WorldWideScience

Sample records for halide electrolytes li

  1. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor.

    Science.gov (United States)

    Maekawa, Hideki; Matsuo, Motoaki; Takamura, Hitoshi; Ando, Mariko; Noda, Yasuto; Karahashi, Taiki; Orimo, Shin-ichi

    2009-01-28

    Solid state lithium conductors are attracting much attention for their potential applications to solid-state batteries and supercapacitors of high energy density to overcome safety issues and irreversible capacity loss of the currently commercialized ones. Recently, we discovered a new class of lithium super ionic conductors based on lithium borohydride (LiBH(4)). LiBH(4) was found to have conductivity as high as 10(-2) Scm(-1) accompanied by orthorhombic to hexagonal phase transition above 115 degrees C. Polarization to the lithium metal electrode was shown to be extremely low, providing a versatile anode interface for the battery application. However, the high transition temperature of the superionic phase has limited its applications. Here we show that a chemical modification of LiBH(4) can stabilize the superionic phase even below room temperature. By doping of lithium halides, high conductivity can be obtained at room temperature. Both XRD and NMR confirmed room-temperature stabilization of superionic phase for LiI-doped LiBH(4). The electrochemical measurements showed a great advantage of this material as an extremely lightweight lithium electrolyte for batteries of high energy density. This material will open alternative opportunities for the development of solid ionic conductors other than previously known lithium conductors.

  2. Endurance testing with Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Ong, E.T.; Remick, R.J.; Sishtla, C.I. [Institute of Gas Technology, Des Plaines, IL (United States)

    1996-12-31

    The Institute of Gas Technology (IGT), under subcontract to M-C Power Corporation under DOE funding, has been operating bench-scale fuel cells to investigate the performance and endurance issues of the Li/Na electrolyte because it offers higher ionic conductivity, higher exchange current densities, lower vapor pressures, and lower cathode dissolution rates than the Li/K electrolyte. These cells have continued to show higher performance and lower decay rates than the Li/K cells since the publication of our two previous papers in 1994. In this paper, test results of two long-term 100-cm{sup 2} bench scale cells are discussed. One cell operated continuously at 160 mA/cm{sup 2} for 17,000 hours with reference gases (60H{sub 2}/20CO{sub 2}/20H{sub 2}O fuel at 75% utilization and 30CO{sub 2}/70 air oxidant humidified at room temperature at 50% utilization). The other cell operated at 160 mA/cm{sup 2} for 6900 hours at 3 atm with system gases (64H{sub 2}/16CO{sub 2}/20H{sub 2}O at 75% utilization and an M-C Power system-defined oxidant at 40% utilization). Both cells have shown the highest performance and longest endurance among IGT cells operated to date.

  3. Anti-perovskite solid electrolyte compositions

    Science.gov (United States)

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  4. Developing New Electrolytes for Advanced Li-ion Batteries

    Science.gov (United States)

    McOwen, Dennis Wayne

    The use of renewable energy sources is on the rise, as new energy generating technologies continue to become more efficient and economical. Furthermore, the advantages of an energy infrastructure which relies more on sustainable and renewable energy sources are becoming increasingly apparent. The most readily available of these renewable energy sources, wind and solar energy in particular, are naturally intermittent. Thus, to enable the continued expansion and widespread adoption of renewable energy generating technology, a cost-effective energy storage system is essential. Additionally, the market for electric/hybrid electric vehicles, which both require efficient energy storage, continues to grow as more consumers seek to reduce their consumption of gasoline. These vehicles, however, remain quite expensive, due primarily to costs associated with storing the electrical energy. High-voltage and thermally stable Li-ion battery technology is a promising solution for both grid-level and electric vehicle energy storage. Current limitations in materials, however, limit the energy density and safe operating temperature window of the battery. Specifically, the state-of-the-art electrolyte used in Li-ion batteries is not compatible with recently developed high-voltage positive electrodes, which are one of the most effectual ways of increasing the energy density. The electrolyte is also thermally unstable above 50 °C, and prone to thermal runaway reaction if exposed to prolonged heating. The lithium salt used in such electrolytes, LiPF6, is a primary contributor to both of these issues. Unfortunately, an improved lithium salt which meets the myriad property requirements for Li-ion battery electrolytes has eluded researchers for decades. In this study, a renewed effort to find such a lithium salt was begun, using a recently developed methodology to rapidly screen for desirable properties. Four new lithium salts and one relatively new but uncharacterized lithium salt were

  5. LiGa(OTf)(sub 4) as an Electrolyte Salt for Li-Ion Cells

    Science.gov (United States)

    Reddy, V. Prakash; Prakash, G. K. Syria; Hu, Jinbo; Yan, Ping; Smart, Marshall; Bugga, ratnakumar; Chin, Keith; Surampudi, Subarao

    2008-01-01

    Lithium tetrakis(trifluoromethane sulfo - nato)gallate [abbreviated "LiGa(OTf)4" (wherein "OTf" signifies trifluoro - methanesulfonate)] has been found to be promising as an electrolyte salt for incorporation into both liquid and polymer electrolytes in both rechargeable and non-rechargeable lithium-ion electrochemical cells. This and other ingredients have been investigated in continuing research oriented toward im proving the performances of rechargeable lithium-ion electrochemical cells, especially at low temperatures. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. As described in more detail in those articles, lithiumion cells most commonly contain nonaqueous electrolyte solutions consisting of lithium hexafluorophosphate (LiPF6) dissolved in mixtures of cyclic and linear alkyl carbonates, including ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Although such LiPF6-based electrolyte solutions are generally highly ionically conductive and electrochemically stable, as needed for good cell performance, there is interest in identifying alternate lithium electrolyte salts that, relative to LiPF6, are more resilient at high temperature and are less expensive. Experiments have been performed on LiGa(OTf)4 as well as on several other candidate lithium salts in pursuit of this interest. As part of these experiments, LiGa(OTf)4 was synthesized by the reaction of Ga(OTf)3 with an equimolar portion of LiOTf in a solvent consisting of anhydrous acetonitrile. Evaporation of the solvent yielded LiGa(OTf)4 as a colorless crystalline solid. The LiGa(OTf)4 and the other salts were incorporated into solutions with PC and DMC. The resulting electrolyte solutions exhibited reasonably high ionic conductivities over a relatively wide temperature range down to 40 C (see figure). In cyclic

  6. Electrolytes for Li-Ion Cells in Low Temperature Applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    2000-01-01

    Prototype AA-size lithium-ion cells have been demonstrated to operate effectively at temperatures as low as -30 to -40 C. These improvements in low temperature cell performance have been realized by the incorporation of ethylene carbonate-based electrolytes which possess low melting, low viscosity cosolvents, such as methyl acetate, ethyl acetate, gamma-butyrolactone, and ethyl methyl carbonate. The cells containing a 0.75M LiPF6 EC+DEC+DMC+EMC (1:1:1:1) electrolyte displayed the best performance at -30 C (> 90% of the room temperature capacity at approximately C/15 rate), whereas, at -40 C the cells with the 0.75M LiPF6 EC+DEC+DMC+MA (1:1:1:1) and 0.75M LiPF6 EC+DEC+DMC+EA (1:1:1:1) electrolytes showed superior performance.

  7. Catalyst and electrolyte synergy in Li-O2 batteries.

    Science.gov (United States)

    Gittleson, Forrest S; Sekol, Ryan C; Doubek, Gustavo; Linardi, Marcelo; Taylor, André D

    2014-02-21

    Understanding the interactions between catalyst and electrolyte in Li-O2 systems is crucial to improving capacities, efficiencies, and cycle life. In this study, supported noble metal catalysts Pt/C, Pd/C, and Au/C were paired with popular Li-O2 electrolyte solvents dimethoxyethane (DME), tetraglyme (TEGDME), and dimethyl sulfoxide (DMSO). The effects of these combinations on stability, kinetics, and activity were assessed. We show evidence of a synergistic effect between Pt and Pd catalysts and a DMSO-based electrolyte which enhances the kinetics of oxygen reduction and evolution reactions. DME and TEGDME are more prone to decomposition and less kinetically favorable for oxygen reduction and evolution than DMSO. While the order of oxygen reduction onset potentials with each catalyst was found to be consistent across electrolyte (Pd > Pt > Au), larger overpotentials with DME and TEGDME, and negative shifts in onset after only five cycles favor the stability of a DMSO electrolyte. Full cell cycling experiments confirm that catalyst-DMSO combinations produce up to 9 times higher discharge capacities than the same with TEGDME after 20 cycles (∼707.4 vs. 78.8 mA h g(-1) with Pd/C). Ex situ EDS and in situ EIS analyses of resistive species in the cathode suggest that improvements in capacity with DMSO are due to a combination of greater electrolyte conductivity and catalyst synergies. Our findings demonstrate that co-selection of catalyst and electrolyte is necessary to exploit chemical synergies and improve the performance of Li-O2 cells.

  8. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.

    Science.gov (United States)

    Fu, Kun Kelvin; Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-04-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet-type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10(-3) to 10(-4) S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm(2) for the pristine garnet/Li and 75 ohm·cm(2) for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries.

  9. Electrolytes and Interphasial Chemistry in Li Ion Devices

    Directory of Open Access Journals (Sweden)

    Kang Xu

    2010-01-01

    Full Text Available Since its appearance in 1991, the Li ion battery has been the major power source driving the rapid digitalization of our daily life; however, much of the processes and mechanisms underpinning this newest battery chemistry remains poorly understood. As in any electrochemical device, the major challenge comes from the electrolyte/electrode interfaces, where the discontinuity in charge distribution and extreme disequality in electric forces induce diversified processes that eventually determine the kinetics of Li+ intercalation chemistry. This article will summarize the most recent efforts on the fundamental understanding of the interphases in Li ion devices. Emphasis will be placed on the formation chemistry of the so-called “SEI” on graphitic anode, the effect of solvation sheath structure of Li+ on the intercalation energy barrier, and the feasibility of tailoring a desired interphase. Biologically inspired approaches to an ideal interphase will also be briefly discussed.

  10. Effect of a pyrrolidinium zwitterion on charge/discharge cycle properties of Li/LiCoO2 and graphite/Li cells containing an ionic liquid electrolyte

    Science.gov (United States)

    Yamaguchi, Seitaro; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2016-11-01

    Ionic liquids (ILs) containing zwitterions have been studied as electrolytes for lithium-ion batteries (LIBs). The effects of addition of a pyrrolidinium zwitterion in an IL electrolyte on the thermal and electrochemical stability and charge/discharge properties of Li/LiCoO2 and graphite/Li cells were investigated. The thermal decomposition temperature of the IL electrolyte composed of N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)amide ([P13][FSA])/lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) with 3-(1-butylpyrrolidinium)propane-1-sulfonate (Bpyps) as the zwitterionic additive, the thermal decomposition temperature was about 300 °C. The electrochemical window of [P13][FSA]/LiTFSA/Bpyps was 0-+5.4 V vs. Li/Li+, which was almost identical to that of [P13][FSA]/LiTFSA. Li|electrolyte|LiCoO2 cells containing the IL/Bpyps electrolyte system exhibited high capacities in the cut-off voltage range of 3.0-4.6 V, even after 50 cycles. The increase in the interfacial resistance between the electrolyte and cathode with cycling was suppressed. In the cyclic voltammograms of cells employing a graphite electrode, the intercalation/deintercalation of lithium ions were observed in the range of 0 and + 0.4 V vs. Li/Li+. Further, graphite|electrolyte|Li cells containing [P13][FSA]/LiTFSA/Bpyps exhibited stable charge/discharge cycle behaviour over 50 cycles.

  11. Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylik, Yuriy [Sion Power Corporation, Tucson, AZ (United States)

    2014-09-30

    Sion Power focused on metallic lithium anode protection, employing the Dual-Phase Electrolyte approach. The objective of this project was to develop a unique electrolyte providing two liquid phases having good Li+ conductivity, self-partitioning and immiscibility, serving separately the cathode and anode electrodes. This Dual-Phase Electrolyte was combined with thin film multi-layer, physical barrier membranes developed partially under a separate ARPA-E funded project. All these protective structures were stabilized by externally applied pressure. This strategy was used for Li-S cells. The development directly addressed cell safety, particularly higher thermal stability, while also allowing higher energies and cycle life. Safety tests showed that 100% of cells with Dual-Phase Electrolyte were intact and did not exhibit thermal runaway up to 178 °C and thus met the project objective of increasing the runaway temperature to >165°C. Cells also passed cycling at USABC Dynamic Stress Test conditions developed for Electric Vehicle applications and generated specific energy > 300 Wh/kg.

  12. Optimized Carbonate and Ester-Based Li-Ion Electrolytes

    Science.gov (United States)

    Smart, Marshall; Bugga, Ratnakumar

    2008-01-01

    To maintain high conductivity in low temperatures, electrolyte co-solvents have been designed to have a high dielectric constant, low viscosity, adequate coordination behavior, and appropriate liquid ranges and salt solubilities. Electrolytes that contain ester-based co-solvents in large proportion (greater than 50 percent) and ethylene carbonate (EC) in small proportion (less than 20 percent) improve low-temperature performance in MCMB carbon-LiNiCoO2 lithium-ion cells. These co-solvents have been demonstrated to enhance performance, especially at temperatures down to 70 C. Low-viscosity, ester-based co-solvents were incorporated into multi-component electrolytes of the following composition: 1.0 M LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC) + X (1:1:8 volume percent) [where X = methyl butyrate (MB), ethyl butyrate EB, methyl propionate (MP), or ethyl valerate (EV)]. These electrolyte formulations result in improved low-temperature performance of lithium-ion cells, with dramatic results at temperatures below 40 C.

  13. Preparation and characterization of poly(lithium acrylate-arcylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-yue; YUAN Yun-lan; CHEN Zhen-hua; XU Xian-hua; ZHANG Jian

    2005-01-01

    Through orthogonal experiment, a new type of LiClO4-LiNO3-LiBr eutectic salt with optimum mole ratio of n(LiClO4):n(LiNO3):n(LiBr)=1.6:3.8:1.0 was prepared. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes were prepared with poly(lithium acrylate-acrylonitrile) and LiClO4-LiNO3-LiBr eutectic salts. The effect of LiClO4-LiNO3-LiBr eutectic salts content on the conductivity of solid polymer electrolytes was studied by alternating current impedance method, and the structures of eutectic salts and solid polymer electrolytes were characterized by differential thermal analysis, infrared spectroscopy and X-ray diffractometry. The results show that the room temperature conductivity of LiClO4-LiNO3-LiBr eutectic salts reaches 3.11×10-4 S·cm-1. The poly(lithium acrylate-acrylonitrile)/LiClO4-LiNO3-LiBr solid polymer electrolytes possess the highest room temperature conductivity at 70% LiClO4-LiNO3-LiBr eutectic salts content, and exhibit lower glass transition temperature of 75 ℃ compared with that of poly(lithium acrylate-acrylonitrile) of 105 ℃. A complex may be formed in the solid polymer electrolytes from the differential thermal analysis and infrared spectroscopy analysis. X-ray diffraction results show that the poly(lithium acrylate-acrylonitrile) can suppress the crystallization of eutectic salts in this system.

  14. Long term stability of Li-S batteries using high concentration lithium nitrate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Brian DG; Carino, Emily V.; Connell, Justin G.; Han, Kee Sung; Cao, Ruiguo; Chen, Junzheng; Zheng, Jianming; Li, Qiuyan; Mueller, Karl T.; Henderson, Wesley A.; Zhang, Jiguang

    2017-09-08

    Lithium-sulfur (Li-S) battery is a very promising candidate for the next generation of energy storage systems required for electrical vehicles and grid energy storage applications due to its very high theoretical specific energy (2500 W h kg-1). However, the low coulombic efficiency (CE) during repeated Li plating/stripping of these processes have limited practical application of rechargeable Li-S batteries. In this work, a new electrolyte system based on high concentration of LiNO3 in diglyme solvent is developed which enables high CE of Li metal plating/stripping and high stability of Li anode in the sulfur containing electrolyte. Tailoring of electrolyte properties for the Li negative electrode has proven to be a successful strategy for improving the capacity retention and cycle life of Li-S batteries. This electrolyte provides a CE for Li plating/stripping of greater than 99% for over 200 cycles. In contrast, Li metal cycles for only less than 35 cycles at high CE in the standard 1 M LiTFSI + 2wt% LiNO3 in DOL:DME electrolyte under the same conditions. The stable Li metal anode enabled by the new electrolyte may accelerate the applications of high energy density Li-S batteries in both electrical vehicles and large-scale grid energy storage markets.

  15. Effects of electrolyte salts on the performance of Li-O2 batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Burton, Sarah D.; Cosimbescu, Lelia; Gross, Mark E.; Zhang, Jiguang

    2013-02-05

    It is well known that the stability of nonaqueous electrolyte is critical for the rechargeable Li-O2 batteries. Although stability of many solvents used in the electrolytes has been investigated, considerably less attention has been paid to the stability of electrolyte salt which is the second major component. Herein, we report the systematic investigation of the stability of seven common lithium salts in tetraglyme used as electrolytes for Li-O2 batteries. The discharge products of Li-O2 reaction were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and nuclear magnetic resonance spectroscopy. The performance of Li-O2 batteries was strongly affected by the salt used in the electrolyte. Lithium tetrafluoroborate (LiBF4) and lithium bis(oxalato)borate (LiBOB) decompose and form LiF and lithium borates, respectively during the discharge of Li-O2 batteries. Several other salts, including lithium bis(trifluoromethane)sulfonamide (LiTFSI), lithium trifluoromethanesulfonate (LiTf), lithium hexafluorophosphate (LiPF6), lithium perchlorate (LiClO4) , and lithium bromide (LiBr) led to the discharge products which mainly consisted of Li2O2 and only minor signs of decomposition of LiTFSI, LiTf, LPF6 and LiClO4 were detected. LiBr showed the best stability during the discharge process. As for the cycling performance, LiTf and LiTFSI were the best among the studied salts. In addition to the instability of lithium salts, decomposition of tetraglyme solvent was a more significant factor contributing to the limited cycling stability. Thus a more stable nonaqueous electrolyte including organic solvent and lithium salt still need to be further developed to reach a fully reversible Li-O2 battery.

  16. Electrochemistry study on PEO-LiClO4-ZSM5 composite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    XI Jingyu; MA Xiaomei; CUI Mengzhong; HUANG Xiaobin; ZHENG Zhen; TANG Xiaozhen

    2004-01-01

    A novel all solid-state composite polymer electrolyte, PEO-LiClO4-LiZSM5, by using "shape-selective" molecular sieves ZSM-5 as filler was obtained by the solvent casting method. The experimental results showed that the addition of LiZSM5 could enhance the ionic conductivity of the pristine PEO-LiClO4 electrolyte, the ionic conductivity of PEO10-LiClO4-10%LiZSM5 achieved 1.4×10-5 S cm-1 at 25℃. Lithium ion transference number was tested by AC impedance combined with the steady-state current method, the results showed that LiZSM5 could improve the Li+ transference number of the CPE effectively. The broad electrochemical stability window ensured the use of PEO-Li- ClO4-LiZSM5 as electrolyte materials for all solid-state rechargeable lithium ion batteries.

  17. Electrochemical Exfoliation of Graphite in Aqueous Sodium Halide Electrolytes toward Low Oxygen Content Graphene for Energy and Environmental Applications.

    Science.gov (United States)

    Munuera, J M; Paredes, J I; Enterría, M; Pagán, A; Villar-Rodil, S; Pereira, M F R; Martins, J I; Figueiredo, J L; Cenis, J L; Martínez-Alonso, A; Tascón, J M D

    2017-07-19

    Graphene and graphene-based materials have shown great promise in many technological applications, but their large-scale production and processing by simple and cost-effective means still constitute significant issues in the path of their widespread implementation. Here, we investigate a straightforward method for the preparation of a ready-to-use and low oxygen content graphene material that is based on electrochemical (anodic) delamination of graphite in aqueous medium with sodium halides as the electrolyte. Contrary to previous conflicting reports on the ability of halide anions to act as efficient exfoliating electrolytes in electrochemical graphene exfoliation, we show that proper choice of both graphite electrode (e.g., graphite foil) and sodium halide concentration readily leads to the generation of large quantities of single-/few-layer graphene nanosheets possessing a degree of oxidation (O/C ratio down to ∼0.06) lower than that typical of anodically exfoliated graphenes obtained with commonly used electrolytes. The halide anions are thought to play a role in mitigating the oxidation of the graphene lattice during exfoliation, which is also discussed and rationalized. The as-exfoliated graphene materials exhibited a three-dimensional morphology that was suitable for their practical use without the need to resort to any kind of postproduction processing. When tested as dye adsorbents, they outperformed many previously reported graphene-based materials (e.g., they adsorbed ∼920 mg g(-1) for methyl orange) and were useful sorbents for oils and nonpolar organic solvents. Supercapacitor cells assembled directly from the as-exfoliated products delivered energy and power density values (up to 15.3 Wh kg(-1) and 3220 W kg(-1), respectively) competitive with those of many other graphene-based devices but with the additional advantage of extreme simplicity of preparation.

  18. Electrolytic systems and methods for making metal halides and refining metals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Justin M.; Cecala, David M.

    2015-05-26

    Disclosed are electrochemical cells and methods for producing a halide of a non-alkali metal and for electrorefining the halide. The systems typically involve an electrochemical cell having a cathode structure configured for dissolving a hydrogen halide that forms the halide into a molten salt of the halogen and an alkali metal. Typically a direct current voltage is applied across the cathode and an anode that is fabricated with the non-alkali metal such that the halide of the non-alkali metal is formed adjacent the anode. Electrorefining cells and methods involve applying a direct current voltage across the anode where the halide of the non-alkali metal is formed and the cathode where the non-alkali metal is electro-deposited. In a representative embodiment the halogen is chlorine, the alkali metal is lithium and the non-alkali metal is uranium.

  19. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagace, M.; Vijh, A.; Zaghib, K. [Institut de Recherche d' Hydro-Quebec, 1800 Lionel Boulet, Varennes, QC J3X 1S1 (Canada)

    2010-02-01

    Physical and electrochemical characteristics of Li-ion battery systems based on LiFePO{sub 4} cathodes and graphite anodes with mixture electrolytes were investigated. The mixed electrolytes are based on an ionic liquid (IL), and organic solvents used in commercial batteries. We investigated a range of compositions to determine an optimum conductivity and non-flammability of the mixed electrolyte. This led us to examine mixtures of ILs with the organic electrolyte usually employed in commercial Li-ion batteries, i.e., ethylene carbonate (EC) and diethylene carbonate (DEC). The IL electrolyte consisted of (trifluoromethyl sulfonylimide) (TFSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) as the cation. The physical and electrochemical properties of some of these mixtures showed an improvement characteristics compared to the constituents alone. The safety was improved with electrolyte mixtures; when IL content in the mixture is {>=}40%, no flammability is observed. A stable SEI layer was obtained on the MCMB graphite anode in these mixed electrolytes, which is not obtained with IL containing the TFSI-anion. The high-rate capability of LiFePO{sub 4} is similar in the organic electrolyte and the mixture with a composition of 1:1. The interface resistance of the LiFePO{sub 4} cathode is stabilized when the IL is added to the electrolyte. A reversible capacity of 155 mAh g{sup -1} at C/12 is obtained with cells having at least some organic electrolyte compared to only 124 mAh g{sup -1} with pure IL. With increasing discharge rate, the capacity is maintained close to that in the organic solvent up to 2 C rate. At higher rates, the results with mixture electrolytes start to deviate from the pure organic electrolyte cell. The evaluation of the Li-ion cells; LiFePO{sub 4}//Li{sub 4}Ti{sub 5}O{sub 12} with organic and, 40% mixture electrolytes showed good 1st CE at 98.7 and 93.0%, respectively. The power performance of both cell configurations is comparable up to 2 C rate

  20. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance

    Science.gov (United States)

    Guerfi, A.; Dontigny, M.; Charest, P.; Petitclerc, M.; Lagacé, M.; Vijh, A.; Zaghib, K.

    Physical and electrochemical characteristics of Li-ion battery systems based on LiFePO 4 cathodes and graphite anodes with mixture electrolytes were investigated. The mixed electrolytes are based on an ionic liquid (IL), and organic solvents used in commercial batteries. We investigated a range of compositions to determine an optimum conductivity and non-flammability of the mixed electrolyte. This led us to examine mixtures of ILs with the organic electrolyte usually employed in commercial Li-ion batteries, i.e., ethylene carbonate (EC) and diethylene carbonate (DEC). The IL electrolyte consisted of (trifluoromethyl sulfonylimide) (TFSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) as the cation. The physical and electrochemical properties of some of these mixtures showed an improvement characteristics compared to the constituents alone. The safety was improved with electrolyte mixtures; when IL content in the mixture is ≥40%, no flammability is observed. A stable SEI layer was obtained on the MCMB graphite anode in these mixed electrolytes, which is not obtained with IL containing the TFSI-anion. The high-rate capability of LiFePO 4 is similar in the organic electrolyte and the mixture with a composition of 1:1. The interface resistance of the LiFePO 4 cathode is stabilized when the IL is added to the electrolyte. A reversible capacity of 155 mAh g -1 at C/12 is obtained with cells having at least some organic electrolyte compared to only 124 mAh g -1 with pure IL. With increasing discharge rate, the capacity is maintained close to that in the organic solvent up to 2 C rate. At higher rates, the results with mixture electrolytes start to deviate from the pure organic electrolyte cell. The evaluation of the Li-ion cells; LiFePO 4//Li 4Ti 5O 12 with organic and, 40% mixture electrolytes showed good 1st CE at 98.7 and 93.0%, respectively. The power performance of both cell configurations is comparable up to 2 C rate. This study indicates that safety and

  1. Effect of sulfites on the performance of LiBOB/{gamma}-butyrolactone electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Ping; Wang, Qingsong; Sun, Jinhua [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, Anhui (China); Feng, Xuyong; Chen, Chunhua [Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui (China)

    2011-01-15

    {gamma}-Butyrolactone (GBL) increases the irreversible capacity of lithium ion battery when it is employed as the solvent for the lithium bis(oxalate)borate (LiBOB)-based electrolyte. To solve this problem, four sulfites are introduced to the electrolyte. The effects of ethyl sulfite (ES), propylene sulfite (PS), dimethyl sulfite (DMS) and diethyl sulfite (DES) on the LiBOB/GBL-based electrolytes are studied. The ionic conductivity, electrochemical stability, cycle performance and thermal stability of the sulfite containing electrolytes are tested and compared with that of the common electrolyte and the 1 M LiBOB/GBL electrolyte. The results indicate that the cyclic sulfites ES and PS show little benefit to the performance of the electrolyte. However, the linear sulfites DMS and DES could increase the ionic conductivity of the electrolyte and form an effective SEI film on the anode surface. In particular, the 1 M LiBOB/GBL+DMS (3:1 wt.) electrolyte mitigates the irreversible capacity and enhances the first coulomb efficiency and the capacity retention. The thermal stability of the DMS containing electrolyte is also improved and is better than that of the common electrolyte. These beneficial effects make them possibly to be a promising cosolvent for the LiBOB/GBL electrolyte. (author)

  2. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends.

    Science.gov (United States)

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G

    2007-09-21

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P(13)TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P(13)TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more "conventional" rechargeable lithium and lithium ion batteries.

  3. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    Science.gov (United States)

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2009-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li imide salt (LiTFSI) in P13TFSI ionic liquid and then mixing the electrolyte solution with poly(vinylidene-co-hexafluoropropylene) (PVDF-HFP) copolymer. Adding small amounts of ethylene carbonate to the polymer gel electrolytes dramatically improves the ionic conductivity, net Li ion transport concentration, and Li ion transport kinetics of these electrolytes. They are thus favorable and offer good prospects in the application to rechargeable Li batteries including open systems like Li/air batteries, as well as more “conventional” rechargeable lithium and lithium ion batteries. PMID:20354587

  4. Single-Ion Li(+), Na(+), and Mg(2+) Solid Electrolytes Supported by a Mesoporous Anionic Cu-Azolate Metal-Organic Framework.

    Science.gov (United States)

    Park, Sarah S; Tulchinsky, Yuri; Dincă, Mircea

    2017-09-27

    A novel Cu(II)-azolate metal-organic framework (MOF) with tubular pores undergoes a reversible single crystal to single crystal transition between neutral and anionic phases upon reaction with stoichiometric amounts of halide or pseudohalide salts. The stoichiometric transformation between the two phases allows loading of record amounts of charge-balancing Li(+), Na(+), and Mg(2+) ions for MOFs. Whereas the halide/pseudohalide anions are bound to the metal centers and thus stationary, the cations move freely within the one-dimensional pores, giving rise to single-ion solid electrolytes. The respective Li(+)-, Na(+)-, and Mg(2+)-loaded materials exhibit high ionic conductivity values of 4.4 × 10(-5), 1.8 × 10(-5), and 8.8 × 10(-7) S/cm. With addition of LiBF4, the Li(+) conductivity improves to 4.8 × 10(-4) S/cm. These are the highest values yet observed for MOF solid electrolytes.

  5. Study on {gamma}-butyrolactone for LiBOB-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jia-yuan; Kang, Xiao-li; Yu, Zhao-xin; Xu, Ting-ting; Qiu, Wei-hua [Beijing Key Lab. of New Energy Materials and Technologies, School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xing-jiang [China Electronics Technology Group Corporation, Tianjin Institute of Power Sources, Tianjin 300381 (China)

    2009-04-01

    To solve the problems of LiBOB-based electrolytes, small salt solubility and low conductivity, a sort of cyclic carboxylate, {gamma}-butyrolactone (GBL) was applied in the lithium-ion battery electrolyte as the main solvent of lithium bis(oxalate)borate (LiBOB). LiBOB-GBL electrolyte exhibits good electrochemical stability, which is suitable to be the candidate of the lithium-ion battery electrolyte. Using GBL as the solvent of the LiBOB salt can increase the solubility and conductivity dramatically. At room temperature, LiFePO{sub 4}/LiBOB-GBL/Li half cell shows satisfying cycle performance with no capacity fading in the first 50 cycles and promising capacity performance with stable discharge capacity of about 125 mAh g{sup -1}. EA is mixed with GBL to get lower viscosity solvent. In LiFePO{sub 4}/Li half cell with 0.5 C discharge rate, 0.2 M LiBOB-GBL/EA (1:1, wt) electrolyte exhibits best at room temperature and 0.7 M LiBOB-GBL/EA (1:1, wt) electrolyte exhibits best at elevated temperature. (author)

  6. Molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory

    Science.gov (United States)

    Pu, Weihua; He, Xiangming; Lu, Jiufang; Jiang, Changyin; Wan, Chunrong

    2005-12-01

    A method is proposed to calculate molar conductivity based on mode coupling theory in which the ion transference number is introduced into the theory. The molar conductivities of LiPF6, LiClO4, LiBF4, LiAsF6 in PC (propylene carbonate) are calculated based on this method. The results fit well to the literature data. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.

  7. Novel Stable Gel Polymer Electrolyte: Toward a High Safety and Long Life Li-Air Battery.

    Science.gov (United States)

    Yi, Jin; Liu, Xizheng; Guo, Shaohua; Zhu, Kai; Xue, Hailong; Zhou, Haoshen

    2015-10-28

    Nonaqueous Li-air battery, as a promising electrochemical energy storage device, has attracted substantial interest, while the safety issues derived from the intrinsic instability of organic liquid electrolytes may become a possible bottleneck for the future application of Li-air battery. Herein, through elaborate design, a novel stable composite gel polymer electrolyte is first proposed and explored for Li-air battery. By use of the composite gel polymer electrolyte, the Li-air polymer batteries composed of a lithium foil anode and Super P cathode are assembled and operated in ambient air and their cycling performance is evaluated. The batteries exhibit enhanced cycling stability and safety, where 100 cycles are achieved in ambient air at room temperature. The feasibility study demonstrates that the gel polymer electrolyte-based polymer Li-air battery is highly advantageous and could be used as a useful alternative strategy for the development of Li-air battery upon further application.

  8. Enhanced Performance of Li|LiFePO4 Cells Using CsPF6 as an Electrolyte Additive

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Liang; Chen, Xilin; Cao, Ruiguo; Qian, Jiangfeng; Xiang, Hongfa; Zheng, Jianming; Zhang, Jiguang; Xu, Wu

    2015-10-20

    The practical application of lithium (Li) metal anode in rechargeable Li batteries is hindered by both the growth of Li dendrites and the low Coulombic efficiency (CE) during repeated charge/discharge cycles. Recently, we have discovered that CsPF6 as an electrolyte additive can significantly suppress Li dendrite growth and lead to highly compacted and well aligned Li nanorod structure during Li deposition on copper substrates. In this paper, the effect of CsPF6 additive on the performance of rechargeable Li metal batteries with lithium iron phosphate (LFP) cathode was further studied. Li|LFP coin cells with CsPF6 additive in electrolytes show well protected Li anode surface, decreased resistance, enhanced rate capability and extended cycling stability. In Li|LFP cells, the electrolyte with CsPF6 additive shows excellent long-term cycling stability (at least 500 cycles) at a charge current density of 0.5 mA cm-2 without internal short circuit. At high charge current densities, the effect of CsPF6 additive becomes less significant. Future work needs to be done to protect Li metal anode, especially at high charge current densities and for long cycle life.

  9. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  10. Performance of new 10 kW class MCFC using Li/K and Li/Na electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Mugikura, Yoshihiro; Yoshiba, Fumihiko; Izaki, Yoshiyuki; Watanabe, Takao [Central Research Institute of Electric Power Industry, Kanagawa-ken (Japan)] [and others

    1996-12-31

    The molten carbonate fuel cell (MCFC) uses generally mixture of lithium carbonate and potassium carbonate (Li/K) as the electrolyte. NiO cathode dissolution is one of serious problems for MCFC life. The NiO cathode has been found to dissolve into the electrolyte as Ni{sup 2+} ion which is reduced to metallic Ni by H{sub 2} in the fuel gas and bridges the anode and the cathode. The bridges short circuit and degrade cell performance and shorten cell life. Since solubility of NiO in mixture of lithium carbonate and sodium carbonate (Li/Na) is lower than in Li/K, it takes longer time to take place slowing by NiO cathode dissolution in Li/Na compared with in Li/K. The ionic conductivity of Li/Na is higher than of Li/K, however, oxygen solubility in Li/Na is lower 9 than in Li/K. A new 10 kW class MCFC stack composed of Li/K cells and Li/Na cells, was tested. Basic performance of the Li/K cells and Li/Na cells of the stack was reported.

  11. Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells

    Science.gov (United States)

    Xia, Jian; Petibon, Remi; Xiong, Deijun; Ma, Lin; Dahn, J. R.

    2016-10-01

    Some of the problems of current electrolytes for high voltage Li-ion cells originate from ethylene carbonate (EC) which is thought to be an essential electrolyte component for Li-ion cells. Ethylene carbonate-free electrolytes containing 1 M LiPF6 in ethylmethyl carbonate (EMC) with small loadings of vinylene carbonate, fluoroethylene carbonate, or (4R,5S)-4,5-Difluoro-1,3-dioxolan-2-one acting as ;enablers; were developed. These electrolytes used in Li(Ni0.4Mn0.4Co0.2)O2/graphite pouch type Li-ion cells tested at 4.2 V and 4.5 V yielded excellent charge-discharge cycling and storage properties. The results for cells containing linear alkyl carbonate electrolytes with no EC were compared to those of cells with EC-containing electrolytes incorporating additives proven to enhance cyclability of cells. The combination of EMC with appropriate amounts of these enablers yields cells with better performance than cells with EC-containing electrolytes incorporating additives tested to 4.5 V. Further optimizing these linear alkyl carbonate electrolytes with appropriate co-additives may represent a viable path to the successful commercial utilization of NMC/graphite Li-ion cells operated to 4.5 V and above.

  12. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality

    Science.gov (United States)

    Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan

    2016-11-01

    The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.

  13. Decoupling effective Li+ ion conductivity from electrolyte viscosity for improved room-temperature cell performance

    Science.gov (United States)

    Giffin, Guinevere A.; Moretti, Arianna; Jeong, Sangsik; Passerini, Stefano

    2017-02-01

    Ionic liquids are attractive materials for alternative electrolytes to combat the safety issues associated with conventional organic carbonate-based electrolytes. However, the performance of ionic liquid-based cells is generally not competitive as the high viscosity and low conductivity limits the rate performance. The work presented here demonstrates that the drawbacks in terms of rate capability can be overcome through the use of the high lithium concentration Pyr12O1FTFSI0.6LiFTFSI0.4 electrolyte. Despite an order of magnitude difference in the conductivity and viscosity, this high concentration electrolyte outperforms the lithium-dilute electrolyte with the same components in terms of rate capability in Li metal/LFP cells and LTO/LFP cells. The results suggest that the effective Li ion transport in the concentrated electrolyte is higher than in the dilute solution.

  14. Adiponitrile-LiTFSI solution as alkylcarbonate free electrolyte for LTO/NMC Li-ion batteries.

    Science.gov (United States)

    Farhat, Douaa; Ghamouss, Fouad; Maibach, Julia; Edström, Kristina; Lemordant, Daniel

    2017-02-23

    Recently, dinitriles (NC(CH2)nCN) and especially adiponitrile (ADN, n=4) have attracted the attention as secure electrolyte solvents due to their chemical stability, high boiling points, high flash points and low vapor pressure. The good solvating properties of ADN toward lithium salts and its high electrochemical stability (~ 6V vs. Li/Li+) make it suitable for safer Li-ions cells without performances loss. In this study, ADN is used as a single electrolyte solvent with lithium bis(trimethylsulfonyl)imide (LiTFSI). This electrolyte allows the use of aluminum collectors as almost no corrosion occurs at voltages up to 4.2 V. Physico-chemical properties of ADN-LiTFSI electrolyte such as salt dissolution, conductivity and viscosity were determined. The cycling performances of batteries using Li4Ti5O12 (LTO) as anode and LiNi1/3Co1/3Mn1/3O2 (NMC) as cathode were determined. The results indicate that LTO/NMC batteries exhibit excellent rate capabilities with a columbic efficiency close to 100%. As an example, cells were able to reach a capacity of 165 mAh.g-1 at 0.1C and a capacity retention of more than 98% after 200 cycles at 0.5C. In addition, electrodes analyses by SEM, XPS and electrochemical impedance spectroscopy after cycling confirming minimal surface changes of the electrodes in the studied battery system.

  15. Enhanced high temperature performance of LiMn2O4 coated with Li3BO3 solid electrolyte

    Indian Academy of Sciences (India)

    Liu Jinlian; Wu Xianming; Chen Shang; Liu Jianben; He Zeqiang

    2013-08-01

    Cathode material, LiMn2O4, was synthesized by solid-state reaction followed by surface coating of Li3BO3 solid electrolyte. Structure and electrochemical performance of the prepared powders were characterized by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge techniques, respectively. Results show that Li3BO3 coated LiMn2O4 has similar X-ray diffraction patterns as LiMn2O4. The discharge specific capacities of LiMn2O4 coated with 0.1, 0.3 and 0.6 wt% Li3BO3 are 123.3, 118.2 and 110 mAh/g, respectively, which is slightly smaller than that of 124.4 mAh/g for LiMn2O4. However, the capacity retention of Li3BO3 coated LiMn2O4 is at least 5.6 and 7.6% higher than LiMn2O4 when cycled at room temperature and 55 °C, respectively. Li3BO3 coated LiMn2O4 shows much better cycling behaviours than LiMn2O4.

  16. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    OpenAIRE

    Jiyang Sun; Ning Zhao; Yiqiu Li; Xiangxin Guo; Xuefei Feng; Xiaosong Liu; Zhi Liu; Guanglei Cui; Hao Zheng; Lin Gu; Hong Li

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (...

  17. Solid state NMR investigation of a novel Li ion ceramic electrolyte. Li doped BPO sub 4

    CERN Document Server

    Dodd, A J

    2002-01-01

    Over the last decade lithium ion conducting batteries have emerged as the leading technology in battery materials. Their performance, however, is limited to applications below around 50 deg C by the liquid nature of the electrolytes used. In the quest for a solid state electrolyte for use in high temperature applications the nano-crystalline ceramic lithium doped boron phosphate material was developed. Solid state nuclear magnetic resonance (NMR) has been employed to investigate some of the fundamental properties of this material including ionic mobility, defect structure, sample purity and ionic distribution. The findings of this work show that when synthesised at a reaction temperature above 600 deg C the loss of boron from the structure results in the incorporation of vacancy sites about which the Li ions gather in small clusters. Multiple-pulse multiple-quantum spin counting techniques are employed in an effort to count the number of quadrupolar sup 7 Li nuclei interacting in a cluster though it is ultima...

  18. Polymer-Rich Composite Electrolytes for All-Solid-State Li-S Cells.

    Science.gov (United States)

    Judez, Xabier; Zhang, Heng; Li, Chunmei; Eshetu, Gebrekidan Gebresilassie; Zhang, Yan; González-Marcos, José A; Armand, Michel; Rodriguez-Martinez, Lide M

    2017-08-03

    Polymer-rich composite electrolytes with lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) (LiFSI/PEO) containing either Li-ion conducting glass ceramic (LICGC) or inorganic Al2O3 fillers are investigated in all-solid-state Li-S cells. In the presence of the fillers, the ionic conductivity of the composite polymer electrolytes (CPEs) does not increase compared to the plain LiFSI/PEO electrolyte at various tested temperatures. The CPE with Al2O3 fillers improves the stability of the Li/electrolyte interface, while the Li-S cell with a LICGC-based CPE delivers high sulfur utilization of 1111 mAh g(-1) and areal capacity of 1.14 mAh cm(-2). In particular, the cell performance gets further enhanced when combining these two CPEs (Li | Al2O3-CPE/LICGC-CPE | S), reaching a capacity of 518 mAh g(-1) and 0.53 mAh cm(-2) with Coulombic efficiency higher than 99% at the end of 50 cycles at 70 °C. This study shows that the CPEs can be promising electrolyte candidates to develop safe and high-performance all-solid-state Li-S batteries.

  19. Multifunctional Electrolytes for Abuse-Tolerant 5V Li-ion Space Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop a multifunctional electrolyte for high energy density abuse-tolerant lithium ion batteries with 5 V cathodes such as LiCoPO4....

  20. The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall C.; Lucht, B. L.; Ratnakumar, Bugga V.

    2007-01-01

    This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added.

  1. Electrochemical Performance of PEO10LiX-Li2TiO3 Composite Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    LU,Mi(路密); SHI,Peng-Fei(史鹏飞)

    2004-01-01

    The conductivities of polyethylene oxide (PEO)-based polymer electrolytes (PE) can be improved by the addition of inorganic inert powder. The composite polymer electrolytes (CPE) PEO10LiX (X= or )-Li2TiO3 were prepared by solution casting with inorganic solid electrolyte Li2TiO3 powder as a filler. Results showed that the conductivities of PEO10LiClO4-3wt% Li2TiO3 and PEO10LiN(CF3SO2)2-10wt% Li2TiO3 at 30 ℃ were 8.6×10-6 and 5.6×10-5 S·cm-1, respectively. The conductivities of CPE increased with the decrease of filler's particle size. The ionic conduction mechanism analysis showed that there may be three conduction routes in the CPE, i.e., PEO bulk, polymer-filler interface and Li2TiO3 crystal.

  2. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.J. [Department of Engineering Technology, College of Engineering and Engineering Technology, Northern Illinois University, 301B Still Gym, DeKalb, IL 60115 (United States); Hubaud, A.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States); Vaughey, J.T., E-mail: vaughey@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States)

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  3. Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior

    Science.gov (United States)

    Haskins, Justin B.; Lawson, John W.

    2016-01-01

    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation.

  4. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  5. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively. The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.

  6. Ionic Transport in Polyethylene Oxide (PEO)-LiX Polymeric Solid Electrolyte.

    Science.gov (United States)

    1988-03-01

    the temperatures specified below; LiCF3SO3 (3M) at 50 0C for several days, LiAsF6 (Alfa) used as received, LiBF4 (Alfa) 50°C for 24 hours, LiAlCl4...converge at about 0.9eV. The trend is as follows: LiBF4 >LiCF 3 S03>LiPF6>LiAICl4>LiASF6 The general dependence of activation energy on salt composition...mole fraction of LIBF4 in the electrolyte 1.0 > 0.8- C LU C 0 0.6- 0.4 0 0.1 0.2 0.3 0.4 0.5 [X(salt)] Figure 6. Variation in the activation energy vs

  7. LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The storage behavior and the first delithiation of LiCoO2 electrode in 1 mol/L LiPF6-EC:DMC:DEC electrolyte were investigated by electrochemical impedance spectroscopy (EIS). It has found that, along with the increase of storage time, the thickness of SEI film increases, and some organic carbonate lithium compounds are formed due to spontaneous reactions occurring between the LiCoO2 electrode and the electrolyte. When electrode potential is changed from 3.8 to 3.95 V, the reversible breakdown of the resistive SEI film occurs, which is attributed to the reversible dissolution of the SEI film component. With the increase of electrode potential, the thickness of SEI film increases rapidly above 4.2 V, due to overcharge reactions. The inductive loop observed in impedance spectra of the LiCoO2 electrode in Li/LiCoO2 cells is attributed to the formation of a Li1-xCoO2/LiCoO2 concentration cell. Moreover, it has been demonstrated that the lithium-ion insertion-deinsertion in LiCoO2 hosts can be well described by both Langmuir and Frumkin insertion isotherms, and the symmetry factor of charge transfer has been evaluated at 0.5.

  8. Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy.

    Science.gov (United States)

    Ma, Cheng; Cheng, Yongqiang; Yin, Kuibo; Luo, Jian; Sharafi, Asma; Sakamoto, Jeff; Li, Juchuan; More, Karren L; Dudney, Nancy J; Chi, Miaofang

    2016-11-09

    Despite their different chemistries, novel energy-storage systems, e.g., Li-air, Li-S, all-solid-state Li batteries, etc., face one critical challenge of forming a conductive and stable interface between Li metal and a solid electrolyte. An accurate understanding of the formation mechanism and the exact structure and chemistry of the rarely existing benign interfaces, such as the Li-cubic-Li7-3xAlxLa3Zr2O12 (c-LLZO) interface, is crucial for enabling the use of Li metal anodes. Due to spatial confinement and structural and chemical complications, current investigations are largely limited to theoretical calculations. Here, through an in situ formation of Li-c-LLZO interfaces inside an aberration-corrected scanning transmission electron microscope, we successfully reveal the interfacial chemical and structural progression. Upon contact with Li metal, the LLZO surface is reduced, which is accompanied by the simultaneous implantation of Li(+), resulting in a tetragonal-like LLZO interphase that stabilizes at an extremely small thickness of around five unit cells. This interphase effectively prevented further interfacial reactions without compromising the ionic conductivity. Although the cubic-to-tetragonal transition is typically undesired during LLZO synthesis, the similar structural change was found to be the likely key to the observed benign interface. These insights provide a new perspective for designing Li-solid electrolyte interfaces that can enable the use of Li metal anodes in next-generation batteries.

  9. Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface

    Science.gov (United States)

    Fu, Kun (Kelvin); Gong, Yunhui; Liu, Boyang; Zhu, Yizhou; Xu, Shaomao; Yao, Yonggang; Luo, Wei; Wang, Chengwei; Lacey, Steven D.; Dai, Jiaqi; Chen, Yanan; Mo, Yifei; Wachsman, Eric; Hu, Liangbing

    2017-01-01

    Solid-state batteries are a promising option toward high energy and power densities due to the use of lithium (Li) metal as an anode. Among all solid electrolyte materials ranging from sulfides to oxides and oxynitrides, cubic garnet–type Li7La3Zr2O12 (LLZO) ceramic electrolytes are superior candidates because of their high ionic conductivity (10−3 to 10−4 S/cm) and good stability against Li metal. However, garnet solid electrolytes generally have poor contact with Li metal, which causes high resistance and uneven current distribution at the interface. To address this challenge, we demonstrate a strategy to engineer the garnet solid electrolyte and the Li metal interface by forming an intermediary Li-metal alloy, which changes the wettability of the garnet surface (lithiophobic to lithiophilic) and reduces the interface resistance by more than an order of magnitude: 950 ohm·cm2 for the pristine garnet/Li and 75 ohm·cm2 for the surface-engineered garnet/Li. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) was selected as the solid-state electrolyte (SSE) in this work because of its low sintering temperature, stabilized cubic garnet phase, and high ionic conductivity. This low area-specific resistance enables a solid-state garnet SSE/Li metal configuration and promotes the development of a hybrid electrolyte system. The hybrid system uses the improved solid-state garnet SSE Li metal anode and a thin liquid electrolyte cathode interfacial layer. This work provides new ways to address the garnet SSE wetting issue against Li and get more stable cell performances based on the hybrid electrolyte system for Li-ion, Li-sulfur, and Li-oxygen batteries toward the next generation of Li metal batteries. PMID:28435874

  10. A flexible Li polymer primary cell with a novel gel electrolyte based on poly(acrylonitrile)

    Science.gov (United States)

    Akashi, Hiroyuki; Tanaka, Ko-ichi; Sekai, Koji

    The performance of a Li polymer primary cell with fire-retardant poly(acrylonitrile) (PAN)-based gel electrolytes is reported. By optimizing electrodes, electrolytes, the packaging material, and the structural design of the polymer cell, we succeeded in developing a "film-like" Li polymer primary cell with sufficient performance for practical use. The cell is flexible and less than 0.5 mm thick, which makes it suitable for a power source for some smart devices, such as an IC card. Fast cation conduction in the gel electrolyte minimizes the drop of the discharge capacity even at -20 °C. The high chemical stability of the gel electrolytes and the new packaging material allow the self-discharge rate to be limited to under 4.3%, which is equivalent to that of conventional coin-shaped or cylindrical Li-MnO 2 cells.

  11. Alkyl Pyrocarbonate Electrolyte Additives for Performance Enhancement of Li Ion Cells

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Surampudi, S.

    2000-01-01

    Lithium ion rechargeable batteries are being developed for various aerospace applications under a NASA-DoD Interagency program. These applications require further improvements in several areas, specifically in the cycle life for LEO and GEO satellites and in the low temperature performance for the Mars Lander and Rover missions. Accordingly, we have been pursuing research studies to achieve improvement in the low temperature performance, long cycle life and active life of Li ion cells. The studies are mainly focused on electrolytes, to identify newer formulations of new electrolyte additives to enhance Li permeability (at low temperatures) and stability towards the electrode. The latter approach is particularly aimed at the formation suitable SEI (solid electrolyte interphase) on carbon electrodes. In this paper, we report the beneficial effect of using alkyl pyrocarbonates as electrolyte additives to improve the low temperature performance of Li ion cells.

  12. Investigation of gas concentration cell based on LiSiPO electrolyte and Li2CO3, Au electrode

    Institute of Scientific and Technical Information of China (English)

    ZHU YongMing; CHU WingFong; WEPPNER Werner

    2009-01-01

    Solid lithium ion conducting electrochemical cells using LiSiPO as solid electrolyte and Li2CO3 mixed with Au as electrodes were prepared and employed as chemical sensors for the detection of CO2 gas.The EMF of the cell depends on the concentration of CO2 in air according to the partial pressure de-pendence of Nernst's law in the investigated range from 100 to 2000 ppm over the temperature range from 473 K to 673 K.

  13. Li14P2O3N6 and Li7PN4: Computational study of two nitrogen rich crystalline LiPON electrolyte materials

    Science.gov (United States)

    Al-Qawasmeh, Ahmad; Holzwarth, N. A. W.

    2017-10-01

    Two lithium oxonitridophosphate materials are computationally examined and found to be promising solid electrolytes for possible use in all solid-state batteries having metallic Li anodes - Li14P2O3N6 and Li7PN4. The first principles simulations are in good agreement with the structural analyses reported in the literature for these materials and the computed total energies indicate that both materials are stable with respect to decomposition into binary and ternary products. The computational results suggest that both materials are likely to form metastable interfaces with Li metal. The simulations also find both materials to have Li ion migration activation energies comparable or smaller than those of related Li ion electrolyte materials. Specifically, for Li7PN4, the experimentally measured activation energy can be explained by the migration of a Li ion vacancy stabilized by a small number of O2- ions substituting for N3- ions. For Li14P2O3N6, the activation energy for Li ion migration has not yet been experimentally measured, but simulations predict it to be smaller than that measured for Li7PN4.

  14. Poly(Ethylene Oxide)-Based Zn(II) Halide Electrolytes

    Science.gov (United States)

    1992-06-12

    References [1] Polymer Electrolyte Reviews-I, J. R. MacCallum and C. A. Vincent, eds., Elservier Applied Science, 1987. [2] Polymer Electrolyte...Reviews-2, J. R. MacCallum and C. A. Vincent, eds., Elservier Applied Science, 1989. [31 G, C. Farrington and R. G. Linford, in Polymer Electrolyte...Revievs-2, J. R. MacCallum and C. A. Vincent, eds., Elservier Applied Science, 1989. [4] G.K Jones, A. R. McGhie, and G. C. Farrington, to be appeared in

  15. Ionic limiting molar conductivity calculation of Li-ion battery electrolyte based on mode coupling theory.

    Science.gov (United States)

    He, Xiangming; Pu, Weihua; Han, Jingli; Chen, Jian; Lu, Jiufang; Jiang, Changyin; Wan, Chunrong

    2005-12-15

    A method is proposed based on mode coupling theory in which the ion transference number is introduced into the theory. The ionic limiting molar conductivities of LiPF6, LiClO4, LiBF4, LiCF3SO3, Li(CF3SO3)2N, LiC4F9SO3, and LiAsF6 in PC(propylene carbonate), GBL(gamma-butyrolactone), PC(propylene carbonate)/EMC(ethylmethyl carbonate), and PC(propylene carbonate)/DME(dimethoxyethane) are calculated based on this method, which does not involve any adjustable parameter. The results fit well to the literature data which are calculated by an empirically adjusted formula. This presents a potential way to calculate the conductivities of Li-ion battery electrolytes.

  16. XPS investigations of electrolyte/electrode interactions for various Li-ion battery materials

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S.; Mikhailova, D.; Scheiba, F.; Reichel, P.; Fiedler, A.; Ehrenberg, H. [IFW Dresden, Dresden (Germany)

    2011-05-15

    For future Li-ion battery applications the search for both new design concepts and materials is necessary. The electrodes of the batteries are always in contact with electrolytes, which are responsible for the transport of Li ions during the charging and discharging process. A broad range of materials is considered for both electrolytes and electrodes so that very different chemical interactions between them can occur, while good cycling behavior can only be obtained for stable solid-electrolyte interfaces. X-ray photoelectron spectroscopy (XPS) was used to study the most relevant interactions between various electrode materials in contact with different electrolyte solutions. It is shown how XPS can provide useful information on reactivities and thus preselect suitable electrode/electrolyte combinations, prior to electrochemical performance tests. (orig.)

  17. Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes.

    Science.gov (United States)

    Zheng, Jin; Tang, Mingxue; Hu, Yan-Yan

    2016-09-26

    Polymer-ceramic composite electrolytes are emerging as a promising solution to deliver high ionic conductivity, optimal mechanical properties, and good safety for developing high-performance all-solid-state rechargeable batteries. Composite electrolytes have been prepared with cubic-phase Li7 La3 Zr2 O12 (LLZO) garnet and polyethylene oxide (PEO) and employed in symmetric lithium battery cells. By combining selective isotope labeling and high-resolution solid-state Li NMR, we are able to track Li ion pathways within LLZO-PEO composite electrolytes by monitoring the replacement of (7) Li in the composite electrolyte by (6) Li from the (6) Li metal electrodes during battery cycling. We have provided the first experimental evidence to show that Li ions favor the pathway through the LLZO ceramic phase instead of the PEO-LLZO interface or PEO. This approach can be widely applied to study ion pathways in ionic conductors and to provide useful insights for developing composite materials for energy storage and harvesting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer.

    Science.gov (United States)

    Li, Yunsong; Leung, Kevin; Qi, Yue

    2016-10-18

    A nanometer thick passivation layer will spontaneously form on Li-metal in battery applications due to electrolyte reduction reactions. This passivation layer in rechargeable batteries must have "selective" transport properties: blocking electrons from attacking the electrolytes, while allowing Li(+) ion to pass through so the electrochemical reactions can continue. The classical description of the electrochemical reaction, Li(+) + e → Li(0), occurring at the Li-metal|electrolyte interface is now complicated by the passivation layer and will reply on the coupling of electronic and ionic degrees of freedom in the layer. This passivation layer is called "solid electrolyte interphase (SEI)" and is considered as "the most important but the least understood in rechargeable Li-ion batteries," partly due to the lack of understanding of its structure-property relationship. Predictive modeling, starting from the ab initio level, becomes an important tool to understand the nanoscale processes and materials properties governing the interfacial charge transfer reaction at the Li-metal|SEI|electrolyte interface. Here, we demonstrate pristine Li-metal surfaces indeed dissolve in organic carbonate electrolytes without the SEI layer. Based on joint modeling and experimental results, we point out that the well-known two-layer structure of SEI also exhibits two different Li(+) ion transport mechanisms. The SEI has a porous (organic) outer layer permeable to both Li(+) and anions (dissolved in electrolyte), and a dense (inorganic) inner layer facilitate only Li(+) transport. This two-layer/two-mechanism diffusion model suggests only the dense inorganic layer is effective at protecting Li-metal in electrolytes. This model suggests a strategy to deconvolute the structure-property relationships of the SEI by analyzing an idealized SEI composed of major components, such as Li2CO3, LiF, Li2O, and their mixtures. After sorting out the Li(+) ion diffusion carriers and their diffusion

  19. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g−1carbon at 20 μA cm−2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g−1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g−1carbon at 20 μA cm−2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage. PMID:28117359

  20. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-01

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li6.4La3Zr1.4Ta0.6O12, LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li2CO3. Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g‑1carbon at 20 μA cm‑2. Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g‑1carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g‑1carbon at 20 μA cm‑2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  1. Polyphosphazene-poly(olefin oxide) mixed polymer electrolytes. II - Characterization of MEEP/PPO-(LiX)n

    Science.gov (United States)

    Abraham, K. M.; Alamgir, M.; Moulton, R. D.

    1991-04-01

    The preparation, and the conductivity, calorimetric,, and electrochemical studies of MEEP/PPO-(LiX)n mixed polymer electrolytes, where MEEP = poly(bis-methoxyethoxy ethoxide phosphazene) PPO = poly(propylene oxide) and LiX = LiBF4, LiClO4, LiCF3SO3, LiAsF6, and LiAlCl4, are described. The addition of PPO in various proportions to MEEP-(LiX)n electrolytes significantly improved the latter's dimensional stability but caused a slight decrease in its conductivity. The conductivities of these mixed-polymer electrolytes are much higher than that of PPO-(LiX)n. The Li(+) transport number in MEEP/PPO-(LiX)0.13 electrolytes, with LiX = LiBF4 and LiClO4, was determined to be between 0.3 and 0.5. Differential scanning calorimetric data established the predominantly amorphous nature of the mixed polymer complexes. Cyclic voltammetric studies at a stainless steel electrode indicated a stability domain between 1 and 4.5V and established the good Li plating and stripping efficiency in these electrolytes.

  2. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    Science.gov (United States)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  3. Mixed-Salt/Ester Electrolytes for Low-Temperature Li+ Cells

    Science.gov (United States)

    Smart, Marshall; Bugga, Ratnakumar

    2006-01-01

    Electrolytes comprising, variously, LiPF6 or LiPF6 plus LiBF4 dissolved at various concentrations in mixtures of alkyl carbonates and alkyl esters have been found to afford improved low-temperature performance in rechargeable lithium-ion electrochemical cells. These and other electrolytes have been investigated in a continuing effort to extend the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Ester-Based Electrolytes for Low-Temperature Li-Ion Cells (NPO-41097), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 59. The ingredients of the solvent mixtures include ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), and methyl propionate (MP). The electrolytes were placed in Li-ion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the electrical performances of the cells were measured over a range of temperatures down to 60 C. The electrolytes that yielded the best low-temperature performances were found to consist, variously, of 1.0 M LiPF6 + 0.4 M LiBF4 or 1.4 LiPF6 in 1EC + 1EMC + 8MP or 1EC + 1EMC + 8MB, where the concentrations of the salts are given in molar units and the proportions of the solvents are by relative volume.

  4. Underpotential deposition of Li in a molten LiCl-Li{sub 2}O electrolyte for the electrochemical reduction of U from uranium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Jin-Mok; Jeong, Sang Mun; Lee, Hansoo [Korea Atomic Energy Research Institute, Daejeon, 305-353 (Korea)

    2010-05-15

    Reactive metal oxides are conventionally reduced to metal by metallothermic reduction. This paper presents on the efficient reduction method based on the electrochemical reaction in a molten LiCl-Li{sub 2}O electrolyte at 650 C. An underpotential deposition of Li on uranium oxides was observed that enabled the mass electrochemical reduction of U{sub 3}O{sub 8} to U. An advantage of using in-situ generated Li as a reductant is that a high-speed electrochemical reduction could be achieved with a wider operating voltage window when compared to a direct electrochemical reduction. (author)

  5. Reaction Mechanisms for the Limited Reversibility of Li-O2 Chemistry in Organic Carbonate Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu; Xu, Kang; Viswanathan, Vilayanur V.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Wang, Deyu; Zhang, Jiguang

    2011-11-15

    The Li-O2 chemistry in nonaqueous carbonate electrolytes and the underneath reason of its limited reversibility was exhaustively investigated. The discharge products collected from the air cathode in a Li-O2 battery at different depth of discharge (DOD) were systematically analyzed with X-ray diffraction. It is revealed that, independent of the discharge depth, lithium alkylcarbonate (either lithium propylenedicarbonate - LPDC, or lithium ethylenedicarbonate - LEDC, with other related derivatives) and lithium carbonate (Li2CO3) are always the main products, obviously originated from the electrolyte solvents propylene carbonate (PC) and ethylene carbonate (EC). These lithium alkylcarbonates are obviously generated from the single-electron reductive decomposition of the corresponding carbonate solvents initiated by the attack of superoxide radical anions. On the other hand, neither lithium peroxide (Li2O2) nor lithium oxide (Li2O) is detected. More significantly, from in situ gas chromatography/mass spectroscopy it is found that Li2CO3 and Li2O cannot be oxidized even when charged up to 4.6 V vs. Li/Li+, while LPDC, LEDC and Li2O2 are readily able to, with CO2 and CO released with the re-oxidation of LPDC and LEDC. It is therefore concluded that the quasi-reversibility of Li-O2 chemistry observed hitherto in an organic carbonate-based electrolyte is actually reliant on the formation of lithium alkylcarbonates through the reductive decomposition of carbonate solvents during discharge process and the subsequent oxidation of these same alkylcarbonates during charge process. It is the poor oxidizability of these alkylcarbonate species that constitutes the obstruction to an ideal rechargeable Li-O2 battery.

  6. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries.

