WorldWideScience

Sample records for halbach magnetic bearings

  1. Passive axial magnetic bearing with Halbach magnetized array in magnetically suspended control moment gyro application

    International Nuclear Information System (INIS)

    Sun Jinji; Ren Yuan; Fang Jiancheng

    2011-01-01

    The paper presents a special configuration of passive axial magnetic bearing with segmented Halbach magnetized array in magnetically suspended control moment gyro (MSCMG). Peculiarity of presented passive axial magnetic bearing is its ability to provide angular stiffness so that it can produce gyro moment when it is used in MSCMG. The MSCMG with this passive axial magnetic bearing can efficiently reduce the power loss when it supplies gyro moment compared with the five degrees of freedom (5-DOF) MSCMG. The characteristics of the suspension force and stiffness of the passive axial magnetic bearing are studied using finite element method (FEM). The performance of the presented passive axial magnetic bearing with Halbach magnetized array is verified by a prototyped MSCMG. - Research highlights: → Passive axial magnetic bearing is used to provide angular stiffness. → Passive axial magnetic bearing is based on repulsion. → Layers Halbach magnetized array realizes higher stiffness per bearing volume. → Passive axial magnetic bearing can provide gyro moment in CMG. → Power loss of MSCMG with PMB does not increase when it provides gyro moment.

  2. Research on analytical model and design formulas of permanent magnetic bearings based on Halbach array with arbitrary segmented magnetized angle

    International Nuclear Information System (INIS)

    Wang, Nianxian; Wang, Dongxiong; Chen, Kuisheng; Wu, Huachun

    2016-01-01

    The bearing capacity of permanent magnetic bearings can be improved efficiently by using the Halbach array magnetization. However, the research on analytical model of Halbach array PMBs with arbitrary segmented magnetized angle has not been developed. The application of Halbach array PMBs has been limited by the absence of the analytical model and design formulas. In this research, the Halbach array PMBs with arbitrary segmented magnetized angle has been studied. The magnetization model of bearings is established. The magnetic field distribution model of the permanent magnet array is established by using the scalar magnetic potential model. On the basis of this, the bearing force model and the bearing stiffness model of the PMBs are established based on the virtual displacement method. The influence of the pair of magnetic rings in one cycle and the structure parameters of PMBs on the maximal bearing capacity and support stiffness characteristics are studied. The reference factors for the design process of PMBs have been given. Finally, the theoretical model and the conclusions are verified by the finite element analysis.

  3. Optimization study on the magnetic field of superconducting Halbach Array magnet

    Science.gov (United States)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  4. Topology optimization of Halbach magnet arrays using isoparametric projection

    International Nuclear Information System (INIS)

    Lee, Jaewook; Nomura, Tsuyoshi; Dede, Ercan M.

    2017-01-01

    Highlights: • Design method of Halbach magnet array is proposed using topology optimization. • Magnet strength and direction are simultaneously optimized by isoparametric projection. • For manufacturing feasibility of magnet, penalization and extrusion schemes are proposed. • Design results of circular shaped Halbach arrays are provided. • Halbach arrays in linear actuator are optimized to maximize magnetic force. - Abstract: Topology optimization using isoparametric projection for the design of permanent magnet patterns in Halbach arrays is proposed. Based on isoparametric shape functions used in the finite element analysis, the permanent magnet strength and magnetization directions in a Halbach array are simultaneously optimized for a given design goal. To achieve fabrication feasibility of a designed Halbach magnet array, two design schemes are combined with the isoparametric projection method. First, a penalization scheme is proposed for designing the permanent magnets to have discrete magnetization direction angles. Second, an extrusion scheme is proposed for the shape regularization of the permanent magnet segments. As a result, the method systematically finds the optimal permanent magnet patterns of a Halbach array considering manufacturing feasibility. In two numerical examples, a circular shaped permanent magnet Halbach array is designed to minimize the magnitude of the magnetic flux density and to maximize the upward direction magnetic flux density inside the magnet array. Logical extension of the method to the design of permanent magnet arrays in linear actuators is provided, where the design goal is to maximize the actuator magnetic force.

  5. Topology optimization of Halbach magnet arrays using isoparametric projection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaewook, E-mail: jaewooklee@gist.ac.kr [School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 (Korea, Republic of); Nomura, Tsuyoshi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Aichi 480-1192 (Japan); Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI 48105 (United States); Dede, Ercan M. [Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI 48105 (United States)

    2017-06-15

    Highlights: • Design method of Halbach magnet array is proposed using topology optimization. • Magnet strength and direction are simultaneously optimized by isoparametric projection. • For manufacturing feasibility of magnet, penalization and extrusion schemes are proposed. • Design results of circular shaped Halbach arrays are provided. • Halbach arrays in linear actuator are optimized to maximize magnetic force. - Abstract: Topology optimization using isoparametric projection for the design of permanent magnet patterns in Halbach arrays is proposed. Based on isoparametric shape functions used in the finite element analysis, the permanent magnet strength and magnetization directions in a Halbach array are simultaneously optimized for a given design goal. To achieve fabrication feasibility of a designed Halbach magnet array, two design schemes are combined with the isoparametric projection method. First, a penalization scheme is proposed for designing the permanent magnets to have discrete magnetization direction angles. Second, an extrusion scheme is proposed for the shape regularization of the permanent magnet segments. As a result, the method systematically finds the optimal permanent magnet patterns of a Halbach array considering manufacturing feasibility. In two numerical examples, a circular shaped permanent magnet Halbach array is designed to minimize the magnitude of the magnetic flux density and to maximize the upward direction magnetic flux density inside the magnet array. Logical extension of the method to the design of permanent magnet arrays in linear actuators is provided, where the design goal is to maximize the actuator magnetic force.

  6. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.

    Science.gov (United States)

    Bashyam, Ashvin; Li, Matthew; Cima, Michael J

    2018-07-01

    Single-sided NMR has the potential for broad utility and has found applications in healthcare, materials analysis, food quality assurance, and the oil and gas industry. These sensors require a remote, strong, uniform magnetic field to perform high sensitivity measurements. We demonstrate a new permanent magnet geometry, the Unilateral Linear Halbach, that combines design principles from "sweet-spot" and linear Halbach magnets to achieve this goal through more efficient use of magnetic flux. We perform sensitivity analysis using numerical simulations to produce a framework for Unilateral Linear Halbach design and assess tradeoffs between design parameters. Additionally, the use of hundreds of small, discrete magnets within the assembly allows for a tunable design, improved robustness to variability in magnetization strength, and increased safety during construction. Experimental validation using a prototype magnet shows close agreement with the simulated magnetic field. The Unilateral Linear Halbach magnet increases the sensitivity, portability, and versatility of single-sided NMR. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, A., E-mail: azeem@umd.edu [Fischell Department of Bioengineering, College Park, MD (United States); University of Maryland at College Park (United States); Nemirovski, A. [H. Milton Stewart School of Industrial and Systems Engineering (ISyE), Georgia Institute of Technology (United States); Shapiro, B. [Fischell Department of Bioengineering, College Park, MD (United States); Institute for Systems Research (United States); University of Maryland at College Park (United States)

    2012-03-15

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm{sup 3} volume optimal Halbach design yields a 5 Multiplication-Sign greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength ({<=}1 T), size ({<=}2000 cm{sup 3}), and number of elements ({<=}36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors {<=}5 Degree-Sign), thus yielding practical designs to improve magnetic drug targeting treatment depths. - Highlights: Black-Right-Pointing-Pointer Optimization methods presented to design Halbach arrays for drug targeting. Black-Right-Pointing-Pointer The goal is to maximize forces on magnetic nanoparticles at deep tissue locations. Black-Right-Pointing-Pointer The presented methods yield provably globally optimal Halbach

  8. Optimal Halbach permanent magnet designs for maximally pulling and pushing nanoparticles

    International Nuclear Information System (INIS)

    Sarwar, A.; Nemirovski, A.; Shapiro, B.

    2012-01-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm 3 volume optimal Halbach design yields a 5× greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤1 T), size (≤2000 cm 3 ), and number of elements (≤36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤5°), thus yielding practical designs to improve magnetic drug targeting treatment depths. - Highlights: ► Optimization methods presented to design Halbach arrays for drug targeting. ► The goal is to maximize forces on magnetic nanoparticles at deep tissue locations. ► The presented methods yield provably globally optimal Halbach designs in 2D and 3D. ► These designs significantly outperform benchmark magnets of the same size and strength. ► These

  9. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.

    Science.gov (United States)

    Sarwar, A; Nemirovski, A; Shapiro, B

    2012-03-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm(3)), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.

  10. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  11. Analysis of the magnetic field, force, and torque for two-dimensional Halbach cylinders

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden

    2010-01-01

    for a two dimensional Halbach cylinder are derived. The remanent flux density of a Halbach magnet is characterized by the integer p. For a number of applications the force and torque between two concentric Halbach cylinders are important. These quantities are calculated and the force is shown to be zero...... except for the case where p for the inner magnet is one minus p for the outer magnet. Also the force is shown never to be balancing. The torque is shown to be zero unless the inner magnet p is equal to minus the outer magnet p. Thus there can never be a force and a torque in the same system....

  12. A two-pole Halbach permanent magnet guideway for high temperature superconducting Maglev vehicle

    International Nuclear Information System (INIS)

    Jing, H.; Wang, J.; Wang, S.; Wang, L.; Liu, L.; Zheng, J.; Deng, Z.; Ma, G.; Zhang, Y.; Li, J.

    2007-01-01

    In order to improve the levitation performance of the high temperature superconducting (HTS) magnetic levitation (Maglev) vehicle, a two-pole Halbach array's permanent magnet guideway (PMG) is proposed, which is called as Halbach PMG. The finite element method (FEM) calculations indicate that Halbach PMG has a wider high-field region than the present PMG of equal PM's transverse section. The levitation force of bulk HTSCs with the present PMG and Halbach PMG are measured. The results show that at different levitation gaps, the force ratios based on the Halbach PMG are about 2.3 times larger than that on the present PMG, which greatly increases the load capability of the system. Therefore, both the numerical analysis and experimental results have confirmed that the Halbach PMG will further enhance the performance of the vehicle and it is possible to decrease the total numbers of onboard HTSCs, reducing overall costs. So based on the Halbach PMG, we further study the width ratios between HTSCs and PMG for making the better use of the onboard HTSCs. Some preliminary results are given. These results are important for further HTS Maglev vehicle system designs using Halbach PMG

  13. Design of nested Halbach cylinder arrays for magnetic refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Trevizoli, Paulo V., E-mail: trevizoli@polo.ufsc.br; Lozano, Jaime A.; Peixer, Guilherme F.; Barbosa Jr, Jader R.

    2015-12-01

    We present an experimentally validated analytical procedure to design nested Halbach cylinder arrays for magnetic cooling applications. The procedure aims at maximizing the magnetic flux density variation in the core of the array for a given set of design parameters, namely the inner diameter of the internal magnet, the air gap between the magnet cylinders, the number of segments of each magnet and the remanent flux density of the Nd{sub 2}Fe{sub 14}B magnet grade. The design procedure was assisted and verified by 3-D numerical modeling using a commercial software package. An important aspect of the optimal design is to maintain an uniform axial distribution of the magnetic flux density in the region of the inner gap occupied by the active magnetocaloric regenerator. An optimal nested Halbach cylinder array was manufactured and experimentally evaluated for the magnetic flux density in the inner gap. The analytically calculated magnetic flux density variation agreed to within 5.6% with the experimental value for the center point of the magnet gap. - Highlights: • An analytical procedure to design nested Halbach cylinder arrays is proposed. • An optimal magnet configuration was built based on the analytical procedure. • The procedure was validated with 3D COMSOL simulations and experimental data.

  14. Magnetic design consideration of a Magnetic Lead Screw with Halbach Array

    DEFF Research Database (Denmark)

    Holm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand

    This paper presents the novel design of a Magnetic Lead Screw (MLS) with magnetic thread of Halbach Arrays. The MLS where designed and build, tests indicated a stall force which where 12 % lower than calculated in 3D FE. This is explained by demagnetization of the magnet during stall, the behavio...

  15. Error studies of Halbach Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-02

    These error studies were done on the Halbach magnets for the CBETA “First Girder” as described in note [CBETA001]. The CBETA magnets have since changed slightly to the lattice in [CBETA009]. However, this is not a large enough change to significantly affect the results here. The QF and BD arc FFAG magnets are considered. For each assumed set of error distributions and each ideal magnet, 100 random magnets with errors are generated. These are then run through an automated version of the iron wire multipole cancellation algorithm. The maximum wire diameter allowed is 0.063” as in the proof-of-principle magnets. Initially, 32 wires (2 per Halbach wedge) are tried, then if this does not achieve 1e-­4 level accuracy in the simulation, 48 and then 64 wires. By “1e-4 accuracy”, it is meant the FOM defined by √(Σn≥sextupole an 2+bn 2) is less than 1 unit, where the multipoles are taken at the maximum nominal beam radius, R=23mm for these magnets. The algorithm initially uses 20 convergence interations. If 64 wires does not achieve 1e-­4 accuracy, this is increased to 50 iterations to check for slow converging cases. There are also classifications for magnets that do not achieve 1e-4 but do achieve 1e-3 (FOM ≤ 10 units). This is technically within the spec discussed in the Jan 30, 2017 review; however, there will be errors in practical shimming not dealt with in the simulation, so it is preferable to do much better than the spec in the simulation.

  16. Dynamics of magnetic particles in cylindrical Halbach array: implications for magnetic cell separation and drug targeting.

    Science.gov (United States)

    Babinec, Peter; Krafcík, Andrej; Babincová, Melánia; Rosenecker, Joseph

    2010-08-01

    Magnetic nanoparticles for therapy and diagnosis are at the leading edge of the rapidly developing field of bionanotechnology. In this study, we have theoretically studied motion of magnetic nano- as well as micro-particles in the field of cylindrical Halbach array of permanent magnets. Magnetic flux density was modeled as magnetostatic problem by finite element method and particle motion was described using system of ordinary differential equations--Newton law. Computations were done for nanoparticles Nanomag-D with radius 65 nm, which are often used in magnetic drug targeting, as well as microparticles DynaBeads-M280 with radius 1.4 microm, which can be used for magnetic separation. Analyzing snapshots of trajectories of hundred magnetite particles of each size in the water as well as in the air, we have found that optimally designed magnetic circuits of permanent magnets in quadrupolar Halbach array have substantially shorter capture time than simple blocks of permanent magnets commonly used in experiments, therefore, such a Halbach array may be useful as a potential source of magnetic field for magnetic separation and targeting of magnetic nanoparticles as well as microparticles for delivery of drugs, genes, and cells in various biomedical applications.

