (EHB) is a general device concept that harnesses the net extraordinary Hall effect (EHE) arising from two independent magnetic layers, which are electrically in parallel. Different EHB behavior can be achieved by tuning the strength and type of interlayer coupling, i.e., ferromagnetic or antiferromagnetic of varying strength, allowing for logic and memory applications. The physics of the EHE in such a multilayered systems, especially the interface-induced effect, will be discussed. A discrepancy between the magnetization and the Hall effect, called the magneto-Hall difference (MHD) is found, which is not expected in conventional EHE systems. By taking advantage of the MHD effect, and by optimizing the materials structure, magnetoresistance ratios in excess of 40,000% can be achieved at room-temperature. We present a new design, the planar EHB, which has the potential to achieve significantly larger magnetoresistance ratios.
Hall Sensor Output Signal Fault-Detection & Safety Implementation Logic
Lee SangHun
2016-01-01
Full Text Available Recently BLDC motors have been popular in various industrial applications and electric mobility. Recently BLDC motors have been popular in various industrial applications and electric mobility. In most brushless direct current (BLDC motor drives, there are three hall sensors as a position reference. Low resolution hall effect sensor is popularly used to estimate the rotor position because of its good comprehensive performance such as low cost, high reliability and sufficient precision. Various possible faults may happen in a hall effect sensor. This paper presents a fault-tolerant operation method that allows the control of a BLDC motor with one faulty hall sensor and presents the hall sensor output fault-tolerant control strategy. The situations considered are when the output from a hall sensor stays continuously at low or high levels, or a short-time pulse appears on a hall sensor signal. For fault detection, identification of a faulty signal and generating a substitute signal, this method only needs the information from the hall sensors. There are a few research work on hall effect sensor failure of BLDC motor. The conventional fault diagnosis methods are signal analysis, model based analysis and knowledge based analysis. The proposed method is signal based analysis using a compensation signal for reconfiguration and therefore fault diagnosis can be fast. The proposed method is validated to execute the simulation using PSIM.
Laughlin's argument for the quantized thermal Hall effect
Nakai, Ryota; Nomura, Kentaro
2016-01-01
We extend Laughlin's magnetic-flux-threading argument to the quantized thermal Hall effect. A proper analogue of Laughlin's adiabatic magnetic-flux threading process for the case of the thermal Hall effect is given in terms of an external gravitational field. From the perspective of the edge theories of quantum Hall systems, the quantized thermal Hall effect is closely tied to the breakdown of large diffeomorphism invariance, that is, a global gravitational anomaly. In addition, we also give an argument from the bulk perspective in which a free energy, decomposed into its Fourier modes, is adiabatically transferred under an adiabatic process involving external gravitational perturbations.
Hussain, S. M.; Jain, J.; Seth, G. S.; Rashidi, M. M.
2017-01-01
The unsteady MHD free convective heat and mass transfer flow of an electrically conducting, viscous and incompressible fluid over an accelerated moving vertical plate in the presence of heat absorption and chemical reaction with ramped temperature and ramped surface concentration through a porous medium in a rotating system is studied, taking Hall effects into account. The governing equations are solved analytically with the help of Laplace transform technique. The unified closed-form expressions are obtained for fluid velocity, fluid temperature, species concentration, skin friction, Nusselt number and Sherwood numbers. The effects of various parameters on fluid velocity, fluid temperature and species concentration are discussed by graphs whereas numerical values of skin friction, Nusselt and Sherwood numbers are presented in tabular form for different values of pertinent flow parameters. The numerical results are also compared with free convective flow near ramped temperature plate with ramped surface concentration with the corresponding flow near isothermal plate with uniform surface concentration.
ZHOU Xiang; HU Cheng-zheng; GONG Ping; WANG Ai-jun
2005-01-01
The relations between Hall effect and symmetry are discussed for all 2- and 3 dimensional quasicrystals with crystallographically forbidden symmetries. The results show that the numbers of independent components of the Hall coefficient (RH) are one for 3-dimensional quasicrystals, two for those 2 dimensional quasicrystals whose symmetry group is non-Abelian, and three for those 2-dimensional quasicrystals whose symmetry group is Abelian, respectively. The quasicrystals with the same number of independent components have the same form of the components of RH.
Mesoscopic effects in the quantum Hall regime
R N Bhatt; Xin Wan
2002-02-01
We report results of a study of (integer) quantum Hall transitions in a single or multiple Landau levels for non-interacting electrons in disordered two-dimensional systems, obtained by projecting a tight-binding Hamiltonian to the corresponding magnetic subbands. In ﬁnite-size systems, we ﬁnd that mesoscopic effects often dominate, leading to apparent non-universal scaling behavior in higher Landau levels. This is because localization length, which grows exponentially with Landau level index, exceeds the system sizes amenable to the numerical study at present. When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior for strong disorder. This behavior may be of relevance to experimentally observed transitions between quantum Hall states and the insulating phase at low magnetic ﬁelds.
The Magneto-Hall Difference and the Planar Extraordinary Hall Balance
S. L. Zhang; Hesjedal, T.
2016-01-01
The extraordinary Hall balance (EHB) is a general device concept that harnesses the net extraordinary Hall effect (EHE) arising from two independent magnetic layers, which are electrically in parallel. Different EHB behavior can be achieved by tuning the strength and type of interlayer coupling, i.e., ferromagnetic or antiferromagnetic of varying strength, allowing for logic and memory applications. The physics of the EHE in such a multilayered systems, especially the interface-induced effect...
Current Mode Data Converters for Sensor Systems
Jørgensen, Ivan Herald Holger
This thesis is mainly concerned with data conversion. Especially data conversion using current mode signal processing is treated.A tutorial chapter introducing D/A conversion is presented. In this chapter the effects that cause static and dynamic nonlinearities are discussed along with methods to...
DAQ System of Current Based on MNSR
无
2011-01-01
The flux or power should be acquired using the detector in the operation of MNSR. As usual, the signal of detector is current, and it is very width range with 10-11-10-6 A. It is hard to satisfy the linearity to amplify this signal by using fix gain
Avdonin, A., E-mail: avdonin@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Skupiński, P. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Grasza, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa (Poland)
2016-02-15
A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.
Kunkel, W. B.
1981-01-01
Describes an apparatus and procedure for conducting an undergraduate laboratory experiment to quantitatively study the Hall effect in a plasma. Includes background information on the Hall effect and rationale for conducting the experiment. (JN)
供电行业网上营业厅系统研究%Research on Power Supply Industry Online Business Hall System
叶剑国
2011-01-01
With the expansion of power supply industry＇s services, a series of problems in entitative service system such as resource deficiency, high operational cost, low efficiency of services, etc, are deteriorating gradually. To serve clients better, Yunfu power supply bureau constructs E- self-service system channel. As a terminal of self-service system, online business hail system provides new marketing and service models for the existing system of power supply bureau. Researches on the system structure, function design and security designs of the power supply industry online business hall system, onthe basis of practical application.%随着供电行业的业务的拓广，实体服务系统中资源紧张、运营成本高、服务效率低等一系列逐渐凸显，为了更好地服务客户，云浮供电局建设了电子自助服务渠道，网上营业厅作为自助服务系统的一个终端．为供电局现有系统提供新的营销和服务模式。在实际应用的基础上，探讨供电行业网上营业厅系统的构架、功能设计和安全设计。
Precision Electron Beam Polarimetry in Hall C at Jefferson Lab
Gaskell, David
2013-10-01
The electron beam polarization in experimental Hall C at Jefferson Lab is measured using two devices. The Hall-C/Basel Møller polarimeter measures the beam polarization via electron-electron scattering and utilizes a novel target system in which a pure iron foil is driven to magnetic saturation (out of plane) using a superconducting solenoid. A Compton polarimeter measures the polarization via electron-photon scattering, where the photons are provided by a high-power, CW laser coupled to a low gain Fabry-Perot cavity. In this case, both the Compton-scattered electrons and backscattered photons provide measurements of the beam polarization. Results from both polarimeters, acquired during the Q-Weak experiment in Hall C, will be presented. In particular, the results of a test in which the Møller and Compton polarimeters made interleaving measurements at identical beam currents will be shown. In addition, plans for operation of both devices after completion of the Jefferson Lab 12 GeV Upgrade will also be discussed.
Tsiper, Eugene
2006-03-01
A renormalization procedure is designed to find a subspace of high relevance in a many-body Hilbert space. Substantial reduction in the basis size can be achieved while approaching the exact diagonalization results. The idea is to search for a set of many-particle configurations that contribute the largest weight to the exact solution of the many-body Schrödinger equation, without actually computing the exact solution. We start with some suitable set of K configurations and find the ground state of the Hamiltonian in the many-body subspace that they span. We then retain K'elements with those retained. When repeated, the procedure converges after several iterations and yields some optimal set of configurations. The resulting truncation of the Hilbert space is essentially many-body, and cannot be achieved by truncating or rotating the single-particle basis. I will discuss an application of CSR to model resonant tunneling between the edges in the fractional quantum Hall regime, which has been used to experimentally observe fractional quantization of electric charge. Clusters large enough to contain two unconnected edges are modeled. The results suggest fractional quantization of the quasiparticle charge in units of e/3 and e/5 at fillings 1/3 and 2/5.
Information Systems: Current Developments and Future Expansion.
1970
On May 20, 1970, a one-day seminar was held for Congressional members and staff. The papers given at this seminar and included in the proceedings are: (1) "Understanding Information Systems" by J. D. Aron, (2) "Computer Applications in Political Science" by Kenneth Janda, (3) "Who's the Master of Your Information System?" by Marvin Kornbluh, (4)…
Tafra, E; Culo, M; Basletić, M; Korin-Hamzić, B; Hamzić, A; Jacobsen, C S
2012-02-01
We have measured the Hall effect on recently synthesized single crystals of the quasi-one-dimensional organic conductor TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane), a well known charge transfer complex that has two kinds of conductive stacks: the donor (TTF) and the acceptor (TCNQ) chains. The measurements were performed in the temperature interval 30 K Hall effect measurements. Our results show, contrary to past belief, that the Hall coefficient does not depend on the geometry of measurements and that the Hall coefficient value is approximately zero in the high temperature region (T > 150 K), implying that there is no dominance of either the TTF or the TCNQ chain. At lower temperatures our measurements clearly prove that all three phase transitions of TTF-TCNQ could be identified from Hall effect measurements.
Coxon, Bruce
2011-01-01
An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered.
Milovanović, S. P.; Peeters, F. M.
2017-02-01
The effects of strain, induced by a Gaussian bump, on the magnetic field dependent transport properties of a graphene Hall bar are investigated. The numerical simulations are performed using both classical and quantum mechanical transport theory and we found that both approaches exhibit similar characteristic features. The effects of the Gaussian bump are manifested by a decrease of the bend resistance, R B, around zero-magnetic field and the occurrence of side-peaks in R B. These features are explained as a consequence of bump-assisted scattering of electrons towards different terminals of the Hall bar. Using these features we are able to give an estimate of the size of the bump. Additional oscillations in R B are found in the quantum description that are due to the population/depopulation of Landau levels. The bump has a minor influence on the Hall resistance even for very high values of the pseudo-magnetic field. When the bump is placed outside the center of the Hall bar valley polarized electrons can be collected in the leads.
Crisp, D J; W Moran; Pollington, A. D.
2012-01-01
We show that the inhomogenous approximation spectrum, associated to an irrational number \\alpha\\ always has a Hall's Ray; that is, there is an \\epsilon>0 such that [0,\\epsilon) is a subset of the spectrum. In the case when \\alpha\\ has unbounded partial quotients we show that the spectrum is just a ray.
Oguntoyinbo, Lekan
2011-01-01
Many urban and commuter universities have their sights set on students who are unlikely to connect with the college and likely to fail unless the right strategies are put in place to help them graduate. In efforts to improve retention rates, commuter colleges are looking to an unusual suspect: residence halls. The author discusses how these…
Barteld Kooi, [No Value
2006-01-01
Samenvatting: In het begin van de jaren negentig brak een wereldwijde discussie los over een probleem dat in het Engels 'The Monty Hall Dilemma' wordt genoemd. Marilyn vos Savant, die in het Guinness Book of World Records wordt genoemd als degene met het
Analysis of Sqp current systems by using corrected geomagneticcoordinates
无
2000-01-01
The Spq equivalent current system of the quiet day geomagnetic variation in the polar region is very complicated. It is composed of several currents, such as the ionospheric dynamo current and the auroral electrojet caused by the field-aligned current. Spq is unsymmetrical in both polar regions. In this paper, the Spq current systems are analyzed in the corrected geomagnetic coordinates (CGM) instead of the conventional geomagnetic coordinates (GM), and the symmetries of the Spq current indifferent systems are compared. Then the causes of Spq asymmetry in the GM coordinates are discussed; the effects of each component in Spq are determined.
Virgil Constantin
2015-01-01
A systematic laboratory study was conducted on current efficiency and corrosion obtalned in cryolite–alumina melts with SnO2–Sb2O3–CuO ceramic inert anodes. The current efficiency (CE) was determined by measuring the total amount of oxygen evolved at the anode and was found to be~95%. The influence of operating parameters (inter-elec-trode distance, temperature and current density) was evaluated. The quantitative interdependencies as wel as the ranges of CE optimal values were established (2–3 cm, 940–960 °C and 0.7–0.8 A·cm−2). The corrosion process of these anodes was evaluated by the mass loss method. The evaluation also took care of the corrosion data, as the prob-lem of the anode corrosion appeared to be the maln obstacle for the use of those anodes in the commercial cel s. Low-ering of the ACD up to 2 cm did not aggravate anode corrosion.
Current dental adhesives systems. A narrative review.
Milia, Egle; Cumbo, Enzo; Cardoso, Rielson Jose A; Gallina, Giuseppe
2012-01-01
Adhesive dentistry is based on the development of materials which establish an effective bond with the tooth tissues. In this context, adhesive systems have attracted considerable research interest in recent years. Successful adhesive bonding depends on the chemistry of the adhesive, on appropriate clinical handling of the material as well as on the knowledge of the morphological changes caused on dental tissue by different bonding procedures. This paper outlines the status of contemporary adhesive systems, with particular emphasis on chemical characteristics and mode of interaction of the adhesives with enamel and dentinal tissues. Dental adhesives are used for several clinical applications and they can be classified based on the clinical regimen in "etch-and-rinse adhesives" and "self-etch adhesives". Other important considerations concern the different anatomical characteristics of enamel and dentine which are involved in the bonding procedures that have also implications for the technique used as well as for the quality of the bond. Etch-and-rinse adhesive systems generally perform better on enamel than self-etching systems which may be more suitable for bonding to dentine. In order to avoid a possible loss of the restoration, secondary caries or pulp damage due to bacteria penetration or due to cytotoxicity effects of eluted adhesive components, careful consideration of several factors is essential in selecting the suitable bonding procedure and adhesive system for the individual patient situation.
Current trends on knowledge-based systems
Valencia-García, Rafael
2017-01-01
This book presents innovative and high-quality research on the implementation of conceptual frameworks, strategies, techniques, methodologies, informatics platforms and models for developing advanced knowledge-based systems and their application in different fields, including Agriculture, Education, Automotive, Electrical Industry, Business Services, Food Manufacturing, Energy Services, Medicine and others. Knowledge-based technologies employ artificial intelligence methods to heuristically address problems that cannot be solved by means of formal techniques. These technologies draw on standard and novel approaches from various disciplines within Computer Science, including Knowledge Engineering, Natural Language Processing, Decision Support Systems, Artificial Intelligence, Databases, Software Engineering, etc. As a combination of different fields of Artificial Intelligence, the area of Knowledge-Based Systems applies knowledge representation, case-based reasoning, neural networks, Semantic Web and TICs used...
Effective anomalous Hall coefficient in an ultrathin Co layer sandwiched by Pt layers
Zhang, Peng; Wu, Di; Jiang, Zhengsheng; Sang, Hai, E-mail: weiwei.lin@u-psud.fr, E-mail: haisang@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Lin, Weiwei, E-mail: weiwei.lin@u-psud.fr, E-mail: haisang@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Institut d' Electronique Fondamentale, Université Paris-Sud, Orsay 91405 (France)
2014-02-14
Anomalous Hall effect in Co/Pt multilayer is important to study the effect of interface with strong spin-orbit coupling. However, the shunting effect of the layers in such system and the circuit in the plane perpendicular to the injected current were overlooked in most works and thus, anomalous Hall coefficient in Co/Pt multilayer has not been determined accurately. Considering the shunting effect and the equivalent circuit, we show that the effective anomalous Hall coefficient of a 0.5 nm thick Co layer sandwiched by Pt layers R{sub S} is 0.29 ± 0.01 μΩ cm/T at the zero temperature limit and increases to about 0.73 μΩ cm/T at the temperature of 300 K. R{sub S} is one order larger than that in bulk Co film, indicating the large contribution of the Co/Pt interface. R{sub S} increases with the resistivity of Co as well as a resistivity independent contribution of −0.23 ± 0.01 μΩ cm/T. The equivalent anomalous Hall current in the Co layer has a maximum of 1.1% of the injected transverse current in the Co layer around the temperature of 80 K.