    Science.gov (United States)

    Hofmann, Andreas; Kaufmann, Christoph; Müller, Marcus; Hanemann, Thomas

    2015-08-27

    In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE) and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte-separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4-400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3-38.1 mN∙m(-1). It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  7. Impact of electrolyte solvent and additive choices on high voltage Li-ion pouch cells

    Science.gov (United States)

    Xia, Jian; Nelson, K. J.; Lu, Zhonghua; Dahn, J. R.

    2016-10-01

    The effects that various electrolyte solvents and electrolyte additives had on both LaPO4-coated LiNi0.4Mn0.4Co0.2O2 and uncoated LiNi0.4Mn0.4Co0.2O2/graphite pouch cells were studied using automated storage, electrochemical impedance spectroscopy, gas production and long-term cycling experiments. Storage experiments showed that the voltage drop during storage at 4.3 or 4.4 V for both coated and uncoated cells was very similar for the same electrolyte choice. At 4.5 V or above, the LaPO4-coated cells had a significantly smaller voltage drop than the uncoated cells except when fluorinated electrolytes were used. Automated charge discharge cycling/impedance spectroscopy testing of cells held at 4.5 V for 24 h every cycle showed that all cells containing ethylene carbonate:ethyl methyl carbonate electrolyte or sulfolane:ethyl methyl carbonate electrolyte exhibited severe capacity fade. By contrast, cells containing fluorinated electrolytes had the best capacity retention and smallest impedance growth during these aggressive cycling/hold tests. Long-term cycling experiments to 4.5 V confirmed that cells containing fluorinated electrolyte had the best cycling performance in the uncoated LiNi0.4Mn0.4Co0.2O2/graphite cells while cells containing sulfolane:ethyl methyl carbonate electrolyte had the best cycling performance in coated LiNi0.4Mn0.4Co0.2O2/graphite cells.

  8. Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall; Bugga, Ratnakumar; Surampudi, Subbarao

    2003-01-01

    Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in three different mixtures of alkyl carbonates have been found well suited for use in rechargeable lithium-ion electrochemical cells at low temperatures. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells down to -60 C. This research at earlier stages was reported in numerous previous NASA Tech Briefs articles, the three most recent being "Ethyl Methyl Carbonate as a Cosolvent for Lithium-Ion Cells" (NPO-20605), Vol. 25, Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells No. 6 (June 2001), page 53; "Alkyl Pyrocarbonate Electrolyte Additives for Li-Ion Cells" (NPO-20775), Vol. 26, No. 5 (May 2002), page 37; and "Fluorinated Alkyl Carbonates as Cosolvents in Li-Ion Cells (NPO-21076), Vol. 26, No. 5 (May 2002), page 38. The present solvent mixtures, in terms of volume proportions of their ingredients, are 1 ethylene carbonate (EC) + 1 diethyl carbonate (DEC) + 1 dimethyl carbonate (DMC) + 3 ethyl methyl carbonate (EMC); 3EC + 3DMC + 14EMC; and 1EC + 1DEC + 1DMC + 4EMC. Relative to similar mixtures reported previously, the present mixtures, which contain smaller proportions of EC, have been found to afford better performance in experimental Li-ion cells at temperatures < -20 C.

  9. Study of LiBOB compound synthesis by vacuum process as lithium ion battery electrolytes

    Science.gov (United States)

    Lestariningsih, T.; Wigayati, E.; Ratri, C.; Sabrina, Q.

    2017-04-01

    Lithium bis (oxalato) borate or LiBOB is potential candidate to substitute LiPF6 which has many problems in lithium ion batteries. Many studies have been synthesized of electrolyte salt LiBOB to improve performance as electrolyte lithium ion batteries. In this paper we have studied the synthesis of compounds LiBOB undergoing pre-heat treatment in a vacuum. LiBOB was synthesized by mixing technical grade raw materials H2C2O4.2H2O, LiOH and H3BO3. The mixture H2C2O4.2H2O and LiOH was preheated at 60 °C for 2 h before adding H3BO3 in several time to be mortared in vacuum dryer, the mixture of the three starting materials was preheated in two steps at 70 °C for 6 h and the third step of preheating at a temperature of 100 °C. This powder was then characterized using XRD, FTIR and BET. The characterization results of LiBOB compared to commercial LiBOB powder. The XRD analysis results showed that the sample have formed LiBOB and LiBOB hydrate phase, while FTIR analysis results show the formation of functional groups of LiBOB. In addition, the BET results shows the surface area of synthesized LiBOB is 75.994 m2/g, close the surface area of commercial LiBOB, i.e 108.776 m2/g.

  10. Defect Structure of Li-Doped BPO 4: A Nanostructured Ceramic Electrolyte for Li-Ion Batteries

    Science.gov (United States)

    Jak, M. J. G.; Kelder, E. M.; Schoonman, J.

    1999-01-01

    In this paper the defect chemistry of Li-doped BPO4(BPO4-xLi2O, 0≤x≤0.1) is studied. This nanostructured ceramic electrolyte is used in all-solid-state Li-ion batteries. By changing the Li-doping level the influence on the crystal structure is studied and related to t he properties of the material. X-ray diffraction, Fourier-transformed infra-red spectroscopy (FT-IR),31P,11B, and7Li magic-angle-spinning solid state nuclear magnetic resonance, neutron diffraction, and inductively coupled plasma optical-emission spectroscopy measurements are used in order to study the structure. The electrical properties are studied with AC-impedance spectroscopy (AC-IS). The experimental data show that the defect structure of Li-doped BPO4can be described with two defect models, Li″B+2Li·iand V‴B+3Li·i, suggesting that the ionic conductivity takes place via interstitial Li ions.

  11. A Novel Application of Lithium Heteropoly Blue as Non-aqueous Electrolyte in Polyacenic Semiconductor-Li Secondary Batteries

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Lithium heteropoly blue(Li5PWⅥ10WⅤ2O40) was used as a non-aqueous electrolyte in the polyacenic semiconductor (PAS)-Li secondary battery instead of LiClO4. The properties of the PAS-Li secondary battery, especially the effect of Li5PWⅥ10WⅤ2O40 on the capacity, the cycle property and the self-discharging of the battery have been investigated. The results indicate that not only Li5PWⅥ10WⅤ2O40 can overcome the disadvantages of LiClO4, which is apt to explode when heated or rammed, but also the PAS-Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self-discharging than that assembled with LiClO4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.

  12. A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes

    DEFF Research Database (Denmark)

    Jafeen, M. J. M.; Careem, M.A.; Skaarup, Steen

    2014-01-01

    deposited on gold-coated quartz crystals by electropolymerization and simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance techniques were used. During the first redox cycle, while large water movement is observed along with the counter ions in dilute electrolytes, such water...

  13. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Yan, Pengfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kim, Sun Tai [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Engelhard, Mark H. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Sun, Xiuliang [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Mei, Donghai [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Cho, Jaephil [Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Wang, Chong-Min [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2017-03-08

    The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.

  14. Phase Diagrams for the PEO-LiX Electrolyte System.

    Science.gov (United States)

    1987-01-01

    rather flat, in sharp contrast to previous results. 3.2c PEO- LiBF4 System Pure PEO forms complexes with LiBF , and the subsequent phase diagram for...study; 0 ----NMR(15); 0 -DSC or DTA(7, 10,12); A ---a.c.conductivity(6,10,12); 4- optical microscopy(6). is 350 - (PEO) n- LiBF4 300 (PEO) n-LiCF 3SO 3...the PEO- LiBF4 system IS" , " ATOM RATIO O/Li 50 25 8 4 2 1 250 200 150 1 00 -50I 0 0 0.1 0.2 0.3 0.4 0.5 XLiPF6 -’+’ Figure 6. Phase diagram of the

  15. Electrochemical performance of nanostructured spinel LiMn 2O 4 in different aqueous electrolytes

    Science.gov (United States)

    Tian, Lei; Yuan, Anbao

    A nanostructured spinel LiMn 2O 4 electrode material was prepared via a room-temperature solid-state grinding reaction route starting with hydrated lithium acetate (LiAc·2H 2O), manganese acetate (MnAc 2·4H 2O) and citric acid (C 6H 8O 7·H 2O) raw materials, followed by calcination of the precursor at 500 °C. The material was characterized by X-ray diffraction (XRD) and transmission electron microscope techniques. The electrochemical performance of the LiMn 2O 4 electrodes in 2 M Li 2SO 4, 1 M LiNO 3, 5 M LiNO 3 and 9 M LiNO 3 aqueous electrolytes was studied using cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. The LiMn 2O 4 electrode in 5 M LiNO 3 electrolyte exhibited good electrochemical performance in terms of specific capacity, rate dischargeability and charge/discharge cyclability, as evidenced by the charge/discharge results.

  16. High-performance gel electrolytes with tetra-armed polymer network for Li ion batteries

    Science.gov (United States)

    Hazama, Taisuke; Fujii, Kenta; Sakai, Takamasa; Aoki, Masahiro; Mimura, Hideyuki; Eguchi, Hisao; Todorov, Yanko; Yoshimoto, Nobuko; Morita, Masayuki

    2015-07-01

    An organo gel with only 6 wt % tetra-armed poly(ethylene glycol), TetraPEG, was prepared and applied as a novel gel electrolyte for Li ion batteries (LIBs). The TetraPEG gel electrolyte containing 1.0 M LiPF6 in binary or ternary mixtures, i.e., EC + DEC and EC + DEC + TFEP (EC: ethylene carbonate, DEC: diethyl carbonate and TFEP: tris(2,2,2-trifluoroethyl)phosphate showed high ionic conductivity required for the use in LIB systems. The TetraPEG gel based on ternary EC + DEC + TFEP system acts as a nonflammable gel electrolyte at the TFEP content higher than 20 vol%. In cyclic voltammetry and charge/discharge cycling tests, the TetraPEG gel electrolytes showed good reversibility for a graphite negative electrode.

  17. LiBOB基电解液在锂离子动力电池中的应用%The application of LiBOB based electrolyte in power Li-ion battery

    Institute of Scientific and Technical Information of China (English)

    连芳; 闫坤; 邢桃峰; 仇卫华

    2011-01-01

    The unique advantages of lithium bis(oxalate) borate (LiBOB) as electrolyte salt for power Li-ion battery and the key problems of LiBOB-based electrolyte were summarized. The review was especially focused on the effect of impurities,optimization of its solvents and the compatibility of LiBOB-based electrolyte with LiMn2O4, LiFePO4 electrodes.%介绍了双草酸硼酸锂(LiBOB)作为锂离子动力电池电解质锂盐的独特优势以及LiBOB基电解液应用中的关键问题.主要针对LiBOB基电解液中杂质影响和溶剂优化,以及与LiMnO、LiFePO正极材料的相容性进行了阐述.

  18. Thermal stability of LiPF6/EC+DMC+EMC electrolyte for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    WANG Qingsong; SUN Jinhua; CHEN Chunhua

    2006-01-01

    The thermal stability of lithium-ion battery electrolyte could substantially affect the safety of lithium-ion battery. In order to disclose the thermal stability of 1.0 mol·L-1 LiPF6/ethylene carbonate (EC)+dimethyl carbonate (DMC)+ethylmethyl carbonate (EMC) electrolyte, a micro calorimeter C80 micro calorimeter was used in this paper. The electrolyte samples were heated in argon atmosphere, and the heat flow and pressure performances were detected. It is found that LiPF6 influences the thermal behavior remarkably, with more heat generation and lower onset temperature. LiPF6/EC shows an exothermic peak at 212 ℃ with a heat of reaction -355.4J·g-1.DMC based LiPF6 solution shows two endothermic peak temperatures at 68.5 and 187 ℃ in argon filled vessel at elevated temperature. EMC based LiPF 6 solution shows two endothermic peak temperatures at 191 and 258 ℃ in argon filled vessel.1.0mol·L-1LiPF6/EC+DMC+ EMC electrolyte shows an endothermic and exothermic process one after the other at elevated temperature. By comparing with the thermal behavior of single solvent based LiPF6 solution, it can be speculated that LiPF6 may react with EC, DMC and EMC separately in 1.0 mol·L-1LiPF6/EC+DMC+EMC electrolyte, but the exothermic peak is lower than that of 1.0 mol·L-1LiPF6/EC solution. Furthermore, The 1.0 mol·L-1 LiPF6 /EC+DMC+EMC electrolyte decomposition reaction order was calculated based on the pressure data, its value is n =1.83, and the pressure rate constants kp=6.49×10-2k Pa·-0.83·min-1 .

  19. THE EFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Anton, D.; Gray, J.; Price, C.; Lascola, R.

    2011-07-20

    The effects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3} > ScCl{sub 3} > VCl{sub 3} > NiCL{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. X-ray diffraction and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

  20. THE AFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Erdy, C.; Gray, J.; Lascola, R.; Anton, D.

    2010-12-16

    In this present work, the affects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3}>ScCl{sub 3}>VCl{sub 3}>NiCl{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. XRD and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

  1. Li-Ion Electrolytes with Improved Safety and Tolerance to High-Voltage Systems

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, Surya; Krause, Frederick C.

    2013-01-01

    Given that lithium-ion (Li-ion) technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. Therefore, extensive effort has been devoted to developing nonflammable electrolytes to reduce the flammability of the cells/battery. A number of promising electrolytes have been developed incorporating flame-retardant additives, and have been shown to have good performance in a number of systems. However, these electrolyte formulations did not perform well when utilizing carbonaceous anodes with the high-voltage materials. Thus, further development was required to improve the compatibility. A number of Li-ion battery electrolyte formulations containing a flame-retardant additive [i.e., triphenyl phosphate (TPP)] were developed and demonstrated in high-voltage systems. These electrolytes include: (1) formulations that incorporate varying concentrations of the flame-retardant additive (from 5 to 15%), (2) the use of mono-fluoroethylene carbonate (FEC) as a co-solvent, and (3) the use of LiBOB as an electrolyte additive intended to improve the compatibility with high-voltage systems. Thus, improved safety has been provided without loss of performance in the high-voltage, high-energy system.

  2. Interaction of High Flash Point Electrolytes and PE-Based Separators for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Andreas Hofmann

    2015-08-01

    Full Text Available In this study, promising electrolytes for use in Li-ion batteries are studied in terms of interacting and wetting polyethylene (PE and particle-coated PE separators. The electrolytes are characterized according to their physicochemical properties, where the flow characteristics and the surface tension are of particular interest for electrolyte–separator interactions. The viscosity of the electrolytes is determined to be in a range of η = 4–400 mPa∙s and surface tension is finely graduated in a range of γL = 23.3–38.1 mN∙m−1. It is verified that the technique of drop shape analysis can only be used in a limited matter to prove the interaction, uptake and penetration of electrolytes by separators. Cell testing of Li|NMC half cells reveals that those cell results cannot be inevitably deduced from physicochemical electrolyte properties as well as contact angle analysis. On the other hand, techniques are more suitable which detect liquid penetration into the interior of the separator. It is expected that the results can help fundamental researchers as well as users of novel electrolytes in current-day Li-ion battery technologies for developing and using novel material combinations.

  3. Li Ion Conducting Polymer Gel Electrolytes Based on Ionic Liquid/PVDF-HFP Blends

    OpenAIRE

    Ye, Hui; Huang, Jian; Xu, Jun John; Khalfan, Amish; Greenbaum, Steve G.

    2007-01-01

    Ionic liquids thermodynamically compatible with Li metal are very promising for applications to rechargeable lithium batteries. 1-methyl-3-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P13TFSI) is screened out as a particularly promising ionic liquid in this study. Dimensionally stable, elastic, flexible, nonvolatile polymer gel electrolytes (PGEs) with high electrochemical stabilities, high ionic conductivities and other desirable properties have been synthesized by dissolving Li i...

  4. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions

    Science.gov (United States)

    Gao, Xiangwen; Chen, Yuhui; Johnson, Lee; Bruce, Peter G.

    2016-08-01

    On discharge, the Li-O2 battery can form a Li2O2 film on the cathode surface, leading to low capacities, low rates and early cell death, or it can form Li2O2 particles in solution, leading to high capacities at relatively high rates and avoiding early cell death. Achieving discharge in solution is important and may be encouraged by the use of high donor or acceptor number solvents or salts that dissolve the LiO2 intermediate involved in the formation of Li2O2. However, the characteristics that make high donor or acceptor number solvents good (for example, high polarity) result in them being unstable towards LiO2 or Li2O2. Here we demonstrate that introduction of the additive 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) promotes solution phase formation of Li2O2 in low-polarity and weakly solvating electrolyte solutions. Importantly, it does so while simultaneously suppressing direct reduction to Li2O2 on the cathode surface, which would otherwise lead to Li2O2 film growth and premature cell death. It also halves the overpotential during discharge, increases the capacity 80- to 100-fold and enables rates >1 mA cmareal-2 for cathodes with capacities of >4 mAh cmareal-2. The DBBQ additive operates by a new mechanism that avoids the reactive LiO2 intermediate in solution.

  5. Performance of Low Temperature Electrolytes in Experimental and Prototype Li-Ion Cells

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2007-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with ethylene carbonate-based electrolytes optimized for low temperature in experimental MCMB-LiNixCo1_x0 2 cells. In addition to obtaining discharge and charge rate performance data at various temperatures, electrochemical measurements were performed on individual electrodes (made possible by the incorporation of Li reference electrodes), including EIS, linear polarization and Tafel polarization measurements. The combination of techniques enables the elucidation of various trends associated with electrolyte composition. In addition to investigating the behavior in experimental cells, the performance of many promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  6. Solvate Structures and Computational/Spectroscopic Characterization of LiBF4 Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Seo, D. M.; Boyle, Paul D.; Allen, Joshua L.; Han, Sang D.; Jonsson, Erlendur; Johansson, Patrik; Henderson, Wesley A.

    2014-07-21

    Crystal structures have been determined for both LiBF4 and HBF4 solvates—(acetonitrile)2:LiBF4, (ethylene glycol diethyl ether)1:LiBF4, (diethylene glycol diethyl ether)1:LiBF4, (tetrahydrofuran)1:LiBF4, (methyl methoxyacetate)1:LiBF4, (suc-cinonitrile)1:LiBF4, (N,N,N',N",N"-pentamethyldiethylenetriamine)1:HBF4, (N,N,N',N'-tetramethylethylenediamine)3/2:HBF4 and (phenanthroline)2:HBF4. These, as well as other known LiBF4 solvate structures, have been characterized by Raman vibrational spectroscopy to unambiguously assign the anion Raman band positions to specific forms of BF4-...Li+ cation coordination. In addition, complementary DFT calculations of BF4-...Li+ cation complexes have provided additional insight into the challenges associated with accurately interpreting the anion interactions from experimental Raman spectra. This information provides a crucial tool for the characterization of the ionic association interactions within electrolytes.

  7. Neutron-scattering studies of a polymer electrolyte, PPO-LiClO4

    DEFF Research Database (Denmark)

    Carlsson, P.; Mattsson, B.; Swenson, J.

    1998-01-01

    The structure and dynamics of a prototype polymer electrolyte, PPO-LiClO4, have been investigated using neutron diffraction (ND) and quasi-elastic neutron scattering (QENS). For comparison, corresponding studies of pure PPO have also been performed. The diffraction data reveal large structural ch...

  8. Estimation of energy density of Li-S batteries with liquid and solid electrolytes

    Science.gov (United States)

    Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.

    2016-09-01

    With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.

  9. Characterization of plasticized PMMA–LiBF4 based solid polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; T Uma

    2000-02-01

    Polymer electrolyte films prepared from poly(methyl methacrylate) and LiBF4 with different concentrations of plasticizer (DBP) are described. The formation of polymer–salt complex has been confirmed by FTIR spectral studies. The temperature dependence of conductivity of polymer films seems to obey the VTF relation. Values of conductivities of the polymer complexes are presented and discussed.

  10. Ester-Based Electrolytes for Low-Temperature Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall; Bugga, Ratnakumar

    2005-01-01

    Electrolytes comprising LiPF6 dissolved at a concentration of 1.0 M in five different solvent mixtures of alkyl carbonates have been found to afford improved performance in rechargeable lithium-ion electrochemical cells at temperatures as low as -70 C. These and other electrolytes have been investigated in continuing research directed toward extending the lower limit of practical operating temperatures of Li-ion cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Low-EC-Content Electrolytes for Low-Temperature Li-Ion Cells (NPO-30226), NASA Tech Briefs, Vol. 27, No. 1 (January 2003), page 46. The ingredients of the present solvent mixtures are ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), and ethyl valerate (EV). In terms of volume proportions of these ingredients, the present solvent mixtures are 1EC + 1EMC + 8MB, 1EC + 1EMC + 8EB, 1EC + 1EMC + 8MP, 1EC + 1EMC + 8EV, and 1EC + 9EMC. These electrolytes were placed in Liion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the low-temperature electrical performances of the cells were measured. The cells containing the MB and MP mixtures performed best.

  11. Application of LiBOB-based liquid electrolyte in co-sensitized solar cell

    Science.gov (United States)

    Jun, H. K.; Buraidah, M. H.; Noor, M. M.; Kufian, M. Z.; Majid, S. R.; Sahraoui, B.; Arof, A. K.

    2013-11-01

    Co-sensitized solar cells have been fabricated using metal complex N3 dye and Ag2S/CdS quantum dots coupled with LiBOB-based liquid electrolyte. Quantum dots (QDs) were synthesized via the successive ionic layer adsorption and reaction (SILAR) route. The absorbance and band gap energy of Ag2S and CdS QDs were determined. Their refractive indices were observed to be in the range of 1.5175-1.5200. It has been shown that LiBOB-based liquid electrolyte is able to function in the QD/N3 dye co-sensitized solar cells but some stability issues of the QD were observed in the electrolyte system containing iodide whereby the QD-sensitized TiO2 was easily etched. Overall efficiencies and fill factors of the co-sensitized solar cells varied from 0.98% to 1.66% and 40% to 46% respectively. CdS QD was shown to be effective when coupled with polysulfide electrolyte while Ag2S QD was favorable towards the LiBOB-based liquid electrolyte.

  12. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  13. Electrochemical Performance of Solid Polymer Electrolyte PEO20-LiTf-Urea1.s

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ding; YAN Hui; ZHANG Huan; QI Lu

    2011-01-01

    A new solid polymer electrolyte PEO20-LiTf-Urea1.5 was prepared by solution casting technique. The energy of frontier orbitals for the components of the electrolyte was predicted by quantum chemistry calculations, and TG stability and electrochemical features were measured. Urea exhibited a lower HOMO energy than PEO, implying its enhanced stability against electrochemical oxidation. Experimentally addition of urea increases the ionic conductivity, which guarantees conductivity requirement for lithium ion batteries. It also results in significant improved electrochemical stability with good thermal stability. Favorable lithium stripping/plating performance is yielded, and it confirms the good stability of the solid electrolyte interphase for the PEO20-LiTf-Urea1.5 system.

  14. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries.

    Science.gov (United States)

    Dedryvère, R; Leroy, S; Martinez, H; Blanchard, F; Lemordant, D; Gonbeau, D

    2006-07-06

    X-ray photoelectron valence spectra of lithium salts LiBF4, LiPF6, LiTFSI, and LiBETI have been recorded and analyzed by means of density functional theory (DFT) calculations, with good agreement between experimental and calculated spectra. The results of this study are used to characterize electrode/electrolyte interfaces of graphite negative electrodes in Li-ion batteries using organic carbonate electrolytes containing LiTFSI or LiBETI salts. By a combined X-ray photoelectron spectroscopy (XPS) core peaks/valence analysis, we identify the main constituents of the interface. Differences in the surface layers' composition can be evidenced, depending on whether LiTFSI or LiBETI is used as the lithium salt.

  15. Assessment of Various Low Temperature Electrolytes in Prototype Li-Ion Cells Developed for ESMD Applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.

    2008-01-01

    Due to their attractive properties and proven success, Li-ion batteries have become identified as the battery chemistry of choice for a number of future NASA missions. A number of these applications would be greatly benefited by improved performance of Li-ion technology over a wider operating temperature range, especially at low temperatures, such as future ESMD missions. In many cases, these technology improvements may be mission enabling, and at the very least mission enhancing. In addition to aerospace applications, the DoE has interest in developing advanced Li-ion batteries that can operate over a wide temperature range to enable terrestrial HEV applications. Thus, our focus at JPL in recent years has been to extend the operating temperature range of Li-ion batteries, especially at low temperatures. To accomplish this, the main focus of the research has been devoted to developing improved lithium-ion conducting electrolytes. In the present paper, we would like to present some of the results we have obtained with six different ethylene carbonate-based electrolytes optimized for low temperature. In addition to investigating the behavior in experimental cells initially, the performance of these promising low temperature electrolytes was demonstrated in large capacity, aerospace quality Li-ion prototype cells, manufactured by Yardney Technical Products and Saft America, Inc. These cells were subjected to a number of performance tests, including discharge rate characterization, charge rate characterization, cycle life performance at various temperatures, and power characterization tests.

  16. Power capability of LiTDI-based electrolytes for lithium-ion batteries

    Science.gov (United States)

    Paillet, Sabrina; Schmidt, Gregory; Ladouceur, Sébastien; Fréchette, Joël; Barray, Francis; Clément, Daniel; Hovington, Pierre; Guerfi, Abdelbast; Vijh, Ashok; Cayrefourcq, Ian; Zaghib, Karim

    2015-10-01

    We report results obtained with lithium 4,5-dicyano-2-(trifluoromethyl) imidazolide (LiTDI), which we believe is a promising lithium salt for electrolytes in lithium-ion batteries. This "Hückel"- type salt has high charge delocalizations which contribute to good lithium-ion dissociation. In addition, it has high thermal stability and safer degradation products compared to LiPF6, which were identified by TGA-MS. It also does not corrode but passivate the aluminum current collector. Cyclic voltammetry measurements showed a stability up to 4.5 V, which is sufficient for use with standard cathode materials. The power capability of half cells containing LiTDI in EC/DEC was evaluated with standard cathodes used in lithium-ion batteries: LFP, NMC, LCO and LMO. Two LiTDI concentrations were investigated: 1 M and 0.6 M and compared with a reference electrolyte: 1 M LiPF6. In spite of a slightly lower conductivity than the LiPF6, LiTDI (1 M and 0.6 M) shows similar power capability up to 2C with LFP (84% of specific capacity recovered), 10C with NMC (61% of specific capacity recovered), and up to 20C for LMO (88% of specific capacity recovered). Furthermore, better power capability was obtained with 0.6 M LiTDI with LCO, which yielded 82% of specific capacity recovered at 1C (67% for 1 M LiTDI and 1 M LiPF6).

  17. Morphology and conductivity of in-situ PEO-LiClO4-TiO2 composite polymer electrolyte

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-yue; FENG Qing; WANG Li-jun; ZHANG Qian; CHAO Meng

    2007-01-01

    PEO-LiClO4-TiO2 composite polymer electrolyte films were prepared. TiO2 was formed directly in matrix by hydrolysis and condensation reaction of tetrabutyl titanate. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. The glass transition temperature and the crystallinity of composite polymer electrolytes are decreased compared with those of PEO-LiClO4 polymer electrolyte film. The results show that TiO2 particles are uniformly dispersed in PEO-LiClO4-5%TiO2 composite polymer electrolyte film. The maximal conductivity of 5.5×10-5 S/cm at 20 ℃ of PEO-LiClO4-TiO2 film is obtained at 5% mass fraction of TiO2.

  18. The influence of LiH on the rehydrogenation behavior of halide free rare earth (RE) borohydrides (RE = Pr, Er).

    Science.gov (United States)

    Heere, Michael; Payandeh GharibDoust, Seyed Hosein; Frommen, Christoph; Humphries, Terry D; Ley, Morten B; Sørby, Magnus H; Jensen, Torben R; Hauback, Bjørn C

    2016-09-21

    Rare earth (RE) metal borohydrides are receiving immense consideration as possible hydrogen storage materials and solid-state Li-ion conductors. In this study, halide free Er(BH4)3 and Pr(BH4)3 have been successfully synthesized for the first time by the combination of mechanochemical milling and/or wet chemistry. Rietveld refinement of Er(BH4)3 confirmed the formation of two different Er(BH4)3 polymorphs: α-Er(BH4)3 with space group Pa3[combining macron], a = 10.76796(5) Å, and β-Er(BH4)3 in Pm3[combining macron]m with a = 5.4664(1) Å. A variety of Pr(BH4)3 phases were found after extraction with diethyl ether: α-Pr(BH4)3 in Pa3[combining macron] with a = 11.2465(1) Å, β-Pr(BH4)3 in Pm3[combining macron]m with a = 5.716(2) Å and LiPr(BH4)3Cl in I4[combining macron]3m, a = 11.5468(3) Å. Almost phase pure α-Pr(BH4)3 in Pa3[combining macron] with a = 11.2473(2) Å was also synthesized. The thermal decomposition of Er(BH4)3 and Pr(BH4)3 proceeded without the formation of crystalline products. Rehydrogenation, as such, was not successful. However, addition of LiH promoted the rehydrogenation of RE hydride phases and LiBH4 from the decomposed RE(BH4)3 samples.

  19. Solvate Structures and Computational/Spectroscopic Characterization of LiPF6 Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang D.; Yun, Sung-Hyun; Borodin, Oleg; Seo, D. M.; Sommer, Roger D.; Young, Victor G.; Henderson, Wesley A.

    2015-04-23

    Raman spectroscopy is a powerful method for identifying ion-ion interactions, but only if the vibrational band signature for the anion coordination modes can be accurately deciphered. The present study characterizes the PF6- anion P-F Raman symmetric stretching vibrational band for evaluating the PF6-...Li+ cation interactions within LiPF6 crystalline solvates to create a characterization tool for liquid electrolytes. To facilitate this, the crystal structures for two new solvates—(G3)1:LiPF6 and (DEC)2:LiPF6 with triglyme and diethyl carbonate, respectively—are reported. The information obtained from this analysis provides key guidance about the ionic association information which may be obtained from a Raman spectroscopic evaluation of electrolytes containing the LiPF6 salt and aprotic solvents. Of particular note is the overlap of the Raman bands for both solvent-separated ion pair (SSIP) and contact ion pair (CIP) coordination in which the PF6- anions are uncoordinated or coordinated to a single Li+ cation, respectively.

  20. Evaluating Transport Properties and Ionic Dissociation of LiPF6 in Concentrated Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Zhange; Higa, Kenneth; Han, Kee Sung; Srinivasan, Venkat

    2017-08-17

    The presence of lithium hexafluorophosphate (LiPF6) ion pairs in carbonate-based electrolyte solutions is widely accepted in the field of battery electrolyte research and is expected to affect solution transport properties. No existing techniques are capable of directly quantifying salt dissociation in these solutions. Previous publications by others have provided estimates of dissociation degrees using dilute solution theory and pulsed field gradient nuclear magnetic resonance spectroscopy (PFG-NMR) measurements of self-diffusivity. However, the behavior of a concentrated electrolyte solution can deviate significantly from dilute solution theory predictions. This work, for the first time, instead uses Onsager–Stefan–Maxwell concentrated solution theory and the generalized. Darken relation with PFG-NMR measurements to quantify the degrees of dissociation in electrolyte solutions (LiPF6 in ethylene carbonate/diethyl carbonate, 1:1 by weight). At LiPF6 concentrations ranging from 0.1 M to 1.5 M, the salt dissociation degree is found to range from 61% to 37%. Transport properties are then calculated through concentrated solution theory with corrections for these significant levels of ion pairing.

  1. Electrolytes for Low-Temperature Operation of Li-CFx Cells

    Science.gov (United States)

    Smart, Marshall C.; Whitacre, Jay F.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Bhalla, Pooja; Smith, Kiah

    2009-01-01

    A report describes a study of electrolyte compositions selected as candidates for improving the low-temperature performances of primary electrochemical cells that contain lithium anodes and fluorinated carbonaceous (CFx) cathodes. This study complements the developments reported in Additive for Low-Temperature Operation of Li-(CF)n Cells (NPO- 43579) and Li/CFx Cells Optimized for Low-Temperature Operation (NPO- 43585), which appear elsewhere in this issue of NASA Tech Briefs. Similar to lithium-based electrolytes described in several previous NASA Tech Briefs articles, each of these electrolytes consisted of a lithium salt dissolved in a nonaqueous solvent mixture. Each such mixture consisted of two or more of the following ingredients: propylene carbonate (PC); 1,2-dimethoxyethane (DME); trifluoropropylene carbonate; bis(2,2,2-trifluoroethyl) ether; diethyl carbonate; dimethyl carbonate; and ethyl methyl carbonate. The report describes the physical and chemical principles underlying the selection of the compositions (which were not optimized) and presents results of preliminary tests made to determine effects of the compositions upon the low-temperature capabilities of Li-CFx cells, relative to a baseline composition of LiBF4 at a concentration of 1.0 M in a solvent comprising equal volume parts of PC and DME.

  2. Flexible Li-CO{sub 2} batteries with liquid-free electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaofei; Li, Zifan; Chen, Jun [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin (China)

    2017-05-15

    Developing flexible Li-CO{sub 2} batteries is a promising approach to reuse CO{sub 2} and simultaneously supply energy to wearable electronics. However, all reported Li-CO{sub 2} batteries use liquid electrolyte and lack robust electrolyte/electrodes structure, not providing the safety and flexibility required. Herein we demonstrate flexible liquid-free Li-CO{sub 2} batteries based on poly(methacrylate)/poly(ethylene glycol)-LiClO{sub 4}-3 wt %SiO{sub 2} composite polymer electrolyte (CPE) and multiwall carbon nanotubes (CNTs) cathodes. The CPE (7.14 x 10{sup -2} mS cm{sup -1}) incorporates with porous CNTs cathodes, displaying stable structure and small interface resistance. The batteries run for 100 cycles with controlled capacity of 1000 mAh g{sup -1}. Moreover, pouch-type flexible batteries exhibit large reversible capacity of 993.3 mAh, high energy density of 521 Wh kg{sup -1}, and long operation time of 220 h at different degrees of bending (0-360 ) at 55 C. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Solvation structure around the Li(+) ion in succinonitrile-lithium salt plastic crystalline electrolytes.

    Science.gov (United States)

    Shen, Yuneng; Deng, Gang-Hua; Ge, Chuanqi; Tian, Yuhuan; Wu, Guorong; Yang, Xueming; Zheng, Junrong; Yuan, Kaijun

    2016-06-01

    Herein, we discuss the study of solvation dynamics of lithium-succinonitrile (SN) plastic crystalline electrolytes by ultrafast vibrational spectroscopy. The infrared absorption spectra indicated that the CN stretch of the Li(+) bound and unbound succinonitrile molecules in a same solution have distinct vibrational frequencies (2276 cm(-1)vs. 2253 cm(-1)). The frequency difference allowed us to measure the rotation decay times of solvent molecules bound and unbound to Li(+) ion. The Li(+) coordination number of the Li(+)-SN complex was found to be 2 in the plastic crystal phase (22 °C) and 2.5-3 in the liquid phase (80 °C), which is independent of the concentration (from 0.05 mol kg(-1) to 2 mol kg(-1)). The solvation structures along with DFT calculations of the Li(+)-SN complex have been discussed. In addition, the dissociation percentage of lithium salt was also determined. In 0.5 mol kg(-1) LiBF4-SN solutions at 80 °C, 60% ± 10% of the salt dissociates into Li(+), which is bound by 2 or 3 solvent molecules. In the 0.5 mol kg(-1) LiClO4-SN solutions at 80 °C, the salt dissociation ratio can be up to 90% ± 10%.

  4. Improved Low-Temperature Performance of Li-Ion Cells Using New Electrolytes

    Science.gov (United States)

    Smart, Marshall C.; Buga, Ratnakumar V.; Gozdz, Antoni S.; Mani, Suresh

    2010-01-01

    As part of the continuing efforts to develop advanced electrolytes to improve the performance of lithium-ion cells, especially at low temperatures, a number of electrolyte formulations have been developed that result in improved low-temperature performance (down to 60 C) of 26650 A123Systems commercial lithium-ion cells. The cell type/design, in which the new technology has been demonstrated, has found wide application in the commercial sector (i.e., these cells are currently being used in commercial portable power tools). In addition, the technology is actively being considered for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In current work, a number of low-temperature electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed, which include the use of ternary mixtures of carbonates, the use of ester co-solvents [e.g., methyl butyrate (MB)], and optimized lithium salt concentrations (e.g., LiPF6), were compared with the commercial baseline electrolyte, as well as an electrolyte being actively considered for DoE HEV applications and previously developed by a commercial enterprise, namely LiPF6 in ethylene carbonate (EC) + ethyl methyl carbonate (EMC)(30:70%).

  5. Electrolytes with Improved Safety Characteristics for High Voltage, High Specific Energy Li-ion Cells

    Science.gov (United States)

    Smart, M. C.; Krause, F. C.; Hwang, C.; West, W. C.; Soler, J.; Whitcanack, L. W.; Prakash, G. K. S.; Ratnakumar, B. V.

    2012-01-01

    (1) NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions; (2) The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of advanced Li-ion batteries and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems; (3) At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability); and (4) A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications.

  6. Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li/air battery

    Science.gov (United States)

    Zhang, Sheng S.; Read, Jeffrey

    2011-03-01

    In this work we study methyl nonafluorobutyl ether (MFE) and tris(2,2,2-trifluoroethyl) phosphite (TTFP), respectively, as a co-solvent for the non-aqueous electrolyte of Li-air battery. Results show that in certain solvent ratios, both solvents are able to increase the specific capacity of carbon in Li/O2 and Li/air cells. More interestingly, the improvement in discharge performance of the Li/air cells increases with discharge current density. These results cannot be explained by the ionic conductivity and viscosity data of the electrolytes since the participation of fluorinated co-solvents hardly changes viscosity of the solvent blends while reversely reduces ionic conductivity of the electrolyte. In particular, we find that a 30 wt.% (vs. solvent) addition of TTFP into a 0.2 m (molality) LiSO3CF3 PC electrolyte can significantly improve the discharge performance of Li/air cells, and that the resultant electrolyte is able to support long-term operation of Li/air cells in dry ambient environments due to its low volatility. We believe that the observed performance improvement is associated with the increased dissolution kinetics and solubility of oxygen in fluorinated solvent containing electrolyte.

  7. A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.

    Science.gov (United States)

    Yi, Jin; Zhou, Haoshen

    2016-09-08

    In the context of the development of electric vehicle to solve the contemporary energy and environmental issues, the possibility of pushing future application of Li-O2 batteries as a power source for electric vehicles is particularly attractive. However, safety concerns, mainly derived from the use of flammable organic liquid electrolytes, become a major bottleneck for the strategically crucial applications of Li-O2 batteries. To overcome this issue, rechargeable solid-state Li-O2 batteries with enhanced safety is regarded as an appealing candidate. In this study, a hybrid quasi-solid-state electrolyte combing a polymer electrolyte with a ceramic electrolyte is first designed and explored for Li-O2 batteries. The proposed rechargeable solid-state Li-O2 battery delivers improved cycle life (>100 cycles) and safety. The feasibility study demonstrates that the hybrid quasi-solid-state electrolytes could be employed as a promising alternative strategy for the development of rechargeable Li-O2 batteries, hence encouraging more efforts devoted to explore other hybrid solid-state electrolytes for Li-O2 batteries upon future application.

  8. Li/LiFePO4 batteries with gel polymer electrolytes incorporating a guanidinium-based ionic liquid cycled at room temperature and 50 °C

    Science.gov (United States)

    Li, Mingtao; Yang, Li; Fang, Shaohua; Dong, Siming; Jin, Yide; Hirano, Shin-ichi; Tachibana, Kazuhiro

    2011-08-01

    Gel polymer electrolytes composed of PVdF-HFP microporous membrane incorporating a guanidinium-based ionic liquid with 0.8 mol kg-1 lithium bis(trifluoromethanesulfonylimide) are characterized as the electrolytes in Li/LiFePO4 batteries. The ionic conductivity of these gel polymer electrolytes is 3.16 × 10-4 and 8.32 × 10-4 S cm-1 at 25 and 50 °C, respectively. The electrolytes show good interfacial stability towards lithium metal and high oxidation stability, and the decomposition potential reaches 5.3 and 4.6 V (vs. Li/Li+) at 25 and 50 °C, respectively. Li/LiFePO4 cells using the PVdF-HFP/1g13TFSI-LiTFSI electrolytes show good discharge capacity and cycle stability, and no significant loss in discharge capacity of the battery is observed over 100 cycles. The cells deliver the capacity of 142 and 150 mAh g-1 at the 100th cycling at 25 and 50 °C, respectively.

  9. Fabrication and electrochemical properties study of LiSiPON electrolyte films

    Institute of Scientific and Technical Information of China (English)

    XING; Guang-jian; SHEN; Wan; YANG; Zhi-min; MAO; Chang-hui; DU; Jun

    2005-01-01

    The LiSiPON electrolyte films were prepared by magnetron sputtering method with different N2working pressure. The structure, morphology, composition and the relationship between ionic conductivity and N content were studied in detail. The result showed that N content in the films depended on N2partial pressure. With the N2 partial pressure increasing, N content increased firstly and gained a maximum values then decreased. N content in the LiSiPON films affected the ionic conductivity of the films.The ionic conductivity of the films increased with the N content increasing, and could reach a maximum value 10. 4× 10-6S/cm.

  10. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

    Science.gov (United States)

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2017-02-08

    We demonstrate herein that Mn(3+) and not Mn(2+), as commonly accepted, is the dominant dissolved manganese cation in LiPF6-based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn(3+) fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn(3+) in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn(3+) occurs at a very slow rate.

  11. A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent

    Science.gov (United States)

    Ito, Seitaro; Nakakita, Moeka; Aihara, Yuichi; Uehara, Takahiro; Machida, Nobuya

    2014-12-01

    A crystalline solid electrolyte, Li7P3S11, was synthesized by a liquid-phase reaction of Li2S and P2S5 in an organic solvent. A precursor, which was a mixture of solvated Li3PS4 and Li4P2S7, was prepared by mixing Li2S and P2S5 powders in 1,2-dimethoxyethane (DME) solvent. After a vacuum drying of the precursor, the crystalline phase of Li7P3S11 was obtained by heat treatment at 250 °C for 1 h in Ar atmosphere. The Li7P3S11 sample showed high ionic conductivity of 2.7 × 10-4 S cm-1 at room temperature. The liquid-phase synthesis of the solid electrolyte has advantages for mass-production of all-solid-state batteries.

  12. Chemical Stability of Conductive Ceramic Anodes in LiCl–Li2O Molten Salt for Electrolytic Reduction in Pyroprocessing

    Directory of Open Access Journals (Sweden)

    Sung-Wook Kim

    2016-08-01

    Full Text Available Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive La0.33Sr0.67MnO3 in LiCl–Li2O molten salt at 650°C was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the La0.33Sr0.67MnO3 anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

  13. Physico- and electrochemistry of composite electrolytes based on PEODME-LiTFSI with TiO 2

    Science.gov (United States)

    Moskwiak, M.; Giska, I.; Borkowska, R.; Zalewska, A.; Marczewski, M.; Marczewska, H.; Wieczorek, W.

    The effect of fumed TiO 2 fillers (pure and modified by H 2SO 4) on ionic conductivity of composite electrolytes based on poly(ethylene oxide) dimethyl ether (PEODME) oligomer (M w = 500) doped with lithium bis-(trifluoromethanesulfonyl)imide LiN(CF 3SO 2) 2 (LiTFSI) are studied by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR) and complex impedance methods. The electrochemical stability of the electrolytes in the potential range of 4 V versus Li electrode has been confirmed by voltammetric measurements. Li electrode reactions have been followed by means of impedance spectroscopy. The growth in time of the resistance of the interfacial (Li electrode-polymer electrolyte) layers was inhibited upon the addition of fillers.

  14. The dielectric properties of polyindole -Zno containing LiClO4 polymer electrolyte

    Science.gov (United States)

    Rajasudha, G.; Narayanan, V.; Stephen, A.

    2012-06-01

    The frequency dependent dielectric behaviour of composite polymer electrolyte (CPE) based on Polyindole with ZnO nano particles containing LiClO4 has been studied. The Impedance spectroscopy studies were obtained from 5MHz to 1Hz over the temperature range of 40°-100°C. The high dielectric permittivity values observed at low frequency region can be attributed to the space charge built near the electrode-electrolyte interface which blocks the charge transport. At higher frequencies, the permittivity values of the CPE were found to decrease rapidly and saturate, as the dipoles in the macromolecules hardly be able to orient in the direction of the applied field. These features make the electrolyte quite convenient for the development of advanced, solid-state, rechargeable lithium polymer batteries.

  15. Atomic Layer Deposition of the Solid Electrolyte Garnet Li7La3Zr2O12

    Energy Technology Data Exchange (ETDEWEB)

    Kazyak, Eric; Chen, Kuan-Hung; Wood, Kevin N.; Davis, Andrew L.; Thompson, Travis; Bielinski, Ashley R.; Sanchez, Adrian; Wang, Xiang; Wang, Chongmin; Sakamoto, Jeff S.; Dasgupta, Neil P.

    2017-04-25

    Lithium solid electrolytes are a promising platform for achieving high energy density, long-lasting, and safe rechargeable batteries, which could have widespread societal impact. In particular, the ceramic oxide garnet Li7La3Zr2O12 (LLZO) has been shown to be a promising electrolyte due to its stability and high ionic conductivity. Two major challenges for commercialization are manufacturing of thin layers and creating stable, low-impedance, interfaces with both anode and cathode materials. Atomic Layer Deposition (ALD) has recently been shown as a potential method for depositing both solid electrolytes and interfacial layers to improve the stability and performance at electrode-electrolyte interfaces in battery systems. Herein we present the first reported ALD process for LLZO, demonstrating the ability to tune composition within the amorphous film and anneal to achieve the desired cubic garnet phase. Formation of the cubic phase was observed at temperatures as low as 555°C, significantly lower than is required for bulk processing. Additionally, challenges associated with achieving a dense garnet phase due to substrate reactivity, morphology changes and Li loss under the necessary high temperature annealing are quantified via in situ synchrotron diffraction.

  16. Effect on aluminum corrosion of LiBF{sub 4} addition into lithium imide electrolyte; a study using the EQCM

    Energy Technology Data Exchange (ETDEWEB)

    Song, Seung-Wan; Richardson, Thomas J.; Zhuang, Guorong V.; Devine, Thomas M.; Evans, James W

    2004-04-15

    A study of the corrosion of Al, used as a current collector for the cathode of rechargeable lithium batteries, has been carried out using the electrochemical quartz crystal microbalance (EQCM). An aluminum film was highly corroded in 1 M LiTFSI (lithium trifluorosulfonimide (LiTFSI), LiN(SO{sub 2}CF{sub 3}){sub 2})/EC+DMC electrolyte at 2-5 V versus Li/Li{sup +} with the formation of large pits, while the corrosion was clearly suppressed by adding LiBF{sub 4} salt into the imide electrolyte. Depression of corrosion on adding LiBF{sub 4} was attributed to the formation of a stable passive layer on the surface of aluminum due to the reaction of aluminum with electrolyte and the decomposition of electrolyte solvent at high potentials. The resulting data may help clarify the corrosion mechanism of aluminum metal in imide electrolyte and give insight into enhancing the performance of lithium ion batteries.

  17. Morphology and conductivity study of solid electrolyte Li{sub 3}PO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Prayogi, Lugas Dwi, E-mail: ldprayodi@gmail.com; Faisal, Muhamad [Engineering Physics, Sepuluh Nopember Institute of Technology ITS Campus, Sukolilo, Surabaya 6011 (Indonesia); Kartini, Evvy, E-mail: kartini@batan.go.id; Honggowiranto, Wagiyo; Supardi [Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency Kawasan Puspiptek Serpong, Tangerang Selatan15314, Banten (Indonesia)

    2016-02-08

    The comparison between two different methods of synthesize of solid electrolyte Li{sub 3}PO{sub 4} as precursor material for developing lithium ion battery, has been performed. The first method is to synthesize Li{sub 3}PO{sub 4} prepared by wet chemical reaction from LiOH and H{sub 3}PO{sub 4} which provide facile, abundant available resource, low cost, and low toxicity. The second method is solid state reaction prepared by Li{sub 2}CO{sub 3} and NH{sub 4}H{sub 2}PO{sub 4.} In addition, the possible morphology identification of comparison between two different methods will also be discussed. The composition, morphology, and additional identification phase and another compound of Li{sub 3}PO{sub 4} powder products from two different reaction are characterized by SEM, EDS, and EIS. The Li{sub 3}PO{sub 4} powder produced from wet reaction and solid state reaction have an average diameter of 0.834 – 7.81 µm and 2.15 – 17.3 µm, respectively. The density of Li{sub 3}PO{sub 4} prepared by wet chemical reaction is 2.238 gr/cm{sup 3}, little bit lower than the sample prepared by solid state reaction which density is 2.3560 gr/cm{sup 3}. The EIS measurement result shows that the conductivity of Li{sub 3}PO{sub 4} is 1.7 x 10{sup −9} S.cm{sup −1} for wet chemical reaction and 1.8 x 10{sup −10} S.cm{sup −1} for solid state reaction. The conductivity of Li{sub 3}PO{sub 4} is not quite different between those two samples even though they were prepared by different method of synthesize.

  18. Optimized Li-Ion Electrolytes Containing Fluorinated Ester Co-Solvents

    Science.gov (United States)

    Prakash, G. K. Surya; Smart, Marshall; Smith, Kiah; Bugga, Ratnakumar

    2010-01-01

    A number of experimental lithium-ion cells, consisting of MCMB (meso-carbon microbeads) carbon anodes and LiNi(0.8)Co(0.2)O2 cathodes, have been fabricated with increased safety and expanded capability. These cells serve to verify and demonstrate the reversibility, low-temperature performance, and electrochemical aspects of each electrode as determined from a number of electrochemical characterization techniques. A number of Li-ion electrolytes possessing fluorinated ester co-solvents, namely trifluoroethyl butyrate (TFEB) and trifluoroethyl propionate (TFEP), were demonstrated to deliver good performance over a wide temperature range in experimental lithium-ion cells. The general approach taken in the development of these electrolyte formulations is to optimize the type and composition of the co-solvents in ternary and quaternary solutions, focusing upon adequate stability [i.e., EC (ethylene carbonate) content needed for anode passivation, and EMC (ethyl methyl carbonate) content needed for lowering the viscosity and widening the temperature range, while still providing good stability], enhancing the inherent safety characteristics (incorporation of fluorinated esters), and widening the temperature range of operation (the use of both fluorinated and non-fluorinated esters). Further - more, the use of electrolyte additives, such as VC (vinylene carbonate) [solid electrolyte interface (SEI) promoter] and DMAc (thermal stabilizing additive), provide enhanced high-temperature life characteristics. Multi-component electrolyte formulations enhance performance over a temperature range of -60 to +60 C. With the need for more safety with the use of these batteries, flammability was a consideration. One of the solvents investigated, TFEB, had the best performance with improved low-temperature capability and high-temperature resilience. This work optimized the use of TFEB as a co-solvent by developing the multi-component electrolytes, which also contain non

  19. Electrolyte decomposition on Li-metal surfaces from first-principles theory

    Science.gov (United States)

    Ebadi, Mahsa; Brandell, Daniel; Araujo, C. Moyses

    2016-11-01

    An important feature in Li batteries is the formation of a solid electrolyte interphase (SEI) on the surface of the anode. This film can have a profound effect on the stability and the performance of the device. In this work, we have employed density functional theory combined with implicit solvation models to study the inner layer of SEI formation from the reduction of common organic carbonate electrolyte solvents (ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate) on a Li metal anode surface. Their stability and electronic structure on the Li surface have been investigated. It is found that the CO producing route is energetically more favorable for ethylene and propylene carbonate decomposition. For the two linear solvents, dimethyl and diethyl carbonates, no significant differences are observed between the two considered reduction pathways. Bader charge analyses indicate that 2 e- reductions take place in the decomposition of all studied solvents. The density of states calculations demonstrate correlations between the degrees of hybridization between the oxygen of adsorbed solvents and the upper Li atoms on the surface with the trend of the solvent adsorption energies.

  20. Study on the LLT solid electrolyte thin film with LiPON interlayer intervening between LLT and electrodes

    Science.gov (United States)

    Lee, Jong min; Kim, Soo ho; Tak, Yongsug; Yoon, Young Soo

    In this study, a lithium lanthanum titanate (LLT) thin film electrolyte was prepared by RF magnetron sputtering, in order to assess its potential use in solid state thin film batteries. Even though the LLT has high ionic conductivity, it cannot be used alone as a thin film electrolyte since it is chemically unstable when it comes into contact with Li metal and it has a high electronic conductivity. Lithium phosphorous oxynitride (LiPON) is stable when in contact with Li and has an extremely low electronic conductivity. We expected that the LiPON/LLT/LiPON structure would make it possible to use a LLT thin film as a thin film solid electrolyte. In order to prepare this structure, a LiPON thin film was also deposited by RF magnetron sputtering and was deposited for various times (30, 60, 90 and 120 min), in order to determine the optimum thickness ratio between LLT and LiPON. In linear sweep voltammetry measurements, the current hardly flowed in the potential range from 0 to 5.5 V in the blocking electrode and ac impedance was measured for measuring the resistance at LiPON/LLT/LiPON. When only the LLT thin film was deposited, a current of scores of mA flowed in the operating potential range, but when an interlayer of LiPON thin film was deposited for more than 30 min on both sides of the LLT thin film, the current was less than 1 μA. Ionic conductivities of 1.11, 0.82 and 0.48 × 10 -7 S cm -1 were observed for the deposition times of the LiPON thin film of 60, 90 and 120 min, respectively. This result suggests that the LiPON/LLT/LiPON structure might be able to be used as a thin film solid electrolyte if its ionic conductivity could be improved.

  1. Identification and inspection of the vacancy site in Li doped BPO 4 ceramic electrolyte by NMR

    Science.gov (United States)

    Dodd, A. J.; van Eck, E. R. H.

    2002-10-01

    A study of the properties of the high temperature ceramic electrolyte Li xB 1- x/3 PO 4 (lithium boron phosphate) is reported. XRD and NMR are used to investigate changes of the material as a function of heat treatment. It was found that after synthesis at 450 °C the material contains a phase of Li 4P 2O 7 in addition to the BPO 4 phase. This second phase is removed by heat treatment at temperatures higher than 600 °C. Boron vacancies are present, REDOR and CPMAS techniques are used to investigate this defect site and show that for the heat treated material Li ions are present at the vacancy site.

  2. Li-ion diffusion kinetics in LiCoPO{sub 4} thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-07-15

    LiCoPO{sub 4} thin films were deposited on Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATSP) solid electrolyte by radio frequency magnetron sputtering and were characterized by X-ray diffraction and scanning electron microscope. The films show a (1 1 1) preferred orientation upon annealing and are chemically stable with LATSP up to 600 C in air. An all-solid-state Li/PEO{sub 18}-Li(CF{sub 3}SO{sub 2}){sub 2}N/LATSP/LiCoPO{sub 4}/Au cell was fabricated to investigate the electrochemical performance and Li-ion chemical diffusion coefficients, D{sub Li}, of the LiCoPO{sub 4} thin films. The potential dependence of D{sub Li} values of the LiCoPO{sub 4} thin film was investigated by potentiostatic intermittent titration technique and was compared with those of the LiFePO{sub 4} thin film. These results showed that the intercalation mechanism of Li-ion in LiCoPO{sub 4} is different from that in LiFePO{sub 4}. (author)

  3. Investigation of the Structure and Dynamics of Electrolytes in solvents Used for Primary and Secondary Li-Batteries.

    Science.gov (United States)

    1985-02-01

    dimers, whereas for LIBF4 contact species predominate. Literature data for LICIO 4 suggest that the dimers are the major species present. Hence, the...extent of dimerization pro- cess for the three electrolytes seems to follow the order: LiAsF 6 = LiBF4 < LICO 4. Electrical conductance data at t 25.00°C

  4. A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries

    Science.gov (United States)

    Jiang, Yan-Xia; Chen, Zuo-Feng; Zhuang, Quan-Chao; Xu, Jin-Mei; Dong, Quan-Feng; Huang, Ling; Sun, Shi-Gang

    Molecular sieves of NaY, MCM-41, and SBA-15 were used as fillers in a poly(vinylidene fluoride- co-hexafluoropropylene) (PVdF-HFP) copolymer matrix to prepare microporous composite polymer electrolyte. The SBA-15-based composite polymer film was found to show rich pores that account for an ionic conductivity of 0.50 mS cm -1. However, the MCM-41 and NaY composite polymer films exhibited compact structure without any pores, and the addition of MCM-41 even resulted in aggregation of fillers in the polymer matrix. These differences were investigated and interpreted by their different compatibility with DMF solvent and PVdF-HFP matrix. Results of linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) have revealed that the addition of SBA-15 has extended the electrochemical stability window of polymer electrolyte, enhanced the interfacial stability of polymer electrolyte with lithium electrode, and inhibited also the crystallization of PVdF-HFP matrix. Half-cell of Li/SBA-15-based polymer electrolyte/MCF was assembled and tested. The results have demonstrated that the coulombic efficiency of the first cycle was around 87.0% and the cell remains 94.0% of the initial capacity after 20 cycles, which showed the potential application of the composite polymer electrolyte in lithium ion batteries.

  5. A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yan-Xia; Chen, Zuo-Feng; Zhuang, Quan-Chao; Xu, Jin-Mei; Dong, Quan-Feng; Huang, Ling; Sun, Shi-Gang [State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 422, South Road of Siming, Xiamen 361005 (China)

    2006-10-06

    Molecular sieves of NaY, MCM-41, and SBA-15 were used as fillers in a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer matrix to prepare microporous composite polymer electrolyte. The SBA-15-based composite polymer film was found to show rich pores that account for an ionic conductivity of 0.50mScm{sup -1}. However, the MCM-41 and NaY composite polymer films exhibited compact structure without any pores, and the addition of MCM-41 even resulted in aggregation of fillers in the polymer matrix. These differences were investigated and interpreted by their different compatibility with DMF solvent and PVdF-HFP matrix. Results of linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) have revealed that the addition of SBA-15 has extended the electrochemical stability window of polymer electrolyte, enhanced the interfacial stability of polymer electrolyte with lithium electrode, and inhibited also the crystallization of PVdF-HFP matrix. Half-cell of Li/SBA-15-based polymer electrolyte/MCF was assembled and tested. The results have demonstrated that the coulombic efficiency of the first cycle was around 87.0% and the cell remains 94.0% of the initial capacity after 20 cycles, which showed the potential application of the composite polymer electrolyte in lithium ion batteries. (author)

  6. High temperature stable Li-ion battery separators based on polyetherimides with improved electrolyte compatibility

    Science.gov (United States)

    l'Abee, Roy; DaRosa, Fabien; Armstrong, Mark J.; Hantel, Moritz M.; Mourzagh, Djamel

    2017-03-01

    We report (electro-)chemically stable, high temperature resistant and fast wetting Li-ion battery separators produced through a phase inversion process using novel polyetherimides (PEI) based on bisphenol-aceton diphthalic anhydride (BPADA) and para-phenylenediamine (pPD). In contrast to previous studies using PEI based on BPADA and meta-phenylenediamine (mPD), the separators reported herein show limited swelling in electrolytes and do not require fillers to render sufficient mechanical strength and ionic conductivity. In this work, the produced 15-25 μm thick PEI-pPD separators show excellent electrolyte compatibility, proven by low degrees of swelling in electrolyte solvents, low contact angles, fast electrolyte wicking and high electrolyte uptake. The separators cover a tunable range of morphologies and properties, leading to a wide range of ionic conductivities as studied by Electrochemical Impedance Spectroscopy (EIS). Dynamic Mechanical Analysis (DMA) demonstrated dimensional stability up to 220 °C. Finally, single layer graphite/lithium nickel manganese cobalt oxide (NMC) pouch cells were assembled using this novel PEI-pPD separator, showing an excellent capacity retention of 89.3% after 1000 1C/2C cycles, with a mean Coulombic efficiency of 99.77% and limited resistance build-up. We conclude that PEI-pPD is a promising new material candidate for high performance separators.

  7. Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells

    Science.gov (United States)

    Cappetto, A.; Cao, W. J.; Luo, J. F.; Hagen, M.; Adams, D.; Shelikeri, A.; Xu, K.; Zheng, J. P.

    2017-08-01

    Four types of wide temperature-range electrolyte formulations based on carbonate and carboxylate esters were evaluated at various temperatures in lithium-ion capacitor (LIC) pouch cells consisting of both hard carbon (HC) and graphite negative electrodes (NEs) with thin lithium foil and an activated carbon (AC) positive electrodes (PEs). The electrolytes containing methyl butyrate (MB) with various additives enabled the LIC to operate at -40 °C, where all electrolytes based only on carbonates fail. MB-containing electrolyte with lithium Difluoro(oxalato)borate (LiDFOB) as additive showed the best cycling performance over 5000 cycles. Lithium plating also occurred on graphite NEs when charged at low temperatures starting at -20 °C, which resulted in the non-linear curves. When charged at 30 °C and discharged at -40 °C, graphite NE based LIC displayed regular linear charge-discharge curves without lithium plating. In comparison, HC NE based LICs showed better capacity retention at -40 °C and no signs of lithium plating. It could be concluded that low temperature performance of LIC was influenced by both electrolyte formulations and negative electrode material.

  8. Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries

    Science.gov (United States)

    Salian, Girish D.; Lebouin, Chrystelle; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, Thierry

    2017-02-01

    We report that electrodeposition of polymer electrolyte in nanostructured electrodes has a strong influence on the electrochemical properties of thin-film Li-ion microbatteries. Electropolymerization of PMMA-PEG (polymethyl methacrylate-polyethylene glycol) was carried out on both the anode (self-supported titania nanotubes) and the cathode (porous LiNi0.5Mn1.5O4) by cyclic voltammetry and the resulting electrode-electrolyte interface was examined by scanning electron microscopy. The electrochemical characterizations performed by galvanostatic experiments reveal that the capacity values obtained at different C-rates are doubled when the electrodes are completely filled by the polymer electrolyte.

  9. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O$_2$ battery capacity

    CERN Document Server

    Burke, Colin M; Khetan, Abhishek; Viswanathan, Venkatasubramanian; McCloskey, Bryan D

    2015-01-01

    Among the 'beyond Li-ion' battery chemistries, nonaqueous Li-O$_2$ batteries have the highest theoretical specific energy and as a result have attracted significant research attention over the past decade. A critical scientific challenge facing nonaqueous Li-O$_2$ batteries is the electronically insulating nature of the primary discharge product, lithium peroxide, which passivates the battery cathode as it is formed, leading to low ultimate cell capacities. Recently, strategies to enhance solubility to circumvent this issue have been reported, but rely upon electrolyte formulations that further decrease the overall electrochemical stability of the system, thereby deleteriously affecting battery rechargeability. In this study, we report that a significant enhancement (greater than four-fold) in Li-O$_2$ cell capacity is possible by appropriately selecting the salt anion in the electrolyte solution. Using $^7$Li nuclear magnetic resonance and modeling, we confirm that this improvement is a result of enhanced Li...