  17. 3D Analytical Calculation of Forces between Linear Halbach-Type Permanent Magnet Arrays

    OpenAIRE

    Allag , Hicham; Yonnet , Jean-Paul; Latreche , Mohamed E. H.

    2009-01-01

    International audience; Usely, in analytical calculation of magnetic and mechanical quantities of Halbach systems, the authors use the Fourier series approximation because the exact calculations are more difficult. In this work the interaction forces between linear Halbach arrays are analytically calculated thanks to our recent development 3D exact calculation of forces between two cuboïdal magnets with parallel and perpendicular magnetization. We essentially describe the way to separately ca...

  18. Performance of Halbach magnet arrays with finite coercivity

    International Nuclear Information System (INIS)

    Insinga, A.R.; Bahl, C.R.H.; Bjørk, R.; Smith, A.

    2016-01-01

    A numerical method to study the effect of finite coercivity on the Halbach cylinder geometry is presented. Despite the fact that the analytical solution available for this geometry does not set any limit to the maximum air gap flux density achievable, in real life the non-linear response of the magnetic material and the fact that the coercivity is not infinite will limit the attainable field. The presented method is able to predict when and where demagnetization will occur, and these predictions are compared with the analytical solution for the case of infinite coercivity. However, the approach presented here also allows quantification of the decrease in flux density and homogeneity for a partially demagnetized magnet. Moreover, the problem of how to realize a Halbach cylinder geometry using a mix of materials with different coercivities without altering the overall performance is addressed. Being based on a numerical approach, the presented method can be employed to analyze the demagnetization effects due to coercivity for any geometry, even when the analytical solution is not available. - Highlights: • The effect of the finite coercivity on the performance of the Halbach cylinder geometry is analyzed • FEM predictions of demagnetization are in agreement with the analytical calculations. • Performance in the non-linear regime is quantified by the average and uniformity of the field • We show which regions in the geometry are more likely to experience non-linear behavior. • We provide a recipe for the fabrication of a multi-material Halbach cylinder

  19. Performance of Halbach magnet arrays with finite coercivity

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Bahl, C.R.H.; Bjørk, Rasmus

    2016-01-01

    of the magnetic material and the fact that the coercivity is not infinite will limit the attainable field. The presented method is able to predict when and where demagnetization will occur, and these predictions are compared with the analytical solution for the case of infinite coercivity. However, the approach...... presented here also allows quantification of the decrease in flux density and homogeneity for a partially demagnetized magnet. Moreover, the problem of how to realize a Halbach cylinder geometry using a mix of materials with different coercivities without altering the overall performance is addressed. Being......A numerical method to study the effect of finite coercivity on the Halbach cylinder geometry is presented. Despite the fact that the analytical solution available for this geometry does not set any limit to the maximum air gap flux density achievable, in real life the non-linear response...

  20. Vibration energy harvesting using the Halbach array

    International Nuclear Information System (INIS)

    Zhu, Dibin; Beeby, Steve; Tudor, John; Harris, Nick

    2012-01-01

    This paper studies the feasibility of vibration energy harvesting using a Halbach array. A Halbach array is a specific arrangement of permanent magnets that concentrates the magnetic field on one side of the array while cancelling the field to almost zero on the other side. This arrangement can improve electromagnetic coupling in a limited space. The Halbach array offers an advantage over conventional layouts of magnets in terms of its concentrated magnetic field and low-profile structure, which helps improve the output power of electromagnetic energy harvesters while minimizing their size. Another benefit of the Halbach array is that due to the existence of an almost-zero magnetic field zone, electronic components can be placed close to the energy harvester without any chance of interference, which can potentially reduce the overall size of a self-powered device. The first reported example of a low-profile, planar electromagnetic vibration energy harvester utilizing a Halbach array was built and tested. Results were compared to ones for energy harvesters with conventional magnet layouts. By comparison, it is concluded that although energy harvesters with a Halbach array can have higher magnetic field density, a higher output power requires careful design in order to achieve the maximum magnetic flux gradient. (paper)

  1. A portable Halbach magnet that can be opened and closed without force: the NMR-CUFF.

    Science.gov (United States)

    Windt, Carel W; Soltner, Helmut; van Dusschoten, Dagmar; Blümler, Peter

    2011-01-01

    Portable equipment for nuclear magnetic resonance (NMR) is becoming increasingly attractive for use in a variety of applications. One of the main scientific challenges in making NMR portable is the design of light-weight magnets that possess a strong and homogeneous field. Existing NMR magnets can provide such magnetic fields, but only for small samples or in small regions, or are rather heavy. Here we show a simple yet elegant concept for a Halbach-type permanent magnet ring, which can be opened and closed with minimal mechanical force. An analytical solution for an ideal Halbach magnet shows that the magnetic forces cancel if the structure is opened at an angle of 35.3° relative to its poles. A first prototype weighed only 3.1 kg, and provided a flux density of 0.57 T with a homogeneity better than 200 ppm over a spherical volume of 5mm in diameter without shimming. The force needed to close it was found to be about 20 N. As a demonstration, intact plants were imaged and water (xylem) flow measured. Magnets of this type (NMR-CUFF = Cut-open, Uniform, Force Free) are ideal for portable use and are eminently suited to investigate small or slender objects that are part of a larger or immobile whole, such as branches on a tree, growing fruit on a plant, or non-metallic tubing in industrial installations. This new concept in permanent-magnet design enables the construction of openable, yet strong and homogeneous magnets, which aside from use in NMR or MRI could also be of interest for applications in accelerators, motors, or magnetic bearings. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Analysis of 3-D effects in segmented cylindrical quasi-Halbach magnet arrays

    NARCIS (Netherlands)

    Meessen, K.J.; Paulides, J.J.H.; Lomonova, E.

    2011-01-01

    To improve the performance of permanent magnet (PM) machines, quasi-Halbach PM arrays are used to increase the magnetic loading in these machines. In tubular PM actuators, these arrays are often approximated using segmented magnets resulting in a 3-D magnetic field effect. This paper describes the

  3. New magnetic rails with double-layer Halbach structure by employing NdFeB and ferrite magnets for HTS maglev

    Science.gov (United States)

    Sun, Ruixue; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Jipeng; Deng, Zigang

    2018-01-01

    In the high temperature superconducting (HTS) maglev system, the magnetic rail as an essential infrastructure is needed all along the route to carry passengers and goods to the destinations. Thus, large amount of rare earth magnetic materials are required in the magnetic rail construction. In order to decrease the dependence of magnetic rails on rare earth elements, the ferrite magnet is employed to replace part of the NdFeB magnets containing rare earth elements. Consequently, a new type rail with double-layer Halbach structure is presented, which is consisted of NdFeB and ferrite magnets. In this paper, we designed and fabricated the proposed rail, and further measured its magnetic flux density distribution and electromagnetic force interacting with HTS bulks. Experimental results indicate that, this new type rail, in double-layer Halbach structure, can achieve an equivalent distribution of magnetic flux density and levitation performance as the pure NdFeB Halbach rail, while a 10% reduction in NdFeB magnet consumption can be realized at the same time. In addition this work explores another magnetic material selection for HTS maglev applications. The dependence on rare earth element and the cost of magnetic rails can be further reduced, as the coercive force of ferrite magnets improved.

  4. Halbach arrays in precision motion control

    Energy Technology Data Exchange (ETDEWEB)

    Trumper, D.L.; Williams, M.E. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The Halbach array was developed for use as an optical element in particle accelerators. Following up on a suggestion from Klaus Halbach, the authors have investigated the utility of such arrays as the permanent magnet structure for synchronous machines in cartesian, polar, and cylindrical geometries. Their work has focused on the design of a novel Halbach array linear motor for use in a magnetic suspension stage for photolithography. This paper presents the details of the motor design and its force and power characteristics.

  5. Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm.

    Science.gov (United States)

    Cooley, Clarissa Zimmerman; Haskell, Melissa W; Cauley, Stephen F; Sappo, Charlotte; Lapierre, Cristen D; Ha, Christopher G; Stockmann, Jason P; Wald, Lawrence L

    2018-01-01

    Permanent magnet arrays offer several attributes attractive for the development of a low-cost portable MRI scanner for brain imaging. They offer the potential for a relatively lightweight, low to mid-field system with no cryogenics, a small fringe field, and no electrical power requirements or heat dissipation needs. The cylindrical Halbach array, however, requires external shimming or mechanical adjustments to produce B 0 fields with standard MRI homogeneity levels (e.g., 0.1 ppm over FOV), particularly when constrained or truncated geometries are needed, such as a head-only magnet where the magnet length is constrained by the shoulders. For portable scanners using rotation of the magnet for spatial encoding with generalized projections, the spatial pattern of the field is important since it acts as the encoding field. In either a static or rotating magnet, it will be important to be able to optimize the field pattern of cylindrical Halbach arrays in a way that retains construction simplicity. To achieve this, we present a method for designing an optimized cylindrical Halbach magnet using the genetic algorithm to achieve either homogeneity (for standard MRI applications) or a favorable spatial encoding field pattern (for rotational spatial encoding applications). We compare the chosen designs against a standard, fully populated sparse Halbach design, and evaluate optimized spatial encoding fields using point-spread-function and image simulations. We validate the calculations by comparing to the measured field of a constructed magnet. The experimentally implemented design produced fields in good agreement with the predicted fields, and the genetic algorithm was successful in improving the chosen metrics. For the uniform target field, an order of magnitude homogeneity improvement was achieved compared to the un-optimized, fully populated design. For the rotational encoding design the resolution uniformity is improved by 95% compared to a uniformly populated design.

  6. Analytical torque calculation and experimental verification of synchronous permanent magnet couplings with Halbach arrays

    Science.gov (United States)

    Seo, Sung-Won; Kim, Young-Hyun; Lee, Jung-Ho; Choi, Jang-Young

    2018-05-01

    This paper presents analytical torque calculation and experimental verification of synchronous permanent magnet couplings (SPMCs) with Halbach arrays. A Halbach array is composed of various numbers of segments per pole; we calculate and compare the magnetic torques for 2, 3, and 4 segments. Firstly, based on the magnetic vector potential, and using a 2D polar coordinate system, we obtain analytical solutions for the magnetic field. Next, through a series of processes, we perform magnetic torque calculations using the derived solutions and a Maxwell stress tensor. Finally, the analytical results are verified by comparison with the results of 2D and 3D finite element analysis and the results of an experiment.

  7. Investigation of a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free-piston stirling engines

    Science.gov (United States)

    Zheng, Ping; Tong, Chengde; Zhao, Jing; Yu, Bin; Li, Lin; Bai, Jingang; Zhang, Lu

    2012-04-01

    This paper investigates a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free piston Stirling engines (FPSEs). Taking the advantages of Halbach array, a 1 kW prototype alternator is designed. Considering the rms value of electromotive force (EMF) and harmonic distortion, the optimal length ratio of the axial- and radial-magnetized permanent magnets and thicknesses of the permanent magnets are optimized by 2D finite element method. The alternator detent force, which is an important factor for smooth operation of FPSEs, is studied by optimizing slot tip and end tooth. The load and thermal performances of the final design are simulated. A prototype alternator was designed, built and tested. Experimental data indicated satisfactory design.

  8. The art and science of magnet design: Selected notes of Klaus Halbach. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This volume contains a compilation of 57 notes written by Dr. Klaus Halbach selected from his collection of over 1650 such documents. It provides an historic snapshot of the evolution of magnet technology and related fields as the notes range from as early as 1965 to the present, and is intended to show the breadth of Dr. Halbach`s interest and ability that have long been an inspiration to his many friends and colleagues. As Halbach is an experimental physicist whose scientific interests span many areas, and who does his most innovative work with pencil and paper rather than at the workbench or with a computer, the vast majority of the notes in this volume were handwritten and their content varies greatly--some reflect original work or work for a specific project, while others are mere clarifications of mathematical calculations or design specifications. As the authors converted the notes to electronic form, some were superficially edited and corrected, while others were extensively re-written to reflect current knowledge and notation. The notes are organized under five categories which reflect their primary content: Beam Position Monitors, (bpm), Current Sheet Electron Magnets (csem), Magnet Theory, (thry), Undulators and Wigglers (u-w), and Miscellaneous (misc). Within the category, they are presented chronologically starting from the most recent note and working backwards in time.

  9. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Directory of Open Access Journals (Sweden)

    Yi Sui

    2017-05-01

    Full Text Available A single-phase tubular permanent-magnet linear machine (PMLM with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA. The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  10. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Science.gov (United States)

    Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  11. The Creation of a Strong Magnetic Field by Means of Large Magnetic Blocks from NdFeB Magnets in Opposing Linear Halbach Arrays

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2016-01-01

    Roč. 21, č. 3 (2016), 364-373 ISSN 1226-1750 Institutional support: RVO:67985891 Keywords : magnetic field * permanent magnets * NdFeB magnets * Halbach Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.713, year: 2016 http://komag.org/journal/

  12. The art and science of magnet design: A Festschrift in honor of Klaus Halbach. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J. [ed.

    1995-02-01

    This is a collection of technical papers and personal remembrances written expressly for the Halbach Symposium and dedicated to Klaus Halbach. The topics presented offer a hint of the diversity of Klaus`s scientific career. Most of the papers deal with magnets for accelerators and accelerator facilities. Other topics covered are free electron lasers, Halbach array motor/generators, radiation and gas conduction heat transport across a dewar multilayer insulation system, and surface structural determination from Fourier transforms of angle-resolved photoemission extended fine structure. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  13. Structural optimization of the Halbach array PM rim thrust motor

    Science.gov (United States)

    Cao, Haichuan; Chen, Weihu

    2018-05-01

    The Rim-driven Thruster (RDT) integrates the thrust motor and the propeller, which can effectively reduce the space occupied by the propulsion system, improve the propulsion efficiency, and thus has important research value and broad market prospects. The Halbach Permanent Magnet Rim Thrust Motor (HPMRTM) can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the numerical method is used to study the electromagnetic performance of the motor under different Halbach array parameters. The relationship between motor parameters such as air-gap flux density, electromagnetic torque and Halbach array parameters is obtained, and then the motor structure is optimized. By comparing with Common Permanent Magnet RTM, the advantages of HPMRTM are verified.