Current status of the TSensor systems roadmap
Walsh, Steven Thomas; Bryzek, Janusz; Pisano, Albert P.
2014-01-01
We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple crit
Current status of the TSensor systems roadmap
Walsh, Steven; Bryzek, Janusz; Pisano, Albert P.
2014-01-01
We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple crit
Current status of the TSensor systems roadmap
Walsh, Steven Thomas; Bryzek, Janusz; Pisano, Albert P.
2014-01-01
We apply our work from the contemporary pharmaceutical industry to generate a third generation-style technology roadmap for TSensor Systems. First we identify drivers and consortia. We then identify relevant technology components, namely multiple root technologies, multiple unit cells, multiple
Plasma Relaxation in Hall Magnetohydrodynamics
Shivamoggi, B K
2011-01-01
Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient alpha in the Hall MHD Beltrami condition turns out now to be proportional to the "potential vorticity." The Hall MHD Beltrami condition becomes equivalent to the "potential vorticity" conservation equation in two-dimensional hydrodynamics if the Hall MHD Lagrange multiplier beta is taken to be proportional to the "potential vorticity" as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as "potential vorticity" lines in 2D hydrodynamics.
Quantized Anomalous Hall Effect in Magnetic Topological Insulators
YU Rui
2011-01-01
The Hall effect, the anomalous Hall effect （AHE） and the spin Hall effect are thndamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The AHE, in which a voltage transverse to the electric current appears even in the absence of an external magnetic field, was first detected in ferromagnetic （FM） metals in 1881 and later found to arise from the spin-orbit coupling （SOC） between the current and magnetic moments.
Status of the Control System for the CLAS Detector at Jefferson Lab
T. Carroll; A. Gilmer; M. Vineyard; T. Auger; W. Brooks; S. Fabbro; A. Freyberger; M. Ito; B. Madre; Y. Patois; S. Philips; M. Swynghedauw; J. Tang
1997-11-01
A control system for Hall B at the Thomas Jefferson National Accelerator Facility is being developed within the framework of the Experimental Physics and Industrial Control System (EPICS). The Hall B equipment currently under EPICS control include numerous beam line devices, high voltage supplies, detector gas systems, and safety systems. The status of the control system is described.
Current status of dentin adhesive systems.
Leinfelder, K F
1998-12-01
Undoubtedly, dentin bonding agents have undergone a major evolution during the last several years. The shear bond strength of composite resin to the surface of dentin is actually greater than the inherent strength of the dentin itself under well-controlled conditions. No longer must the clinician depend only upon the bonding to enamel as the sole bonding mechanism. Bonding to both types of dental structure permits even better reinforcement of the tooth itself. Perhaps even more important than the high level of bonding exhibited by the current dentin adhesives is their ability to seal the dentin. So effective is this sealing capability that it is now possible to protect the pulpal tissue from microbial invasion through the dentinal tubules. Further, by enclosing the odontoblastic processes and preventing fluid flow, the potential for postoperative sensitivity is diminished considerably. In fact, so evolutionary is the concept of bonding that the procedures associated with the restoration of teeth has changed dramatically. Undoubtedly, far greater improvements can be anticipated in the future.
Development of BSCCO persistent current system
Joo, Jin Ho; Nah, Wan Soo; Kang, Hyung Koo; Yoo, Jung Hoon [Sungkyunkwan University, Seoul (Korea)
1998-05-01
We have developed temperature-variable critical current measurement device for high Tc superconducting wires. For this end, vacuum shroud was designed and fabricated, and that both signal lines and power lines into the vacuum shroud were installed on it. Secondly, the design procedures for the PCS were established for the high Tc superconducting wires based on the electrical circuit analyses during energizations. We have also evaluated mechanical properties such as hardness, strength and elongation of sheath alloys made by addition of Cu, Mg, Ti, Zr and Ni to Ag matrix using induction melting furnace. It was observed that hardness and strength were improved by increasing additive contents from 0.05 to 0.2 at.%. Specifically, the increment of strength was relatively higher for alloys made by addition of Mg, Cu and Zr elements than that made by Ni and Ti addition. On the other hand, elongation was measured to be significantly reduced for former sheath alloy materials. (author). 12 refs., 13 figs., 4 tabs.
NADIR: A Flexible Archiving System Current Development
Knapic, C.; De Marco, M.; Smareglia, R.; Molinaro, M.
2014-05-01
The New Archiving Distributed InfrastructuRe (NADIR) is under development at the Italian center for Astronomical Archives (IA2) to increase the performances of the current archival software tools at the data center. Traditional softwares usually offer simple and robust solutions to perform data archive and distribution but are awkward to adapt and reuse in projects that have different purposes. Data evolution in terms of data model, format, publication policy, version, and meta-data content are the main threats to re-usage. NADIR, using stable and mature framework features, answers those very challenging issues. Its main characteristics are a configuration database, a multi threading and multi language environment (C++, Java, Python), special features to guarantee high scalability, modularity, robustness, error tracking, and tools to monitor with confidence the status of each project at each archiving site. In this contribution, the development of the core components is presented, commenting also on some performance and innovative features (multi-cast and publisher-subscriber paradigms). NADIR is planned to be developed as simply as possible with default configurations for every project, first of all for LBT and other IA2 projects.
Quantized photonic spin Hall effect in graphene
Cai, Liang; Liu, Mengxia; Chen, Shizhen; Liu, Yachao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun
2017-01-01
We examine the photonic spin Hall effect (SHE) in a graphene-substrate system with the presence of an external magnetic field. In the quantum Hall regime, we demonstrate that the in-plane and transverse spin-dependent splittings in the photonic SHE exhibit different quantized behaviors. The quantized SHE can be described as a consequence of a quantized geometric phase (Berry phase), which corresponds to the quantized spin-orbit interaction. Furthermore, an experimental scheme based on quantum weak value amplification is proposed to detect the quantized SHE in the terahertz frequency regime. By incorporating the quantum weak measurement techniques, the quantized photonic SHE holds great promise for detecting quantized Hall conductivity and the Berry phase. These results may bridge the gap between the electronic SHE and photonic SHE in graphene.
Magnetoelectric tuning of the inverse spin-Hall effect
Vargas, José M.; Gómez, Javier E.; Avilés-Félix, Luis; Butera, Alejandro
2017-05-01
We demonstrate in this article that the magnetoelectric (ME) mechanism can be exploited to control the spin current emitted in a spin pumping experiment using moderate electric fields. Spin currents were generated at the interface of a ferromagnet/metal bilayer by driving the system to the ferromagnetic resonance condition at X-Band (9.78 GHz) with an incident power of 200 mW. The ME structure, a thin (20 nm) FePt film grown on top of a polished 011-cut single crystal lead magnesium niobate-lead titanate (PMN-PT) slab, was prepared by dc magnetron sputtering. The PMN-PT/FePt was operated in the L-T mode (longitudinal magnetized-transverse polarized). This hybrid composite showed a large ME coefficient of 140 Oe cm/kV, allowing to easily tune the ferromagnetic resonance condition with electric field strengths below 4 kV/cm. A thin layer of Pt (10 nm) was grown on top of the PMN-PT/FePt structure and was used to generate and detect the spin current by taking advantage of its large spin-orbit coupling that produces a measurable signal via the inverse spin-Hall effect. These results proved an alternative way to tune the magnetic field at which the spin current is established and consequently the inverse spin-Hall effect signal, which can promote advances in hybrid spintronic devices.
A Holographic Quantum Hall Ferromagnet
Kristjansen, C; Semenoff, G W
2013-01-01
A detailed numerical study of a recent proposal for exotic states of the D3-probe D5 brane system with charge density and an external magnetic field is presented. The state has a large number of coincident D5 branes blowing up to a D7 brane in the presence of the worldvolume electric and magnetic fields which are necessary to construct the holographic state. Numerical solutions have shown that these states can compete with the the previously known chiral symmetry breaking and maximally symmetric phases of the D3-D5 system. Moreover, at integer filling fractions, they are incompressible with integer quantized Hall conductivities. In the dual superconformal defect field theory, these solutions correspond to states which break the chiral and global flavor symmetries spontaneously. The region of the temperature-density plane where the D7 brane has lower energy than the other known D5 brane solutions is identified. A hypothesis for the structure of states with filling fraction and Hall conductivity greater than on...
Integer quantum Hall effect in graphene
Jellal, Ahmed, E-mail: ahmed.jellal@gmail.com [Saudi Center for Theoretical Physics, Dhahran (Saudi Arabia); Theoretical Physics Group, Faculty of Sciences, Chouaïb Doukkali University, 24000 El Jadida (Morocco)
2016-04-08
We study the quantum Hall effect in a monolayer graphene by using an approach based on thermodynamical properties. This can be done by considering a system of Dirac particles in an electromagnetic field and taking into account of the edges effect as a pseudo-potential varying continuously along the x direction. At low temperature and in the weak electric field limit, we explicitly determine the thermodynamical potential. With this, we derive the particle numbers in terms of the quantized flux and therefore the Hall conductivity immediately follows.
Experimental evidence for a two-dimensional quantized Hall insulator
Hilke, M.; Shahar, D.; Song, S. H.; Tsui, D. C.; Xie, Y. H.; Monroe, Don
1998-10-01
The general theoretical definition of an insulator is a material in which the conductivity vanishes at the absolute zero of temperature. In classical insulators, such as materials with a band gap, vanishing conductivities lead to diverging resistivities. But other insulators can show more complex behaviour, particularly in the presence of a high magnetic field, where different components of the resistivity tensor can display different behaviours: the magnetoresistance diverges as the temperature approaches absolute zero, but the transverse (Hall) resistance remains finite. Such a system is known as a Hall insulator. Here we report experimental evidence for a quantized Hall insulator in a two-dimensional electron system-confined in a semiconductor quantum well. The Hall resistance is quantized in the quantum unit of resistance h/e2, where h is Planck's constant and e the electronic charge. At low fields, the sample reverts to being a normal Hall insulator.
In-plane magnetization-induced quantum anomalous Hall effect.
Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing
2013-08-23
The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials.
CURRENT VIEWS OF THE GLEASON GRADING SYSTEM
N. A. Gorban
2014-07-01
Full Text Available The authors provide the proceedings of the 2005 First International Society of Urological Pathology Consensus Conference and the basic provisions that differ the modified Gleason grading system from its original interpretation. In particular, we should do away with Gleason grade 1 (or 1 + 1 = 2 while assessing the needle biopsy specimens. Contrary to the recommendations by Gleason himself, the conference decided to apply stringent criteria for using Gleason grades 3 and 4. This is due to the fact that these grades are of special prognostic value so it is important to have clear criteria in defining each Gleason grade. Notions, such as secondary and tertiary Gleason patterns, are considered; detailed recommendations are given on the lesion extent sufficient to diagnose these components.
A superconducting transformer system for high current cable testing.
Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W
2010-03-01
This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
Bliokh, Konstantin Y
2011-01-01
We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.
Comparative radiopacity of six current adhesive systems.
de Moraes Porto, Isabel Cristina Celerino; Honório, Naira Cândido; Amorim, Dayse Annie Nicácio; de Melo Franco, Aurea Valéria; Penteado, Luiz Alexandre Moura; Parolia, Abhishek
2014-01-01
The radiopacity of contemporary adhesive systems has been mentioned as the indication for replacement of restorations due to misinterpretation of radiographic images. This study aimed to evaluate the radiopacity of contemporary bonding agents and to compare their radiodensities with those of enamel and dentin. To measure the radiopacity, eight specimens were fabricated from Clearfil SE Bond (CF), Xeno V (XE), Adper SE Bond (ASE), Magic Bond (MB), Single Bond 2 (SB), Scotchbond Multipurpose (SM), and gutta-percha (positive control). The optical densities of enamel, dentin, the bonding agents, gutta-percha, and an aluminium (Al) step wedge were obtained from radiographic images using image analysis software. The radiographic density data were analyzed statistically by analysis of variance and Tukey's test (α =0.05). Significant differences were found between ASE and all other groups tested and between XE and CF. No statistical difference was observed between the radiodensity of 1 mm of Al and 1 mm of dentin, between 2 mm of Al and enamel, and between 5 mm of Al and gutta-percha. Five of the six adhesive resins had radiopacity values that fell below the value for dentin, whereas the radiopacity of ASE adhesive was greater than that of dentin but below that of enamel. This investigation demonstrates that only ASE presented a radiopacity within the values of dentin and enamel. CF, XE, MB, SB, and SM adhesives are all radiolucent and require alterations to their composition to facilitate their detection by means of radiographic images.
Virtual smile design systems: a current review.
Zimmermann, Moritz; Mehl, Albert
2015-01-01
In the age of digital dentistry, virtual treatment planning is becoming an increasingly important element of dental practice. Thanks to new technological advances in the computer- assisted design and computer-assisted manufacturing (CAD/CAM) of dental restorations, predictable interdisciplinary treatment using the backward planning approach appears useful and feasible. Today, a virtual smile design can be used as the basis for creating an esthetic virtual setup of the desired final result. The virtual setup, in turn, is used to plan further treatment steps in an interdisciplinary team approach, and communicate the results to the patient. The smile design concept and the esthetic analyses required for it are described in this article. We include not only a step-by-step description of the virtual smile design workflow, but also describe and compare the several available smile design options and systems. Subsequently, a brief discussion of the advantages and limitations of virtual smile design is followed by a section on different ways to integrate a two-dimensional (2D) smile design into the digital three-dimensional (3D) workflow. New technological developments are also described, such as the integration of smile designs in digital face scans, and 3D diagnostic follow-up using intraoral scanners.
Radiation heating in sports halls. Stralingsverwarming in sporthallen
Blokpoel, L.
1994-03-01
The aim of the study on the title subject was to determine whether by means of the application of radiation heating the required level of thermal comfort in sporting halls can be realized and how much energy is needed to realize such comfort. In two sporting halls the air heating installation was replaced by a radiant heating system. In the sports hall 'D'n Treffer' in Maasbree, Netherlands, infrared radiators were installed, and in the sports hall 'de Taxandriahal' in Waalwijk, Netherlands, so-called dark radiators were installed. After a brief introduction on how to define and quantify thermal comfort, measured results for both sporting halls are presented and discussed. Also the results of a survey among the users of the sporting halls to determine their opinion on the thermal comfort in the halls are presented. The survey was carried out by the authority that commissioned this study, The Dutch National Sports Federation (NSF). In general it can be concluded that radiation heating is a well applicable heating system for sports halls. 17 figs., 8 ills., 10 tabs., 8 appendices
Beam Current Measurement and Adjustment System on AMS
WUShao-yong; HEMING; SUSheng-yong; WANGZhen-jun; JIANGShan
2003-01-01
The beam current measurement and adjustment system of HI-13 tandem accelerator mass spectrometry detector system is consisted of the faraday cup, fluorescent target and a series of adjustable vertical slits(Fig. 1). The system's operation is very complicated and the transmission is low for the old system. A new system is instalated for improvement. We put the adjustable vertical slit, Faraday cup.
Hall Effect Thruster Ground Testing Challenges
2009-08-18
conditional stability of the inverted pendulum thrust stand provides improved measurement sensitivity.5 With the displacement of the inverted pendulum...July 2005. 12Samiento, C., “RHETT2/ EPDM Hall Thruster Propulsion System Electromagnetic Compatability Evaluation,” Proceed- ings of the 25th
某泥塑殿消防设施方案选择分析%Analysis on the design plan of some clay hall's fire extinguishing system
王巍
2013-01-01
Against the decision of fire extinguishing system for some clay hall of national key cultural relics protection units,choose 4 index including fire extinguishing effect,secondary disaster,difficulty of installation and maintain,quantity of structural renovation project,and use risk assessment and fuzzy mathematics to analyze 4 common fire extinguishing system.Results showed that the most suitable one is ABC fine dry powder fire extinguishing system,and then IG541 gas fire extinguishing system,automatic sprinkler system,and ordinary ABC dry powder fire extinguishing system.After considering the protection of cultural relics,decide to choose cabinet fine dry powder fire extinguishing system,and fire control methods were put forward.%针对某全国重点文物保护单位泥塑殿拟选用的灭火系统,选择灭火效果、灭火系统产生的次生灾害、安装维护难度、结构改造工程量4个指标,应用风险评价方法和模糊数学理论对4种常见灭火系统进行分析得知,最适用于大殿的灭火系统是ABC超细干粉灭火系统,其次是IG541气体灭火系统、自动喷水预作用系统、普通ABC干粉灭火系统.进一步考虑文物保护等因素,指出大殿宜选择柜式ABC超细干粉灭火装置,并提出了现阶段大殿火灾防控措施.