  10. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Luciano T., E-mail: ltcosta@id.uff.br [Instituto de Química-Departamento de Físico-Química, Universidade Federal Fluminense, Outeiro de São João Batista s/n CEP, 24020-150 Niterói, Rio de Janeiro (Brazil); Sun, Bing; Jeschull, Fabian; Brandell, Daniel [Department of Chemistry—Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala (Sweden)

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li{sup +} coordination and transportation were studied in the ternary electrolyte system, i.e., PEO{sub 16}LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  11. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend.

    Science.gov (United States)

    Costa, Luciano T; Sun, Bing; Jeschull, Fabian; Brandell, Daniel

    2015-07-14

    This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li(+) coordination and transportation were studied in the ternary electrolyte system, i.e., PEO16LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.

  12. Separators for Li-Ion and Li-Metal Battery Including Ionic Liquid Based Electrolytes Based on the TFSI− and FSI− Anions

    Directory of Open Access Journals (Sweden)

    Marija Kirchhöfer

    2014-08-01

    Full Text Available The characterization of separators for Li-ion or Li-metal batteries incorporating hydrophobic ionic liquid electrolytes is reported herein. Ionic liquids made of N-butyl-N-methylpyrrolidinium (PYR14+ or N-methoxyethyl-N-methylpyrrolidinium (PYR12O1+, paired with bis(trifluoromethanesulfonylimide (TFSI− or bis(fluorosulfonylimide (FSI− anions, were tested in combination with separators having different chemistries and morphologies in terms of wetting behavior, Gurley and McMullin number, as well as Li/(Separator + Electrolyte interfacial properties. It is shown that non-functionalized microporous polyolefin separators are poorly wetted by FSI−-based electrolytes (contrary to TFSI−-based electrolytes, while the ceramic coated separator Separion® allows good wetting with all electrolytes. Furthermore, by comparing the lithium solid electrolyte interphase (SEI resistance evolution at open circuit and during cycling, depending on separator morphologies and chemistries, it is possible to propose a scale for SEI forming properties in the order: PYR12O1FSI > PYR14FSI > PYR14TFSI > PYR12O1TFSI. Finally, the impact the separator morphology is evidenced by the SEI resistance evolution and by comparing Li electrodes cycled using separators with two different morphologies.

  13. Improved Wide Operating Temperature Range of LiNiCoAiO2-based Li-ion Cells with Methyl Propionate-based Electrolytes

    Science.gov (United States)

    Smart, Marshall C.; Tomcsi, Michael R.; Hwang, C.; Whitcanack, L. D.; Bugga, Ratnakumar V.; Nagata, Mikito; Visco, Vince; Tsukamoto, Hisashi

    2012-01-01

    Demonstration of wide operating temperature range Li-ion electrolytes Methyl propionate-based wide operating temperature range electrolytes were demonstrated to provide dramatic improvement of the low temperature capability of Quallion prototype Li-ion cells (MCMB-LiNiCoAlO2). Some formulations were observed to deliver over 60% of the room temperature capacity using a 5C rate at - 40oC !! Represents over a 4-fold improvement over the baseline electrolyte system. Demonstrated operational capability of a number of systems over a wide temperature range (-40 to +70 C) Demonstrated reasonably good long term cycle life performance at high temperature (i.e., at +40deg and +50 C) A number of formulations containing electrolytes additives (i.e., FEC, VC, LiBOB, and lithium oxalate) have been shown to have enhanced lithium kinetics at low temperature and promising high temperature resilience. Demonstrated good performance in larger capacity (12 Ah) Quallion Li-ion cells with methyl propionate-based electrolytes. Current efforts focused upon performing life studies and the impact upon low temperature capability.

  14. Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics.

    Science.gov (United States)

    Hofmann, Andreas; Migeot, Matthias; Thißen, Eva; Schulz, Michael; Heinzmann, Ralf; Indris, Sylvio; Bergfeldt, Thomas; Lei, Boxia; Ziebert, Carlos; Hanemann, Thomas

    2015-06-08

    In this study, novel electrolyte mixtures for Li-ion cells are presented with highly improved safety features. The electrolyte formulations are composed of ethylene carbonate/dimethyl sulfone (80:20 wt/wt) as the solvent mixture and LiBF4 , lithium bis(trifluoromethanesulfonyl)azanide, and lithium bis(oxalato)borate as the conducting salts. Initially, the electrolytes are characterized with regard to their physical properties, their lithium transport properties, and their electrochemical stability. The key advantages of the electrolytes are high flash points of >140 °C, which enhance significantly the intrinsic safety of Li-ion cells containing these electrolytes. This has been quantified by measurements in an accelerating rate calorimeter. By using the newly developed electrolytes, which are liquid down to T=-10 °C, it is possible to achieve C-rates of up to 1.5 C with >80 % of the initial specific capacity. During 100 cycles in cell tests (graphite||LiNi1/3 Co1/3 Mn1/3 O2 ), it is proven that the retention of the specific capacity is >98 % of the third discharge cycle with dependence on the conducting salt. The best electrolyte mixture yields a capacity retention of >96 % after 200 cycles in coin cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The effect of complex halides and binary halides on hydrogen release for the 2LiBH4:1MgH2 system.

    Science.gov (United States)

    Yang, Zhuxian; Grant, David M; Wang, Ping; Walker, Gavin S

    2011-01-01

    Due to the high hydrogen capacity of LiBH4, various strategies have been investigated to improve the hydrogen release properties of LiBH4. Theoretical calculations suggest that doping LiBH4 with F-/CI- anions may generate lattice substitutions (such as the formation of LiBH3F or LiBH2F2), which will lower the hydrogen release temperature from LiBH4. The effect of addition of F-/Cl-containing dopants (viz. LiBF4, NH4F, LiA1Cl4 and NH4Cl) on the hydrogen release from 2LiBH4:1MgH2 was investigated and LiBF4 was found to be the most effective among the dopants studied. Furthermore, the combined effect of LiBF4 and the catalyst precursor NbF5 was studied on the hydrogen release from 2LiBH4:1MgH2. It was found that the hydrogen release temperature for the LiBH4 and MgH2 components were substantially reduced by 55 degrees C and 112 degrees C respectively by the combined doping and catalytic effect from LiBF4 and NbF5. This sample was partially rehydrogenated under 400 degrees C and 100 bar, and upon cycling the hydrogen release temperature was lowered further for the LiBH4 component but increased for the MgH2 component.

  16. Structure characterization and electrochemical properties of new lithium salt LiODFB for electrolyte of lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Lithium difluoro(axalato)borate (LiODFB) was synthesized in dimethyl carbonate (DMC) solvent and purified by the method of solventing-out crystallization.The structure characterization of the purified LiODFB was performed by Fourier transform infrared (FTIR) spectrometry and nuclear magnetic resonance (NMR) spectrometry.The electrochemical properties of the cells using I mol/L LiPF6 and 1 mol/L LiODFB in ethylene carbonate (EC)/DMC were investigated,respectively.The results indicate that LiODFB can be reduced at about 1.5 V and form a robust protective solid electrolyte interface (SEI) film on the graphite surface in the first cycle.The graphite/LiNi1/3Mn1/3Co1/3O2 cells with LiODFB-based electrolyte have very good capacity retention at 55 ℃,and show very good rate capability at 0.5C and 1C charge/discharge rate.Therefore,as a new salt,LiODFB is a most promising alternative lithium salt to replace LiPF6 for lithium ion battery electrolytes in the future.

  17. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    Science.gov (United States)

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the Tg and Tm are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO4/15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g(-1) @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g(-1) @0.2 C at 30 °C after 150 cycles).

  18. X-Ray absorption spectroscopy of LiBF4 in propylene carbonate: a model lithium ion battery electrolyte.

    Science.gov (United States)

    Smith, Jacob W; Lam, Royce K; Sheardy, Alex T; Shih, Orion; Rizzuto, Anthony M; Borodin, Oleg; Harris, Stephen J; Prendergast, David; Saykally, Richard J

    2014-11-21

    Since their introduction into the commercial marketplace in 1991, lithium ion batteries have become increasingly ubiquitous in portable technology. Nevertheless, improvements to existing battery technology are necessary to expand their utility for larger-scale applications, such as electric vehicles. Advances may be realized from improvements to the liquid electrolyte; however, current understanding of the liquid structure and properties remains incomplete. X-ray absorption spectroscopy of solutions of LiBF4 in propylene carbonate (PC), interpreted using first-principles electronic structure calculations within the eXcited electron and Core Hole (XCH) approximation, yields new insight into the solvation structure of the Li(+) ion in this model electrolyte. By generating linear combinations of the computed spectra of Li(+)-associating and free PC molecules and comparing to the experimental spectrum, we find a Li(+)-solvent interaction number of 4.5. This result suggests that computational models of lithium ion battery electrolytes should move beyond tetrahedral coordination structures.

  19. Neutron scattering study on cathode LiMn2O4 and solid electrolyte 5(Li2O)(P2O5)

    Science.gov (United States)

    Kartini, E.; Putra, Teguh P.; Jahya, A. K.; Insani, A.; Adams, S.

    2014-09-01

    Neutron scattering is very important technique in order to investigate the energy storage materials such as lithium-ion battery. The unique advantages, neutron can see the light atoms such as Hydrogen, Lithium, and Oxygen, where those elements are negligible by other corresponding X-ray method. On the other hand, the energy storage materials, such as lithium ion battery is very important for the application in the electric vehicles, electronic devices or home appliances. The battery contains electrodes (anode and cathode), and the electrolyte materials. There are many challenging to improve the existing lithium ion battery materials, in order to increase their life time, cyclic ability and also its stability. One of the most scientific challenging is to investigate the crystal structure of both electrode and electrolyte, such as cathodes LiCoO2, LiMn2O4 and LiFePO4, and solid electrolyte Li3PO4. Since all those battery materials contain Lithium ions and Oxygen, the used of neutron scattering techniques to study their structure and related properties are very important and indispensable. This article will review some works of investigating electrodes and electrolytes, LiMn2O4 and 5(Li2O)(P2O5), by using a high resolution powder diffraction (HRPD) at the multipurpose research reactor, RSG-Sywabessy of the National Nuclear Energy Agency (BATAN), Indonesia.

  20. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.

    Science.gov (United States)

    Wohlmuth, Dominik; Epp, Viktor; Wilkening, Martin

    2015-08-24

    The development of safe and long-lasting all-solid-state batteries with high energy density requires a thorough characterization of ion dynamics in solid electrolytes. Commonly, conductivity spectroscopy is used to study ion transport; much less frequently, however, atomic-scale methods such as nuclear magnetic resonance (NMR) are employed. Here, we studied long-range as well as short-range Li ion dynamics in the glass-ceramic Li7 P3 S11 . Li(+) diffusivity was probed by using a combination of different NMR techniques; the results are compared with those obtained from electrical conductivity measurements. Our NMR relaxometry data clearly reveal a very high Li(+) diffusivity, which is reflected in a so-called diffusion-induced (6) Li NMR spin-lattice relaxation peak showing up at temperatures as low as 313 K. At this temperature, the mean residence time between two successful Li jumps is in the order of 3×10(8) s(-1) , which corresponds to a Li(+) ion conductivity in the order of 10(-4) to 10(-3) S cm(-1) . Such a value is in perfect agreement with expectations for the crystalline but metastable glass ceramic Li7 P3 S11 . In contrast to conductivity measurements, NMR analysis reveals a range of activation energies with values ranging from 0.17 to 0.26 eV, characterizing Li diffusivity in the bulk. In our case, through-going Li ion transport, when probed by using macroscopic conductivity spectroscopy, however, seems to be influenced by blocking grain boundaries including, for example, amorphous regions surrounding the Li7 P3 S11 crystallites. As a result of this, long-range ion transport as seen by impedance spectroscopy is governed by an activation energy of approximately 0.38 eV. The findings emphasize how surface and grain boundary effects can drastically affect long-range ionic conduction. If we are to succeed in solid-state battery technology, such effects have to be brought under control by, for example, sophisticated densification or through the preparation

  1. Chloro-propylene Sulfite as Electrolyte Additive for Li/S Batteries

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Chloro-propylene sulfite (ClPS) was employed as electrolyte additive of Li/S batteries for the first time. Linear potential sweep test showed that the ClPS keeps high electrochemical stability even under the voltage of 5.0V. Being used as electrolyte additive in Li/S batteries, ClPS displayed an excellent property for self-discharge prohibition. With ClPS additive the Li/S cells'initial discharge capacity was 856.2 mAh·g-1 and 830.8 mAh·g-1 at the current density of 15 mA·g-1and 30 mA·g-1, after 30 cycles the discharge capacities were contained at as high as 753.8 mAh·g-1 and 715.6 mAh·g-1. By means of infrared spectra, TG/DTA experiment and element content analysis the speculated reason of ClPS's novel function as additive was proposed.

  2. Effect of Eutectic Concentration on Conductivity in PEO:LiX Based Solid Polymer Electrolytes

    Science.gov (United States)

    Zhan, Pengfei; Ganapatibhotla, Lalitha; Maranas, Janna

    Polyethylene oxide (PEO) and lithium salt based solid polymer electrolytes (SPEs) have been widely proposed as a substitution for the liquid electrolyte in Li-ion batteries. As salt concentration varies, these systems demonstrate rich phase behavior. Conductivity as a function of salt concentration has been measured for decades and various concentration dependences have been observed. A PEO:LiX mixture can have one or two conductivity maximums, while some mixtures with salt of high ionic strength will have higher conductivity as the salt concentration decrease. The factors that affect the conductivity are specific for each sample. The universal factor that affects conductivity is still not clear. In this work, we measured the conductivity of a series of PEO:LiX mixtures and statistical analysis shows conductivity is affected by the concentration difference from the eutectic concentration (Δc). The correlation with Δc is stronger than the correlation with glass transition temperature. We believe that at the eutectic concentration, during the solidification process, unique structures can form which aid conduction. Currently at Dow Chemical.

  3. UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries

    Science.gov (United States)

    Nair, J. R.; Gerbaldi, C.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N.; Reale, P.; Gentili, V.

    In this paper, we report the synthesis and characterisation of novel methacrylic based polymer electrolyte membranes for lithium batteries. The method adopted for preparing the solid polymer electrolyte was the UV-curing process, which is well known for being easy, low cost, fast and reliable. It consists of a free radical photo polymerisation of poly-functional monomers: Bisphenol A ethoxylate (15 EO/phenol) dimethacrylate (BEMA) was chosen, as it can readily form flexible 3D networks and has long poly-ethoxy chains which can enhance the movement of Li +-ions inside the polymer matrix. The preliminary results reported here refer to systems where LiPF 6 solutions swelled the preformed polymer membranes. The tests on the conductivity, stability and cyclability of the membranes put in evidence the importance of the polymerisation in presence of mono-methacrylates acting as reactive diluents. Good values of ionic conductivity have been found, especially at ambient temperature. Much better results can be expected by choosing an appropriate mono-methacrylate to modify the polymeric membrane properties and by modifying the methodology of Li +-ions incorporation inside the polymer matrix.

  4. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI

    Science.gov (United States)

    Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano

    2017-06-01

    The preparation of hybrid ceramic-polymer electrolytes, consisting of 70 wt% of Li+ cation conducting Li7La3Zr2O12 (LLZO) and 30 wt% of P(EO)15LiTFSI polymer electrolyte, through a solvent-free procedure is reported. The LLZO-P(EO)15LiTFSI hybrid electrolytes exhibit remarkable improvement in terms of flexibility and processability with respect to pure LLZO ceramic electrolytes. The physicochemical and electrochemical investigation shows the effect of LLZO annealing, resulting in ion conduction gain. However, slow charge transfer at the ceramic-polymer interface is also observed especially at higher temperatures. Nevertheless, improved compatibility with lithium metal anodes and good Li stripping/plating behavior are exhibited by the LLZO-P(EO)15LiTFSI hybrid electrolytes with respect to P(EO)15LiTFSI.

  5. Preparation and characterization of a novel composite microporous polymer electrolyte for Li-ion batteries

    Institute of Scientific and Technical Information of China (English)

    CHEN Zuofeng; JIANG Yanxia; ZHUANG Quanchao; DONG Quanfeng; WANG Ye; SUN Shigang

    2005-01-01

    A novel composite microporous polymer electrolyte composed of poly(vinylidene fluoride-co-hexafluorop- ropylene) (PVdF-HFP) and mesoporous SBA-15 was prepared. The composite solid polymer electrolyte (CSPE) exhibits ionic conductivity as high as 0.30 mS·cm-1 with a composition of SBA-15:PVdF-HFP=3:8 at room temperature. Infrared transmission spectroscopic results suggested that the mechanism of micropore formation is similar to that of the phase inversion. X-ray diffraction (XRD) results demonstrated that the addition of SBA-15 inhibits the crystallization of PVdF-HFP, while the SBA-15 preserves well its ordered mesoporous structure during the course of preparation. The Li/CSPE/MCF of half-cell was assembled, and it showed a good electrochemical and cyclability performance during charge-discharge cycles.

  6. Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries.

    Science.gov (United States)

    Giordano, Livia; Karayaylali, Pinar; Yu, Yang; Katayama, Yu; Maglia, Filippo; Lux, Simon; Shao-Horn, Yang

    2017-08-17

    Understanding electrochemical and chemical reactions at the electrode-electrolyte interface is of fundamental importance for the safety and cycle life of Li-ion batteries. Positive electrode materials such as layered transition metal oxides exhibit different degrees of chemical reactivity with commonly used carbonate-based electrolytes. Here we employed density functional theory methods to compare the energetics of four different chemical reactions between ethylene carbonate (EC) and layered (LixMO2) and rocksalt (MO) oxide surfaces. EC dissociation on layered oxides was found energetically more favorable than nucleophilic attack, electrophilic attack, and EC dissociation with oxygen extraction from the oxide surface. In addition, EC dissociation became energetically more favorable on the oxide surfaces with transition metal ions from left to right on the periodic table or by increasing transition metal valence in the oxides, where higher degree of EC dissociation was found as the Fermi level was lowered into the oxide O 2p band.

  7. Novel electrolyte mixtures based on dimethyl sulfone, ethylene carbonate and LiPF6 for lithium-ion batteries

    Science.gov (United States)

    Hofmann, Andreas; Hanemann, Thomas

    2015-12-01

    In this study, novel electrolyte mixtures for Li-ion cells are presented which are composed of ethylene carbonate/dimethyl sulfone (80:20 wt./wt.) as a solvent mixture and LiPF6, lithium bis(oxalato)borate and lithium difluoro(oxalato)borate as conducting salts. The main advantages of the solvent mixture are high flash points of >140 °C which enhance the intrinsic safety of Li-ion cells while maintaining good cell performance above 0-5 °C. The movability of the lithium ions in the electrolyte is investigated via programmed current derivative chronopotentiometry. It is found that pure electrolyte properties cannot necessarily predict the electrolyte behavior in real Li-ion cells but the complex interplay between electrolytes, electrode materials and separators has to be taken into account. Using the newly developed electrolytes, it is possible to achieve C-rates up to 1.5C with >80% of the initial specific discharge capacity (25 °C). Within 200 cycles during one month in cell tests (C||NMC) it is proven that the retention of the specific capacity is >98% of the third discharge cycle in dependence of the conducting salt.

  8. A study of tetrabromobisphenol A (TBBA) as a flame retardant additive for Li-ion battery electrolytes

    Science.gov (United States)

    Belov, Dmitry G.; Shieh, D. T.

    2014-02-01

    Electrochemical behavior and flammability of tetrabromobisphenol A (TBBA)-mixed electrolyte solutions are investigated using 1 mol L-1 LiPF6-EC:EMC (1:2 vol.%) with 0 wt.% (reference electrolyte) and 1-3 wt.% of TBBA. The cycling performance (at room and elevated temperature) and rate capability of the 18650 cell (LiMn2O4:Li(Ni1/3Co1/3Mn1/3)O2 (8:2)/Li4Ti5O12) cell containing TBBA-mixed electrolyte is similar to that of cell containing the reference electrolyte. A detailed analysis of the surface on both the anode and the cathode electrodes via X-ray photoelectron spectroscopy (XPS) indicated that the cathode electrode contains more Br components than the anode electrode. Within the first few cycles, on the positive electrode, we observe competing redox processes between the cathode material containing Mn and TBBA, which generate hydroxy radicals and other by-products. This process and the electrochemical reductive decomposition of TBBA to HBr, Br2 and bisphenole A are responsible for the increased flame retardant properties of the electrolyte containing TBBA. Safety tests were performed using an 18650 cell showed that even 1 wt.% of TBBA in the electrolyte significantly reduces cell flammability.

  9. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    Science.gov (United States)

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  10. DMAC and NMP as Electrolyte Additives for Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall; Bugga, Ratnakumar; Lucht, Brett

    2008-01-01

    Dimethyl acetamide (DMAC) and N-methyl pyrrolidinone (NMP) have been found to be useful as high-temperature-resilience-enhancing additives to a baseline electrolyte used in rechargeable lithium-ion electrochemical cells. The baseline electrolyte, which was previously formulated to improve low-temperature performance, comprises LiPF6 dissolved at a concentration of 1.0 M in a mixture comprising equal volume proportions of ethylene carbonate, diethyl carbonate, and dimethyl carbonate. This and other electrolytes comprising lithium salts dissolved in mixtures of esters (including alkyl carbonates) have been studied in continuing research directed toward extending the lower limits of operating temperatures and, more recently, enhancing the high-temperature resilience of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. Although these electrolytes provide excellent performance at low temperatures (typically as low as -40 C), when the affected Li-ion cells are subjected to high temperatures during storage and cycling, there occur irreversible losses of capacity accompanied by power fade and deterioration of low-temperature performance. The term "high-temperature resilience" signifies, loosely, the ability of a cell to resist such deterioration, retaining as much as possible of its initial charge/discharge capacity during operation or during storage in the fully charged condition at high temperature. For the purposes of the present development, a temperature is considered to be high if it equals or exceeds the upper limit (typically, 30 C) of the operating-temperature range for which the cells in question are generally designed.

  11. Conductivity of LiBF4/mixed ether electrolytes for secondary lithium cells

    Science.gov (United States)

    Matsuda, Y.; Morita, M.; Yamashita, T.

    1984-12-01

    Electrolytic conductivity of LiBF4 has been studied in the mixed system of 1,3-dioxolane with 1,2-dimethoxyethane or with tetrahydrofuran. Relative permittivity (dielectric constant) of the solvents suggested the formation of associated ion pairs in the systems, but the conductivity measured was higher than that expected from the viewpoint of ionic association. Conductivity maxima were observed in the solutions containing about 1:1 (by volume) mixed solvents. Viscosities of the solvent and the solution were also measured, and their contribution to the conductivity change with the solvent composition was discussed. Solute concentration dependence of the molar conductivity was specific for the ether solutions. Apparent activation energy for conduction, which was determined by the temperature dependence of the conductivity, varied with LiBF4 concentration. Structural specificity of the mixed ether solutions was discussed with these parameters and H-1 NMR spectra of the solutions.

  12. PEO-LiClO4-ZSM5 composite polymer electrolyte (IV): Polarized optical microscopy study

    Institute of Scientific and Technical Information of China (English)

    XI Jingyu; QIU Xinping; ZHU Wentao; CHEN Liquan

    2005-01-01

    Polarized optical microscopy (POM) results show that ZSM5 has great influence on both the nucleation stage and the growth stage of PEO spherulites. Part of ZSM5 particles can act as the nucleus of PEO spherulites and thus increase the amount of PEO spherulites. On the other hand, ZSM5 can restrain the recrystallization tendency of PEO chains through Lewis acid-base interaction and hence decrease the growth speed of PEO spherulites. The increasing amount of PEO spherulites, decreasing size of PEO spherulites, and the incomplete crystallization are all beneficial for creating more continuous amorphous phases of PEO, which is very important for the transporting of Li+ ions. An adequate amount of ZSM5 can enhance the room temperature ionic conductivity of PEO-LiClO4 based polymer electrolyte for more than two magnitudes.

  13. Electrochemical characterization of LiCoO2 as rechargeable electrode in aqueous LiNO3 electrolyte

    KAUST Repository

    Ruffo, Riccardo

    2011-06-01

    The development of lithium ion aqueous batteries is getting renewed interest due to their safety and low cost. We have demonstrated that the layer-structure LiCoO2 phase, the most commonly used electrode material in organic systems, can be successful delithiated and lithiated again in a water-based electrolyte at currents up to 2.70 A/g. The capacity is about 100 mAh/g at 0.135 A/g and can be tuned by cycling the electrode in different potential ranges. In fact, increasing the high cut-off voltage leads to higher specific capacity (up to 135 mAh/g) but the Coulomb efficiency is reduced (from 99.9% to 98.5%). The very good electrode kinetic is probably due to the high conductivity of the electrolyte solution (0.17 Scm- 1 at 25 °C) but this behavior is affected by the electrode load. © 2010 Elsevier B.V. All rights reserved.

  14. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material

    Science.gov (United States)

    Zhou, Hongming; Xiao, Kaiwen; Li, Jian

    2016-01-01

    The electrochemical behaviors of lithium difluoro(oxalate)borate (LiODFB) and LiBF4 blend salts in ethylene carbonate + dimethyl carbonate + ethyl(methyl) carbonate (EC + DMC + EMC, 1:1:1, by wt.) have been investigated for LiNi0.5Mn1.5O4 cathode in lithium-ion batteries. The electric conductivity tests are utilized to examine the relationship among solution conductivity, the electrolyte composition and temperature. Through cyclic voltammetry, charge-discharge test and AC impedance measurements, we compare the capacity and cycling efficiency of LNMO cathode in different electrolyte systems at different temperatures and discharge current rates. Scanning electron microscopy (SEM) analysis and X-ray photoelectron spectroscopy (XPS) are served to analyze the surface nature of LNMO cathode after cycles at elevated temperature. These results demonstrate that LNMO cathode can exert excellent electrochemical performance with the increase of LiODFB concentration at room temperature and elevated temperature and it is found that just slight LiBF4, mixed with LiODFB as blend salts, can strikingly improve the cyclability at -20 °C, especially in high-rate cycling. Grouped together, the optimum LiODFB/LiBF4 molar ratio is around 4:1, which can present an excellent affinity to LNMO cathode in a wide electrochemical window.

  15. Tri(ethylene glycol)-substituted trimethylsilane/lithium bis(oxalate)borate electrolyte for LiMn2O4/graphite system

    Science.gov (United States)

    Kusachi, Yuki; Dong, Jian; Zhang, Zhengcheng; Amine, Khalil

    2011-10-01

    Silane-based electrolyte is a promising candidate for safer electrochemical energy storage devices because it is thermally and electrochemical stable, less flammable and environmental benign. In this paper, electrochemical properties of one of the silane-based electrolytes, tri(ethylene glycol)-substituted trimethylsilane (1NM3)-lithium bis(oxalate)borate (LiBOB) was studied using LiMn2O4 as cathode and MAG graphite as anode. When combined with LiBOB as lithium salt, the 1NM3-LiBOB electrolyte can provide solid electrolyte interface (SEI) formation due to the reductive decomposition of LiBOB at first charging cycle. Compared to the electrolyte used in the conventional lithium-ion batteries, 1NM3-LiBOB electrolyte showed compatible battery performance in LiMn2O4/MAG chemistry. The AC impedance measurement indicates that the activation energy (Ea) obtained from the charge transfer impedance for 1NM3-LiBOB was higher than that of the state-of-the-art electrolyte. Due to its low conductivity, the rate capability of 1NM3-LiBOB electrolyte needs to be improved.

  16. 锂离子电池LiBF4基液体电解质研究进展%Progresses in LiBF4-based Liquid Electrolytes for Li-ion Batteries

    Institute of Scientific and Technical Information of China (English)

    张昕岳; 周园; 邓小宇; 杜秀月

    2007-01-01

      To avoid the drawbacks of LiPF6-based electrolytes such as its moisture sensitivity, thermal instability, narrow operating temperature range and easiness to release PF5, much attention has been paid to developing new type electrolytes. Attempts to develop LiBF4-based electrolytes are among one of them. Electrolytes based on LiBF4 are thermally more stable and insensitive to moisture, which would probably make it a promising electrolyte system for civilian, military, navigation, aviation and aeronautic use in miniature, energy storage and vehicle Li-ion batteries. Progresses in studies of LiBF4-based electrolytes recently such as attempts to improve its conductivity, to extend its temperature operation, to help form stable SEI film and its compatibility with electrodes are reviewed. Future prospect of LiBF4-based electrolytes is also discussed.%  LiBF4基电解质的热稳定性较好,对环境水分不太敏感,有希望发展成为被民用、军事、三航领域微型、储能及动力锂离子电池广泛采用的优秀电解质体系。本文综述了近期在改善LiBF4的电导率,拓宽应用温度范围,促进SEI膜的形成,提高其电解液电导率及与电极材料的相容性等方面所取得的成果,并对其未来发展方向作了展望。

  17. Conductivity study of PEO–LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler

    Indian Academy of Sciences (India)

    S U Patil; S S Yawale; S P Yawale

    2014-10-01

    The preparation and characterization of composite polymer electrolytes comprising PEO and LiClO4 with different concentrations of ZnO nanoparticles are studied. Conductivity measurements were carried out and discussed. In order to ascertain the thermal stability of the polymer electrolyte with maximum conductivity, films were subjected to TG/DTA analysis in the range of 298–823 K. In the present work, FTIR spectroscopy is used to study polymer structure and interactions between PEO and LiClO4, which can make changes in the vibrational modes of the atoms or molecules in the material. FTIR spectra show the complexation of LiClO4 with PEO. The SEM photographs indicated that electrolytes are miscible and homogeneous.

  18. Alkylphosphate-based nonflammable gel electrolyte for LiMn 2O 4 positive electrode in lithium-ion battery

    Science.gov (United States)

    Yoshimoto, Nobuko; Gotoh, Daisuke; Egashira, Minato; Morita, Masayuki

    Polymeric gel containing alkylphosphate has been examined as nonflammable gel electrolyte for LiMn 2O 4 positive electrode of lithium-ion battery (LIB). The gel was composed of a polymer matrix of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) and a liquid component consisting of ternary solvent of trimethyl phosphate (TMP) mixed with ethylene carbonate (EC) and diethyl carbonate (DEC) that dissolves lithium salt (LiPF 6 or LiBF 4). The gel composition of 0.8 M (mol dm -3) LiX (X = PF 6 and BF 4) dissolved in EC + DEC + TMP (55:25:20) with PVdF-HFP showed excellent nonflammable characteristics and high ionic conductivity of ca. 3.1 mS cm -1 at room temperature (20 °C). The charge-discharge cycling test of LiMn 2O 4 positive electrode gave good reversibility with high capacitance in the gel electrolyte. With respect to the electrolyte salt, LiBF 4 was better than LiPF 6 due to its thermal stability during the gel preparation.

  19. Electrochemistry Study on PVC-LiClO4 Polymer Electrolyte Supported by Bengkulu Natural Bentonite for Lithium Battery

    Directory of Open Access Journals (Sweden)

    Ghufira

    2012-04-01

    Full Text Available In this research bentonite was used as filler to produce polymer electrolyte (PVCLiClO4. Some weight variation of bentonite have been made by addition, such as 0% wt/wt; 5% wt/wt ; 10% wt/wt ; 15% wt/wt ; 20% wt/wt ; and 25% wt/wt of bentonite to the mixture of 0,5 gramof PVC and 0,125 gram of LiClO4. Ionic conductivity of polymer electrolyte was tested using impedance spectroscopy. The result of the research was showed that a mixture of PVCBentonite(10% wt/wt-LiClO4 gives the highest ionic conductivity (4,86 x 10-3 S.Cm-1. This result indicated that the presence of natural bentonite can be used as a filler in the current composite polymer electrolyte and can increase the ionic conductivity of the polymer electrolyte.

  20. Polymeric artificial solid/electrolyte interphases for Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Nae-Lih Wu

    2015-12-01

    Full Text Available During the operation of Li-ion batteries (LIBs, solvent and electrolyte decomposition takes place at the electrode surface to form a so-called solid-electrode interphase (SEI passivating-layer. The physical structure and chemical composition of the SEI exert profound effects on various aspects of the electrode performance of the batteries. A new concept of forming polymeric artificial SEIs (A-SEIs based on rational design of multifunctional polymer-blend coating to achieve favorable electrode/A-SEI/electrolyte interfacial properties is described. Three examples using binary and ternary polymer blends to form mechanically robust and highly Li-ion permeable surface coatings with selected functionalities in the cases of graphite and silicon–graphite composite electrodes have demonstrated greatly enhanced capacity, rate and cycle performance. Given the rich chemistry available from polymer blends, this surface preconditioning approach holds great promise for improving the performance of various negative electrodes to meet the requirements for advanced LIBs.

  1. Impact of Solid Electrolyte Interphase lithium salts on cycling ability of Li-ion battery: Beneficial effect of glymes additives

    Science.gov (United States)

    Chrétien, Fabien; Jones, Jennifer; Damas, Christine; Lemordant, Daniel; Willmann, Patrick; Anouti, Mérièm

    2014-02-01

    The Solid Electrolyte Interphase (SEI), formed during the first cycles of life in lithium-ion batteries, contains a variety of lithium salts, with direct effect on the aging performance of the battery. In this work, we investigate the impact of addition of SEI lithium salts (LiF, Li2CO3, LiOH, Li2O, LiOCH3 and LiOC2H5) in the electrolyte on the cycling ability of graphite and LiNi1/3Mn1/3Co1/3O2 (NMC) electrodes. Results show that NMC is more sensitive to salt addition than graphite material. Furthermore, results demonstrate that both LiOH and Li2O have a negative effect on the SEI formation. Conversely, Li2CO3, LiOCH3 and LiOC2H5 are beneficial and promote the formation of a polymeric coating on the SEI. Finally, the impact of the presence of LiF on the SEI depends mainly on its concentration. The effect of the presence of additives capable of complexing lithium salts such as the glyme series, CH3O[CH2CH2O]nCH3 (Gn, with n = 2, 3 or 4), is investigated by cyclic voltammetry, galvanostatic charge-discharge tests and electrochemical impedance spectroscopy (EIS). Results show that the glymes chain length is a determining factor in their complexation mechanism, which depends on both the nature and the concentration of the lithium salt.

  2. Structure and ionic conductivity of ionic liquid embedded PEO- LiCF3SO3 polymer electrolyte

    Directory of Open Access Journals (Sweden)

    A. Karmakar

    2014-08-01

    Full Text Available In this paper we have reported electrical and other physical properties of polyethylene oxide (PEO - LiCF3SO3 polymer electrolytes embedded with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. The addition of the ionic liquid to PEO- LiCF3SO3 electrolyte increases the amorphous phase content considerably and decreases the glass transition temperature. The relative amounts of different ionic species present in these electrolytes have been determined. It is observed that the fraction of free anions increase with the increase of ionic liquid concentration, whereas the fraction for ion pairs and aggregates show a decreasing trend under the same condition. The ionic conductivity of the PEO- LiCF3SO3 polymer electrolyte embedded with ionic liquid is higher than that of the PEO- LiCF3SO3 electrolyte. The ionic conductivity shows a transition around 323 K. The ionic conductivity above 323 K exhibits Arrhenius behavior with an activation energy, which decreases with the increase of ionic liquid concentration. However, below 323 K the conductivity shows Vogel–Tamman–Fulcher (VTF type behavior.

  3. Improved electrical properties of Fe nanofiller impregnated PEO + PVP:Li+ blended polymer electrolytes for lithium battery applications

    Science.gov (United States)

    Naveen Kumar, K.; Saijyothi, K.; Kang, Misook; Ratnakaram, Y. C.; Hari Krishna, K.; Jin, Dahee; Lee, Yong Min

    2016-07-01

    Solid polymer-blended electrolyte films of polyethylene oxide (PEO) + polyvinyl pyrrolidone (PVP)/lithium perchlorate embedded with iron (Fe) nanofiller in different concentrations have been synthesized by a solution casting method. The semicrystalline nature of these polymer electrolyte films has been confirmed from their XRD profiles. Polymer complex formation and ion-polymer interactions are systematically studied by FTIR and laser Raman spectral analysis. Surface morphological studies are carried out from SEM analysis. Dispersed Fe nanofiller size evaluation study has been carried out using transmission electron microscopy (TEM). In order to evaluate the thermal stability, decomposition temperature, and thermogravimetric dynamics, we carried out the TG/DTA measurement. Upon addition of Fe nanofiller to the PEO + PVP/Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14 × 10-4 Scm-1 at the optimized concentration of 4 wt% Fe nanofiller-embedded PEO + PVP/Li+ polymer electrolyte nanocomposite at an ambient temperature. PEO + PVP/Li+ + Fe nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. Based on the cell parameters, the 4 wt% Fe nanofiller-dispersed PEO + PVP/Li+ polymer electrolyte system could be suggested as a perspective candidate for solid-state battery applications.

  4. New design of electric double layer capacitors with aqueous LiOH electrolyte as alternative to capacitor with KOH solution

    Science.gov (United States)

    Stepniak, Izabela; Ciszewski, Aleksander

    Activated carbon (AC) fiber cloths and a hydrophobic microporous polypropylene (PP) membrane, both modified with lithiated acetone oligomers, were used as electrodes and a separator in electric double layer capacitors (EDLCs) with aqueous lithium hydroxide (LiOH) as the electrolyte. Electrochemical characteristics of EDLCs were investigated by cyclic voltammetry (CV), galvanostatic charge-discharge cycle tests and impedance spectroscopy (EIS), compared with a case of the capacitor with aqueous potassium hydroxide (KOH) as an electrolyte. As a result, the capacitor with LiOH aqueous solution and a modified separator and electrodes was found to exhibit higher specific capacitance, maximum energy stored and maximum power than that with KOH aqueous solution.

  5. Study on (100-x)(70Li2S-30P2S5)-xLi2ZrO3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries

    Science.gov (United States)

    Lu, Penghao; Ding, Fei; Xu, Zhibin; Liu, Jiaquan; Liu, Xingjiang; Xu, Qiang

    2017-07-01

    A novel glass-ceramic electrolyte of (100-x)(70Li2S-30P2S5)-xLi2ZrO3 (x = 0, 1, 2, 5) is successfully prepared by a vibratory ball-milling method and followed by a heat-treatment process. Composition of the ternary sulfide electrolyte and the heat-treatment process are optimized by physical characterizations and electrochemical measurements. The testing results show that the optimal substitution quantity of Li2ZrO3 into the Li2S-P2S5 electrolyte substrate is 1 mol %. An appropriate heat-treatment temperature of 99(70Li2S-30P2S5)-1Li2ZrO3 glass-ceramic electrolyte is 285 °C. Among the as-prepared ternary electrolyte samples, 99(70Li2S-30P2S5)-1Li2ZrO3 glass-ceramic electrolyte may exhibit the highest conductivity of 2.85 × 10-3 S cm-1 at room temperature, which is much higher than that of the 70Li2S-30P2S5 glass-ceramic electrolyte. Compared to that of the all-solid-state lithium-ion battery of LiCoO2/70Li2S-30P2S5/In-Li, discharge capacities of all-solid-state lithium-ion battery of LiCoO2/99(70Li2S-30P2S5)-1Li2ZrO3/In-Li may increase 41.0% at the 10th charge-discharge cycle and 21.9% at the 50th charge-discharge cycle, respectively. Furthermore, electrochemical impedance spectroscopy (EIS) analyses of all-solid-state lithium-ion batteries reveal that addition of Li2ZrO3 into the Li2S-P2S5 electrolyte substrate may decrease the interfacial resistance between the electrodes and solid electrolyte. The improvement of electrochemical performances of 99(70Li2S-30P2S5)-1Li2ZrO3 glass-ceramic electrolyte is ascribed to both the stable crystal structure and a high lithium-ion diffusion coefficient of Li2ZrO3.

  6. Advanced fuel cell development. Progress report, July--September 1978. [. gamma. -LiAlO/sub 2/ electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Finn, P.A.; Kinoshita, K.; Kucera, G.H.; Pierce, R.D.; Sim, J.W.

    1979-05-01

    This report describes advanced fuel cell research and development activities at Argonne National Laboratory (ANL) during the period July--September 1978. These efforts have been directed toward understanding and improving the components of molten-carbonate-electrolyte fuel cells operated at temperatures near 925 K. The primary focus of this work has been the development of electrolyte structures that have good electrolyte retention and mechanical properties as well as long term stability, and on developing methods of synthesis amenable to mass production. The characterization of these structures and their stability is an integral part of this effort. Synthesis studies have concentrated on the use of low-cost starting material to synthesize ..gamma..-LiAlO/sub 2/, the most stable allotrope of LiAlO/sub 2/ for the fuel cell conditions. Thermal stability and thermomechanical tests were performed on electrolyte mixtures to determine the effect of cell operating conditions on electrolyte tile longevity. A square cell (10.6 cm) with an electrolyte tile containing ..gamma..-LiAlO/sub 2/ was tested. This tile was reinforced by a wire screen. Post-test examination of this cell after 1000 h of operation showed that the reinforced tile was considerably stronger than un-reinforced tiles. Future cells will utilize tiles with metal screen reinforcement.

  7. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    Science.gov (United States)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10-4 S cm-1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  8. Morphology and conductivity studies of a new solid polymer electrolyte: (PEG)LiClO4

    Indian Academy of Sciences (India)

    Th Joykumar Singh; S V Bhat

    2003-12-01

    A new solid polymer electrolyte, (PEG)LiClO4, consisting of poly(ethylene)glycol of molecular weight 2000 and LiClO4 was prepared and characterized using XRD, IR, SEM, DSC, NMR and impedance spectroscopy techniques. XRD and IR results show the formation of the polymer–salt complex. The samples with higher salt concentration are softer, less opaque and less smooth compared to the low salt concentration samples. DSC studies show an increase in the glass transition temperature and a decrease in the degree of crystallinity with increase in the salt concentration. Melting temperature of SPEs is lower than the pure PEG 2000. Room temperature 1H and 7Li NMR studies were also carried out for the (PEG)iClO4 system. The 1H linewidth decreases as salt concentration increases in a similar way to the decrease in the crystalline fraction and reaches a minimum at around = 46 and then increases. 7Li linewidth was found to decrease first and then to slightly increase after reaching a minimum at = 46 signifying the highest mobility of Li ions for this composition. Room temperature conductivity first increases with salt concentration and reaches a maximum value ( = 7.3 × 10-7 S/cm) at = 46 and subsequently decreases. The temperature dependence of the conductivity can be fitted to the Arrhenius and the VTF equations in different temperature ranges. The ionic conductivity reaches a high value of ∼ 10-4 S/cm close to the melting temperature.

  9. Two distinct lithium diffusive species for polymer gel electrolytes containing LiBF₄, propylene carbonate (PC) and PVDF

    OpenAIRE

    Richardson, PM; Voice, AM; Ward, IM

    2014-01-01

    Polymer gel electrolytes have been prepared using lithium tetrafluoroborate (LiBF₄), propylene carbonate (PC) and polyvinylidene fluoride (PVDF) at 20% and 30% concentration by mass. Self diffusion coefficients have been measured using pulse field gradient nuclear magnetic resonance (PFG-NMR) for the cation and anion using ⁷Li and ¹⁹F resonant frequencies respectively. It was found that lithium ion diffusion was slow compared to the much larger fluorine anion likely resulting from a large sol...

  10. Electrochemical behavior of nanostructured MnO2/C (Vulcan® composite in aqueous electrolyte LiNO3

    Directory of Open Access Journals (Sweden)

    Vujković Milica

    2011-01-01

    Full Text Available The electrolytic solutions of contemporary Li-ion batteries are made exclusively with the organic solvents since anodic materials of these batteries have potentials with greater negativity than the potential of the water reduction, thus the organic electrolytes can withstand the voltages of 3-5 V that are characteristic for these batteries. Ever since it was discovered that some materials can electrochemically intercalate and deintercalate Li+ ions in aqueous solutions, numerous studies have been conducted with the aim of extending operational time of the aqueous Li-ion batteries. Manganese oxide has been studied as the electrode material in rechargeable lithium-ion batteries with organic electrolytes. In this paper its electrochemical behavior as an anode material in aqueous electrolyte solutions was examined. MnO2 as a component of nanodispersed MnO2/C (Vulcan® composite was successfully synthesized hydrothermally. Electrochemical properties of this material were investigated in aqueous saturated LiNO3 solution by both cyclic voltammetry and galvanostatic charging/discharging (LiMn2O4 as cathode material techniques. The obtained composite shows a relatively good initial discharge capacity of 96.5 mAh/g which, after 50th charging/discharging cycles, drops to the value of 57mAh/g. MnO2/C (Vulcan® composite, in combination with LiMn2O4 as a cathode material, shows better discharge capacity compared to other anodic materials used in aqueous Li-ion batteries according to certain studies that have been conducted. Its good reversibility and cyclability, and the fact that hydrothermal method is simple and effective, makes MnO2/C(Vulcan® composite a promising anodic material for aqueous Li-ion batteries.

  11. A New Class of P(VdF-HFP-CeO2-LiClO4-Based Composite Microporous Membrane Electrolytes for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    G. Vijayakumar

    2011-01-01

    Full Text Available Composite microporous membranes based on Poly (vinylidene fluoride–co-hexafluoro propylene P(VdF-co-HFP-CeO2 were prepared by phase inversion and preferential polymer dissolution process. It was then immersed in 1M LiClO4-EC/DMC (v/v=1:1 electrolyte solution to obtain their corresponding composite microporous membrane electrolytes. For comparison, composite membrane electrolytes were also prepared by conventional phase inversion method. The surface morphology of composite membranes obtained by both methods was examined by FE-SEM analysis, and their thermal behaviour was investigated by DSC analysis. It was observed that the preferential polymer dissolution composite membrane electrolytes (PDCMEs had better properties, such as higher porosity, electrolyte uptake (216 wt%, ionic conductivity (3.84 mS⋅cm−1 and good electrochemical stability (4.9 V, than the phase inversion composite membrane electrolytes (PICMEs. As a result, a cell fabricated with PDCME in between mesocarbon microbead (MCMB anode and LiCoO2 cathode had better cycling performance than a cell fabricated with PICME.

  12. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.

    Science.gov (United States)

    Li, Zhe; Zhang, Shiguo; Terada, Shoshi; Ma, Xiaofeng; Ikeda, Kohei; Kamei, Yutaro; Zhang, Ce; Dokko, Kaoru; Watanabe, Masayoshi

    2016-06-29

    Lithium-ion sulfur batteries with a [graphite|solvate ionic liquid electrolyte|lithium sulfide (Li2S)] structure are developed to realize high performance batteries without the issue of lithium anode. Li2S has recently emerged as a promising cathode material, due to its high theoretical specific capacity of 1166 mAh/g and its great potential in the development of lithium-ion sulfur batteries with a lithium-free anode such as graphite. Unfortunately, the electrochemical Li(+) intercalation/deintercalation in graphite is highly electrolyte-selective: whereas the process works well in the carbonate electrolytes inherited from Li-ion batteries, it cannot take place in the ether electrolytes commonly used for Li-S batteries, because the cointercalation of the solvent destroys the crystalline structure of graphite. Thus, only very few studies have focused on graphite-based Li-S full cells. In this work, simple graphite-based Li-S full cells were fabricated employing electrolytes beyond the conventional carbonates, in combination with highly loaded Li2S/graphene composite cathodes (Li2S loading: 2.2 mg/cm(2)). In particular, solvate ionic liquids can act as a single-phase electrolyte simultaneously compatible with both the Li2S cathode and the graphite anode and can further improve the battery performance by suppressing the shuttle effect. Consequently, these lithium-ion sulfur batteries show a stable and reversible charge-discharge behavior, along with a very high Coulombic efficiency.

  13. Application of a boron doped diamond (BDD) electrode as an anode for the electrolytic reduction of UO2 in Li2O-LiCl-KCl molten salt

    Science.gov (United States)

    Park, Wooshin; Kim, Jong-Kook; Hur, Jin-Mok; Choi, Eun-Young; Im, Hun Suk; Hong, Sun-Seok

    2013-01-01

    A boron doped diamond thin film electrode was employed as an inert anode to replace a platinum electrode in a conventional electrolytic reduction process for UO2 reduction in Li2O-LiCl molten salt at 650 °C. The molten salt was changed into Li2O-LiCl-KCl to decrease the operation temperature to 550 °C at which the boron doped diamond was chemically stable. The potential for oxygen evolution on the boron doped diamond electrode was determined to be approximately 2.2 V vs. a Li-Pb reference electrode whereas that for Li deposition was around -0.58 V. The density of the anodic current was low compared to that of the cathodic current. Thus the potential of the cathode might not reach the potential for Li deposition if the surface area of the cathode is too wide compared to that of the anode. Therefore, the ratio of the surface areas of the cathode and anode should be precisely controlled. Because the reduction of UO2 is dependent on the reaction with Li, the deposition of Li is a prerequisite in the reduction process. In a consecutive reduction run, it was proved that the boron doped diamond could be employed as an inert anode.

  14. Li(+)- and Eu(³+)-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for electrochromic devices.

    Science.gov (United States)

    Fernandes, M; Nobre, S S; Rodrigues, L C; Gonçalves, A; Rego, R; Oliveira, M C; Ferreira, R A S; Fortunato, E; Silva, M M; Carlos, L D; Bermudez, V de Zea

    2011-08-01

    The sol-gel process has been successfully combined with the "mixed cation" effect to produce novel luminescent and ion conducting biohybrids composed of a diurethane cross-linked poly(ε-caprolactone) (PCL530)/siloxane hybrid network (PCL stands for the poly(ε-caprolactone) biopolymer and 530 is the average molecular weight in gmol(-1)) doped with a wide range of concentrations of lithium and europium triflates (LiCF(3)SO(3) and Eu(CF(3)SO(3))(3), respectively) (molar ratio of ca. 50:50). The hybrid samples are all semicrystalline: whereas at n = 52.6 and 27.0 (n, composition, corresponds to the number of (C(═O)(CH(2))(5)O) repeat units of PCL(530) per mixture of Li(+) and Eu(3+) ions) a minor proportion of crystalline PCL(530) chains is present, at n = 6.1, a new crystalline phase emerges. The latter electrolyte is thermally stable up to 220 °C and exhibits the highest conductivity over the entire range of temperatures studied (3.7 × 10(-7) and 1.71 × 10(-4) S cm(-1) at 20 and 102 °C, respectively). According to infrared spectroscopic data, major modifications occur in terms of hydrogen bonding interactions at this composition. The electrochemical stability domain of the biohybrid sample with n = 27 spans more than 7 V versus Li/Li(+). This sample is a room temperature white light emitter. Its emission color can be easily tuned across the Commission Internationale d'Éclairage (CIE) chromaticity diagram upon simply changing the excitation wavelength. Preliminary tests performed with a prototype electrochromic device (ECD) comprising the sample with n = 6.1 as electrolyte and WO(3) as cathodically coloring layer are extremely encouraging. The device exhibits switching time around 50 s, an optical density change of 0.15, good open circuit memory under atmospheric conditions (ca. 1 month) and high coloration efficiency (577 cm(2) C(-1) in the second cycle).

  15. Electrochemical and structural evaluation for bulk-type all-solid-state batteries using Li4GeS4-Li3PS4 electrolyte coating on LiCoO2 particles

    Science.gov (United States)

    Ito, Yusuke; Otoyama, Misae; Hayashi, Akitoshi; Ohtomo, Takamasa; Tatsumisago, Masahiro

    2017-08-01

    Bulk-type all-solid-state batteries, which use composite electrodes with a powder mixture of active materials and solid electrolytes, are anticipated for large-scale power sources. However, conventional powder mixing protocols are insufficient to maintain ion-conductive pathways within composite electrodes. Herein, sulfide electrolyte coatings have attracted attention as a promising means to overcome this difficulty. We assessed the effects of sulfide electrolyte coatings for active materials on the electrochemical properties and structural changes in all-solid-state cells. A favorable electrode-electrolyte interface was formed by coating significantly small amounts (ca. 3 wt%) of Li4GeS4-Li3PS4 solid electrolyte (SE) onto LiCoO2 particles via vapor phase process. The all-solid-state cell (In/Li2S-P2S5/SE-coated LiCoO2) was charged and discharged with a larger capacity than that using non-SE-coated LiCoO2 particles, indicating that the SE-coating is effective in forming a favorable ion-conductive pathway to LiCoO2 particles. Improvement of the cell performance after heat treatment was considered to derive not only from the enhancement of ionic conductivity in the SE-coating layer, but also from the reduction of voids in the composite electrode. Less ionic resistance and denser environment are beneficial for the Li-ion supply to the deepest part in the composite electrode, which results in more homogeneous electrochemical reaction in all-solid-state cells.

  16. Interfacial stability and electrochemical behavior of Li/LiFePO4 batteries using novel soft and weakly adhesive photo-ionogel electrolytes

    Science.gov (United States)

    Aidoud, D.; Etiemble, A.; Guy-Bouyssou, D.; Maire, E.; Le Bideau, J.; Guyomard, D.; Lestriez, B.

    2016-10-01

    We have developed flexible polymer-gel electrolytes based on a polyacrylate cross-linked matrix that confines an ionic liquid doped with a lithium salt. Free-standing solid electrolyte membrane is obtained after UV photo-polymerization of acrylic monomers dissolved inside the ionic liquid/lithium salt mixture. The liquid precursor of the photo-ionogel may also be directly deposited onto porous composite electrode, which results in all-solid state electrode/electrolyte stacking after UV illumination. Minor variations in the polymer component of the electrolyte formulation significantly affect the electrochemical behavior in LiFePO4/lithium and lithium/lithium cells. The rate performance increases with an increase of the ionic conductivity, which decreases with the polymer content and decreases with increasing oxygen content in the polyacrylate matrix. Their fairly low modulus endow them weak and beneficial pressure-sensitive-adhesive character. X-Rays Tomography shows that the solid-state photo-ionogel electrolytes keep their integrity upon cycling and that their surface remains smooth. The coulombic efficiency of LiFePO4/lithium cells increases with an increase of the adhesive strength of the photo-ionogel, suggesting a relationship between the contact intimacy at the lithium/photo-ionogel interface and the efficiency of the lithium striping/plating. In lithium/lithium cells, only the photo-ionogels with the higher adhesion strength are able to allow the reversible striping/plating of lithium.

  17. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature.

    Science.gov (United States)

    Hu, Pu; Duan, Yulong; Hu, Deping; Qin, Bingsheng; Zhang, Jianjun; Wang, Qingfu; Liu, Zhihong; Cui, Guanglei; Chen, Liquan

    2015-03-04

    LiMn2O4-based batteries exhibit severe capacity fading during cycling or storage in LiPF6-based liquid electrolytes, especially at elevated temperatures. Herein, a novel rigid-flexible gel polymer electrolyte is introduced to enhance the cyclability of LiMn2O4/graphite battery at elevated temperature. The polymer electrolyte consists of a robust natural cellulose skeletal incorporated with soft segment poly(ethyl α-cyanoacrylate). The introduction of the cellulose effectively overcomes the drawback of poor mechanical integrity of the gel polymer electrolyte. Density functional theory (DFT) calculation demonstrates that the poly(ethyl α-cyanoacrylate) matrices effectively dissociate the lithium salt to facilitate ionic transport and thus has a higher ionic conductivity at room temperature. Ionic conductivity of the gel polymer electrolyte is 3.3 × 10(-3) S cm(-1) at room temperature. The gel polymer electrolyte remarkably improves the cycling performance of LiMn2O4-based batteries, especially at elevated temperatures. The capacity retention after the 100th cycle is 82% at 55 °C, which is much higher than that of liquid electrolyte (1 M LiPF6 in carbonate solvents). The polymer electrolyte can significantly suppress the dissolution of Mn(2+) from surface of LiMn2O4 because of strong interaction energy of Mn(2+) with PECA, which was investigated by DFT calculation.

  18. A review on the separators of liquid electrolyte Li-ion batteries

    Science.gov (United States)

    Zhang, Sheng Shui

    This paper reviews the separators used in liquid electrolyte Li-ion batteries. According to the structure and composition of the membranes, the battery separators can be broadly divided as three groups: (1) microporous polymer membranes, (2) non-woven fabric mats and (3) inorganic composite membranes. The microporous polymer membranes are characterised by their thinness and thermal shutdown properties. The non-woven mats have high porosity and a low cost, while the composite membranes have excellent wettability and exceptional thermal stability. The manufacture, characteristics, performance and modifications of these separators are introduced and discussed. Among numerous battery separators, the thermal shutdown and ceramic separators are of special importance in enhancing the safety of Li-ion batteries. The former consists of either a polyethylene (PE)-polypropylene (PP) multilayer structure or a PE-PP blend which increases safety by allowing meltdown of the PE to close the ionic conduction pathways at a temperature below that at which thermal runway occurs. Whereas the latter comprises nano-size ceramic materials coated on two sides of a flexible and highly porous non-woven matrix which enhances the safety by retaining extremely stable dimensions even at very high temperatures to prevent the direct contact of the electrodes.

  19. Study on Stability and Electrochemical Properties of Nano-LiMn1.9Ni0.1O3.99S0.01-Based Li-Ion Batteries with Liquid Electrolyte Containing LiPF6

    Directory of Open Access Journals (Sweden)

    Monika Bakierska

    2016-01-01

    Full Text Available Herein, we report on the stability and electrochemical properties of nanosized Ni and S doped lithium manganese oxide spinel (LiMn1.9Ni0.1O3.99S0.01, LMN1OS in relation to the most commonly used electrolyte solution containing LiPF6 salt. The influence of electrochemical reaction in the presence of selected electrolyte on the LMN1OS electrode chemistry was examined. The changes in the structure, surface morphology, and composition of the LMN1OS cathode after 30 cycles of galvanostatic charging/discharging were determined. In addition, thermal stability and reactivity of the LMN1OS material towards the electrolyte system were verified. Performed studies revealed that no degradative effects, resulting from the interaction between the spinel electrode and liquid electrolyte, occur during electrochemical cycling. The LMN1OS electrode versus LiPF6-based electrolyte has been indicated as an efficient and electrochemically stable system, exhibiting high capacity, good rate capability, and excellent coulombic efficiency. The improved stability and electrochemical performance of the LMN1OS cathode material originate from the synergetic substitution of LiMn2O4 spinel with Ni and S.

  20. Natural Abundance 17O, 6Li NMR and Molecular Modeling Studies of the Solvation Structures of Lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane Liquid Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chuan; Hu, Mary Y.; Borodin, Oleg; Qian, Jiangfeng; Qin, Zhaohai; Zhang, Jiguang; Hu, Jian Z.

    2016-03-01

    Natural abundance 17O and 6Li NMR experiments, quantum chemistry and molecular dynamics studies were employed to investigate the solvation structures of Li+ at various concentrations of LiFSI in DME electrolytes in an effort to solve this puzzle. It was found that the chemical shifts of both 17O and 6Li changed with the concentration of LiFSI, indicating the changes of solvation structures with concentration. For the quantum chemistry calculations, the coordinated cluster LiFSI(DME)2 forms at first, and its relative ratio increases with increasing LiFSI concentration to 1 M. Then the solvation structure LiFSI(DME) become the dominant component. As a result, the coordination of forming contact ion pairs between Li+ and FSI- ion increases, but the association between Li+ and DME molecule decreases. Furthermore, at LiFSI concentration of 4 M the solvation structures associated with Li+(FSI-)2(DME), Li+2(FSI-)(DME)4 and (LiFSI)2(DME)3 become the dominant components. For the molecular dynamics simulation, with increasing concentration, the association between DME and Li+ decreases, and the coordinated number of FSI- increases, which is in perfect accord with the DFT results. These results provide more insight on the fundamental mechanism on the very high CE of Li deposition in these electrolytes, especially at high current density conditions.

  1. Performance of Wide Operating Temperature Range Electrolytes in Quallion Prototype Li-Ion Cells

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Tomcsi, M. R.; Nagata, M.; Visco, V.; Tsukamoto, H.

    2010-01-01

    For a number of applications, there is a continued interest in the development of rechargeable lithium-based batteries that can effectively operate over a wide temperature range (i.e., -40 to +70 deg C). These applications include powering future planetary rovers for NASA, enabling the next generation of automotive batteries for DOE, and supporting many DOD applications. Li-ion technology has been demonstrated to have good performance over a reasonably wide temperature range with many systems; however, there is still a desire to improve the low temperature rate capacity as well as the high temperature resilience. In the current study, we would like to present recent results obtained with prototype Li-Ion cells (manufactured by Quallion, LLC) which include various wide operating temperature range electrolytes developed by both JPL and Quallion. To demonstrate the viability of the technology, a number of performance tests were carried out, including: (a) discharge rate characterization over a wide temperature range (down to -60 deg C) using various rates (up to 20C rates), (b) discharge rate characterization at low temperatures with low temperature charging, (c) variable temperature cycling over a wide temperature range (-40 to +70 deg C), and (d) cycling at high temperature (50 deg C). As will be discussed, impressive rate capability was observed at low temperatures with many systems, as well as good resilience to high temperature cycling. To augment the performance testing on the prototype cells, a number of experimental three electrodes cells were fabricated (including Li reference electrodes) to allow the determination of the lithium kinetics of the respective electrodes and interfacial properties as a function of temperatures.

  2. Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4

    Science.gov (United States)

    Borodin, Oleg; Smith, Grant D.; Bandyopadhyaya, Rajdip; Redfern, Paul; Curtiss, Larry A.

    2004-05-01

    Interactions of Li+ and BF_{4}^{-} ions with TiO2 clusters were investigated using ab initio quantum chemistry methods. Classical force fields have been developed for poly(ethylene oxide)/LiBF4/TiO2, and molecular dynamics simulations have been performed on poly(ethylene oxide)/LiBF4 polymer electrolyte with and without embedded TiO2 nanoparticles using the developed force field. Addition of a TiO2 nanoparticle to PEO/LiBF4 solid polymer electrolyte resulted in the formation of a highly structured layer with a thickness of 5-6 Å that had more than an order of magnitude slower mobility than that of bulk PEO/LiBF4. The PEO and ions in the layers extending from 6 to 15 Å from the TiO2 nanoparticle also revealed some structuring and reduced dynamics, whereas the PEO/LiBF4 located further than 15 Å was basically unaffected by the presence of the TiO2 nanoparticle. Both cations and anions tended to form a region with an increased concentration in the interfacial layers extending from 5 to 15 Å. No ions were dissolved by the first interfacial layer of PEO. Addition of a nanoparticle with soft-repulsion interactions with PEO resulted in the formation of a PEO interfacial layer with reduced PEO density but increased ion concentration. The PEO and ion mobility in the interfacial layer next to the soft-repulsive nanoparticle were higher than those of bulk PEO/LiBF4 by 20-50%, whereas the conductivity of the nanocomposite electrolyte with the soft-repulsive particle increased only by 10%.