  14. Optimization and improvement of Halbach cylinder design

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2008-01-01

    possible volume of magnets with a given mean flux density in the cylinder bore. The volume of the cylinder bore could also be significantly increased by only slightly increasing the volume of the magnets, for a fixed mean flux density. Placing additional blocks of magnets on the end faces of the Halbach...... that this parameter was optimal for long Halbach cylinders with small rex. Using the previously mentioned additional blocks of magnets can improve the parameter by as much as 15% as well as improve the homogeneity of the field in the cylinder bore. ©2008 American Institute of Physics...

  15. The art and science of magnet design: Selected notes of Klaus Halbach. Volume 2

    International Nuclear Information System (INIS)

    1995-02-01

    This volume contains a compilation of 57 notes written by Dr. Klaus Halbach selected from his collection of over 1650 such documents. It provides an historic snapshot of the evolution of magnet technology and related fields as the notes range from as early as 1965 to the present, and is intended to show the breadth of Dr. Halbach's interest and ability that have long been an inspiration to his many friends and colleagues. As Halbach is an experimental physicist whose scientific interests span many areas, and who does his most innovative work with pencil and paper rather than at the workbench or with a computer, the vast majority of the notes in this volume were handwritten and their content varies greatly--some reflect original work or work for a specific project, while others are mere clarifications of mathematical calculations or design specifications. As the authors converted the notes to electronic form, some were superficially edited and corrected, while others were extensively re-written to reflect current knowledge and notation. The notes are organized under five categories which reflect their primary content: Beam Position Monitors, (bpm), Current Sheet Electron Magnets (csem), Magnet Theory, (thry), Undulators and Wigglers (u-w), and Miscellaneous (misc). Within the category, they are presented chronologically starting from the most recent note and working backwards in time

  16. Halbach array DC motor/generator

    Science.gov (United States)

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  17. Halbach array DC motor/generator

    Science.gov (United States)

    Merritt, Bernard T.; Dreifuerst, Gary R.; Post, Richard F.

    1998-01-01

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  18. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    Science.gov (United States)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.

    2015-12-01

    The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  19. Magnetic superelevation design of Halbach permanent magnet guideway for high-temperature superconducting maglev

    Science.gov (United States)

    Lei, Wuyang; Qian, Nan; Zheng, Jun; Huang, Huan; Zhang, Ya; Deng, Zigang

    2017-07-01

    To improve the curve negotiating ability of high-temperature superconducting (HTS) maglev system, a special structure of magnetic superelevation for double-pole Halbach permanent magnet guideway (PMG) was designed. The most significant feature of this design is the asymmetrical PMG that forms a slanting magnetic field without affecting the smoothness of the PMG surface. When HTS maglev vehicle runs through curves with magnetic superelevation, the vehicle will slant due to asymmetry in magnetic field and the flux-pinning effect of onboard HTS bulks. At the same time, one component of the levitation force provides a part of the centripetal force that reduces lateral acceleration of the vehicle and thus enhances its curve negotiating ability. Furthermore, the slant angle of magnetic superelevation can be adjusted by changing the materials and the thickness of the added permanent magnets. This magnetic superelevation method, together with orographic uplift, can be applied to different requirements of PMG designs. Besides, the applicability of this method would benefit future development of high-speed HTS maglev system.

  20. Halbach Effect at the Nanoscale from Chiral Spin Textures.

    Science.gov (United States)

    Marioni, Miguel A; Penedo, Marcos; Baćani, Mirko; Schwenk, Johannes; Hug, Hans J

    2018-04-11

    Mallinson's idea that some spin textures in planar magnetic structures could produce an enhancement of the magnetic flux on one side of the plane at the expense of the other gave rise to permanent magnet configurations known as Halbach magnet arrays. Applications range from wiggler magnets in particle accelerators and free electron lasers to motors and magnetic levitation trains, but exploiting Halbach arrays in micro- or nanoscale spintronics devices requires solving the problem of fabrication and field metrology below a 100 μm size. In this work, we show that a Halbach configuration of moments can be obtained over areas as small as 1 μm × 1 μm in sputtered thin films with Néel-type domain walls of unique domain wall chirality, and we measure their stray field at a controlled probe-sample distance of 12.0 ± 0.5 nm. Because here chirality is determined by the interfacial Dyzaloshinkii-Moriya interaction, the field attenuation and amplification is an intrinsic property of this film, allowing for flexibility of design based on an appropriate definition of magnetic domains. Skyrmions (magnetic fields and mapping of the spin structure shows they funnel the field toward one specific side of the film given by the sign of the Dyzaloshinkii-Moriya interaction parameter D.

  1. Powder alignment system for anisotropic bonded NdFeB Halbach cylinders \\ud

    OpenAIRE

    Zhu, Z.Q.; Xia, Z.P.; Atallah, K.; Jewell, G.W.; Howe, D.

    2000-01-01

    A Halbach cylinder, fabricated from pre-magnetized sintered NdFeB magnet segments, is proposed for the powder aligning system during the compression or injection moulding of anisotropic bonded Halbach oriented NdFeB ring magnets. The influence of leading design parameters of the powder aligning system, viz. the number of magnet segments per pole, their axial length and radial thickness, and their clearance from the mould, is investigated by finite element analysis, and validated experimentally

  2. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    International Nuclear Information System (INIS)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B.T.; Si, S.S.; Deng, Z.G.

    2015-01-01

    Highlights: • The loading weight affects the RF tremendously. • Reducing the FCH can improve the stability of the maglev vehicle. • The Halbach-type PMG has better loading capacity than the conventional PMG. • Pre-load is an effective way to enhance the dynamic characteristic of the HTS maglev vehicle. - Abstract: The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  3. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, J., E-mail: jzheng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Che, T. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); Zheng, B.T.; Si, S.S. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, P R China (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, P R China (China)

    2015-12-15

    Highlights: • The loading weight affects the RF tremendously. • Reducing the FCH can improve the stability of the maglev vehicle. • The Halbach-type PMG has better loading capacity than the conventional PMG. • Pre-load is an effective way to enhance the dynamic characteristic of the HTS maglev vehicle. - Abstract: The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  4. Development and characterization of a multi-layer magnetorheological elastomer isolator based on a Halbach array

    Science.gov (United States)

    Przybylski, Michal; Sun, Shuaishuai; Li, Weihua

    2016-10-01

    Most existing vibration isolators and dampers based on magnetorheological (MR) materials need electrical power to feed magnetic coils to stimulate the MR material, so if there is a loss of power, such as during a strong earthquake or system failure, they are unable to protect the structure. This paper outlines the design and test of a controllable multilayered magnetorheological elastomer (MRE) isolator based on a circular dipolar Halbach array; which is a set of magnets that generates a strong and uniform magnetic field. Combining an MRE layered isolator system with the Halbach array allows for constant vibration isolation with very low power consumption, where the power generated is only used to adjust the Halbach position. When this system was tested it successfully altered the lateral stiffness and damping force by 81.13% and 148.72%, respectively. This paper also includes an extended analysis of the magnetic field generated by the circular dipolar Halbach array and a discussion of the improvements that may potentially improve the range of magnetic fields generated.

  5. Analytical modelling of Halbach linear generator incorporating pole shifting and piece-wise spring for ocean wave energy harvesting

    Science.gov (United States)

    Tan, Yimin; Lin, Kejian; Zu, Jean W.

    2018-05-01

    Halbach permanent magnet (PM) array has attracted tremendous research attention in the development of electromagnetic generators for its unique properties. This paper has proposed a generalized analytical model for linear generators. The slotted stator pole-shifting and implementation of Halbach array have been combined for the first time. Initially, the magnetization components of the Halbach array have been determined using Fourier decomposition. Then, based on the magnetic scalar potential method, the magnetic field distribution has been derived employing specially treated boundary conditions. FEM analysis has been conducted to verify the analytical model. A slotted linear PM generator with Halbach PM has been constructed to validate the model and further improved using piece-wise springs to trigger full range reciprocating motion. A dynamic model has been developed to characterize the dynamic behavior of the slider. This analytical method provides an effective tool in development and optimization of Halbach PM generator. The experimental results indicate that piece-wise springs can be employed to improve generator performance under low excitation frequency.

  6. Analytical modelling of Halbach linear generator incorporating pole shifting and piece-wise spring for ocean wave energy harvesting

    Directory of Open Access Journals (Sweden)

    Yimin Tan

    2018-05-01

    Full Text Available Halbach permanent magnet (PM array has attracted tremendous research attention in the development of electromagnetic generators for its unique properties. This paper has proposed a generalized analytical model for linear generators. The slotted stator pole-shifting and implementation of Halbach array have been combined for the first time. Initially, the magnetization components of the Halbach array have been determined using Fourier decomposition. Then, based on the magnetic scalar potential method, the magnetic field distribution has been derived employing specially treated boundary conditions. FEM analysis has been conducted to verify the analytical model. A slotted linear PM generator with Halbach PM has been constructed to validate the model and further improved using piece-wise springs to trigger full range reciprocating motion. A dynamic model has been developed to characterize the dynamic behavior of the slider. This analytical method provides an effective tool in development and optimization of Halbach PM generator. The experimental results indicate that piece-wise springs can be employed to improve generator performance under low excitation frequency.

  7. Optimizing the field distribution of a Halbach type permanent magnet cylinder using the soft iron and superhard magnet

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2018-01-01

    When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.

  8. Use of the Halbach perturbation theory for the multipole design of the ALS storage ring sextupole

    Energy Technology Data Exchange (ETDEWEB)

    Marks, S. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    The Advanced Light Source (ALS) storage ring sextupole is a unique multi-purpose magnet. It is designed to operate in the primary or sextupole mode and in three auxiliary trim modes: horizontal steering, vertical steering, and skew quadrupole. Klaus Halbach developed a perturbation theory for iron-dominated magnets which provides the basis for this design. Many magnet designers, certainly those who have been exposed to Klaus, are familiar with this theory and have used it for such things as evaluating the effect of assembly alignment errors. The ALS sextupole design process was somewhat novel in its use of the perturbation theory to design essential features of the magnet. In particular, the steering and skew quadrupole functions are produced by violating sextupole symmetry and are thus perturbations of the normal sextupole excitation. The magnet was designed such that all four modes are decoupled and can be excited independently. This paper discusses the use of Halbach`s perturbation theory to design the trim functions and to evaluate the primary asymmetry in the sextupole mode, namely, a gap in the return yoke to accommodate the vacuum chamber. Prototype testing verified all operating modes of the magnet and confirmed the expected performance from calculations based upon the Halbach perturbation theory. A total of 48 sextupole magnets of this design are now installed and operating successfully in the ALS storage ring.

  9. Natural abundant (17) O NMR in a 1.5-T Halbach magnet.

    Science.gov (United States)

    Sørensen, Morten K; Bakharev, Oleg N; Jensen, Ole; Nielsen, Niels Chr

    2016-06-01

    We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Optimizing Power Density and Efficiency of a Double-Halbach Array Permanent-Magnet Ironless Axial-Flux Motor

    Science.gov (United States)

    Duffy, Kirsten P.

    2016-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.

  11. Design of a Weighted-Rotor Energy Harvester Based on Dynamic Analysis and Optimization of Circular Halbach Array Magnetic Disk

    Directory of Open Access Journals (Sweden)

    Yu-Jen Wang

    2015-03-01

    Full Text Available This paper proposes the design of a weighted-rotor energy harvester (WREH in which the oscillation is caused by the periodic change of the tangential component of gravity, to harvest kinetic energy from a rotating wheel. When a WREH is designed with a suitable characteristic length, the rotor’s natural frequency changes according to the wheel rotation speed and the rotor oscillates at a wide angle and high angular velocity to generate a large amount of power. The magnetic disk is designed according to an optimized circular Halbach array. The optimized circular Halbach array magnetic disk provides the largest induced EMF for different sector-angle ratios for the same magnetic disk volume. This study examined the output voltage and power by considering the constant and accelerating plate-rotation speeds, respectively. This paper discusses the effects of the angular acceleration speed of a rotating wheel corresponding to the dynamic behaviors of a weighted rotor. The average output power is 399 to 535 microwatts at plate-rotation speeds from 300 to 500 rpm, enabling the WREH to be a suitable power source for a tire-pressure monitoring system.

  12. A handy motion driven hybrid energy harvester: dual Halbach array based electromagnetic and triboelectric generators

    International Nuclear Information System (INIS)

    Salauddin, M; Park, J Y

    2016-01-01

    In this work, we have proposed and experimentally validated of hybrid electromagnetic and triboelectric energy harvester using dual Halbach magnets array excited by human handy motion. Hybrid electromagnetic (EM) and triboelectric (TE) generator that can deliver an output performance much higher than that of the individual energy-harvesting unit due to the combination operation of EM and TE mechanisms under the same mechanical movements. A Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. When an external mechanical vibration is applied to the hybrid structure in the axial direction of the harvester, the suspended mass (two sided dual-Halbach-array frame) starts to oscillate within the magnetic springs and TEG part. Therefore, the TEG part, the Al film and microstructure PDMS film are collected into full contact with each other, generating triboelectric charges due to the various triboelectricities between them. A prototype of the hybrid harvester has been fabricated and tested. The EMG is capable of delivering maximum 11.5mW peak power at 32.5Ω matching load resistance and the TEG delivering 88μW peak power at 10MΩ load resistance. (paper)

  13. Halbach array-based design and simulation of disc coreless permanen-magnet integrated starter generator

    Science.gov (United States)

    Li, Y. B.; Yang, Z. X.; Chen, W.; He, Q. Y.

    2017-11-01

    The functional performance, such as magnetic flux leakage, power density and efficiency, is related to the structural characteristics and design technique for the disc permanent magnet synchronous generators (PMSGs). Halbach array theory-based magnetic circuit structure is developed, and Maxwell3D simulation analysis approach of PMSG is proposed in this paper for integrated starter generator (ISG). The magnetization direction of adjacent permanent magnet is organized in difference of 45 degrees for focusing air gap side, and improving the performance of the generator. The magnetic field distribution and functional performance in load and/or unload conditions are simulated by Maxwell3D module. The proposed approach is verified by simulation analysis, the air gap flux density is 0.66T, and the phase voltage curve has the characteristics of a preferable sinusoidal wave and the voltage amplitude 335V can meet the design requirements while the disc coreless PMSG is operating at rated speed. And the developed magnetic circuit structure can be used for engineering design of the disc coreless PMSG to the integrated starter generator.