Design of BEPC Ⅱ bunch current monitor system
ZHANG Lei; MA Hui-Zhou; YUE Jun-Hui; LEI Ge; CAO Jian-She; MA Li
2008-01-01
BEPC Ⅱ is an electron-positron collider designed to run under multi-bunches and high beam current condition. The accelerator consists of an electron ring, a positron ring and a linear injector. In order to achieve the target luminosity and implement the equal bunch charge injection, the Bunch Current Monitor (BCM)system is built on BEPC Ⅱ. The BCM system consists of three parts: the front-end circuit, the bunch current acquisition system and the bucket selection system. The control software of BCM is based on VxWorks and EPICS. With the help of BCM system, the bunch current in each bucket can be monitored in the Central Control Room. The BEPC Ⅱ timing system can also use the bunch current database to decide which bucket needs to refill to implement "top-off" injection.
Electron Interference in Hall Effect Measurements on GaAs/InAs Core/Shell Nanowires.
Haas, Fabian; Zellekens, Patrick; Lepsa, Mihail; Rieger, Torsten; Grützmacher, Detlev; Lüth, Hans; Schäpers, Thomas
2017-01-11
We present low-temperature magnetotransport measurements on GaAs/InAs core/shell nanowires contacted by regular source-drain leads as well as laterally attached Hall contacts, which only touch parts of the nanowire sidewalls. Low-temperature measurements between source and drain contacts show typical phase coherent effects, such as universal conductance fluctuations in a magnetic field aligned perpendicularly to the nanowire axis as well as Aharonov-Bohm-type oscillations in a parallel aligned magnetic field. However, the signal between the Hall contacts shows a Hall voltage buildup, when the magnetic field is turned perpendicular to the nanowire axis while current is driven through the wire using the source-drain contacts. At low temperatures, the phase coherent effects measured between source and drain leads are superimposed on the Hall voltage, which can be explained by nonlocal probing of large segments of the nanowire. In addition, the Aharonov-Bohm-type oscillations are also observed in the magnetoconductance at magnetic fields aligned parallel to the nanowire axis, using the laterally contacted leads. This measurement geometry hereby directly corresponds to classical Aharonov-Bohm experiments using planar quantum rings. In addition, the Hall voltage is used to characterize the nanowires in terms of charge carrier concentration and mobility, using temperature- and gate-dependent measurements as well as measurements in tilted magnetic fields. The GaAs/InAs core/shell nanowire used in combination with laterally attached contacts is therefore the ideal system to three-dimensionally combine quantum ring experiments using the cross-sectional plane and Hall experiments using the axial nanowire plane.
"Hall viscosity" and intrinsic metric of incompressible fractional Hall fluids
Haldane, F. D. M.
2009-01-01
The (guiding-center) "Hall viscosity" is a fundamental tensor property of incompressible ``Hall fluids'' exhibiting the fractional quantum Hall effect; it determines the stress induced by a non-uniform electric field, and the intrinsic dipole moment on (unreconstructed) edges. It is characterized by a rational number and an intrinsic metric tensor that defines distances on an ``incompressibility lengthscale''. These properties do not require rotational invariance in the 2D plane. The sign of ...
Thiagarajah, Krisha; Getty, Victoria M
2013-01-01
A potential strategy for decreasing food waste in foodservice operations is trayless dining. The objective of this 2010 study was to compare the impact of using a tray vs a trayless system on plate waste and on employees' attitudes. To test the hypothesis that going trayless would reduce waste, liquid and solid plate waste were measured for 1 week with the then-existing tray system and again after a new trayless system was implemented in a buffet-style university dining hall serving roughly1,000 meals a day. Foodservice staff were invited to participate in a focus group about the impact on their jobs. The investigators calculated plate waste per patron under the two systems and used an independent samples t test to examine the significance of the difference. Comments from the focus group were analyzed for themes. A significant decrease in solid waste per patron (0.81 oz; P=0.001) was observed in switching from the tray to the trayless system (4.39 ± 0.24 oz vs 3.58 ± 0.08 oz per patron). A nonsignificant reduction was observed with liquid waste (49.77 ± 2.62 mL vs 46.36 ± 4.51 mL; P=0.18). Most of the employees preferred the trayless system as long as it did reduce waste, but felt that increased breakage of dishware and increased need to wipe down tables were possible concerns resulting from the switch. This study demonstrates that trayless dining can reduce plate waste, and that employees can be supportive of the change.
Fractional quantum Hall states of bosons on cones
Wu, Ying-Hai; Tu, Hong-Hao; Sreejith, G. J.
2017-09-01
Motivated by a recent experiment, which synthesizes Landau levels for photons on cones [Schine et al., Nature (London) 534, 671 (2016), 10.1038/nature17943], and more generally the interest in understanding gravitational responses of quantum Hall states, we study fractional quantum Hall states of bosons on cones. A variety of trial wave functions for conical systems are constructed and compared with exact diagonalization results. The tip of a cone is a localized geometrical defect with singular curvature, which can modify the density profiles of quantum Hall states. The density profiles on cones can be used to extract some universal information about quantum Hall states. The values of certain quantities are computed numerically using the density profiles of some quantum Hall states and they agree with analytical predictions.
Geometric spin Hall effect of light with inhomogeneous polarization
Ling, Xiaohui; Zhou, Xinxing; Yi, Xunong
2017-01-01
The spin Hall effect of light originates from spin-orbit interaction of light, which manifests two types of geometric phases. In this paper, we report the observation of a geometric spin Hall effect by generating a light beam with inhomogeneous polarization distribution. Unlike the previously reported geometric spin Hall effect observed in a tilted beam-detector system, which is believed to result from an effective spin-redirection Berry geometric phase, the geometric spin Hall effect demonstrated here is attributed to an effective, spatially varying Pancharatnam-Berry geometric phase generated by the inhomogeneous polarization geometry. Our further experiments show that the geometric spin Hall effect can be tuned by tailoring the polarization geometry of light, demonstrating the spin states of photons can be steered with a great flexibility.
Dust exposure in indoor climbing halls.
Weinbruch, Stephan; Dirsch, Thomas; Ebert, Martin; Hofmann, Heiko; Kandler, Konrad
2008-05-01
The use of hydrated magnesium carbonate hydroxide (magnesia alba) for drying the hands is a strong source for particulate matter in indoor climbing halls. Particle mass concentrations (PM10, PM2.5 and PM1) were measured with an optical particle counter in 9 indoor climbing halls and in 5 sports halls. Mean values for PM10 in indoor climbing halls are generally on the order of 200-500 microg m(-3). For periods of high activity, which last for several hours, PM10 values between 1000 and 4000 microg m(-3) were observed. PM(2.5) is on the order of 30-100 microg m(-3) and reaches values up to 500 microg m(-3), if many users are present. In sports halls, the mass concentrations are usually much lower (PM10 sport in which magnesia alba is also used) similar dust concentrations as for indoor climbing were observed. The size distribution and the total particle number concentration (3.7 nm-10 microm electrical mobility diameter) were determined in one climbing hall by an electrical aerosol spectrometer. The highest number concentrations were between 8000 and 12 000 cm(-3), indicating that the use of magnesia alba is no strong source for ultrafine particles. Scanning electron microscopy and energy-dispersive X-ray microanalysis revealed that virtually all particles are hydrated magnesium carbonate hydroxide. In-situ experiments in an environmental scanning electron microscope showed that the particles do not dissolve at relative humidities up to 100%. Thus, it is concluded that solid particles of magnesia alba are airborne and have the potential to deposit in the human respiratory tract. The particle mass concentrations in indoor climbing halls are much higher than those reported for schools and reach, in many cases, levels which are observed for industrial occupations. The observed dust concentrations are below the current occupational exposure limits in Germany of 3 and 10 mg m(-3) for respirable and inhalable dust. However, the dust concentrations exceed the German guide
Audience noise in concert halls during musical performances
Marie, Pierre; Jeong, Cheol-Ho; Brunskog, Jonas
2012-01-01
Noise generated by the audience during musical performances is audible and sometimes disturbing. In this study, an attempt to estimate such audience noise was carried out. From the recordings of performances in five performance spaces (four concert halls and one opera house), probability density...... prediction models were made using the four orchestra concert halls, revealing that the audience noise level is significantly correlated with the technical background noise level. It is therefore concluded that a relaxation of the current background noise recommendations for concert halls is not recommended....
Audience noise in concert halls during musical performances
Jeong, Cheol-Ho; Marie, Pierre; Brunskog, Jonas
2012-01-01
Noise generated by the audience during musical performances is audible and sometimes disturbing. In this study, an attempt to estimate such audience noise was carried out. From the recordings of performances in five performance spaces (four concert halls and one opera house), probability density...... prediction models were made using the four orchestra concert halls, revealing that the audience noise level is significantly correlated with the technical background noise level. It is therefore concluded that a relaxation of the current background noise recommendations for concert halls is not recommended...
Thermal Hall Effect of Magnons
Murakami, Shuichi; Okamoto, Akihiro
2017-01-01
We review recent developments in theories and experiments on the magnon Hall effect. We derive the thermal Hall conductivity of magnons in terms of the Berry curvature of magnonic bands. In addition to the Dzyaloshinskii-Moriya interaction, we show that the dipolar interaction can make the Berry curvature nonzero. We mainly discuss theoretical aspects of the magnon Hall effect and related theoretical works. Experimental progress in this field is also mentioned.
Pantokratoras, Asterios
2007-01-01
Comment on Similarity analysis in magnetohydrodynamics:effects of Hall and ion-slip currents on free convection flow and mass transfer of a gas past a semi-infinite vertical plate, A.A. Megahed, S.R. Komy, A.A. Afify [Acta Mechanica 151, 185-194 (2001)] In the above paper is investigated the boundary layer flow of an electrically conducting fluid over a vertical, stationary plate placed in a calm fluid. The effects of Hall and ion-slip currents are taken into account. The boundary layer equations are transformed into ordinary ones using a scaling group of transformations and subsequently are solved numerically. However, there are two fundamental errors in the above paper which are presented below.
A microcomputer based system for current-meter data acquisition
Cheng, R.T.; Gartner, J.W.
1979-01-01
The U.S. Geological Survey is conducting current measurements as part of an interdisciplinary study of the San Francisco Bay estuarine system. The current meters used in the study record current speed, direction, temperature, and conductivity in digital codes on magnetic tape cartridges. Upon recovery of the current meters, the data tapes are translated by a tape reader into computer codes for further analyses. Quite often the importance of the data processing phase of a current-measurement program is underestimated and downplayed. In this paper a data-processing system which performs the complete data processing and analyses is described. The system, which is configured around an LSI-11 microcomputer, has been assembled to provide the capabilities of data translation, reduction, and tabulation and graphical display immediately following recovery of current meters. The flexibility inherent in a microcomputer has made it available to perform many other research functions which would normally be done on an institutional computer.
Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad
2016-01-01
NASA's Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This paper presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation along with open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thruster's discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.
2015-01-01
This paper describes a simple microwave apparatus to measure the Hall effect in semiconductor wafers. The advantage of this technique is that it does not require contacts on the sample or the use of a resonant cavity. Our method consists of placing the semiconductor wafer into a slot cut in an X-band (8 - 12 GHz) waveguide series tee, injecting microwave power into the two opposite arms of the tee, and measuring the microwave output at the third arm. A magnetic field applied perpendicular to ...
Phonon Hall Effect in Four-Terminal Junctions
Zhang, Lifa; Wang, Jian-Sheng; Li, Baowen
2009-01-01
Using an exact nonequilibrium Green's function formulism, the phonon Hall effect for paramagnetic dielectrics is studied in a four-terminal device setting. The temperature difference in the transverse direction of the heat current is calculated for two-dimensional models with the magnetic field perpendicular to the plane. We find a surprising result that the square lattice does not have the phonon Hall effect while a honeycomb lattice has. This can be explained by symmetry. The temperature di...
Current development of UAV sense and avoid system
Zhahir, A.; Razali, A.; Mohd Ajir, M. R.
2016-10-01
As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.
A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.
Huang, Haiyun; Wang, Dejun; Xu, Yue
2015-10-27
This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.
Music hall Markneukirchen; Musikhalle in Markneukirchen
Anon.
1996-01-01
The article presents the new building of the music hall Markneukirchen. From the planned use of the building result very high demands on the ventilation system in order to keep to a sound power level of less than 30 dB(A) in the hall. The building services are dealt with using numerous flowsheets and diagrams: Heat supply, ventilation system, sanitary system, building management, instrumentation and control, electric and lighting systems. (BWI) [Deutsch] Der vorliegende Beitrag stellt den Neubau der Musikhalle Markneukirchen vor. Durch das Nutzungskonzept ergeben sich fuer die Einhaltung eines Schalleistungspegels von weniger als 30 dB(A) im Saalbereich an die Lueftungsanlage sehr hohe Ansprueche. Es werden die raumlufttechnischen Anlagen anhand zahlreicher Flussbilder und Abbildungen vorgestellt: Waermeversorgung, Lueftungstechnik, Sanitaertechnik, Gebaeudeleit- und MSR-Technik, Elektro- und Lichttechnik. (BWI)
Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators.
Chang, Cui-Zu; Li, Mingda
2016-03-31
The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity σ(yx) = e2/h without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.
Matsuno, Genki; Omori, Yukiko; Eguchi, Takaaki; Kobayashi, Akito
2016-09-01
The topological domain wall and valley Hall effect are theoretically investigated in the molecular conductor α-(BEDT-TTF)2I3. By using the mean-field theory in an extended Hubbard model, it is demonstrated under a cylinder boundary condition that a domain wall emerges in the charge ordered phase, and exhibits a topological nature near the phase transition to the massless Dirac Fermion phase. The topological nature is well characterized by the Berry curvature, which has opposite signs in two charge ordered phases divided by the domain wall, and gives rise to the valley Hall conductivity with opposite signs, enabling these phases to be distinguished. It is also found that the valley Hall conductivity in the tilted Dirac cones exhibits a characteristic double-peak structure as a function of chemical potential using the semi classical formalism.
Maximilien Brice
2002-01-01
Since 1992, after its move from the 600 MeV SC, ISOLDE is a customer of the Booster (then 1 GeV, now 1.4 GeV). The intense Booster beam (some 3E13 protons per pulse) is directed onto a target, from which a mixture of isotopes emanates. After ionization and electrostatic acceleration to 60 keV, they enter one of the 2 spectrometers (General Purpose Separator: GPS, and High Resolution Separator: HRS) from which the selected ions are directed to the experiments. The photos show: the REX-ISOLDE post accelerator; the mini-ball experiment; an overview of the ISOLDE hall. In the picture (_12) of the hall, the separators are behind the wall. From either of them, beams can be directed into any of the many beamlines towards the experiments, some of which are visible in the foreground. The elevated cubicle at the left is EBIS (Electron Beam Ion Source), which acts as a charge-state multiplier for the REX facility. The ions are further mass analzyzed and passed on to the linac which accelerates them to higher energies. T...
Diffusion current in a system of coupled Josephson junctions
Shukrinov, Yu. M.; Rahmonov, I. R.
2012-08-01
The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.
Diffusion current in a system of coupled Josephson junctions
Shukrinov, Yu. M., E-mail: shukrinv@theor.jinr.ru; Rahmonov, I. R. [Joint Institute for Nuclear Research (Russian Federation)
2012-08-15
The role of a diffusion current in the phase dynamics of a system of coupled Josephson junctions (JJs) has been analyzed. It is shown that, by studying the temporal dependences of the superconducting, quasi-particle, diffusion, and displacement currents and the dependences of average values of these currents on the total current, it is possible to explain the main features of the current-voltage characteristic (CVC) of the system. The effect of a diffusion current on the character of CVC branching in the vicinity of a critical current and in the region of hysteresis, as well as on the part of CVC branch corresponding to a parametric resonance in the system is demonstrated. A clear interpretation of the differences in the character of CVC branching in a model of capacitively coupled JJs (CCJJ model) and a model of capacitive coupling with diffusion current (CCJJ+DC model) is proposed. It is shown that a decrease in the diffusion current in a JJ leads to the switching of this junction to an oscillating state. The results of model calculations are qualitatively consistent with the experimental data.