  3. Cycle stability of the electrochemical capacitors patterned with vertically aligned carbon nanotubes in an LiPF6-based electrolyte

    Science.gov (United States)

    Chiou, Yi-Deng; Tsai, Dah-Shyang; Lam, Hoa Hung; Chang, Chuan-Hua; Lee, Kuei-Yi; Huang, Ying-Sheng

    2013-08-01

    The miniature ultracapacitors, with interdigitated electrodes of vertically aligned carbon nanotubes (VACNTs) and an inter-electrode gap of 20 μm, have been prepared in the LiPF6 organic electrolyte with and without PVdF-HFP gel. PVdF-HFP between two opposing electrodes enhances the device reliability, but lessens its power performance because of the extra diffusion resistance. Also noteworthy are the gel influences on the cycle stability. When the applied voltage is 2.0 or 2.5 V, both the LiPF6 and the gel capacitors exhibit excellent stability, typified by a retention ratio of >=95% after 10 000 cycles. Their coulombic efficiencies quickly rise up, and hold steady at 100%. Nonetheless, when the applied voltage is 3.5 or 4.0 V, the cycle stability deteriorates, since the negative electrode potential descends below 0.9 V (vs. Li), leading to electrolyte decomposition and SEI formation. For the LiPF6 capacitor, its retention ratio could be around 60% after 10 000 cycles and the coulombic efficiency of 100% is difficult to reach throughout its cycle life. On the other hand, the gel capacitor cycles energy with a much higher retention ratio, >80% after 10 000 cycles, and a better coulombic efficiency, even though electrolyte decomposition still occurs. We attribute the superior stability of the gel capacitor to its extra diffusion resistance which slows down the performance deterioration.

  4. Studies in lithium oxyhalide cells for downhole instrumentation. Use of lithium tetrachlorogallate electrolyte in Li/SOCl[sub 2] cells

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, M.M. (Sperry-Sun Drilling Services, Houston, TX (United States)); Marincic, N. (Battery Engineering Inc., Hyde Park, MA (United States))

    1993-07-01

    Lithium/thionyl chloride cells containing lithium tetrachlorogallate electrolyte have been shown to provide improved performance during interrupted use with temperature cycling. In LiAlCl[sub 4]-containing cells, the effect, referred to as the 'early failure problem', is profound for temperature cycling above 70 C and subsequent use at room temperature. This is mitigated when the solute is LiGaCl[sub 4]. Generally, the voltage delay for LiGaCl[sub 4]-contaaining cells is lower than for cells with lithium tetrachloroaluminate, is more reproducible, and the voltage on load is higher. The reduction of LiAlCl[sub 4] at the lithium electrode under discharge at elevated temperature is suggested as the possible reason for the early failure problem. (orig.)

  5. Gel polymer electrolyte based on LiBOB and PAN for the application in dye-sensitized solar cells

    Science.gov (United States)

    Arof, A. K.; Jun, H. K.; Sim, L. N.; Kufian, M. Z.; Sahraoui, B.

    2013-11-01

    Dye-sensitized solar cells (DSSCs) have been fabricated using metal complex N3 dye coupled with LiBOB and PAN-based gel polymer electrolyte (GPE). Conductivity of the GPE at room temperature was 1.2 × 10-2 S cm-1. The deconvoluted vibration spectra at different temperatures between 1000 and 970 cm-1 show the existence of ion pairs and free ions. Overall efficiency and fill factor of the DSSC with LiBOB-BMII-PAN-I2 GPE system is 0.65% and 48% respectively. The cell with LiBOB-BMII-PAN-I2 GPE system appears to be stable under varied light intensity attributed to the presence of redox couple mediator in the GPE. Impedance measurements show that the DSSC with LiBOB-BMII-PAN-I2 GPE has longer electron lifetime which suggests a lower electron recombination rate.

  6. Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)

    DEFF Research Database (Denmark)

    Yu, Seungho; Schmidt, Robert D.; Garcia-Mendez, Regina;

    2016-01-01

    The oxide known as LLZO, with nominal composition Li7La3Zr2O12, is a promising solid electrolyte for Li-based batteries due to its high Li ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical...... is predicted to be enhanced as the electrolyte’s shear modulus increases. In the present study a combination of first-principles calculations, acoustic impulse excitation measurements, and nanoindentation experiments are used to determine the elastic constants and moduli for high-conductivity LLZO compositions...

  7. Ag nanoparticles-anchored reduced graphene oxide catalyst for oxygen electrode reaction in aqueous electrolytes and also a non-aqueous electrolyte for Li-O2 cells.

    Science.gov (United States)

    Kumar, Surender; Selvaraj, C; Scanlon, L G; Munichandraiah, N

    2014-11-07

    Silver nanoparticles-anchored reduced graphene oxide (Ag-RGO) is prepared by simultaneous reduction of graphene oxide and Ag(+) ions in an aqueous medium by ethylene glycol as the reducing agent. Ag particles of average size of 4.7 nm were uniformly distributed on the RGO sheets. Oxygen reduction reaction (ORR) is studied on Ag-RGO catalyst in both aqueous and non-aqueous electrolytes by using cyclic voltammetry and rotating disk electrode techniques. As the interest in non-aqueous electrolyte is to study the catalytic performance of Ag-RGO for rechargeable Li-O2 cells, these cells are assembled and characterized. Li-O2 cells with Ag-RGO as the oxygen electrode catalyst are subjected to charge-discharge cycling at several current densities. A discharge capacity of 11 950 mA h g(-1) (11.29 mA h cm(-2)) is obtained initially at low current density. Although there is a decrease in the capacity on repeated discharge-charge cycling initially, a stable capacity is observed for about 30 cycles. The results indicate that Ag-RGO is a suitable catalyst for rechargeable Li-O2 cells.

  8. Real-time mass spectroscopy analysis of Li-ion battery electrolyte degradation under abusive thermal conditions

    Science.gov (United States)

    Gaulupeau, B.; Delobel, B.; Cahen, S.; Fontana, S.; Hérold, C.

    2017-02-01

    The lithium-ion batteries are widely used in rechargeable electronic devices. The current challenges are to improve the capacity and safety of these systems in view of their development to a larger scale, such as for their application in electric and hybrid vehicles. Lithium-ion batteries use organic solvents because of the wide operating voltage. The corresponding electrolytes are usually based on combinations of linear, cyclic alkyl carbonates and a lithium salt such as LiPF6. It has been reported that in abusive thermal conditions, a catalytic effect of the cathode materials lead to the formation fluoro-organics compounds. In order to understand the degradation phenomenon, the study at 240 °C of the interaction between positive electrode materials (LiCoO2, LiNi1/3Mn1/3Co1/3O2, LiMn2O4 and LiFePO4) and electrolyte in dry and wet conditions has been realized by an original method which consists in analyzing by mass spectrometry in real time the volatile molecules produced. The evolution of specific gases channels coupled to the NMR reveal the formation of rarely discussed species such as 2-fluoroethanol and 1,4-dioxane. Furthermore, it appears that the presence of water or other protic impurities greatly influence their formation.

  9. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte

    Science.gov (United States)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-04-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm-2 between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g-1. Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  10. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte.

    Science.gov (United States)

    Wu, Jiaxiong; Cai, Wei; Shang, Guangyi

    2016-12-01

    Lithium-ion (Li-ion) batteries have been widely used in various kinds of electronic devices in our daily life. The use of aqueous electrolyte in Li-ion battery would be an alternative way to develop low cost and environmentally friendly batteries. In this paper, the lithium iron phosphate (LiFePO4) thin film cathode for the aqueous rechargeable Li-ion battery is prepared by radio frequency magnetron sputtering deposition method. The XRD, SEM, and AFM results show that the film is composed of LiFePO4 grains with olivine structure and the average size of 100 nm. Charge-discharge measurements at current density of 10 μAh cm(-2) between 0 and 1 V show that the LiFePO4 thin film electrode is able to deliver an initial discharge capacity of 113 mAh g(-1). Specially, the morphological changes of the LiFePO4 film electrode during charge and discharge processes were investigated in aqueous environment by in situ EC-AFM, which is combined AFM with chronopotentiometry method. The changes in grain area are measured, and the results show that the size of the grains decreases and increases during the charge and discharge, respectively; the relevant mechanism is discussed.

  11. Ionic transport studies in PVDF-HFP-PMMA-(PC+DEC)-LiClO4 gel polymer electrolyte

    Science.gov (United States)

    Gohel, Khushbu; Kanchan, D. K.

    2017-05-01

    Poly(vinylidene fluoride-hexafluropropylene)(PVdF-HFP) and Polymethylmethacrylate(PMMA) based gel polymer electrolytes comprising Propylene Carbonate and Diethyl Carbonate mixed plasticizers and different concentrations of Lithium Perchlorate (LiClO4) salt have been prepared using a solvent casting technique. Electrical conductivity and transference number measurements have been carried out by Electrochemical Impedance Spectroscopy in the temperature range 303 K to 363 K and Wagner's Polarization method respectively. The maximum room temperature conductivity of 2.83 ×10-4 S cm-1 has been observed for the gel polymer electrolytes at 7.5 wt% LiClO4. The variation of ac conductivity with frequency has been discussed.

  12. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  13. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    Science.gov (United States)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  14. Electrochemical properties of Li symmetric solid-state cell with NASICON-type solid electrolyte and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Eiji; Plashnitsa, Larisa S.; Doi, Takayuki; Okada, Shigeto; Yamaki, Jun-ichi [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga Koen 6-1, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2010-07-15

    All-solid-state phosphate symmetric cells using Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} for both the positive and negative electrodes with the phosphate Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} as the solid electrolyte were proposed. Amorphous Li{sub 1.5}Al{sub 0.5}Ge{sub 1.5}(PO{sub 4}){sub 3} was added into the electrode to increase the interface area between the active materials and the electrolyte. Any other phases were not formed at the electrode/electrolyte interface even after hot pressing at 600 C. The discharge capacity was 92 mAh g{sup -} {sup 1} at 22 {mu}A cm{sup -} {sup 2} at 80 C, and 38 mAh g{sup -} {sup 1} at 25 C, respectively. Symmetric cell configuration leads to simplify the fabrication process for all-solid-state batteries and will reduce manufacturing costs. (author)

  15. FTIR Spectroscopic and DC Ionic conductivity Studies of PVDF-HFP: LiBF4: EC Plasticized Polymer Electrolyte Membrane

    Science.gov (United States)

    Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J.

    2017-08-01

    In the present paper; the FTIR and Temperature dependent DC Ionic conductivity studies of polymer (80 Wt% PVDF-HFP) with inorganic lithium tetra fluoroborate salt (20 Wt% LiBF4) as ionic charge carrier and plasticized with various weight ratios of Ethylene carbonate plasticizer (10 Wt% to 70 Wt% EC) as gel polymer electrolytes. Solution casting method is used for the preparation of plasticized polymer-salt electrolyte films. FTIR analysis shows the good complexation between PVDF-HFP: LiBF4 and the presence of functional groups in the plasticized polymer-salt electrolyte membrane. Also the analysis and results show that the highest DC ionic conductivity of 1.66 × 10‑3 SCm ‑1 was found at 373 K for a particular concentration of 80 Wt% PVDF-HFP: 20 Wt% LiBF4: 40 Wt% EC porous gel type polymer-salt plasticized porous membrane. Increase of temperature results expansion and segmental motion of polymer chain that generates free volume in turn promotes hopping of the lithium ions satisfying Vogel-Tammann-Fulcher equation.

  16. Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries.

    Science.gov (United States)

    Wang, Chunhua; Yang, Yifu; Liu, Xingjiang; Zhong, Hai; Xu, Han; Xu, Zhibin; Shao, Huixia; Ding, Fei

    2017-04-19

    The formation of lithium dendrites is suppressed using a Li1.5Al0.5Ge1.5(PO4)3-poly(ethylene oxide) (LAGP-PEO) composite solid electrolyte and a PEO (lithium bis(trifluoromethane)sulfonimide) [PEO (LiTFSI)]-modified lithium metal anode in all-solid-state lithium batteries. The effects on the anode performance based on the PEO content in the composite solid electrolyte and the molecular weight of PEO used to modify the Li anode are studied. The structure, surface morphology, and stability of the composite solid electrolyte are examined by X-ray diffraction spectroscopy, scanning electron microscopy, and electrochemical tests. Results show that the presence of a PEO-500000(LiTFSI) film on a Li anode results in good mechanical properties and satisfactory interface contact features. The film can also prevent Li from reacting with LAGP. Furthermore, the formation of lithium dendrites can be effectively inhibited as the composite solid electrolyte is combined with the PEO film on the Li anode. The ratio of PEO in the composite solid electrolyte can be reduced to a low level of 1 wt %. PEO remains stable even at a high potential of 5.12 V (vs Li/Li(+)). The assembled Li-PEO (LiTFSI)/LAGP-PEO/LiMn0.8Fe0.2PO4 all-solid-state cell can deliver an initial discharge capacity of 160.8 mAh g(-1) and exhibit good cycling stability and rate performance at 50 °C.

  17. Raman spectrum of the solid electrolytes LiI·H2O and LiI·D2O

    DEFF Research Database (Denmark)

    Poulsen, Finn Willy

    1986-01-01

    The Raman spectra of cubic LiI·H2O and LiI·D2O have been revised. The spectra reveal only internal and librational modes of H2O (D2O). The isotopic ratios νH/νD, are in the range 1.33-1.78......The Raman spectra of cubic LiI·H2O and LiI·D2O have been revised. The spectra reveal only internal and librational modes of H2O (D2O). The isotopic ratios νH/νD, are in the range 1.33-1.78...

  18. First characterization of the surface compounds formed during the reduction of a carbonaceous electrode in LiClO{sub 4}-ethylene carbonate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Naji, A. [Universite Henri Poincare, 54 - Vandoeuvre-les-Nancy (France). Lab. de Chimie du Solide Mineral; Ghanbaja, J. [Universite Henri Poincare, 54 - Vandoeuvre-les-Nancy (France). Lab. de Chimie du Solide Mineral; Willmann, P. [CNES, 31 - Toulouse (France); Humbert, B. [CNRS-UHP, 54 - Villers-les-Nancy (France); Billaud, D. [Universite Henri Poincare, 54 - Vandoeuvre-les-Nancy (France). Lab. de Chimie du Solide Mineral

    1996-09-01

    Reduction of a carbonaceous electrode in LiClO{sub 4}-ethylene carbonate electrolyte results in the development of a surface layer formed of Li{sub 2}CO{sub 3} and different lithium alkylcarbonates identified both by electron energy loss and FT-IR spectroscopies. (orig.)

  19. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy.

    Science.gov (United States)

    Abellan, Patricia; Mehdi, B Layla; Parent, Lucas R; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Ji-Guang; Wang, Chong-Min; Evans, James E; Browning, Nigel D

    2014-03-12

    Development of novel electrolytes with increased electrochemical stability is critical for the next generation battery technologies. In situ electrochemical fluid cells provide the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under conditions directly relevant to the operation of practical batteries. In this paper, we have studied the breakdown of a range of inorganic/salt complexes relevant to state-of-the-art Li-ion battery systems by in situ (scanning) transmission electron microscopy ((S)TEM). In these experiments, the electron beam itself caused the localized electrochemical reaction that allowed us to observe electrolyte breakdown in real-time. The results of the in situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in situ liquid stage (S)TEM observations could be used to directly test new electrolyte designs and identify a smaller library of candidate solutions deserving of more detailed characterization. A systematic study of electrolyte degradation is also a necessary first step for any future controlled in operando liquid (S)TEM experiments intent on visualizing working batteries at the nanoscale.

  20. Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries

    Science.gov (United States)

    Deka, M.; Kumar, A.

    A study is conducted on the electrical and electrochemical properties of nanocomposite polymer electrolytes based on intercalation of poly(vinylidene fluoride) (PVdF) polymer into the galleries of organically modified montmorillonite (MMT) clay. A solution intercalation technique is employed for nanocomposite formation with varying clay loading from 0 to 4 wt.%. X-ray diffraction results show the β phase formation of PVdF on intercalation. Transmission electron microscopy reveals the formation of partially exfoliated nanocomposites. The nanocomposites are soaked with 1 M LiClO 4 in a 1:1 (v/v) solution of propylene carbonate (PC) and diethyl carbonate (DEC) to obtain the required gel electrolytes. The structural conformation of the nanocomposite electrolytes is examined by Fourier transform infrared spectroscopy analysis. Examination with a.c. impedance spectroscopy reveals that the ionic conductivity of the nanocomposite gel polymer electrolytes increases with increase in clay loading and attains a maximum value of 2.3 × 10 -3 S cm -1 for a 4 wt.% clay loading at room temperature. The same composition exhibits enhancement in the electrochemical and interfacial properties as compared with that of a clay-free electrolyte system.

  1. In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries.

    Science.gov (United States)

    Chai, Jingchao; Liu, Zhihong; Ma, Jun; Wang, Jia; Liu, Xiaochen; Liu, Haisheng; Zhang, Jianjun; Cui, Guanglei; Chen, Liquan

    2017-02-01

    Nowadays it is extremely urgent to seek high performance solid polymer electrolyte that possesses both interfacial stability toward lithium/graphitic anodes and high voltage cathodes for high energy density solid state batteries. Inspired by the positive interfacial effect of vinylene carbonate additive on solid electrolyte interface, a novel poly (vinylene carbonate) based solid polymer electrolyte is presented via a facile in situ polymerization process in this paper. It is manifested that poly (vinylene carbonate) based solid polymer electrolyte possess a superior electrochemical stability window up to 4.5 V versus Li/Li(+) and considerable ionic conductivity of 9.82 × 10(-5) S cm(-1) at 50 °C. Moreover, it is demonstrated that high voltage LiCoO2/Li batteries using this solid polymer electrolyte display stable charge/discharge profiles, considerable rate capability, excellent cycling performance, and decent safety characteristic. It is believed that poly (vinylene carbonate) based electrolyte can be a very promising solid polymer electrolyte candidate for high energy density lithium batteries.

  2. Chemical stability of conductive ceramic anodes in LiCl–Li{sub 2}O molten salt for electrolytic reduction in pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Wook; Kang, Hyun Woo; Jeon, Min Ku; Lee, Sang Kwon; Choi, Eun Young; Park, Woo Shin; Hong, Sun Seok; Oh, Seung Chul; Hur, Jin Mok [Nuclear Fuel Cycle Process Development Group, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive La{sub 0.33}Sr{sub 0.67}MnO{sub 3} in LiCl–Li{sub 2}O molten salt at 650°C was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the La{sub 0.33}Sr{sub 0.67}MnO{sub 3} anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

  3. The correlation of the properties of pyrrolidinium-based ionic liquid electrolytes with the discharge-charge performances of rechargeable Li-O2 batteries

    Science.gov (United States)

    Li, Yu; Zhang, Zhonglin; Duan, Donghong; Sun, Yanbo; Wei, Guoqiang; Hao, Xiaogang; Liu, Shibin; Han, Yunxia; Meng, Weijuan

    2016-10-01

    Pyrrolidinium-based ionic liquids (ILs), such as PYR13TFSI, PYR14TFSI, and PYR1(2O1)TFSI, exhibit high thermal and electrochemical stability with wide electrochemical windows as electrolytes for application to rechargeable Li-O2 batteries. In this work, several fundamental properties of three ILs are measured: the ionic conductivity, oxygen solubility, and oxygen diffusion coefficient. The oxygen electro-reduction kinetics is characterized using cyclic voltammetry. The performances of Li-O2 batteries with these IL electrolytes are also investigated using electrochemical impedance spectroscopy and galvanostatic discharge-charge tests. The results demonstrate that the PYR1(2O1)TFSI electrolyte battery has a higher first-discharge voltage than the PYR13TFSI electrolyte and PYR14TFSI electrolyte batteries. Both PYR13TFSI- and PYR1(2O1)TFSI-based batteries exhibit higher first-discharge capacities and better cycling stabilities than the PYR14TFSI-based battery for 30 cycles. A theoretical analysis of the experimental results shows that the diffusion coefficient and solubility of oxygen in the electrolyte remarkably affect the discharge capacity and cycling stability of the batteries. Particularly, the oxygen diffusion coefficient of the IL electrolyte can effectively facilitate the electrochemical oxygen electro-reduction reaction and oxygen concentration distribution in the catalyst layers of air electrodes. The oxygen diffusion coefficient and oxygen solubility improvements of IL electrolytes can enhance the discharge-charge performances of Li-O2 batteries.

  4. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  5. Identity of Passive Film Formed on Aluminum in Li-ion BatteryElectrolytes with LiPF6

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xueyuan; Devine, T.M.

    2006-09-01

    The passive film that forms on aluminum in 1:1 ethylene carbonate + ethylmethyl carbonate with 1.2M LiPF{sub 6} and 1:1 ethylene carbonate + dimethyl carbonate with 1.0M LiPF{sub 6} was investigated by a combination of electrochemical quartz crystal microbalance measurements (EQCM), electrochemical impedance spectroscopy (EIS), and x-ray photoelectron spectroscopy. During anodic polarization of aluminum a film of AlF{sub 3} forms on top of the air-formed oxide, creating a duplex, or two-layered film. The thickness of the AlF{sub 3} increases with the applied potential. Independent measurements of film thickness by EQCM and EIS indicate that at a potential of 5.5V vs. Li/Li{sup +}, the thickness of the AlF{sub 3} is approximately 1 nm.

  6. AC ionic conductivity and DC polarization method of lithium ion transport in PMMA-LiBF4 gel polymer electrolytes

    Science.gov (United States)

    Osman, Z.; Mohd Ghazali, M. I.; Othman, L.; Md Isa, K. B.

    2012-01-01

    Polymethylmethacrylate (PMMA)-based gel polymer electrolytes comprising ethylene carbonate-propylene carbonate (EC/PC) mixed solvent plasticizer and various concentrations of lithium tetrafluoroborate (LiBF4) salt are prepared using a solvent casting technique. Electrical conductivity and transference number measurements were carried out to investigate conductivity and charge transport in the gel polymer electrolytes. The conductivity results show that the ionic conductivity of the samples increases when the amount of salt is increased, however decreases after reaching the optimum value. This result is consistent with the transference number measurements. The conductivity-frequency dependence plots show two distinct regions; i.e. at lower frequencies the conductivity increases with increasing frequency and the frequency independent plateau region at higher frequencies. The temperature-dependence conductivity of the films seems to obey the Arrhenius rule.

  7. No-flash-point electrolytes applied to amorphous carbon/Li 1+ xMn 2O 4 cells for EV use

    Science.gov (United States)

    Arai, Juichi

    Use of no-flash-point electrolytes (NFEs) containing non-flammable solvent for an amorphous carbon/Li 1+ xMn 2O 4 cell has been studied. We prepared three NFEs: NFE1 was composed of 1 M (mol dm -3) of LiN[SO 2C 2F 5] 2 as supporting electrolyte, and 80 vol.% of methyl nonafluorobutyl ether (MFE) and 20 vol.% of ethyl methyl carbonate (EMC) as solvents; NFE2 was prepared by adding 0.5 M of EC (ethylene carbonate) to NFE1; and NFE3 was prepared by adding 0.1 M of LiPF 6 to NFE2. Charge-discharge performance of Li 1+ xMn 2O 4/Li cells and amorphous carbon/Li cells with NFEs were investigated. The amorphous carbon/Li 1+ xMn 2O 4 18650 cells were fabricated and investigated in terms of rate capability and cycle life. NFE2 showed good rate performance. NFE3 showed the best cycle life among the NFE electrolyte cells, though it had only fair rate performance. Electrochemical impedance spectroscopy (EIS), attenuated total reflection infrared (ATR-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were measured to study the effect of EC and LiPF 6.

  8. Characterization of Sputter-Deposited LiCoO2 Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery.

    Science.gov (United States)

    Kim, Hee-Soo; Oh, Yoong; Kang, Ki Hoon; Kim, Ju Hwan; Kim, Joosun; Yoon, Chong Seung

    2017-05-17

    All-solid-state Li-rechargeable batteries using a 500 nm-thick LiCoO2 (LCO) film deposited on two NASICON-type solid electrolyte substrates, LICGC (OHARA Inc.) and Li1.3Al0.3Ti1.7(PO4)3 (LATP), are constructed. The postdeposition annealing temperature prior to the cell assembly is critical to produce a stable sharp LCO/electrolyte interface and to develop a strong crystallographic texture in the LCO film, conducive to migration of Li ions. Although the cells deliver a limited discharge capacity, the cells cycled stably for 50 cycles. The analysis of the LCO/electrolyte interfaces after cycling demonstrates that the sharp interface, once formed by proper thermal annealing, will remain stable without any evidence for contamination and with minimal intermixing of the constituent elements during cycling. Hence, although ionic conductivity of the NASICON-type solid electrolyte is lower than that of the sulfide electrolytes, the NACSICON-type electrolytes will maintain a stable interface in contact with a LCO cathode, which should be beneficial to improving the capacity retention as well as the rate capability of the all-solid state cell.

  9. Effect of ZrO2 on conductivity of PVC–PMMA–LiBF4–DBP polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; T Uma

    2000-02-01

    The preparation and characterization of composite polymer electrolytes of PVC–PMMA–LiBF4–DBP for different concentrations of ZrO2 have been investigated. FTIR studies indicate complex formation between the polymers, salt and plasticizer. The electrical conductivity values measured by a.c. impedance spectroscopy is found to depend upon the ZrO2 concentration. The temperature dependence of the conductivity of the polymer films seems to obey the VTF relation. The conductivity values are presented and results discussed.

  10. Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells

    Science.gov (United States)

    Qian, Yunxian; Schultz, Carola; Niehoff, Philip; Schwieters, Timo; Nowak, Sascha; Schappacher, Falko M.; Winter, Martin

    2016-11-01

    In this study, the decomposition of vinylene carbonate (VC) additive and its effect on the aging behavior is investigated in Li metal half cells and lithium ion full cells. Four electrolyte systems, the reference electrolyte with three VC additive amounts, i.e., 1, 5 and 10 vol% are examined with commercial LiNi1/3Mn1/3Co1/3O2 (NMC 111) cathode material and mesophase carbon microbeads (MCMB) anode material. The thickness changes of the cathode electrolyte interphase (CEI) and of the solid electrolyte interphase (SEI) after 5 constant current cycles at 0.1C and 200 constant current/constant voltage (potential) cycles at 1C are investigated for cells containing different amounts of VC. With the help of X-ray photoelectron spectroscopy (XPS) and high-performance liquid chromatography (HPLC), a correlation between CEI thickness change and electrolyte decomposition is figured out. The addition of VC leads to a thin CEI layer and a high capacity retention in a lithium metal half cell. A strong dependence of the performance on the VC concentration is found for half cells that results from the continuous consumption of electrolyte and the electrolyte additive at the Li metal counter electrode. In contrast, for full cells, even 1 vol% of VC helps to form both a stable CEI and SEI, while a larger amount of VC increases the CEI thickness, electric contact loss and the internal resistance.

  11. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes

    Science.gov (United States)

    Zhang, Yanhua; Chen, Fei; Tu, Rong; Shen, Qiang; Zhang, Lianmeng

    2014-12-01

    High performance lithium ion conducting Li7La3Zr2O12 solid electrolytes are prepared for the first time by field assisted sintering technology (FAST). The effect of sintering temperature on the phase compositions, microstructure and Li ionic conductivity is systematically investigated. The results show that pure cubic phase LLZO can be obtained at a range of temperatures from 1100 to 1180 °C for no more than 10 min. For the sample sintered at 1150 °C, a maximum relative density of 99.8% with a total ionic conductivity as high as 5.7 × 10-4 S cm-1 are obtained at room temperature. This value is the highest among the present research. Compared with the traditional preparation methods, the current FAST is very promising to obtain high performance LLZO for its advantages of very short sintering time, a single preparation step of reaction-densification processing, and relatively lower sintering temperature.

  12. Density functional and molecular dynamics studies of solid electrolyte Li7La3Zr2O12

    Science.gov (United States)

    Johannes, Michelle; Hoang, Khang; Bernstein, Noam

    2012-02-01

    Garnet-type structured Li7La3Zr2O12(LLZO) is considered as a promising candidate for Li-ion battery solid electrolytes because of its high ionic conductivity and electrochemical and chemical stability. We use first-principles density-functional theory calculations and molecular dynamics simulations to reveal the underlying mechanism that drives a tetragonal to cubic transition at elevated temperatures, and also to explain why the cubic phase can be stabilized with the incorporation of a certain amount of impurities such as Al. We show that the relationship between the observance of a cubic phase and the measurement of a substantially higher ionic conductivity is a secondary effect not directly attributable to the presence of Al in the crystal structure. Suggestions for enhancing the ionic conductivity in LLZO will also be discussed.

  13. Influence of lithium salts on the discharge chemistry of Li-air cells

    Energy Technology Data Exchange (ETDEWEB)

    Veith, Gabriel M [ORNL; Nanda, Jagjit [ORNL; Delmau, Laetitia Helene [ORNL; Dudney, Nancy J [ORNL

    2012-01-01

    In this work we show that the use of a high boiling point ether solvent (tetraglyme) promotes the formation of Li2O2 in a lithium-air cell. In addition, another major constituent in the discharge product of a Li-air cell contains halides, from the lithium salt, and the tetraglyme used as the solvent. This information is critical to the development of Li-air electrolytes which are stable and promote the formation of the desired Li2O2 products.

  14. Influence of 15-crown-5 additive to a liquid electrolyte on the performance of Li/CFx - Systems at temperatures up to -50 °C

    Science.gov (United States)

    Ignatova, A. A.; Yarmolenko, O. V.; Tulibaeva, G. Z.; Shestakov, A. F.; Fateev, S. A.

    2016-03-01

    The additive of 15-crown-5 for liquid electrolyte for primary Li/CFx cells is proposed. In their presence the cells with 1 M LiBF4 in GBL and 1 M LiPF6 in EC/DMC/EMC are workable at low temperatures. Their discharge capacities are 140 and 110 mAh g-1 at -45 ÷ -50 °C respectively. The 15-crown-5 additive probably is adsorbed on electrodes surfaces and form Li+ conducting layers. This mechanism approved by quantum-chemical modeling.

  15. High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries.

    Science.gov (United States)

    Lin, Yong-Mao; Klavetter, Kyle C; Abel, Paul R; Davy, Nicholas C; Snider, Jonathan L; Heller, Adam; Mullins, C Buddie

    2012-07-25

    Electrodes composed of silicon nanoparticles (SiNP) were prepared by slurry casting and then electrochemically tested in a fluoroethylene carbonate (FEC)-based electrolyte. The capacity retention after cycling was significantly improved compared to electrodes cycled in a traditional ethylene carbonate (EC)-based electrolyte.

  16. Electrochemical characterization of an ambient temperature rechargeable Li battery based on low molecular weight polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, F.; Croce, F.; Panero, S. (Dept. of Chemistry, Univ. of Rome ' La Sapienza' , Rome (Italy))

    1994-06-01

    Preliminary applications of low molecular weight polymer electrolyte (PEG) and lithium salt in lithium rechargeable batteries have been reported. The electrochemical characteristics of these electrolytes have been tested by cyclic voltammetry, charge-discharge cycles and ac impedance methods. Surface layers appear to be present on both electrodes, but they develop upon time with different extension

  17. Analysis of P(VdCl-co-AN-co-MMA)-LiClO4-EC triblock copolymer electrolytes

    Indian Academy of Sciences (India)

    D Inbavalli; S Selvasekarapandian; C Sanjeeviraja; R Baskaran; S Nithya; Junichi Kawamura; Yoshitake Masuda

    2015-02-01

    The lithium ion conducting copolymer electrolytes based on poly(vinylidene chloride-co-acrylonitrileco- methyl methacrylate) P(VdCl-co-AN-co-MMA)-lithium per chlorate (LiClO4) (P(VdCl-co-AN-co-MMA): LiClO4) and poly(vinylidene chloride-co-acrylonitrile-co-methyl methacrylate)P(VdCl-co-AN-co-MMA)-lithium per chlorate (LiClO4)-ethylene carbonate (EC) (P(VdCl-co-AN-co-MMA):LiClO4:EC) of different compositions were prepared by solution-casting technique. Structural and surface morphological characterizations were studied by X-ray diffraction analysis and scanning electron microscopy measurements, respectively. Thermal and conductivity behaviour of copolymer–salt and copolymer–salt–plasticizer complexes were studied by employing differential scanning calorimetry and AC impedance measurements, respectively. The highest bulk conductivity was found to be 1.94 × 10-4 S cm-1 at 303 K for the plasticized sample. The dielectric behaviour and relaxation parameters of the samples have been presented and discussed.

  18. Neutron scattering study on cathode LiMn{sub 2}O{sub 4} and solid electrolyte 5(Li{sub 2}O)(P{sub 2}O{sub 5})

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, E., E-mail: kartini@batan.go.id; Putra, Teguh P., E-mail: kartini@batan.go.id; Jahya, A. K., E-mail: kartini@batan.go.id; Insani, A., E-mail: kartini@batan.go.id [Technology Center for Nuclear Industry Materials, National Nuclear Energy Agency, Serpong 15314 (Indonesia); Adams, S. [Department of Materials Science and Engineering, National University of Singapore, Singapore-117576 (Singapore)

    2014-09-30

    Neutron scattering is very important technique in order to investigate the energy storage materials such as lithium-ion battery. The unique advantages, neutron can see the light atoms such as Hydrogen, Lithium, and Oxygen, where those elements are negligible by other corresponding X-ray method. On the other hand, the energy storage materials, such as lithium ion battery is very important for the application in the electric vehicles, electronic devices or home appliances. The battery contains electrodes (anode and cathode), and the electrolyte materials. There are many challenging to improve the existing lithium ion battery materials, in order to increase their life time, cyclic ability and also its stability. One of the most scientific challenging is to investigate the crystal structure of both electrode and electrolyte, such as cathodes LiCoO{sub 2}, LiMn{sub 2}O{sub 4} and LiFePO{sub 4}, and solid electrolyte Li{sub 3}PO{sub 4}. Since all those battery materials contain Lithium ions and Oxygen, the used of neutron scattering techniques to study their structure and related properties are very important and indispensable. This article will review some works of investigating electrodes and electrolytes, LiMn{sub 2}O{sub 4} and 5(Li{sub 2}O)(P{sub 2}O{sub 5}), by using a high resolution powder diffraction (HRPD) at the multipurpose research reactor, RSG-Sywabessy of the National Nuclear Energy Agency (BATAN), Indonesia.

  19. Electrolytic reduction of a simulated oxide spent fuel and the fates of representative elements in a Li2O-LiCl molten salt

    Science.gov (United States)

    Park, Wooshin; Choi, Eun-Young; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Young-Hwan; Hur, Jin-Mok

    2016-08-01

    A series of electrolytic reduction experiments were carried out using a simulated oxide spent fuel to investigate the reduction behavior of elements in a mixed oxide condition and the fates of elements in the reduction process with 1.0 wt% Li2O-LiCl. It was found out that 155% of the theoretical charge was enough to reduce the simulated. Te and Eu were expected to possibly exist in the precipitate and on the anode surface, whereas Ba and Sr showed apparent dissolution behaviors. Rare earths showed relatively low metal fractions from 28.2 to 34.0% except for Y. And the solubility of rare earths was observed to be low due to the low concentration of Li2O. The reduction of U was successful as expected showing 99.8% of a metal fraction. Also it was shown that the reduction of ZrO2 would be effective when a relatively small amount was included in a metal oxide mixture.

  20. Enhanced high temperature cycling performance of LiMn2O4/graphite cells with methylene methanedisulfonate (MMDS) as electrolyte additive and its acting mechanism

    Institute of Scientific and Technical Information of China (English)

    Fengju Bian; Zhongru Zhang; Yong Yang

    2014-01-01

    The effects of methylene methanedisulfonate (MMDS) on the high-temperature (∼50◦C) cycle performance of LiMn2O4/graphite cells are investigated. By addition of 2 wt%MMDS into a routine electrolyte, the high-temperature cycling performance of LiMn2O4/graphite cells can be significantly improved. The analysis of differential capacity curves and energy-dispersive X-ray spectrometry (EDX) indicates that MMDS decomposed on both cathode and anode. The three-electrode system of pouch cell is used to reveal the capacity loss mechanism in the cells. It is shown that the capacity fading of cells without MMDS in the electrolytes is due to irreversible lithium consumption during cycling and irreversible damage of LiMn2O4 material, while the capacity fading of cell with 2 wt%MMDS in electrolytes mainly originated from irreversible lithium consumption during cycling.

  1. Novel electrolytes for Li{sub 4}Ti{sub 5}O{sub 12}-based high power lithium ion batteries with nitrile solvents

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qing; Pechy, Peter; Zakeeruddin, Shaik M.; Graetzel, Michael [Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland); Exnar, Ivan [HPL, PSE-B, CH-1015 Lausanne (Switzerland)

    2005-08-26

    With the aim of improving the rate capability and the safety of nanocrystalline Li{sub 4}Ti{sub 5}O{sub 12}-based high power lithium ion batteries, two high boiling point nitrile-based electrolytes namely, 3-ethoxypropionitrile (CH{sub 3}CH{sub 2}OCH{sub 2}CH{sub 2}CN, EPN)/1M LiTFSI and 3-(2,2,2-trifluoro)ethoxypropionitrile (CF{sub 3}CH{sub 2}OCH{sub 2}CH{sub 2}CN, FEPN)/1M LiTFSI, are investigated in this study. Both electrolytes demonstrated superior rate capability to that of EC+DMC-based electrolyte, owing to the fast interfacial charge transfer process of lithium insertion/extraction. (author)

  2. Alkylphosphate-based nonflammable gel electrolyte for LiMn{sub 2}O{sub 4} positive electrode in lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimoto, Nobuko; Gotoh, Daisuke; Egashira, Minato; Morita, Masayuki [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan)

    2008-12-01

    Polymeric gel containing alkylphosphate has been examined as nonflammable gel electrolyte for LiMn{sub 2}O{sub 4} positive electrode of lithium-ion battery (LIB). The gel was composed of a polymer matrix of poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) and a liquid component consisting of ternary solvent of trimethyl phosphate (TMP) mixed with ethylene carbonate (EC) and diethyl carbonate (DEC) that dissolves lithium salt (LiPF{sub 6} or LiBF{sub 4}). The gel composition of 0.8 M (mol dm{sup -3}) LiX (X = PF{sub 6} and BF{sub 4}) dissolved in EC + DEC + TMP (55:25:20) with PVdF-HFP showed excellent nonflammable characteristics and high ionic conductivity of ca. 3.1 mS cm{sup -1} at room temperature (20 C). The charge-discharge cycling test of LiMn{sub 2}O{sub 4} positive electrode gave good reversibility with high capacitance in the gel electrolyte. With respect to the electrolyte salt, LiBF{sub 4} was better than LiPF{sub 6} due to its thermal stability during the gel preparation. (author)

  3. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries

    Science.gov (United States)

    Zhao, Yanran; Wu, Chuan; Peng, Gang; Chen, Xiaotian; Yao, Xiayin; Bai, Ying; Wu, Feng; Chen, Shaojie; Xu, Xiaoxiong

    2016-01-01

    Li10GeP2S12 (LGPS) is incorporated into polyethylene oxide (PEO) matrix to fabricate composite solid polymer electrolyte (SPE) membranes. The lithium ion conductivities of as-prepared composite membranes are evaluated, and the optimal composite membrane exhibits a maximum ionic conductivity of 1.21 × 10-3 S cm-1 at 80 °C and an electrochemical window of 0-5.7 V. The phase transition behaviors for electrolytes are characterized by DSC, and the possible reasons for their enhanced ionic conductivities are discussed. The LGPS microparticles, acting as active fillers incorporation into the PEO matrix, have a positive effect on the ionic conductivity, lithium ion transference number and electrochemical stabilities. In addition, two kinds of all-solid-state lithium batteries (LiFeO4/SPE/Li and LiCoO2/SPE/Li) are fabricated to demonstrate the good compatibility between this new SPE membrane and different electrodes. And the LiFePO4/Li battery exhibits fascinating electrochemical performance with high capacity retention (92.5% after 50 cycles at 60 °C) and attractive capacities of 158, 148, 138 and 99 mAh g-1 at current rates of 0.1 C, 0.2 C, 0.5 C and 1 C at 60 °C, respectively. It is demonstrated that this new composite SPE should be a promising electrolyte applied in solid state batteries based on lithium metal electrode.

  4. The formation mechanism of fluorescent metal complexes at the Li(x)Ni(0.5)Mn(1.5)O(4-δ)/carbonate ester electrolyte interface.

    Science.gov (United States)

    Jarry, Angélique; Gottis, Sébastien; Yu, Young-Sang; Roque-Rosell, Josep; Kim, Chunjoong; Cabana, Jordi; Kerr, John; Kostecki, Robert

    2015-03-18

    Electrochemical oxidation of carbonate esters at the Li(x)Ni(0.5)Mn(1.5)O(4-δ)/electrolyte interface results in Ni/Mn dissolution and surface film formation, which negatively affect the electrochemical performance of Li-ion batteries. Ex situ X-ray absorption (XRF/XANES), Raman, and fluorescence spectroscopy, along with imaging of Li(x)Ni(0.5)Mn(1.5)O(4-δ) positive and graphite negative electrodes from tested Li-ion batteries, reveal the formation of a variety of Mn(II/III) and Ni(II) complexes with β-diketonate ligands. These metal complexes, which are generated upon anodic oxidation of ethyl and diethyl carbonates at Li(x)Ni(0.5)Mn(1.5)O(4-δ), form a surface film that partially dissolves in the electrolyte. The dissolved Mn(III) complexes are reduced to their Mn(II) analogues, which are incorporated into the solid electrolyte interphase surface layer at the graphite negative electrode. This work elucidates possible reaction pathways and evaluates their implications for Li(+) transport kinetics in Li-ion batteries.

  5. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    Science.gov (United States)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  6. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes

    OpenAIRE

    Bhatt, Mahesh Datt; O'Dwyer, Colm

    2015-01-01

    There is an increasing worldwide demand for high energy density batteries. In recent years, rechargeable Li-ion batteries have become important power sources, and their performance gains are driving the adoption of electrical vehicles (EV) as viable alternatives to combustion engines. The exploration of new Li-ion battery materials is an important focus of materials scientists and computational physicists and chemists throughout the world. The practical applications of Li-ion batteries and em...

  7. Coordination number of Li+ in nonaqueous electrolyte solutions determined by molecular rotational measurements.

    Science.gov (United States)

    Yuan, Kaijun; Bian, Hongtao; Shen, Yuneng; Jiang, Bo; Li, Jiebo; Zhang, Yufan; Chen, Hailong; Zheng, Junrong

    2014-04-03

    The coordination number of Li(+) in acetonitrile solutions was determined by directly measuring the rotational times of solvent molecules bound and unbound to it. The CN stretch of the Li(+) bound and unbound acetonitrile molecules in the same solution has distinct vibrational frequencies (2276 cm(-1) vs 2254 cm(-1)). The frequency difference allows the rotation of each type of acetonitrile molecule to be determined by monitoring the anisotropy decay of each CN stretch vibrational excitation signal. Regardless of the nature of anions and concentrations, the Li(+) coordination number was found to be 4-6 in the LiBF4 (0.2-2 M) and LiPF6 (1-2 M) acetonitrile solutions. However, the dissociation constants of the salt are dependent on the nature of anions. In 1 M LiBF4 solution, 53% of the salt was found to dissociate into Li(+), which is bound by 4-6 solvent molecules. In 1 M LiPF6 solution, 72% of the salt dissociates. 2D IR experiments show that the binding between Li(+) and acetonitrile is very strong. The lifetime of the complex is much longer than 19 ps.

  8. Performance evaluation of printed LiCoO{sub 2} cathodes with PVDF-HFP gel electrolyte for lithium ion microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Moon-Soo [School of Advanced Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 120-749 (Korea); Samsung Electro-Mechanics Maetan-3-dong, YeongTong-gu, Suwon City, Gyeonggi Province 442-743 (Korea); Hyun, Sang-Hoon [School of Advanced Materials Science and Engineering, College of Engineering, Yonsei University, Seoul 120-749 (Korea); Nam, Sang-Cheol [Nuricell Inc., 4F, GS Caltex New Energy Development Center, 453-2, Seongnae-dong, Gangdong-gu, Seoul 134-030 (Korea); Cho, Sung Back [Advanced Technology Research Center, Agency for Defense Development, Daejeon 305-600 (Korea)

    2008-07-01

    In order to improve the discharge capacity in lithium ion microbatteries, a thick-film cathode was fabricated by a screen printing using LiCoO{sub 2} pastes. The printed cathode showed a different discharge curves when the cell was tested using various (liquid, gel and solid-state) electrolytes. When a cell test was performed with organic liquid electrolyte, the maximum discharge capacity was 200 {mu}Ah cm{sup -2}, which corresponded to approximately 133 mAh g{sup -1} when the loading weight of LiCoO{sub 2} was calculated. An all-solid-state microbattery could be assembled using sputtered LiPON electrolyte, an evaporated Li anode, and printed LiCoO{sub 2} cathode films without delamination or electrical problems. However, the highest discharge capacity showed a very small value (7 {mu}Ah cm{sup -2}). This problem could be improved using a poly(vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) gel electrolyte, which enhanced the contact area and adhesion force between cathode and electrolyte. The discharge value of this cell was measured as approximately 164 {mu}Ah cm{sup -2} ({approx}110 mAh g{sup -1}). As the PVDF-HFP electrolyte had a relatively soft contact property with higher ionic conductance, the cell performance was improved. In addition, the cell can be fabricated in a leakage-free process, which can resolve many safety problems. According to these results, there is a significant possibility that a film prepared using the aforementioned paste with screen printing and PVDF-HFP gel electrolyte is feasible for a microbattery. (author)

  9. Structural and Electrochemical Consequences of Al and Ga Cosubstitution in Li7La3Zr2O12 Solid Electrolytes.

    Science.gov (United States)

    Rettenwander, Daniel; Redhammer, Günther; Preishuber-Pflügl, Florian; Cheng, Lei; Miara, Lincoln; Wagner, Reinhard; Welzl, Andreas; Suard, Emmanuelle; Doeff, Marca M; Wilkening, Martin; Fleig, Jürgen; Amthauer, Georg

    2016-04-12

    Several "Beyond Li-Ion Battery" concepts such as all solid-state batteries and hybrid liquid/solid systems envision the use of a solid electrolyte to protect Li-metal anodes. These configurations are very attractive due to the possibility of exceptionally high energy densities and high (dis)charge rates, but they are far from being realized practically due to a number of issues including high interfacial resistance and difficulties associated with fabrication. One of the most promising solid electrolyte systems for these applications is Al or Ga stabilized Li7La3Zr2O12 (LLZO) based on high ionic conductivities and apparent stability against reduction by Li metal. Nevertheless, the fabrication of dense LLZO membranes with high ionic conductivity and low interfacial resistances remains challenging; it definitely requires a better understanding of the structural and electrochemical properties. In this study, the phase transition from garnet (Ia3̅d, No. 230) to "non-garnet" (I4̅3d, No. 220) space group as a function of composition and the different sintering behavior of Ga and Al stabilized LLZO are identified as important factors in determining the electrochemical properties. The phase transition was located at an Al:Ga substitution ratio of 0.05:0.15 and is accompanied by a significant lowering of the activation energy for Li-ion transport to 0.26 eV. The phase transition combined with microstructural changes concomitant with an increase of the Ga/Al ratio continuously improves the Li-ion conductivity from 2.6 × 10(-4) S cm(-1) to 1.2 × 10(-3) S cm(-1), which is close to the calculated maximum for garnet-type materials. The increase in Ga content is also associated with better densification and smaller grains and is accompanied by a change in the area specific resistance (ASR) from 78 to 24 Ω cm(2), the lowest reported value for LLZO so far. These results illustrate that understanding the structure-properties relationships in this class of materials allows

  10. Enhancement of lithium ion conductivity by doping Li3BO3 in Li2S-P2S5 glass-ceramics electrolytes for all-solid-state batteries

    Science.gov (United States)

    Eom, Minyong; Choi, Sunho; Son, Seunghyeon; Choi, Lakyoung; Park, Chanhwi; Shin, Dongwook

    2016-11-01

    (100-x) (0.78Li2S·0.22P2S5)·xLi3BO3 (0 ≤ x ≤ 5) solid electrolytes are prepared via mechanical milling and a post heat-treatment process, and the resulting electrochemical properties are investigated in conjunction with structural analysis. Adding of Li3BO3 into the (100-x) (0.78Li2S·0.22P2S5)·xLi3BO3 solid electrolyte is expected to enhance the conductivity and lower the activation energy as a consequence of changing the structural unit in the glass network. It turned out that the doping of Li3BO3 enhances the conductivity by enlarging the glass forming region and promoting precipitation of high lithium ion conductive thio-LISICON II analog. 97 (0.78Li2S·0.22P2S5)·3Li3BO3 (x = 3) glass-ceramics exhibits the highest conductivity (1.03 × 10-3 S cm-1). Structural analysis shows that the samples with Li3BO3 added to the electrolyte are composed of the main structural unit of PS43- with partially-modified structural unit of PO43-, which are believed to effectively enhance the conductivity and decrease the activation energy. In glass-ceramics produced from these materials, the thio-LISICON II phase with higher ionic conductivity tends to be stabilized by the addition of Li3BO3. Additionally, the formation of space-charge layer is relaxed by Li3BO3 doping. As a result, the all-solid-state cell shows high initial discharge capacity of 156 mAh g-1, and the capacity is retained to be 149 mAh g-1 for 40 cycles.

  11. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Science.gov (United States)

    Walkowiak, Mariusz; Zalewska, Aldona; Jesionowski, Teofil; Waszak, Daniel; Czajka, Bogdan

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica.

  12. Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Walkowiak, Mariusz; Waszak, Daniel; Czajka, Bogdan [Central Laboratory of Batteries and Cells, ul. Forteczna 12, 61-362 Poznan (Poland); Zalewska, Aldona [Warsaw University of Technology, Department of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland); Jesionowski, Teofil [Poznan University of Technology, Institute of Chemical Technology and Engineering, Pl. Marii Sklodowskiej-Curie 2, 60-965 Poznan (Poland)

    2006-09-13

    The aim of the presented work was to perform a preliminary study the physico-chemical properties of hybrid organic-inorganic gel electrolytes for Li-ion batteries based on the PVdF-HFP polymeric matrix and surface modified fumed silicas. Modifications were done by means of the so-called dry method using seven different silanes differing in the nature of the principal functional group: N-2-(aminoethyl)-3-amino propyltrimethoxysilane, 3-glycidoxypropyltrimetoxysilane, 3-mercaptopropyltrimetoxysilane, n-octyltriethoxysilane, 3-(chloropropyl)trimethoxysilane, 3-methacryloxypropyltrimetoxysilane, vinyltrimethoxysilane. The PVdF-HFP gels were prepared according to the so-called Bellcore process (two-step method). Impact of the silicas surface functionality on the degree of crystallinity of the polymeric membranes was studied using the differential scanning calorimetry technique. Applicability of the prepared gel electrolytes for the Li-ion technology was estimated on the basis of specific conductivity measurements. It was shown that modification of the silica surface by most of the silanes causes an increase in the gel specific conductivity by about two orders of magnitude as compared to gel with unmodified silica. (author)

  13. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study.

    Science.gov (United States)

    Gachot, Grégory; Ribière, Perrine; Mathiron, David; Grugeon, Sylvie; Armand, Michel; Leriche, Jean-Bernard; Pilard, Serge; Laruelle, Stéphane

    2011-01-15

    To allow electric vehicles to be powered by Li-ion batteries, scientists must understand further their aging processes in view to extend their cycle life and safety. For this purpose, we focused on the development of analytical techniques aiming at identifying organic species resulting from the degradation of carbonate-based electrolytes (EC-DMC/LiPF(6)) at low potential. As ESI-HRMS provided insightful information to the mechanism and chronological formation of ethylene oxide oligomers, we implemented "gas" GC/MS experiments to explore the lower mass range corresponding to highly volatile compounds. With the help of chemical simulation tests, we were able to discriminate their formation pathways (thermal and/or electrochemical) and found that most of the degradation compounds originate from the electrochemically driven linear alkyl carbonate reduction upon cycling and to a lesser extent from a two-step EC reduction. Deduced from these results, we propose an overall electrolyte degradation scheme spanning the entire mass range and the chemical or electrochemical type of processes.

  14. Advanced fuel cell development. Progress report, October--December 1977. [LiAlO/sub 2/ matrix for molten carbonate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ackerman, J.P.; Kinoshita, K.; Finn, P.A.; Sim, J.W.; Nelson, P.A.

    1978-03-01

    Advanced fuel cell research and development activities in Argonne National Laboratory (ANL) during the period October to December 1977 are described. This work has been aimed at understanding and improving the performance of fuel cells having molten alkali-carbonate mixtures as electrolytes; the fuel cells operate at temperatures near 925/sup 0/K. The largest part of this effort has been directed toward development of methods for fabricating and evaluating electrolyte structures for these cells. Cell performance, life, and cost are the criteria of optimization. During this quarter, the desirable physical characteristics of LiAlO/sub 2/ particles, which act to retain the molten carbonates in the electrolyte structure of the cell, have been more clearly defined; a low temperature synthesis of the stable ..gamma..-allotrope of LiAlO/sub 2/ has been devised; an extensive study of LiAlO/sub 2/ stability has begun; and analytical methods have been refined for separating LiAlO/sub 2/, in unaltered form, from carbonates. Testing of various electrolyte structures and other components in 7-cm-dia round cells has provided a means for evaluating new electrolyte developments and verifying a previously developed method for protecting the wet-seal areas of a cell from corrosion.

  15. Investigation of Ionic Conductivity of Nanocomposite Polymer Electrolytes Based On PVDF-HFP/PVC Blend, LiClO4 and TiO2 Nanofiller

    Science.gov (United States)

    Basri, N. H.; Mohamed, N. S.

    2010-07-01

    The effects of nanosized TiO2 on the conductivity of PVDF-HFP/PVC-LiClO4 was studied by means of impedance spectroscopy and x-ray diffraction (XRD). The addition of TiO2 nanofiller increases the crystalline phase fraction but slightly increases the conductivity of the PVDF-HFP/PVC-LiClO4 complex. The increase in conductivity is attributed to the formation of highly conducting layer at the electrolyte/filler interface. The temperature dependence of conductivity obeys the VTF type behaviour while the transference number confirms that the electrolyte containing 6 wt.% TiO2 is an ionic conductor are ionic conductors.

  16. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nordh, Tim; Younesi, Reza; Brandell, Daniel

    2015-01-01

    . Li||LTO cells with electrolytes consisting of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate:diethyl carbonate (LiPF6 in EC:DEC) were cycled in two different voltage windows of 1.0-2.0 V and 1.4-2.0 V. LTO electrodes were characterized after 5 and 100 cycles. Also the pristine...... electrode as such, and an electrode soaked in the electrolyte were analyzed by varying the photon energies enabling depth profiling of the outermost surface layer. The main components of the surface layer were found to be ethers, P-O containing compounds, and lithium fluoride....

  17. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  18. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-02-01

    Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  19. Studies on structural, thermal and AC conductivity scaling of PEO-LiPF6 polymer electrolyte with added ionic liquid [BMIMPF6

    Directory of Open Access Journals (Sweden)

    S. K. Chaurasia

    2015-07-01

    Full Text Available Preparation and characterization of polymer electrolyte films of PEO+10wt.% LiPF6 + xwt.% BMIMPF6 (1-butyl-3-methylimidazolium hexafluorophosphate containing dopant salt lithium hexafluorophosphate (LiPF6 and ionic liquid (BMIMPF6 having common anion PF 6 - are reported. The ionic conductivity of the polymer electrolyte films has been found to increase with increasing concentration of BMIMPF6 in PEO+10 wt.% LiPF6 due to the plasticization effect of ionic liquid. DSC and XRD results show that the crystallinity of polymer electrolyte decreases with BMIMPF6 concentration which, in turn, is responsible for the increase in ionic conductivity. FTIR spectroscopic study shows the complexation of salt and/or ionic liquid cations with the polymer backbone. Ion dynamics behavior of PEO+LiPF6 as well as PEO+LiPF6 + BMIMPF6 polymer electrolytes was studied by frequency dependent conductivity, σ(f measurements. The values σ(f at various temperatures have been analyzed in terms of Jonscher power law (JPL and scaled with respect to frequency which shows universal power law characteristics at all temperatures.

  20. Preparation and properties of PEO/LiClO4/KH560-SiO2 composite polymer electrolyte by sol-gel composite-in-situ method

    Institute of Scientific and Technical Information of China (English)

    PAN Chun-yue; GAO Jin-huan; ZHANG Qian; FENG Qing; CHAO meng

    2008-01-01

    Composite polymer electrolytes based on polyethylene oxide (PEO) were prepared by using LiClO4 as doping salt and silane-modified SiO2 as filler. SiO2 was formed in-situ in (PEO)8LiClO4 matrix by the hydrolysis and condensation reaction of Si(OC4H9)4. The crystallinity, morphology and ionic conductivity of composite polymer electrolyte films were examined by differential scanning calorimetry, scanning electron microscopy, atom force microscopy and alternating current impedance spectroscopy, respectively. Compared with the crystallinity of the unmodified SiO2 as inert filler, that of composite polymer electrolytes is decreased. The results show that silane-modified SiO2 particles are uniformly dispersed in (PEO)8LiClO4 composite polymer electrolyte film and the addition of silane-modified SiO2 increases the ionic conductivity of the (PEO)8LiClO4 more noticeably. When the mass fraction of SiO2 is about 10%, the conductivity of (PEO)8LiClO4-modified SiO2 attains a maximum value of 4.8×10-5S·cm-1.

  1. Preparation and Molten Salt as Performances of Room Electrolyte carbon Capacitor Based on Trifluoroacetamide n CarbonLiPF6 and

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A novel room moRen salt with an eutectic temperature of about -62℃ is prepared using LiPF6 and trifluoroacetamide as precursors. And then its performance is evaluated in carbon-carbon electrochemical double layerdifferent molar ratios are characterized and then the liquid-solid phase diagram is presented. The electrochemical performance tests show that the as-prepared LiPF6/trifluoroacetamide molten salt is a promising electrolyte candidate for carboncarbon EDLCs.

  2. Pulsed-Field Gradient NMR Self Diffusion and Ionic Conductivity Measurements for Liquid Electrolytes Containing LiBF₄ and Propylene Carbonate

    OpenAIRE

    Richardson, PM; Voice, AM; Ward, IM

    2014-01-01

    Liquid electrolytes have been prepared using lithium tetrafluoroborate (LiBF₄) and propylene carbonate (PC). Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were taken for the cation, anion and solvent molecules using lithium (⁷Li), fluorine (¹⁹F) and hydrogen (¹H) nuclei, respectively. It was found that lithium diffusion was slow compared to the much larger fluorinated BF₄ anion likely resulting from a large solvation shell of the lithium. Ionic conductivity and visco...

  3. Electrical conductivity of melts containing rare-earth halides. II. MCl-PrCl{sub 3} (M = Li, Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Potapov, Alexei M.; Filatov, Evgeniy S. [Institute of High Temperature Electrochemistry, Ekaterinburg (Russian Federation); Rycerz, Leszek [Wroclaw Univ. of Technology (Poland). Inst. of Inorganic Chemistry and Metallurgy of Rare Elements; Gaune-Escard, Marcelle [Ecole Polytechnique, Marseille (France). Dept. Mecanique Energetique, IUSTI-CNRS UMR 7343

    2013-01-15

    The specific conductivity of molten LiCl-PrCl{sub 3}, RbCl-PrCl{sub 3}, and CsCl-PrCl{sub 3} was measured from the liquidus temperature up to {proportional_to} 1180 K by a conventional ac technique. The molar conductivity {Lambda} was calculated by using literature data on the densities of the binary systems. In all cases, it was found that the plot ln {Lambda} vs. 1/T is not a straight line. Thereby the activation energy of the conductivity does not remain constant but reduces with increasing temperature. In the specific and molar conductivity isotherms, strong deviations from additivity are observed with maxima in a range 35-45 mol. % PrCl{sub 3}. The results conform to the idea of dominating octahedral local coordination of Pr{sup 3+} ions over the entire concentration range. (orig.)

  4. LiAlO2-LiNaCO3 composite electrolyte for solid oxide fuel cells.

    Science.gov (United States)

    Raza, Rizwan; Gao, Zhan; Singh, Tavpraneet; Singh, Gajendra; Li, Song; Zhu, Bin

    2011-06-01

    This paper reports a new approach to develop functional solid oxide fuel cells (SOFC) electrolytes based on nanotechnology and two-phase nanocomposite approaches using non-oxygen ion or proton conductors, e.g., lithium aluminate-lithium sodium carbonate, with great freedom in material design and development. Benefited by nanotechnology and nanocomposite technology, the lithium aluminate-lithium sodium carbonate two-phase composite electrolytes can significantly enhance the material conductivity and fuel cell performance at low temperatures, such as 300 degrees C-600 degrees C compared to non-nano scale materials. The conductivity mechanism and fuel cell functions are discussed to be benefited by the interfacial behavior between the two constituent phases in nano-scale effects, where oxygen ion and proton conductivity can be created, although there are no intrinsic mobile oxygen ions and protons. It presents a new scientific approach to design and develop fuel cell materials in breaking the structural limitations by using non-ionic conductors on the desired ions i.e., proton and oxygen ions, and creating high proton and oxygen ion conductors through interfaces and interfacial mechanism.

  5. {sup 7}Li and {sup 19}F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Capiglia, C.; Saito, Y.; Kageyama, H. [Osaka National Research Inst., AIST, Ikeda (Japan); Mustarelli, P. [Consiglio Nazionale delle Ricerche, Pavia (Italy). Centro di Studio per la Termodinamica ed Elettrochimica dei Sistemi Salini Fusi e Solidi; Pavia Univ. (Italy). Ist. di Fisica Chimica; Iwamoto, T.; Tabuchi, T.; Tukamoto, H. [Japan Storage Battery Co. Ltd., Kyoto (Japan). Corporate Research and Development Center

    1999-09-01

    In this paper, electrolyte solutions of ethylene carbonate (EC) and ethylene methylene carbonate (EMC) with different salts as LiPF{sub 6}, LiBF{sub 4} and LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} were prepared and characterized using Pulsed Field Gradient (PFG) NMR and DSC. Cation transport numbers, {tau}{sup +}, ranging between 0.37 and 0.49 were obtained. The maximum value of 0.49 was obtained in the case of a 0.5 M solution of LiBF{sub 4} in 2:8 EC:EMC. The DSC data suggest that the increase of EMC stabilizes the electrolyte solution towards low temperature, and than a 2:8 EC:EMC ratio assures good stability at low temperature to the electrolyte solution. While LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} seems to score the best in terms of low temperature stability, LiPF{sub 6} may offer the best cost/performances compromise. (orig.)