  14. Halbach array motor/generators: A novel generalized electric machine

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, B.T.; Post, R.F.; Dreifuerst, G.R.; Bender, D.A. [Lawrence Livermore National Lab., CA (United States)

    1995-02-01

    For many years Klaus Halbach has been investigating novel designs for permanent magnet arrays, using advanced analytical approaches and employing a keen insight into such systems. One of his motivations for this research was to find more efficient means for the utilization of permanent magnets for use in particle accelerators and in the control of particle beams. As a result of his pioneering work, high power free-electron laser systems, such as the ones built at the Lawrence Livermore Laboratory, became feasible, and his arrays have been incorporated into other particle-focusing systems of various types. This paper reports another, quite different, application of Klaus` work, in the design of high power, high efficiency, electric generators and motors. When tested, these motor/generator systems display some rather remarkable properties. Their success derives from the special properties which these arrays, which the authors choose to call {open_quotes}Halbach arrays,{close_quotes} possess.

  15. A three-dimensional field solutions of Halbach

    International Nuclear Information System (INIS)

    Chen Jizhong; Xiao Jijun; Zhang Yiming; Xu Chunyan

    2008-01-01

    A three-dimensional field solutions are presented for Halback cylinder magnet. Based on Ampere equivalent current methods, the permanent magnets are taken as distributing of current density. For getting the three-dimensional field solution of ideal polarized permanent magnets, the solution method entails the use of the vector potential and involves the closed-form integration of the free-space Green's function. The programmed field solution are ideal for performing rapid parametric studies of the dipole Halback cylinder magnets made from rare earth materials. The field solutions are verified by both an analytical two-dimensional algorithm and three-dimensional finite element software. A rapid method is presented for extensive analyzing and optimizing Halbach cylinder magnet. (authors)

  16. An adjustable linear Halbach array

    International Nuclear Information System (INIS)

    Hilton, J.E.; McMurry, S.M.

    2012-01-01

    The linear Halbach array is a well-known planar magnetic structure capable, in the idealized case, of generating a one-sided magnetic field. We show that such a field can be created from an array of uniformly magnetized rods, and rotating these rods in an alternating fashion can smoothly transfer the resultant magnetic field through the plane of the device. We examine an idealized model composed of infinite line dipoles and carry out computational simulations on a realizable device using a magnetic boundary element method. Such an arrangement can be used for an efficient latching device, or to produce a highly tunable field in the space above the device. - Highlights: ► We model an adjustable ‘one-sided’ flux sheet made up of a series of dipolar magnetic field sources. ► We show that magnetic field can be switched from one side of sheet to other by a swap rotation of each of magnetic sources. ► Investigations show that such an arrangement is practical and can easily be fabricated. ► The design has a wide range of potential applications.

  17. Position sensor for linear synchronous motors employing halbach arrays

    Science.gov (United States)

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  18. Design and Performance Test of Axial Halbach Brushless DC Motor with Power Density 1.5 Kw/Kg

    Directory of Open Access Journals (Sweden)

    Kevin Dwi Prasetio

    2017-01-01

    Full Text Available Progress of technology on electric vehicle component sector is one reason the emergence of electric vehicles at the moment. Starting from battery which has a great current density up to the automatic control systems on electric vehicles. But there are still some shortcomings of this electric vehicle components, one of which is the low value of power density of existing electric motor in the market today.On vehicles such as electric cars when Race Car Contest, energy saving problems about power density of the driving motor is very vital. This is because the total weight of the vehicle has a huge influence on the vehicle efficiency is against it. The issue is one of the reasons of the research task. In this final task is done making the design, simulation, and architecture of the Axial Halbach Brushless DC Motor. Use of system configuration on the halbach magnet to avoid the use of iron as a material cantilever rotor. By changing the material of the cantilever rotor with lighter materials such as aluminum or even carbon fibre, the value of power density electric motors can be increased. Then using the litz wire on coil stator to reduce loss-power loss due to the barriers on the coil. Coreless stator on the system and to avoid the phenomenon of cogging at the time due to low rpm style attraction magnet with iron in the core material. While the creation process begins by determining the specifications of the Axial Halbach Brushless DC motors. Then go into the design phase of the mechanical and electrical design. Who then conducted simulations to help determine other parameters such as air gap, slot turn, and magnetic orientation. The process of making a component of stator and rotor after the simulation is completed. After all the components of the rotor and stator on assembly, mounting the hall sensor is carried out to the right to position obtained by reading the signals. After the motor can spin with good motor performance, testing can be done

  19. The magnetic properties of the hollow cylindrical ideal remanence magnet

    DEFF Research Database (Denmark)

    Bjørk, Rasmus

    2016-01-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived...... and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown...... to generate a field exactly twice as large as the equivalent ideal remanence magnet....

  20. An adjustable linear Halbach array

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, J.E., E-mail: James.Hilton@csiro.au [CSIRO Mathematics, Informatics and Statistics, Clayton South, VIC 3169 (Australia); McMurry, S.M. [School of Physics, Trinity College, Dublin (Ireland)

    2012-07-15

    The linear Halbach array is a well-known planar magnetic structure capable, in the idealized case, of generating a one-sided magnetic field. We show that such a field can be created from an array of uniformly magnetized rods, and rotating these rods in an alternating fashion can smoothly transfer the resultant magnetic field through the plane of the device. We examine an idealized model composed of infinite line dipoles and carry out computational simulations on a realizable device using a magnetic boundary element method. Such an arrangement can be used for an efficient latching device, or to produce a highly tunable field in the space above the device. - Highlights: Black-Right-Pointing-Pointer We model an adjustable 'one-sided' flux sheet made up of a series of dipolar magnetic field sources. Black-Right-Pointing-Pointer We show that magnetic field can be switched from one side of sheet to other by a swap rotation of each of magnetic sources. Black-Right-Pointing-Pointer Investigations show that such an arrangement is practical and can easily be fabricated. Black-Right-Pointing-Pointer The design has a wide range of potential applications.

  1. Tunable Absorption System based on magnetorheological elastomers and Halbach array: design and testing

    Energy Technology Data Exchange (ETDEWEB)

    Bocian, Mirosław; Kaleta, Jerzy; Lewandowski, Daniel, E-mail: daniel.lewandowski@pwr.edu.pl; Przybylski, Michał

    2017-08-01

    Highlights: • Construction of a Tunable Absorption System incorporating MRE has been done. • For system control by magnetic field a double circular Halbach array has been used. • Significant changes of the TSAs natural frequency and damping has been obtained. - Abstract: In this paper, the systematic design, construction and testing of a Tunable Absorption System (TAS) incorporating magnetorheological elastomer (MRE) has been investigated. The TAS has been designed for energy absorption and mitigation of vibratory motions from an impact excitation. The main advantage of the designed TAS is that it has the ability to change and adapt to working conditions. Tunability can be realised through a change in the magnetic field caused by the change of an internal arrangement of permanent magnets within a double dipolar circular Halbach array. To show the capabilities of the tested system, experiments based on an impulse excitation have been performed. Significant changes of the TASs natural frequency and damping characteristics have been obtained. By incorporating magnetic tunability within the TAS a significant qualitative and quantitative change in the devices mechanical properties and performance were obtained.

  2. A novel permanent magnetic rail for HTS levitation propulsion system

    International Nuclear Information System (INIS)

    Guo, F.; Tang, Y.; Ren, L.; Li, J.

    2009-01-01

    The Halbach Array has a characteristic advantage that the spatial fundamental field is canceled on one side of the array while the field intensity on the other side is enhanced. So this array could be used in the design of high temperature superconducting permanent magnetic levitation rail to improve the surface magnetic field and levitation force. This paper compared the surface magnetic field of the Halbach Array rail and two conventional levitation rails at first. Then proposed the potential advantages of Halbach Array applied in permanent magnetic rail system. But the Halbach Array rail is mechanical instability. An novel improved Halbach Array rail is proposed in this paper. The new structure combined the advantages of traditional structure and Halbach Array structure, solved the problem of mechanical instability, and carried on the advantage of Halbach Array on the magnetic field distribution at the same time.

  3. Magnetically leviated superconducting bearing

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  4. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  5. Analytical solution of concentric two-pole Halbach cylinders as a preliminary design tool for magnetic refrigeration systems

    Science.gov (United States)

    Fortkamp, F. P.; Lozano, J. A.; Barbosa, J. R.

    2017-12-01

    This work presents a parametric analysis of the performance of nested permanent magnet Halbach cylinders intended for applications in magnetic refrigeration and heat pumping. An analytical model for the magnetic field generated by the cylinders is used to systematically investigate the influence of their geometric parameters. The proposed configuration generates two poles in the air gap between the cylinders, where active magnetic regenerators are positioned for conversion of magnetic work into cooling capacity or heat power. A sample geometry based on previous designs of magnetic refrigerators is investigated, and the results show that the magnetic field in the air gap oscillates between 0 to approximately 1 T, forming a rectified cosine profile along the circumference of the gap. Calculations of the energy density of the magnets indicate the need to operate at a low energy (particular the inner cylinder) in order to generate a magnetic profile suitable for a magnetic cooler. In practice, these low-energy regions of the magnet can be potentially replaced by soft ferromagnetic material. A parametric analysis of the air gap height has been performed, showing that there are optimal values which maximize the magnet efficiency parameter Λcool . Some combinations of cylinder radii resulted in magnetic field changes that were too small for practical purposes. No demagnetization of the cylinders has been found for the range of parameters considered.

  6. Comparison of adjustable permanent magnetic field sources

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    be altered are analyzed using numerical simulations, and compared based on the generated magnetic flux density in a sample volume and the amount of magnet material used. The designs are the concentric Halbach cylinder, the two half Halbach cylinders, the two linear Halbach arrays and the four and six rod...... and the direction of the magnetic field are measured and compared with numerical simulation and a good agrement is found....

  7. Active Magnetic BearingsMagnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... of the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision characterization...... of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing...

  8. Optimal linear generator with Halbach array for harvesting of vibration energy during human walking

    Directory of Open Access Journals (Sweden)

    Joonsoo Jun

    2016-05-01

    Full Text Available In IT business, the capacity of the battery in smartphone was drastically improved to digest various functions such as communication, Internet, e-banking, and entertainment. Although the capacity of the battery is improved, it still needs to be upgraded due to customer’s demands. In this article, we optimize the design of the linear generator with the Halbach array to improve the efficiency of harvesting vibration energy during human walking for the battery capacitance. We propose the optimal design of the tubular permanent magnet with the linear generator that uses a Halbach array. The approximate model is established using generic algorithm. Furthermore, we performed electromagnetic finite element analysis to predict the induced voltage.

  9. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    International Nuclear Information System (INIS)

    Sun Jinji; Fang Jiancheng

    2011-01-01

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  10. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinji, E-mail: sunjinji@aspe.buaa.edu.c [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China); Fang Jiancheng [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China)

    2011-01-15

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  11. Magnetic translator bearings

    Science.gov (United States)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  12. NMR of geophysical drill cores with a mobile Halbach scanner

    International Nuclear Information System (INIS)

    Talnishnikh, E.

    2007-01-01

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  13. NMR of geophysical drill cores with a mobile Halbach scanner

    Energy Technology Data Exchange (ETDEWEB)

    Talnishnikh, E.

    2007-08-21

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  14. Dynamic interaction between rotor and axially-magnetized passive magnetic bearing considering magnetic eccentricity

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar

    2014-01-01

    with a multibody system composed of rigid rotor and flexible foundation. The magnetic eccentricities of the shaft magnets are modelled using the distances (amplitudes) and directions (phase angles) between the shaft axis and the centre of the magnetic fields generated. A perturbation method, i.e. harmonic......-linear stiffness. In this investigation passive magnetic bearings using axially- aligned neodymium cylinder magnets are investigated. The cylinder magnets are axially magnetised for rotor as well as bearings. Compared to bearings with radial magnetisation, the magnetic stiffness of axially-aligned bearings...... is considerably lower, nevertheless they allow for asymmetric stiffness mounting, and it could be beneficial for rotor stabilization. A theoretical model is proposed to describe the non-linear rotor-bearing dynamics. It takes into account non-linear behaviour of the magnetic forces and their interaction...

  15. Actuators for Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Eric H. Maslen

    2017-10-01

    Full Text Available The literature of active magnetic bearing (AMB technology dates back to at least 1937 when the earliest work that clearly describes an active magnetic bearing system was published by Jesse Beams [...

  16. Wide gap, permanent magnet biased magnetic bearing system

    Science.gov (United States)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  17. Structural parameter optimization design for Halbach permanent maglev rail

    International Nuclear Information System (INIS)

    Guo, F.; Tang, Y.; Ren, L.; Li, J.

    2010-01-01

    Maglev rail is an important part of the magnetic levitation launch system. Reducing the manufacturing cost of magnetic levitation rail is the key problem for the development of magnetic levitation launch system. The Halbach permanent array has an advantage that the fundamental spatial field is cancelled on one side of the array while the field on the other side is enhanced. So this array used in the design of high temperature superconducting permanent maglev rail could improve the surface magnetic field and the levitation force. In order to make the best use of Nd-Fe-B (NdFeB) material and reduce the cost of maglev rail, the effect of the rail's structural parameters on levitation force and the utilization rate of NdFeB material are analyzed. The optimal ranges of these structural parameters are obtained. The mutual impact of these parameters is also discussed. The optimization method of these structure parameters is proposed at the end of this paper.

  18. Structural parameter optimization design for Halbach permanent maglev rail

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F., E-mail: guofang19830119@163.co [R and D Center of Applied Superconductivity, Huazhong University of Science and Technology, Wuhan 430074 (China); Tang, Y.; Ren, L.; Li, J. [R and D Center of Applied Superconductivity, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-11-01

    Maglev rail is an important part of the magnetic levitation launch system. Reducing the manufacturing cost of magnetic levitation rail is the key problem for the development of magnetic levitation launch system. The Halbach permanent array has an advantage that the fundamental spatial field is cancelled on one side of the array while the field on the other side is enhanced. So this array used in the design of high temperature superconducting permanent maglev rail could improve the surface magnetic field and the levitation force. In order to make the best use of Nd-Fe-B (NdFeB) material and reduce the cost of maglev rail, the effect of the rail's structural parameters on levitation force and the utilization rate of NdFeB material are analyzed. The optimal ranges of these structural parameters are obtained. The mutual impact of these parameters is also discussed. The optimization method of these structure parameters is proposed at the end of this paper.

  19. Superconducting composite for magnetic bearings

    International Nuclear Information System (INIS)

    Rigney, T.K. II.