Spin currents and magnetization dynamics in multilayer systems
van der Bijl, E.
2014-01-01
In this Thesis the interplay between spin currents and magnetization dynamics is investigated theoretically. With the help of a simple model the relevant physical phenomena are introduced. From this model it can be deduced that in systems with small spin-orbit coupling, current-induced torques on
West Coast Observing System (WCOS) ADCP Currents Data
National Oceanic and Atmospheric Administration, Department of Commerce — The West Coast Observing System (WCOS) project provides access to temperature and currents data collected at four of the five National Marine Sanctuary sites,...
Population vulnerability of marine birds within the California Current System
U.S. Geological Survey, Department of the Interior — Six metrics were used to determine Population Vulnerability: global population size, annual occurrence in the California Current System (CCS), percent of the...
Population vulnerability of marine birds within the California Current System
U.S. Geological Survey, Department of the Interior — Six metrics were used to determine Population Vulnerability: global population size, annual occurrence in the California Current System (CCS), percent of the...
Cosmopolitanism - Conversation with Stuart Hall
Hall, Stuart
2006-01-01
Forty minute conversation between Stuart Hall and Pnina Werbner, filmed and edited by Haim Bresheeth. Synopsis by Sarah Harrison. Conversation between Stuart Hall and Pnina Werbner on the theme of Cosmopolitanism (to be shown at the Association of Social Anthropologists Silver Jubilee conference in 2006), in March 2006
The formation of anomalous Hall effect depending on W atoms in ZnO thin films
Can, Musa Mutlu, E-mail: musamutlucan@gmail.com [Faculty of Engineering and Natural Sciences, Nanotechnology Research and Application Center, Sabancı University, Tuzla, 34956 İstanbul (Turkey); CNR-SPIN, Universitá di Napoli “Federico II”, Compl. Univ. di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Shah, S. Ismat [Department of Physics and Astronomy, Department of Material Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Fırat, Tezer [Department of Physics Engineering, Hacettepe University, Beytepe 06800 Ankara (Turkey)
2014-06-01
This article investigates the effects of intrinsic point defects and extrinsic W atoms on magneto electrical properties in the ZnO lattice. The analyses were accomplished for ∼0.5% W including ZnO thin films, grown using a radio frequency (RF) magnetron sputtering system. The polarized spin current dependent magnetic formation was investigated by longitudinal and transverse magneto electrical measurements in a temperature range of 5 K to 300 K. The positive magneto resistivity (PMR) ratios reached 28.8%, 12.7%, and 17.6% at 5 K for thin films, having different post-deposition annealing conditions as a consequence of ionic W dependent defects in the lattice. Furthermore, an anomalous Hall effect, originating from polarized spin currents, was understood from the split in Hall resistance versus magnetic field (R{sub xy}(H)) curves for the thin film with high amount of Zn{sup 2+} and W{sup 6+} ionic defects.
Inverse spin Hall effect in a closed loop circuit
Omori, Y.; Auvray, F.; Wakamura, T.; Niimi, Y., E-mail: niimi@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); Fert, A. [Unité Mixte de Physique CNRS/Thales, 91767 Palaiseau France associée à l' Université de Paris-Sud, 91405 Orsay (France); Otani, Y. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan); RIKEN-CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)
2014-06-16
We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.
Luna, Gene
1987-01-01
Considers the right to free speech guaranteed in the first amendment to the United States Constitution and discusses categories of public property and the standards of regulation applied to each in terms of freedom of speech. Reviews two court cases involving American Future Systems, Inc., a private corporation which sells cookware, silverware,…
Spin Hall Control of Magnetization in a Perpendicularly-Magnetized Magnetic Insulator
Pai, Chi-Feng; Quindeau, Andy; Tang, Astera; Onbasli, Mehmet; Mann, Maxwell; Caretta, Lucas; Ross, Caroline; Beach, Geoffrey
Spin Hall effect (SHE)-induced spin-orbit torque (SOT) has been shown to be an efficient mechanism to control the magnetization in magnetic heterostructures. Although numerous works have demonstrated the efficacy of SOT in manipulating the magnetization of ferromagnetic metals (FM), SOT-controlled switching of ferromagnetic insulators (FMIs) has not yet been observed. In this work we show that spin Hall currents in Pt and Ta can generate SOTs strong enough to control the magnetization direction in an adjacent thulium iron garnet FMI film with perpendicular magnetic anisotropy. We find that dc current in the heavy metal (HM) generates an out-of-plane effective field in the FMI consistent with an antidamping torque whose magnitude is comparable to that observed in all-metallic systems. Spin Hall magnetoresistance (SMR) measurements reveal a large spin-mixing conductance, which implies considerable spin transparency at the metal/insulator interface and explains the observed strong current-induced torque. Our results show that charge currents flowing in a HM can be used to both control and detect the magnetization direction in a FMI electrically.
Mini array of quantum Hall devices based on epitaxial graphene
Novikov, S.; Lebedeva, N.; Hämäläinen, J.; Iisakka, I.; Immonen, P.; Manninen, A. J.; Satrapinski, A.
2016-05-01
Series connection of four quantum Hall effect (QHE) devices based on epitaxial graphene films was studied for realization of a quantum resistance standard with an up-scaled value. The tested devices showed quantum Hall plateaux RH,2 at a filling factor v = 2 starting from a relatively low magnetic field (between 4 T and 5 T) when the temperature was 1.5 K. The precision measurements of quantized Hall resistance of four QHE devices connected by triple series connections and external bonding wires were done at B = 7 T and T = 1.5 K using a commercial precision resistance bridge with 50 μA current through the QHE device. The results showed that the deviation of the quantized Hall resistance of the series connection of four graphene-based QHE devices from the expected value of 4×RH,2 = 2 h/e2 was smaller than the relative standard uncertainty of the measurement (resistance bridge.
Charge-Induced Spin Torque in Anomalous Hall Ferromagnets
Nomura, Kentaro; Kurebayashi, Daichi
2015-09-01
We demonstrate that spin-orbit coupled electrons in a magnetically doped system exert a spin torque on the local magnetization, without a flowing current, when the chemical potential is modulated in a magnetic field. The spin torque is proportional to the anomalous Hall conductivity, and its effective field strength may overcome the Zeeman field. Using this effect, the direction of the local magnetization is switched by gate control in a thin film. This charge-induced spin torque is essentially an equilibrium effect, in contrast to the conventional current-induced spin-orbit torque, and, thus, devices using this operating principle possibly have higher efficiency than the conventional ones. In addition to a comprehensive phenomenological derivation, we present a physical understanding based on a model of a Dirac-Weyl semimetal, possibly realized in a magnetically doped topological insulator. The effect might be realized also in nanoscale transition materials, complex oxide ferromagnets, and dilute magnetic semiconductors.
Magnetic bilayer-skyrmions without skyrmion Hall effect
Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko
2016-01-01
Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed.
Quantum anomalous Hall effect in real materials
Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin
2016-11-01
Under a strong magnetic field, the quantum Hall (QH) effect can be observed in two-dimensional electronic gas systems. If the quantized Hall conductivity is acquired in a system without the need of an external magnetic field, then it will give rise to a new quantum state, the quantum anomalous Hall (QAH) state. The QAH state is a novel quantum state that is insulating in the bulk but exhibits unique conducting edge states topologically protected from backscattering and holds great potential for applications in low-power-consumption electronics. The realization of the QAH effect in real materials is of great significance. In this paper, we systematically review the theoretical proposals that have been brought forward to realize the QAH effect in various real material systems or structures, including magnetically doped topological insulators, graphene-based systems, silicene-based systems, two-dimensional organometallic frameworks, quantum wells, and functionalized Sb(111) monolayers, etc. Our paper can help our readers to quickly grasp the recent developments in this field. Project supported by the National Basic Research Program of China (Grant No. 2011CB921803), the National Natural Science Foundation of China (Grant No. 11574051), the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1403400), and Fudan High-end Computing Center, China.
Extrinsic spin Hall effect induced by resonant skew scattering in graphene.
Ferreira, Aires; Rappoport, Tatiana G; Cazalilla, Miguel A; Castro Neto, A H
2014-02-14
We show that the extrinsic spin Hall effect can be engineered in monolayer graphene by decoration with small doses of adatoms, molecules, or nanoparticles originating local spin-orbit perturbations. The analysis of the single impurity scattering problem shows that intrinsic and Rashba spin-orbit local couplings enhance the spin Hall effect via skew scattering of charge carriers in the resonant regime. The solution of the transport equations for a random ensemble of spin-orbit impurities reveals that giant spin Hall currents are within the reach of the current state of the art in device fabrication. The spin Hall effect is robust with respect to thermal fluctuations and disorder averaging.
Sekine, Akihiko; Nomura, Kentaro
2016-03-04
We search for dynamical magnetoelectric phenomena in three-dimensional correlated systems with spin-orbit coupling. We focus on the antiferromagnetic insulator phases where the dynamical axion field is realized by the fluctuation of the antiferromagnetic order parameter. It is shown that the dynamical chiral magnetic effect, an alternating current generation by magnetic fields, emerges due to such time dependences of the order parameter as antiferromagnetic resonance. It is also shown that the anomalous Hall effect arises due to such spatial variations of the order parameter as antiferromagnetic domain walls. Our study indicates that spin excitations in antiferromagnetic insulators with spin-orbit coupling can result in nontrivial charge responses. Moreover, observing the chiral magnetic effect and anomalous Hall effect in our system is equivalent to detecting the dynamical axion field in condensed matter.
Development Status of Power Processing Unit for 250mN-Class Hall Thruster
Osuga, H.; Suzuki, K.; Ozaki, T.; Nakagawa, T.; Suga, I.; Tamida, T.; Akuzawa, Y.; Suzuki, H.; Soga, Y.; Furuichi, T.; Maki, S.; Matui, K.
2008-09-01
Institute for Unmanned Space Experiment Free Flyer (USEF) and Mitsubishi Electric Corporation (MELCO) are developing the next generation ion engine system under the sponsorship of Ministry of Economy, Trade and Industry (METI) within six years. The system requirement specifications are a thrust level of over 250mN and specific impulse of over 1500 sec with a less than 5kW electric power supply, and a lifetime of over 3,000 hours. These target specifications required the development of both a Hall Thruster and a Power Processing Unit (PPU). In the 2007 fiscal year, the PPU called Second Engineering Model (EM2) consist of all power supplies was a model for the Hall Thruster system. The EM2 PPU showed the discharge efficiency was over 96.2% for 250V and 350V at output power between 1.8kW to 4.5kW. And also the Hall Thruster could start up quickly and smoothly to control the discharge voltage, the inner magnet current, the outer magnet current and the xenon flow rate. This paper reports on the design and test results of the EM2 PPU.
Tidal current turbine based on hydraulic transmission system
Hong-wei LIU; Wei LI; Yong-gang LIN; Shun MA
2011-01-01
Tidal current turbines (TCTs) are newly developed electricity generating devices.Aiming at the stabilization of the power output of TCTs,this paper introduces the hydraulic transmission technologies into TCTs.The hydrodynamics of the turbine was analyzed at first and its power output characteristics were predicted.A hydraulic power transmission system and a hydraulic pitch-controlled system were designed.Then related simulations were conducted.Finally,a TCT prototype was manufactured and tested in the workshop.The test results have confirmed the correctness of the current design and availability of installation of the hydraulic system in TCTs.
Modeling and strain gauging of eddy current repulsion deicing systems
Smith, Samuel O.
1993-01-01
Work described in this paper confirms and extends work done by Zumwalt, et al., on a variety of in-flight deicing systems that use eddy current repulsion for repelling ice. Two such systems are known as electro-impulse deicing (EIDI) and the eddy current repulsion deicing strip (EDS). Mathematical models for these systems are discussed for their capabilities and limitations. The author duplicates a particular model of the EDS. Theoretical voltage, current, and force results are compared directly to experimental results. Dynamic strain measurements results are presented for the EDS system. Dynamic strain measurements near EDS or EIDI coils are complicated by the high magnetic fields in the vicinity of the coils. High magnetic fields induce false voltage signals out of the gages.
Hall Viscosity I: Linear Response Theory for Viscosity
Bradlyn, Barry; Goldstein, Moshe; Read, Nicholas
2012-02-01
In two dimensional systems with broken time-reversal symmetry, there can exist a non-dissipative viscosity coefficient [1,2,3]. This Hall viscosity is similar in nature to the non-dissipative Hall conductivity. In order to investigate this phenomenon further, we develop a linear response formalism for viscosity. We derive a Kubo formula for the frequency dependent viscosity tensor in the long wavelength limit. We compute the viscosity tensor for the free electron gas, integer quantum Hall systems, and two-dimensional paired superfluids. In the zero frequency limit, we show how the known results [3,4] for the Hall viscosity are recovered.[4pt] [1] J. Avron, R. Seiler, and P. Zograf, Phys. Rev. Lett. 75, 697 (1995).[0pt] [2] P. Levay, J. Math. Phys. 36, 2792 (1995).[0pt] [3] N. Read, Phys. Rev. B 79, 045308 (2009).[0pt] [4] N. Read and E. Rezayi, Phys. Rev. B 84, 085316 (2011).
The spin Hall effect as a probe of nonlinear spin fluctuations.
Wei, D H; Niimi, Y; Gu, B; Ziman, T; Maekawa, S; Otani, Y
2012-01-01
The spin Hall effect and its inverse have key roles in spintronic devices as they allow conversion of charge currents to and from spin currents. The conversion efficiency strongly depends on material details, such as the electronic band structure and the nature of impurities. Here we show an anomaly in the inverse spin Hall effect in weak ferromagnetic NiPd alloys near their Curie temperatures with a shape independent of material details, such as Ni concentrations. By extending Kondo's model for the anomalous Hall effect, we explain the observed anomaly as originating from the second-order nonlinear spin fluctuation of Ni moments. This brings to light an essential symmetry difference between the spin Hall effect and the anomalous Hall effect, which reflects the first-order nonlinear fluctuations of local moments. Our finding opens up a new application of the spin Hall effect, by which a minuscule magnetic moment can be detected.
City and Town Halls; townHalls13
University of Rhode Island Geospatial Extension Program — Locations of city and town halls in Rhode Island. Derived using information originally compiled by the State of Rhode Island (http://www.ri.gov), and built upon...
Chern-Simons Dynamics and the Quantum Hall Effect
Balachandran, A P
1991-01-01
Theoretical developments during the past several years have shown that large scale properties of the Quantum Hall system can be successfully described by effective field theories which use the Chern-Simons interaction. In this article, we first recall certain salient features of the Quantum Hall Effect and their microscopic explanation. We then review one particular approach to their description based on the Chern-Simons Lagrangian and its variants.
Spin and Isospin: Exotic Order in Quantum Hall Ferromagnets
Girvin, Steven M.
Quantum mechanics is a strange business, and the quantum physics of strongly correlated many-electron systems can be stranger still. Good examples are the various quantum Hall effects. They are among the most remarkable many-body quantum phenomena discovered in the second half of the 20th century, comparable in intellectual import to superconductivity and superfluidity. The quantum Hall effects are an extremely rich set of phenomena with deep and truly fundamental theoretical implications...
Anesthesia information management systems marketplace and current vendors.
Stonemetz, Jerry
2011-09-01
This article addresses the brief history of anesthesia information management systems (AIMS) and discusses the vendors that currently market AIMS. The current market penetration based on the information provided by these vendors is presented and the rationale for the purchase of AIMS is discussed. The considerations to be evaluated when making a vendor selection are also discussed. Copyright © 2011 Elsevier Inc. All rights reserved.
ARRAY PULSED EDDY CURRENT IMAGING SYSTEM USED TO DETECT CORROSION
Yang Binfeng; Luo Feilu; Cao Xiongheng; Xu Xiaojie
2005-01-01
A theory model is established to describe the voltage-current response function. The peak amplitude and the zero-crossing time of the transient signal is extracted as the imaging features, array pulsed eddy current (PEC) imaging is proposed to detect corrosion. The test results show that this system has the advantage of fast scanning speed, different imaging mode and quantitative detection, it has a broad application in the aviation nondestructive testing.