  6. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies

    Science.gov (United States)

    Shin, Hosop; Park, Jonghyun; Han, Sangwoo; Sastry, Ann Marie; Lu, Wei

    2015-03-01

    The mechanical instability of the Solid Electrolyte Interphase (SEI) layer in lithium ion (Li-ion) batteries causes significant side reactions resulting in Li-ion consumption and cell impedance rise by forming further SEI layers, which eventually leads to battery capacity fade and power fade. In this paper, the composition-/structure-dependent elasticity of the SEI layer is investigated via Atomic Force Microscopy (AFM) measurements coupled with X-ray Photoelectron Spectroscopy (XPS) analysis, and atomistic calculations. It is observed that the inner layer is stiffer than the outer layer. The measured Young's moduli are mostly in the range of 0.2-4.5 GPa, while some values above 80 GPa are also observed. This wide variation of the observed elastic modulus is elucidated by atomistic calculations with a focus on chemical and structural analysis. The numerical analysis shows the Young's moduli range from 2.4 GPa to 58.1 GPa in the order of the polymeric, organic, and amorphous inorganic components. The crystalline inorganic component (LiF) shows the highest value (135.3 GPa) among the SEI species. This quantitative observation on the elasticity of individual components of the SEI layer must be essential to analyzing the mechanical behavior of the SEI layer and to optimizing and controlling it.

  7. Fabrication of All-Solid-State Lithium-ion Cells using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets

    Directory of Open Access Journals (Sweden)

    MAO SHOJI

    2016-08-01

    Full Text Available All-solid-state lithium-ion batteries using Li+-ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the all-solid-state lithium-ion batteries can be made in bipolar cell configurations. However, the special ideas and techniques based on ceramic processing are required to construct the electrochemical interface for all-solid-state lithium-ion batteries since the battery development has been done so far based on liquid electrolyte system over 100 years. As one of promising approaches to develop practical all-solid-state batteries, we have been focusing on three-dimensionally (3D structured cell configurations such as an interdigitated combination of 3D pillars of cathode and anode, which can be realized by using solid electrolyte membranes with hole-array structures. The application of such kinds of 3D structures effectively increases the interface between solid electrode and solid electrolyte per unit volume, lowering the internal resistance of all-solid-state lithium-ion batteries. In this study, Li6.25Al0.25La3Zr2O12 (LLZAl, which is a Al-doped Li7La3Zr2O12 (LLZ with Li+-ion conductivity of ~10–4 S cm–1 at room temperature and high stability against lithium-metal, was used as a solid electrolyte, and its pellets with 700 um depth holes in 700 x 700 um2 area were fabricated to construct 3D-structured all-solid-state batteries with LiCoO2 / LLZAl / lithium-metal configuration. It is expected that the LiCoO2-LLZAl interface is formed by point to point contact even when the LLZAl pellet with 3D hole-array structure is applied. Therefore, the application of mechanically soft Li3BO3 with a low melting point at around 700 °C was also performed as a supporting

  8. Transport Properties of xAgI-(1-x)LiPO3 Composite Electrolytes

    Science.gov (United States)

    Singh, D. P.; Shahi, K.; Kar, K. K.

    2011-07-01

    xAgI-(1-x) LiPO3 composite glasses were made by quenching of molten mixture. XRD confirms that γ-AgI is stabilized in LiPO3 glass matrix. A room temperature conductivity of ˜10-3 S/cm is achieved in the composite glass. The ac conductivity follows Jonscher power law (JPL). Higher composition samples also obey time temperature superposition scaling.

  9. Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability

    Science.gov (United States)

    Chiappone, A.; Nair, Jijeesh R.; Gerbaldi, C.; Jabbour, L.; Bongiovanni, R.; Zeno, E.; Beneventi, D.; Penazzi, N.

    Methacrylic-based thermo-set gel-polymer electrolyte membranes obtained by a very easy, fast and reliable free radical photo-polymerisation process and reinforced with microfibrillated cellulose particles are here presented. The morphology of the composite electrolytes is investigated by scanning electron microscopy and their thermal behaviour (characteristic temperatures, degradation temperature) are investigated by thermo-gravimetric analysis and differential scanning calorimetry. The composite membranes prepared exhibit excellent mechanical properties, with a Young's modulus as high as about 80 MPa at ambient temperature. High ionic conductivity (approaching 10 -3 S cm -1 at 25 °C) and good overall electrochemical performances are maintained, enlightening that such specific approach would make these hybrid organic, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible lithium based power sources.

  10. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    Science.gov (United States)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  11. Novel binary deep eutectic electrolytes for rechargeable Li-ion batteries based on mixtures of alkyl sulfonamides and lithium perfluoroalkylsulfonimide salts

    Science.gov (United States)

    Geiculescu, O. E.; DesMarteau, D. D.; Creager, S. E.; Haik, O.; Hirshberg, D.; Shilina, Y.; Zinigrad, E.; Levi, M. D.; Aurbach, D.; Halalay, I. C.

    2016-03-01

    Ionic liquids (IL's) were proposed for use in Li-ion batteries (LIBs), in order to mitigate some of the well-known drawbacks of LiPF6/mixed organic carbonates solutions. However, their large cations seriously decrease lithium transference numbers and block lithium insertion sites at electrode-electrolyte interfaces, leading to poor LIB rate performance. Deep eutectic electrolytes (DEEs) (which share some of the advantages of ILs but possess only one cation, Li+), were then proposed, in order to overcome the difficulties associated with ILs. We report herein on the preparation, thermal properties (melting, crystallization, and glass transition temperatures), transport properties (specific conductivity and viscosity) and thermal stability of binary DEEs based on mixtures of lithium bis(trifluoromethane)sulfonimide or lithium bis(fluoro)sulfonimide salts with an alkyl sulfonamide solvent. Promise for LIB applications is demonstrated by chronoamperometry on Al current collectors, and cycling behavior of negative and positive electrodes. Residual current densities of 12 and 45 nA cm-2 were observed at 5 V vs. Li/Li+ on aluminum, 1.5 and 16 nA cm-2 at 4.5 V vs. Li/Li+, respectively for LiFSI and LiTFSI based DEEs. Capacities of 220, 130, and 175 mAh· g-1 were observed at low (C/13 or C/10) rates, respectively for petroleum coke, LiMn1/3Ni1/3Co1/3O2 (a.k.a. NMC 111) and LiAl0.05Co0.15Ni0.8O2 (a.k.a. NCA).

  12. Aluminaless composite solid electrolytes. Pt. 1. Enhanced electrical transport in. beta. -Li sub 2 SO sub 4 -Na sub 2 SO sub 4 system

    Energy Technology Data Exchange (ETDEWEB)

    Chaklanobis, S.; Shahi, K. (Dept. of Physics, Indian Inst. of Tech., Kanpur (India)); Syal, R.K. (Dept. of Chemistry, Christ Church Coll., Kanpur (India))

    1990-12-01

    {beta}-Li{sub 2}SO{sub 4}-Na{sub 2}SO{sub 4} composites have been prepared by quenching the melt and characerized by DTA and complex impedance analysis to obtain dc electrical conductivity ({sigma}{sub dc}). The samples containing upto 50 m/o Na{sub 2}SO{sub 4} are actually mixtures of {beta}-Li{sub 2}SO{sub 4} and LiNaSO{sub 4} and those containing 50 to 100 m/o Na{sub 2}SO{sub 4} are essentially mixtures of Na{sub 2}SO{sub 4} and LiNaSO{sub 4}. Both the mixtures exhibit enhanced {sigma} by 1 to 2 orders of magnitude. The mechanism of enhancement in these mixtures appears to be similar to that in Al{sub 2}O{sub 3}-dispersed solid electrolytes, better known as ''composite solid electrolytes''. Thus there is enormous scope of further studies on the so-called aluminaless composite solid electrolytes, and possibility of even developing them into commercial solid electrolytes. (orig.).

  13. An Artificial SEI Enables the Use of A LiNi0.5Mn1.5O4 5 V Cathode with Conventional Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juchuan [ORNL; Baggetto, Loic [ORNL; Martha, Surendra K [ORNL; Veith, Gabriel M [ORNL; Nanda, Jagjit [ORNL; Liang, Chengdu [ORNL; Dudney, Nancy J [ORNL

    2013-01-01

    LiNi0.5Mn1.5O4 spinel is considered one of the most promising cathodes for advanced lithium ion batteries. However, the operation potential of LiNi0.5Mn1.5O4, ~4.75 V, is beyond the high voltage limit of the state-of-art electrolyte, ~4.3 V. Here, using thin films of LiNi0.5Mn1.5O4 as a model material, we show evidence that an artificial solid electrolyte interphase (SEI) enables the use of this 5 V cathode with conventional carbonate electrolytes. A thin coating of Lipon (lithium phosphorus oxynitride) as an artificial SEI on LiNi0.5Mn1.5O4 could remedy the decomposition of the electrolyte. The thickness of the Lipon artificial SEI is optimized by balancing the protection and additional resistance. The strategy of artificial SEI on cathodes is expected to enable the wide application of other high voltage cathodes for lithium ion batteries.

  14. 1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode

    Science.gov (United States)

    Wang, Long; Ma, Yulin; Li, Qin; Zhou, Zhenxin; Cheng, Xinqun; Zuo, Pengjian; Du, Chunyu; Gao, Yunzhi; Yin, Geping

    2017-09-01

    1,3,6-Hexanetricarbonitrile (HTN) has been investigated as an electrolyte additive to improve the electrochemical performance of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode at high operating voltage (4.8 V). Linear sweep voltammetry (LSV) results indicate that HTN can improve the oxidation potential of the electrolyte. The influences of HTN on the electrochemical behaviors and surface properties of the cathode at high voltage have been investigated by galvanostatic charge/discharge test, electrochemical impedance spectroscopy (EIS), and ex-situ physical characterizations. Charge-discharge results demonstrate that the capacity retention of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode in 1% HTN-containing electrolyte after 150 cycles at 0.5 C is improved to 92.3%, which is much higher than that in the standard electrolyte (ED). Combined with the theoretical calculation, ICP tests, XRD and XPS analysis, more stable and homogeneous interface film is confirmed to form on the cathode surface with incorporation of HTN, meanwhile, the electrolyte decomposition and the cathode structural destruction are restrained effectively upon cycling at high voltage, leading to improved electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode.

  15. Highly conformal and high-ionic conductivity thin-film electrolyte for 3D-structured micro batteries: Characterization of LiPON film deposited by MOCVD method

    Science.gov (United States)

    Fujibayashi, Takashi; Kubota, Yusuke; Iwabuchi, Katsuhiko; Yoshii, Naoki

    2017-08-01

    This paper reports a lithium phosphorus oxynitride (LiPON) thin-film electrolyte deposited using a metalorganic-chemical vapor deposition (MOCVD) method for 3D-structured micro batteries. It is shown that the MOCVD-LiPON film has both highly-conformal step coverage on a patterned substrate with line/space=2μm/2μm and aspect ratio=1 (51±3 nm) and high-ionic conductivity for very thin films deposited at 4.7 nm/min (5.9×10-6 S/cm for 190 nm and 5.3×10-6 S/cm for 95 nm). Detailed material characterization attributes the enhancement in ionic conductivity to a decrease in nanocrystallite size and improvement in chemical-composition uniformity in the film. In addition, electrochemical characterization of an all-solid-state thin-film battery fabricated with the 190 nm-thick LiPON film (Si substrate/Ti/Pt/LiCoO2/LiPON/a-Si:H/Cu) demonstrates that the LiPON film can successfully act as the electrolyte for lithium-ion batteries. Therefore, the MOCVD-LiPON film is a promising candidate material to realize 3D-structured micro batteries in the near future.

  16. Highly conformal and high-ionic conductivity thin-film electrolyte for 3D-structured micro batteries: Characterization of LiPON film deposited by MOCVD method

    Directory of Open Access Journals (Sweden)

    Takashi Fujibayashi

    2017-08-01

    Full Text Available This paper reports a lithium phosphorus oxynitride (LiPON thin-film electrolyte deposited using a metalorganic-chemical vapor deposition (MOCVD method for 3D-structured micro batteries. It is shown that the MOCVD-LiPON film has both highly-conformal step coverage on a patterned substrate with line/space=2μm/2μm and aspect ratio=1 (51±3 nm and high-ionic conductivity for very thin films deposited at 4.7 nm/min (5.9×10-6 S/cm for 190 nm and 5.3×10-6 S/cm for 95 nm. Detailed material characterization attributes the enhancement in ionic conductivity to a decrease in nanocrystallite size and improvement in chemical-composition uniformity in the film. In addition, electrochemical characterization of an all-solid-state thin-film battery fabricated with the 190 nm-thick LiPON film (Si substrate/Ti/Pt/LiCoO2/LiPON/a-Si:H/Cu demonstrates that the LiPON film can successfully act as the electrolyte for lithium-ion batteries. Therefore, the MOCVD-LiPON film is a promising candidate material to realize 3D-structured micro batteries in the near future.

  17. Effects of 12-crown-4 ether on the electrochemical performance of CoO2 and TiS2 cathodes in Li polymer electrolyte cells

    Science.gov (United States)

    Nagasubramanian, G.; Attia, Alan I.; Halpert, G.

    1992-01-01

    The effect of adding 12-crown-4 ether (12Cr4) to the polyethylene oxide (PEO) electrolyte on the electrochemical properties of cells with Li(x)CoO2 or TiS2 as the cathode was investigated. The polymer electrolyte films were: (1) PEO, LiBF4; (2) PEO, LiBF4 with 12Cr4; (3) Li(x)CoO2, PEO, and LiBF4; and (4) Li(x)CoO2, PEO, LiBF4, and 12Cr4. It was found that, although 12Cr4 improved the cell performance over cells without 12Cr4 in the shallow c/d cycles (cyclic voltammetric behavior), it did not seem to prolong the active life of the cell. The cells with CoO2 as the cathode failed after a few c/d cycles, while similar cells with TiS2 did not fail even after 12 c/d cycles. The probable cause of failure in the case of CoO2 is ascribed to the instability of the CoO2 cathode.

  18. Effects of 12-crown-4 ether on the electrochemical performance of CoO2 and TiS2 cathodes in Li polymer electrolyte cells

    Science.gov (United States)

    Nagasubramanian, G.; Attia, Alan I.; Halpert, G.

    1992-01-01

    The effect of adding 12-crown-4 ether (12Cr4) to the polyethylene oxide (PEO) electrolyte on the electrochemical properties of cells with Li(x)CoO2 or TiS2 as the cathode was investigated. The polymer electrolyte films were: (1) PEO, LiBF4; (2) PEO, LiBF4 with 12Cr4; (3) Li(x)CoO2, PEO, and LiBF4; and (4) Li(x)CoO2, PEO, LiBF4, and 12Cr4. It was found that, although 12Cr4 improved the cell performance over cells without 12Cr4 in the shallow c/d cycles (cyclic voltammetric behavior), it did not seem to prolong the active life of the cell. The cells with CoO2 as the cathode failed after a few c/d cycles, while similar cells with TiS2 did not fail even after 12 c/d cycles. The probable cause of failure in the case of CoO2 is ascribed to the instability of the CoO2 cathode.

  19. Evidence of the chemical stability of the garnet-type solid electrolyte Li5La3Ta2O12 towards lithium by a surface science approach

    Science.gov (United States)

    Fingerle, Mathias; Loho, Christoph; Ferber, Thimo; Hahn, Horst; Hausbrand, René

    2017-10-01

    The chemical stability between Li metal and garnet-type solid electrolytes is currently under debate, mainly catalyzed by theoretical studies. Here, we investigate the stability of Li5La3Ta2O12 (LLTaO) towards lithium experimentally. Using a surface science approach, lithium is stepwise evaporated on an LLTaO thin film grown by CO2-laser assisted chemical vapor deposition. By annealing of the LLTaO thin film, the Li2CO3 surface layer can be removed, leaving only small traces of Li2CO3, Li2O2 and Li2O behind. The interface formation of LLTaO towards lithium is then monitored by means of X-ray and ultraviolet photoelectron spectroscopy. Neither reaction products related to decomposition nor structural changes in the matrix of the Ta-based garnet-type solid-electrolyte can be detected, indicating that LLTaO exhibits chemical stability under equilibrium conditions. Furthermore, a model for the energy level alignment at the LLTaO/Li interface is discussed.

  20. Ion conduction and relaxation in PEO-LiTFSI-Al{sub 2}O{sub 3} polymer nanocomposite electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-05-07

    Ion conduction and relaxation in PEO-LiTFSI-Al{sub 2}O{sub 3} polymer nanocomposite electrolytes have been studied for different concentrations of Al{sub 2}O{sub 3} nanoparticles. X-ray diffraction and differential scanning calorimetric studies show that the maximum amorphous phase of PEO is observed for PEO-LiTFSI embedded with 5 wt. % Al{sub 2}O{sub 3}. The maximum ionic conductivity ∼3.3 × 10{sup −4} S cm{sup −1} has been obtained for this composition. The transmission electron microscopic image shows a distribution of Al{sub 2}O{sub 3} nanoparticles in all compositions with size of <50 nm. The temperature dependence of the ionic conductivity follows Vogel-Tamman-Fulcher nature, indicating a strong coupling between ionic and polymer chain segmental motions. The scaling of the ac conductivity implies that relaxation dynamics follows a common mechanism for different temperatures and Al{sub 2}O{sub 3} concentrations. The imaginary modulus spectra are asymmetric and skewed toward the high frequency sides of the maxima and analyzed using Havriliak-Negami formalism. The temperature dependence of the relaxation time obtained from modulus spectra also exhibits Vogel-Tamman-Fulcher nature. The values of the stretched exponent obtained from Kohlrausch-Williams-Watts fit to the modulus data are fairly low, suggesting highly non-exponential relaxation for all concentrations of Al{sub 2}O{sub 3} in these electrolytes.

  1. Electroreduction of graphite in LiClO{sub 4}-ethylene carbonate electrolyte. Characterization of the passivating layer by transmission electron microscopy and Fourier-transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Naji, A. [Henri Poincare Univ., 39 - Vandoeuvre-les-Nancy (France). Lab. de Chimie du Solide Mineral; Ghanbaja, J. [Henri Poincare Univ., 39 - Vandoeuvre-les-Nancy (France). Lab. de Chimie du Solide Mineral; Humbert, B. [CNRS-UHP, LCPE, 54 - Villers-les-Nancy (France); Willmann, P. [CNES, 31 - Toulouse (France); Billaud, D. [Henri Poincare Univ., 39 - Vandoeuvre-les-Nancy (France). Lab. de Chimie du Solide Mineral

    1996-11-01

    Electrochemical intercalation of unsolvated lithium into pitch carbon fibres P100 and natural graphite UF{sub 4} has been carried out in LiClO{sub 4}-ethylene carbonate electrolyte. The reversible electrochemical capacity for a current equal to 7 {mu}A/mg is 260 mAh/g for P100 carbon fibres and about 350 mAh/g for UF{sub 4} graphite, respectively. During the first discharge (reduction) an electrochemical capacity greater than the theoretical value (372 mAh/g) corresponding to LiC{sub 6} is obtained. This excess of capacity can be related to the formation of a passivating layer on the carbon surface. Analysis of this layer by means of transmission electron microscopy (electron diffraction, electron energy loss spectroscopy, and imaging) and Fourier-transform infrared spectroscopy has shown that this layer is composed of lithium carbonate Li{sub 2}CO{sub 3} and alkylcarbonates of lithium ROCO{sub 2}Li. Formation of Li{sub 2}CO{sub 3} occurs at potentials in the 1-0.8 V range versus Li{sup +}/Li, and formation of lithium alkylcarbonates then follows at potentials below 0.8 V. We then attributed the voltage plateau of 0.9 V versus Li{sup +}/Li observed in the electrochemical waves to the reduction of ethylene carbonate into Li{sub 2}CO{sub 3}. Transmission electron spectroscopy revealed the presence of lithium chloride in the electrolyte which appears as small rods. (orig.)

  2. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte.

    Science.gov (United States)

    Zhuang, Guorong V; Xu, Kang; Yang, Hui; Jow, T Richard; Ross, Philip N

    2005-09-22

    Lithium ethylene dicarbonate ((CH2OCO2Li)2) was chemically synthesized and its Fourier transform infrared (FTIR) spectrum was obtained and compared with that of surface films formed on Ni after cyclic voltammetry (CV) in 1.2 M lithium hexafluorophosphate (LiPF6)/ethylene carbonate (EC):ethyl methyl carbonate (EMC) (3:7, w/w) electrolyte and on metallic lithium cleaved in-situ in the same electrolyte. By comparison of IR experimental spectra with that of the synthesized compound, we established that the title compound is the predominant surface species in both instances. Detailed analysis of the IR spectrum utilizing quantum chemical (Hartree-Fock) calculations indicates that intermolecular association through O...Li...O interactions is very important in this compound. It is likely that the title compound in the passivation layer has a highly associated structure, but the exact intermolecular conformation could not be established on the basis of analysis of the IR spectrum.

  3. SEM, XRD and electrical conductivity studies of PVDF-HFP-LiBF4 -EC plasticized gel polymer electrolyte

    Science.gov (United States)

    Sangeetha, M.; Mallikarjun, A.; Jaipal Reddy, M.; Siva Kumar, J.

    2017-07-01

    Micro porous gel type polymer electrolytes composed of 80 Wt% PVDF-HFP polymer - 20 Wt% LiBF4 salt in different concentrations of EC plasticizer (10Wt% - 70 Wt %) plasticizer have been synthesized by Solution cast technique. The effect of plasticizer in polymer-salt matrix, structural, morphological and ionic conductivity is studied. Structural and morphological studies showed increase in amorphous nature and recrystallization after a certain limit of EC plasticizer. The highest ionic conductivity of 1.510 × 10-3 Cm-1 is found for 40 Wt% of EC plasticizer at 303K. Addition of plasticizer increase free volume enables segmental motion of polymer and free mobility of ions. Also it provides more number of charge carriers in turn enhances the ionic conductivity up to certain limit of 40 Wt% of EC plasticizer. Further increase of plasticizer content creates ion-pair aggregation and recrystallization which reduces the ionic conductivity. The ionic conductivity obeys the VTF relationship for Gel type polymer electrolyte system.

  4. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A., E-mail: asyadi@utem.edu.my [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A. [Carbon Research Technology Research Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Kudin, T.I.T. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); Yahya, M.Z.A. [Ionics Materials & Devices Research Laboratory, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor (Malaysia); National Defence University of Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur (Malaysia)

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  5. Electrochemical performance of MLPB-PEG400/LiCIO4 solid polymer electrolyte%MLPB-PEG400/LiClO4固体聚合物电解质的电化学性能研究

    Institute of Scientific and Technical Information of China (English)

    赵鸽; 王金伟; 刘建

    2011-01-01

    采用溶液浇铸法,以聚乙二醇400(PEG400)接枝马来酸酐聚丁二烯(MLPB)为基体,高氯酸锂(LiClO4)为碱金属盐,制备了MLPB-PEG400/LiClO4固体聚合物电解质.研究了MLPB-PEG400/LiClO4电解质的电化学性能.结果表明,所制氧锂摩尔比为8的MLPB-PEG400/LiClO4固体聚合物电解质综合性能较好,其电导率变化在温度为25~90℃时符合Arrhenius方程,在温度大于100℃时趋于稳定,电化学稳定窗口达到4.5V.%MLPB-PEG400/LiC1O4 solid polymer electrolytes were prepared by solvent casting, with the maleic anhydride polybutadiene (MLPB) grafted polyethylene glycol 400 (PEG400) as matrix and LiClO4 as alkali metal salt. The electrochemical performance of the MLPB-PEG400/LiC104 electrolytes was studied. The results show that: the MLPB-PEG400/LiC1O4 electrolyte with the mole ratio of oxide to lithium equaling to 8 shows good performance; The changes in its conductivity versus temperature obey the Arrhenius equation in a range of 25 ℃ to 90 ℃, while become insignificant when the temperature is above 100 °C; Moreover, its electrochemical stability window reaches 4.5 V.

  6. Electrochemical Performance of LiNi0.5Mn1.5O4 by Sol-gel Self-combustion Reaction Method in Different Kinds of Electrolyte for High-voltage Rechargeable Lithium Cells

    Science.gov (United States)

    Liang, Xinghua; Shi, Lin; Liu, Yusi; Zeng, Shuaibo; Ye, Chaochao

    2015-07-01

    LiNi0.5Mn1.5O4 cathode material was synthesized through sol-gel self-combustion reaction method. LiNi0.5Mn1.5O4 powders were subsequently characterized as cathode materials in a Li-ion coin cell comprising a Li anode with electrolyte A or electrolyte B. 1.0 mol/L Lithium Hexafluorophosphate (LiPF6) dissolved in volume ration of ethylene carbonate (EC) to ethyl methyl carbonate (EMC) to diethyl carbonate (DEC) corresponded to 4:3:3as electrolyte A, 1.0 mol/L LiPF6 dissolved in volume ration of EC to EMC to DEC corresponded to 4:2:4 as electrolyte B. Electrochemical performance of lithium cells was evaluated. These tests showed that no matter the cells with electrolyte A or electrolyte B has good discharge platform in 4.7V range (3.5V-4.75V) at the rate of 0.1C, the initial discharge capacity of cell with electrolyte B was higher than that with electrolyte A.

  7. MECHANICAL RELAXATION TIME OF A TWO-COMPONENT EPOXY NETWORK-LiClO4 POLYMER ELECTROLYTE

    Institute of Scientific and Technical Information of China (English)

    PENG Xinsheng; WU Shuyun; CHEN Donglin

    1993-01-01

    The mechanical relaxation time of a two-component epoxy network-LiClO4 system as a polymer electrolyte was investigated.The network is composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG),wherein LiClO4 was incorporated and acts as both the ionic carrier and the curing catalyst.As the relaxation time is informative to the segmental mobility,which is known to be essential for ionic conductivity,the average relaxation times of the specimens were determined through master curve construction.Experimental results showed that the salt concentration,molecular weight of PEG in DGEPEG and DGEPEG/TGEG ratio have profound effect on the relaxation time of the specimen.Among these factors,the former reinforces the network hains,leading to lengthen the relaxation time,whereas the latter two are in favour of the chain flexibility and show an opposite effect.The findings was rationalized in terms of the free volume concept.

  8. Application of a boron doped diamond (BDD) electrode as an anode for the electrolytic reduction of UO{sub 2} in Li{sub 2}O-LiCl-KCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Park, Wooshin, E-mail: wooshin@kaeri.re.kr [Nuclear Fuel Cycle Process Development Division, Korea Atomic Energy Research Institute (KAERI), 111, 989 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Jong-Kook; Hur, Jin-Mok; Choi, Eun-Young; Im, Hun Suk; Hong, Sun-Seok [Nuclear Fuel Cycle Process Development Division, Korea Atomic Energy Research Institute (KAERI), 111, 989 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2013-01-15

    A boron doped diamond thin film electrode was employed as an inert anode to replace a platinum electrode in a conventional electrolytic reduction process for UO{sub 2} reduction in Li{sub 2}O-LiCl molten salt at 650 Degree-Sign C. The molten salt was changed into Li{sub 2}O-LiCl-KCl to decrease the operation temperature to 550 Degree-Sign C at which the boron doped diamond was chemically stable. The potential for oxygen evolution on the boron doped diamond electrode was determined to be approximately 2.2 V vs. a Li-Pb reference electrode whereas that for Li deposition was around -0.58 V. The density of the anodic current was low compared to that of the cathodic current. Thus the potential of the cathode might not reach the potential for Li deposition if the surface area of the cathode is too wide compared to that of the anode. Therefore, the ratio of the surface areas of the cathode and anode should be precisely controlled. Because the reduction of UO{sub 2} is dependent on the reaction with Li, the deposition of Li is a prerequisite in the reduction process. In a consecutive reduction run, it was proved that the boron doped diamond could be employed as an inert anode.

  9. Effect of water on solid electrolyte interphase formation in Li-ion batteries

    Science.gov (United States)

    Saito, M.; Fujita, M.; Aoki, Y.; Yoshikawa, M.; Yasuda, K.; Ishigami, R.; Nakata, Y.

    2016-03-01

    Time-of-flight-elastic recoil detection analysis (TOF-ERDA) with 20 MeV Cu ions has been applied to measure the depth profiles of solid electrolyte interphase (SEI) layers on the negative electrode of lithium ion batteries (LIB). In order to obtain quantitative depth profiles, the detector efficiency was first assessed, and the test highlighted a strong mass and energy dependence of the recoiled particles, especially H and He. Subsequently, we prepared LIB cells with different water contents in the electrolyte, and subjected them to different charge-discharge cycle tests. TOF-ERDA, X-ray photoelectron spectrometry (XPS), gas chromatography (GC), ion chromatography (IC), and 1H nuclear magnetic resonance (1H NMR) were applied to characterize the SEI region of the negative electrode. The results showed that the SEI layer is formed after 300 cycle tests, and a 500 ppm water concentration in the electrolyte does not appear to cause significant differences in the elemental and organic content of the SEI.

  10. Quercetin as electrolyte additive for LiNi0.5Mn1.5O4 cathode for lithium-ion secondary battery at elevated temperature

    Science.gov (United States)

    Kim, Sungkyung; Kim, Myeongho; Choi, Insoo; Kim, Jae Jeong

    2016-12-01

    In an attempt to ameliorate the poor cyclability of LiNi0.5Mn1.5O4 at elevated temperature, quercetin is applied as an additive. The irreversible oxidative behavior of quercetin is thoroughly investigated by electrochemical method. The improved cyclability of the quercetin-containing cell at high temperature implies that by forming robust and less-resistive SEI, quercetin is preferentially oxidized and passivates the LiNi0.5Mn1.5O4 electrode. EIS result coherently suggests that the quercetin-added electrolyte forms a more compact and Li-ion conducting interface. The surface sensitive XPS analysis confirms that the presence of quercetin restrains the formation of LiF, suppresses the reaction of PF5, and alleviates Mn dissolution. Meanwhile, ICP-MS analysis affirms the effectiveness of quercetin against Mn dissolution. The self-discharge experiment which exhibits the retained charged state of LiNi0.5Mn1.5O4 at high temperature, gives convincing evidence of the effect of quercetin. Intensive analyses confirm that quercetin can effectively prolong the cycle-life of LiNi0.5Mn1.5O4 at elevated temperature. We envision its potential and practical usage as an electrolyte additive for high-voltage cathode.

  11. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent.

    Science.gov (United States)

    Kalhoff, Julian; Bresser, Dominic; Bolloli, Marco; Alloin, Fannie; Sanchez, Jean-Yves; Passerini, Stefano

    2014-10-01

    In this Full Paper we show that the use of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as conducting salt in commercial lithium-ion batteries is made possible by introducing fluorinated linear carbonates as electrolyte (co)solvents. Electrolyte compositions based on LiTFSI and fluorinated carbonates were characterized regarding their ionic conductivity and electrochemical stability towards oxidation and with respect to their ability to form a protective film of aluminum fluoride on the aluminum surface. Moreover, the investigation of the electrochemical performance of standard lithium-ion anodes (graphite) and cathodes (Li[Ni1/3 Mn1/3 Co1/3 ]O2 , NMC) in half-cell configuration showed stable cycle life and good rate capability. Finally, an NMC/graphite full-cell confirmed the suitability of such electrolyte compositions for practical lithium-ion cells, thus enabling the complete replacement of LiPF6 and allowing the realization of substantially safer lithium-ion batteries.

  12. Electrochemical performance of all-solid-state Li batteries based LiMn{sub 0.5}Ni{sub 0.5}O{sub 2} cathode and NASICON-type electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Zhao, X.B.; Cao, G.S. [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O. [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2010-12-15

    LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} thin films have been deposited on the NASICON-type glass ceramics, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATSP), by radio frequency (RF) magnetron sputtering followed by annealing. The films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. All-solid-state Li/PEO{sub 18}-Li(CF{sub 3}SO{sub 2}){sub 2}N/LATSP/LiNi{sub 0.5}Mn{sub 0.5}O{sub 2}/Au cells are fabricated using the LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} thin films and the LATSP electrolyte. The electrochemical performance of the cells is investigated by galvanostatic cycling, cyclic voltammetry (CV), potentiostatic intermittent titration technique (PITT) and electrochemical impedance spectroscopy (EIS). Interfacial reactions between LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} and LATSP occur at a temperature as low as 300 C with the formation of Mn{sub 3}O{sub 4}, resulting in an increased obstacle for Li-ion diffusion across the LiNi{sub 0.5}Mn{sub 0.5}O{sub 2}/LATSP interface. The electrochemical performance of the cells is limited by the interfacial resistance between LATSP and LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} as well as the Li-ion diffusion kinetics in LiNi{sub 0.5}Mn{sub 0.5}O{sub 2} bulk. (author)

  13. {sup 7}Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: A comparative study with variation of salt and plasticizer with filler

    Energy Technology Data Exchange (ETDEWEB)

    Saikia, D. [Department of Chemistry, Center for Nanotechnology and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Chen-Yang, Y.W. [Department of Chemistry, Center for Nanotechnology and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)], E-mail: yuiwhei@cycu.edu.tw; Chen, Y.T.; Li, Y.K.; Lin, S.I. [Department of Chemistry, Center for Nanotechnology and R and D Center for Membrane Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2009-01-30

    Microporous composite gel polymer electrolyte (CGPE) has been prepared by incorporating the home-made silica aerogel (SAG) particles into the poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer/LiClO{sub 4} matrix. The ionic transport behavior of the electrolyte is studied with various experimental techniques such as AC impedance, X-ray diffraction (XRD), infrared (IR) spectra, nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA), etc. The results reveal that the SAG particles are well dispersed in the electrolytes and incorporate with the other components of the CGPEs. The solid-state {sup 7}Li NMR study has confirmed the interactions of lithium ion with SAG, polymer and plasticizers, causing to form the microporous structure and reduce the glass transition temperature and crystallinity, resulting in an increase in ionic conductivity of the CGPE. The best ionic conductivity (1.04 x 10{sup -2} S/cm at room temperature) is obtained from the composite polymer electrolyte containing 4 wt% of SAG, which is approximately four times higher than the ionic conductivity of the electrolyte without the filler.

  14. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  15. A perspective on coatings to stabilize high-voltage cathodes: LiMn1.5Ni0.5O4 with subnanometer Lipon cycled with LiPF6 electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoongu [ORNL; Dudney, Nancy J [ORNL; Chi, Miaofang [ORNL; Martha, Surendra K [ORNL; Nanda, Jagjit [ORNL; Veith, Gabriel M [ORNL; Liang, Chengdu [ORNL

    2013-01-01

    High voltage Li-ion cathodes push the limits of stability for both cathode and electrolyte. Here subnanometer coatings of an amorphous thin film electrolyte (Lipon) improved the room temperature and 60 C cycling stability of a LiMn1.5Ni0.5O4 spinel cathode when charged to 4.9V with a standard LiPF6 carbonate electrolyte. The cathodes delivered superior C-rate performances up to a 5C discharge, when compared to the uncoated cathodes. Enhanced performance extended for at least 100 cycles. Electrochemical impedance spectroscopy indicates that Lipon slows the increase of interface resistance. Thicker 1-3nm Lipon coatings are sufficiently insulating as to block electronic transport to the cathode particles. Thick coatings also slow Mn dissolution. Results suggest that Lipon may act to scavenge impurities or block active sites that promote electrolyte decomposition. While greatly improved by the Lipon coating, this cathode is not sufficiently stable for long cycle life applications. Further work is needed to assess if and what surface coatings will ultimately stabilize the high voltage cathodes. Comments include insight from other studies of Lipon coated cathodes and directions for future research.

  16. The Effect of Electrolyte Additives upon the Lithium Kinetics of Li-Ion Cells Containing MCMB and LiNi(x)Co(1-x)O2 Electrodes and Exposed to High Temperatures

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Gozdz, A. S.; Mani, S.

    2009-01-01

    With the intent of improving the performance of lithium-ion cells at high temperatures, we have investigated the use of a number of electrolyte additives in experimental MCMB- Li(x)Ni(y)Co(1-y)O2 cells, which were exposed to temperatures as high as 80 C. In the present work, we have evaluated the use of a number of additives, namely vinylene carbonate (VC), dimethyl acetamide (DMAc), and mono-fluoroethylene carbonate (FEC), in an electrolyte solution anticipated to perform well at warm temperature (i.e., 1.0M LiPF6 in EC+EMC (50:50 v/v %). In addition, we have explored the use of novel electrolyte additives, namely lithium oxalate and lithium tetraborate. In addition to determining the capacity and power losses at various temperatures sustained as a result of high temperature cycling (cycling performed at 60 and 80 C), the three-electrode MCMB-Li(x)Ni(y)Co(1-y)O2 cells (lithium reference) enabled us to study the impact of high temperature storage upon the solid electrolyte interphase (SEI) film characteristics on carbon anodes (MCMB-based materials), metal oxide cathodes, and the subsequent impact upon electrode kinetics.

  17. Anisotropy of ionic conduction in single-crystal Li x La(1- x )/3NbO3 solid electrolyte grown by directional solidification

    Science.gov (United States)

    Fujiwara, Yasuyuki; Taishi, Toshinori; Hoshikawa, Keigo; Kohama, Keiichi; Iba, Hideki

    2016-09-01

    The anisotropy of ionic conduction in a solid electrolyte (Li x La(1- x )/3NbO3) was experimentally confirmed for the first time. Ionic conduction measurements were carried out on the (100), (010), (001), (110), (111), and (112) planes of single-crystal ingots of Li x La(1- x )/3NbO3 grown by directional solidification. We found that the ionic conductivity in Li x La(1- x )/3NbO3 with x = 0.08 was 3.6 × 10-4 S cm-1 in the [100] and [010] directions, approximately 10 times higher than that in the [001] direction. Such anisotropy of the ionic conduction is discussed with respect to the characteristic layered structure of Li x La(1- x )/3NbO3.

  18. On the chemical stability of post-lithiated garnet Al-stabilized Li7La3Zr2O12 solid state electrolyte thin films.

    Science.gov (United States)

    Rawlence, Michael; Garbayo, Inigo; Buecheler, Stephan; Rupp, J L M

    2016-08-21

    Garnet-based Al-doped Li7La3Zr2O12 has the potential to be used as a solid state electrolyte for future lithium microbattery architectures, due to its relatively high Li(+) conductivity and stability against Li. Through this work, a model experiment is presented in which the effect of post-lithiation on phase formation and chemical stability is studied for pulsed laser deposited Al-doped Li7La3Zr2O12 thin films on MgO substrates. We report the implications of the newly suggested post-lithiation route for films with thicknesses between 90 and 380 nm. The phase changes from cubic, to a mix of cubic and tetragonal Li7La3Zr2O12, to a cubic Li7La3Zr2O12 and La2Zr2O7 containing film is accompanied by a reduction in the degree of de-wetting as the thickness increases. This study reveals that the thicker, dense, and continuous films remain predominantly in a mixed phase containing cubic Li7La3Zr2O12 and the lithium free La2Zr2O7 phase whereas the thinner, de-wetted films exhibit improved lithium incorporation resulting in the absence of the lithium free phase. For tuning the electrical conductivity and effective use of these structures in future batteries, understanding this material system is of great importance as the chemical stability of the cubic Li7La3Zr2O12 phase in the thin film system will control its effective use. We report a conductivity of 1.2 × 10(-3) S cm(-1) at 325 °C for a 380 nm thick solid state electrolyte film on MgO for potential operation in future all solid state battery assemblies.

  19. The effects of lithium doping level on the structural, electrical properties of Li{sup +}-doped BPO{sub 4} solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shan; Shui, Miao, E-mail: shuimiao@nbu.edu.cn; Zheng, Weidong; Yang, Tianci; Shu, Jie; Cheng, Liangliang; Feng, Lin; Ren, Yuanlong

    2013-08-01

    Graphical abstract: - Highlights: • Better ionic conductivities when 0.05 ≤ x ≤ 0.13. • V{sup ‴}{sub B}+3Li{sub i} model was preferred. • Grain size, lattice strain and Li{sup +}conductivity are closely related. - Abstract: A series of lithium ion conducting solid electrolytes Li{sub x}B{sub 1−x/3}PO{sub 4}(x = 0.01, 0.05, 0.09, 0.13, 0.17, 0.20) is synthesized by a soft-chemistry route. FTIR and XRD measurements reveal that the electrolyte is pure phase of tetragonal structure. AC-impedance spectroscopy (AC-IS) at room temperature shows that Li{sub x}B{sub 1−x/3}PO{sub 4} exhibits higher ionic conductivities in the range 0.05 ≤ x ≤ 0.13, beyond which, the ionic conductivities decrease quickly. Maximum ionic conductivity of the Li{sub x}B{sub 1−x/3}PO{sub 4} reaches 3.35 × 10{sup −5} S cm{sup −1} at room temperature for x = 0.05. Direct current polarizing (DCP) measurement indicates that the decomposition voltage for the solid electrolyte reaches up to 3.7 V. Micro-structure parameters of synthesized Li{sub x}B{sub 1−x/3}PO{sub 4} samples are calculated by Rietveld refinement of X-ray diffraction spectra. The unit-cell parameters, lattice strain, crystal grain size and ionic conductivities of the samples are correlated with the lithium ion doping level x.

  20. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    Science.gov (United States)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  1. NMR T1 relaxation time measurements and calculations with translational and rotational components for liquid electrolytes containing LiBF4 and propylene carbonate

    Science.gov (United States)

    Richardson, P. M.; Voice, A. M.; Ward, I. M.

    2013-12-01

    Longitudinal relaxation (T1) measurements of 19F, 7Li, and 1H in propylene carbonate/LiBF4 liquid electrolytes are reported. Comparison of T1 values with those for the transverse relaxation time (T2) confirm that the measurements are in the high temperature (low correlation time) limit of the T1 minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T1 from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.

  2. Characterization of PEO-LiClO4-PC Solid Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    王标兵; 顾利霞; 靳茂全

    2001-01-01

    Plasticized poly (ethylene oxide )based electrolyte membranes of various compositions poly(ethylene oxide)/ Hthium perchlorate / propylene carbonate were prepared by solution casting. The thermogram, electrical conductivity and vibrational spectra were studied. DSC revealed that the plasticizer propylene carbonate content has influenced on the melting and transition temperature. The infrared spectroscopic study on the effect of PC on the poly (ethylene oxide) / lithium perchlorate E/ propylene carbonate systems shows that a suitable propylene carbonate content can impede association between lithium ions. Room temperature conductivity changed over 2 order of magnitude,increasing from 6.8 × 10-8Scm-1 of poly(ethylene oxide)/ lithium perchlorate (10/3, w/w) to 8.9 × 10-6Scm-1 of poly(ethylene oxide) / lithium perchlorate / propylenecarbonate (10/3/10, w/w/w). It seems that lithium ions only interact with PEO crystalline phase at the presence of PEO.

  3. Electrochemically engineered single Li-ion conducting solid polymer electrolyte on titania nanotubes for microbatteries

    Science.gov (United States)

    Ferrari, I. V.; Braglia, M.; Djenizian, T.; Knauth, P.; Di Vona, M. L.

    2017-06-01

    Single Li-ion conducting p-sulfonated poly(allyl phenyl ether) (SPAPE) is electrochemically synthesized directly on TiO2 nanotubes in the range of -1.5 to -1.8 V vs. Ag/AgCl. The electrochemical deposition conditions are studied by cyclic voltammetry and chronoamperometry; the polymer formation can be followed by electrochemical impedance spectroscopy. The polymer structure is analyzed by NMR and FTIR spectroscopies, showing the formation of linear aliphatic chains with methyl-oxy-benzene sulfonate side groups. SEM observations of the polymer morphology show that a thin (∼300 nm) and continuous layer is obtained depending on the electrochemical synthesis conditions. The combination of a mobile aliphatic backbone, ether groups with reduced cation affinity and immobile anions grafted on the side chains allows obtaining a single lithium-ion conducting polymer. Half-cell battery tests against Li metal show an excellent cycling performance with high areal capacity (up to 110 μAh cm-2) and very good retention especially at large C-rates, studied up to 12 C.

  4. Ultramicroporous Carbon through an Activation-Free Approach for Li-S and Na-S Batteries in Carbonate-Based Electrolyte.

    Science.gov (United States)

    Hu, Lei; Lu, Yue; Zhang, Tianwen; Huang, Tao; Zhu, Yongchun; Qian, Yitai

    2017-04-26

    We report an activation-free approach for fabricating ultramicroporous carbon as an accommodation of sulfur molecules for Li-S and Na-S batteries applications in carbonate-based electrolyte. Because of the high specific surface area of 967 m(2) g(-1), as well as 51.8% of the pore volume is contributed by ultramicropore with pore size less than 0.7 nm, sulfur cathode exhibits superior electrochemical behavior in carbonate-based electrolyte with a capacity of 507.9 mA h g(-1) after 500 cycles at 2 C in Li-S batteries and 392 mA h g(-1) after 200 cycles at 1 C in Na-S batteries, respectively.

  5. Effect of LiBF4 Salt Concentration on the Properties of Plasticized MG49-TiO2 Based Nanocomposite Polymer Electrolyte

    OpenAIRE

    Ahmad, A.; M. Y. A. Rahman; S. P. Low; H. Hamzah

    2011-01-01

    A nanocomposite polymer electrolyte (NCPE) comprising of 49% poly(methyl methacrylate) grafted natural rubber (MG49) as polymer host, titanium dioxide (TiO2) as a ceramic filler, lithium tetrafluoroborate (LiBF4) as dopant salt, and ethylene carbonate (EC) as plasticizer was prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by a sol-gel process. The ionic conductivity, chemical interaction, structure, and surface morphology of nanocomposite polymer elec...

  6. Development of Bipolar All-solid-state Lithium Battery Based on Quasi-solid-state Electrolyte Containing Tetraglyme-LiTFSA Equimolar Complex

    OpenAIRE

    Yoshiyuki Gambe; Yan Sun; Itaru Honma

    2015-01-01

    The development of high energy–density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any interna...

  7. Lithium ionic mobility study in xLi{sub 2}CO{sub 3}-yLiI (x = 95-70, y = 5-30 wt.%) solid electrolyte by impedance spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Mohd Khari; Ahmad, Azizah Hanom [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E. (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E. (Malaysia)

    2015-08-28

    A detailed systematic study on the effects of different amount (wt.%) of LiI addition on the electrical conductivity and dielectric behavior of the xLi{sub 2}CO{sub 3}-xLiI (x = 95-70, y = 5-30 wt.%) electrolyte system was carried out. The samples with different compositions were prepared and ground by mechanical milling method. The electrical and dielectric properties of the samples over a range of frequency (50Hz – 1MHz) were investigated by deploying electrical impedance spectroscopy (EIS) technique in a series of temperature set (298–373K). Normally, Li{sub 2}CO{sub 3} itself shows a very low electrical conductivity (10{sup −5} Scm{sup −1}). However, the electrical conductivity of the system was found to be increased (10{sup −3} Scm{sup −1}) as the lithium salt (LiI) were introduced to the system. The dielectric analysis displayed that the activation energy was inversely proportional to the increment of LiI (wt.%). As the electrical conductivity reached their maximum value (4.63 × 10{sup −3} Scm{sup −1}) at the 20 wt.% of LiI, the activation energy was dropped to the minimum (0.1 eV). The electrical conductivity increases with the temperature (298 – 373K) indicate that the system obeys Arrhenius law.

  8. Lithium ionic mobility study in xLi2CO3-yLiI (x = 95-70, y = 5-30 wt.%) solid electrolyte by impedance spectroscopy technique

    Science.gov (United States)

    Omar, Mohd Khari; Ahmad, Azizah Hanom

    2015-08-01

    A detailed systematic study on the effects of different amount (wt.%) of LiI addition on the electrical conductivity and dielectric behavior of the xLi2CO3-xLiI (x = 95-70, y = 5-30 wt.%) electrolyte system was carried out. The samples with different compositions were prepared and ground by mechanical milling method. The electrical and dielectric properties of the samples over a range of frequency (50Hz - 1MHz) were investigated by deploying electrical impedance spectroscopy (EIS) technique in a series of temperature set (298-373K). Normally, Li2CO3 itself shows a very low electrical conductivity (10-5 Scm-1). However, the electrical conductivity of the system was found to be increased (10-3 Scm-1) as the lithium salt (LiI) were introduced to the system. The dielectric analysis displayed that the activation energy was inversely proportional to the increment of LiI (wt.%). As the electrical conductivity reached their maximum value (4.63 × 10-3 Scm-1) at the 20 wt.% of LiI, the activation energy was dropped to the minimum (0.1 eV). The electrical conductivity increases with the temperature (298 - 373K) indicate that the system obeys Arrhenius law.

  9. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4.

    Science.gov (United States)

    Rock, Simon E; Wu, Lin; Crain, Daniel J; Krishnan, Sitaraman; Roy, Dipankar

    2013-03-01

    Nonvolatile and nonflammable ionic liquids (ILs) have distinct thermal advantages over the traditional organic solvent electrolytes of lithium ion batteries. However, this beneficial feature of ILs is often counterbalanced by their high viscosity (a limiting factor for ionic conductivity) and, sometimes, by their unsuitable electrochemistry for generating protective layers on electrode surfaces. In an effort to alleviate these limiting aspects of ILs, we have synthesized a PEGylated imidazolium bis(trifluoromethylsulfonyl)amide (bistriflamide) IL that exhibited better thermal and electrochemical stability than a conventional electrolyte based on a blend of ethylene carbonate and diethyl carbonate. The electrochemical performance of this IL has been demonstrated using a cathode consisting of ball-milled LiMn2O4 particles. A direct comparison of the ionic liquid electrolyte with the nonionic low-viscosity conventional solvent blend is presented.

  10. Influence of deposition temperature on ionic conductivity of perovskite (Li0.5 La0.5) TiO3 solid state electrolyte thin film

    Institute of Scientific and Technical Information of China (English)

    SHEN; Wan; YANG; Zhi-min; XING; Guang-jian; MAO; Chang-hui; DU; Jun

    2005-01-01

    Thin film microbattery is a promising micropower source for its high energy density and good cell performances, and the application of fast lithium ion conducting solids as electrolytes is thus very important. (Li0.5 La0.5 )TiO3 (LLTO) thin film electrolytes for thin film microbattery were prepared onto Pt/Si substrates using magnetron sputtering. As-deposited LLTO thin films showed amorphous-like phases and when deposition temperature increases the ionic conductivity raises accordingly. The ionic conductivity of LLTO thin film reaches 8. 7 × 10-6 S/cm when the deposition temperature is 400℃, which shows that the LLTO thin films deposited by magnetron sputtering are suitable for application as an electrolyte for thin film microbattery.

  11. Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries

    Science.gov (United States)

    Saikia, Diganta; Wu, Hao-Yiang; Pan, Yu-Chi; Lin, Chi-Pin; Huang, Kai-Pin; Chen, Kan-Nan; Fey, George T. K.; Kao, Hsien-Ming

    2011-03-01

    A new plasticized poly(vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP)/PPG-PEG-PPG diamine/organosilane blend-based polymer electrolyte system has been synthesized and characterized. The structural and electrochemical properties of the electrolytes thus obtained were systematically investigated by a variety of techniques including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile test, Fourier transform infrared spectroscopy (FTIR), 13C and 29Si solid-state NMR, AC impedance, linear sweep voltammetry (LSV) and charge-discharge measurements. The FTIR and NMR results provided the information about the interaction among the constituents in the blend polymer membrane. The present blend polymer electrolyte exhibits several advantageous electrochemical properties such as ionic conductivity up to 1.3 × 10-2 S cm-1 at room temperature, high value of Li+ transference number (t+ = 0.82), electrochemical stability up to 6.4 V vs. Li/Li+ with the platinum electrode, and stable charge-discharge cycles for lithium-ion batteries.

  12. Self-discharge suppression of 4.9 V LiNi0.5Mn1.5O4 cathode by using tris(trimethylsilyl)borate as an electrolyte additive

    Science.gov (United States)

    Liao, Xiaolin; Huang, Qiming; Mai, Shaowei; Wang, Xianshu; Xu, Mengqing; Xing, Lidan; Liao, Youhao; Li, Weishan

    2014-12-01

    In this paper, tris(trimethylsilyl)borate (TMSB) is evaluated as an electrolyte additive for the self-discharge suppression of 4.9 V LiNi0.5Mn1.5O4 cathode for lithium ion battery. The effect of TMSB on the surface properties of LiNi0.5Mn1.5O4 is investigated via linear sweep voltammetry (LSV), cyclic voltammetry (CV), chronoamperometry (CA), charge-discharge test, electrochemical impedance spectra (EIS), scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometer (ICP-AES) and Fourier transform infrared spectroscopy (FTIR). It is found that the LiNi0.5Mn1.5O4 cathode charged to 4.9 V (vs. Li/Li+) suffers a serious self-discharge in 1 mol L-1 LiPF6-EC/DMC (1:2, in weight), which can be suppressed effectively by adding 1 wt.% TMSB into the electrolyte. After storage for 20 days, the voltage of the charged cathode decreases from 4.7 to 0.5 V (vs. Li/Li+) in the additive-free electrolyte, while that remains almost unchanged in the TMSB-containing electrolyte. The self-discharge suppression of the charged LiNi0.5Mn1.5O4 cathode results from the preferential oxidation of TMSB and the subsequent formation of a protective solid electrolyte interphase film, which prevents electrolyte decomposition and protects LiNi0.5Mn1.5O4 from destruction.

  13. Electrolytic method for the production of lithium using a lithium-amalgam electrode

    Science.gov (United States)

    Cooper, John F.; Krikorian, Oscar H.; Homsy, Robert V.

    1979-01-01

    A method for recovering lithium from its molten amalgam by electrolysis of the amalgam in an electrolytic cell containing as a molten electrolyte a fused-salt consisting essentially of a mixture of two or more alkali metal halides, preferably alkali metal halides selected from lithium iodide, lithium chloride, potassium iodide and potassium chloride. A particularly suitable molten electrolyte is a fused-salt consisting essentially of a mixture of at least three components obtained by modifying an eutectic mixture of LiI-KI by the addition of a minor amount of one or more alkali metal halides. The lithium-amalgam fused-salt cell may be used in an electrolytic system for recovering lithium from an aqueous solution of a lithium compound, wherein electrolysis of the aqueous solution in an aqueous cell in the presence of a mercury cathode produces a lithium amalgam. The present method is particularly useful for the regeneration of lithium from the aqueous reaction products of a lithium-water-air battery.

  14. Al-doped spinel LiAl 0.1Mn 1.9O 4 with improved high-rate cyclability in aqueous electrolyte

    Science.gov (United States)

    Yuan, Anbao; Tian, Lei; Xu, Wanmei; Wang, Yuqin

    To improve the cyclability of spinel LiMn 2O 4 in aqueous electrolyte, Al-doped LiAl xMn 2- xO 4 (x = 0.05, 0.1, 0.15) materials are prepared using a room-temperature solid-state grinding reaction followed by calcination at different temperatures for different durations, respectively. Their phase structures and morphologies are characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. Electrochemical performances of the materials are investigated by cyclic voltammetry and galvanostatic charge/discharge methods. XRD results reveal that the crystallinity of the LiAl 0.1Mn 1.9O 4 increases with increasing calcination temperature and calcination time. However, when the calcination temperature is increased to 800 °C, a small amount of Mn 3O 4 impurity phase is detected in the product calcined for 12 h, due to the decomposition of LiAl 0.1Mn 1.9O 4, while the product calcined for a shorter time of 3 or 6 h is found to be LiAl 0.1Mn 1.9O 4 single phase. TEM results confirm that the grain size of the materials increases with increasing calcination temperature. Electrochemical experiments demonstrate that the charge/discharge cyclability of the LiAl 0.1Mn 1.9O 4 increases with increase in calcination temperature and calcination time. Compared with the pristine LiMn 2O 4, the Al-doped LiAl xMn 1- xO 4 show the obviously improved cyclability, especially for the LiAl 0.1Mn 1.9O 4 calcined at an elevated temperature for 12 h.

  15. Preparation and Lithium Ion Transport Behavior for Li1. 5 Al0. 5 Ge1. 5(PO4) 3 Based Solid Composite Electrolyte%Li1.5Al0.5Ge1.5(PO4)3基固体复合电解质的制备及锂离子导电行为

    Institute of Scientific and Technical Information of China (English)

    余涛; 韩喻; 王珲; 熊仕昭; 谢凯; 郭青鹏

    2016-01-01

    将聚氧化乙烯(PEO)和二(三氟甲基磺酰)亚胺锂(LiTFSI)混合(固定 EO/ Li 摩尔比为13)后,采用溶液浇注法制备了一系列不同 Li1.5 Al0.5 Ge1.5(PO4)3(LAGP)与 PEO 质量比的 LAGP-PEO(LiTFSI)固体复合电解质体系.结合电化学阻抗法、表面形貌表征以及与惰性陶瓷填料(SiO2, Al2 O3)性能的对比分析,探讨了LAGP 在固体复合电解质中的作用机理以及锂离子的导电行为.结果表明,在以 LAGP 为主相的固体复合电解质中, PEO 主要处于无定形态,整个体系主要为 PEO 与 LiTFSI 的络合相、 LAGP 与 PEO(LiTFSI)相互作用形成的过渡相和 LAGP 晶相.其中 LAGP 作为主要的导电基体不仅起到降低 PEO 结晶度、改善两相导电界面的作用;同时自身也可以作为离子传输的通道,降低锂离子迁移的活化能,从而使离子电导率得到提高.当LAGP 与 PEO 的质量比为6:4时,固体复合电解质的成膜性能最好,离子电导率最高,在30℃时为2.57×10-5 S/ cm,接近 LAGP 的水平,电化学稳定窗口超过5 V.%LAGP-PEO ( LiTFSI) solid composite electrolyte were prepared with Li1. 5 Al0. 5 Ge1. 5 ( PO4 ) 3 (LAGP) and LiN( CF3 SO2 ) 2 ( LiTFSI) as conductive components and poly( ethylene oxide) ( PEO) as the binder using solution casting method. The molar ratio of EO/ Li was 13 when the ratio of PEO to LAGP was varied. The role of LAGP and the transport mechanism of Li-ion in solid composite electrolyte were analyzed using electrochemical impedance spectroscopy and morphology techniques. The results showed that LAGP partially interacted to PEO(LiTFSI) and uniformly distributed in the electrolyte. With the increase of LAGP content, amorphous regions of PEO rises up to a maximum value due to the coordination interactions between LAGP and PEO(LiTFSI). Three phases are generally present, namely a pure crystalline LAGP phase, all amorphous complexion PEO( LiTFSI) phase and a transition phase consisting of lithium salt

  16. Structure and properties of Li-ion conducting polymer gel electrolytes based on ionic liquids of the pyrrolidinium cation and the bis(trifluoromethanesulfonyl)imide anion

    Science.gov (United States)

    Pitawala, Jagath; Navarra, Maria Assunta; Scrosati, Bruno; Jacobsson, Per; Matic, Aleksandar

    2014-01-01

    We have investigated the structure and physical properties of Li-ion conducting polymer gel electrolytes functionalized with ionic liquid/lithium salt mixtures. The membranes are based on poly(vinylidene fluoride-co-hexafluoropropylene) copolymer, PVdF-HFP, and two ionic liquids: pyrrolidinium cations, N-butyl-N-methylpyrrolidinium (PyR14+), N-butyl-N-ethylpyrrolidinium (PyR24+), and bis(trifluoromethanesulfonyl)imide anion (TFSI). The ionic liquids where doped with 0.2 mol kg--1 LiTFSI. The resulting membranes are freestanding, flexible, and nonvolatile. The structure of the polymer and the interactions between the polymer and the ionic liquid electrolyte have been studied using Raman spectroscopy. The ionic conductivity of the membranes has been studied using dielectric spectroscopy whereas the thermal properties were investigated using differential scanning caloriometry (DSC). These results show that there is a weak, but noticeable, influence on the physical properties of the ionic liquid by the confinement in the membrane. We observe a change in the Li-ion coordination, conformation of the anion, the fragility and a slight increase of the glass transition temperatures for IL/LiTFSI mixtures in the membranes compared to the neat mixtures. The effect can be related to the confinement of the liquid in the membrane and/or to interactions with the PVdF-HFP polymer matrix where the crystallinity is decreased compared to the starting polymer powder.

  17. Combination of first-principles molecular dynamics and XANES simulations for LiCoO2-electrolyte interfacial reactions in a lithium-ion battery

    Science.gov (United States)

    Tamura, Tomoyuki; Kohyama, Masanori; Ogata, Shuji

    2017-07-01

    We performed a first-principles molecular dynamics (FPMD) simulation of the interfacial reactions between a LiCoO2 electrode and a liquid ethylene carbonate (EC) electrolyte. For configurations during the FPMD simulation, we also performed first-principles Co K-edge x-ray absorption near-edge structure (XANES) simulations, which can properly reproduce the bulk and surface spectra of LiCoO2. We observed strong absorption of an EC molecule on the LiCoO2 {110} surface, involving ring opening of the molecule, bond formation between oxygen atoms in the molecule and surface Co ions, and emission of one surface Li ion, while all the surface Co ions remain Co3 +. The surface Co ions having the bond with an oxygen atom in the molecule showed remarkable changes in simulated K-edge spectra which are similar to those of the in situ observation under electrolyte soaking [D. Takamatsu et al., Angew. Chem., Int. Ed. 51, 11597 (2012), 10.1002/anie.201203910]. Thus, the local environmental changes of surface Co ions due to the reactions with an EC molecule can explain the experimental spectrum changes.

  18. Numerical predictions and experimental verification of Li-O2 battery capacity limits for cathodes with spherical conductors and solid electrolytes

    Science.gov (United States)

    Lee, Heung Chan; Roev, Victor; Kim, Tae Young; Park, Min Sik; Lee, Dong Joon; Im, Dongmin; Doo, Seok-Gwang

    2016-11-01

    The capacity limits, local formation of Li2O2, passivation of active surfaces, and depletion of oxygen by mass transport characteristics in a composite cathode are modeled, numerically simulated, and experimentally evaluated for non-aqueous Li-O2 batteries employing composites of a solid polymer electrolyte and carbon particles as the cathode, Li metal as the anode, and an ion conductive oxide membrane as the separator. Although the theoretical maximum specific energy of the Li-O2 battery is known to be 3458 Wh kg-1cathode, our simulation predicts a maximum specific energy of 1840 Wh kg-1cathode with an optimized weight ratio of all essential components as well as cathode thickness. A specific energy of 1713 Wh kg-1cathode is experimentally demonstrated in a cell with a composite cathode of poly(ethylene oxide) electrolyte and Printex carbon nanoparticles with 48% carbon volume and 30 μm thickness. The model also predicts that the incorporation of voids in the cathode can significantly improve the specific energy.

  19. Role of site-disorder in energy materials: case of LixNb2O5 pseudocapacitor and β-Li3PS4 solid electrolyte

    Science.gov (United States)

    Ganesh, P.; Lubimtsev, Andrew A.; Dathar, Gopi K. P.; Anchell, Jonathan; Kent, Paul R. C.; Rondinone, Adam J.; Sumpter, Bobby G.