    1995-01-01

    A composite includes granules of Type II superconducting material and granules of rare-earth permanent magnets that are distributed in a binder. The composite is a two-phase structure that combines the properties of the superconductor and magnets with the flexibility and toughness of a polymeric material. A bearing made from this composite has the load capacity and stiffness of a permanent magnet bearing with added stability from a Type II superconducting material. 7 figs

  20. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper, a detailed mathematical modeling of the gas bearing based on the compressible form of the Reynolds equation is presented. Perturbation theory is applied in order to identify the dynamic characteristic of the bearing. Due to the simple design of the magnetic bearings elements - being...... the rotor equilibrium position can be made independent on the rotational speed and applied load; it becomes function of the passive magnetic bearing offset. By adjusting the offset it is possible to significantly influence the dynamic coefficients of the hybrid bearing....

  1. Magnetic bearings for free-piston Stirling engines

    Science.gov (United States)

    Curwen, P. W.; Fleming, D. P.; Rao, D. K.; Wilson, D. S.

    1992-01-01

    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC.

  2. A motor with superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Gladun, A.; Stoye, P.; Verges, P.; Gawalek, W.; Habisreuther, T.; Goernert, P.

    1993-01-01

    Superconducting bearings may be one of the most promising near term applications of HTSC. For use at liquid nitrogen temperature and below, they offer the advantage of lower energy consumption and higher reliability. Different bearing configurations have been proposed. But in order to substitute for conventional bearings a further increase in the critical current density of the superconductor and improved bearing concepts are necessary. For this it is necessary to take into account the peculiarities of the interaction between permanent magnets and bulk superconductors. As a contribution to this programme we present the model of a motor with superconducting magnetic bearings. (orig.)

  3. Numerical simulation of a simple low-speed model for an electrodynamic levitation system based on a Halbach magnet array

    International Nuclear Information System (INIS)

    Iniguez, J.; Raposo, V.

    2010-01-01

    The design and analysis of a small prototype of a magnetic levitation system at low-speed using a Halbach-type magnet array is presented here. For that purpose, we have arranged a copper rim over a carbon fiber wheel, which is driven by an electric motor in presence of the magnet array, in such a manner that allows performing the experiment readily. The analysis of the system is undertaken under a two-dimensional (2D)-approach which permits computing and extending the study of our model to higher speeds. Our work is completed with a series of experimental measurements of lift and drag forces for different circumstances. Initially, the drag force is significant but after the compensation speed (when both forces balance) it slowly decreases. Conversely, the lift force becomes progressively bigger in such a manner that it attains quickly noteworthy values. We observe that the theoretical compensation speed is always minor than the experimental one and that the measured values for both forces are slightly smaller than the expected, although the main features of the experiment are well matched by our numerical simulation.

  4. Numerical simulation of a simple low-speed model for an electrodynamic levitation system based on a Halbach magnet array

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez, J., E-mail: nacho@usal.e [Departamento de Fisica Aplicada, Universidad de Salamanca, E-37071 (Spain); Raposo, V. [Departamento de Fisica Aplicada, Universidad de Salamanca, E-37071 (Spain)

    2010-05-15

    The design and analysis of a small prototype of a magnetic levitation system at low-speed using a Halbach-type magnet array is presented here. For that purpose, we have arranged a copper rim over a carbon fiber wheel, which is driven by an electric motor in presence of the magnet array, in such a manner that allows performing the experiment readily. The analysis of the system is undertaken under a two-dimensional (2D)-approach which permits computing and extending the study of our model to higher speeds. Our work is completed with a series of experimental measurements of lift and drag forces for different circumstances. Initially, the drag force is significant but after the compensation speed (when both forces balance) it slowly decreases. Conversely, the lift force becomes progressively bigger in such a manner that it attains quickly noteworthy values. We observe that the theoretical compensation speed is always minor than the experimental one and that the measured values for both forces are slightly smaller than the expected, although the main features of the experiment are well matched by our numerical simulation.

  5. Stacked magnet superconducting bearing

    International Nuclear Information System (INIS)

    Rigney, T.K. II; Saville, M.P.

    1993-01-01

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines

  6. Active magnetic bearings: As applied to centrifugal pumps

    Science.gov (United States)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-05-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  7. Novel maglev pump with a combined magnetic bearing.

    Science.gov (United States)

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.

  8. Progress of magnetic-suspension systems and magnetic bearings in the USSR

    International Nuclear Information System (INIS)

    Kuzin, A.V.

    1992-01-01

    This paper traces the development and progress of magnetic suspension systems and magnetic bearings in the USSR. The paper describes magnetic bearings for turbomachines, magnetic suspension systems for vibration isolation, some special measuring devices, wind tunnels, and other applications. The design, principles of operation, and dynamic characteristics of the system are presented

  9. TWO DIMENTIONAL STATIC MAGNETIC ANALYSIS OF RADIAL MAGNETIC BEARING SYSTEMS WITH DIFFERENT STRUCTURES

    Directory of Open Access Journals (Sweden)

    Yusuf ÖNER

    2005-03-01

    Full Text Available The friction loss of electrical machines is an important problem as like in other rotary machines. In addition, the bearings, where the friction losses occur, also require lubrication at periodic intervals and need to be maintained. In this study, to minimize the friction loss of electrical motor, two dimentional static magnetic analysis of radial magnetic bearing systems with different structures are performed and compared with each other; also, magnetic bearing system with four-pole is realized and applied to an induction motor. In simulation, the forces applied to the rotor of induction motor from designed magnetic bearing system are calculated in a computer by using FEMM software package. In application, when comparing designed magnetic bearing system with mechanical bearings up to the revolution of 350 rpm, it was observed that the loss of no-load operating condition of induction motor is decreased about 15 % with magnetic bearing system. In addition to this, mechanical noisy of the motor is also decreased considerably.

  10. Passive magnetic bearing systems stabilizer/bearing utilizing time-averaging of a periodic magnetic field

    Science.gov (United States)

    Post, Richard F.

    2017-10-03

    A high-stiffness stabilizer/bearings for passive magnetic bearing systems is provide where the key to its operation resides in the fact that when the frequency of variation of the repelling forces of the periodic magnet array is large compared to the reciprocal of the growth time of the unstable motion, the rotating system will feel only the time-averaged value of the force. When the time-averaged value of the force is radially repelling by the choice of the geometry of the periodic magnet array, the Earnshaw-related unstable hit motion that would occur at zero rotational speed is suppressed when the system is rotating at operating speeds.

  11. Fault tolerant homopolar magnetic bearings with flux invariant control

    International Nuclear Information System (INIS)

    Na, Uhn Joo

    2006-01-01

    The theory for a novel fault-tolerant 4-active-pole homopolar magnetic bearing is developed. If any one coil of the four coils in the bearing actuator fail, the remaining three coil currents change via an optimal distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. The homopolar magnetic bearing thus provides unaltered magnetic forces without any loss of the bearing load capacity even if any one coil suddenly fails. Numerical examples are provided to illustrate the novel fault-tolerant, 4-active pole homopolar magnetic bearings

  12. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    Science.gov (United States)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    An advanced thrust-measurement system utilizes active magnetic bearings to both (1) levitate a floating frame in all six degrees of freedom and (2) measure the levitation forces between the floating frame and a grounded frame. This system was developed for original use in measuring the thrust exerted by a rocket engine mounted on the floating frame, but can just as well be used in other force-measurement applications. This system offers several advantages over prior thrust-measurement systems based on mechanical support by flexures and/or load cells: The system includes multiple active magnetic bearings for each degree of freedom, so that by selective use of one, some, or all of these bearings, it is possible to test a given article over a wide force range in the same fixture, eliminating the need to transfer the article to different test fixtures to obtain the benefit of full-scale accuracy of different force-measurement devices for different force ranges. Like other active magnetic bearings, the active magnetic bearings of this system include closed-loop control subsystems, through which the stiffness and damping characteristics of the magnetic bearings can be modified electronically. The design of the system minimizes or eliminates cross-axis force-measurement errors. The active magnetic bearings are configured to provide support against movement along all three orthogonal Cartesian axes, and such that the support along a given axis does not produce force along any other axis. Moreover, by eliminating the need for such mechanical connections as flexures used in prior thrust-measurement systems, magnetic levitation of the floating frame eliminates what would otherwise be major sources of cross-axis forces and the associated measurement errors. Overall, relative to prior mechanical-support thrust-measurement systems, this system offers greater versatility for adaptation to a variety of test conditions and requirements. The basic idea of most prior active-magnetic-bearing

  13. Electromagnetic linear machines with dual Halbach array design and analysis

    CERN Document Server

    Yan, Liang; Peng, Juanjuan; Zhang, Lei; Jiao, Zongxia

    2017-01-01

    This book extends the conventional two-dimensional (2D) magnet arrangement into 3D pattern for permanent magnet linear machines for the first time, and proposes a novel dual Halbach array. It can not only effectively increase the radial component of magnetic flux density and output force of tubular linear machines, but also significantly reduce the axial flux density, radial force and thus system vibrations and noises. The book is also the first to address the fundamentals and provide a summary of conventional arrays, as well as novel concepts for PM pole design in electric linear machines. It covers theoretical study, numerical simulation, design optimization and experimental works systematically. The design concept and analytical approaches can be implemented to other linear and rotary machines with similar structures. The book will be of interest to academics, researchers, R&D engineers and graduate students in electronic engineering and mechanical engineering who wish to learn the core principles, met...

  14. Direct Model Reference Adaptive Control for a Magnetic Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Durling, Mike [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-11-01

    A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.

  15. DC Control Effort Minimized for Magnetic-Bearing-Supported Shaft

    Science.gov (United States)

    Brown, Gerald V.

    2001-01-01

    A magnetic-bearing-supported shaft may have a number of concentricity and alignment problems. One of these involves the relationship of the position sensors, the centerline of the backup bearings, and the magnetic center of the magnetic bearings. For magnetic bearings with permanent magnet biasing, the average control current for a given control axis that is not bearing the shaft weight will be minimized if the shaft is centered, on average over a revolution, at the magnetic center of the bearings. That position may not yield zero sensor output or center the shaft in the backup bearing clearance. The desired shaft position that gives zero average current can be achieved if a simple additional term is added to the control law. Suppose that the instantaneous control currents from each bearing are available from measurements and can be input into the control computer. If each control current is integrated with a very small rate of accumulation and the result is added to the control output, the shaft will gradually move to a position where the control current averages to zero over many revolutions. This will occur regardless of any offsets of the position sensor inputs. At that position, the average control effort is minimized in comparison to other possible locations of the shaft. Nonlinearities of the magnetic bearing are minimized at that location as well.

  16. Designing a magnet for magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerk, R

    2010-03-15

    This thesis investigates the design and optimization of a permanent magnet assembly for use in a magnetic refrigeration device. The heart of magnetic refrigeration is the adiabatic temperature change in the magnetocaloric material which is caused by the magnetic field. In order to design an ideal magnet assembly the magnetocaloric materials and the refrigeration process itself and their properties and performance as a function of magnetic field are investigated. For the magnetocaloric materials it is the magnetization, specific heat capacity and adiabatic temperature that are investigated as functions of the magnetic field. Following this the process utilized by a magnetic refrigerator to provide cooling is investigated using a publicly available one dimensional numerical model. This process is called active magnetic regeneration (AMR). The aim is to determine the performance of the AMR as a function of the magnetic field in order to learn the properties of the optimal magnet assembly. The performance of the AMR as a function of the synchronization and width of the magnetic field with respect to the AMR cycle, the ramp rate and maximum value of the magnetic field are investigated. Other published magnet designs used in magnetic refrigeration devices are also evaluated, using a figure of merit based on the properties of the investigated magnetocaloric materials, to learn the properties of the best magnet designs to date. Following this investigation the Halbach cylinder, which is a hollow permanent magnet cylinder with a rotating remanent flux density, is investigated in detail as it forms the basis of many magnet designs used in magnetic refrigeration. Here the optimal dimensions of a Halbach cylinder, as well as analytical calculations of the magnetic field for a Halbach cylinder of infinite length, are presented. Once it has been determined which properties are desirable for a magnet used in magnetic refrigeration the design of a new magnet is described. This is

  17. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  18. Magnetic bearings promise reduced operation and maintenance costs

    International Nuclear Information System (INIS)

    Jones, G.

    1990-01-01

    Magnetic bearings are being incorporated into the design of the US DoE modular high temperature gas cooled reactor. The virtually maintenance-free bearing technology may have potential in other nuclear applications. In an active magnetic bearing, a stationary electromagnet (stator) and a rotating ferrous material (rotor) are used to allow a shaft to be suspended in a magnetic field. The position of the shaft is maintained dynamically using position sensors to provide a continuous feedback through a control and amplifier system to the electromagnetic poles which are used to suspend the shaft. Two separate systems are required: an axial positioning system, or thrust bearing, and a pair of radial positioning systems, or journal bearings. (author)

  19. Comparison of Thrust Characteristics in Pencil Sized Cylinder-type Linear Motors with Different Magnet Arrays

    OpenAIRE

    Nakaiwa, K; Yamada, A; Tashiro, K; Wakiwaka, H

    2009-01-01

    From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.

  20. Permanent magnet design for high-speed superconducting bearings

    Science.gov (United States)

    Hull, John R.; Uherka, Kenneth L.; Abdoud, Robert G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

  1. Permanent magnet design for high-speed superconducting bearings

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

    1996-01-01

    A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs

  2. Halbach Magnets for CBETA

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-01-19

    A principle of the non-scaling Fixed Field Alternating Gradient (NS-FFAG) is that different energy beam has orbit oscillations Δx around the central circular orbit in both positive and negative direction within a small radial aperture as: Δx=Dx*δp/p. For the central circular orbit Δx=0, or for the combined function magnets the field is equal to Bo (B (x) = Bo + G* x). The smallest orbit offsets Δx are obtained when the defocusing magnet provides most of the bending for the central energy, while the focusing magnet could be even the regular quadrupole with the central orbit in the middle. Stable orbits for a very large energy range [in the case of CBETA this is 4 times in energy], is obtained using opposite polarity magnets producing linear magnetic fields, small dispersion, and very strong focusing.

  3. Halbach Magnets for CBETA

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-30

    A principle of the non-scaling Fixed Field Alternating Gradient (NS-FFAG) is that different energy beam has orbit oscillations Δx around the central circular orbit in both positive and negative direction within a small radial aperture as: Δx=Dx*δp/p. For the central circular orbit Δx=0, or for the combined function magnets the field is equal to Bo (B (x) = Bo + G*x). The smallest orbit offsets Δx are obtained when the defocusing magnet provides most of the bending for the central energy, while the focusing magnet could be even the regular quadrupole with the central orbit in the middle. Stable orbits for a very large energy range [in the case of CBETA this is 4 times in energy], is obtained using opposite polarity magnets producing linear magnetic fields, small dispersion, and very strong focusing.