Ren Ji-Rong; Zhu Hui
2009-01-01
An unconventional integer quantum Hall regime was found in magnetic semiconductor-superconductor hybrids.By making use of the decomposition of the gauge potential on a U(1) principal fibre bundle over k-space, we study the topological structure of the integral Hall conductance. It is labeled by the Hopf index β and the Brouwer degree η. The Hall conductance topological current and its evolution is discussed.
Yang, H.; Bhattacharjee, A.; Forbes, T. G.
2008-12-01
It has long been suggested that eruptive phenomena such as coronal mass ejections, prominence eruptions, and large flares might be caused by a loss of equilibrium in a coronal flux rope (Van Tend and Kuperus, 1978). Forbes et al. (1994) developed an analytical two-dimensional model in which eruptions occur due to a catastrophic loss of equilibrium and relaxation to a lower-energy state containing a thin current sheet. Magnetic reconnection then intervenes dynamically, leading to the release of magnetic energy and expulsion of a plasmoid. We have carried out high-Lundquist-number simulations to test the loss-of equilibrium mechanism, and demonstrated that it does indeed occur in the quasi-ideal limit. We have studied the subsequent dynamical evolution of the system in resistive and Hall MHD models for single as well as multiple arcades. The typical parallel electric fields are super-Dreicer, which makes it necessary to include collisionless effects via a generalized Ohm's law. It is shown that the nature of the local dissipation mechanism has a significant effect on the global geometry and dynamics of the magnetic configuration. The presence of Hall currents is shown to alter the length of the current sheet and the jets emerging from the reconnection site, directed towards the chromosphere. Furthermore, Hall MHD effects break certain symmetries of resistive MHD dynamics, and we explore their observational consequences.
Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems
Yukawa, Satoshi
2009-02-15
A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.
Output Current Ripple Reduction Algorithms for Home Energy Storage Systems
Jin-Hyuk Park
2013-10-01
Full Text Available This paper proposes an output current ripple reduction algorithm using a proportional-integral (PI controller for an energy storage system (ESS. In single-phase systems, the DC/AC inverter has a second-order harmonic at twice the grid frequency of a DC-link voltage caused by pulsation of the DC-link voltage. The output current of a DC/DC converter has a ripple component because of the ripple of the DC-link voltage. The second-order harmonic adversely affects the battery lifetime. The proposed algorithm has an advantage of reducing the second-order harmonic of the output current in the variable frequency system. The proposed algorithm is verified from the PSIM simulation and experiment with the 3 kW ESS model.
Planar Hall effect bridge magnetic field sensors
Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.
2010-01-01
Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....
Generic superweak chaos induced by Hall effect.
Ben-Harush, Moti; Dana, Itzhack
2016-05-01
We introduce and study the "kicked Hall system" (KHS), i.e., charged particles periodically kicked in the presence of uniform magnetic (B) and electric (E) fields that are perpendicular to each other and to the kicking direction. We show that for resonant values of B and E and in the weak-chaos regime of sufficiently small nonintegrability parameter κ (the kicking strength), there exists a generic family of periodic kicking potentials for which the Hall effect from B and E significantly suppresses the weak chaos, replacing it by "superweak" chaos (SWC). This means that the system behaves as if the kicking strength were κ^{2} rather than κ. For E=0, SWC is known to be a classical fingerprint of quantum antiresonance, but it occurs under much less generic conditions, in particular only for very special kicking potentials. Manifestations of SWC are a decrease in the instability of periodic orbits and a narrowing of the chaotic layers, relative to the ordinary weak-chaos case. Also, for global SWC, taking place on an infinite "stochastic web" in phase space, the chaotic diffusion on the web is much slower than the weak-chaos one. Thus, the Hall effect can be relatively stabilizing for small κ. In some special cases, the effect is shown to cause ballistic motion for almost all parameter values. The generic global SWC on stochastic webs in the KHS appears to be the two-dimensional closest analog to the Arnol'd web in higher dimensional systems.
Evaluation of Current Controllers for Distributed Power Generation Systems
Timbus, Adrian; Liserre, Marco; Teodorescu, Remus
2009-01-01
This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...
Shared Magnetics Hall Thruster Project
National Aeronautics and Space Administration — In the proposed Phase II program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...
Shared Magnetics Hall Thruster Project
National Aeronautics and Space Administration — In the proposed Phase I program, Busek Co. will demonstrate an innovative methodology for clustering Hall thrusters into a high performance, very high power...
"Hall mees" Linnateatris / Triin Sinissaar
Sinissaar, Triin
1999-01-01
Tallinn Linnateatri ja Raadioteatri ühislavastus "Hall mees" Gill Adamsi näidendi järgi, lavastaja Eero Spriit, osades Helene Vannari ja Väino Laes, kunstnik Kustav - Agu Püüman. Esietendus 22. okt
"Hall mees" Linnateatris / Triin Sinissaar
Sinissaar, Triin
1999-01-01
Tallinn Linnateatri ja Raadioteatri ühislavastus "Hall mees" Gill Adamsi näidendi järgi, lavastaja Eero Spriit, osades Helene Vannari ja Väino Laes, kunstnik Kustav - Agu Püüman. Esietendus 22. okt
Valleytronics. The valley Hall effect in MoS₂ transistors.
Mak, K F; McGill, K L; Park, J; McEuen, P L
2014-06-27
Electrons in two-dimensional crystals with a honeycomb lattice structure possess a valley degree of freedom (DOF) in addition to charge and spin. These systems are predicted to exhibit an anomalous Hall effect whose sign depends on the valley index. Here, we report the observation of this so-called valley Hall effect (VHE). Monolayer MoS2 transistors are illuminated with circularly polarized light, which preferentially excites electrons into a specific valley, causing a finite anomalous Hall voltage whose sign is controlled by the helicity of the light. No anomalous Hall effect is observed in bilayer devices, which have crystal inversion symmetry. Our observation of the VHE opens up new possibilities for using the valley DOF as an information carrier in next-generation electronics and optoelectronics.
Magnetometry of micro-magnets with electrostatically defined Hall bars
Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent; Sarra-Bournet, Christian [Département de Physique, Université de Sherbrooke, J1K 2R1 Sherbrooke, Québec (Canada); Pioro-Ladrière, Michel, E-mail: michel.pioro-ladriere@usherbrooke.ca [Département de Physique, Université de Sherbrooke, J1K 2R1 Sherbrooke, Québec (Canada); CIFAR Program in Quantum Information Science, Canadian Institute for Advanced Research (CIFAR), M5G 1Z8 Toronto, Ontario (Canada)
2015-11-30
Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large current density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.
The transport mechanism of the integer quantum Hall effect
LiMing, W
2016-01-01
The integer quantum Hall effect is analysed using a transport mechanism with a semi-classic wave packages of electrons in this paper. A strong magnetic field perpendicular to a slab separates the electron current into two branches with opposite wave vectors $({\\it k})$ and locating at the two edges of the slab, respectively, along the current. In this case back scattering of electrons ($k\\rightarrow -k$) is prohibited by the separation of electron currents. Thus the slab exhibits zero longitudinal resistance and plateaus of Hall resistance. When the Fermi level is scanning over a Landau level when the magnetic field increases, however, the electron waves locate around the central axis of the slab and overlap each other thus back scattering of electrons takes place frequently. Then longitudinal resistance appears and the Hall resistance goes up from one plateau to a new plateau.
Application of Hall element as multimodal sensing device for artificial skin
Yuji, Jun-ichiro; Tanimura, Kaito
2013-04-01
In this paper, we reports on a tactile sensor with Hall effect elements, which are generally used as magnetic sensors, for multimodal sensing devices to detect the contact force and the temperature. This tactile sensor consists of Hall elements and a magnet that are embedded in an elastic silicone rubber as the artificial skin. Here, the normal contact force is detected by distance change between a Hall element and a magnet, and the temperature is also detected using the temperature dependence of the Hall element. The temperature dependence of Hall elements depends on the Hall material and the drive circuit to generate the Hall voltage. In this study, two Indium antimonide (InSb) Hall elements and two drive circuits, that is, a constant voltage drive and a constant current drive were used to demonstrate the tactile sensor. Two output Hall voltages were measured in the normal contact force range from 0 to 50N, the temperature range from -10 to 50°C. The inverse response surface to identify the normal contact force and the temperature was formulated using the experimental results. It was possible to detect the contact force and the temperature by obtaining two kinds of Hall voltages.
The Hall D Physics Program at JLab
Leckey, John P. [Indiana U.
2012-09-01
GlueX is one of the flagship experiments of the 12 GeV era at the Thomas Jefferson National Accelerator Facility (JLab). The energy of the electron accelerator at JLab is presently undergoing an upgrade from 6 GeV to 12 GeV and a 4th experimental hall (Hall D) is being added. The GlueX experimental apparatus consists of a tagged coherent bremsstrahlung photon beam incident on a liquid hydrogen target. The photoproduced mesons, which are created inside of a 2.2 T solenoid, will then pass through a pair of drift chambers and eventually deposit their energy into either of two calorimeters, depending on their respective angles. GlueX will attempt to map out the light meson spectrum and search for meson-gluon hybrids to better understand the confinement of quarks and gluons in quantum chromodynamics (QCD). There is little data on the photoproduction of light mesons and the GlueX experiment will exceed the current photoproduction data by several orders of magnitude in the first year alone. Photoproduction is specifically well suited to search for meson-gluon hybrids because in the flux tube model the production cross-sections are higher for meson-gluon hybrids from photons, with the spins of the virtual quark-antiquark pair aligned, than from other sources such as pions, with the spins of the quark-antiquark pair anti-aligned. There are also other Hall D experiments proposed to look for physics beyond the Standard Model by studying Eta rare or forbidden decay channels such as eta to two neutral pions. The 12 GeV upgrade of the JLab accelerator and the complete physics program of Hall D will be presented.
Alternating Current All-electrical Gun Control System in Tanks
Zang Kemao
2004-07-01
Full Text Available The ac all-electrical gun control system is composed of permanent magnetic synchronous machine-drive control systems and the ball-screw by replacing the complicated electrohydraulic systems. At the same time, the variable-structure system with sliding modes makes the gun control systems to have higher performances using the only rate flexure gyroscope. Thereby, vehicle hull gyroscope and angular gyroscope are left out.The new ac all-electrical gun control systems developed are reduced by 40 per cent in weight, decreased by 30 per cent in volume, increased by 35 per cent in efficiency, and enhanced by three times in service life as compared to the current gun control systems.
General footage ISOLDE experimental hall HD
2016-01-01
Overview of the ISOLDE experimental hall. Equipment and experiments. Taken from the WITCH / EBIS platform: ISOLDE hall infrastructure, GHM line, LA1, LA2, LA0, central beamline, COLLAPS experiment, CRIS experiment, ISOLTRAP experiment, laser guidance from building 508 into the hall for laser spectroscopy COLLAPS and CRIS. Taken from the HIE ISOLDE shielding tunnel roof: ISOLDE hall infrastructure, WITCH experiment, VITO line, TAS experiment. General footage: High Tension room entrance and EBIS platform, staircases and passages in the experimental hall.
Interactions, disorder and spin waves in quantum Hall ferromagnets near integer filling
Rapsch, S
2001-01-01
dynamics is discussed in chapter 5 and employed to study spin waves in a domain wall structure. A hydrodynamic theory of spin waves is used to treat long-wavelength excitations of randomly disordered quantum Hall ferromagnets. Finally, the contribution of spin waves to the optical conductivity is studied in chapter 6. Predictions are made for the experimental signatures of spin waves in disordered quantum Hall systems. The observability of these signatures is discussed both for transport measurements and NMR experiments. The interplay between exchange interactions and disorder is studied in quantum Hall ferromagnets near integer filling. Both analytical and numerical methods are used to investigate a non-linear sigma model of these systems in the limit of vanishing Zeeman coupling and at zero temperature. Chapter 1 gives an introduction to the quantum Hall effect and to quantum Hall ferromagnets in particular. A brief review of existing work on disordered quantum Hall systems is included. In chapters 2-4, the...
Current fluctuations in stochastic systems with long-range memory
Harris, R J; Touchette, H [School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom)], E-mail: rosemary.harris@qmul.ac.uk, E-mail: h.touchette@qmul.ac.uk
2009-08-28
We propose a method to calculate the large deviations of current fluctuations in a class of stochastic particle systems with history-dependent rates. Long-range temporal correlations are seen to alter the speed of the large deviation function in analogy with long-range spatial correlations in equilibrium systems. We give some illuminating examples and discuss the applicability of the Gallavotti-Cohen fluctuation theorem. (fast track communication)
Travelling Waves in Hall-MHD and the Ion-Acoustic Shock Structure
Hagstrom, George I
2013-01-01
Hall-MHD is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar travelling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, an...
Nogueira, Flavio; Eremin, Ilya [Theoretische Physik III, Ruhr-Universitaet Bochum (Germany)
2015-07-01
We discuss the peculiar nature of Higgs mechanism in an effective field theory for three-dimensional topological superconductors. The effective theory features two order parameters associated to the two chiral fermion species in the system. The resulting electrodynamics of such a topological superconductor exhibits a topological magnetoelectric effect with an axion field given by the phase difference of the order parameters. As consequence, the London regime is highly non-linear and anomalous Hall effect in the absence of an external magnetic field occurs. In this anomalous Hall effect the generated current transverse to an applied electric field changes sign with the temperature. We also discuss the scaling behavior of the penetration depth near the transition temperature, which is also shown to exhibit a scaling exponent that is crucially influenced by the axion term, varying continuously as function of the average phase difference.
The quantum Hall's effect:A quantum electrodynamic phenomenon
A.I. Arbab
2012-01-01
We have applied Maxwell's equations to study the physics of quantum Hall's effect.The electromagnetic properties of this system are obtained.The Hall's voltage,VH =2πh2ns/e rn,where ns is the electron number density,for a 2-dimensional system,and h =2πh is the Planck's constant,is found to coincide with the voltage drop across the quantum capacitor.Consideration of the cyclotronic motion of electrons is found to give rise to Hall's resistance.Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached.At a fundamental level,the Hall's effect is found to be equivalent to a resonant LCR circuit with LH =2π m/e2ns and CH =me2/2πh2ns satisfying the resonance condition with resonant frequency equal to the inverse of the scattering (relaxation) time,Ts.The Hall's resistance is found to be RH =√LH/CH.The Hall's resistance may be connected with the impedance that the electron wave experiences when it propagates in the 2-dimeasional gas.
3-dimensional current collection model. [of Tethered Satellite System 1
Hwang, Kai-Shen; Shiah, A.; Wu, S. T.; Stone, N.
1992-01-01
A three-dimensional, time dependent current collection model of a satellite has been developed for the TSS-1 system. The system has been simulated particularly for the Research of Plasma Electrodynamics (ROPE) experiment. The Maxwellian distributed particles with the geomagnetic field effects are applied in this numerical simulation. The preliminary results indicate that a ring current is observed surrounding the satellite in the equatorial plane. This ring current is found between the plasma sheath and the satellite surface and is oscillating with a time scale of approximately 1 microsec. This is equivalent to the electron plasma frequency. An hour glass shape of electron distribution was observed when the viewing direction is perpendicular to the equatorial plane. This result is consistent with previous findings from Linson (1969) and Antoniades et al. (1990). Electrons that are absorbed by the satellite are limited from the background ionosphere as indicated by Parker and Murphy (1967).
A Neuron Model Based Ultralow Current Sensor System for Bioapplications
A. K. M. Arifuzzman
2016-01-01
Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.
Bamshad Michael J
2009-03-01
Full Text Available Abstract Sheldon-Hall syndrome (SHS is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome. Prenatal diagnosis by ultrasonography is feasible at 18–24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal.
LLNL current meter array--concept and system description
Mantrom, D.D. [Lawrence Livermore National Lab., CA (United States)
1994-11-15
A measurement capability using a horizontal array of 10 S4 current meters mounted on a stiff floating structure with 35 m aperture has been developed to support interpretation of radar imaging of surface effects associated with internal waves. This system has been fielded three times and most recently, has collected data alongside the sea-surface footprint of a land-fixed radar imaging ship-generated internal waves. The underlying need for this measurement capability is described. The specifications resulting from this need are presented and the engineering design and deployment procedures of the platform and systems that resulted are described The current meter data are multiplexed along with meteorological and system status data on board the floating platform and are telemetered to a shore station and on to a data acquisition system. The raw data are recorded, and are then processed to form space-time images of current and strain rate (a spatial derivative of the current field). Examples of raw and processed data associated with ship-generated internal waves are presented.