    2015-03-01

    In this study, we will present computational studies to elucidate the importance of site-disorder in energy materials. We will specifically focus on two recently discovered materials: a Li-ion intercalation pseudocapacitor LixNb2O5 (Nature Materials, 12 518 (2013)) and a Li-ion solid-electrolyte.(JACS, 135 975 (2013)). A combination of theoretical methods, such as density functional theory (DFT) based cluster-expansion, basin hopping, ab initio molecular dynamics, and nudged-elastic-bands calculations were employed to understand the origin of intercalation pseudocapacitance in the niobate-system.(J. Materials Chem. 114951 (2013)). It was found that having multiple sites with similar energies for ion-adsorption, lead to a site-occupancy disorder that eventually lead to a capacitative slope in the voltage profile over the entire range of ion intercalation, as seen in experiments. A similar site-occupancy induced sublattice melting in the β-Li3PS4 solid-electrolyte, which when ``frozen'' to RT, lead to high Li-ion conductivity.(G.K.P.Dathar et al, submitted (2014)). Further, we will elucidate how to take advantage of this control over site-disorder to better engineer improved energy materials for batteries and fuel-cells. (PG, GKPD, PRCK, AJR, BGS) were supported by the CNMS at ORNL, (AAL and JA) were supported by the DOE-HERE program. Computations were performed at NERSC.

  20. Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors

    Science.gov (United States)

    Solarajan, Arun Kumar; Murugadoss, Vignesh; Angaiah, Subramania

    2017-01-01

    Different weight percentages of ZrO2 (0, 3, 5, 7 and 10 wt%) incorporated electrospun PVDF-HFP nanocomposite polymer membranes (esCPMs) were prepared by electrospinning technique. They were activated by soaking in 1 M LiPF6 containing 1:1 volume ratio of EC : DMC (ethylene carbonate:dimethyl carbonate) to get electrospun nanocomposite polymer membrane electrolytes (esCPMEs). The influence of ZrO2 on the physical, mechanical and electrochemical properties of esCPM was studied in detail. Finally, coin type Li-ion capacitor cell was assembled using LiCo0.2Mn1.8O4 as the cathode, Activated carbon as the anode and the esCPME containing 7 wt% of ZrO2 as the separator, which delivered a discharge capacitance of 182.5 Fg−1 at the current density of 1Ag−1 and retained 92% of its initial discharge capacitance even after 2,000 cycles. It revealed that the electrospun PVdF-HFP/ZrO2 based nanocomposite membrane electrolyte could be used as a good candidate for high performance Li-ion capacitors.

  1. Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li7La3Zr2O12 Solid Electrolytes.

    Science.gov (United States)

    Cheng, Lei; Wu, Cheng Hao; Jarry, Angelique; Chen, Wei; Ye, Yifan; Zhu, Junfa; Kostecki, Robert; Persson, Kristin; Guo, Jinghua; Salmeron, Miquel; Chen, Guoying; Doeff, Marca

    2015-08-19

    The interfacial resistances of symmetrical lithium cells containing Al-substituted Li7La3Zr2O12 (LLZO) solid electrolytes are sensitive to their microstructures and histories of exposure to air. Air exposure of LLZO samples with large grain sizes (∼150 μm) results in dramatically increased interfacial impedances in cells containing them, compared to those with pristine large-grained samples. In contrast, a much smaller difference is seen between cells with small-grained (∼20 μm) pristine and air-exposed LLZO samples. A combination of soft X-ray absorption (sXAS) and Raman spectroscopy, with probing depths ranging from nanometer to micrometer scales, revealed that the small-grained LLZO pellets are more air-stable than large-grained ones, forming far less surface Li2CO3 under both short- and long-term exposure conditions. Surface sensitive X-ray photoelectron spectroscopy (XPS) indicates that the better chemical stability of the small-grained LLZO is related to differences in the distribution of Al and Li at sample surfaces. Density functional theory calculations show that LLZO can react via two different pathways to form Li2CO3. The first, more rapid, pathway involves a reaction with moisture in air to form LiOH, which subsequently absorbs CO2 to form Li2CO3. The second, slower, pathway involves direct reaction with CO2 and is favored when surface lithium contents are lower, as with the small-grained samples. These observations have important implications for the operation of solid-state lithium batteries containing LLZO because the results suggest that the interfacial impedances of these devices is critically dependent upon specific characteristics of the solid electrolyte and how it is prepared.

  2. Ionic conductivity and interfacial properties of nanochitin-incorporated polyethylene oxide-LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2} polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Angulakshmi, N.; Prem Kumar, T. [Electrochemical Power Systems Division, Central Electrochemical Research Institute, Karaikudi 630006 (India); Thomas, Sabu [School of Chemical Sciences, Mahatma Gandhi University, Kottayam 686560 (India); Manuel Stephan, A., E-mail: arulmanuel@gmail.co [Electrochemical Power Systems Division, Central Electrochemical Research Institute, Karaikudi 630006 (India)

    2010-01-25

    Nanocomposite polymer electrolytes (NCPE) composed of poly(ethylene oxide) and nanochitin for different concentrations of LiN(C{sub 2}F{sub 5}SO{sub 2}){sub 2} (LiBETI) were prepared by a completely dry, solvent-free procedure using a hot press. The thermal stability of NCPE membranes was investigated by DSC and TG-DTA. The membranes were subjected to SEM, ionic conductivity and FTIR analysis. Li/NCPE/Li symmetric cells were assembled and the variation of interfacial resistance as a function of time was also measured. The surface chemistry of lithium electrodes in contact with NCPE revealed the formation of Li-O-C and LiN compounds. LiFePO{sub 4}/NCPE/Li cell was assembled and the cycling profile showed a well-defined and reproducible shape of the voltage curves thus indicating a good cycling behavior of the cell at 60 deg. C.

  3. A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry

    Science.gov (United States)

    Ma, Lin; Nie, Mengyun; Xia, Jian; Dahn, J. R.

    2016-09-01

    The reactivity between charged Li[NixMnyCoz]O2 (NMC, with x + y + z = 1, x:y:z = 1:1:1 (NMC111), 4:4:2 (NMC442), 5:3:2 (NMC532), 6:2:2 (NMC622) and 8:1:1 (NMC811)) and traditional carbonate-based electrolytes at elevated temperatures was systematically studied using accelerating rate calorimetry (ARC). The ARC results showed that the upper cut-off potential and NMC composition strongly affect the thermal stability of the various NMC grades when traditional carbonate-based electrolyte was used. Although higher cut-off potential and higher Ni content can help increase the energy density of lithium ion cells, these factors generally increase the reactivity between charged NMC and electrolyte at elevated temperatures. It is hoped that this report can be used to help guide the wise selection of NMC grade and upper cut-off potential to achieve high energy density Li-ion cells without seriously compromising cell safety.

  4. Preparation of thick-film electrode-solid electrolyte composites on Li7La3Zr2O12 and their electrochemical properties

    Science.gov (United States)

    Kato, Takeshia; Iwasaki, Shinya; Ishii, Yosuke; Motoyama, Munekazu; West, William C.; Yamamoto, Yuta; Iriyama, Yasutoshi

    2016-01-01

    We prepared up to 20 μm-thick LiNi1/3Co1/3Mn1/3O2 (NMC)-Li+ conductive glass-ceramic solid electrolyte (LATP: σLi+ ˜ 10-3 S cm-2 at 298 K) composite cathode films on Li7La3Zr2O12 (LLZ) substrates by aerosol deposition (AD) and investigated their electrochemical properties as all-solid-state batteries. The resultant NMC/LATP interface in the composite film had a thin mutual diffusion layer (˜5 nm) and a film had a porosity of ca. 0.15% in volume. The composite films were well adhered to the LLZ substrates even though the films were prepared at room temperature. All-solid-state batteries, consisting of Li/LLZ/NMC-LATP composite film (20 μm), repeated charge-discharge reactions for 90 cycles at 100 °C at a 1/10 C rate (capacity retention: 99.97%/cycle). Rate capability of this battery was improved by modifying both the LATP and electron conductive source amount in the composite film, and a battery with 16 μm-thick composite electrode delivered 60 mAh g-1 at 1 mA cm-2.

  5. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components

    Science.gov (United States)

    Lin, Yu-Xiao; Liu, Zhe; Leung, Kevin; Chen, Long-Qing; Lu, Peng; Qi, Yue

    2016-03-01

    The formation and continuous growth of a solid electrolyte interphase (SEI) layer are responsible for the irreversible capacity loss of batteries in the initial and subsequent cycles, respectively. In this article, the electron tunneling barriers from Li metal through three insulating SEI components, namely Li2CO3, LiF and Li3PO4, are computed by density function theory (DFT) approaches. Based on electron tunneling theory, it is estimated that sufficient to block electron tunneling. It is also found that the band gap decreases under tension while the work function remains the same, and thus the tunneling barrier decreases under tension and increases under compression. A new parameter, η, characterizing the average distances between anions, is proposed to unify the variation of band gap with strain under different loading conditions into a single linear function of η. An analytical model based on the tunneling results is developed to connect the irreversible capacity loss, due to the Li ions consumed in forming these SEI component layers on the surface of negative electrodes. The agreement between the model predictions and experimental results suggests that only the initial irreversible capacity loss is due to the self-limiting electron tunneling property of the SEI.

  6. Coatable Li4 SnS4 Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries.

    Science.gov (United States)

    Choi, Young Eun; Park, Kern Ho; Kim, Dong Hyeon; Oh, Dae Yang; Kwak, Hi Ram; Lee, Young-Gi; Jung, Yoon Seok

    2017-06-22

    Bulk-type all-solid-state lithium-ion batteries (ASLBs) for large-scale energy-storage applications have emerged as a promising alternative to conventional lithium-ion batteries (LIBs) owing to their superior safety. However, the electrochemical performance of bulk-type ASLBs is critically limited by the low ionic conductivity of solid electrolytes (SEs) and poor ionic contact between the active materials and SEs. Herein, highly conductive (0.14 mS cm(-1) ) and dry-air-stable SEs (Li4 SnS4 ) are reported, which are prepared using a scalable aqueous-solution process. An active material (LiCoO2 ) coated by solidified Li4 SnS4 from aqueous solutions results in a significant improvement in the electrochemical performance of ASLBs. Side-effects of the exposure of LiCoO2 to aqueous solutions are minimized by using predissolved Li4 SnS4 solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Progress in Studies of Organic Electrolyte Solutions for Li Metal and Li-ion Secondary Batteries%锂及锂离子蓄电池有机电解液研究进展

    Institute of Scientific and Technical Information of China (English)

    庄全超; 刘文元; 武山; 陆兆达

    2002-01-01

      Organic electrolyte solution is the major component of Li metal and Li ion secondary batteries, and it has some important effect on the batteries’ performance, such as reversible capacity, cycle properties and safety. A review on the anode stability, cathode stability and safety of organic electrolyte solutions was presented. Emphasis was focused on the compatibility of organic electrolyte solutions with the anode and cathode.%  有机电解液是锂及锂离子蓄电池的重要组成部分,对电池许多性能如可逆容量、循环性能、安全性等有着重要的影响。本文从有机电解液的阴极稳定性、阳极稳定性以及安全性三个方面,综述当前这一领域的最新研究进展。重点论述了有机电解液与电池阴极和阳极相容性。

  8. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O^sub 2^ battery capacity

    National Research Council Canada - National Science Library

    Colin M Burke; Vikram Pande; Abhishek Khetan; Venkatasubramanian Viswanathan; Bryan D McCloskey

    2015-01-01

      Among the "beyond Li-ion" battery chemistries, nonaqueous Li-O2 batteries have the highest theoretical specific energy and, as a result, have attracted significant research attention over the past decade...

  9. Preparation and characterization of PVC/PMMA blend polymer electrolytes complexed with LiN(C2F5SO22

    Directory of Open Access Journals (Sweden)

    R. Nimma Elizabeth

    2004-03-01

    Full Text Available Thin films of polymer blend electrolytes comprising Poly(vinyl chloride (PVC and Poly(methyl methacrylate(PMMA and plasticized with a combination of ethylene carbonate (EC and propylene carbonate (PC for different lithium imide salt, LiN(C2F5SO32 , concentrations were prepared using the solution casting technique. The films were subjected to a. c. impedance measurements as a function of temperature ranging from -30 °C to 70 °C. The variation of ionic conductivity as a function of temperature and PVC content in the blend was analysed. The role of PMMA in the phenomena occurring at the interface between the plasticized polymer electrolyte and lithium electrode was also studied. The cast films were also subjected to TG/DTA and FT-IR studies which are discussed.

  10. Lithium Ion Coupled Electron-Transfer Rates in Superconcentrated Electrolytes: Exploring the Bottlenecks for Fast Charge-Transfer Rates with LiMn2O4 Cathode Materials.

    Science.gov (United States)

    Nikitina, Victoria A; Zakharkin, Maxim V; Vassiliev, Sergey Yu; Yashina, Lada V; Antipov, Evgeny V; Stevenson, Keith J

    2017-09-19

    The charge-transfer kinetics of lithium ion intercalation into LixMn2O4 cathode materials was examined in dilute and concentrated aqueous and carbonate LiTFSI solutions using electrochemical methods. Distinctive trends in ion intercalation rates were observed between water-based and ethylene carbonate/diethyl carbonate solutions. The influence of the solution concentration on the rate of lithium ion transfer in aqueous media can be tentatively attributed to the process associated with Mn dissolution, whereas in carbonate solutions the rate is influenced by the formation of a concentration-dependent solid electrolyte interface (SEI). Some indications of SEI layer formation at electrode surfaces in carbonate solutions after cycling are detected by X-ray photoelectron spectroscopy. The general consequences related to the application of superconcentrated electrolytes for use in advanced energy storage cathodes are outlined and discussed.

  11. Novel Li[(CF3SO2)(n-C4F9SO2)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance.

    Science.gov (United States)

    Ma, Qiang; Qi, Xingguo; Tong, Bo; Zheng, Yuheng; Feng, Wenfang; Nie, Jin; Hu, Yong-Sheng; Li, Hong; Huang, Xuejie; Chen, Liquan; Zhou, Zhibin

    2016-11-02

    Solid polymer electrolytes (SPEs) would be promising candidates for application in high-energy rechargeable lithium (Li) batteries to replace the conventional organic liquid electrolytes, in terms of the enhanced safety and excellent design flexibility. Herein, we first report novel perfluorinated sulfonimide salt-based SPEs, composed of lithium (trifluoromethanesulfonyl)(n-nonafluorobutanesulfonyl)imide (Li[(CF3SO2)(n-C4F9SO2)N], LiTNFSI) and poly(ethylene oxide) (PEO), which exhibit relatively efficient ionic conductivity (e.g., 1.04 × 10(-4) S cm(-1) at 60 °C and 3.69 × 10(-4) S cm(-1) at 90 °C) and enough thermal stability (>350 °C), for rechargeable Li batteries. More importantly, the LiTNFSI-based SPEs could not only deliver the excellent interfacial compatibility with electrodes (e.g., Li-metal anode, LiFePO4 and sulfur composite cathodes), but also afford good cycling performances for the Li|LiFePO4 (>300 cycles at 1C) and Li-S cells (>500 cycles at 0.5C), in comparison with the conventional LiTFSI (Li[(CF3SO2)2N])-based SPEs. The interfacial impedance and morphology of the cycled Li-metal electrodes are also comparatively analyzed by electrochemical impedance spectra and scanning electron microscopy, respectively. These indicate that the LiTNFSI-based SPEs would be potential alternatives for application in high-energy solid-state Li batteries.

  12. FTIR and Raman Study of the LixTiyMn1-yO2 (y = 0, 0.11) Cathodes in Methylpropyl Pyrrolidinium Bis(fluoro-sulfonyl)imide, LiTFSI Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, L.J.; Lucas, I.T.; Doeff, M.M.; Kostecki, R.; Saint, J.A.

    2009-02-02

    This work demonstrates the protective effect of partial titanium substitution in Li{sub x}Ti{sub 0.11}Mn{sub 0.89}O{sub 2} against surface decomposition in room-temperature ionic liquid (RTILs) cells. Raman microscopy and reflectance Fourier transform IR (FTIR) spectroscopy were used to analyze electrodes recovered from cycled Li/Li{sub x}Ti{sub y}Mn{sub 1-y}O{sub 2} (y=0, 0.11) cells containing the 0.5 mol/kg LiTFSI in P{sub 13}FSI RTIL electrolyte. [TFSI=bis(trifluoromethanesulfonyl)imide.] Raman and FTIR spectra of cycled Li{sub x}MnO{sub 2} cathodes showed many distinct bands that can be attributed to both the electrolyte and electrode decomposition products. The thickness of the amorphous porous layer on the Li{sub x}MnO{sub 2} cathode increased during cycling. The surface degradation of Li{sub x}MnO{sub 2} and precipitation of electrolyte decomposition products contributed to the film growth. Improved cycling behavior was observed in cells containing Li{sub x}Ti{sub 0.11}Mn{sub 0.89}O{sub 2}, yet Raman spectroscopy also showed possible surface degradation. The FTIR spectra of cycled Li{sub x}MnO{sub 2} and Li{sub x}Ti{sub 0.11}Mn{sub 0.89}O{sub 2} cathodes displayed bands characteristic for LiSO{sub 3}CF{sub 3} and Li{sub 2}NSO{sub 2}CF{sub 3}, which originate from the reaction of the TFSI anion with traces of water present in the cell.

  13. Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) based separator for Li-ion batteries

    Institute of Scientific and Technical Information of China (English)

    吴娇杨; 凌仕刚; 杨琪; 李泓; 许晓雄; 陈立泉

    2016-01-01

    A new concept of forming solid electrolyte interphases (SEI) in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3-polypropylene (LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries.

  14. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus;

    2014-01-01

    .6% per charge-discharge cycle is observed. The electrochemical stability of the LiBH4-LiI solid solution was investigated using cyclic voltammetry and is found to be limited to 3 V. The impedance of the battery cells was measured using impedance spectroscopy. A strong correlation is found between...

  15. Synthesis and characterization of polyether urethane acrylate -LiCF{sub 3}SO{sub 3}-based polymer electrolytes by UV-curing in lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheon Soo; Kim, Bo Hyun; Kim, Keon [Korea Univ., Seoul (Korea). Dept. of Chemistry

    1999-11-01

    The prepolymers of polyether urethane acrylate (PEUA) were synthesized from polyether polyol (polyethylene glycol (PEG) or polypropylene glycol (PPG)), diisocyanate (hexamethylene diisocyanate (HMDI) or toluene, 2,4-diisocyanate (TDI)), and the caprolactone-modified hydroxyethyl acrylate (FA2D) using the catalyst (dibutyltin dilaurate (DBTDL)) by stepwise addition reaction. Lithium triflate (LiCF{sub 3}SO{sub 3}) was dissolved in PEUA prepolymers, and plasticizer (propylene carbonate (PC)) was added into prepolymer and salt mixtures. Then photoinitiator (Irgacure 184) was also dissolved in the mixtures. Thin films were prepared by casting on the glass plate, and then by curing the plasticized prepolymer and salt mixtures under UV radiation. Electrochemical and electrical properties of PEUA-LiCF{sub 3}SO{sub 3}-based polymer electrolytes were evaluated and discussed to be used in lithium batteries. (orig.)

  16. Synthesis and characterization of polyether urethane acrylate-LiCF 3SO 3-based polymer electrolytes by UV-curing in lithium batteries

    Science.gov (United States)

    Kim, Cheon-Soo; Kim, Bo-Hyun; Kim, Keon

    The prepolymers of polyether urethane acrylate (PEUA) were synthesized from polyether polyol (polyethylene glycol (PEG) or polypropylene glycol (PPG)), diisocyanate (hexamethylene diisocyanate (HMDI) or toluene 2,4-diisocyanate (TDI)), and the caprolactone-modified hydroxyethyl acrylate (FA2D) using the catalyst (dibutyltin dilaurate (DBTDL)) by stepwise addition reaction. Lithium triflate (LiCF 3SO 3) was dissolved in PEUA prepolymers, and plasticizer (propylene carbonate (PC)) was added into prepolymer and salt mixtures. Then photoinitiator (Irgacure 184) was also dissolved in the mixtures. Thin films were prepared by casting on the glass plate, and then by curing the plasticized prepolymer and salt mixtures under UV radiation. Electrochemical and electrical properties of PEUA-LiCF 3SO 3-based polymer electrolytes were evaluated and discussed to be used in lithium batteries.

  17. In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries

    Science.gov (United States)

    Wu, Na; Cao, Qi; Wang, Xianyou; Li, Sheng; Li, Xiaoyun; Deng, Huayang

    Gel polymer electrolyte films based on thermoplastic polyurethane (TPU)/poly(vinylidene fluoride) (PVdF) with and without in situ ceramic fillers (SiO 2 and TiO 2) are prepared by electrospinning 9 wt% polymer solution at room temperature. The electrospun TPU-PVdF blending membrane with 3% in situ TiO 2 shows a highest ionic conductivity of 4.8 × 10 -3 S cm -1 with electrochemical stability up to 5.4 V versus Li +/Li at room temperature and has a high tensile strength (8.7 ± 0.3 MPa) and % elongation at break (110.3 ± 0.2). With the superior electrochemical and mechanical performance, it is very suitable for application in polymer lithium ion batteries.

  18. Thermal, vibrational, and dielectric studies on PVP/LiBF4+ionic liquid [EMIM][BF4]-based polymer electrolyte films

    Science.gov (United States)

    Saroj, A. L.; Singh, R. K.; Chandra, S.

    2014-07-01

    Free-standing polymer electrolyte membranes based on poly(vinyl) pyrrolidone (PVP)/salt(LiBF4) having different amounts of ionic liquid (IL) [EMIM][BF4] were prepared and characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, and alternating current (AC) impedance spectroscopic techniques. The DSC results show a shift in Tm of PVP with salt/or IL content. TGA and DTGA (first derivative of TGA) results give evidence of the presence of uncomplexed PVP, PVP/salt, and PVP/IL complexes. Signatures of these entities are also present in the dielectric spectra. Complexation of PVP with salt and IL has been confirmed by FT-IR analysis. Electrical conductivity as a function of temperature has been studied for PVP/LiBF4/IL [EMIM][BF4]. Role of IL in changing phase transition, conductivity, and dielectric relaxation frequency has been discussed.

  19. Mechanism of the carbonate-based-electrolyte degradation and its effects on the electrochemical performance of Li1+x(NiaCobMn1-a-b)1-xO2 cells

    Science.gov (United States)

    Peng, H.-J.; Villevieille, C.; Trabesinger, S.; Wolf, H.; Leitner, K.; Novák, P.

    2016-12-01

    In lithium-ion batteries with carbonate electrolytes, the formation of lithium alkoxides at the anode impairs the electrochemical performance and the cycle life of the cells through destabilisation of the cathode-electrolyte interface. To fully understand the effect of electrolyte composition on the stability of the cathode-electrolyte interface, and therefore to minimise alkoxide formation and improve cycling stability, we study different carbonate solvents and mixtures thereof. Electrolytes that promote the formation of ethoxide are found to be more detrimental to the cell performance than those forming methoxide. The presence of cyclic carbonates in the electrolyte-solvent mixture alleviates the detrimental effects of ethoxide-forming solvents on the electrochemical performance of Li1.05(Ni0.33Co0.33Mn0.33)0.95O2 by reducing the solubility of the ethoxide.

  20. Study of a Li/polymer electrolyte/V{sub 2}O{sub 5} battery; Etude d`un accumulateur Li/POE/V{sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Tassin, N.; Bronoel, G.; Fauvarque, J.F.; Millot, A. [Laboratoire SORAPEC, 94 - Fontenay-sous-Bois (France)

    1996-12-31

    The use of POE solid polymer electrolytes in negative lithium electrode batteries allows to reach energy density values close to 150 Wh/kg. The functioning of Li/POE/V{sub 2}O{sub 5} elements has been studied on small capacity elementary cells (about 26 mAh) and the results obtained were confirmed using coiled elements of 1.4 to 1.8 Ah capacity. This work has been carried out for Bollore Technologies (BT) and Electricite de France (EdF) companies. (J.S.)

  1. What can we learn from ionic conductivity measurements in polymer electrolytes? A case study on poly(ethylene oxide) (PEO)-NaI and PEO-LiTFSI.

    Science.gov (United States)

    Stolwijk, Nicolaas A; Wiencierz, Manfred; Heddier, Christian; Kösters, Johannes

    2012-03-15

    We explore in detail what information on ionic diffusivity and ion pairing can be exclusively gained from combining accurate direct-current conductivity data in polymer electrolytes with a novel evaluation model. The study was performed on two prototype systems based on poly(ethylene oxide) (PEO) with known disparate ion-association properties, which are due to the dissimilar salt components being either sodium iodide (NaI) or lithium bis(trifluoromethane-sulfonyl)imide (LiN(CF(3)SO(2))(2) or LiTFSI). The temperature dependence of the conductivity can be described by an extended Vogel-Tammann-Fulcher (VTF) equation, which involves a Boltzmann factor containing the pair-formation enthalpy ΔH(p). We find a distinct increase of the positive ΔH(p) values with decreasing salt concentration and similarly clear trends for the pertinent VTF parameters. The analysis further reveals that PEO-NaI combines a high pair fraction with a high diffusivity of the I(-) ion. By contrast, PEO-LiTFSI appears to be characterized by a low ion-pairing tendency and a relatively low mobility of the bulky TFSI(-) ion. The observed marked differences between PEO-NaI and PEO-LiTFSI complexes of homologous composition are most pronounced at high temperatures and low salt concentrations.

  2. The Formation Mechanism of Fluorescent Metal Complexes at the LixNi0.5Mn1.5O4-δ/Carbonate Ester Electrolyte Interface

    Energy Technology Data Exchange (ETDEWEB)

    Jarry, Angelique [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gottis, Sebastien [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yu, Young-Sang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of Illinois, Chicago, IL (United States); Roque-Rosell, Josep [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kim, Chunjoong [Univ. of Illinois, Chicago, IL (United States); Cabana, Jordi [Univ. of Illinois, Chicago, IL (United States); Kerr, John B [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kostecki, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-03-18

    Electrochemical oxidation of carbonate esters at the LixNi0.5Mn1.5O4-δ/electrolyte interface results in Ni/Mn dissolution and surface film formation, which negatively affect the electrochemical performance of Li-ion batteries. Ex situ X-ray absorption (XRF/XANES), Raman, and fluorescence spectroscopy, along with imaging of LixNi0.5Mn1.5O4-δ positive and graphite negative electrodes from tested Li-ion batteries, reveal the formation of a variety of MnII/III and NiII complexes with β-diketonate ligands. These metal complexes, which are generated upon anodic oxidation of ethyl and diethyl carbonates at LixNi0.5Mn1.5O4-δ, form a surface film that partially dissolves in the electrolyte. The dissolved MnIII complexes are reduced to their MnII analogues, which are incorporated into the solid electrolyte interphase surface layer at the graphite negative electrode. This work elucidates possible reaction pathways and evaluates their implications for Li+ transport kinetics in Li-ion batteries.

  3. High Voltage LiNi0.5Mn0.3Co0.2O2/Graphite Cell Cycled at 4.6 V with A FEC/HFDEC-Based Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    He, Meinan; Su, Chi-Cheung; Feng, Zhenxing; Zeng, Li; Wu, Tianpin; Bedzyk, Michael J.; Fenter, Paul; Wang, Yan; Zhang, Zhengcheng

    2017-08-09

    A high voltage LiNi0.5Mn0.3Co0.2O2/graphite cell with a fluorinated electrolyte formulation 1.0 m LiPF6 fluoroethylene carbonate/bis(2,2,2-trifluoroethyl) carbonate is reported and its electrochemical performance is evaluated at cell voltage of 4.6 V. Comparing with its nonfluorinated electrolyte counterpart, the reported fluorinated one shows much improved Coulombic efficiency and capacity retention when a higher cut-off voltage (4.6 V) is applied. Scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy data clearly demonstrate the superior oxidative stability of the new electrolyte. The structural stability of the bulk cathode materials cycled with different electrolytes is extensively studied by X-ray absorption near edge structure and X-ray diffraction.

  4. Development of bipolar all-solid-state lithium battery based on quasi-solid-state electrolyte containing tetraglyme-LiTFSA equimolar complex.

    Science.gov (United States)

    Gambe, Yoshiyuki; Sun, Yan; Honma, Itaru

    2015-03-09

    The development of high energy-density lithium-ion secondary batteries as storage batteries in vehicles is attracting increasing attention. In this study, high-voltage bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex were prepared, and the performance of the device was evaluated. Via the successful production of double-layered and triple-layered high-voltage devices, it was confirmed that these stacked batteries operated properly without any internal short-circuits of a single cell within the package: Their plateau potentials (6.7 and 10.0 V, respectively) were two and three times that (3.4 V) of the single-layered device, respectively. Further, the double-layered device showed a capacity retention of 99% on the 200th cycle at 0.5 C, which is an indication of good cycling properties. These results suggest that bipolar stacked batteries with a quasi-solid-state electrolyte containing a Li-Glyme complex could readily produce a high voltage of 10 V.

  5. Towards Li(Ni0.33Mn0.33Co0.33)O2/graphite batteries with ionic liquid-based electrolytes. I. Electrodes' behavior in lithium half-cells

    Science.gov (United States)

    Simonetti, E.; Maresca, G.; Appetecchi, G. B.; Kim, G.-T.; Loeffler, N.; Passerini, S.

    2016-11-01

    Lithium cells based on NMC cathodes or graphite anodes and ionic liquid-based electrolyte mixtures are investigated. The electrode tapes, using water-soluble natural binders, as well as the ionic liquid materials, are prepared through eco-friendly routes involving H2O as the only processing solvent. The Li/NMC and Li/graphite half-cells are studied by cyclic voltammetry, impedance spectroscopy and galvanostatic cycling tests at different temperatures. The results herein reported, demonstrate the performance improvement in terms of cycling behavior and ageing resistance, granted by the ionic liquid mixtures with respect to the electrolytes reported in literature based on a single ionic liquid.

  6. Construction of All-Solid-State Batteries based on a Sulfur-Graphene Composite and Li9.54 Si1.74 P1.44 S11.7 Cl0.3 Solid Electrolyte.

    Science.gov (United States)

    Xu, Ruochen; Wu, Zhang; Zhang, Shenzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Huang, Xiaohua; Tu, Jiangping

    2017-07-19

    Herein an effective way for construction of all-solid-state lithium-sulfur batteries (LSBs) with sulfur/reduced graphene oxide (rGO) and Li9.54 Si1.74 P1.44 S11.7 Cl0.3 solid electrolyte is reported. In the composite cathode, the Li9.54 Si1.74 P1.44 S11.7 Cl0.3 powder is homogeneously mixed with the S/rGO composite to enhance the ionic conductivity. Coupled with a metallic Li anode and solid electrolyte, the designed S/rGO-Li9.54 Si1.74 P1.44 S11.7 Cl0.3 composite cathode exhibits a high specific capacity and good cycling stability. A high initial discharge capacity of 969 mAh g(-1) is achieved at a current density of 80 mA g(-1) at room temperature and the cell retains a reversible capacity of over 827 mAh g(-1) after 60 cycles. The enhanced performance is attributed to the intimate contact between the S/rGO and Li9.54 Si1.74 P1.44 S11.7 Cl0.3 electrolyte, and high electrical conductivity of rGO and high ionic conductivity of the solid electrolyte. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode

    Science.gov (United States)

    Qian, Yunxian; Niehoff, Philip; Börner, Markus; Grützke, Martin; Mönnighoff, Xaver; Behrends, Pascal; Nowak, Sascha; Winter, Martin; Schappacher, Falko M.

    2016-10-01

    Traditional solid electrolyte interphase (SEI) forming additives of vinylene carbonate (VC), fluoroethylene carbonate (FEC) and ethylene sulfite (ES) are studied with respect to their impact on the formation and growth of the cathode electrolyte interphase (CEI) layer. T-half cells are assembled and undergo three different electrochemical investigation plans: after formation (0.1C, 5 cycles) and long term cycling (0.1C, 5 constant current cycles + 1C, 100/150 constant current/voltage cycles), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and gas chromatography-mass spectrometry (GC-MS) are combined to investigate morphology, CEI composition, CEI thickness and aging products for cells with different electrolyte systems. The obtained results reveal a significant influence of these additives on the CEI composition and CEI growth. With the help of SEM, it is found that large areas of electrolyte decomposition products are formed at the aged electrode surfaces (=after cycling), with the exception when 2 vol% of FEC is added into the reference electrolyte. From XPS measurements, CEI thicknesses are calculated. The reference electrolyte with 2 vol% of FEC shows the thinnest layer after long time aging (0.8 ± 0.2 nm). For the addition of 2 vol% of VC, an incremental growth of the CEI thickness occurs from the 100th to 150th cycle (from 1.0 ± 0.1 nm to 2.9 ± 0.4 nm). By correlating the CEI thickness values with the electrochemical performance, it can be observed that for lithium metal based half cells, the existence of a thinner CEI layer corresponds to a better cycling behavior, with 2 vol% of FEC showing the highest discharge capacity of 114.4 ± 0.2 mAh/g after 150 cycles at 1C. GC-MS shows that both VC and FEC help to prevent fast electrolyte aging.

  8. Layer Number Dependence of Li(+) Intercalation on Few-Layer Graphene and Electrochemical Imaging of Its Solid-Electrolyte Interphase Evolution.

    Science.gov (United States)

    Hui, Jingshu; Burgess, Mark; Zhang, Jiarui; Rodríguez-López, Joaquín

    2016-04-26

    A fundamental question facing electrodes made out of few layers of graphene (FLG) is if they display chemical properties that are different to their bulk graphite counterpart. Here, we show evidence that suggests that lithium ion intercalation on FLG, as measured via stationary voltammetry, shows a strong dependence on the number of layers of graphene that compose the electrode. Despite its extreme thinness and turbostratic structure, Li ion intercalation into FLG still proceeds through a staging process, albeit with different signatures than bulk graphite or multilayer graphene. Single-layer graphene does not show any evidence of ion intercalation, while FLG with four graphene layers displays limited staging peaks, which broaden and increase in number as the layer number increases to six. Despite these mechanistic differences on ion intercalation, the formation of a solid-electrolyte interphase (SEI) was observed on all electrodes. Scanning electrochemical microscopy (SECM) in the feedback mode was used to demonstrate changes in the surface conductivity of FLG during SEI evolution. Observation of ion intercalation on large area FLG was conditioned to the fabrication of "ionic channels" on the electrode. SECM measurements using a recently developed Li-ion sensitive imaging technique evidenced the role of these channels in enabling Li-ion intercalation through localized flux measurements. This work highlights the impact of nanostructure and microstructure on macroscopic electrochemical behavior and provides guidance to the mechanistic control of ion intercalation using graphene, an atomically thin interface where surface and bulk reactivity converge.

  9. The Role of Al and Li Concentration on the Formation of Cubic Garnet Solid Electrolyte of Nominal Composition Li7La3Zr2O12

    Science.gov (United States)

    2011-01-01

    Introduction Li7La3Zr2O12 ( LLZO ) has recently become of high interest as a result of its potential as a solid state Li-ion conductor, because it has good...ionic conductivity (>10−4 S/cm) and is stable against lithium [1-8]. However, for the case of LLZO two phases exist; cubic and te- tragonal [1-9]. The...tetragonal phase. Thus, it is important to understand how to prepare the cubic phase. Several reports describe the synthesis and characterization of LLZO

  10. Li-MnO2电池低温电解液研究%Low temperature electrolytes for Li-MnO2 batteries

    Institute of Scientific and Technical Information of China (English)

    苏晓卉; 高军; 杨勇

    2009-01-01

    研究了电解质盐为LiCIO4的一系列新型电解液体系.在-40~25℃温度区间内,测定了各体系的离子电导率,并进行比较.选择电导率较好的1 mol/L LiCIO4/PC/MA(1:3)电解液体系组装成扣式U-Mn02电池,进行常温和低温放电性能的测试,并与使用常用电解液体系1 moVL LiPR6/EC/DMC(1:1)及1 mol/L UCIO4/PC/DME/DOL(1:1:1)的Li-MnO2的常温和低温放电性能进行了比较.探讨了电解液低温电导率提高的机理,特别是线性羧酸酯的加入对电解液低温电导率和放电性能的影响.

  11. Preparation and characterization of LiAlxMn2-xO4 for a supercapacitor in aqueous electrolyte

    Institute of Scientific and Technical Information of China (English)

    Yun Xue; Ye Chen; Mi-lin Zhang; Yong-de Yan

    2009-01-01

    LiAlxMn2-xO4 (0≤x≤0.5) was synthesized by high temperature solid-state reaction.The structure and morphology of LiAl/Mn2-xO4 were investigated by X-ray diffraction and scanning electron microscopy (SEM).The results indicate that all samples show spinel phase.The polyhedral particles turn to club-shaped,then change to small spherical,and finally become agglomerates with increasing Al content.The supercapacitive performances of LiAlxMn2-xO4 were studied by means of galvanostatic charge-discharge,cyclic voltammetry,and alternating current (AC) impedance in 2 mol.L-l (NH4)2SO4 aqueous solution.The results show that LiAlxMn2-xO4 represents rectangular shape performance in the potential range of 0-1 V.The capacity and cycle perform-ance can be improved by doping Al.The composition of x=0.1 has the maximum special capacitance of 160 F.g-1,which is 1.37 times that of LiMn2O4 electrode.The capacitance loss of LiAlxMn2-xO4 with x=0.1 is only about 14% after 100 cycles.

  12. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  13. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte

    DEFF Research Database (Denmark)

    Das, Supti; Ngene, Peter; Norby, Poul;

    2016-01-01

    number (t+ = 0.96), close to unity, demonstrates a purely cationic conductor. The electrolyte has an excellent stability against lithium metal. The behavior of the batteries is studied by cyclic voltammetry and repeated charge/discharge cycles in galvanostatic conditions. The batteries show very good...

  14. Performance of electrical double layer capacitors fabricated with gel polymer electrolytes containing Li{sup +} and K{sup +}-salts: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Manoj K., E-mail: mmanoj.ssi@gmail.com; Hashmi, S. A. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India)

    2015-06-24

    The comparative performance of the solid-state electrical double layer capacitors (EDLCs) based on the multiwalled carbon nanotube (MWCNT) electrodes and poly (vinaylidinefluoride-co-hexafluoropropyline) (PVdF-HFP) based gel polymer electrolytes (GPEs) containing potassium and lithium salts have been studied. The room temperature ionic conductivity of the GPEs have been found to be ∼3.8×10{sup −3} and 5.9×10{sup −3} S cm{sup −1} for lithium and potassium based systems. The performance of EDLC cells studied by impedance spectroscopy, cyclic voltammetry and constant current charge-discharge techniques, indicate that the EDLC with potassium salt containing GPE shows excellent performance almost equivalent to the EDLC with Li-salt-based GPE.

  15. A new sealed lithium-peroxide battery with a co-doped Li2O cathode in a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte.

    Science.gov (United States)

    Okuoka, Shin-ichi; Ogasawara, Yoshiyuki; Suga, Yosuke; Hibino, Mitsuhiro; Kudo, Tetsuichi; Ono, Hironobu; Yonehara, Koji; Sumida, Yasutaka; Yamada, Yuki; Yamada, Atsuo; Oshima, Masaharu; Tochigi, Eita; Shibata, Naoya; Ikuhara, Yuichi; Mizuno, Noritaka

    2014-07-14

    We propose a new sealed battery operating on a redox reaction between an oxide (O(2-)) and a peroxide (O2(2-)) with its theoretical specific energy of 2570 Wh kg(-1) (897 mAh g(-1), 2.87 V) and demonstrate that a Co-doped Li2O cathode exhibits a reversible capacity over 190 mAh g(-1), a high rate capability, and a good cyclability with a superconcentrated lithium bis(fluorosulfonyl)amide electrolyte in acetonitrile. The reversible capacity is largely dominated by the O(2-)/O2(2-) redox reaction between oxide and peroxide with some contribution of the Co(2+)/Co(3+) redox reaction.

  16. Lithium Ethylene Dicarbonate Identified as the Primary Product ofChemical and Electrochemical Reduction of EC in EC:EMC/1.2M LiPF6Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Guorong V.; Xu, Kang; Yang, Hui; Jow, T. Richard; RossJr., Philip N.

    2005-05-11

    Lithium ethylene dicarbonate (CH2OCO2Li)2 was chemically synthesized and its Fourier Transform Infrared (FTIR) spectrum was obtained and compared with that of surface films formed on Ni after cyclic voltammetry (CV) in 1.2M lithium hexafluorophosphate(LiPF6)/ethylene carbonate (EC): ethyl methyl carbonate (EMC) (3:7, w/w) electrolyte and on metallic lithium cleaved in-situ in the same electrolyte. By comparison of IR experimental spectra with that of the synthesized compound, we established that the title compound is the predominant surface species in both instances. Detailed analysis of the IR spectrum utilizing quantum chemical (Hartree-Fock) calculations indicates that intermolecular association through O...Li...O interactions is very important in this compound. It is likely that the title compound in passivation layer has a highly associated structure, but the exact intermolecular conformation could not be established based on analysis of the IR spectrum.

  17. Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety

    Science.gov (United States)

    Jung, Yun-Chae; Kim, Seul-Ki; Kim, Moon-Sung; Lee, Jeong-Hye; Han, Man-Seok; Kim, Duck-Hyun; Shin, Woo-Cheol; Ue, Makoto; Kim, Dong-Won

    2015-10-01

    Flexible ceramic separators based on Li+-conducting lithium lanthanum zirconium oxide are prepared as thin films and directly applied onto negative electrode to produce a separator-electrode assembly with good interfacial adhesion and low interfacial resistances. The ceramic separators show an excellent thermal stability and high ionic conductivity as compared to conventional polypropylene separator. The lithium-ion batteries assembled with graphite negative electrode, Li+-conducting ceramic separator and LiCoO2 positive electrode exhibit good cycling performance in terms of discharge capacity, capacity retention and rate capability. It is also demonstrated that the use of a ceramic separator can greatly improve safety over cells employing a polypropylene separator, which is highly desirable for lithium-ion batteries with enhanced safety.

  18. Hydrogen storage and ionic mobility in amide-halide systems.

    Science.gov (United States)

    Anderson, Paul A; Chater, Philip A; Hewett, David R; Slater, Peter R

    2011-01-01

    We report the results of a systematic study of the effect of halides on hydrogen release and uptake in lithium amide and lithium imide, respectively. The reaction of lithium amide and lithium imide with lithium or magnesium chloride, bromide and iodide resulted in a series of amide-halide and imide-halide phases, only two of which have been reported previously. On heating with LiH or MgH2, the amide-halides synthesised all released hydrogen more rapidly than lithium amide itself, accompanied by much reduced, or in some cases undetectable, release of ammonia by-product. The imide-halides produced were found to hydrogenate more rapidly than lithium imide, reforming related amide-halide phases. The work was initiated to test the hypothesis that the incorporation of halide anions might improve the lithium ion conductivity of lithium amide and help maintain high lithium ion mobility at all stages of the de/rehydrogenation process, enhancing the bulk hydrogen storage properties of the system. Preliminary ionic conductivity measurements indicated that the most conducting amide- and imide-halide phases were also the quickest to release hydrogen on heating and to hydrogenate. We conclude that ionic conductivity may be an important parameter in optimising the materials properties of this and other hydrogen storage systems.

  19. Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology.

    Science.gov (United States)

    Yang, Ting; Zheng, Jin; Cheng, Qian; Hu, Yan-Yan; Chan, Candace K

    2017-07-05

    Composite polymer solid electrolytes (CPEs) containing ceramic fillers embedded inside a polymer-salt matrix show great improvements in Li(+) ionic conductivity compared to the polymer electrolyte alone. Lithium lanthanum zirconate (Li7La3Zr2O12, LLZO) with a garnet-type crystal structure is a promising solid Li(+) conductor. We show that by incorporating only 5 wt % of the ceramic filler comprising undoped, cubic-phase LLZO nanowires prepared by electrospinning, the room temperature ionic conductivity of a polyacrylonitrile-LiClO4-based composite is increased 3 orders of magnitude to 1.31 × 10(-4) S/cm. Al-doped and Ta-doped LLZO nanowires are also synthesized and utilized as fillers, but the conductivity enhancement is similar as for the undoped LLZO nanowires. Solid-state nuclear magnetic resonance (NMR) studies show that LLZO NWs partially modify the PAN polymer matrix and create preferential pathways for Li(+) conduction through the modified polymer regions. CPEs with LLZO nanoparticles and Al2O3 nanowire fillers are also studied to elucidate the role of filler type (active vs passive), LLZO composition (undoped vs doped), and morphology (nanowire vs nanoparticle) on the CPE conductivity. It is demonstrated that both intrinsic Li(+) conductivity and nanowire morphology are needed for optimal performance when using 5 wt % of the ceramic filler in the CPE.

  20. Conductive performances of solid polymer electrolyte films based on PVB/LiClO 4 plasticized by PEG 200, PEG 400 and PEG 600

    Science.gov (United States)

    Li, Yawen; Wang, Jinwei; Tang, Jinwei; Liu, Yupeng; He, Yedong

    Solid polymer electrolyte (SPE) films consisting of polyvinyl butyral (PVB) as host polymer, LiClO 4 as alkali salt at mole ratio of [O]:[Li] = 8, and different molecular weight polyethylene glycol (PEG) including PEG 200, PEG 400, and PEG 600 as plasticizers are prepared by physical blending method. The dielectric relaxation and electrochemical impedance measurements reveal that the conductive performances are improved by adding PEG as plasticizers through the enhancement in the moving space for ions, and PEG 400 performs plasticizing effect superior to PEG 200 and PEG 600. Their conductivity is measured by using a sandwiched Pt/SPE/Pt cell model. SPE with 30% PEG 400 (wt%) of PVB exhibits the maximum conductivity at room temperature, and its conductivity increases linearly with temperatures from 303 to 333 K at two to three orders of magnitude higher than that of the other two SPEs containing 30% PEG 200 and 30% PEG 600, respectively. However, their conductivity does not increase linearly with the increase in heating temperatures until the temperature reaches around 333 K; the decrease in conductivity with heating from their maxima is attributed to the restriction of ion moving space because of the crosslinking reaction between hydroxyl and aldehyde groups. As observed from the XRD and the microscopy results, PEG 400 is more effective than others in enhancing the conductive performances of these SPEs through changing LiClO 4 from crystalline to amorphous state, increasing the flexibility of PVB, disturbing the short distance sequential order of PVB chains, and promoting the formation of 'pathway' for ions' movement.

  1. Ionic, XRD, dielectric and cyclic voltammetry studies on PVdF-co-HFP / MMT clay intercalated LiN(C2F5SO2)2 based composite electrolyte for Li-ion batteries

    Science.gov (United States)

    Vickraman, P.; Purushothaman, K.; SankaraSubramanian, N.

    2014-04-01

    The composition dependence of plasticizer, (EC/DMC)(70-x(wt%)) and LiBETIx(wt%) salt for fixed contents on PVdF-co-HFP(25wt%)/surface modified(SM)-octadecylamine MMT(ODA-MMT) nanoclay(5wt%) host matrix by varying its compositions x=1.5, 3.0, 4.5, 6.0 wt% prepared via solution casting technique has been investigated by A.C. Impedance, Dielectric, XRD, and cyclic voltammetry(CV) studies. The enhanced conductivity 2.1×10-5 S/cm at 300C is observed for (EC/DMC)(70-6)wt%/LiBETI(x=6)wt%. The XRD at 2θ=20.9° confirms β-phase formation, and CV studies on membranes show cyclability and reversibility. The dielectric studies show increase in dielectric constant and dielectric loss with decrease in frequency is attributed to high contribution of charge accumulation at the electrode-electrolyte interface.

  2. The Structure of the Solid Electrolyte Li1.6Ag0.4So4 at 565 degree C

    DEFF Research Database (Denmark)

    Nilsson, L.; Andersen, N. H.; Kjems, Jørgen

    1982-01-01

    The structure of the high-temperature solid solution Li1.6Ag0.4SO4 has been determined from neutron and X-ray powder diffraction data. The sulphate groups form a fcc lattice where the lithium ions are found to occupy the ±(1/4, 1/4, 1/4) tetrahedral sites. The silver ions partly occupy the same...... sites and partly the larger (½, ½, ½) octahedral site. The results strongly support earlier conclusions for the fcc phase of Li2SO4. Exceptionally high temperature factors are found. The consistency of the structural model with other characteristic properties of the high-temperature fcc phase is briefly...

  3. Poly(methyl methacrylate-acrylonitrile-ethyl acrylate) terpolymer based gel electrolyte for LiNi0.5Mn1.5O4 cathode of high voltage lithium ion battery

    Science.gov (United States)

    Sun, Ping; Liao, Youhao; Xie, Huili; Chen, Tingting; Rao, Mumin; Li, Weishan

    2014-12-01

    A novel gel polymer electrolyte (GPE), based on poly(methyl methacrylate-acrylonitrile-ethyl acrylate) (P(MMA-AN-EA)) terpolymer, is designed to match LiNi0.5Mn1.5O4 cathode of 5 V lithium ion battery. The performances of the synthesized P(MMA-AN-EA) terpolymer and the corresponding membrane and GPE are investigated by scanning electron microscope, energy dispersive spectroscopy, nuclear magnetic resonance spectra, Fourier transform infrared spectra, thermogravimetric analyzer, electrochemical impedance spectroscopy, linear sweep voltammetry, and charge/discharge test. It is found that the pore structure of P(MMA-AN-EA) membrane is affected by the dose of pore forming agent, polyethylene glycol (PEG400). The membrane with 3 wt% PEG400 presents the best pore structure, in which pores are dispersed uniformly and interconnected, and exhibits the largest electrolyte uptake, resulting in the highest ionic conductivity of 3.82 × 10-3 S cm-1 for the corresponding GPE at room temperature. The GPE has improved compatibility with lithium anode and is electrochemically stable up to 5.2 V (vs. Li/Li+). The high voltage LiNi0.5Mn1.5O4 cathode using the resulting GPE exhibits excellent cyclic stability, maintaining 97.9% of its initial discharge capacity after 100 cycles compared to that of 79.7% for the liquid electrolyte at 0.5 C.

  4. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    OpenAIRE

    Catarelli, Samantha Raisa; Lonsdale, Daniel; Cheng, Lei; Syzdek, Jaroslaw; Doeff, Marca

    2016-01-01

    Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM) has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then, a dense pellet of an electronically insulating but Li ion conducting...

  5. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    OpenAIRE

    Samantha Raisa Catarelli; Daniel eLonsdale; Lei eCheng; Jaroslaw S Syzdek; Marca eDoeff

    2016-01-01

    Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM) has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then a dense pellet of an electronically insulating but Li-ion conducting ...

  6. A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes

    Science.gov (United States)

    Rong, Haibo; Xu, Mengqing; Xie, Boyuan; Lin, Haibin; Zhu, Yunmin; Zheng, Xiongwen; Huang, Weizhao; Liao, Youhao; Xing, Lidan; Li, Weishan

    2016-10-01

    A novel electrolyte additive, 1,1‧-sulfonyldiimidazole (SDM), is firstly reported to improve the cycling performance of LiNi0.5Mn1.5O4 at high voltage and elevated temperature (55 °C). Linear sweep voltammetry (LSV), initial differential capacity vs. voltage, and computation results indicate that SDM is oxidized at a lower potential than the solvents of the electrolyte. Coulombic efficiency and capacity retention of a Li/LiNi0.5Mn1.5O4 cell can be significantly enhanced in the presence of SDM, and moreover cells with SDM deliver lower impedance after 100 cycles at elevated temperature. To better understand the functional mechanism of the enhanced performance with incorporation of SDM in the electrolyte, ex-situ analytical techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and inductively coupled plasma mass spectrometry (ICP-MS) are employed to gain insight into the reaction mechanism of SDM on the LiNi0.5Mn1.5O4 electrode at high voltage and elevated temperature (55 °C). Surface analysis reveals that the improved electrochemical performance of the cells can be ascribed to the highly stable surface layer generated by SDM, which thus mitigates the detrimental decomposition of the electrolyte occurring and stabilizes the interphase of spinel LiNi0.5Mn1.5O4 cathode while cycling at high voltage and elevated temperature.

  7. High Capacity, Superior Cyclic Performances in All-Solid-State Lithium-Ion Batteries Based on 78Li2S-22P2S5 Glass-Ceramic Electrolytes Prepared via Simple Heat Treatment.

    Science.gov (United States)

    Zhang, Yibo; Chen, Rujun; Liu, Ting; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2017-08-30

    Highly Li-ion conductive 78Li2S-22P2S5 glass-ceramic electrolytes were prepared by simple heat treatment of the glass phase obtained via mechanical ball milling. A high ionic conductivity of ∼1.78 × 10(-3) S cm(-1) is achieved at room temperature and is attributed to the formation of a crystalline phase of high lithium-ion conduction. All-solid-state lithium-ion batteries based on these glass-ceramic electrolytes are assembled by using Li2S nanoparticles or low-cost commercially available FeS2 as active cathode materials and Li-In alloys as anode. A high discharge capacity of 535 mAh g(-1) is achieved after at least 50 cycles for the all-solid-state cells with Li2S as cathode materials, suggesting a rather high capacity retention of 97.4%. Even for the cells using low-cost FeS2 as cathode materials, same high discharge capacity of 560 mAh g(-1) is also achieved after at least 50 cycles. Moreover, the Coulombic efficiency remain at ∼99% for these all-solid-state cells during the charge-discharge cycles.

  8. Influence of gamma irradiation on the electrical properties of LiClO4-gelatin solid polymer electrolytes: Modelling anomalous diffusion through generalized calculus

    Science.gov (United States)

    Basu, Tania; Tarafdar, Sujata

    2016-08-01

    Solid polymer electrolytes with gelatin as host polymer are subjected to gamma irradiation with dose varying from 0 to 100 kGy. Two sets of samples are studied, one with and one without addition of lithium perchlorate as ionic salt. The effect of varying plasticizer content, salt fraction and radiation dose on the impedance is measured. The dc (direct current) ion-conductivity is determined from impedance spectroscopy results. It is shown that relative to the unirradiated sample, the room temperature dc ion-conductivity decreases in general on irradiation, by an order of magnitude. However on comparing results for the irradiated samples, a dose of 60 kGy is seen to produce the highest ion-conductivity. Considering the variation of all parameters, the highest dc-conductivity of 6.06x10-2 S/m is obtained for the un-irradiated sample at room temperature, with 12.5 wt% LiClO4 and 35.71 wt% of glycerol as plasticizer. The samples are characterized in addition by XRD, SEM and FTIR respectively. Cyclic voltametry is performed for the confirmation of the electrolytic performance for pristine and gamma irradiated samples. To understand the experimental results, a model incorporating normal, as well as anomalous diffusion has been applied. Generalized calculus is used to model the anomalous diffusion. It is shown that this model successfully reproduces the experimental frequency dependence of the complex impedance for samples subjected to varying gamma dose. The physical interpretation of the model parameters and their variation with sample composition and irradiation dose is discussed.

  9. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    Directory of Open Access Journals (Sweden)

    Samantha Raisa Catarelli

    2016-03-01

    Full Text Available Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then a dense pellet of an electronically insulating but Li-ion conducting garnet phase, Al-substituted Li7La3Zr2O12 (LLZO, was characterized using the same technique. The polycrystalline pellet was prepared by classical ceramic sintering techniques and was comprised of large (~150 μm grains. Critical information regarding the contributions of grain and grain boundary resistances to the total conductivity of the garnet phase was lacking due to ambiguities in the impedance data. In contrast, the use of the ic-ac-SECM technique allowed spatially resolved information regarding local conductivities to be measured directly. Impedance mapping of the pellet showed that the grain boundary resistance, while generally higher than that of grains, varied considerably, revealing the complex nature of the LLZO sample.

  10. Progress in electrode materials and electrolyte for aqueous Li-ion battery%水基锂离子电池电极材料及电解液的进展

    Institute of Scientific and Technical Information of China (English)

    尚雨; 金英学; 谭广慧; 邓超

    2013-01-01

    The advantages and mechanism of aqueous Li-ion battery were introduced.The cathode materials for aqueous Li-ion battery such as LiMn2O4,LiCoO2 and LiFe0.5 Mn0.5 PO4/C,the anode materials such as vanadium oxides,activated carbon,polyaniline and the composite membrane coated Li metal were discussed.The preparation method and electrochemical performance of electrode materials were concluded.The electrochemical performance of battery using different electrolytes was summarized.It was pointed out that increasing specific capacity and cycle stability were the development directions of aqueous Li-ion battery.%介绍了水基锂离子电池的优点和原理,探讨了水基锂离子电池中的正极材料:LiMn2 O4、LiCoO2和LiFe0.5 Mn0.5 PO4/C,负极材料:钒的氧化物、活性碳(AC)、聚苯胺(PANI)及复合膜包覆型金属锂.归纳了电极材料的合成方法和电化学性能.综述了使用不同电解液电池的电化学性能,提出水基锂离子电池目前的发展方向是提高比容量和循环稳定性.

  11. Preparation and characterization of PEO based Li1.5Al0.5Ge1.5(PO4)3 solid composite electrolyte%PEO基Li1.5Al0.5Ge1.5(PO4)3固体复合电解质的制备

    Institute of Scientific and Technical Information of China (English)

    余涛; 谢凯; 韩喻; 王珲

    2015-01-01

    以聚环氧乙烷(PEO)为黏结剂,离子导电性的 Li1.5Al0.5Ge1.5(PO4)3(LAGP)为主相,乙腈为溶剂,按照EO/Li,摩尔比为13,变化LiN(CF3SO2)2(LiTFSI)中Li+与LAGP中Li+的比例,通过溶液浇注法制备得到LAGP-PEO(LiTFSI)固体复合电解质。用X射线衍射、扫描电镜(SEM)和电化学阻抗(EIS)等方法对固体复合电解质的形貌、结构和电导率进行表征。结果表明,LAGP 可与 PEO(LiTFSI)部分络合并均匀分散于PEO(LITFSI)内,整个体系内存有三个主体相,即PEO(LiTFSI)的复合相、LAGP晶相以及PEO与两种锂盐的过渡相。通过阻抗谱图发现,当质量比w(LAGP)∶w(PEO)=6∶4时,LAGP-PEO(LiTFSI)固体复合电解质具有最高的室温电导率,为2.68×10−5S/cm,在333 K时,达到1.86×10−4S/cm,接近LAGP的电导率水平。这说明固体复合电解质中加入LAGP即降低了PEO的结晶度,LAGP自身的电导率也有一定贡献。%PEO-based solid composite electrolyte with the fast ion conductor LAGP(Li1.5Al0.5Ge1.5(PO4)3) as a main ionic conductive component and PEO as the binder were prepared by the solution casting method with fixedn(EO)/n(Li)=13, but varying ratio of LiTFSI to LAGP. The structure and morphology of the solid composite electrolyte were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The conductivity of LAGP-PEO(LiTFSI) electrolyte was analyzed by electrical impedance spectroscopy (EIS). The results show that LAGP is partially complexed with PEO(LiTFSI) and homogeneously distributed in PEO(LiTFSI). Three phases are present, a pure crystalline LAGP phase, amorphous PEO(LiTFSI) phase and a transition phase of the LAGP particles and amorphous PEO(LiTFSI). Withw(LAGP)∶w(PEO)=6∶4, the optimal ionic conductivity for LAGP-PEO(LiTFSI) solid composite electrolyte is 2.68×10−5S/cm at room temperature and 1.86×10−4S/cm at 373 K which is close to the LAGP. It means that the LAGP

  12. Rheological studies of PMMA-PVC based polymer blend electrolytes with LiTFSI as doping salt.

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    Full Text Available In this research, two systems are studied. In the first system, the ratio of poly (methyl methacrylate (PMMA and poly (vinyl chloride (PVC is varied, whereas in the second system, the composition of PMMA-PVC polymer blends is varied with dopant salt, lithium bis (trifluoromethanesulfonyl imide (LiTFSI with a fixed ratio of 70 wt% of PMMA to 30 wt% of PVC. Oscillation tests such as amplitude sweep and frequency sweep are discussed in order to study the viscoelastic properties of samples. Elastic properties are much higher than viscous properties within the range in the amplitude sweep and oscillatory shear sweep studies. The crossover of G' and G'' is absent. Linear viscoelastic (LVE range was further determined in order to perform the frequency sweep. However, the absence of viscous behavior in the frequency sweep indicates the solid-like characteristic within the frequency regime. The viscosity of all samples is found to decrease as shear rate increases.

  13. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won;

    2016-01-01

    A new model is proposed for correlation and prediction of thermodynamic properties of electrolyte solutions. In the proposed model, terms of a second virial coefficient-type and of a KT-UNIFAC model are used to account for a contribution of binary interactions between ion and ion, and water and ion...... on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  14. Polymer Electrolytes for Lithium/Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    The Nam Long Doan

    2012-08-01

    Full Text Available This review evaluates the characteristics and advantages of employing polymer electrolytes in lithium/sulfur (Li/S batteries. The main highlights of this study constitute detailed information on the advanced developments for solid polymer electrolytes and gel polymer electrolytes, used in the lithium/sulfur battery. This includes an in-depth analysis conducted on the preparation and electrochemical characteristics of the Li/S batteries based on these polymer electrolytes.

  15. Rotational Diffusion of Nonpolar and Ionic Solutes in 1-Alkyl-3-methylimidazolium Tetrafluoroborate-LiBF4 Mixtures: Does the Electrolyte Induce the Structure-Making or Structure-Breaking Effect?

    Science.gov (United States)

    Prabhu, Sugosh R; Dutt, G B

    2015-12-03

    Rotational diffusion of three structurally similar solutes, 9-phenylanthracene (9-PA), fluorescein (FL), and rhodamine 110 (R110), has been investigated in 1-butyl-3-methylimidazolium tetrafluoroborate-lithium tetrafluoroborate ([BMIM][BF4]-LiBF4) mixtures to understand the influence of the added electrolyte on the mobility of nonpolar, anionic, and cationic solute molecules. It has been observed that the reorientation times of the nonpolar solute 9-PA become progressively shorter with an increase in the concentration of LiBF4 at a given viscosity (η) and temperature (T). In the case of ionic solutes also, a decrease in the reorientation times has been observed upon the addition of the electrolyte compared to those obtained in the neat ionic liquid at a given η/T. However, this decrease is found to be independent of [LiBF4]. 9-PA being a nonpolar solute is located in the nonpolar domains of the ionic liquid. An enhancement in [LiBF4] leads to an increase in the sizes of the nonpolar domains resulting in the faster rotation of the solute. Anionic solute FL and cationic solute R110, which are located in the ionic region experience specific interactions with the cation and anion of the ionic liquid, respectively. In the presence of electrolyte, however, the strengths of these specific interactions diminish as the ions of the ionic liquid are not readily accessible to the solute molecules due to the organized structure, which results in faster rotation. These observations suggest that addition of LiBF4 induces a structure-making effect in the ionic liquid.