  4. Axial force in a superconductor magnet journal bearing

    Science.gov (United States)

    Postrekhin, E.; Chong, Wang; Ki Bui, Ma; Chen, Quark; Chu, Wei-Kan

    Using superconductors and magnets, a journal bearing could be made from a permanent magnet cylinder in a superconductor ring. We have assembled a prototype superconductor magnet journal bearing of this configuration, and investigated the behavior of the axial force that it can provide. We have put together a numerical model of the interaction between the permanent magnet and the superconductor that is capable of describing these experimental results semi-quantitatively. Combining direct experimental measurements and using the numerical models proposed, we have achieved a qualitative understanding of the behavior of the axial force and its relationship of to the dimensions of the magnet and material quality such as the homogeneity of the superconductor that constitute the bearing.

  5. High performance magnetic bearings suitable for noise cancellation in permanent magnet motor driven pumps

    International Nuclear Information System (INIS)

    Zmood, R.; Cholewka, J.; Patak, C.; Feng, G.; Zhang, C.; Maleri, T.; Pinder, B.; McDonald, R.; Homrigh, J.

    1991-01-01

    Conventional pumps having external drive motors experience problems due to bearing noise. In addition failure of bearings and seals can lead to limited operational reliability and impaired integrity of these pumps. Pumps using DC brushless motors and magnetic bearings offer means of overcoming these problems. A design of a pump having a DC brushless motor and magnetic bearings with a potential for Naval applications in ships and submarines is discussed. In this paper attention is given to the selection of the magnetic bearings suitable for achieving active noise cancellation

  6. Magnetic Separation Using HTS Bulk Magnet for Cs-Bearing Fe precipitates

    Science.gov (United States)

    Oka, T.; Ichiju, K.; Sasaki, S.; Ogawa, J.; Fukui, S.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Aoki, S.; Ohnishi, N.

    2017-09-01

    A peculiar magnetic separation technique has been examined in order to remove the Cs-bearing Fe precipitates formed of the waste ash from the withdrawn incinerator furnaces in Fukushima. The separation system was constructed in combination with high temperature superconducting bulk magnets which generates the intensive magnetic field over 2 T, which was activated by the pulsed field magnetization process. The separation experiment has been operated with use of the newly-built alternating channel type magnetic separating device, which followed the high-gradient magnetic separation technique. The magnetic stainless steel filters installed in the water channels are magnetized by the applied magnetic fields, and are capable of attracting the precipitates bearing the Fe compound and thin Cs contamination. The experimental results clearly exhibited the positive feasibility of HTS bulk magnets.

  7. Operation and design selection of high temperature superconducting magnetic bearings

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2004-01-01

    Axial and radial high temperature superconducting (HTS) magnetic bearings are evaluated by their parameters. Journal bearings possess advantages over thrust bearings. High magnetic gradients in a multi-pole permanent magnet (PM) configuration, the surrounding melt textured YBCO stator and adequate designs are the key features for increasing the overall bearing stiffness. The gap distance between rotor and stator determines the specific forces and has a strong impact on the PM rotor design. We report on the designing, building and measuring of a 200 mm prototype 100 kg HTS bearing with an encapsulated and thermally insulated melt textured YBCO ring stator. The encapsulation requires a magnetically large-gap (4-5 mm) operation but reduces the cryogenic effort substantially. The bearing requires 3 l of LN 2 for cooling down, and about 0.2 l LN 2 h -1 under operation. This is a dramatic improvement of the efficiency and in the practical usage of HTS magnetic bearings

  8. Cryocooler applications for high-temperature superconductor magnetic bearings

    International Nuclear Information System (INIS)

    Niemann, R. C.

    1998-01-01

    The efficiency and stability of rotational magnetic suspension systems are enhanced by the use of high-temperature superconductor (HTS) magnetic bearings. Fundamental aspects of the HTS magnetic bearings and rotational magnetic suspension are presented. HTS cooling can be by liquid cryogen bath immersion or by direct conduction, and thus there are various applications and integration issues for cryocoolers. Among the numerous cryocooler aspects to be considered are installation; operating temperature; losses; and vacuum pumping

  9. Applied CATIA Secondary Development to Parametric Design of Active Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2016-01-01

    Full Text Available Based on the properties of active magnetic bearing, the electromagnetic parameters and structure parameters are analyzed, parametric design method is introduced to study the structure of active magnetic bearing. Through a program personalization process that is in accordance with active magnetic bearing is established. Personalization process aims to build the parametric model of active magnetic bearings and component library by use of CATIA secondary development. Component library is to build assembly model for a multiple degree of freedom magnetic bearing system. Parametric design is a method that provides the direction for its structural design.

  10. Experimental Contribution to High Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... validation and leads to novel approaches in identifying crucial rotor parameters. This is the main focus of this paper, where an intelligent AMB is being developed with the aim of aiding the accurate identification of damping and stiffness coefficients of active lubricated journal bearings. The main...... of the magnetic forces is conducted using different experimental tests: (a) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor, (b) by measuring the input current and bearing...

  11. Superconducting levitation applications to bearings and magnetic transportation

    CERN Document Server

    Moon, Francis C

    1994-01-01

    Presents the fundamental principles governing levitation of material bodies by magnetic fields without too much formal theory. Defines the technology of magnetic bearings, especially those based on superconductivity, and demonstrates the key roles that magnetics, mechanics and dynamics play in the complete understanding of magnetic levitation and its bearings. Features extensive figures and photos of Mag-Lev devices and summarizes recent U.S. research studies in an effort to regain the lead in Mag-Lev technologies

  12. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2006-01-01

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  13. Progress in development of high capacity magnetic HTS bearings

    International Nuclear Information System (INIS)

    Kummeth, P.; Nick, W.; Neumueller, H.-W.

    2005-01-01

    HTS magnetic bearings are inherently stable without an active feedback system. They provide low frictional losses, no wear and allow operation at high rotational speed without lubrication. So they are very promising for use in motors, generators and turbines. We designed and constructed an HTS radial bearing for use with a 400 kW HTS motor. It consists of alternating axially magnetized permanent magnet rings on the rotor and a segmented YBCO stator. Stator cooling is performed by liquid nitrogen, the temperature of the stator can be adjusted by varying the pressure in the cryogenic vessel. At 68 K maximum radial forces of more than 3.7 kN were found. These results range within the highest radial bearing capacities reported worldwide. The encouraging results lead us to develop a large heavy load HTS radial bearing. Currently a high magnetic gradient HTS bearing for a 4 MVA synchronous HTS generator is under construction

  14. Non-contacting "snubber bearing" for passive magnetic bearing systems

    Science.gov (United States)

    Post, Richard F

    2017-08-22

    A new non-contacting magnetic "snubber" bearing is provided for application to rotating systems such as vehicular electromechanical battery systems subject to frequent accelerations. The design is such that in the equilibrium position the drag force of the snubber is very small (milliwatts). However in a typical case, if the rotor is displaced by as little as 2 millimeters a large restoring force is generated without any physical contact between the stationary and rotating parts of the snubber bearing.

  15. Development of a dc motor with virtually zero powered magnetic bearing

    Science.gov (United States)

    1971-01-01

    The development of magnetic bearings for use in direct current electric motors is discussed. The characteristics of the magnets used in the construction of the bearings are described. A magnetic bearing using steel armoring on permanent magnets was selected for performance tests. The specifications of the motor are presented. The test equipment used in the evaluation is described.

  16. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  17. Superconducting magnetic bearings for machine tools. Phase 1, SBIR program. Final report

    International Nuclear Information System (INIS)

    Anastas, G.; Bennett, A.; Downer, J.; Hockney, R.

    1988-01-01

    The research was directed toward investigating the role of superconducting materials in a magnetic bearing system. Superconducting magnetic bearings are shown to offer the potential for vastly improved performance. These bearings are expected to be especially applicable to rotors which have extremely tight position tolerances. The development of superconducting magnetic bearing technology is also expected to allow a number of novel approaches in the development of machinery and systems. Researchers studied an alternative bearing design which employs a superconducting coil and eliminates all conventional magnetic structures. The study has resulted in a design definition and detailed analysis for a superconducting bearing system which is sized to roughly duplicate the air bearing system of an existing air-bearing spindle

  18. Hydrodynamic bearing lubricated with magnetic fluids

    International Nuclear Information System (INIS)

    Urreta, H; Leicht, Z; Sanchez, A; Agirre, A; Kuzhir, P; Magnac, G

    2009-01-01

    This paper summarizes the work carried out in the development of hydrodynamic lubricated journal bearings with magnetic fluids. Two different fluids have been analyzed, one ferrofluid from FERROTEC APG s10n and one magnetorheological fluid from LORD Corp., MRF122-2ED. Theoretical analysis has been carried out with numerical solutions of Reynolds equation, based on apparent viscosity modulation for ferrofluid and Bingham model for MR fluid. To validate this model, one test bench has been designed, manufactured and set up, where preliminary results shown in this paper demonstrate that magnetic fluids can be used to develop active journal bearings.

  19. A Novel Integral 5-DOFs Hybrid Magnetic Bearing with One Permanent Magnet Ring Used for Turboexpander

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2014-01-01

    Full Text Available We propose a novel combined five-degrees-of-freedom (5-DOFs hybrid magnetic bearing (HMB with only one permanent magnet ring (PMR used for turboexpanders. It has two radial magnetic bearing (RMB units; each has four poles and one thrust magnetic bearing (TMB to control 5-DOFs. Based on one PMR, the bias flux of the two radial magnetic bearing units and the one thrust magnetic bearing unit is constructed. As a result, ultra-high-speed, lower power loss, small size, and low cost can be achieved. Furthermore, the equivalent magnetic circuit method and 3D finite element method (FEM are used to model and analyze the combined 5-DOFs HMB. The force-current, force-position, torque-coil currents, the torque-angle position, and the stiffness models of the combined 5-DOFs HMB are given. Moreover, its coupling problems between the RMB units and the AMB unit are also proposed in this paper. An example is given to clarify the mathematical models and the coupling problems, and the linearized models are proposed for the follow-up controller design.

  20. High-efficiency and low-cost permanent magnet guideway consideration for high-Tc superconducting Maglev vehicle practical application

    International Nuclear Information System (INIS)

    Deng, Z; Wang, J; Zheng, J; Jing, H; Lu, Y; Ma, G; Liu, L; Liu, W; Zhang, Y; Wang, S

    2008-01-01

    In order to improve the cost performance of the present high-T c superconducting (HTS) Maglev vehicle system for practical application, the multi-pole permanent magnet guideway (PMG) concept was introduced. A well-known double-pole Halbach PMG was chosen as a representative of multi-pole PMGs to compare with traditional monopole PMGs from the point of view of levitation efficiency and cost. Experimental results show that YBCO bulks above the double-pole Halbach PMG can exhibit better load capability and guidance performance as well as dynamics stability at the applied working height between the bulk HTSC and the PMG due to a more reasonable magnetic field distribution at the working range of bulk HTSC. Furthermore, the double-pole PMG configuration can play a more important role in improving guidance performance due to the potential-well field configuration. By comparing with former 'century' PMGs, the double-pole Halbach PMG shows another remarkable advantage in reducing the cost of levitation. As another necessary issue, magnetic field homogeneity and the corresponding magnetic drag force of a double-pole Halbach PMG has been considered by experiment in spite of the above highlights. Synthetically, the multi-pole Halbach PMG design is concluded to be one important choice for future HTS Maglev vehicle applications because of its high efficiency and low cost.

  1. Comparison of Thrust Characteristics in Pencil Sized Cylinder-type Linear Motors with Different Magnet Arrays(Asia-Pacific Symposium on Applied Electromagnetics and Mechanics (APSAEM08))

    OpenAIRE

    K., Nakaiwa; A., Yamada; K., Tashiro; H., Wakiwaka; Tamagawa-Seiki Co., Ltd; Shinshu University; Shinshu University; Shinshu University

    2009-01-01

    From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.

  2. Adaptive Spindle Balancing Using Magnetically Levitated Bearings

    International Nuclear Information System (INIS)

    BARNEY, PATRICK S.; LAUFFER, JAMES P.; PETTEYS, REBECCA; REDMOND, JAMES M.; SULLIVAN, WILLIAM N.

    1999-01-01

    A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller

  3. Analysis of spatial thermal field in a magnetic bearing

    Science.gov (United States)

    Wajnert, Dawid; Tomczuk, Bronisław

    2018-03-01

    This paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.

  4. High-efficiency and low-cost permanent magnet guideway consideration for high-T{sub c} superconducting Maglev vehicle practical application

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z; Wang, J; Zheng, J; Jing, H; Lu, Y; Ma, G; Liu, L; Liu, W; Zhang, Y; Wang, S [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn

    2008-11-15

    In order to improve the cost performance of the present high-T{sub c} superconducting (HTS) Maglev vehicle system for practical application, the multi-pole permanent magnet guideway (PMG) concept was introduced. A well-known double-pole Halbach PMG was chosen as a representative of multi-pole PMGs to compare with traditional monopole PMGs from the point of view of levitation efficiency and cost. Experimental results show that YBCO bulks above the double-pole Halbach PMG can exhibit better load capability and guidance performance as well as dynamics stability at the applied working height between the bulk HTSC and the PMG due to a more reasonable magnetic field distribution at the working range of bulk HTSC. Furthermore, the double-pole PMG configuration can play a more important role in improving guidance performance due to the potential-well field configuration. By comparing with former 'century' PMGs, the double-pole Halbach PMG shows another remarkable advantage in reducing the cost of levitation. As another necessary issue, magnetic field homogeneity and the corresponding magnetic drag force of a double-pole Halbach PMG has been considered by experiment in spite of the above highlights. Synthetically, the multi-pole Halbach PMG design is concluded to be one important choice for future HTS Maglev vehicle applications because of its high efficiency and low cost.

  5. Conical Magnetic Bearings Developed for Active Stall Control in Gas Turbine Engines

    Science.gov (United States)

    Trudell, Jeffrey J.; Kascak, Albert F.; Provenza, Andrew J.; Buccieri, Carl J.