Current Strategic Business Plan for the Implementation of Digital Systems.
Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.
This document presents a current strategic business plan for the implementation of digital systems and services for the free national library program operated by the National Library Service for the Blind and Physically Handicapped, Library of Congress, its network of cooperating regional and local libraries, and the United States Postal Service.…
A study on InSb Magnetic Sensor Using Hall Effect
Chon, C.S. [Inha Univ., Inchon (Korea, Republic of)
1994-02-01
InSb thin film magnetic sensor, which have been prepared on glass substrate by vacuum evaporation, is investigated in this paper. The dependence of hall voltage with on magnetic field and temperature is examined by Hall effect. The variation of Hall voltage with magnetic field is almost linear at constant current drive but it is deviated from the linearity at constant voltage drive. Hall voltage decreases as the ambient temperature increases, so it is necessary to take into account the temperature effect when the InSb thin film is used as magnetic sensor. (author). 17 refs., 5 figs.
Orbitronics: the Intrinsic Orbital Hall Effect in p-Doped Silicon
Bernevig, B.Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-01-15
The spin Hall effect depends crucially on the intrinsic spin-orbit coupling of the energy band. Because of the smaller spin-orbit coupling in silicon, the spin Hall effect is expected to be much reduced. We show that the electric field in p-doped silicon can induce a dissipationless orbital current in a fashion reminiscent of the spin Hall effect. The vertex correction due to impurity scattering vanishes and the effect is therefore robust against disorder. The orbital Hall effect can lead to the accumulation of local orbital momentum at the edge of the sample, and can be detected by the Kerr effect.
Self-Organizing Maps-based ocean currents forecasting system
Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir
2016-03-01
An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.
Energy efficient heating and ventilation of large halls
Hojer, Ondrej; Kabele, Karel; Kotrbaty, Miroslav; Sommer, Klaus; Petras, Dusan
2011-01-01
This guidebook is focused on modern methods for design, control and operation of energy efficient heating systems in large spaces and industrial halls. The book deals with thermal comfort, light and dark gas radiant heaters, panel radiant heating, floor heating and industrial air heating systems. Various heating systems are illustrated with case studies. Design principles, methods and modeling tools are presented for various systems.
Engida, Zelalem; Monahan, Adam; Ianson, Debby; Thomson, Richard E.
2016-10-01
Local and remote wind forcing of upwelling along continental shelves of coastal upwelling regions play key roles in driving biogeochemical fluxes, including vertical net fluxes of carbon and nutrients. These fluxes are responsible for high primary productivity, which in turn supports a lucrative fishery in these regions. However, the relative contributions of local versus remote wind forcing are not well quantified or understood. We present results of coherence analyses between currents at a single mooring site (48.5°N, 126°W) in the northern portion of the California Current System (CalCS) from 1989 to 2008 and coincident time series of North America Regional Reanalysis (NARR) 10 m wind stress within the CalCS (36-54°N, 120-132°W). The two-decade-long current records from the three shallowest depths (35, 100, and 175 m) show a remote response to winds from south as far as 36°N. In contrast, only temperatures at the deepest depth (400 m) show strong coherences with remote winds. Weaker local wind influence is observed in both the currents and 400 m temperatures but is mostly due to the large spatial coherence within the wind field itself. Lack of coherence between distal winds and the 400 m currents suggests that the temperature variations at that depth are driven by vertical motion resulting from poleward travelling coastal trapped waves (CTWs). Understanding the effects of remote forcing in coastal upwelling regions is necessary for determining the occurrence and timing of extreme conditions in coastal oceans, and their subsequent impact on marine ecosystems.
Hall viscosity and electromagnetic response of electrons in graphene
Sherafati, Mohammad; Principi, Alessandro; Vignale, Giovanni
2016-09-01
We derive an analytic expression for the geometric Hall viscosity of noninteracting electrons in a single graphene layer in the presence of a perpendicular magnetic field. We show that a recently derived formula in C. Hoyos and D. T. Son [Phys. Rev. Lett. 108, 066805 (2012), 10.1103/PhysRevLett.108.066805], which connects the coefficient of q2 in the wave-vector expansion of the Hall conductivity σx y(q ) of the two-dimensional electron gas (2DEG) to the Hall viscosity and the orbital diamagnetic susceptibility of that system, continues to hold for graphene, in spite of the lack of Galilean invariance, with a suitable definition of the effective mass. We also show that, for a sufficiently large number of occupied Landau levels in the positive-energy sector, the Hall conductivity of electrons in graphene reduces to that of a Galilean-invariant 2DEG with an effective mass given by ℏ kF/vF (cyclotron mass). Even in the most demanding case, i.e., when the chemical potential falls between the zeroth and the first Landau levels, the cyclotron mass formula gives results accurate to better than 1%. The connection between the Hall conductivity and the viscosity provides a possible avenue to measure the Hall viscosity in graphene.
Anisotropic intrinsic spin Hall effect in quantum wires.
Cummings, A W; Akis, R; Ferry, D K
2011-11-23
We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.
Current trends in health insurance systems: OECD countries vs. Japan.
Sasaki, Toshiyuki; Izawa, Masahiro; Okada, Yoshikazu
2015-01-01
Over the past few decades, the longest extension in life expectancy in the world has been observed in Japan. However, the sophistication of medical care and the expansion of the aging society, leads to continuous increase in health-care costs. Medical expenses as a part of gross domestic product (GDP) in Japan are exceeding the current Organization for Economic Co-operation and Development (OECD) average, challenging the universally, equally provided low cost health care existing in the past. A universal health insurance system is becoming a common system currently in developed countries, currently a similar system is being introduced in the United States. Medical care in Japan is under a social insurance system, but the injection of public funds for medical costs becomes very expensive for the Japanese society. In spite of some urgently decided measures to cover the high cost of advanced medical treatment, declining birthrate and aging population and the tendency to reduce hospital and outpatients' visits numbers and shorten hospital stays, medical expenses of Japan continue to be increasing.
A microbeam slit system for high beam currents
Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.
2015-04-01
A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.
Current Trends in Health Insurance Systems: OECD Countries vs. Japan
SASAKI, Toshiyuki; IZAWA, Masahiro; OKADA, Yoshikazu
2015-01-01
Over the past few decades, the longest extension in life expectancy in the world has been observed in Japan. However, the sophistication of medical care and the expansion of the aging society, leads to continuous increase in health-care costs. Medical expenses as a part of gross domestic product (GDP) in Japan are exceeding the current Organization for Economic Co-operation and Development (OECD) average, challenging the universally, equally provided low cost health care existing in the past. A universal health insurance system is becoming a common system currently in developed countries, currently a similar system is being introduced in the United States. Medical care in Japan is under a social insurance system, but the injection of public funds for medical costs becomes very expensive for the Japanese society. In spite of some urgently decided measures to cover the high cost of advanced medical treatment, declining birthrate and aging population and the tendency to reduce hospital and outpatients’ visits numbers and shorten hospital stays, medical expenses of Japan continue to be increasing. PMID:25797778
High-Resolution ac Measurements of the Hall Effect in Organic Field-Effect Transistors
Chen, Y.; Yi, H. T.; Podzorov, V.
2016-03-01
We describe a high resolving power technique for Hall-effect measurements, efficient in determining Hall mobility and carrier density in organic field-effect transistors and other low-mobility systems. We utilize a small low-frequency ac magnetic field (Brmsphase-sensitive (lock-in) detection of Hall voltage, with the necessary corrections for Faraday induction. This method significantly enhances the signal-to-noise ratio and eliminates the necessity of using high magnetic fields in Hall-effect studies. With the help of this method, we are able to obtain the Hall mobility and carrier density in organic transistors with a mobility as low as μ ˜0.3 cm2 V-1 s-1 by using a compact desktop apparatus and low magnetic fields. We find a good agreement between Hall-effect and electric-field-effect measurements, indicating that, contrary to the common belief, certain organic semiconductors with mobilities below 1 cm2 V-1 s-1 can still exhibit a fully developed, band-semiconductor-like Hall effect, with the Hall mobility and carrier density matching those obtained in longitudinal transistor measurements. This suggests that, even when μ organic semiconductors can still behave as delocalized coherent carriers. This technique paves the way to ubiquitous Hall-effect studies in a wide range of low-mobility materials and devices, where it is typically very difficult to resolve the Hall effect even in very high dc magnetic fields.
A Simulation Study of Hall Effect on Double Tearing Modes
ZHANG Chenglong; MA Zhiwei; DONG Jiaqi
2008-01-01
A Hall magnetohydrodynamics (MHD) simulation is carried out to study the dy-namic process of double tearing mode. The results indicated that the growth rates in the earlier nonlinear and transition phases agree with the previous results. With further development of reconnection, the current sheet thickness is much smaller than the ion inertia length, which leads to a strong influence of the Hall effects. As a result, the reconnection in the late nonlinear phase exhibits an explosive nature with a time scale nearly independent of resistivity. A localized and severely intensified current density is observed and the maximum kinetic energy is over one order of magnitude higher in Hall MHD than that in resistive MHD.
On the calculation of the response of (planar) hall-effect devices to inhomogeneous magnetic fields
Fluitman, J.H.J.
1981-01-01
The calculation of Hall potentials in a rectangular Hall plate is treated for the case in which the device is subject to a magnetic field B that is inhomogeneous in the y-direction perpendicular to the direction of initial current flow. The potentials are presented in the form φH(→r′) = const. ∫widt
Asymmetry-induced electric current rectification in permselective systems.
Green, Yoav; Edri, Yaron; Yossifon, Gilad
2015-09-01
For a symmetric ion permselective system, in terms of geometry and bulk concentrations, the system response is also symmetric under opposite electric field polarity. In this work we derive an analytical solution for the concentration distribution, electric potential, and current-voltage response for a four-layered system comprised of two microchambers connected by two permselective regions of varying properties. It is shown that any additional asymmetry in the system, in terms of the geometry, bulk concentration, or surface charge property of the permselective regions, results in current rectification. Our work is divided into two parts: when both permselective regions have the same surface charge sign and the case of opposite signs. For the same sign case we are able to show that the system behaves as a dialytic battery while accounting for field-focusing effects. For the case of opposite signs (i.e., bipolar membrane), our system exhibits the behavior of a bipolar diode where the magnitude of the rectification can be of order 10^{2}-10^{3}.
Exact temporal eddy current compensation in magnetic resonance imaging systems.
Morich, M A; Lampman, D A; Dannels, W R; Goldie, F D
1988-01-01
A step-response method has been developed to extract the properties (amplitudes and decay time constants) of intrinsic-eddy-current-sourced magnetic fields generated in whole-body magnetic resonance imaging systems when pulsed field gradients are applied. Exact compensation for the eddy-current effect is achieved through a polynomial rooting procedure and matrix inversion once the 2 N properties of the N-term decay process are known. The output of the inversion procedure yields the required characteristics of the filter for spectrum magnitude and phase equalization. The method is described for the general case along with experimental results for one-, two-, and three-term inversions. The method's usefulness is demonstrated for the usually difficult case of long-term (200-1000-ms) eddy-current compensation. Field-gradient spectral flatness measurements over 30 mHz-100 Hz are given to validate the method.
Supercurrent in the quantum Hall regime
Amet, F.; Ke, C. T.; Borzenets, I. V.; Wang, J.; Watanabe, K.; Taniguchi, T.; Deacon, R. S.; Yamamoto, M.; Bomze, Y.; Tarucha, S.; Finkelstein, G.
2016-05-01
A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.
The local nature of incompressibility of quantum Hall effect
Kendirlik, E. M.; Sirt, S.; Kalkan, S. B.; Ofek, N.; Umansky, V.; Siddiki, A.
2017-01-01
Since the experimental realization of the integer quantum Hall effect in a two-dimensional electron system, the interrelation between the conductance quantization and the topological properties of the system has been investigated. Assuming that the two-dimensional electron system is described by a Bloch Hamiltonian, system is insulating in the bulk of sample throughout the quantum Hall plateau due to a magnetic field induced energy gap. Meanwhile, the system is conducting at the edges resembling a 2+1 dimensional topological insulator without time-reversal symmetry. Here, by our magneto-transport measurements performed on GaAs/AlGaAs high purity Hall bars with two inner contacts we show that incompressible strips formed at the edges result in Hall quantization, even if the bulk is compressible. Consequently, the relationship between the quantum Hall effect and topological bulk insulator breaks for specific field intervals within the plateaus. The measurement of conducting bulk, strongly challenges all existing single-particle theories. PMID:28071652
The local nature of incompressibility of quantum Hall effect
Kendirlik, E. M.; Sirt, S.; Kalkan, S. B.; Ofek, N.; Umansky, V.; Siddiki, A.
2017-01-01
Since the experimental realization of the integer quantum Hall effect in a two-dimensional electron system, the interrelation between the conductance quantization and the topological properties of the system has been investigated. Assuming that the two-dimensional electron system is described by a Bloch Hamiltonian, system is insulating in the bulk of sample throughout the quantum Hall plateau due to a magnetic field induced energy gap. Meanwhile, the system is conducting at the edges resembling a 2+1 dimensional topological insulator without time-reversal symmetry. Here, by our magneto-transport measurements performed on GaAs/AlGaAs high purity Hall bars with two inner contacts we show that incompressible strips formed at the edges result in Hall quantization, even if the bulk is compressible. Consequently, the relationship between the quantum Hall effect and topological bulk insulator breaks for specific field intervals within the plateaus. The measurement of conducting bulk, strongly challenges all existing single-particle theories.
Proposed hybrid superconducting fault current limiter for distribution systems
Elmitwally, A. [Elect. Eng. Dept., Mansoura University, Mansoura 35516 (Egypt)
2009-11-15
In this paper, a new hybrid fault current limiter is proposed for primary distribution systems. It incorporates a high temperature superconducting element in parallel with other two branches. The first is an inductive impedance to share the fault current with. The second branch is a gate-turn-off thyristor switch controlled to work in either of two modes. For the main mode, it controls the temperature of the superconducting element and protect it against damaging excessive heating. Instead, it keeps the device applicable without that superconducting element in the auxiliary operation mode. The design, control and operation of the device is addressed. Its performance in 11 kV distribution systems with DG is investigated. The factors affecting the device behavior for different scenarios are explored. (author)
Symmetry and the thermodynamics of currents in open quantum systems
Manzano, Daniel; Hurtado, Pablo I.
2014-09-01
Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for quantum devices with controllable transport properties.
The Optimal Taxation and the Current Tax System
Ioannis N. Kallianiotis
2015-01-01
Purpose:The paper discusses the current U.S. tax system, which reduces the disposable income and makes savings negative (dissaving or borrowing). This has increased the debt of individuals and the low taxes on businesses have magnified the budget deficits and the national debt. Methodology:People are borrowing the present value of their uncertain future wealth and their high debt and low income raise the risk and this high risk premium heighten the interest rate on loans, especially on credit...
Current Fluctuations in Nonequilibrium Diffusive Systems: An Additivity Principle
Bodineau, T.; Derrida, B.
2004-05-01
We formulate a simple additivity principle allowing one to calculate the whole distribution of current fluctuations through a large one dimensional system in contact with two reservoirs at unequal densities from the knowledge of its first two cumulants. This distribution (which in general is non-Gaussian) satisfies the Gallavotti-Cohen symmetry and generalizes the one predicted recently for the symmetric simple exclusion process. The additivity principle can be used to study more complex diffusive networks including loops.
Electric machine and current source inverter drive system
Hsu, John S
2014-06-24
A drive system includes an electric machine and a current source inverter (CSI). This integration of an electric machine and an inverter uses the machine's field excitation coil for not only flux generation in the machine but also for the CSI inductor. This integration of the two technologies, namely the U machine motor and the CSI, opens a new chapter for the component function integration instead of the traditional integration by simply placing separate machine and inverter components in the same housing. Elimination of the CSI inductor adds to the CSI volumetric reduction of the capacitors and the elimination of PMs for the motor further improve the drive system cost, weight, and volume.
Current status and challenges in PEMFC stacks, systems and commercialization
任远; 曹广益; 朱新坚
2006-01-01
The current status of worldwide developments of polymer electrolyte membrane fuel cell (PEMFC) stacks and system,research activities in resent years to analyze the cost of PEMFC stacks and systems, the remaining research and development issues that should be resolved before the PEMFC available for commercial application were discussed. The two main problems that challenge the PEMFC commercialization were cost and fuel supply infrastructure. The ways to lower the cost, to choose the fuel and improve the efficiency and reliability were described. To research the cost target of 125 kW and stack lifetime of 40 000 ～ 100 000h, basic research in PEMFC was indispensable.