  16. Lithium-Organic Electrolyte Batteries for Sensor and Communications Equipment

    Science.gov (United States)

    1975-08-01

    This solution was chosen for the final cell build. The Li/2M LiAsF6 + 0.4M LiBF4 :MF/VOs electrochemical system has undergone considerable investigation...electrode solubility is not anticipated. 2. Electrolyte Typical properties of the 2M LiAsF6 + 0. 4M LiBF4 /MF electrolyte system at +75*F are: Viscosity 1.419...resistance welded in the cell case. D. CELL DEVELOPMENT 1. 2M LiBFs:MA Electrolyte During the earlier phases of the development work, the Li/ZM LiBF4

  17. Low temperature pulsed laser deposition of garnet Li6.4La3Zr1.4Ta0.6O12 films as all solid-state lithium battery electrolytes

    Science.gov (United States)

    Saccoccio, Mattia; Yu, Jing; Lu, Ziheng; Kwok, Stephen C. T.; Wang, Jian; Yeung, Kan Kan; Yuen, Matthew M. F.; Ciucci, Francesco

    2017-10-01

    With its stability against Li and good ionic conductivity, Li7La3Zr2O12 (LLZO) has emerged as a promising electrolyte material for lithium-based solid-state batteries (SSBs). Thin layers of solid electrolyte are needed to enable the practical use of SSBs. We report the first deposition of Li-conductive crystalline Ta-doped LLZO thin films on MgO (100) substrates via pulsed laser deposition. Further, we investigate the impact of laser fluence, deposition temperature (in the 50 °C-700 °C range), and post-deposition annealing on the structural, compositional, and transport properties of the film. We analyze the structure of the deposited films via grazing incident X-ray diffraction, their morphology via scanning electron microscopy, and the composition via depth profiling X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. The Li ionic conductivity is investigated via electrochemical impedance spectroscopy. Contrary to previous reports for LLZO films, the crystalline Ta-doped films presents a pure cubic LLZO structure for deposition temperatures as low as 50 °C, with resulting conductivities not significantly influenced by the temperature deposition. Instead, the laser fluence has a major effect on the growth rate of the thin films.

  18. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes

    Science.gov (United States)

    Bordes, Arnaud; Eom, KwangSup; Fuller, Thomas F.

    2014-07-01

    When fluoroethylene carbonate (FEC) is added to the ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte, the capacity and cyclability of full-cells employing Si-graphene anode and lithium nickel cobalt aluminum oxide cathode (NCA) cathode are improved due to formation of a thin (30-50 nm) SEI layer with low ionic resistance (∼2 ohm cm2) on the surface of Si-graphene anode. These properties are confirmed with electrochemical impedance spectroscopy and a cross-sectional image analysis using Focused Ion Beam (FIB)-SEM. Approximately 5 wt.% FEC in EC:DEC (1:1 wt.%) shows the highest capacity and most stability. This high capacity and low capacity fade is attributed to a more stable SEI layer containing less CH2OCO2Li, Li2CO3 and LiF compounds, which consume cyclable Li. Additionally, a greater amount of polycarbonate (PC), which is known to form a more robust passivation layer, thus reducing further reduction of electrolyte, is confirmed with X-ray photoelectron spectroscopy (XPS).

  19. H+ diffusion and electrochemical stability of Li1+x+yAlxTi2-xSiyP3-yO12 glass in aqueous Li/air battery electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Xu, Wu; Shao, Yuyan; Chen, Xilin; Wang, Zhiguo; Gao, Fei; Liu, Xingjiang; Zhang, Ji-Guang

    2012-09-01

    It is well known that LATP (Li1+x+yAlxTi2-xSiyP3-yO12) glass is a good lithium ion conductor. However, the interaction between LATP glass and H+ ions (including its diffusion and surface adsorption) needs to be well understood before the long-term application of LATP glass in an aqueous electrolyte based Li-air batteries where H+ always present. In this work, we investigate the H+ ion diffusion properties in LATP glass and their surface interactions using both experimental and modeling approaches. Our analysis indicates that the apparent H+ related current observed in the initial cyclic voltammetry scan should be attributed to the adsorption of H+ ions on the LATP glass rather than the bulk diffusion of H+ ions in the glass. Furthermore, the density functional theory calculations indicate that the H+ ion diffusion energy barrier (3.21 eV) is much higher than that of Li+ ion (0.79 eV) and Na+ ion (0.79 eV) in NASICON type LiTi2(PO4)3 material. As a result, the H+ ion conductivity in LATP glass is negligible at room temperature. However, significant surface corrosion was found after the LATP glass was soaked in strong alkaline electrolyte for extended time. Therefore, appropriate electrolytes have to be developed to prevent the corrosion of LATP glass before its practical application for Li-air batteries using aqueous electrolyte.

  20. High Frequency Dielectric Characteristics of Electrochromic, WO3 and NiO Films with LiNbO3 Electrolyte

    Science.gov (United States)

    Bulja, S.; Kopf, R.; Tate, A.; Hu, T.

    2016-01-01

    A great deal of attention has been recently focused on Electrochromic (EC) materials and EC based devices, promoting mainly applications related to display technology. In this case, EC based displays are usually actuated by the application of low dc bias voltages, changing their appearance from transparent to opaque. A variety of studies related to the optical characteristics of EC materials have been reported, however, no serious studies so far have been reported on the possible high frequency tunability of the dielectric characteristics of these materials, with the exception of the work by Rose, which presented the operation of a microwave shutter based on conductive polymers operating in the X-band. Here we report tuneable high frequency dielectric characteristics of an Electrochromic (EC) cell with a complimentary structure of Conductor/WO3/LiNbO3/NiO/Conductor in the frequency range from 1 GHz to 20 GHz. The EC cell was prepared using standard semiconductor processing technology, such as lithography, etch and deposition techniques. Our measured results indicate that tunability of high frequency dielectric characteristics as a function of dc bias voltage is achieved, and that a possibility exists for this tunability to be tailored. PMID:27357480

  1. Relationship between burgers vectors of dislocations and plastic strain localization patterns in compression-strained alkali halide crystals

    Science.gov (United States)

    Barannikova, S. A.; Nadezhkin, M. V.; Zuev, L. B.

    2011-08-01

    Plastic strain localization patterns in compression-strained alkali halide (NaCl, KCl, and LiF) crystals have been studied using a double-exposure speckle photography technique. The main parameters of strain localization autowaves at the linear stages of deformation hardening in alkali halide crystals have been determined. A quantitative relationship between the macroscopic parameters of plastic flow localization and microscopic parameters of strained alkali halide crystals has been established.

  2. Dielectric and impedance analysis of Li0.5La0.5Ti1-xZrxO3(x = 0.05 and 0.1 ceramics as improved electrolyte material for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Babu K. Vijaya

    2016-09-01

    Full Text Available The most attractive property of Li0.5La0.5TiO3 (LLTO electrolytes is their high ionic conductivity. Studies have shown that LLTO is capable of existing in a state with an ionic conductivity of 10-3 S/cm, which is comparable to liquid electrolytes. In addition to the high ionic conductivity of the material, LLTO is electrochemically stable and able to withstand hundreds of cycles. So, the studies of the solid electrolyte material are very important for the development of lithium-ion batteries. In the present paper, Li0.5La0.5Ti1-xZrxO3 (x = 0.05 and 0.1 have been prepared by a solid-state reaction method at 1300 °C for 6 hours to improve electrolyte materials for lithium-ion batteries. The phase identified by X-ray diffractometry and crystal structure corresponds to pm3m (2 2 1 space group (Z = 1. The frequency and temperature dependence of impedance, dielectric permittivity, dielectric loss and electric modulus of the Li0.5La0.5Ti1-xZrxO3 (x = 0.05 and 0.1 have been investigated. The dielectric and impedance properties have been studied over a range of frequency (42 Hz to 5 MHz and temperatures (30 °C to 100 °C. The frequency dependent plot of modulus shows that the conductivity relaxation is of non-Debye type.

  3. Visualization of Steady-State Ionic Concentration Profiles Formed in Electrolytes during Li-Ion Battery Operation and Determination of Mass-Transport Properties by in Situ Magnetic Resonance Imaging.

    Science.gov (United States)

    Krachkovskiy, Sergey A; Bazak, J David; Werhun, Peter; Balcom, Bruce J; Halalay, Ion C; Goward, Gillian R

    2016-06-29

    Accurate modeling of Li-ion batteries performance, particularly during the transient conditions experienced in automotive applications, requires knowledge of electrolyte transport properties (ionic conductivity κ, salt diffusivity D, and lithium ion transference number t(+)) over a wide range of salt concentrations and temperatures. While specific conductivity data can be easily obtained with modern computerized instrumentation, this is not the case for D and t(+). A combination of NMR and MRI techniques was used to solve the problem. The main advantage of such an approach over classical electrochemical methods is its ability to provide spatially resolved details regarding the chemical and dynamic features of charged species in solution, hence the ability to present a more accurate characterization of processes in an electrolyte under operational conditions. We demonstrate herein data on ion transport properties (D and t(+)) of concentrated LiPF6 solutions in a binary ethylene carbonate (EC)-dimethyl carbonate (DMC) 1:1 v/v solvent mixture, obtained by the proposed technique. The buildup of steady-state (time-invariant) ion concentration profiles during galvanostatic experiments with graphite-lithium metal cells containing the electrolyte was monitored by pure phase-encoding single point imaging MRI. We then derived the salt diffusivity and Li(+) transference number over the salt concentration range 0.78-1.27 M from a pseudo-3D combined PFG-NMR and MRI technique. The results obtained with our novel methodology agree with those obtained by electrochemical methods, but in contrast to them, the concentration dependences of salt diffusivity and Li(+) transference number were obtained simultaneously within the single in situ experiment.

  4. Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance

    Science.gov (United States)

    Botros, Miriam; Djenadic, Ruzica; Clemens, Oliver; Möller, Matthias; Hahn, Horst

    2016-03-01

    The synthesis and processing of fine-grained Li7-3xLa3Zr2AlxO12 (x = 0.15, 0.17, 0.20) solid electrolyte (LLZO) is performed for the first time using a combination of nebulized spray pyrolysis (NSP) and field assisted sintering technique (FAST). Using FAST, the grain growth is suppressed and highly dense ceramics with 93% of the theoretical density are obtained. A tetragonal lattice distortion is observed after the sintering process. Although this structural modification has been reported to have lower Li-ion mobility compared to the cubic modification, the total conductivity of the sample at room temperature is found to be 0.33 mS cm-1, i.e. comparable to phase-pure cubic LLZO. The activation energy of 0.38 eV is also comparable to the literature values. Galvanostatic cycling of a symmetrical cell Li|LLZO|Li shows a good cycling stability over 100 h. The interfacial resistance in contact with Li-metal is determined using alternating current impedance spectroscopy to be 76 Ω cm2 and 69 Ω cm2 before and after cycling at different current densities, respectively.

  5. Progress of Cathode Material and Electrolyte in Non-aqueous Li-Air Battery%非水系锂空气电池的正极材料和电解液研究进展

    Institute of Scientific and Technical Information of China (English)

    杨凤玉; 张蕾蕾; 徐吉静; 刘清朝; 赵敏寿; 张新波

    2013-01-01

    A Li-air battery could provide much higher energy density than conventional lithium-ion battery,which is comparable to gasoline and,thus,many attentions have been paid to the Li-air battery in recent years.This paper summarizes the latest development of the cathode material and electrolyte in the non-aqueous Li-air battery.The cathode materials concern commercial carbon,artificial carbon with a defined morphology,catalyst and conducting polymer.Electrolytes concern widely used solvents including ester,ether,sulfone,amine and ionic liquid.Finally,the main problems in the non-aqueous Li-air battery have been pointed out and look forward to the future on non-aqueous Li-air battery.%锂空气电池的能量密度是传统锂离子电池的5~10倍,可与汽油相媲美.近几年来,锂空气电池因此受到了人们的广泛关注.本文概述了锂空气电池正极材料和电解液的最新研究进展.从商业碳、具有特定形态的碳材料、催化剂、导电聚合物等几个方面阐述了正极材料;从物质结构的角度,简要介绍了锂空气电池中常用的酯类、醚类、砜类、胺类和离子液体等电解液.最后指出了目前锂空气电池存在的问题,并对其进行了展望.

  6. Preparation and Performances of Room Molten Salt as Electrolyte in Carbon-carbon Capacitor Based on LiPFe and Trifluoroacetamide%LiPF6/三氟乙酰胺室温熔盐的制备及在碳-碳电容器中的性能

    Institute of Scientific and Technical Information of China (English)

    左晓希; 李奇; 刘建生; 肖信; 范成杰; 南俊民

    2012-01-01

    利用LiPF6和三氟乙酰胺为前驱物,制备了低共熔温度约为-62℃的室温熔盐,并测试了该熔盐作为碳-碳电化学电容器(EDLCs)电解液时的性能。其中,使用差示扫描量热法(DSC)和红外光谱法(FTIR)分析了不同LiPF6和三氟乙酰胺配比熔盐的热稳定性,拟制了该二元组分的共熔相图,认为LiPF6和三氟乙酰胺极性基团间的氢键作用促成了室温熔盐的形成。循环伏安(CV)、交流阻抗(EIS)和电导等测定结果表明,所制备的LiPF6/三氟乙酰胺电解液的室温电导率为1.30mS/cm,电化学窗口大于5.6V,大于60℃的使用温度,作为电解液可满足碳-碳EDLCs的使用要求。%A novel room molten salt with an eutectic temperature of about -62℃ is prepared using LiPF6 and trifluoroacetamide as precursors. And then its performances are evaluated in carbon-carbon electrochemical double layer capacitor (EDLC) as electrolyte. The thermal properties of the complex electrolyte with different molar ratios are characterized and then the liquid-solid phase diagram is presented by using differential scanning calorimeter (DSC) and Fourier transform infrared spectroscopy (FTIR). The hydrogen bonding interaction between LiPF6 and trifluoroacetamide molecules is attributed to the formation of the as-prepared molten salt. In addition, the results of cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and conductance tests show that the as-prepared LiPF6/trifluoroacetamide electrolyte has a maximum conductance at room temperature, i.e. 1.30 mS/cm, a stable electrochemical window of ca. 5.6 V, an applicable temperature of more than 60℃, suggesting it is a promising electrolyte candidate for carbon-carbon EDLCs.

  7. Gelled Electrolytes For Lithium Batteries

    Science.gov (United States)

    Nagasubramanian, Ganesan; Attia, Alan; Halpert, Gerald

    1993-01-01

    Gelled polymer electrolyte consists of polyacrylonitrile (PAN), LiBF4, and propylene carbonate (PC). Thin films of electrolyte found to exhibit stable bulk conductivities of order of 10 to the negative 3rd power S/cm at room temperature. Used in thinfilm rechargeable lithium batteries having energy densities near 150 W h/kg.

  8. Electrochemical Investigations of the Interface at Li/Li+ Ion Conducting Channel

    Science.gov (United States)

    2006-10-04

    acetone consisting of LiBF4 as the supporting electrolyte. Unlike the powdery deposits of LiPc obtained by using tetrabutyl ammonium perchlorate (TBAP...as the supporting electrolyte, the deposits are adherent to the substrates when LiBF4 is used as the supporting electrolyte. Chemical oxidation of...Li2Pc by TBAP is shown to be detrimental for the formation of powdery electrodeposits of LiPc, whereas LiBF4 does not oxidize Li2Pc and therefore

  9. 锂离子电池电解液新型锂盐的研究进展%Review of new lithium slats of electrolyte for Li-ion batteries

    Institute of Scientific and Technical Information of China (English)

    任永欢; 吴伯荣; 杨春巍; 吴锋; 陈飞彪

    2011-01-01

    锂离子电池以其优异的性能在电动车、航空和军事领域得到广泛应用.详细阐述了锂离子电池重要组成成分电解质锂盐的研究进展.针对国内外对新型电解质锂盐的研究现状进行综述,并对未来新型锂盐的研究方向作出展望.%Li-ion batteries are wide spread in electric car, aviation and military area due to its excellent properties. The progress of lithium salts in electrolyte of Li-ion batteries was discussed in detail. And also the recent results of novel lithium salts both at home and abroad were reviewed. The possibilities for further progress in this most important area were presented.

  10. Electrical Properties of NASICON-type Structured Li1.3Al0.3Ti1.7(PO4)3 Solid Electrolyte Prepared by 1,2-Propylene glycol-assisted Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    Lin-chao Zhang; Peng Chen; Zhang Hu; Chun-hua Chen

    2012-01-01

    Lithium-ion conductor Li1.3Al0.3Ti1.7(PO4)3 with an ultrapure NASICON-type phase is synthesized by a 1,2-propylene glycol (1,2-PG)-assisted sol-gel method and characterized by differential thermal analysis-thermo gravimetric analysis,X-ray diffraction,scanning electron microscopy,electrochemical impedance spectroscopy,and chronoamperometry test.Due to the use of 1,2-PG,a homogeneous and light yellow transparent precursor solution is obtained without the precipitation of Ti4+ and Al3+ with PO43-.Well crystallized Li1.3Al0.aTi1.7(PO4)3 can be prepared at much lower temperatures from 850 ℃ to 950 ℃ within a shorter synthesis time compared with that prepared at a temperature above 1000 ℃ by a conventional solid-state reaction method.The lithium ionic conductivity of the sintered pellets is up to 0.3 mS/cm at 50 ℃ with an activation energy as low as 36.6 kJ/mol for the specimen pre-sintered at 700 ℃ and sintered at 850 ℃.The high conductivity,good chemical stability and easy fabrication of the Li1.3Al0.3Ti1.7(PO4)3 provide a promising candidate as solid electrolyte for all-solid-state Li-ion rechargeable batteries.

  11. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  12. Novel, Solvent-Free, Single Ion-Conducting Polymer Electrolytes

    Science.gov (United States)

    2007-10-31

    the selected polymer electrolyte membrane and a LiFePO4 -based composite cathode film. The latter was prepared by blending the LiFePO4 active...following: charge Li+ + FePO4 + e LiFePO4 [1] discharge to which is associate a maximum...as separator in a Li/ LiFePO4 battery. . 1.Experimental. Calixpyrrole (CP, provided by the University of Warsaw), LiBOB (Libby) and PEO

  13. A molecular dynamic model for analyzing concentrations of electrolytes: Fractional molar dependences of microstructure properties

    Science.gov (United States)

    Khalansky, D.; Popova, E.; Gladyshev, P.; Dushanov, E.; Kholmurodov, Kh.

    2014-12-01

    Aqueous electrolyte solutions play an important role in many electrophysical and chemical processes in aerospace technology and industrial applications. As noncovalent interactions, the interactions between ions are crucially important for biomolecular structures as well (protein structure folding, molecular level processes followed by ionic pair correlations, the formation of flexible hydrate shells, and so on). Specifically, ions (cations and anions with the same valence charges) can form stable pairs if their sizes match. The formation of ionic pairs can substantially affect the thermodynamic stabilities of proteins in the alkali salts physiologically present in the human body. Research aims and problems impose severe demands on readjustments of the ionic force fields and potential parameters developed to describe aqueous solutions and electrolytic systems. Ionic solutions and their interaction with biomolecules have been observed for over 100 years [1], but the behavior of such solutions remains poorly studied today. New data obtained in this work deals with parameterization strategies and adjustments for the ionic force fields of the alkali cations and halide anions that should be helpful in biomolecular research. Using molecular dynamics (MD) models, four electrolytic systems (HCl-H2O, LiCl-H2O, NaCl-H2O, and KCl-H2O) are investigated as binary mixtures of water and cations and anions, respectively. The intermolecular interaction parameters are varied for two of the four model electrolytes (HCl-H2O and NaCl-H2O) to simulate the possibility of different ionic shells forming during interaction with water. It is found that varying the potential parameters strongly affects the dynamic and structural characteristics of electrolyte systems. MD simulations are performed in the temperature range of 300 to 600 K with a step of 50 K. MD simulations for all electrolyte models (HCl-H2O, LiCl-H2O, NaCl-H2O, KCl-H2O) are also conducted for different molar fractions of

  14. Sulfide ceramics in molten-salt electrolyte batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kaun, T.D.; Hash, M.C.; Simon, D.R.

    1995-06-01

    Sulfide ceramics are finding application in the manufacture of advanced batteries with molten salt electrolyte. Use of these ceramics as a peripheral seal component has permitted development of bipolar Li/FeS{sub 2} batteries. This bipolar battery has a molten lithium halide electrolyte and operates at 400 to 450C. Initial development and physical properties evaluations indicate the ability to form metal/ceramic bonded seal (13-cm ID) components for use in high-temperature corrosive environments. These sealants are generally CaAl{sub 2}S{sub 4}-based ceramics. Structural ceramics (composites with oxide or nitride fillers), highly wetting sealant formulations, and protective coatings are also being developed. Sulfide ceramics show great promise because of their relatively low melting point, high-temperature viscous flow, chemical stability, high-strength bonding, and tailored coefficients of thermal expansion. Our methodology of generating laminated metal/ceramic pellets (e.g., molybdenum/sulfide ceramic/molybdenum) with which to optimize materials formulation and seal processing is described.

  15. Computational and Experimental Investigation of Li-doped Ionic Liquid Electrolytes: [pyr14][tfsi], [pyr13][fsi], and [EMIM][BF4

    Science.gov (United States)

    Haskins, Justin B.; Bennett, William R.; Wu, James J.; Hernandez, Dionne M.; Borodin, Oleg; Monk, Joshua D.; Bauschlicher, Charles W.; Lawson, John W.

    2014-01-01

    We employ molecular dynamics (MD) simulation and experiment to investigate the structure, thermodynamics, and transport of N-methyl-N-butylpyrrolidinium bis(trifluoromethylsufonyl)imide ([pyr14][TFSI]), N -methyl-N-propylpyrrolidinium bis(fluorosufonyl)imide ([pyr13][FSI]), and 1-ethyl-3-methylimidazolium boron tetrafluoride ([EMIM][BF4]), as a function of Li-salt mole fraction (0.05 xLi+ 0.33) and temperature (298 K T 393 K). Structurally, Li+ is shown to be solvated by three anion neigh- bors in [pyr14][TFSI] and four anion neighbors in both [pyr13][FSI] and [EMIM][BF4], and at all levels of xLi+ we find the presence of lithium aggregates. Pulsed field gradient spin-echo NMR measurements of diffusion and electrochemical impedance spectroscopy measurements of ionic conductivity are made for the neat ionic liquids as well as 0.5 molal solutions of Li-salt in the ionic liquids. Bulk ionic liquid properties (density, diffusion, viscosity, and ionic conductivity) are obtained with MD and show excellent agreement with experiment. While the diffusion exhibits a systematic decrease with increasing xLi+, the contribution of Li+ to ionic conductivity increases until reach- ing a saturation doping level of xLi+ 0.10. Comparatively, the Li+ conductivity of [pyr14][TFSI] is an order of magnitude lower than that of the other liquids, which range between 0.1-0.3 mScm. Our transport results also demonstrate the necessity of long MD simulation runs ( 200 ns) required to converge transport properties at room T. The differences in Li+ transport are reflected in the residence times of Li+ with the anions (Li), which are revealed to be much larger for [pyr14][TFSI] (up to 100 ns at the highest doping levels) than in either [EMIM][BF4] or [pyr13][FSI]. Finally, to comment on the relative kinetics of Li+ transport in each liquid, we find that while the net motion of Li+ with its solvation shell (vehicular) significantly contributes to net diffusion in all liquids, the importance of

  16. Studies on the effect of acid treated TiO{sub 2} on the electrical and tensile properties of hexanoyl chitosan-polystyrene-LiCF{sub 3}SO{sub 3} composite polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, Nur Shazlinda Muhammad; Shahril, Nur Syuhada Mohd; Azmar, Amisha; Winie, Tan [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia)

    2015-08-28

    Composite polymer electrolytes (CPEs) comprised of hexanoyl chitosan:polystyrene (90:10) blend, lithium triflouromethanesulfonate (LiCF{sub 3}SO{sub 3}) salt and titanium oxide (TiO{sub 2}) filler were prepared by solution casting technique. The TiO{sub 2} fillers were treated with 2% sulphuric acid (H{sub 2}SO{sub 4}) aqueous solution. The effect of acid treated TiO{sub 2} on the electrical and tensile properties of the electrolytes were investigated. Acid treated TiO{sub 2} decreased the electrolyte conductivity. Both the dielectric constant and dielectric loss decrease with increasing frequency and increases with increasing temperature. Relaxation times for ionic carriers were extracted from the loss tangent maximum peak at various temperatures. A distribution of relaxation time implied the non-Debye response. At all frequencies, ac conductivity increases with increasing temperature. An enhancement in the Young’s modulus was observed with the addition of TiO{sub 2}. The Young’s modulus increases with increasing TiO{sub 2} content. This is discussed using the percolation concept.

  17. Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte

    Science.gov (United States)

    Yu, Shicheng; Mertens, Andreas; Gao, Xin; Gunduz, Deniz Cihan; Schierholz, Roland; Benning, Svenja; Hausen, Florian; Mertens, Josef; Kungl, Hans; Tempel, Hermann; Eichel, Rüdiger-A.

    2016-09-01

    A ceramic solid-state electrolyte of lithium aluminum titanium phosphate with the composition of Li1.3Al0.3Ti1.7(PO4)3 (LATP) was synthesized by a sol-gel method using a pre-dissolved Ti-source. The annealed LATP powders were subsequently processed in a binder-free dry forming method and sintered under air for the pellet preparation. Phase purity, density, microstructure as well as ionic conductivity of the specimen were characterized. The highest density (2.77gṡcm-3) with an ionic conductivity of 1.88×10-4 Sṡcm-1 (at 30∘C) was reached at a sintering temperature of 1100∘C. Conductivity of LATP ceramic electrolyte is believed to be significantly affected by both, the AlPO4 secondary phase content and the ceramic electrolyte microstructure. It has been found that with increasing sintering temperature, the secondary-phase content of AlPO4 increased. For sintering temperatures above 1000∘C, the secondary phase has only a minor impact, and the ionic conductivity is predominantly determined by the microstructure of the pellet, i.e. the correlation between density, porosity and particle size. In that respect, it has been demonstrated, that the conductivity increases with increasing particle size in this temperature range and density.

  18. Effect of the compactness of the lithium chloride layer formed on the carbon cathode on the electrochemical reduction of SOCl{sub 2} electrolyte in Li-SOCl{sub 2} batteries

    Energy Technology Data Exchange (ETDEWEB)

    Seung-Bok Lee; Su-Il Pyun [Korea Advanced Institute of Science and Technology, Taejon (Korea). Dept. of Materials Science and Engineering; Eung-Jo Lee [Hana Tek Co Ltd., Kyounggi (Korea). R and D Center

    2001-07-01

    Effect of the compactness of the lithium chloride layer formed on the carbon cathode on the electrochemical reduction of SOCl{sub 2} electrolyte in Li-SOCl{sub 2} primary battery was investigated using ac-impedance spectroscopy and potentiostatic current transient technique. From the facts that the straight lines of the Nyquist plots of the ac-impedance spectra and the peak-like runs of the plot of It{sup 1/2} versus log t were observed from the pure carbon cathode, it was suggested that the porous layer of lithium chloride deposited on the pure carbon cathode was relatively compact enough to strongly impede the diffusion of SOCl{sub 2} through it, and hence the rate-controlling step for overall SOCl{sub 2} reduction is changed from the 'interfacial reaction between the pure carbon cathode and electrolyte' to the 'diffusion of SOCl{sub 2} through the porous lithium chloride layer'. On the other hand, any of the straight lines of the Nyquist plots of the ac-impedance spectra and of the peak-like courses of the plot of It{sup 1/2} versus log t can not be found in the Co-phthalocyanine (Pc)-incorporated carbon cathode. Thus, it was concluded that the porous layer of lithium chloride formed on the Co-Pc-incorporated carbon cathode was relatively porous enough to considerably facilitate the diffusion of SOCl{sub 2} through it, and hence the overall reduction rate of SOCl{sub 2} is governed by the 'interfacial reaction between the Co-Pc-incorporated carbon cathode and electrolyte' throughout the whole discharge of the Li-SOCl{sub 2} batteries. (author)

  19. Interface Properties between Lithium Metal and a Composite Polymer Electrolyte of PEO18Li(CF3SO2)2N-Tetraethylene Glycol Dimethyl Ether

    National Research Council Canada - National Science Library

    Wang, Hui; Matsui, Masaki; Takeda, Yasuo; Yamamoto, Osamu; Im, Dongmin; Lee, Dongjoon; Imanishi, Nobuyuki

    2013-01-01

    ...(trifluoromethanesulfonyl)imide (LiTFSI) and tetraethylene glycol dimethyl ether (TEGDME) was examined as a protective layer between lithium metal and a water-stable lithium ion-conducting glass ceramic of Li1+x+y(Ti,Ge)2-xAlxP3-ySiyO12 (LTAP...

  20. Patterning of lithium lanthanum titanium oxide films by soft lithography as electrolyte for all-solid-state Li-ion batteries

    NARCIS (Netherlands)

    Kokal, I.; Gobel, O.F.; Ham, van den E.J.; Elshof, ten J.E.; Notten, P.H.L.; Hintzen, H.T.

    2015-01-01

    The combination of sol–gel processing and soft-lithographic patterning presents a promising route towards three-dimensional (3D) micro Li-ion electrodes, and may offer a viable approach for the fabrication of all-solid-state 3D Li-ion batteries. The methods are relatively simple and therefore cheap

  1. How specific halide adsorption varies hydrophobic interactions.

    Science.gov (United States)

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  2. Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2

    Energy Technology Data Exchange (ETDEWEB)

    Martha, Surendra K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Nanda, Jagjit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Kim, Yoongu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Unocic, Raymond R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Pannala, Sreekanth [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division; Dudney, Nancy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division

    2013-03-01

    We find that the electrochemical rate performance and capacity retention of the “layered–layered” lithium rich Li1.2Mn0.525Ni0.175Co0.1O2(Li-rich NMC) material are significantly improved by a nanometer layer coating of a lithium conducting solid electrolyte, lithium phosphorus oxynitride (LiPON). The LiPON layer is deposited on the Li-rich NMC particles by the RF-magnetron sputtering method. The presence of the LiPON layer provides interfacial stability under high current (rate) and voltage cycling conditions and thereby improves the capacity retention over cycle life compared to pristine or uncoated Li-rich NMC. Specifically, the LiPON coated Li-rich NMC composite electrode showed stable reversible capacities of >275 mAh g-1 when cycled to 4.9 V for more than 300 cycles, and showed at least threefold improvements in the rate performance compared to the uncoated electrode compositions. Increasing the LiPON layer thickness beyond a few nanometers leads to capacity fade due to increasing electronic resistance. Lastly, detailed microstructural and electrochemical impedance spectroscopy studies are undertaken to characterize and understand the role of LiPON in improving the interfacial stability and electrochemical activity at the interface.

  3. Preparation of cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} solid electrolyte using a nano-sized core–shell structured precursor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanhua; Cai, Jin [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Chen, Fei, E-mail: chenfei027@gmail.com [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Massachusetts Institute of Technology, 77 Massachusetts Avenue, W20-021 Cambridge, MA 02139-4307 (United States); Tu, Rong; Shen, Qiang; Zhang, Xulong [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Zhang, Lianmeng [State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Massachusetts Institute of Technology, 77 Massachusetts Avenue, W20-021 Cambridge, MA 02139-4307 (United States)

    2015-09-25

    Highlights: • A core–shell nano-sized precursor was synthesized by a two-step precipitation. • Cubic LLZO dense body was obtained at low temperatures by the novel precursor. • The cubic LLZO sintered body showed an extremely high Li ionic conductivity. - Abstract: Nano-sized Al-doped Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) precursor is successfully synthesized by a novel two-step precipitation method. Microstructure and thermal behavior of the prepared LLZO precursor powders and properties of the sintered LLZO pellets are comprehensively investigated. Results show that the obtained precursor powders have a special core–shell structure that a coating of Li{sub 2}C{sub 2}O{sub 4} covers on the surface of the lanthanum and zirconium co-precipitate products. Pure cubic LLZO powders can be obtained at a low calcination temperature of 900 °C. Sample sintered by field assisted sintering technology at 1000 °C has a high relative density of 96.5% with a total ionic conductivity of as high as 3.32 × 10{sup −4} S cm{sup −1} (corresponding to the activation energy of 0.32 eV) at room temperature. The reported method provides a simple and low-temperature synthesis of high quality LLZO solid electrolytes.

  4. Halide laser glasses

    Energy Technology Data Exchange (ETDEWEB)

    Weber, M.J.

    1982-01-14

    Energy storage and energy extraction are of prime importance for efficient laser action and are affected by the line strengths and linewidths of optical transitions, excited-state lifetimes, nonradiative decay processes, spectroscopic inhomogeneities, nonlinear refractive index, and damage threshold. These properties are all host dependent. To illustrate this, the spectroscopic properties of Nd/sup 3 +/ have been measured in numerous oxide, oxyhalide, and halide glasses. A table summarizes the reported ranges of stimulated emission cross sections, peak wavelengths, linewidths, and radiative lifetimes associated with the /sup 4/F/sub 3/2/ ..-->.. /sup 4/I/sub 11/2/ lasing transition.

  5. Novel, Solvent Free, Single Ion Conductive Polymer Electrolytes (Warsaw-2001)

    Science.gov (United States)

    2004-10-18

    LiCF3SO3, LiI, LiN(CF3SO2)2 and LiBF4 were used as lithium salts. To become better acquainted with the nature of conduction in such systems, lithium...Solid polymeric electrolytes for battery purposes in the form of composites of lithium salts (LiI, LiN(CF3SO2)2, LiClO4, LiAlCl4, LiCF3SO3 and LiBF4 ...distilled in an argon atmosphere prior to use. The following lithium salts were used: LiI, LiN(CF3SO2)2, LiClO4, LiAlCl4, LiCF3SO3 and LiBF4 (Aldrich

  6. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction

    OpenAIRE

    Dong Ok Shin; Kyungbae Oh; Kwang Man Kim; Kyu-Young Park; Byungju Lee; Young-Gi Lee; Kisuk Kang

    2015-01-01

    Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al3+ plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement an...

  7. The role of background electrolytes on the kinetics and mechanism of calcite dissolution

    Science.gov (United States)

    Ruiz-Agudo, E.; Kowacz, M.; Putnis, C. V.; Putnis, A.

    2010-02-01

    The influence of background electrolytes on the mechanism and kinetics of calcite dissolution was investigated using in situ Atomic Force Microscopy (AFM). Experiments were carried out far from equilibrium by passing alkali halide salt (NaCl, NaF, NaI, KCl and LiCl) solutions over calcite cleavage surfaces. This AFM study shows that all the electrolytes tested enhance the calcite dissolution rate. The effect and its magnitude is determined by the nature and concentration of the electrolyte solution. Changes in morphology of dissolution etch pits and dissolution rates are interpreted in terms of modification in water structure dynamics (i.e. in the activation energy barrier of breaking water-water interactions), as well as solute and surface hydration induced by the presence of different ions in solution. At low ionic strength, stabilization of water hydration shells of calcium ions by non-paired electrolytes leads to a reduction in the calcite dissolution rate compared to pure water. At high ionic strength, salts with a common anion yield similar dissolution rates, increasing in the order Cl - salts with a common cation due to an increasing mobility of water around the calcium ion. Changes in etch pit morphology observed in the presence of F - and Li + are explained by stabilization of etch pit edges bonded by like-charged ions and ion incorporation, respectively. As previously reported and confirmed here for the case of F -, highly hydrated ions increased the etch pit nucleation density on calcite surfaces compared to pure water. This may be related to a reduction in the energy barrier for etch pit nucleation due to disruption of the surface hydration layer.

  8. Li(+) solvation in glyme-Li salt solvate ionic liquids.

    Science.gov (United States)

    Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji; Saito, Soshi; Doi, Hiroyuki; Yoshida, Kazuki; Mandai, Toshihiko; Matsugami, Masaru; Umebayashi, Yasuhiro; Dokko, Kaoru; Watanabe, Masayoshi

    2015-03-28

    Certain molten complexes of Li salts and solvents can be regarded as ionic liquids. In this study, the local structure of Li(+) ions in equimolar mixtures ([Li(glyme)]X) of glymes (G3: triglyme and G4: tetraglyme) and Li salts (LiX: lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]), lithium bis(pentafluoroethanesulfonyl)amide (Li[BETI]), lithium trifluoromethanesulfonate (Li[OTf]), LiBF4, LiClO4, LiNO3, and lithium trifluoroacetate (Li[TFA])) was investigated to discriminate between solvate ionic liquids and concentrated solutions. Raman spectra and ab initio molecular orbital calculations have shown that the glyme molecules adopt a crown-ether like conformation to form a monomeric [Li(glyme)](+) in the molten state. Further, Raman spectroscopic analysis allowed us to estimate the fraction of the free glyme in [Li(glyme)]X. The amount of free glyme was estimated to be a few percent in [Li(glyme)]X with perfluorosulfonylamide type anions, and thereby could be regarded as solvate ionic liquids. Other equimolar mixtures of [Li(glyme)]X were found to contain a considerable amount of free glyme, and they were categorized as traditional concentrated solutions. The activity of Li(+) in the glyme-Li salt mixtures was also evaluated by measuring the electrode potential of Li/Li(+) as a function of concentration, by using concentration cells against a reference electrode. At a higher concentration of Li salt, the amount of free glyme diminishes and affects the electrode reaction, leading to a drastic increase in the electrode potential. Unlike conventional electrolytes (dilute and concentrated solutions), the significantly high electrode potential found in the solvate ILs indicates that the solvation of Li(+) by the glyme forms stable and discrete solvate ions ([Li(glyme)](+)) in the molten state. This anomalous Li(+) solvation may have a great impact on the electrode reactions in Li batteries.

  9. Study on electrochemical storage lithium properties of LiFePO4 in an aqueous electrolyte%LiFePO4在水溶液电解液中电化学储锂性能研究

    Institute of Scientific and Technical Information of China (English)

    刘全兵; 毛国龙; 张健; 彭响方

    2015-01-01

    通过测试LiFePO4在1.0 mol/L的锂离子水溶液电解液中不同扫描速率下CV曲线,研究了LiFePO4在水溶液电解液中的电化学储锂性能.结果表明:Li+嵌入和脱出LiFePO4的扩散系数分别为9.97×10-15和1.22×10-14cm2/s,在水溶液中LiFePO4可以实现完全的嵌/脱锂,且具有非常好的嵌/脱锂可逆性和稳定性.证实了LiFePO4作为水溶液可充放电锂离子电池电极材料的可能性.

  10. Capillary Electrophoresis as Analysis Technique for Battery Electrolytes: (i Monitoring Stability of Anions in Ionic Liquids and (ii Determination of Organophosphate-Based Decomposition Products in LiPF6-Based Lithium Ion Battery Electrolytes

    Directory of Open Access Journals (Sweden)

    Marcelina Pyschik

    2017-09-01

    Full Text Available In this work, a method for capillary electrophoresis (CE hyphenated to a high-resolution mass spectrometer was presented for monitoring the stability of anions in ionic liquids (ILs and in commonly used lithium ion battery (LIB electrolytes. The investigated ILs were 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonylimide (PYR13TFSI and 1-methyl-1-propylpyrrolidinium bis(fluorosulfonylimide (PYR13FSI. The method development was conducted by adjusting the following parameters: buffer compositions, buffer concentrations, and the pH value. Also the temperature and the voltage applied on the capillary were optimized. The ILs were aged at room temperature and at 60 °C for 16 months each. At both temperatures, no anionic decomposition products of the FSI− and TFSI− anions were detected. Accordingly, the FSI− and TFSI− anions were thermally stable at these conditions. This method was also applied for the investigation of LIB electrolyte samples, which were aged at 60 °C for one month. The LP30 (50/50 wt. % dimethyl carbonate/ethylene carbonate and 1 M lithium hexafluorophosphate electrolyte was mixed with the additive 1,3-propane sultone (PS and with one of the following organophosphates (OP: dimethyl phosphate (DMP, diethyl phosphate (DEP, and triethyl phosphate (TEP, to investigate the influence of these compounds on the formation of OPs.

  11. Lithium-Air Batteries with Hybrid Electrolytes.

    Science.gov (United States)

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-07

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided.

  12. Proton-conducting solid acid electrolytes based upon MH(PO3H) (M=Li+, Na+, K+, Rb+, Cs+, NH4+)

    NARCIS (Netherlands)

    Zhou, Weihua

    2011-01-01

    Solid acids, such as CsHSO4 and CsH2PO4, are a novel class of anhydrous proton-conducting compounds that can be used as electrolyte in H2/O2 and direct methanol fuel cells. The disordering of the hydrogen-bonded network above the so-called superprotonic phase transition results in an increase of the

  13. Recent Development of the Materials of Solid-state Electrolyte Thin-film Li-ion Batteries%固体电解质薄膜锂离子电池材料研究进展

    Institute of Scientific and Technical Information of China (English)

    王斌; 瞿美臻; 于作龙

    2006-01-01

      对近几年固体电解质薄膜锂离子电池的负极薄膜材料、正极薄膜材料、固体电解质材料的种类及薄膜的制备方法进行了介绍,并对其发展进行了展望。%  In recent years the progresses in the thin film negative materials, the thin film positive materials and solid-state electrolyte materials, as well as the methods of the fabrication of the thin film were reviewed. The prospects of the thin-film Li-ion batteries in the future were also presented.

  14. Preparation of NASICON-Type Nanosized Solid Electrolyte Li1.4Al0.4Ti1.6(PO4)3 by Evaporation-Induced Self-Assembly for Lithium-Ion Battery.

    Science.gov (United States)

    Liu, Xingang; Fu, Ju; Zhang, Chuhong

    2016-12-01

    A simple and practicable evaporation-induced self-assembly (EISA) method is introduced for the first time to prepare nanosized solid electrolyte Li1.4Al0.4Ti1.6(PO4)3 (LATP) for all-solid-state lithium-ion batteries. A pure Na(+) super ion conductor (NASICON) phase is confirmed by X-ray diffraction (XRD) analysis, and its primary particle size is down to 70 nm by optimizing evaporation rate of the solvent. Excellent room temperature bulk and total lithium-ion conductivities of 2.09 × 10(-3) S cm(-1) and 3.63 × 10(-4) S cm(-1) are obtained, with an ion-hopping activation energy as low as 0.286 eV.

  15. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction

    Science.gov (United States)

    Shin, Dong Ok; Oh, Kyungbae; Kim, Kwang Man; Park, Kyu-Young; Lee, Byungju; Lee, Young-Gi; Kang, Kisuk

    2015-12-01

    Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al3+ plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 × 10-4 S cm-1 than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition.

  16. 锂离子电池电解液负极成膜添加剂的研究进展%Research progress of negative film-forming additives in electrolyte for Li-ion batteries

    Institute of Scientific and Technical Information of China (English)

    周丹; 梁风; 姚耀春

    2016-01-01

    Forming a stable solid electrolyte interface film (SEI film) is the key to solve the compatibility between lithium ion battery electrode material and electrolyte. Therefore,the research of high quality anode film-forming additive in electrolyte for lithium ion battery attracts much attention. The principle of film-forming additives for organic electrolyte in Li-ion batteries was reviewed. The research status of a variety of additives was particularly introduced. The recent progress on negative film-forming additives was reviewed in detail,from the perspectives of film formation mechanisms and quantum calculation. The main problem was how to select more suitable and efficient film-forming additives. In addition,the possible trends in this area were proposed:①Understanding the mechanism of additive reacting with the electrolyte,especially for the negative film forming additive which has minimum side effects for lithium ion battery;②Combining two or more additives together to compensate the deficiencies of one additive;③Increasing the solubility of inorganic film-forming additives in the electrolyte.%解决锂离子电池电极材料和电解液相容性的关键是形成稳定且Li+可导的固态电解质界面膜(SEI膜),因此,对优质负极成膜添加剂的研究成为锂离子电池研发中的一个热点。本文综述了锂离子电池电解液成膜添加剂的作用原理,具体介绍了各类负极成膜添加剂的研究现状,从成膜反应机理和理论计算方面详述了近几年来负极成膜添加剂的研究进展。分析了所存在的问题主要是如何快速地挑选出更适宜、更高效的成膜添加剂,并指出了成膜添加剂未来的发展趋势为:①研究各添加剂与电解液的反应机理,着重开发对锂离子电池副反应小的负极成膜添加剂;②通过选择两种或两种以上的添加剂的协同作用,以弥补一种添加剂的不足;③提高无机成膜添加剂在电解液中的溶解度。

  17. Effects of Solvent Composition on Liquid Range, Glass Transition, and Conductivity of Electrolytes of a (Li, Cs)PF6 Salt in EC-PC-EMC Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Michael S.; Li, Qiuyan; Li, Xing; Xu, Wu; Xu, Kang

    2017-05-10

    Electrolytes of 1 M LiPF6 (lithium hexafluorophosphate) and 0.05 M CsPF6 (cesium hexafluorophosphate) in EC-PC-EMC (ethylene carbonate-propylene carbonate-ethyl methyl carbonate) solvents of varying solvent compositions were studied for the effects of solvent composition on the lower limit of liquid range, viscosity (as reflected by the glass transition temperature), and electrolytic conductivity. In addition, a ternary phase diagram of EC-PC-EMC was constructed and crystallization temperatures of EC and EMC were calculated to assist the interpretation and understanding of the change of liquid range with solvent composition. A function based on Vogel-Fulcher-Tammann equation was fitted to the conductivity data in their entirety and plotted as conductivity surfaces in solvent composition space for more direct and clear comparisons and discussions. Changes of viscosity and dielectric constant of the solvents with their composition, in relation to those of the solvent components, were found to be underlying many of the processes studied.

  18. Fluorinated Alkoxide-Based Magnesium-Ion Battery Electrolytes that Demonstrate Li-Ion-Battery-Like High Anodic Stability and Solution Conductivity.

    Science.gov (United States)

    Crowe, Adam J; Stringham, Kyle K; Bartlett, Bart M

    2016-09-01

    Based on DFT predictions, a series of highly soluble fluorinated alkoxide-based electrolytes were prepared, examined electrochemically, and reversibly cycled. The alcohols react with ethylmagnesium chloride to generate a fluoroalkoxy-magnesium chloride intermediate, which subsequently reacts with aluminum chloride to generate the electrolyte. Solutions starting from a 1,1,1,3,3,3-hexafluoro-2-methylpropan-2-ol precursor exhibit high anodic stability, 3.2 V vs Mg(2+/0), and a record 3.5 mS/cm solution conductivity. Excellent galvanostatic cycling and capacity retention (94%) is observed with more than 300 h of cycle time while employing the standard Chevrel phase-Mo6S8 cathode material.

  19. Conductive performances of solid polymer electrolyte films based on PVB/LiClO{sub 4} plasticized by PEG{sub 200,} PEG{sub 400} and PEG{sub 600}

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yawen; Wang, Jinwei; Tang, Jinwei; Liu, Yupeng; He, Yedong [Beijing Key Laboratory for Corrosion, Erosion and Surface Technology, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2009-02-15

    Solid polymer electrolyte (SPE) films consisting of polyvinyl butyral (PVB) as host polymer, LiClO{sub 4} as alkali salt at mole ratio of [O]:[Li] = 8, and different molecular weight polyethylene glycol (PEG) including PEG{sub 200}, PEG{sub 400}, and PEG{sub 600} as plasticizers are prepared by physical blending method. The dielectric relaxation and electrochemical impedance measurements reveal that the conductive performances are improved by adding PEG as plasticizers through the enhancement in the moving space for ions, and PEG{sub 400} performs plasticizing effect superior to PEG{sub 200} and PEG{sub 600}. Their conductivity is measured by using a sandwiched Pt/SPE/Pt cell model. SPE with 30% PEG{sub 400} (wt%) of PVB exhibits the maximum conductivity at room temperature, and its conductivity increases linearly with temperatures from 303 to 333 K at two to three orders of magnitude higher than that of the other two SPEs containing 30% PEG{sub 200} and 30% PEG{sub 600}, respectively. However, their conductivity does not increase linearly with the increase in heating temperatures until the temperature reaches around 333 K; the decrease in conductivity with heating from their maxima is attributed to the restriction of ion moving space because of the crosslinking reaction between hydroxyl and aldehyde groups. As observed from the XRD and the microscopy results, PEG{sub 400} is more effective than others in enhancing the conductive performances of these SPEs through changing LiClO{sub 4} from crystalline to amorphous state, increasing the flexibility of PVB, disturbing the short distance sequential order of PVB chains, and promoting the formation of 'pathway' for ions' movement. (author)

  20. Li-FSI Impurity Impact Study: Final CRADA Report

    Energy Technology Data Exchange (ETDEWEB)

    Pupek, Krzysztof [Argonne National Lab. (ANL), Argonne, IL (United States); Dzwiniel, Trevor [Argonne National Lab. (ANL), Argonne, IL (United States); Krumdick, Gregory [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    There is growing interest in lithium bis(fluorosulfonyl)imide (LiFSI ) as an alternative to LiPF6 and as an additive to electrolytes used in lithium-ion cells. LiFSI has attracted attention because it is reported to have higher ionic conductivity, better high temperature stability, and enhanced stability toward hydrolysis, Also, LiFSI additive to electrolytes can bring benefits of improved storage properties and reduced gas evolution in the cells. Different levels of different electrochemically active impurities could affect the performance of LiFSI as an electrolyte salt for Li-ion batteries, generating inconsistent and conflicting interpretations of the experimental data.

  1. The synthesis of Li(Cosbnd Mnsbnd Ni)O2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions

    Science.gov (United States)

    Senćanski, Jelena; Bajuk-Bogdanović, Danica; Majstorović, Divna; Tchernychova, Elena; Papan, Jelena; Vujković, Milica

    2017-02-01

    Several spent Li-ion batteries were manually dismantled and their components were uncurled and separated. The chemical composition of each battery's component was determined by atomic absorption spectroscopy. Among several ways to separate cathode material from the collector, the alkali dissolution treatment was selected as the most effective one. After both complete separation and acid leaching steps, the co-precipitation method, followed by a thermal treatment (700 °C or 850 °C), was used to resynthesize cathode material LiCo0.415Mn0.435Ni0.15O2. Its structure and morphology were characterized by XRD, Raman spectroscopy and SEM-EDS methods. The electrochemical behavior of recycled cathode materials was examined by cyclic voltammetry and chronopotentiometry in both LiNO3 and NaNO3 aqueous solutions. High sodium storage capacity, amounting to 93 mAh g-1, was measured galvanostatically at a relatively high current of ∼100 mA g-1. Initial lithium intercalation capacity of ∼64 mAh g-1, was determined potentiodynamically at very high scan rate of 20 mV s-1 (∼40 C). Somewhat lower initial capacity of ∼30 mAh g-1, but much lower capacity fade on cycling, was found for sodium intercalation at the same scan rate. The differences in the Li and Na charge storage capability were explained in terms of ion rearrangement during charging/discharging processes.

  2. Progress in the Research of Non-aqueous Electrolyte for Li-ion Battery--Electrolyte and The Safety of Battery%锂离子二次电池电解液的研究进展--电解液与电池的安全保护

    Institute of Scientific and Technical Information of China (English)

    左晓希; 刘建生; 李伟善; 南俊民

    2004-01-01

      Compared to other secondary batteries, Li-ion battery has a higher capacity and cycle-ability, and friendly to environment, so it is widely accepted by the people. Therefore the safety of the battery due to the application of organic electrolyte has become the focus of research. The recent process in the high quality electrolyte to improve the safety of battery is reviewed in this paper.%  由于锂离子二次电池相对于其它的二次电池具有更高的能量密度和对环境的友好性,已经广泛地应用到人们的生活当中。然而,锂离子二次电池使用的是有机电解液,其带来的安全问题已成了人们关注的焦点。本文就开发高性能的电解液以提高电池安全性方面的研究作一简要的概述。

  3. Structural, spectroscopic and electrochemical study of V5+ substituted LiTi2(PO4)3 solid electrolyte for lithium-ion batteries

    Indian Academy of Sciences (India)

    A Venkateswara Rao; V Veeraiah; A V Prasada Rao; B Kishore Babu; B Swarna Latha; K Rama Rao

    2014-06-01

    Vanadium substituted LiTi2(PO4)3 (LTP) samples of composition of Li1–[Ti2–V](PO4)3 ( = 0.0, 0.05, 0.10 and 0.15) have been prepared by solid-state reaction method. XRD data for these compositions indicated the formation of phase pure materials of rhombohedral structure with space group $\\bar{3}$ (167). Microstructural studies by scanning electron microscope indicated particle size in the range of 0.5–1 m. Electrochemical impedance studies showed that ionic conductivity is high for = 0.10 composition. a.c. and d.c. conductivity results up to 573 K are in accordance with the Jonscher’s power law. Cyclic voltammetry study showed its electrochemical stability in the voltage range from 0.5 to 3.5 V.

  4. PVDF Alumina Nanocomposite Electrolyte as a Host Matrix for High Rate Li ion Batteries from Room Temperature to 120 C (Preprint)

    Science.gov (United States)

    2017-02-21

    work. 14. ABSTRACT (Maximum 200 words ) There is an increasing demand for secondary energy storage devices that can operate in high temperature...high temperature application today (-60 – 150 °C operating range),[2] but are not rechargeable and thionyl chloride is toxic and reactive with water .[3...toxic and reactive with water .[3] Traditional rechargeable Li-ion batteries have the potential to meet the needs of these applications due to their high

  5. Increasing the Affinity Between Carbon-Coated LiFePO4/C Electrodes and Conventional Organic Electrolyte by Spontaneous Grafting of a Benzene-Trifluoromethylsulfonimide Moiety.

    Science.gov (United States)

    Delaporte, Nicolas; Perea, Alexis; Lebègue, Estelle; Ladouceur, Sébastien; Zaghib, Karim; Bélanger, Daniel

    2015-08-26

    The grafting of benzene-trifluoromethylsulfonimide groups on LiFePO4/C was achieved by spontaneous reduction of in situ generated diazonium ions of the corresponding 4-amino-benzene-trifluoromethylsulfonimide. The diazotization of 4-amino-benzene-trifluoromethylsulfonimide was a slow process that required a high concentration of precursors to promote the spontaneous grafting reaction. Contact angle measurements showed a hydrophilic surface was produced after the reaction that is consistent with grafting of benzene-trifluoromethylsulfonimide groups. Elemental analysis data revealed a 2.1 wt % loading of grafted molecules on the LiFePO4/C powder. Chemical oxidation of the cathode material during the grafting reaction was detected by X-ray diffraction and quantified by inductively coupled plasma atomic emission spectrometry. Surface modification improves the wettability of the cathode material, and better discharge capacities were obtained for modified electrodes at high C-rate. In addition, electrochemical impedance spectroscopy showed the resistance of the modified cathode was lower than that of the bare LiFePO4/C film electrode. Moreover, the modified cathode displayed superior capacity retention after 200 cycles of charge/discharge at 1 C.

  6. Electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system electrolyte

    Institute of Scientific and Technical Information of China (English)

    KAN Hong-min; WANG Zhao-wen; BAN Yun-gang; SHI Zhong-ning; QIU Zhu-xian

    2007-01-01

    A PGSTAT 30 and a BOOSTER 20A were used to measure cell impedance. Electrical conductivity was gained by the Continuously Varying Cell Constant Technique. Electrical conductivity of KCl was measured for comparison. The results prove that the method is reliable and accurate. The electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system was studied by this method. Activation energy of conductance was obtained based on the experiment results. The experiments show that electrical conductivity is increased greatly with NaCl and LiF added. Increasing 1%LiF(mass fraction) results in corresponding increase of 0.0276 S/cm for superheat condition of 15 ℃. For NaCl, it is 0.024 S/cm. Electrical conductivity is increased by 0.003 S/cm with 1℃ temperature increase. The electrical conductivity is lower than that predicted by the WANG Model and higher than that predicted by the Choudhary Model.

  7. Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery

    Science.gov (United States)

    Baek, Seung-Wook; Honma, Itaru; Kim, Jedeok; Rangappa, Dinesh

    2017-03-01

    Solidified lithium conducting hybrid electrolyte is designed and processed to realize the large scale and flexible solid state Li battery satisfying energy capability and safety issue. This paper presents a solidified inorganic-organic hybrid electrolyte to obtain commercially-acceptable ionic conductivity and a stable electrochemical window to prevent electrolyte decomposition in Li ion batteries. Li3PO4 coated with solidified [Li][EMI][TFSI] ionic liquid is developed as hybrid electrolyte material. The material has high electrochemical stability on a high-voltage cathode and metallic anode, and the solid electrolyte has high ionic conductivity. This Li3PO4-[Li][EMI][TFSI] hybrid electrolyte has the advantages of long-term operation, safety and flexibility, so it may be suitable for use in high-voltage cathodes and Li anode.

  8. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  9. Electrochemical performance of nonflammable polymeric gel electrolyte containing triethylphosphate

    Energy Technology Data Exchange (ETDEWEB)

    Lalia, Boor Singh; Fujita, Takayoshi; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki [Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611 (Japan)

    2009-01-01

    Nonflammable polymeric gel electrolyte has been prepared by immobilizing 1 M LiBF{sub 4}/EC + DEC + TEP (55:25:20, v/v/v, EC: ethylene carbonate, DEC: diethyl carbonate and TEP: triethylphosphate) solution in poly(vinylidene fluoride-co-hexafluoro propylene) (PVdF-HFP) where TEP acts as a fire-retardant solvent in the gel electrolyte. The polymeric gel electrolyte has a high value of ionic conductivity of 1.76 mS cm{sup -1} at 28 C. Thermal safety calorimetry (TSC) experiments show good thermal stability of the gel electrolyte. Cyclic voltammetry and charge/discharge cycling tests were performed on LiMn{sub 2}O{sub 4}/gel electrolyte and graphite/gel electrolyte half cells. The gel electrolyte works well for graphite/LiMn{sub 2}O{sub 4} cell although some improvement in the cycleability of the graphite electrode is still needed. (author)

  10. Designing New Electrolytes for Lithium Ion Batteries Using Superhalogen Anions

    CERN Document Server

    Srivastava, Ambrish Kumar

    2016-01-01

    The electrolytes used in Lithium Ion Batteries (LIBs) such as LiBF4, LiPF6 etc. are Li-salts of some complex anions, BF4-, PF6- etc. The investigation shows that the vertical detachment energy (VDE) of these anions exceeds to that of halogen, and therefore they behave as superhalogen anions. Consequently, it might be possible to design new electrolytic salts using other superhalogen anions. We have explored this possibility using Li-salts of various superhalogen anions such as BO2-, AlH4-, TiH5- and VH6- as well as hyperhalogen anions, BH4-y(BH4)y-(y = 1 to 4). Our density functional calculations show that Li-salts of these complex anions possess similar characteristics as those of electrolytic salts in LIBs. Note that they all are halogen free and hence, non-toxic and safer than LiBF4, LiPF6 etc. In particular, LiB4H13 and LiB5H16 are two potential candidates for electrolytic salt due to their smaller Li-dissociation energy ({\\Delta}E) than those of LiBF4, LiPF6 etc. We have also noticed that {\\Delta}E of Li...

  11. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  12. Theory of metal atom-water interactions and alkali halide dimers

    Science.gov (United States)

    Jordan, K. D.; Kurtz, H. A.

    1982-01-01

    Theoretical studies of the interactions of metal atoms with water and some of its isoelectronic analogs, and of the properties of alkali halides and their aggregates are discussed. Results are presented of ab initio calculations of the heats of reaction of the metal-water adducts and hydroxyhydrides of Li, Be, B, Na, Mg, and Al, and of the bond lengths and angles an; the heats of reaction for the insertion of Al into HF, H2O, NH3, H2S and CH3OH, and Be and Mg into H2O. Calculations of the electron affinities and dipole moments and polarizabilities of selected gas phase alkali halide monomers and dimers are discussed, with particular attention given to results of calculations of the polarizability of LiF taking into account electron correlation effects, and the polarizability of the dimer (LiF)2.

  13. Influence of the binder nature on the performance and cycle life of activated carbon electrodes in electrolytes containing Li-salt

    Science.gov (United States)

    Tran, Hai Yen; Wohlfahrt-Mehrens, Margret; Dsoke, Sonia

    2017-02-01

    In the current work, the influence of the binder nature on the mechanical and electrochemical stability of activated carbon (AC) electrodes in LiPF6/EC/DMC is shown. Different binders employing water-based preparation route, i.e. poly(acrylic acid), sodium polyacrylate and sodium alginate, are evaluated and compared with the fluorinated binders (i.e. polytetrafluoroethylene, PTFE and polyvinylidene difluoride, PVDF). Results obtained during the investigation show that the rheological behavior of the slurry as well as the electrode porosity can be significantly affected by choice of binder. More precisely, slurries containing AC and alginate can experience the stress relaxation test without breaking down the polymer network due to the multiple bonds between AC surface and the carboxylic group of the pyranose ring of α-L-guluronic acid of the sodium alginate. Moreover, the AC-Alginate electrodes can sustain up to 20 000 cycles (∼902 h) at I = 1.39 A g-1 in LiPF6 without a great increase in total equivalent series resistance (ESR) (ESRAC - Alginate ,20000th cycle = 4 × ESR1st cycle ,while ESRAC - PVDF ,20000th cycle = 6.5 × ESR1st cycle) . The electrochemical impedance spectroscopy analysis on the aged electrodes shows that AC-Alginate can offer sufficient accessible porosity for extended charge/discharge cycles.

  14. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.

    2014-01-01

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat...... to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer...... electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage...

  15. Lithium sulfide compositions for battery electrolyte and battery electrode coatings

    Science.gov (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

    2013-12-03

    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  16. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries.

    Science.gov (United States)

    Mehdi, B Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A; Zhang, Ji-Guang; Mueller, Karl T; Browning, Nigel D

    2016-10-05

    One of the most promising means to increase the energy density of state-of-the-art lithium Li-ion batteries is to replace the graphite anode with a Li metal anode. While the direct use of Li metal may be highly advantageous, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency, CE. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H2O as an additive results in remarkably different deposition/stripping properties as compared to the "dry" electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. The stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the direct use of Li metal in battery technologies.

  17. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries

    Science.gov (United States)

    Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D.

    2016-01-01

    One of the most promising means to increase the energy density of state-of-the-art lithium Li-ion batteries is to replace the graphite anode with a Li metal anode. While the direct use of Li metal may be highly advantageous, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency, CE. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H2O as an additive results in remarkably different deposition/stripping properties as compared to the “dry” electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. The stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the direct use of Li metal in battery technologies.

  18. The Impact of Li Grain Size on Coulombic Efficiency in Li Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi, B. Layla; Stevens, Andrew; Qian, Jiangfeng; Park, Chiwoo; Xu, Wu; Henderson, Wesley A.; Zhang, Ji-Guang; Mueller, Karl T.; Browning, Nigel D.

    2016-10-05

    One of the most promising means to increase the energy density of state-of-the-art lithium (Li)-ion batteries is to replace the graphite anode with a Li metal anode1, 2, 3. While the direct use of Li metal may be highly advantageous4,5, at present its practical application is limited by issues related to dendrite growth and low Coulombic efficiency (CE)6. Here operando electrochemical scanning transmission electron microscopy (STEM) is used to directly image the deposition/stripping of Li at the anode-electrolyte interface in a Li-based battery. A non-aqueous electrolyte containing small amounts of H2O as an additive results in remarkably different deposition/stripping properties as compared to the "dry" electrolyte when operated under identical electrochemical conditions. The electrolyte with the additive deposits more Li during the first cycle, with the grain sizes of the Li deposits being significantly larger and more variable. The stripping of the Li upon discharge is also more complete, i.e., there is a higher cycling CE. This suggests that larger grain sizes are indicative of better performance by leading to more uniform Li deposition and an overall decrease in the formation of Li dendrites and side reactions with electrolyte components, thus potentially paving the way for the direct use of Li metal in battery technologies.