    2004-01-01

    Active stall control is a current research area at the NASA Glenn Research Center that offers a great benefit in specific fuel consumption by allowing the gas turbine to operate beyond the onset of stall. Magnetic bearings are being investigated as a new method to perform active stall control. This enabling global aviation safety technology would result in improved fuel efficiency and decreased carbon dioxide emissions, as well as improve safety and reliability by eliminating oil-related delays and failures of engine components, which account for 40 percent of the commercial aircraft departure delays. Active stall control works by perturbing the flow in front of the compressor stage such that it cancels the pressure wave, which causes the compressor to go into stall. Radial magnetic bearings are able to whirl the shaft so that variations in blade tip leakage would flow upstream causing a perturbation wave that could cancel the rotating stall cell. Axial or thrust magnetic bearings cannot be used to cancel the surge mode in the compressor because they have a very low bandwidth and thus cannot modulate at a high enough frequency. Frequency response is limited because the thrust runner cannot be laminated. To improve the bandwidth of magnetic thrust bearings, researchers must use laminations to suppress the eddy currents. A conical magnetic bearing can be laminated, resulting in increased bandwidth in the axial direction. In addition, this design can produce both radial and thrust force in a single bearing, simplifying the installation. The proposed solution combines the radial and thrust bearing into one design that can be laminated--a conical magnetic bearing. The new conical magnetic bearing test rig, funded by a Glenn fiscal year 2002 Director's Discretionary Fund, was needed because none of the existing rigs has an axial degree of freedom. The rotor bearing configuration will simulate that of the main shaft on a gas turbine engine. One conical magnetic bearing

  6. Development of a hybrid bearing using permanent magnets and piezoelectric actuators

    International Nuclear Information System (INIS)

    Park, Jung-Ho; Ham, Young-Bog; Yun, So-Nam; Lee, Hu-Seung

    2010-01-01

    In this study, a hybrid magnetic bearing with permanent magnets and piezoelectric actuators is investigated. First, in this study, a novel concept in which piezoelectric actuators are used to compensate for low stiffness and damping resulting from the unstable characteristics of a passive magnetic bearing using only permanent magnets is proposed. Secondly, the permanent magnets are optimally arranged through an electromagnetic field analysis. Then, the driving amplifier unit and a prototype radial bearing using the proposed concept are fabricated. Finally, basic characteristics, such as the results of an impact test and a rotational runout test with constant speed are investigated and discussed, and experiments using PID control method are conducted.

  7. Nonlinear dynamics of attractive magnetic bearings

    Science.gov (United States)

    Hebbale, K. V.; Taylor, D. L.

    1987-01-01

    The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.

  8. Computational Analysis of Static and Dynamic Behaviour of Magnetic Suspensions and Magnetic Bearings

    Science.gov (United States)

    Britcher, Colin P. (Editor); Groom, Nelson J.

    1996-01-01

    Static modelling of magnetic bearings is often carried out using magnetic circuit theory. This theory cannot easily include nonlinear effects such as magnetic saturation or the fringing of flux in air-gaps. Modern computational tools are able to accurately model complex magnetic bearing geometries, provided some care is exercised. In magnetic suspension applications, the magnetic fields are highly three-dimensional and require computational tools for the solution of most problems of interest. The dynamics of a magnetic bearing or magnetic suspension system can be strongly affected by eddy currents. Eddy currents are present whenever a time-varying magnetic flux penetrates a conducting medium. The direction of flow of the eddy current is such as to reduce the rate-of-change of flux. Analytic solutions for eddy currents are available for some simplified geometries, but complex geometries must be solved by computation. It is only in recent years that such computations have been considered truly practical. At NASA Langley Research Center, state-of-the-art finite-element computer codes, 'OPERA', 'TOSCA' and 'ELEKTRA' have recently been installed and applied to the magnetostatic and eddy current problems. This paper reviews results of theoretical analyses which suggest general forms of mathematical models for eddy currents, together with computational results. A simplified circuit-based eddy current model proposed appears to predict the observed trends in the case of large eddy current circuits in conducting non-magnetic material. A much more difficult case is seen to be that of eddy currents in magnetic material, or in non-magnetic material at higher frequencies, due to the lower skin depths. Even here, the dissipative behavior has been shown to yield at least somewhat to linear modelling. Magnetostatic and eddy current computations have been carried out relating to the Annular Suspension and Pointing System, a prototype for a space payload pointing and vibration

  9. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  10. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    Science.gov (United States)

    Curwen, Peter W.; Rao, Dantam K.; Wilson, Donald R.

    1992-01-01

    This report describes a design and analysis study performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061. The objective of the study was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in long-term space missions. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) system consisting of two 25-kWe free-piston Stirling engine modules. Two different versions of the RSSPC engine modules have been defined under NASA Contract NAS3-25463. These modules currently use hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Results of this study show that active magnetic bearings of the attractive electromagnetic type are technically feasible for RSSPC application provided that wire insulation with 60,000-hr life capability at 300 C can be developed for the bearing coils. From a design integration standpoint, both versions of the RSSPC were found to be conceptually amenable to magnetic support of the power piston assembly. However, only one version of the RSSPC was found to be amendable to magnetic support of the displacer assembly. Unacceptable changes to the basic engine design would be required to incorporate magnetic displacer bearings into the second version. Complete magnetic suspension of the RSSPC can potentially increase overall efficiency of the Stirling cycle power converter by 0.53 to 1.4 percent (0.15 to 0.4 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. However, these advantages are accompanied by a 5 to 8 percent increase in specific mass of the RSSPC, depending on the RSSPC version employed. Additionally, magnetic bearings are much more complex, both mechanically and particularly electronically, than hydrostatic bearings. Accordingly, long

  11. Description of CBETA magnet tuning wire holders

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-07-19

    A non-­magnetic insert will be placed directly inside the permanent magnet blocks in every CBETA Halbach magnet in order to hold a set of iron “tuning wires”. These wires have various lengths around the perimeter of the aperture in order to cancel multipole field errors from the permanent magnet blocks.

  12. R+D works for the further development of high temperature reactors. (1) Captive bearing experiments for active magnetic bearings. (2) Captive bearing test for HTR blowers

    International Nuclear Information System (INIS)

    1991-01-01

    When using active magnetic bearings as blower shaft bearings, blower motors and bearings must be protected against mechanical damage in case of faults (example: total electrical supply failure due to the supply cables breaking). So-called captive bearings are provided, in order to be able to shut the blowers down safely in such faults. These captive bearings are roller bearings which are additionally fitted in the area of the blower shaft bearings, to prevent mechanical contact between the blower rotor and stator. As there was little experience available for the given boundary conditions, such as - speed, - acceleration, - bearing load, - bearing dimensions, - ambient conditions, appropriate development and tests had to be carried out. It was important to determine suitable captive bearings and the necessary ambient conditions, which will make it possible to support the failures of the magnetic bearings to be expected in 40 years' operation of the reactor without damage and to meet the requirements of the captive bearings. (orig./GL) [de

  13. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    International Nuclear Information System (INIS)

    Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun

    2016-01-01

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems. - Highlights: • The effect of PMG configurations to levitation performances is investigated. • Bigger force and greater force decay are obtained on Halbach-type PMG. • Halbach-type PMG is not sensitive to the levitation force in various bulk arrays. • Practical issues including costs and assembly of PMGs are considered.

  14. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zigang, E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China); Qian, Nan; Che, Tong; Jin, Liwei [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China); Si, Shuaishuai [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China); School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031 (China); Zhang, Ya; Zheng, Jun [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031 (China)

    2016-12-15

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems. - Highlights: • The effect of PMG configurations to levitation performances is investigated. • Bigger force and greater force decay are obtained on Halbach-type PMG. • Halbach-type PMG is not sensitive to the levitation force in various bulk arrays. • Practical issues including costs and assembly of PMGs are considered.

  15. Active magnetic bearing for use in compressors and other turbomachinery

    International Nuclear Information System (INIS)

    Hennau, J.N.

    1989-01-01

    Active magnetic bearings and dry gas seals are now in operation on quite a number of compressors, turbines and generators, proving than an oil-free system is actually working and that furthermore, it has merits in energy savings, rotor dynamic monitoring and improved reliability. The technology of active magnetic bearing has been developed mainly in France after the Second World War for space application, but soon there appeared the large possibilities in industrial applications starting with the vacuum industry (turbomolecular pump), followed by the machine tool industry (high power and high speed milling and grinding spindles) and the large turbomachinery field (centrifugal compressors, blowers, steam and gas turbines, turbogenerators). Merits of the active magnetic bearing vary from one application to another, but they all derive from the fact that we have no contact between the rotor and the stator and that the electronic control of the bearings can cope with the rotor dynamics and provide useful information on the operating conditions

  16. The Design of a Device for the Generation of a Strong Magnetic Field in an Air Gap Using Permanent Magnets

    Czech Academy of Sciences Publication Activity Database

    Žežulka, Václav; Straka, Pavel

    2017-01-01

    Roč. 22, č. 2 (2017), s. 250-256 ISSN 1226-1750 Institutional support: RVO:67985891 Keywords : magnet ic field * permanent magnet s * NdFeB magnet s * Halbach arrays Subject RIV: BM - Solid Matter Physics ; Magnet ism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.713, year: 2016

  17. Magnetic Signature of Glacial Flour in Sediments From Bear Lake, Utah/Idaho

    Science.gov (United States)

    Rosenbaum, J. G.; Dean, W. E.; Colman, S. M.; Reynolds, R. L.

    2002-12-01

    Variations in magnetic properties within an interval of Bear Lake sediments correlative with oxygen isotope stage 2 (OIS 2) and OIS 3 provide a record of glacial flour production for the Uinta Mountains. Like sediments of the same age from Upper Klamath Lake (OR), these Bear Lake sediments have high magnetic susceptibilities (MS) relative to non-glacial-age sediments and contain well-defined millennial-scale variations in magnetic properties. In contrast to glacial flour derived from volcanic rocks surrounding Upper Klamath Lake, glacial flour derived from the Uinta Mountains and deposited in Bear Lake by the Bear River has low magnetite content but high hematite content. The relatively low MS values of younger and older non-glacial-age sediments are due entirely to dilution by non-magnetic endogenic carbonate and to the effects of sulfidic alteration of detrital Fe-oxides. Analysis of samples from streams entering Bear Lake and from along the course of the Bear River demonstrates that, in comparison to other areas of the catchment, sediment derived from the Uinta Mountains is rich in hematite (high HIRM) and aluminum, and poor in magnetite (low MS) and titanium. Within the glacial-age lake sediments, there are strong positive correlations among HIRM, Al/Ti, and fine sediment grain size. MS varies inversely with theses three variables. These relations indicate that the observed millennial-scale variations in magnetic and chemical properties arise from varying proportions of two detrital components: (1) very fine-grained glacial flour derived from Proterozoic metasedimentary rocks in the Uinta Mountains and characterized by high HIRM and low MS, and (2) somewhat coarser material, characterized by higher MS and lower HIRM, derived from widespread sedimentary rocks along the course of the Bear River and around Bear Lake. Measurement of glacial flour incorporated in lake sediments can provide a continuous history of alpine glaciation, because the rate of accumulation

  18. A constitutive model for the forces of a magnetic bearing including eddy currents

    Science.gov (United States)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  19. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    Science.gov (United States)

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Measurement procedure for CBETA Halbach Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-11-08

    The CBETA magnets will be marked by the manufacturer with two sides called “A” and “B”, as well as which part of the magnet is the “top” vertically. The significances of these sides are given in the table below.

  1. Applying Standard Industrial Components for Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Bert-Uwe Koehler

    2017-02-01

    Full Text Available With the increasing number of active magnetic bearing applications, satisfying additional requirements is becoming increasingly more important. As for every technology, moving away from being a niche product and achieving a higher level of maturity, these requirements relate to robustness, reliability, availability, safety, security, traceability, certification, handling, flexibility, reporting, costs, and delivery times. Employing standard industrial components, such as those from flexible modular motion control drive systems, is an approach that allows these requirements to be satisfied while achieving rapid technological innovation. In this article, we discuss technical and non-technical aspects of using standard industrial components in magnetic bearing applications.

  2. Experimental validation of field cooling simulations for linear superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Dias, D H N; Motta, E S; Sotelo, G G; De Andrade Jr, R, E-mail: ddias@coe.ufrj.b [Laboratorio de aplicacao de Supercondutores (LASUP), Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2010-07-15

    For practical stability of a superconducting magnetic bearing the refrigeration process must occur with the superconductor in the presence of the magnetic field (a field cooling (FC) process). This paper presents an experimental validation of a method for simulating this system in the FC case. Measured and simulated results for a vertical force between a high temperature superconductor and a permanent magnet rail are compared. The main purpose of this work is to consolidate a simulation tool that can help in future projects on superconducting magnetic bearings for MagLev vehicles.

  3. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field

    Science.gov (United States)

    Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang

    2017-06-01

    The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.

  4. Experiments on a modular magnetic refrigeration device

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Jensen, Jesper Buch; Bahl, Christian

    2012-01-01

    of different experiments. The test device is of the reciprocating type, and the magnetic field source is provided by a permanent Halbach magnet assembly with an average flux density of 1.03 Tesla. This work presents experimental results for flat plate regenerators made of gadolinium and sintered compounds...

  5. Development of REBCO HTS Magnet of Magnetic Bearing for Large Capacity Flywheel Energy Storage System

    Science.gov (United States)

    Mukoyama, Shinichi; Matsuoka, Taro; Furukawa, Makoto; Nakao, Kengo; Nagashima, Ken; Ogata, Masafumi; Yamashita, Tomohisa; Hasegawa, Hitoshi; Yoshizawa, Kazuhiro; Arai, Yuuki; Miyazaki, Kazuki; Horiuchi, Shinichi; Maeda, Tadakazu; Shimizu, Hideki

    A flywheel energy storage system (FESS) is a promising electrical storage system that moderates fluctuation of electrical power from renewable energy sources. The FESS can charge and discharge the surplus electrical power repetitively with the rotating energy. Particularly, the FESS that utilizes a high temperature superconducting magnetic bearing (HTS bearing) is lower loss than conventional FESS that has mechanical bearing, and has property of longer life operation than secondary batteries. The HTS bearing consists of a HTS bulk and double-pancake coils used 2nd generation REBCO wires. In the development, the HTS double-pancake coils were fabricated and were provided for a levitation test to verify the possibility of the HTS bearing. We successfully confirmed the magnetic field was achieved to design value, and levitation force in the configuration of one YBCO bulk and five double pan-cake coils was obtained to a satisfactory force of 39.2 kN (4 tons).