Fast isolation of faults in transmission systems using current transients
Perera, N.; Rajapakse, A.D. [University of Manitoba, Department of Electrical and Computer Engineering, Engineering Building, 15 Gillson Street, Winnipeg, Manitoba (Canada)
2008-09-15
This paper presents a protection scheme that is capable of very fast isolation of faults in high voltage transmission systems. Proposed scheme comprises set of relays connected through a telecommunication network, located at different nodes of the system. Relays use wavelet coefficients of current signals to identify the fault directions relative to their location. Fault directions identified at different locations in the system can be combined to determine the faulted line (or busbar) and isolate it. A robust single ended traveling wave based fault distance estimation approach is proposed as a backup in case of communication failure. Investigations were carried out using time domain simulations in PSCAD/EMTDC for a high voltage transmission system. (author)
Methodology for simulation of geomagnetically induced currents in power systems
Boteler David
2014-07-01
Full Text Available To assess the geomagnetic hazard to power systems it is useful to be able to simulate the geomagnetically induced currents (GIC that are produced during major geomagnetic disturbances. This paper examines the methodology used in power system analysis and shows how it can be applied to modelling GIC. Electric fields in the area of the power network are used to determine the voltage sources or equivalent current sources in the transmission lines. The power network can be described by a mesh impedance matrix which is combined with the voltage sources to calculate the GIC in each loop. Alternatively the power network can be described by a nodal admittance matrix which is combined with the sum of current sources into each node to calculate the nodal voltages which are then used to calculate the GIC in the transmission lines and GIC flowing to ground at each substation. Practical calculations can be made by superposition of results calculated separately for northward and eastward electric fields. This can be done using magnetic data from a single observatory to calculate an electric field that is a uniform approximation of the field over the area of the power system. It is also shown how the superposition of results can be extended to use data from two observatories: approximating the electric field by a linear variation between the two observatory locations. These calculations provide an efficient method for simulating the GIC that would be produced by historically significant geomagnetic storm events.
Research on Low Power Marine Current Power Generation System
Dongkai Peng
2013-09-01
Full Text Available This study proposes a simple topological structure and power control method for a small scale stand alone marine current system, in which a diode rectifier, DC/DC boost converter for the maximum power control, battery as a storage element and a single phase inverter to link with load. The study establishes the steady-state mathematical model of marine current power generation system and derives the formula between the maximum power point and dc battery voltage. Then use the measurements of DC voltage and DC current to obtain Maximum Power Point Tracking (MPPT by controlling the duty cycle of the boost converter switch in order to simplify the system structure and the control strategies. In this case, the hill climbing searching algorithm is employed to get maximum power point and the double closed loops control strategy is used to improve the dynamic and static performance of single phase inverter. The simulation model is developed in MATLAB/Simulink. And the control method is executed in dSPACE1104 real-time platform. The simulation and experimental results demonstrate the feasibility and validity of the proposed control strategies.
Design of C8051 microcontroller and Hall sensor system%C8051单片机与霍尔传感器系统设计
陈杰; 陈荡; 熊雄
2012-01-01
为提高磁感应强度采集与显示的有效性,设计了一种基于C8051F350单片机与S5495A霍尔传感器的信号采集与显示系统.通过霍尔传感器把磁场强度转化为电压并作为输入信号,经放大器AD620进行放大后输送到单片机中采集并由其自带模/数转换器进行模/数转换,最终在显示屏上显示出来.实验结果表明,霍尔电压能够很精确测量出来,显示屏上显示的霍尔电压与记录的数据相符合,验证了方案的可行性,实验设计达到了预期目标.%In order to improve the effectiveness of acquisition and display of magnetic flux density, a scheme based on C8051F350 microcontroller and SS495A hall sensor was designed . The input signal was voltage which was transported by magnetic field strength through hall sensor; the voltage signal was amplified by the amplifier AD620, and transported into the microcontroller; analog to digital ( A/D ) conversion processing was accomplished by the microcontroller itself; the data finally displayed on the liquid crystal display (LCD). Experiment results show that hall voltage is measured accurately which is consistent with the recorded data, the feasibility of the scheme is verified and the design goal is reached.
A regional climatology of the Humboldt Current System
Grados Quispe, M.; Chaigneau, A.; Blanco, J.; Vasquez, L.; Dominguez, N.
2009-12-01
A 3-dimensional, high-resolution, regional climatology of the Humboldt Current System (HCS) north of 25°S is presented. The methodology is based on a four-dimensional ocean interpolation scheme using locally weighted least square fitting, as developed by Dunn and Ridgway [2001] and Ridgway et al. [2002] in the Australian Seas. The method is applied to all the available historical profiles from the National Oceanographic Data Center [WOD05, Boyer et al., 2006], ARGO buoy profiles [http://www.argo.ucsd.edu] for 2000-2007 and historical in situ long-term information from the Peruvian Marine Research Institute (IMARPE) and Fisheries Development Institute (IFOP) for the period 1960-2008. The regional climatology, which extends from the equator to 25°S and from the coast to 8° offshore with a resolution of 0.1°x0.1°, is thus constructed from more than 70 000 temperature profiles, 38 000 salinity profiles and 43 000 oxygen profiles to form a seasonal climatology of temperature and salinity along Peru and northern Chile. The resulting maps depict interesting small-scales coastal properties such as clear distinct upwelling centers and frontal zones. Geostrophic currents relative to 500 m depth are also computed from the density field, highlighting new circulation features. This study provides a contemporaneous view of the circulation and the water masses characteristics in the Humboldt Current System at seasonal scales. This regional climatology represents coastal boundary features (upwelling cells, frontal regions) better than other climatologies. In view of on-going international research efforts to understand the coastal upwelling and coastal currents in the southern ocean off Peru, the main characteristics of the upwelling cell, currents and coastal winds variability of the Pisco (13°S)-San Juan (15°S) region are presented. This improved gridded product is expected to be used for initializing and validating high resolution regional numerical models.
CRISPR system in filamentous fungi: Current achievements and future directions.
Deng, Huaxiang; Gao, Ruijie; Liao, Xiangru; Cai, Yujie
2017-09-05
As eukaryotes, filamentous fungi share many features with humans, and they produce numerous active metabolites, some of which are toxic. Traditional genetic approaches are generally inefficient, but the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system that has been widely used for basic research on bacteria, mammals and plants offers a simple, fast, versatile technology for systemic research on filamentous fungi. In this review, we summarized the current knowledge on Cas9 and its variants, various selective markers used to screen positive clones, different ways used to detect off-target mutations, and different approaches used to express and transform the CRISPR complex. We also highlight several methods that improve the nuclease specificity and efficiency, and discuss current and potential applications of CRISPR/Cas9 system in filamentous fungi for pathogenesis decoding, confirmation of the gene and pathway, bioenergy process, drug discovery, and chromatin dynamics. We also describe how the synthetic gene circuit of CRISPR/Cas9 systems has been used in the response to various complex environmental signals to redirect metabolite flux and ensure continuous metabolite biosynthesis. Copyright © 2017. Published by Elsevier B.V.
The current situation of treatment systems for alcoholism in Korea.
Kim, Jee Wook; Lee, Boung Chul; Kang, Tae-Cheon; Choi, Ihn-Geun
2013-02-01
Alcoholism is becoming one of the most serious issues in Korea. The purpose of this review article was to understand the present status of the treatment system for alcoholism in Korea compared to the United States and to suggest its developmental direction in Korea. Current modalities of alcoholism treatment in Korea including withdrawal treatment, pharmacotherapy, and psychosocial treatment are available according to Korean evidence-based treatment guidelines. Benzodiazepines and supportive care including vitamin and nutritional support are mainly used to treat alcohol withdrawal in Korea. Naltrexone and acamprosate are the drugs of first choice to treat chronic alcoholism. Psychosocial treatment methods such as individual psychotherapy, group psychotherapy, family therapy, cognitive behavior therapy, cue exposure therapy, 12-step facilitation therapy, self-help group therapy, and community-based treatment have been carried out to treat chronic alcoholism in Korea. However, current alcohol treatment system in Korea is not integrative compared to that in the United States. To establish the treatment system, it is important to set up an independent governmental administration on alcohol abuse, to secure experts on alcoholism, and to conduct outpatient alcoholism treatment programs and facilities in an open system including some form of continuing care.
Quantum anomalous Hall effect in topological insulator memory
Jalil, Mansoor B. A., E-mail: elembaj@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117576 (Singapore); Data Storage Institute, Agency for Science, Technology and Research A*STAR, DSI Building, 5 Engineering Drive 1, Singapore, Singapore 117608 (Singapore); Tan, S. G. [Data Storage Institute, Agency for Science, Technology and Research A*STAR, DSI Building, 5 Engineering Drive 1, Singapore, Singapore 117608 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, Singapore 117576 (Singapore); Siu, Z. B. [Data Storage Institute, Agency for Science, Technology and Research A*STAR, DSI Building, 5 Engineering Drive 1, Singapore, Singapore 117608 (Singapore); NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore)
2015-05-07
We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity σ{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of σ{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing σ{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.
Few-body, hyperspherical treatment of the quantum Hall effect
Wooten R. E.
2016-01-01
Full Text Available The quantum Hall effect arises from the quantum behavior of two-dimensional, strongly-interacting electrons exposed to a strong, perpendicular magnetic field [1, 2]. Conventionally treated from a many-body perspective, we instead treat the system from the few-body perspective using collective coordinates and the hyperspherical adiabatic technique developed originally for atomic systems [3]. The grand angular momentum K from K-harmonic few-body theory, is shown to be an approximate good collective quantum number in this system, and is shown to correlate with known fractional quantum Hall (FQH states at experimentally observed filling factors.
Gu, Yingfei; Lee, Ching Hua; Wen, Xueda; Cho, Gil Young; Ryu, Shinsei; Qi, Xiao-Liang
2016-09-01
In this paper, we study (2 +1 ) -dimensional quantum anomalous Hall states, i.e., band insulators with quantized Hall conductance, using exact holographic mapping. Exact holographic mapping is an approach to holographic duality which maps the quantum anomalous Hall state to a different state living in (3 +1 ) -dimensional hyperbolic space. By studying topological response properties and the entanglement spectrum, we demonstrate that the holographic dual theory of a quantum anomalous Hall state is a (3 +1 ) -dimensional topological insulator. The dual description enables a characterization of topological properties of a system by the quantum entanglement between degrees of freedom at different length scales.
Patterns and processes in the California Current System
Checkley, David M., Jr.; Barth, John A.
2009-12-01
The California Current System (CCS) is forced by the distribution of atmospheric pressure and associated winds in relation to the west coast of North America. In this paper, we begin with a simplified case of winds and a linear coast, then consider variability characteristic of the CCS, and conclude by considering future change. The CCS extends from the North Pacific Current (∼50°N) to off Baja California, Mexico (∼15-25°N) with a major discontinuity at Point Conception (34.5°N). Variation in atmospheric pressure affects winds and thus upwelling. Coastal, wind-driven upwelling results in nutrification and biological production and a southward coastal jet. Offshore, curl-driven upwelling results in a spatially large, productive habitat. The California Current flows equatorward and derives from the North Pacific Current and the coastal jet. Dominant modes of spatial and temporal variability in physical processes and biological responses are discussed. High surface production results in deep and bottom waters depleted in oxygen and enriched in carbon dioxide. Fishing has depleted demersal stocks more than pelagic stocks, and marine mammals, including whales, are recovering. Krill, squid, and micronekton are poorly known and merit study. Future climate change will differ from past change and thus prediction of the CCS requires an understanding of its dynamics. Of particular concern are changes in winds, stratification, and ocean chemistry.
The Current State and Perspectives of Systems Biology
Tielui Shi; Yixue Li
2006-01-01
Emerging as a new field in biology recently, Systems Biology provides a branch new way to study the biological activities in organisms. In order to decode the complexity of life systematically,systems biology integrates the "-omics" and uses the high throughput methods from transcriptomics,protomics and metabonomics to detect the dynamic activities in cell; and then, it incorporates bioinformatics methods to integrate and analyze those data, and simulate the biological processes based on the model built from those integrated data. In this paper, the current state, the research field and the methods for the Systems Biology are introduced briefly, and then, several ideas about future development in this field are also proposed.
Development of high current beam ns pulsed system
Shen Guan Ren; Gao Fu; Guan Xia Ling; LiuNaiYi
2001-01-01
The development of high current beam ns pulsed system of CPNG and its characteristic, main technological performance and application are introduced. Firstly, important parameters of the system are calculated using theoretical model, the design requirements of some important parts are understood. Some mistakes in physics conception are corrected. Second, the chopper is designed for parallel plate deflector, chopping aperture and sine wave voltage sweeping device. It is emphasized that the conception of parallel plate load impedance is the capacitance load, but not the 50 ohm load impedance. The dynamic capacitance value has been measured. The output emphasizes the output voltage amplitude, but not the output power for sweeping device. The display system of output sweeping voltage was set up and it is sure that the maximum output voltage(V-V) is >=4000 V. The klystron buncher are re-designed. It is emphasized to overcome difficulty of support high voltage electrode in the klystron and insulator of input sine wa...
Influence of the Hall effect and electron inertia in collisionless magnetic reconnection
Andrés, Nahuel; Gómez, Daniel
2015-01-01
We study the role of the Hall current and electron inertia in collisionless magnetic reconnection within the framework of full two-fluid MHD. At spatial scales smaller than the electron inertial length, a topological change of magnetic field lines exclusively due to electron inertia becomes possible. Assuming stationary conditions, we derive a theoretical scaling for the reconnection rate, which is simply proportional to the Hall parameter. Using a pseudo-spectral code with no dissipative effects, our numerical results confirm this theoretical scaling. In particular, for a sequence of different Hall parameter values, our numerical results show that the width of the current sheet is independent of the Hall parameter while its thickness is of the order of the electron inertial range, thus confirming that the stationary reconnection rate is proportional to the Hall parameter.
S. Rajalingam
2014-05-01
Full Text Available This paper presents a novel control technique on four leg inverter with which the distribution grid is interconnected with the domestic houses. Most of the houses in the distribution side possess inverter for the usage of Electricity. With the advancement in Solar & wind, it will become easy to see houses, often with solar & a small Wind power system. The excess power generated can be exchanged with the Electricity Board for providing uninterruptible power supply. During this exchange there may be a deterioration in the quality of power, most often the grid current gets affected with a large harmonic distortion, and also there exists unbalanced grid currents. Thus, it is necessary to provide uninterruptible power supply with good quality of power. In spite of several controllers, the proposed augmented controller has its own reliability & quick response with Overall Harmonic Compensation (OHC technique which relies on DSP based filter. This Augmented based control technique with OHC is demonstrated extensively with MATLAB/Simulink simulation.
D0 Detector Collision Hall Oxygen Deficiancy Hazard Analysis
Wu, J.; /Fermilab
1992-08-06
EN-258, D0 Platform ODH Analysts. provided the oxygen deficiency hazard analysts for the D0 detector in the Assembly Hall. This note covers the same analysis. but revised for the Collision Hall. Liquid cryogens. released and warming to atmosphere conditions, expand to, on average, seven hundred times their liquid volume, and displace vital atmospheric oxygen. An oxygen deficiency hazard analysis assesses the increased risk to personnel in areas containing cryogenic systems. The D0 detector Collision Hall ODH analysis has been approached five different ways using established methods. If the low beta quad magnets are powered, and the exhaust rate is below 4220 scfm, the area is ODH class 1. In any other case, the analysis shows the area to be ODH class 0 as equipped (with ventilation fans) and requiring no special safety provisions. System designers have provided for a reduced oxygen level detection and warning system as well as emergency procedures to address fault conditions.
Comparing current cluster, massively parallel, and accelerated systems
Barker, Kevin J [Los Alamos National Laboratory; Davis, Kei [Los Alamos National Laboratory; Hoisie, Adolfy [Los Alamos National Laboratory; Kerbyson, Darren J [Los Alamos National Laboratory; Pakin, Scott [Los Alamos National Laboratory; Lang, Mike [Los Alamos National Laboratory; Sancho Pitarch, Jose C [Los Alamos National Laboratory
2010-01-01
Currently there is large architectural diversity in high perfonnance computing systems. They include 'commodity' cluster systems that optimize per-node performance for small jobs, massively parallel processors (MPPs) that optimize aggregate perfonnance for large jobs, and accelerated systems that optimize both per-node and aggregate performance but only for applications custom-designed to take advantage of such systems. Because of these dissimilarities, meaningful comparisons of achievable performance are not straightforward. In this work we utilize a methodology that combines both empirical analysis and performance modeling to compare clusters (represented by a 4,352-core IB cluster), MPPs (represented by a 147,456-core BG/P), and accelerated systems (represented by the 129,600-core Roadrunner) across a workload of four applications. Strengths of our approach include the ability to compare architectures - as opposed to specific implementations of an architecture - attribute each application's performance bottlenecks to characteristics unique to each system, and to explore performance scenarios in advance of their availability for measurement. Our analysis illustrates that application performance is essentially unrelated to relative peak performance but that application performance can be both predicted and explained using modeling.