  19. Novel, Solvent Free, Single Ion Conductive Polymer Electrolytes (Rome-2001)

    Science.gov (United States)

    2004-05-23

    Several samples, varying from i) the PEO molecular weight (1x105 and 4x106), ii)the nature of the lithium salt (LiI, LiBF4 ) and iii) the...calixpyrrole)x electrolyte membranes. Furthermore, it was established that LiBF4 - containing samples showed a larger transference number than the...observed for the LiBF4 - based electrolyte membranes even at small calixpyrrole concentration and at low lithium salt concentration, e.g., EO/Li

  20. Molecular Modeling and Monte Carlo Simulation of Concentrated Aqueous Alkali Halide Solutions at 25 C.

    Science.gov (United States)

    Llano-Restrepo, Mario Andres

    A study of concentrated aqueous alkali halide solutions is made at the molecular level, through modeling and computer simulation of their structural and thermodynamic properties. It is found that the HNC approximation is the best integral equation theory to predict such properties within the framework of the primitive model (PM). The intrinsic limitations of the PM in describing ionic association and hydration effects are addressed and discussed in order to emphasize the need for explicitly including the water molecules in the treatment of aqueous electrolyte solutions by means of a civilized model (CM). As a step toward developing a CM as simple as possible, it is shown that a modified version of the SPC model of liquid water in which the Lennard-Jones interaction between intermolecular oxygen sites is replaced by a hard core interaction, is still successful enough to predict the degree of hydrogen bonding of real water. A simple civilized model (SCM) (in which the ions are treated as hard spheres interacting through Coulombic potentials and the water molecules are simulated using the simplified SPC model) is introduced in order to study the changes in the structural features of various aqueous alkali halide solutions upon varying both the concentration and the size of the ions. Both cations and anions are found to be solvated by the water molecules at expense of a breakdown in the hydrogen-bonded water network. Hydration numbers are reported for the first time for NaBr and KBr, and the first simulation -based estimates for LiBr, NaI and KI are also obtained. In several cases, values of the hydration numbers based on the SCM are found to be in excellent agreement with available experimental results obtained from x-ray diffraction measurements. Finally, it is shown that a neoprimitive model (NPM) can be developed by incorporating some of the structural features seen in the SCM into the short-range part of the PM interionic potential via a shielded square well whose

  1. [FTIR investigation of new polymer solid electrolytes].

    Science.gov (United States)

    Yang, Shu-ting; Chen, Hong-jun; Dong, Hong-yu; Jia, Jun-hua; Cao, Zhao-xia

    2004-04-01

    The conductivity of the porous polymer solid electrolyte blended with PVDF and PMMA, which was made by a micro-wave hot-cross-linking method, reached 2.05 x 10(-3) S x cm(-1) at room temperature. The polymer solid electrolyte was analyzed and investigated by FTIR. The results show that the PVDF, PMMA and LiClO4 in the polymer solid electrolyte were not simply blended, but certain kind of effect existed which was strengthened only when the polymer solid electrolyte came into being.

  2. Solvents in salt electrolyte: Benefits and possible use as electrolyte for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Taggougui, M.; Carre, B.; Lemordant, D. [Laboratoire de Chimie-physique des Interfaces et des Milieux Electrolytiques (EA2098), Universite de Tours, Faculte des Sciences et Techniques, Parc de Grandmont, F 37200 Tours (France); Diaw, M. [Universite Cheikh Anta Diop, Dakar (Senegal); Willmann, P. [CNES, 18 Avenue E. Belin, 31055 Toulouse Cedex (France)

    2008-07-01

    An EC/DEC [40:60% (v/v)] solvent mixture has been added in various amounts to the ionic liquid (IL) hexyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N{sub 1116}-NTf{sub 2}) in the presence of LiNTf{sub 2} (lithium bis(trifluoromethylsulfonyl)imide) as lithium salt for possible use as electrolytes in lithium-ion batteries. These electrolytes exhibit a larger thermal stability than the reference electrolyte EC/DEC [40:60] + LiNTf{sub 2} 1 M when the percentage of the IL exceeds 30% (v/v). All studied electrolytes are glass forming ones with an ideal glass transition temperature of ca. -85 C({+-}5 C), which has been determined by application of the VTF theory to conductivity and viscosity measurements and confirmed by DSC (T{sub g} = -90 {+-} 5 C). An electrochemical window of about 5 V versus Li/Li{sup +} was measured at a glassy carbon electrode. The cycling ability of the optimized electrolyte N{sub 1116}-NTf{sub 2}/EC:DEC (40/60% (v/v)) + 1 M LiNTf{sub 2} has been investigated at a titanate oxide (Li{sub 4}Ti{sub 5}O{sub 12}) and a cobalt oxide (Li{sub x}CoO{sub 2}) electrodes. Cycling the positive and the negative electrodes was conducted successfully with a high capacity and without any significant fading. (author)

  3. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiao-Qing

    2008-08-31

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  4. Recent advances in inorganic solid electrolytes for lithium batteries

    Directory of Open Access Journals (Sweden)

    Can eCao

    2014-06-01

    Full Text Available The review presents an overview of the recent advances in inorganic solid lithium ion conductors, which are of great interest as solid electrolytes in all-solid-state lithium batteries. It is focused on two major categories: crystalline electrolytes and glass-based electrolytes. Important systems such as thio-LISICON Li10SnP2S12, garnet Li7La3Zr2O12, perovskite Li3xLa(2/3-xTiO3, NASICON Li1.3Al0.3Ti1.7(PO43 and glass-ceramic xLi2S•(1-xP2S5 and their progress are described in great detail. Meanwhile, the review discusses different on-going strategies on enhancing conductivity, optimizing electrolyte/electrode interface and improving cell performance.

  5. Structure of Rare-earth/Alkali Halide Complexes

    Science.gov (United States)

    Akdeniz, Z.; Önem, Z. Çiçek; Tosia, M. P.

    2001-11-01

    Vapour complex formation of rare-earth halides with alkali halides strongly increases the volatility of these compounds. We evaluate the structure taken by such complexes having the chemical formulas MRX4, M2RX5 and M3RX6, where X = F or Cl and typically M = Li or Na and R = La. The roles played by the two types of metal atom is investigated in MRX4 complexes by also taking M = K, Rb or Cs and R = Gd or Lu. The main predictions that emerge from our calculations are as follows: (i) in MRX4 a fourfold coordination of the rare-earth atom is accompanied by twofold or threefold coordination of the alkali atom, the energy difference in favour of the twofold-coordination state being about 0.3 eV in the case of the LiF complexing agent but even changing sign as the ionic radius of either the alkali or the halogen is increased; (ii) in M2RX5 a fivefold coordination of the rare-earth atom is energetically more stable than a fourfold one, by again not more than about 0.3 eV; (iii) in M3RX6 the fivefold and sixfold coordinations of the rare-earth atom are energetically competitive; and (iv) in both M2RX5 and M3RX6 each coordination state can be realized in various forms that differ in detail but are close in energy. Bond fluctuations and disorder around the rare-earth atom can be expected to be a general feature at elevated temperatures, both in the vapour and in liquid rare-earth/alkali halide mixtures.

  6. Structure and Bonding in Small Neutral Alkali-Halide Clusters

    CERN Document Server

    Aguado, A; López, J M; Alonso, J A

    1997-01-01

    The structural and bonding properties of small neutral alkali-halide clusters (AX)n, with n less than or equal to 10, A=Li, Na, K, Rb and X=F, Cl, Br, I, are studied using the ab initio Perturbed Ion (aiPI) model and a restricted structural relaxation criterion. A trend of competition between rock-salt and hexagonal ring-like isomers is found and discussed in terms of the relative ionic sizes. The main conclusion is that an approximate value of r_C/r_A=0.5 (where r_C and r_A are the cationic and anionic radii) separates the hexagonal from the rock-salt structures. The classical electrostatic part of the total energy at the equilibrium geometry is enough to explain these trends. The magic numbers in the size range studied are n= 4, 6 and 9, and these are universal since they occur for all alkali-halides and do not depend on the specific ground state geometry. Instead those numbers allow for the formation of compact clusters. Full geometrical relaxations are considered for (LiF)n (n=3-7) and (AX)_3 clusters, an...

  7. Sodium-metal halide and sodium-air batteries.

    Science.gov (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Recent results on aqueous electrolyte cells

    KAUST Repository

    Wessells, Colin

    2011-03-01

    The improved safety of aqueous electrolytes makes aqueous lithium-ion batteries an attractive alternative to commercial cells utilizing flammable and expensive organic electrolytes. Two important issues relating to their use have been addressed in this work. One is the extension of the usable voltage range by the incorporation of lithium salts, and the other is the investigation of a useful negative electrode reactant, LiTi 2(PO 4) 3. The electrochemical stability of aqueous lithium salt solutions containing two lithium salts, LiNO 3 and Li 2SO 4, has been characterized using a constant current technique. In both cases, concentrated solutions had effective electrolyte stability windows substantially greater than that of pure water under standard conditions. At an electrolyte leakage current of 10 μA cm -2 between two platinum electrodes in 5 M LiNO 3 the cell voltage can reach 2.0 V, whereas with a leakage current of 50 μA cm -2 it can reach 2.3 V. LiTi 2(PO 4) 3 was synthesized using a Pechini method and cycled in pH-neutral Li 2SO 4. At a reaction potential near the lower limit of electrolyte stability, an initial discharge capacity of 118 mAh g -1 was measured at a C/5 rate, while about 90% of this discharge capacity was retained after 100 cycles. This work demonstrates that it is possible to have useful aqueous electrolyte lithium-ion batteries using the LiTi 2(PO 4) 3 anode with cell voltages of 2 V and above. © 2010 Elsevier B.V. All rights reserved.

  9. Effects of alkali halide doping on hydrogen bonding interaction in brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, H.; Sato, N.; Sanada, Y.; Nakamura, K.; Sasaki, M.; Kotanigawa, T. [Hokkaido University, Sapporo (Japan)

    1994-12-31

    The effects of alkali halide doping on hydrogen bonding interactions in brown coal have been investigated by means of thermogravimetric analysis, FT-IR and UV-visible spectroscopy, differential scanning calorimeter (DSC) and solvent swelling. With lithium iodide (LiI) doping, volatile matter evolution of brown coal increased from 24.6 wt% to 43.9%, and the activation energy decreased from 54 kJ/mol to 31 kJ/mol. FT-IR spectra of pyrolysis residue obtained from raw and LiI doped brown coal indicate that LiI doped in coal control the formation of cross-link structures, such as ether linkage (-C-O-C-), during pyrolysis. Since LiI interacts with hydroxyl functional group, it can be concluded that doping coal with LiI results in declining hydrogen bonding interaction and increasing evolution of volatile matter. 4 refs., 5 figs., 3 tabs.

  10. Halogen versus halide electronic structure

    Institute of Scientific and Technical Information of China (English)

    Willem-Jan; van; Zeist; F.Matthias; Bickelhaupt

    2010-01-01

    Halide anions X-are known to show a decreasing proton affinity(PA),as X descends in the periodic table along series F,Cl,Br and I.But it is also well-known that,along this series,the halogen atom X becomes less electronegative(or more electropositive).This corresponds to an increasing energy of the valence np atomic orbital(AO) which,somewhat contradictorily,suggests that the electron donor capability and thus the PA of the halides should increase along the series F,Cl,Br,I.To reconcile these contradictory observations,we have carried out a detailed theoretical analysis of the electronic structure and bonding capability of the halide anions X-as well as the halogen radicals X-,using the molecular orbital(MO) models contained in Kohn-Sham density functional theory(DFT,at SAOP/TZ2P as well as OLYP/TZ2P levels) and ab initio theory(at the HF/TZ2P level).We also resolve an apparent intrinsic contradiction in Hartree-Fock theory between orbital-energy and PA trends.The results of our analyses are of direct relevance for understanding elementary organic reactions such as nucleophilic substitution(SN2) and base-induced elimination(E2) reactions.

  11. Studies on Gel Electrolyte Based on Nitrile-Butadiene Copolymers

    Science.gov (United States)

    1993-06-01

    preparation of a hybrid electrolyte, suitable for solid-polymer batteries. Based on the study of ionic conductivity in the presence of LiBF4 of a...lithium salts in different plasticizers showed the highest conductivity for LiBF4 . Conductivity of LiBF4 in different plasticizers decreases in the order...GLASS TRANSITION 53 TEMPERATURE OF VARIOUS NBR COPOLYMERS WITH AND WITHOUT LiBF4 APPENDIX B: ANOMALY IN THE IONIC 63 CONDUCTIVITY-TEMPERATURE STUDIES

  12. Synthesis and Characterization of a Novel Polymer Electrolyte for Lithium-ion Battery

    Institute of Scientific and Technical Information of China (English)

    Yan Ping Liang; Hong Zhu MA; Bo WANG

    2004-01-01

    A novel polymer electrolyte with the formula of Li2B4O7-PVA for lithium-ion battery was synthesized and its ion conductivity and mechanical properties were also tested. It is found that the conductivity of the prepared polymer electrolytes is higher than that of LiClO4/PEO or LiClO4/EC-DMC by two or three orders in magnitude and a large delocalized bond formed in Li2B4O7-PVA lead to transportation of Li ion easier, this electrolyte possesses high thermo-stability and can be used under 200°C.

  13. Stability of the Gel Electrolyte PAN : EC : PC : LICF3SO3 towards Lithium

    DEFF Research Database (Denmark)

    Perera, Kumudu; Skaarup, Steen; West, K.

    2006-01-01

    The stability of the gel electrolyte consisting of polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfonate (LiCF3SO3 – LiTF) towards metallic lithium was investigated using the time evolution of impedance plots. Symmetric cells of the form Li...... / PAN : EC : PC: LiTF / Li were assembled and impedance data were collected at room temperature for one week. A clear indication of growth of a resistive layer could be seen. The electrolyte resistance remained constant. The growth of the passivation layer became constant after first two days....... These observations suggest that this gel electrolyte is suitable for use with metallic lithium....

  14. γ-丁内酯基电解液中Li2CO3添加剂的电化学行为%The electrochemical behaviors of Li2CO3 additive to γ-butyrolactone based electrolyte for Li-ion batteries

    Institute of Scientific and Technical Information of China (English)

    胡传跃; 李新海; 郭军

    2006-01-01

    研究了固体添加剂Li2CO3用于锂离子电池γ-丁内酯基(GBL)电解液时的电化学行为.发现Li2CO3提高了石墨电极的首次放电容量和循环性能.采用1 mol/L LiPF6/(EC+DMC+GBL)(体积比为4∶4∶3)+0.05 mol/L Li2CO3电解液的软包装锂离子电池,首次放电比容量为142.6 mAh/g、1 C循环200次后的比容量保持率为88.6%.以交流阻抗法和傅里叶变换红外光谱(FT-IR)方法分析了Li2CO3对SEI膜的影响,结果表明,Li2CO3添加剂促进了SEI膜的形成,降低了SEI膜的阻抗,减少了GBL基电解液的分解,增大了SEI膜中Li2CO3的含量.

  15. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  16. Electrochromic Device with Polymer Electrolyte

    Science.gov (United States)

    Solovyev, Andrey A.; Zakharov, Alexander N.; Rabotkin, Sergey V.; Kovsharov, Nikolay F.

    2016-08-01

    In this study a solid-state electrochromic device (ECD) comprised of a WO3 and Prussian blue (Fe4[Fe(CN)6]3) thin film couple with a Li+-conducting solid polymer electrolyte is discussed. WO3 was deposited on K-Glass substrate by magnetron sputtering method, while Prussian blue layer was formed on the same substrate by electrodeposition method. The parameters of the electrochromic device K-Glass/WO3/Li+-electrolyte/PB/K-Glass, such as change of transmittance, response time and stability were successfully tested using coupled optoelectrochemical methods. The device was colored or bleached by the application of +2 V or -2 V, respectively. Light modulation with transmittance variation of up to 59% and coloration efficiency of 43 cm2/C at a wavelength of 550 nm were obtained. Numerous switching of the ECD over 1200 cycles without the observation of significant degradation has been demonstrated.

  17. Designing New Electrolytes for Lithium Ion Batteries Using Superhalogen Anions

    OpenAIRE

    Srivastava, Ambrish Kumar; Misra, Neeraj

    2016-01-01

    The electrolytes used in Lithium Ion Batteries (LIBs) such as LiBF4, LiPF6 etc. are Li-salts of some complex anions, BF4-, PF6- etc. The investigation shows that the vertical detachment energy (VDE) of these anions exceeds to that of halogen, and therefore they behave as superhalogen anions. Consequently, it might be possible to design new electrolytic salts using other superhalogen anions. We have explored this possibility using Li-salts of various superhalogen anions such as BO2-, AlH4-, Ti...

  18. Lithium bis(fluorosulfonyl)imide based low ethylene carbonate content electrolyte with unusual solvation state

    Science.gov (United States)

    Uchida, Satoshi; Ishikawa, Masashi

    2017-08-01

    We prepared a lithium bis(fluorosulfonyl)imide (LiFSI)-based low ethylene carbonate (EC) content electrolyte as a new electrolyte. LiFSI enough dissociates in mixed solvents containing only a small amount of EC and the LiFSI-based low EC content electrolyte shows a high ionic conductivity comparable to that of a conventional LiPF6-based high EC content electrolyte. In addition, the LiFSI-based low EC content electrolyte has an unusual solvation state of Li ion and we consider that the desolvation process from Li ion in our new electrolyte system is different from that in the conventional high EC content systems. A graphite half-cell assembled with our new electrolyte shows a quite low Li ion transfer resistance and outstanding charge and discharge rate performance compared to the conventional high EC content systems. A graphite/LiNi1/3Mn1/3Co1/3O2 cell assembled with our new electrolyte also shows superior charge and discharge rate performance and excellent long cycle stability.

  19. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    Science.gov (United States)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  20. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  1. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl-Li2S All-Solid-State Li-Ion Battery.

    Science.gov (United States)

    Yu, Chuang; Ganapathy, Swapna; de Klerk, Niek J J; Roslon, Irek; van Eck, Ernst R H; Kentgens, Arno P M; Wagemaker, Marnix

    2016-09-01

    One of the main challenges of all-solid-state Li-ion batteries is the restricted power density due to the poor Li-ion transport between the electrodes via the electrolyte. However, to establish what diffusional process is the bottleneck for Li-ion transport requires the ability to distinguish the various processes. The present work investigates the Li-ion diffusion in argyrodite Li6PS5Cl, a promising electrolyte based on its high Li-ion conductivity, using a combination of (7)Li NMR experiments and DFT based molecular dynamics simulations. This allows us to distinguish the local Li-ion mobility from the long-range Li-ion motional process, quantifying both and giving a coherent and consistent picture of the bulk diffusion in Li6PS5Cl. NMR exchange experiments are used to unambiguously characterize Li-ion transport over the solid electrolyte-electrode interface for the electrolyte-electrode combination Li6PS5Cl-Li2S, giving unprecedented and direct quantitative insight into the impact of the interface on Li-ion charge transport in all-solid-state batteries. The limited Li-ion transport over the Li6PS5Cl-Li2S interface, orders of magnitude smaller compared with that in the bulk Li6PS5Cl, appears to be the bottleneck for the performance of the Li6PS5Cl-Li2S battery, quantifying one of the major challenges toward improved performance of all-solid-state batteries.

  2. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure...

  3. Polymer electrolytes composed of lithium tetrakis(pentafluorobenzenethiolato) borate and poly(fluoroalkylcarbon)s

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Takahiro; Konno, Akinori; Fujinami, Tatsuo [Department of Materials Science and Chemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1, Johoku, Hamamatsu 432-8561 (Japan)

    2005-08-26

    Lithium ion conducting polymer electrolytes were prepared by mixing insoluble lithium tetrakis(pentafluorobenzenethiolato) borate (LiTPSB) with poly(vinylidene fluoride) (PVDF) or poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Their films were prepared by hot pressing and are investigated for ionic conductivity and thermal properties. LiTPSB is insoluble in PVDF. Ionic conductivity was largely dependent on the salt content for LiTPSB-PVDF composite polymer electrolytes, and exhibited higher ionic conductivity than homogeneous LiTFSI-PVDF based polymer electrolytes. Melting point and crystallinity of PVDF were independent on LiTPSB content, resulting in no difference for melting point and crystallinity between pure PVDF and LiTPSB-PVDF. Ionic conductivity was effectively improved by incorporation of 18-crown-6 or kryptofix222 for LiTPSB-PVDF based polymer electrolytes. (author)

  4. Reserve, flowing electrolyte, high rate lithium battery

    Science.gov (United States)

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  5. Electrolytes Test

    Science.gov (United States)

    ... mean? High or low electrolyte levels can be caused by several conditions and diseases. Generally, they are affected by how much is consumed in the diet and absorbed by the body, the amount of water in a person's body, and the amount eliminated ...

  6. Improved thermal stability of lithium ion battery by using cresyl diphenyl phosphate as an electrolyte additive

    Science.gov (United States)

    Wang, Qingsong; Ping, Ping; Sun, Jinhua; Chen, Chunhua

    To enhance the safety of lithium ion battery, cresyl diphenyl phosphate (CDP) is explored as an additive in 1.0 M LiPF 6/ethylene carbonate (EC) + diethyl carbonate (DEC) (1:1 wt.). The electrochemical performances of LiCoO 2/CDP-electrolyte/C cells are tested. At the thermal aspect, the thermal stability of the electrolyte with CDP is detected firstly by using a C80 micro-calorimeter, and then the charged LiCoO 2/CDP-electrolyte/C cells are disassembled and wrapped to detect the thermal behaviors. The results indicate that CDP-containing electrolyte enhances the thermal stabilities of electrolyte and lithium ion battery, and the electrochemical performances of LiCoO 2/CDP-electrolyte/C cell become slightly worse by using CDP in the electrolyte. Furthermore, the cell with 10% (wt.) CDP-containing electrolyte shows better cycle efficiency than that of other CDP-containing electrolyte, such as containing 5% (wt.) CDP and 15% (wt.) CDP. This maybe because that the mass ratio between CDP and electrolyte is close to the reaction stoichiometric ratio in the 10% (wt.) CDP-containing electrolyte, where stable solid electrolyte interphase (SEI) is formed. Therefore, 10% CDP-containing electrolyte improves the safety of lithium ion battery and keeps its electrochemical performance.

  7. Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode.

    Science.gov (United States)

    Zhu, Yizhou; He, Xingfeng; Mo, Yifei

    2017-08-01

    Lithium metal battery is a promising candidate for high-energy-density energy storage. Unfortunately, the strongly reducing nature of lithium metal has been an outstanding challenge causing poor stability and low coulombic efficiency in lithium batteries. For decades, there are significant research efforts to stabilize lithium metal anode. However, such efforts are greatly impeded by the lack of knowledge about lithium-stable materials chemistry. So far, only a few materials are known to be stable against Li metal. To resolve this outstanding challenge, lithium-stable materials have been uncovered out of chemistry across the periodic table using first-principles calculations based on large materials database. It is found that most oxides, sulfides, and halides, commonly studied as protection materials, are reduced by lithium metal due to the reduction of metal cations. It is discovered that nitride anion chemistry exhibits unique stability against Li metal, which is either thermodynamically intrinsic or a result of stable passivation. The results here establish essential guidelines for selecting, designing, and discovering materials for lithium metal protection, and propose multiple novel strategies of using nitride materials and high nitrogen doping to form stable solid-electrolyte-interphase for lithium metal anode, paving the way for high-energy rechargeable lithium batteries.

  8. Polymer electrolytes, problems, prospects, and promises

    Energy Technology Data Exchange (ETDEWEB)

    Nagasubramanian, G.; Boone, D.

    1995-07-01

    Ionically conducting polymer electrolytes have generated, in recent years, wide-spread interest as candidate materials for a number of applications including high energy density and power lithium batteries. In the early 70s the first measurements of ionic conductivity in polyethylene oxide (PEO)-salt complexes were carried out. However, Armand was the first one to realize potential of these complexes (polymer-salt complexes) as practical ionically conducting materials for use as electrolytes in lithium batteries. Subsequent research efforts identified the limitations and constraints of the polymer electrolytes. These limitations include poor ionic conductivity at RT (< 10{sup {minus}8} S/cm), low cation transport number (<0.2) etc. Several different approaches have been made to improving the ionic conductivity of the polymer electrolytes while retaining the flexibility, processibility, ease of handling and relatively low impact on the environment that polymers inherently possess. This paper- reviews evolution of polymer electrolytes from conventional PEO-LiX slat complexes to the more conducting polyphosphazene and copolymers, gelled electrolytes etc. We also review the various chemical approaches including modifying PEO to synthesizing complicated polymer architecture. In addition, we discuss effect of various lithium salts on the conductivity of PEO-based polymers. Charge/discharge and cycle life data of polymer cells containing oxide and chalcogenide cathodes and lithium (Li) anode are reviewed. Finally, future research directions to improve the electrolyte properties are discussed.

  9. Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries

    Science.gov (United States)

    Yoshimoto, Nobuko; Niida, Yoshihiro; Egashira, Minato; Morita, Masayuki

    A nonflammable polymeric gel electrolyte has been developed for rechargeable lithium battery systems. The gel film consists of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) swollen with lithium hexafluorophosphate (LiPF 6) solution in ternary solvent containing trimethyl phosphate (TMP). High ionic conductivity of 6.2 mS cm -1 at 20 °C was obtained for the gel electrolyte consisting of 0.8 M LiPF 6/EC + DEC + TMP (55:25:20) with PVdF-HFP, which is comparable to that of the liquid electrolyte containing the same electrolytic salt. Addition of a small amount of vinylene carbonate (VC) in the gel electrolyte improved the rechargeability of a graphite electrode. The rechargeable capacity of the graphite in the gel containing VC was ca. 300 mAh g -1, which is almost the same as that in a conventional liquid electrolyte system.

  10. Anion exchange polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  11. The limits of low-temperature performance of Li-ion cells

    Science.gov (United States)

    Huang, C.; Sakamoto, J.; Wolfenstine, J.; Surampudi, S.

    2000-01-01

    The results of electrode and electrolyte studies reveal that the poor low-temperature (Li-ion cells is mainly caused by the carbon electrodes and not the organic electrolytes and solid electrolyte interphase, as previously suggested. It is suggested that the main causes for the poor performance in the carbon electrodes are (i) the low value and concentration depedence of the Li diffusivity and (ii) limited Li capacity.

  12. The effects of halides on the performance of coal gas-fueled molten carbonate fuel cells: Final report, October 1986-October 1987

    Energy Technology Data Exchange (ETDEWEB)

    Magee, T.P.; Kunz, H.R.; Krasij, M.; Cote, H.A.

    1987-10-01

    This report presents the results of a program to determine the probable tolerable limits of hydrogen chloride and hydrogen fluoride present in the fuel and oxidant streams of molten carbonate fuel cells that are operating on gasified coal. A literature survey and thermodynamic analyses were performed to determine the likely effects of halides on cell performance and materials. Based on the results of these studies, accelerated corrosion experiments and electrode half-cell performance tests were conducted using electrolyte which contained chloride and fluoride. These data and the results of previous in-cell tests were used to develop a computer for predicting the performance decay due to these halides. The tolerable limits were found to be low (less than 1 PPM) and depend on the power plant system configuration, the operating conditions of the fuel cell stack, the cell design and initial electrolyte inventory, and the ability of the cell to scrub low levels of halide from the reactant streams. The primary decay modes were conversion of the electrolyte from pure carbonate to a carbonate-halide mixture and accelerated electrolyte evaporation. 75 figs., 16 tabs.

  13. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.

    Science.gov (United States)

    Wu, Jian-Fang; Pang, Wei Kong; Peterson, Vanessa K; Wei, Lu; Guo, Xin

    2017-04-12

    All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li6.10Ga0.30La3Zr2O12 to enhance the Li-ion conductivity for the first time. The Li6.20Ga0.30La2.95Rb0.05Zr2O12 electrolyte exhibits a Li-ion conductivity of 1.62 mS cm(-1) at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO4 active cathode. The addition of Li(CF3SO2)2N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g(-1) and good cycling stability with 110 mAh g(-1) retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C.

  14. Strain imaging of a LiCoO2 cathode in a Li-ion battery

    Science.gov (United States)

    Matsushita, Yuki; Osaka, Ryuma; Butsugan, Kenta; Takata, Keiji

    2016-09-01

    Li-ion batteries have been recognized as promising devices for a sustainable society. Layered LiCoO2 and graphite are commonly used as electrode materials for Li-ion batteries. When charging and discharging, Li-ions are extracted or inserted into the interlayers, which causes changes in volume. Scanning probe microscopy (SPM) can allow high resolution imaging of these volume changes, which enables us to investigate Li-ion migration without destruction. We observed volume changes in the LiCoO2 cathode using SPM and successfully imaged the distribution of the volume changes corresponding to the LiCoO2 particles. Volume changes in the interspace were significantly larger than those in the particles. The large volume changes are caused by electrolyte flux induced by changes in concentration of Li ions. The volume changes were greatly reduced when the electrolyte dried out. The dry-out and infiltration of electrolyte between the LiCoO2 particles and the current collector spread out with the procedure of degradation of the batteries. The boundaries between the dry-out and infiltration regions acted as barriers of electrolyte flux.

  15. Progress and Challenges for Solid-State Li-Air Batteries Based on Inorganic Ceramic Solid Electrolytes%无机陶瓷固体电解质基固态锂空气电池的研究进展及挑战

    Institute of Scientific and Technical Information of China (English)

    孙继杨; 崔忠慧; 郭向欣

    2016-01-01

    Aprotic Li-air batteries (LABs) have attracted intensive interest because of their highest theoretical energy density compared with other available battery systems. However, recent research results demonstrated that the organic electrolytes tend to decompose and form carbonates during charge/and discharge process, which severely impairs the reversibility of such batteries. Moreover, the problems related to the organic electrolytes like lfammability, volatility as well as incapacity to block the penetration of non-oxygen components from air will hinder the development of high performance aprotic LABs. Replacing organic electrolytes with inorganic ceramic solid electrolytes is promising to completely solve these problems and promotes the development from lithium oxygen batteries to lithium air batteries. This paper summarizes the progress and challenges for solid-state Li-air batteries based on inorganic ceramic solid electrolytes from the aspects of battery architecture, materials (electrodes and electrolytes) and reaction mechanism.%锂空气电池具有远高于锂离子电池的理论能量密度,是新一代高比能储能体系研发的热点。其中,以有机液体电解液为基础的非水系锂空气电池具有优异的可充电性能,最受人们关注。但研究发现常用的有机电解液在工作时易自身发生分解形成碳酸盐,严重损害电池的可逆性。同时,有机电解液的易燃性、易挥发性以及难以阻挡空气中H2O、CO2等非氧组分对锂负极的侵蚀等不足,更不利于高性能非水系锂空气电池的开发。使用无机陶瓷固体电解质构筑全固态锂空气电池有望从根本上解决上述问题,推动锂氧电池向锂空气电池发展。本文从电池结构、电极和电解质材料及反应机制等方面概述陶瓷电解质基固态锂空气电池近来的研究进展及其面临的挑战。

  16. Solubility of alkali metal halides in the ionic liquid [C4C1im][OTf].

    Science.gov (United States)

    Kuzmina, O; Bordes, E; Schmauck, J; Hunt, P A; Hallett, J P; Welton, T

    2016-06-28

    The solubilities of the metal halides LiF, LiCl, LiBr, LiI, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbCl, CsCl, CsI, were measured at temperatures ranging from 298.15 to 378.15 K in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([C4C1im][OTf]). Li(+), Na(+) and K(+) salts with anions matching the ionic liquid have also been investigated to determine how well these cations dissolve in [C4C1im][OTf]. This study compares the influence of metal cation and halide anion on the solubility of salts within this ionic liquid. The highest solubility found was for iodide salts, and the lowest solubility for the three fluoride salts. There is no outstanding difference in the solubility of salts with matching anions in comparison to halide salts. The experimental data were correlated employing several phase equilibria models, including ideal mixtures, van't Hoff, the λh (Buchowski) equation, the modified Apelblat equation, and the non-random two-liquid model (NRTL). It was found that the van't Hoff model gave the best correlation results. On the basis of the experimental data the thermodynamic dissolution parameters (ΔH, ΔS, and ΔG) were determined for the studied systems together with computed gas phase metathesis parameters. Dissolution depends on the energy difference between enthalpies of fusion and dissolution of the solute salt. This demonstrates that overcoming the lattice energy of the solid matrix is the key to the solubility of inorganic salts in ionic liquids.

  17. Gassing behavior of lithium titanate based lithium ion batteries with different types of electrolytes

    Science.gov (United States)

    Liu, Jiali; Bian, Peiwen; Li, Jia; Ji, Wenjiao; Hao, Hao; Yu, Aishui

    2015-07-01

    Gassing behavior of LiMn2O4/Li4Ti5O12 full cell with different electrolytes that stored at elevated temperature of 70 °C is investigated. Scanning electron microscope (SEM), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) are used to study the solid electrolyte interphase (SEI) layer formed in battery formation and storage processes. The results suggest that the SEI film is formed as a consequence of intrinsic reaction between Li4Ti5O12 electrode and electrolyte solvents. A smooth SEI layer is formed on Li4Ti5O12 electrode with full coverage in propylene carbonate (PC) based electrolyte during lithium intercalation process while gradually dissolved with lithium extraction. Moreover, the gas specificities generated in the different electrolyte solvents are also determined by gas chromatography-mass spectrometer (GC-MS) analysis and the reaction mechanisms of LTO electrode with electrolyte solvents are proposed.

  18. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  19. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    Metal borohydrides have been extensively investigated over the last few years as potential hydrogen storage materials for mobile applications, due to their high gravimetric and volumetric hydrogen content, e.g. 18.5 wt% hydrogen in LiBH4.[1] Unfortunately the lightweight alkali metal borohydrides...... of the rare-earth metal borohydrides are found, all crystallizing in the α- and β-Y(BH4)3 structure (except for La(BH4)3). The synthesis pathway start with hydrogenation of the metal. The formed metal hydride is then activated by high energy ball milling to increase reactivity. The next step involves solvent...... have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...

  20. Benzotriazolate cage complexes of tin(II) and lithium: halide-influenced serendipitous assembly.

    Science.gov (United States)

    Sulway, Scott A; Layfield, Richard A; Bodensteiner, Michael; Scheuermayer, Sabine; Scheer, Manfred; Zabel, Manfred

    2011-08-07

    The one-pot reactions of the tin(II) halides SnX(2) (X = F, Cl, Br, I) with lithium hexamethyldisilazide, [Li(hmds)], and benzotriazole, (bta)H, produce contrasting outcomes. Tin(II) fluoride does not react with [Li(hmds)] and (bta)H, the outcome being the formation of insoluble [Li(bta)](∞). Tin(II) chloride and tin(II) bromide react with [Li(hmds)] and (bta)H in toluene to produce the hexadecametallic tin(II)-lithium cages [(hmds)(8)Sn(8)(bta)(12)Li(8)X(4)]·(n toluene) [X = Cl, 3·(8 toluene); X = Br, 4·(3 toluene)]. The reaction of tin(II) iodide with [Li(hmds)] and (bta)H in thf solvent produces the ion-separated species [{(thf)(2)Li(bta)}(3){Li(thf)}](2)[SnI(4)]·(thf), [5](2)[SnI(4)]·(thf), the structure of which contains a cyclic trimeric unit of lithium benzotriazolate and a rare example of the tetraiodostannate(II) dianion.

  1. LiFePO 4 safe Li-ion polymer batteries for clean environment

    Science.gov (United States)

    Zaghib, K.; Charest, P.; Guerfi, A.; Shim, J.; Perrier, M.; Striebel, K.

    The performance of natural graphite-fibers/PEO-based gel electrolyte/LiFePO 4 cells (7 mAh, 4 cm 2) is reported. The gel polymer electrolytes were produced by electron-beam irradiation and then soaked in a liquid electrolyte. The natural graphite-fiber composite anode in gel electrolyte containing 1.5 M LiFSI-EC/GBL (1:3) exhibited high reversible capacity (361 mAh g -1) and high Coulombic efficiency (92%). The LiFePO 4 cathode in the same gel polymer exhibited a reversible capacity of 161 mAh g -1 and 93% Coulombic efficiency. A 1.5 M solution of LiFSI in ethylene carbonate (EC)/γ-butyrolactone (GBL) (1:3, v/v) mixed solvent is advantageous for use as the electrolyte in the laminated film bag because of its high flame point (135 °C), high boiling point (219 °C), low vapor pressure and high conductivity (10.2 mS cm -1 at 20 °C). The Li-ion gel polymer battery shows a very low capacity fade of 5% after 500 cycles and also has high-rate capability. The Li-ion gel polymer cell using LiFePO 4 cathodes is suitable for HEV applications.

  2. LiFePO{sub 4} safe Li-ion polymer batteries for clean environment

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, K.; Charest, P.; Guerfi, A.; Perrier, M. [Institut de Recherche d' Hydro-Quebec, 1800 Lionel-Boulet, Varennes, Que. (Canada J3X 1S1); Shim, J.; Striebel, K. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2005-08-26

    The performance of natural graphite-fibers/PEO-based gel electrolyte/LiFePO{sub 4} cells (7mAh, 4cm{sup 2}) is reported. The gel polymer electrolytes were produced by electron-beam irradiation and then soaked in a liquid electrolyte. The natural graphite-fiber composite anode in gel electrolyte containing 1.5M LiFSI-EC/GBL (1:3) exhibited high reversible capacity (361mAhg{sup -1}) and high Coulombic efficiency (92%). The LiFePO{sub 4} cathode in the same gel polymer exhibited a reversible capacity of 161mAhg{sup -1} and 93% Coulombic efficiency. A 1.5M solution of LiFSI in ethylene carbonate (EC)/{gamma}-butyrolactone (GBL) (1:3, v/v) mixed solvent is advantageous for use as the electrolyte in the laminated film bag because of its high flame point (135{sup o}C), high boiling point (219{sup o}C), low vapor pressure and high conductivity (10.2mScm{sup -1} at 20{sup o}C). The Li-ion gel polymer battery shows a very low capacity fade of 5% after 500cycles and also has high-rate capability. The Li-ion gel polymer cell using LiFePO{sub 4} cathodes is suitable for HEV applications. (author)

  3. Correlation between standard enthalpy of formation, structural parameters and ionicity for alkali halides

    Directory of Open Access Journals (Sweden)

    Nasar Abu

    2013-01-01

    Full Text Available The standard enthalpy of formation (ΔHo has been considered to be an interesting and useful parameter for the correlation of various properties of alkali halides. The interrelation between ΔHo and structural parameters for the halides of Li, Na, K and Rb has been thoroughly analyzed. When cationic component element is kept constant in a homologous series of alkali halides, the negative value of ΔHo has been observed to decrease linearly with increase of interionic distance (d and accordingly following empirical equation ΔHo = α + βd (where α and β are empirical constants has been established. However, for common anionic series of alkali halides an opposite nonlinear trend has been observed with the exception of common fluorides. The correlation study on the standard enthalpy of formation has been extended in term of radius ratio and also discussed in the light of ionization energy of the metal, electron affinity of the halogen, size of the ions, ionic character of bond and lattice energy of the compound.

  4. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    Science.gov (United States)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  5. Polyethylene imine-metal salt solid electrolyte

    Science.gov (United States)

    Davis, G. T.; Chiang, C. K.; Takahashi, T.

    1985-02-01

    This research pertains to the development of new solid battery electrolytes. An object of this invention is to provide polymeric electrolytes using a wider variety of metal salts. These and other objects of this invention are accomplished by providing: (1) a solid polymer electrolyte comprising: a matrix of linear poly(ethylene amine) having the formula (-CH2CH2NH-)n; and (2) a metal salt which is LiI, LiClO4, NaI, NaBr, KI, CsSCN, AgNO3, CuCl1, CoCl2, or Mg(ClO4)2, wherein the salt is dissolved in and distributed throughout the poly(ethylene amine) matrix and from more than zero to 0.10 moles of salt are used per mole of monomer repeat unit, (-CH2CH2NH-).

  6. Structural and electrical conductivity studies on the solid electrolyte system {sub x}Li2O-(100-x) [0.5B{sub 2}O{sub 3}-0.5 P{sub 2}O{sub 5}] where 20

    Energy Technology Data Exchange (ETDEWEB)

    Padmasree, K. P.; Diaz-Guillen, M. R.; Diaz-Guillen, J. A.; Mendoza, E. M.; Fuentes, A. F. [Cinvestav, unidad Saltillo, Ramos Arizpe, Coahuila (Mexico)]. E-mail: padma512@yahoo.com

    2009-09-15

    Lithium ion conducting glasses have been extensively investigated due to their potential application as solid state amorphous electrolytes in lithium rechargeable batteries. The use of glassy electrolytes in all solid state devices may provide numerous advantages like increased safety, facility of fabrication and miniaturization and having a higher conductivity than those of the crystalline counterparts. In this work, we prepared and studied the Lithium ion conducting glassy solid electrolytes of the composition {sub x}Li{sub 2}O-(1-x)[0.5B{sub 2}O{sub 3} -0.5P{sub 2}O{sub 5}] where 20Li{sub 2}O. [Spanish] Los vidrios conductores de ion litio se han investigado ampliamente por su aplicacion potencial como electrolitos amorfos de estado solido en baterias recargables de litio. El uso de electrolitos vitreos en todos los dispositivos de estado solido puede proporcionar numerosas ventajas como mayor seguridad, facilidad de fabricacion y miniaturizacion, asi como tener una conductividad mas alta que la de sus contrapartes cristalinas. En este trabajo, se prepararon y estudiaron los electrolitos solidos vitreos conductores de ion litio de la composicion {sub x}Li2O-(1-x)[0.5B{sub 2}O{sub 3} -0.5P{sub 2}O{sub 5}] donde 20

  7. Morphology of Polyvinylidene Fluoride Based Gel Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    田立颖; 黄小彬; 唐小真

    2004-01-01

    Two series of polyvinylidene fluoride (PVDF) based gel polymer electrolytes, with different LiClO4 or propylene carbonate (PC) content, were prepared and analyzed by infrared spectrometer, differential scanning calorimetry, scanning electron microscope and complex impedance spectrometer. The results show that there are great interactions between PVDF, PC and lithium cations. Both LiClO4 and PC content lead to evident change of the morphology of the gel polymer electrolytes. The content of LiClO4 and PC also influences the ionic conductivity of the samples,and an ionic conductivity of above 10-3S·cm-1 can be reached at room temperature.

  8. Electrospun nanocomposite fibrous polymer electrolyte for secondary lithium battery applications

    Science.gov (United States)

    Padmaraj, O.; Rao, B. Nageswara; Jena, Paramananda; Venkateswarlu, M.; Satyanarayana, N.

    2014-04-01

    Hybrid nanocomposite [poly(vinylidene fluoride -co- hexafluoropropylene) (PVdF-co-HFP)/magnesium aluminate (MgAl2O4)] fibrous polymer membranes were prepared by electrospinning method. The prepared pure and nanocomposite fibrous polymer electrolyte membranes were soaked into the liquid electrolyte 1M LiPF6 in EC: DEC (1:1,v/v). XRD and SEM are used to study the structural and morphological studies of nanocomposite electrospun fibrous polymer membranes. The nanocomposite fibrous polymer electrolyte membrane with 5 wt.% of MgAl2O4 exhibits high ionic conductivity of 2.80 × 10-3 S/cm at room temperature. The charge-discharge capacity of Li/LiCoO2 coin cells composed of the newly prepared nanocomposite [(16 wt.%) PVdF-co-HFP+(5 wt.%) MgAl2O4] fibrous polymer electrolyte membrane was also studied and compared with commercial Celgard separator.

  9. Electrolytic fixer.

    Science.gov (United States)

    Stevens

    1982-12-01

    Interest in the recovery of silver from radiographic film generates a need to understand the operating procedures of recovery units utilizing the electrolytic fixer principle. Tailing or terminal units and recirculation units using electrolysis are evaluated. Difficulties encountered in the number of Coulombs applied to a specific amount of fixer are discussed. Reduction of sulfiding as a result of electrolysis and variations in film volumes are noted. The quantity and quality of silver collected can be improved by being aware of alterations in chemical activity used in a silver recovery program.

  10. Epitaxial Halide Perovskite Lateral Double Heterostructure.

    Science.gov (United States)

    Wang, Yiping; Chen, Zhizhong; Deschler, Felix; Sun, Xin; Lu, Toh-Ming; Wertz, Esther A; Hu, Jia-Mian; Shi, Jian

    2017-03-28

    Epitaxial III-V semiconductor heterostructures are key components in modern microelectronics, electro-optics, and optoelectronics. With superior semiconducting properties, halide perovskite materials are rising as promising candidates for coherent heterostructure devices. In this report, spinodal decomposition is proposed and experimentally implemented to produce epitaxial double heterostructures in halide perovskite system. Pristine epitaxial mixed halide perovskites rods and films were synthesized via van der Waals epitaxy by chemical vapor deposition method. At room temperature, photon was applied as a knob to regulate the kinetics of spinodal decomposition and classic coarsening. By this approach, halide perovskite double heterostructures were created carrying epitaxial interfaces and outstanding optical properties. Reduced Fröhlich electron-phonon coupling was discovered in coherent halide double heterostructure, which is hypothetically attributed to the classic phonon confinement effect widely existing in III-V double heterostructures. As a proof-of-concept, our results suggest that halide perovskite-based epitaxial heterostructures may be promising for high-performance and low-cost optoelectronics, electro-optics, and microelectronics. Thus, ultimately, for practical device applications, it may be worthy to pursue these heterostructures via conventional vapor phase epitaxy approaches widely practised in III-V field.

  11. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  12. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.

    Science.gov (United States)

    Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano

    2015-03-18

    In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.

  13. ETHYLENE OXIDE-ETHYLENE TEREPHTHALATE SEGMENTED COPOLYMER SOLID ELECTROLYTE

    Institute of Scientific and Technical Information of China (English)

    LUO Xiaolie; WANG Chuanqing; WANG Haiqian; HU Keliang; MA Dezhu

    1994-01-01

    A series of ethylene oxide-ethylene terephthalate segmented copolymers (EOET) were synthesized and complexed with LiClO4 to form some new polymer electrolytes. The EOET-LiClO4 electrolytes exhibit not only high ionic conductivity, but also good mechanical strength and toughness. The EOET 3400-25-LiClO4 complex possesses the highest conductivity (4. 65 ×10-5s·cm-1)at room temperature when the ratio [Li+]/[EO] equals 1/16.The structures of these electrolytes were examined with FTIR analysis, X-ray diffraction and DSC thermograms, and the results of high ionic conductivity of the segmented copolymers were discussed.

  14. Stability of the Gel Electrolyte PAN : EC : PC : LICF3SO3 towards Lithium

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen;

    2006-01-01

    The stability of the gel electrolyte consisting of polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfonate (LiCF3SO3 – LiTF) towards metallic lithium was investigated using the time evolution of impedance plots. Symmetric cells of the form Li...... / PAN : EC : PC: LiTF / Li were assembled and impedance data were collected at room temperature for one week. A clear indication of growth of a resistive layer could be seen. The electrolyte resistance remained constant. The growth of the passivation layer became constant after first two days...

  15. Methods for producing single crystal mixed halide perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  16. Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chuan; Xu, Suochang; Hu, Mary Y.; Cao, Ruiguo; Qian, Jiangfeng; Qin, Zhaohai; Liu, Jun; Mueller, Karl T.; Zhang, Ji-Guang; Hu, Jian Zhi

    2017-04-18

    The composition of the solid electrolyte interphase (SEI) layers associated with a high performance Cu|Li cell using lithium bis(fluorosulfonyi)imide (LiFSI) in 1,2-dimethoxyethane (DME) as electrolyte is determined by a multinuclear (6Li, 19F, 13C and 1H) solid-state MAS NMR study at high magnetic field (850 MHz). This cell can be cycled at high rates (4 mA•cm-2) for more than 1000 cycles with no increase in the cell impedance at high Columbic efficiency (average of 98.4%) in a highly concentrated LiFSI-DME electrolyte (4 M). LiFSI, LiF, Li2O2 (and/or CH3OLi), LiOH, Li2S and Li2O are observed in the SEI and validated by comparing with the spectra acquired on standard compounds and literature reports. To gain further insight into the role of the solute and its concentration dependence on the formation of SEIs while keeping the solvent of DME unchanged, the SEIs from different concentrations of LiFSI-DME and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)-DME electrolyte are also investigated. It is found that LiF, a lithiated compound with superior mechanical strength and good Li+ ionic conductivity, is observed in the concentrated 4.0 M LiFSI-DME and the 3.0 M LiTFSI-DME systems but not in the diluted 1.0 M LiFSI-DME system. Li2O exists in both low and high concentration of LiFSI-DME while no Li2O is observed in the LiTFSI system. Furthermore, the dead metallic Li is reduced in the 4 M LiFSI-DME system compared with that in the 1 M LiFSI-DME system. Quantitative 6Li MAS results indicate that the SEI associated with the 4 M LiFSI-DEME is denser or thicker than that of the 1 M LiFSI-DME and the 3 M LiTFSI-DME systems. These findings are likely the reasons for explaining the high electrochemical performance associated with the high concentration LiFSI-DME system.

  17. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  18. Reactions between cold methyl halide molecules and alkali-metal atoms.

    Science.gov (United States)

    Lutz, Jesse J; Hutson, Jeremy M

    2014-01-07

    We investigate the potential energy surfaces and activation energies for reactions between methyl halide molecules CH3X (X = F, Cl, Br, I) and alkali-metal atoms A (A = Li, Na, K, Rb) using high-level ab initio calculations. We examine the anisotropy of each intermolecular potential energy surface (PES) and the mechanism and energetics of the only available exothermic reaction pathway, CH3X + A → CH3 + AX. The region of the transition state is explored using two-dimensional PES cuts and estimates of the activation energies are inferred. Nearly all combinations of methyl halide and alkali-metal atom have positive barrier heights, indicating that reactions at low temperatures will be slow.

  19. Lithium halide monolayers: Structural, electronic and optical properties by first principles study

    Science.gov (United States)

    Safari, Mandana; Maskaneh, Pegah; Moghadam, Atousa Dashti; Jalilian, Jaafar

    2016-09-01

    Using first principle study, we investigate the structural, electronic and optical properties of lithium halide monolayers (LiF, LiCl, LiBr). In contrast to graphene and other graphene-like structures that form hexagonal rings in plane, these compounds can form and stabilize in cubic shape interestingly. The type of band structure in these insulators is identified as indirect type and ionic nature of their bonds are illustrated as well. The optical properties demonstrate extremely transparent feature for them as a result of wide band gap in the visible range; also their electron transitions are indicated for achieving a better vision on the absorption mechanism in these kinds of monolayers.

  20. Nickel-catalyzed Electrochemical Coupling of Phenyl Halide and Study of Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Peng; LUO, Yi-Wen; XUE, Teng; ZHANG, Ai-Jian; LU, Jia-Xing

    2006-01-01

    Electrochemical coupling of phenyl halide catalyzed by NiCl2bpy in DMF has been investigated in this paper.Stainless steel was used as cathode and zinc as anode. Effects of potential, temperature and catalyst on electrolyses were studied to optimize the electrolytic conditions, with the maximal isolated yield under potentiostatic electrolysis to be 85%. Cyclic voltammetry of NiCl2bpy in the presence of phenyl bromide has been studied and mechanisms,concerned with several kinds of nickel complex, have been summarized.

  1. Hydrogen absorption and lithium ion conductivity in Li{sub 6}NBr{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Howard, M.A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Clemens, O. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Technical University of Darmstadt, Joint Research Laboratory Nanomaterials, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Karlsruhe Institute of Technology, Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Slater, P.R. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Anderson, P.A., E-mail: p.a.anderson@bham.ac.uk [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • Li{sub 6}NBr{sub 3} was synthesized via solid state methods and hydrogenation attempted. • Hydrogenation of a lithium nitride halide was demonstrated for the first time. • Powder XRD and Raman spectroscopy showed that hydrogenation had gone to completion. • The ionic conductivities of Li{sub 6}NBr{sub 3} and Li{sub 3}N were compared through A.C. impedance spectroscopy. • The lower conductivity of Li{sub 6}NBr{sub 3} is consistent with its higher hydrogenation temperature. - Abstract: The reaction of lithium amide and imide with lithium halides to form new amide halide or imide halide phases has led to improved hydrogen desorption and absorption properties and, for the amides, lithium ion conductivities. Here we investigate the effect of bromide incorporation on the ionic conductivity and hydrogen absorption properties of lithium nitride. For the first time we show that it is possible for a lithium halide nitride, the cubic bromide nitride Li{sub 6}NBr{sub 3}, to take up hydrogen—a necessary condition for potential use as a reversible solid-state hydrogen storage material. Powder X-ray diffraction showed the formation of Li{sub 2}Br(NH{sub 2}) and LiBr, and Raman spectroscopy confirmed that only amide anions were present and that the hydrogen uptake reaction had gone to completion. The lithium ion conductivity of Li{sub 6}NBr{sub 3} at the hydrogenation temperature was found to be less than that of Li{sub 3}N, which may be a significant factor in the kinetics of the hydrogenation process.

  2. High flash point electrolyte for use in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.W.; Kunze, M.; Passerini, S.; Winter, M. [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany); Lex-Balducci, A., E-mail: a.lex-balducci@uni-muenster.de [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-09-01

    Highlights: > Substitution of linear carbonates in conventional electrolytes with adiponitrile allows the realization of high flash point electrolytes. > EC:ADN based electrolytes display a higher anodic stability than a conventional electrolyte based on EC:DEC. > Graphite and NCM electrodes used in combination with the EC:ADN based electrolyte display a performance comparable with that of conventional electrolytes. - Abstract: The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 deg. C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF{sub 4}) displayed a conductivity of 2.6 mS cm{sup -1} and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF{sub 6}) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g{sup -1} at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.

  3. LiFePO4/polymer/natural graphite: low cost Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, K. [Institut de Recherche d' Hydro-Quebec (IREQ), 1800 Lionel-Boulet, Varennes, QC, J3X 1S1 (Canada)]. E-mail: karimz@ireq.ca; Striebel, K. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Guerfi, A. [Institut de Recherche d' Hydro-Quebec (IREQ), 1800 Lionel-Boulet, Varennes, QC, J3X 1S1 (Canada); Shim, J. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Armand, M. [Joint International Lab. CNRS/UdM UMR 2289 Departement de Chimie, Universite de Montereal, P.O. Box 6128, QC, H3C 3J7 (Canada); Gauthier, M [Joint International Lab. CNRS/UdM UMR 2289 Departement de Chimie, Universite de Montereal, P.O. Box 6128, QC, H3C 3J7 (Canada)

    2004-11-30

    The aging and performance of natural graphite/PEO-based gel electrolyte/LiFePO{sub 4} cells are reported. The gel polymer electrolytes were produced by electron-beam irradiation and then soaked in a liquid electrolyte. The natural graphite anode in gel electrolyte containing LiBF4-EC/GBL exhibited high reversible capacity (345 mAh/g) and high coulombic efficiency (91%). The LiFePO{sub 4} cathode in the same gel-polymer exhibited a reversible capacity of 160 mAh/g and 93% coulombic efficiency. Better performance was obtained at high-rate discharge with 6% carbon additive in the cathode, however the graphite anode performance suffers at high rate. The Li-ion gel polymer battery shows a capacity fade of 13% after 180 cycles and has poor performance at low temperature due to low diffusion of the lithium to the graphite in the GBL system. The LiFePO{sub 4}/gel/Li system has an excellent rate capacity. LiFePO{sub 4} cathode material is suitable for HEV application.

  4. LiFePO{sub 4}/polymer/natural graphite: low cost Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zaghib, K.; Guerfi, A. [Institut de Recherche d' Hydro-Quebec, Varennes (Canada); Striebel, K.; Shim, J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Environmental Energy Technologies Div.; Armand, M.; Gauthier, M. [Universite de Montreal (Canada). Joint International Lab.

    2004-11-30

    The aging and performance of natural graphite/PEO-based gel electrolyte/LiFePO{sub 4} cells are reported. The gel polymer electrolytes were produced by electron-beam irradiation and then soaked in a liquid electrolyte. The natural graphite anode in gel electrolyte containing LiBF4-EC/GBL exhibited high reversible capacity (345 mAh/g) and high coulombic efficiency (91%). The LiFePO4 cathode in the same gel-polymer exhibited a reversible capacity of 160 mAh/g and 93% coulombic efficiency. Better performance was obtained at high-rate discharge with 6% carbon additive in the cathode, however the graphite anode performance suffers at high rate. The Li-ion gel polymer battery shows a capacity fade of 13% after 180 cycles and has poor performance at low temperature due to low diffusion of the lithium to the graphite in the GBL system. The LiFePO{sub 4}/gel/Li system has an excellent rate capacity. LiFePO{sub 4} cathode material is suitable for HEV application. (author)

  5. Anharmonicity and phase stability of antiperovskite Li3OCl

    Science.gov (United States)

    Chen, Min-Hua; Emly, Alexandra; Van der Ven, Anton

    2015-06-01

    A lattice-dynamics study of the cubic Li3OCl antiperovskite, a candidate solid electrolyte in lithium-ion batteries, reveals the presence of dynamical instabilities with respect to rotations of the Li6O octahedra. Calculated energy landscapes in the subspace of unstable octahedral rotational modes are very shallow with at most a 1 meV per formula unit reduction in energy upon breaking the cubic symmetry. While Li3OCl is not stable relative to decomposition into Li2O and LiCl at 0 K, estimates of the vibrational free energy suggest that Li3OCl antiperovskite should become entropically stabilized above approximately 480 K.

  6. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Skaarup, Steen; West, Keld

    2006-01-01

    had open circuit voltages in the range, 3.0 – 3.5 V vs Li. With increasing scan rates as well as thickness of the polymer electrode, diminishing of peaks and increase of peak separation in cyclic voltammograms was seen. Charge values obtained with constant charge discharge cycling and with cyclic......The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...

  7. Attainable gravimetric and volumetric energy density of Li-S and li ion battery cells with solid separator-protected Li metal anodes.

    Science.gov (United States)

    McCloskey, Bryan D

    2015-11-19

    As a result of sulfur's high electrochemical capacity (1675 mA h/gs), lithium-sulfur batteries have received significant attention as a potential high-specific-energy alternative to current state-of-the-art rechargeable Li ion batteries. For Li-S batteries to compete with commercially available Li ion batteries, high-capacity anodes, such as those that use Li metal, will need to be enabled to fully exploit sulfur's high capacity. The development of Li metal anodes has focused on eliminating Coulombically inefficient and dendritic Li cycling, and to this end, an interesting direction of research is to protect Li metal by employing mechanically stiff solid-state Li(+) conductors, such as garnet phase Li7La3Zr2O12 (LLZO), NASICON-type Li1+xAlxTi2-x(PO4)3 (LATP), and Li2S-P2S5 glasses (LPS), as electrode separators. Basic calculations are used to quantify useful targets for solid Li metal protective separator thickness and cost to enable Li metal batteries in general and Li-S batteries specifically. Furthermore, maximum electrolyte-to-sulfur ratios that allow Li-S batteries to compete with Li ion batteries are calculated. The results presented here suggest that controlling the complex polysulfide speciation chemistry in Li-S cells with realistic, minimal electrolyte loading presents a meaningful opportunity to develop Li-S batteries that are competitive on a specific energy basis with current state-of-the-art Li ion batteries.

  8. Alternate Anodes for the Electrolytic Reduction of UO2

    Science.gov (United States)

    Merwin, Augustus; Chidambaram, Dev

    2015-01-01

    The electrolytic reduction process of UO2 employs a platinum anode and a stainless steel cathode in molten LiCl-LiO2 maintained at 973 K (700 °C). The degradation of platinum under the severely oxidizing conditions encountered during the process is an issue of concern. In this study, Inconel 600 and 718, stainless steel alloy 316, tungsten, nickel, molybdenum, and titanium, were investigated though electrochemical polarization techniques, electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy to serve as potential anode materials. Of the various materials investigated, only tungsten exhibited sufficient stability at the required potential in the molten electrolyte. Tungsten anodes were further studied in molten LiCl-LiO2 electrolyte containing 2, 4, and 6 wt pct of Li2O. In LiCl-2 wt pct Li2O tungsten was found to be sufficiently stable to both oxidation and microstructural changes and the stability is attributed to the formation of a lithium-intercalated tungsten oxide surface film. Increase in the concentration of Li2O was found to lead to accelerated corrosion of the anode, in conjunction with the formation of a peroxotungstate oxide film.

  9. Investigation of a novel ternary electrolyte based on dimethyl sulfite and lithium difluoromono(oxalato)borate for lithium ion batteries

    Science.gov (United States)

    Chen, Renjie; Zhu, Lu; Wu, Feng; Li, Li; Zhang, Rong; Chen, Shi

    2014-01-01

    Lithium difluoromono(oxalato)borate (LiODFB) has been used as a novel lithium salt for battery in recent studies. In this study, a series of novel electrolytes has been prepared by adding 30 vol% dimethyl sulfite (DMS) or dimethyl carbonate (DMC) as co-solvent into an ethylene carbonate (EC)/ethyl methyl carbonate (EMC) + LiX mixture, in which the LiX could be LiClO4, LiODFB, LiBOB, LiTFSI, or LiCF3SO3. These ternary electrolytes have been investigated for use in lithium ion batteries. FT-IR spectroscopy analysis shows that characteristic functional groups (-CO3, -SO3) undergo red-shift or blue-shift with the addition of different lithium salts. The LiODFB-EC/EMC/DMS electrolyte exhibits high ionic conductivity, which is mainly because of the low melting point of DMS, and LiODFB possessing high solubility. The Li/MCMB cells containing this novel electrolyte exhibit high capacities, good cycling performance, and excellent rate performance. These performances are probably because both LiODFB and DMS can assist in the formation of SEI films by reductive decomposition. Additionally, the discharge capacity of Li/LiCoO2 half cell containing LiODFB-EC/EMC/DMS electrolyte is 130.9 mAh g-1 after 50 cycles, and it is very comparable with the standard-commercial electrolyte. The results show that this study produces a promising electrolyte candidate for lithium ion batteries.

  10. Safe Li-ion polymer batteries for HEV applications

    Science.gov (United States)

    Zaghib, K.; Charest, P.; Guerfi, A.; Shim, J.; Perrier, M.; Striebel, K.

    The performance of natural graphite/PEO-based gel electrolyte/LiFePO 4 cells (5 mAh, 4 cm 2) is reported. The gel polymer electrolytes<