Stability of Hall equilibria in neutron star crusts
Marchant P.; Reisenegger A.; Valdivia J.A.; Hoyos J.H.
2014-01-01
In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent cascade to scales at which Ohmic dissipation becomes effective, allowing a much faster decay in objects with very strong fields. On the other...
Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers
Manchon, Aurelien
2017-01-01
We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.
Ryu, Kwang-Su; Yang, See-Hun; Thomas, Luc; Parkin, Stuart
2016-09-01
We have studied the current-induced domain wall (CIDW) dynamics in perpendicularly magnetized Co/Ni multilayers deposited on Au underlayer, where the conventional spin transfer torque governs the domain wall dynamics, by the Kerr microscope. It is found that the DW angle tilting following Oersted field profile plays an important role in domain wall (DW) motion at high current density J by decreasing DW velocity with the increasing J, while distorting its DW morphology. Also we find that the DW pinning becomes pronounced as the anisotropy decreases by increasing number of Co/Ni repeats. Most remarkably, the DW tilting angle changes its sign by inserting ultrathin Pt layer between Au and Co layer, which suggests that the Dzyaloshinskii-Moriya interaction and spin Hall effect induces opposite effect in DW tilting. Our findings can be of use for application of CIDW to spintronics with perpendicularly magnetized systems.
Low-frequency noise in planar Hall effect bridge sensors
Persson, Anders; Bejhedb, R.S.; Bejhed, R.S.
2011-01-01
The low-frequency characteristics of planar Hall effect bridge sensors are investigated as function of the sensor bias current and the applied magnetic field. The noise spectra reveal a Johnson-like spectrum at high frequencies, and a 1/f-like excess noise spectrum at lower frequencies, with a knee...
Quantum Q systems: from cluster algebras to quantum current algebras
Di Francesco, Philippe; Kedem, Rinat
2017-02-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({n}[u,u^{-1}])subset U_{√{q}}(widehat{{sl}}_2), in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
Quantum Q systems: from cluster algebras to quantum current algebras
Di Francesco, Philippe; Kedem, Rinat
2016-11-01
This paper gives a new algebraic interpretation for the algebra generated by the quantum cluster variables of the A_r quantum Q-system (Di Francesco and Kedem in Int Math Res Not IMRN 10:2593-2642, 2014). We show that the algebra can be described as a quotient of the localization of the quantum algebra U_{√{q}}({{n}}[u,u^{-1}])subset U_{√{q}}(widehat{{{sl}}}_2) , in the Drinfeld presentation. The generating current is made up of a subset of the cluster variables which satisfy the Q-system, which we call fundamental. The other cluster variables are given by a quantum determinant-type formula, and are polynomials in the fundamental generators. The conserved quantities of the discrete evolution (Di Francesco and Kedem in Adv Math 228(1):97-152, 2011) described by quantum Q-system generate the Cartan currents at level 0, in a non-standard polarization. The rest of the quantum affine algebra is also described in terms of cluster variables.
Fuzzy Controller based Neutral Current Harmonic Suppression in Distribution System
T.Guna Sekar
2013-10-01
Full Text Available Recent surveys of three-phase four-wire electric systems, buildings and industrial plants with computers and non-linear loads shows the excessive currents in the neutral conductor. This is mainly due to unbalancing system and non-linear loads. Third order harmonics are much dominant in the neutral conductor due to the presence of zero sequence components. In response to this concern, this paper presents a concept of series active filter scheme to suppress the neutral current harmonics to reduce the burden of the secondary of the distribution transformer. In this scheme, the series active filteris connected in series with the neutral conductor to eliminate the zero sequence components in the neutral conductor. In this paper, Fuzzy based controller is used to extract the harmonic component in the neutral conductor. The proposed method improves the overall performance of the system and eliminates the burden of the neutral conductor. To validate the proposed simulation results, a scale-down prototype experimental model is developed.
High temperature Hall measurement setup for thin film characterization
Adnane, L.; Gokirmak, A.; Silva, H.
2016-07-01
Hall measurement using the van der Pauw technique is a common characterization approach that does not require patterning of contacts. Measurements of the Hall voltage and electrical resistivity lead to the product of carrier mobility and carrier concentration (Hall coefficient) which can be decoupled through transport models. Based on the van der Paw method, we have developed an automated setup for Hall measurements from room temperature to ˜500 °C of semiconducting thin films of a wide resistivity range. The resistivity of the film and Hall coefficient is obtained from multiple current-voltage (I-V) measurements performed using a semiconductor parameter analyzer under applied constant "up," zero, and "down" magnetic field generated with two neodymium permanent magnets. The use of slopes obtained from multiple I-Vs for the three magnetic field conditions offer improved accuracy. Samples are preferred in square shape geometry and can range from 2 mm to 25 mm side length. Example measurements of single-crystal silicon with known doping concentration show the accuracy and reliability of the measurement.
Stability of Hall equilibria in neutron star crusts
Marchant, Pablo; Valdivia, Juan Alejandro; Hoyos, Jaime H
2014-01-01
In the solid crusts of neutron stars, the advection of the magnetic field by the current-carrying electrons, an effect known as Hall drift, should play a very important role as the ions remain essentially fixed (as long as the solid does not break). Although Hall drift preserves the magnetic field energy, it has been argued that it may drive a turbulent cascade to scales at which Ohmic dissipation becomes effective, allowing a much faster decay in objects with very strong fields. On the other hand, it has been found that there are "Hall equilibria", i.e., field configurations that are unaffected by Hall drift. Here, we address the crucial question of the stability of these equilibria through axially symmetric (2D) numerical simulations of Hall drift and Ohmic diffusion, with the simplifying assumption of uniform electron density and conductivity. We demonstrate the 2D-stability of a purely poloidal equilibrium, for which Ohmic dissipation makes the field evolve towards an attractor state through adjacent stab...
Reconnection dynamics with secondary tearing instability in compressible Hall plasmas
Ma, Z. W., E-mail: zwma@zju.edu.cn; Wang, L. C.; Li, L. J. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)
2015-06-15
The dynamics of a secondary tearing instability is systematically investigated based on compressible Hall magnetohydrodynamic. It is found that in the early nonlinear phase of magnetic reconnection before onset of the secondary tearing instability, the geometry of the magnetic field in the reconnection region tends to form a Y-type structure in a weak Hall regime, instead of an X-type structure in a strong Hall regime. A new scaling law is found that the maximum reconnection rate in the early nonlinear stage is proportional to the square of the ion inertial length (γ∝d{sub i}{sup 2}) in the weak Hall regime. In the late nonlinear phase, the thin elongated current sheet associated with the Y-type geometry of the magnetic field breaks up to form a magnetic island due to a secondary tearing instability. After the onset of the secondary tearing mode, the reconnection rate is substantially boosted by the formation of the X-type geometries of magnetic field in the reconnection regions. With a strong Hall effect, the maximum reconnection rate linearly increases with the increase of the ion inertial length (γ∝d{sub i})
Intrinsic valley Hall effect in graphene
Yang, Mou; Zhang, Wen-Lian; Liu, Hai; Bai, Yan-Kui
2017-04-01
If electrons are incident from an armchair graphene ribbon into the bulk graphene region, the electronic diffraction occurs. Because of the different triangular wrapping of the energy dispersion between valleys K and K ‧ , the electrons of valley K tend to be diffracted to one side and those of valley K ‧ to the other side. When the current is injected from the armchair ribbon of a four-terminal graphene device, the major portion of the incident current of valley K flows through one side arm and the minor portion through the other side arm. The ratio between them is derived to be 1 + 4 E / 3 in the low energy limit, where E is the energy in units of hopping parameter. The major arm for valley K is the minor arm for valley K ‧ . This results in the rise of the valley Hall effect, which is an intrinsic property of graphene stemming from the different electronic structure of the two valleys. The valley Hall conductance is calculated to be (2 E / 3)G0 with G0 being the conductance supported by the injection ribbon.
Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure
Hagstrom, George I.; Hameiri, Eliezer [Courant Institute of Mathematical Sciences, New York, New York 10012 (United States)
2014-02-15
Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.
Micro-four-point Probe Hall effect Measurement method
Petersen, Dirch Hjorth; Hansen, Ole; Lin, Rong
2008-01-01
barriers and with a magnetic field applied normal to the plane of the sheet. Based on this potential, analytical expressions for the measured four-point resistance in presence of a magnetic field are derived for several simple sample geometries. We show how the sheet resistance and Hall effect......We report a new microscale Hall effect measurement method for characterization of semiconductor thin films without need for conventional Hall effect geometries and metal contact pads. We derive the electrostatic potential resulting from current flow in a conductive filamentary sheet with insulating...... contributions may be separated using dual configuration measurements. The method differs from conventional van der Pauw measurements since the probe pins are placed in the interior of the sample region, not just on the perimeter. We experimentally verify the method by micro-four-point probe measurements...
Hall coefficient of insulating n-type CdSe
Roy, A.; Levy, M.; Guo, X.M.; Sarachik, M.P.; Ledesma, R.; Isaacs, L.L.
1989-05-15
We report measurements of the conductivity and Hall coefficient of insulating n-type CdSe with dopant concentrations near the critical concentration for the metal-insulator transition. In the temperature range 1.2--4.2 K, where the resistivity is consistent with variable-range hopping, the Hall coefficient is finite and observable and follows an analogous temperature dependence, R/sub H//similar to/exp(K/sub H/(T/sub 0//T)/sup n/). We find n<1, so that the observed Hall coefficient is not due to carriers activated to extended states; the data are consistent instead with an exponent n = 1/4 or 1/2. We compare this result with previous experiments and with current theory.
Current approach for urinary system stone disease in pregnant women
Orcun Celik
2016-01-01
Full Text Available Urinary system stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence. Especially urolithiasis during pregnancy is a diagnostic and therapeutic challenge. In most cases, it becomes symptomatic in the second or third trimester. Diagnostic options in pregnant women are limited due to the possible teratogenic, carcinogenic, and mutagenic risk of foetal radiation exposure. Clinical management of a pregnant urolithiasis patient is complex and demands close collaboration between patient, obstetrician and urologist. We would like to review current diagnosis and treatment modalities of stone disease of pregnant woman.
Eddy current system for inspection of train hollow axles
Chady, Tomasz; Psuj, Grzegorz; Sikora, Ryszard; Kowalczyk, Jacek; Spychalski, Ireneusz [Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, Szczecin (Poland)
2014-02-18
The structural integrity of wheelsets used in rolling stock is of great importance to the safety. In this paper, electromagnetic system with an eddy current transducer suitable for the inspection of hollow axles have been presented. The transducer was developed to detect surface braking defects having depth not smaller than 0.5 mm. Ultrasound technique can be utilized to inspect the whole axle, but it is not sufficiently sensitive to shallow defects located close to the surface. Therefore, the electromagnetic technique is proposed to detect surface breaking cracks that cannot be detected by ultrasonic technique.
Current approach for urinary system stone disease in pregnant women.
Celik, Orcun; Türk, Hakan; Cakmak, Ozgur; Budak, Salih; Ekin, Rahmi Gokhan; Keskin, Mehmet Zeynel; Yildiz, Guner; Ilbey, Yusuf Ozlem
2016-01-14
Urinary system stones can be classified according to size, location, X-ray characteristics, aetiology of formation, composition, and risk of recurrence. Especially urolithiasis during pregnancy is a diagnostic and therapeutic challenge. In most cases, it becomes symptomatic in the second or third trimester. Diagnostic options in pregnant women are limited due to the possible teratogenic, carcinogenic, and mutagenic risk of foetal radiation exposure. Clinical management of a pregnant urolithiasis patient is complex and demands close collaboration between patient, obstetrician and urologist. We would like to review current diagnosis and treatment modalities of stone disease of pregnant woman.
Gastric Antral Vascular Ectasia in Systemic Sclerosis: Current Concepts
Raphael Hernando Parrado
2015-01-01
Full Text Available Introduction. Gastric antral vascular ectasia (GAVE is a rare entity with unique endoscopic appearance described as “watermelon stomach.” It has been associated with systemic sclerosis but the pathophysiological changes leading to GAVE have not been explained and still remain uncertain. Methods. Databases Medline, Scopus, Embase, PubMed, and Cochrane were searched for relevant papers. The main search words were “Gastric antral vascular ectasia,” “Watermelon Stomach,” “GAVE,” “Scleroderma,” and “Systemic Sclerosis.” Fifty-four papers were considered for this review. Results. GAVE is a rare entity in the spectrum of manifestations of systemic sclerosis with unknown pathogenesis. Most patients with systemic sclerosis and GAVE present with asymptomatic anemia, iron deficiency anemia, or heavy acute gastrointestinal bleeding. Symptomatic therapy and endoscopic ablation are the first-line of treatment. Surgical approach may be recommended for patients who do not respond to medical or endoscopic therapies. Conclusion. GAVE can be properly diagnosed and treated. Early diagnosis is key in the management of GAVE because it makes symptomatic therapies and endoscopic approaches feasible. A high index of suspicion is critical. Future studies and a critical review of the current findings about GAVE are needed to understand the role of this condition in systemic sclerosis.
Gastric Antral Vascular Ectasia in Systemic Sclerosis: Current Concepts.
Parrado, Raphael Hernando; Lemus, Hernan Nicolas; Coral-Alvarado, Paola Ximena; Quintana López, Gerardo
2015-01-01
Introduction. Gastric antral vascular ectasia (GAVE) is a rare entity with unique endoscopic appearance described as "watermelon stomach." It has been associated with systemic sclerosis but the pathophysiological changes leading to GAVE have not been explained and still remain uncertain. Methods. Databases Medline, Scopus, Embase, PubMed, and Cochrane were searched for relevant papers. The main search words were "Gastric antral vascular ectasia," "Watermelon Stomach," "GAVE," "Scleroderma," and "Systemic Sclerosis." Fifty-four papers were considered for this review. Results. GAVE is a rare entity in the spectrum of manifestations of systemic sclerosis with unknown pathogenesis. Most patients with systemic sclerosis and GAVE present with asymptomatic anemia, iron deficiency anemia, or heavy acute gastrointestinal bleeding. Symptomatic therapy and endoscopic ablation are the first-line of treatment. Surgical approach may be recommended for patients who do not respond to medical or endoscopic therapies. Conclusion. GAVE can be properly diagnosed and treated. Early diagnosis is key in the management of GAVE because it makes symptomatic therapies and endoscopic approaches feasible. A high index of suspicion is critical. Future studies and a critical review of the current findings about GAVE are needed to understand the role of this condition in systemic sclerosis.
Multiple planetary systems: Properties of the current sample
Hobson, Melissa J.; Gomez, Mercedes
2017-08-01
We carry out analyses on stellar and planetary properties of multiple exoplanetary systems in the currently available sample. With regards to the stars, we study their temperature, distance from the Sun, and metallicity distributions, finding that the stars that harbour multiple exoplanets tend to have subsolar metallicities, in contrast to metal-rich Hot Jupiter hosts; while non-Hot Jupiter single planet hosts form an intermediate group between these two, with approximately solar metallicities. With regards to the planetary systems, we select those with four or more planets and analyse their configurations in terms of stability (via Hill radii), compactness, and size variations. We find that most planetary pairs are stable, and that the compactness correlates to the size variation: More compact systems have more similarly sized planets and vice versa. We also investigate the spectral energy distributions of the stars hosting multiple exoplanetary systems, seeking infra-red excesses that could indicate the presence of debris disks. These disks would be leftovers from the planetary formation process, and could be considered as analogues of the Solar System's Asteroid or Kuiper belts. We identify potential candidates for disks that are good targets for far infra-red follow-up observations to confirm their existence.
Mini Solar and Sea Current Power Generation System
Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu
2017-07-01
The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.
Comments on Current Space Systems Observing the Climate
Fisk, L. A.
2016-07-01
The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.