  6. Modelling and construction of a compact 500 kg HTS magnetic bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Goebel, B; Wippich, D; Riedel, T

    2005-01-01

    The progress of heavy-load HTS bearings depends on improvements in design, material quality and reliable cooling. We have constructed, manufactured and tested a 200 mm HTS journal bearing with a thermally encapsulated YBCO ring. For maximum force the larger gap due to the bearing cryostat (>4 mm) requires adjustment of the magnetic excitation pole distance and the Fe collector shim thickness. HTS material progress is obtained by top-seeded single- or multiple-grain growth which increases the averaged trapped magnetic flux density. Successful YBCO ring growth with radial c axis distribution by seeding the inner ring surface has been performed. The encapsulation ensures a substantially reduced cryogenic effort and stabilizes bearing operation at 78-79 K

  7. The Design of High Reliability Magnetic Bearing Systems for Helium Cooled Reactor Machinery

    International Nuclear Information System (INIS)

    Swann, M.; Davies, N.; Jayawant, R.; Leung, R.; Shultz, R.; Gao, R.; Guo, Z.

    2014-01-01

    The requirements for magnetic bearing equipped machinery used in high temperature, helium cooled, graphite moderated reactor applications present a set of design considerations that are unlike most other applications of magnetic bearing technology in large industrial rotating equipment, for example as used in the oil and gas or other power generation applications. In particular, the bearings are typically immersed directly in the process gas in order to take advantage of the design simplicity that comes about from the elimination of ancillary lubrication and cooling systems for bearings and seals. Such duty means that the bearings will usually see high temperatures and pressures in service and will also typically be subject to graphite particulate and attendant radioactive contamination over time. In addition, unlike most industrial applications, seismic loading events become of paramount importance for the magnetic bearings system, both for actuators and controls. The auxiliary bearing design requirements, in particular, become especially demanding when one considers that the whole mechanical structure of the magnetic bearing system is located inside an inaccessible pressure vessel that should be rarely, if ever, disassembled over the service life of the power plant. Lastly, many machinery designs for gas cooled nuclear power plants utilize vertical orientation. This circumstance presents its own unique requirements for the machinery dynamics and bearing loads. Based on the authors’ experience with machine design and supply on several helium cooled reactor projects including Ft. St. Vrain (US), GT-MHR (Russia), PBMR (South Africa), GTHTR (Japan), and most recently HTR-PM (China), this paper addresses many of the design considerations for such machinery and how the application of magnetic bearings directly affects machinery reliability and availability, operability, and maintainability. Remote inspection and diagnostics are a key focus of this paper. (author)

  8. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke, E-mail: k145676@kansai-u.ac.jp

    2013-11-15

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T{sub c} bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  9. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    International Nuclear Information System (INIS)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke

    2013-01-01

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T c bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one

  10. Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity

    Science.gov (United States)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.

    2018-05-01

    The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.

  11. A practical procedure to study the performance of a magnetic bearing

    International Nuclear Information System (INIS)

    Ahmed, Z.; Aijazi, M.K.

    2003-01-01

    A practical procedure that can help in recording, under simulated conditions, the performance of a magnetic bearing is presented. Theoretical background and practical method to record the vibrations in terms of frequency vs displacement. relationship are discussed. The magnetic bearing is subjected to mechanical vibrations using an electromagnetic vibrator powered with sinusoidal current. Frequency of the current is swept at constant rate through a selected band of interest. Bearing response picked up using an NCDT (Non Contact Displacement Transducer) is recorded on an X- Y recorder to assess its suitability for use in the machine. (author)

  12. Experimental Contribution to High-Precision Characterization of Magnetic Forces in Active Magnetic Bearings

    DEFF Research Database (Denmark)

    Kjølhede, Klaus; Santos, Ilmar

    2007-01-01

    of the magnetic forces is conducted using different experimental tests: (i) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor (ii) by measuring the input current and bearing...

  13. New displacement sensor for a hybrid magnetic bearing in liquid nitrogen

    International Nuclear Information System (INIS)

    Komori, M.; Kobayashi, H.; Shiraishi, C.

    1999-01-01

    This paper describes a newly developed displacement sensor. The displacement sensor is used for a hybrid magnetic bearing in liquid nitrogen. The principle of the displacement sensor is based on a differential transformer. The sensor is found to be useful in liquid nitrogen at 77 K (-196 C). Moreover, the sensor is applied to a hybrid magnetic bearing. The displacement sensor is found to be useful and promising

  14. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seino, H; Nagashima, K; Arai, Y [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)], E-mail: seino@rtri.or.jp

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  15. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    International Nuclear Information System (INIS)

    Seino, H; Nagashima, K; Arai, Y

    2008-01-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated

  16. A Novel Integrated Structure with a Radial Displacement Sensor and a Permanent Magnet Biased Radial Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2014-01-01

    Full Text Available In this paper, a novel integrated structure is proposed in order to reduce the axial length of the high speed of a magnetically suspended motor (HSMSM to ensure the maximum speed, which combines radial displacement sensor probes and the permanent magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the magnetic bearing, and the sensor preamplifiers are placed in the control system of the HSMSM, separate from the sensor probes. The proposed integrated structure can save space in HSMSMs, improve the working frequency, reduce the influence of temperature on the sensor circuit, and improve the stability of HSMSMs.

  17. Novel High Temperature Magnetic Bearings for Space Vehicle Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  18. Novel High Temperature Magnetic Bearings for Space Vehicle Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  19. Sudden venting test of an emergency bearing for the magnet bearing type compound molecular pump

    International Nuclear Information System (INIS)

    Hiroki, Seiji; Abe, Tetsuya; Murakami, Yoshio; Okamoto, Masatomo; Iguchi, Masashi; Nakamura, Jyunichi; Nakazeki, Tsugito.

    1995-01-01

    The vacuum evacuation system for nuclear fusion reactors bears the role of exhausting hydrogen isotopes in large quantity together with helium continuously for long hours, and as the high vacuum pumps for this purpose, the mechanical pumps which can do continuous evacuation and decrease the quantity of staying radioactive tritium, such as turbo molecular pumps and compound molecular pumps, are promising. Because of the compatibility with tritium, oil lubrication is not desirable, accordingly, the pumps with ceramic rotating vanes and magnetic bearings are demanded. As a part of the development of a magnetic bearing type mechanical pump which can be used for nuclear fusion reactors, the compound molecular pump, in which emergency bearings were incorporated, was made for trial, and the test of sudden air intrusion was carried out, as the results, various knowledges were obtained. The constitution of the testing setup, and the test results are reported. When air was injected at the pressure rise of 3.3x10 4 Pa/s from exhaust port side, after about 2.5 s, the maximum lift of 4.2x10 3 N arose. When air was injected at the pressure rise of 2.7x10 5 Pa/s from the suction part side, after about 0.4s, the maximum lift of 6.9x10 3 N arose. In the air injection alternately from the suction port and exhaust port sides, the emergency bearings functioned normally in 10 times of the test. (K.I.)

  20. Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors

    Science.gov (United States)

    Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.

    2018-01-01

    The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.

  1. An electric motor with magnetic bearings: A concept

    Science.gov (United States)

    Studer, P. A.

    1973-01-01

    Because same magnetic flux is used to control rotor as to drive it, size, weight, and power required are minimized. Constant total current keeps motor torque invarient, and absence of mechanical bearings eliminates wear and reduces frictional power loss.

  2. Dynamical analysis of a flywheel-superconducting bearing with a moving magnet support

    International Nuclear Information System (INIS)

    Sivrioglu, Selim; Nonami, Kenzo

    2003-01-01

    A lateral stiffness improvement approach based on a moving magnet support is developed to reduce the vibration of a flywheel rotor-high temperature superconductor (HTS) bearing. A flywheel rotor levitated with an HTS bearing is modelled and then analysed with a moving stator magnet placed above the rotor. A dynamic support principle is introduced based on moving the stator magnet in anti-phase with the rotor displacement for small variations. A complete dynamical equation of the flywheel rotor is derived including gyroscopic and imbalance effects. The simulation results showed that the dynamic support of the flywheel rotor with additional stator magnet movements decreases the vibration of the flywheel rotor considerably

  3. Nonlinear dynamic behaviour of a rotor-foundation system coupled through passive magnetic bearings with magnetic anisotropy - Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    In this work, the nonlinear dynamic behaviour of a vertical rigid rotor interacting with a flexible foundation by means of two passive magnetic bearings is quantified and evaluated. The quantification is based on theoretical and experimental investigation of the non-uniformity (anisotropy......) of the magnetic field and the weak nonlinearity of the magnetic forces. Through mathematical modelling the nonlinear equations of motion are established for describing the shaft and bearing housing lateral dynamics coupled via the nonlinear and non-uniform magnetic forces. The equations of motion are solved...

  4. The experimental study on efficiency improvement of turbo machinery supported with magnetic bearings

    International Nuclear Information System (INIS)

    Park, In Hwang; Park, Young Ho; Han, Dong Chul

    2007-01-01

    To implement a conventional electromagnetic bearing in small turbo machinery, it has problems such as load capacity and size. Therefore, in this paper, these problems are resolved by using a permanent magnet biased electromagnetic bearing as a thrust bearing of small turbo machinery. Because the flux path of the bearing is designed by reluctance path modulation using an electromagnet and a permanent magnet, the bearing improves upon non-linearity, power consumption, size and load capacity of a conventional electromagnetic bearing. Test rotating the shaft over 500,000DN were carried out to verify the performance of the proposed small turbo machinery. In addition, the relationships between mass flow rate and pressure rise were measured as changing the tip clearance to verify the feasibility of efficiency improvement and active surge control and these results were compared with theoretical results

  5. A One-Axis-Controlled Magnetic Bearing and Its Performance

    Science.gov (United States)

    Li, Lichuan; Shinshi, Tadahiko; Kuroki, Jiro; Shimokohbe, Akira

    Magnetic bearings (MBs) are complex machines in which sensors and controllers must be used to stabilize the rotor. A standard MB requires active control of five motion axes, imposing significant complexity and high cost. In this paper we report a very simple MB and its experimental testing. In this MB, the rotor is stabilized by active control of only one motion axis. The other four motion axes are passively stabilized by permanent magnets and appropriate magnetic circuit design. In rotor radial translational motion, which is passively stabilized, a resonant frequency of 205Hz is achieved for a rotor mass of 11.5×10-3kg. This MB features virtually zero control current and zero rotor iron loss (hysteresis and eddy current losses). Although the rotational speed and accuracy are limited by the resonance of passively stabilized axes, the MB is still suitable for applications where cost is critical but performance is not, such as cooling fans and auxiliary support for aerodynamic bearings.

  6. An optimized magnet for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction...... of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close...... to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration....

  7. An optimized magnet for magnetic refrigeration

    International Nuclear Information System (INIS)

    Bjork, R.; Bahl, C.R.H.; Smith, A.; Christensen, D.V.; Pryds, N.

    2010-01-01

    A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration.

  8. Control of Surge in Centrifugal Compressors by Active Magnetic Bearings Theory and Implementation

    CERN Document Server

    Yoon, Se Young; Allaire, Paul E

    2013-01-01

    Control of Surge in Centrifugal Compressors by Active Magnetic Bearings sets out the fundamentals of integrating the active magnetic bearing (AMB) rotor suspension technology in compressor systems, and describes how this relatively new bearing technology can be employed in the active control of compressor surge. The authors provide a self-contained and comprehensive review of rotordynamics and the fundamentals of the AMB technology. The active stabilization of compressor surge employing AMBs in a machine is fully explored, from the modeling of the instability and the design of feedback controllers, to the implementation and experimental testing of the control algorithms in a specially-constructed, industrial-size centrifugal compression system. The results of these tests demonstrate the great potential of the new surge control method developed in this text. This book will be useful for engineers in industries that involve turbocompressors and magnetic bearings, as well as for researchers and graduate students...

  9. Analysis of levitation characteristics of radial-type superconducting magnetic bearings; Rajiarugata chodendojikijikuju no fujotokusei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, H.; Takizawa, T. [NSK Ltd., Kanagawa (Japan)

    1999-11-25

    In the design of a large-scale flywheel. load capacity and bearing constants (i.e. spring and damping constants) should be accurately calculated. In this report, a newly developed analysis method for radial-type superconducting magnetic bearings (SMBs) composed of several couples of magnet rings and magnetic material spacers is described. The analysis based both on electromagnetic FEM of the magnetic field and the 2-dimensional Bean model for analysis of the magnetization of type-2 superconductors. To obtain accurate magnetization hysteresis that reflects the complex magnetic fields, a superconductor is meshed into cells and then the electromagnetic force between the magnetic fields of magnetics and the magnetization of the superconductor are calculated. Recently, computer programs which can calculate the axial load capacity of radial-type SMBs have been developed. Furthermore, programs which can calculate bearing constants are close to being completed. Calculated results on axial load capacity showed good agreement with the experimental results. (author)

  10. Topology optimized permanent magnet systems

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian; Insinga, Andrea Roberto

    2017-01-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron...... and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a ΛcoolΛcool figure of merit of 0...

  11. Basic Characteristics and Design of a Novel Hybrid Magnetic Bearing for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanjun Yu

    2016-11-01

    Full Text Available This paper proposes a five-degree-of-freedom (5-DOF hybrid magnetic bearing (HMB for direct-drive wind turbines, which can realize suspension in the 4-DOF radial and 1-DOF axial directions. Only two sets of radial control windings are employed in the proposed HMB because only one set of radial control windings can achieve the 2-DOF suspension in the radial direction. Unlike the traditional active thrust magnetic bearings, this paper uses a cylindrical rotor core without a large thrust disc in the novel HMB. The numbers of the controller, power amplifier and system volume can be reduced in the magnetic suspension system. This paper also presents the structure and basic characteristics of the proposed magnetic bearing. A precision equivalent magnetic circuit analysis of the permanent magnet ring and control magnetic field is conducted in this study, in consideration of the non-uniform distribution of magnetic density. Accordingly, the mathematical models, including the suspension force expression, are derived based on the accurate equivalent magnetic circuit. The basic principle of the structure parameter design is presented, based on the given key parameters. The accuracy of the analytical method is further validated by 3D finite element analysis.

  12. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    International Nuclear Information System (INIS)

    Tang Jiqiang; Fang Jiancheng; Ge, Shuzhi Sam

    2012-01-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  13. Design Methodology of a Dual-Halbach Array Linear Actuator with Thermal-Electromagnetic Coupling.

    Science.gov (United States)

    Eckert, Paulo Roberto; Flores Filho, Aly Ferreira; Perondi, Eduardo; Ferri, Jeferson; Goltz, Evandro

    2016-03-11

    This paper proposes a design methodology for linear actuators, considering thermal and electromagnetic coupling with geometrical and temperature constraints, that maximizes force density and minimizes force ripple. The method allows defining an actuator for given specifications in a step-by-step way so that requirements are met and the temperature within the device is maintained under or equal to its maximum allowed for continuous operation. According to the proposed method, the electromagnetic and thermal models are built with quasi-static parametric finite element models. The methodology was successfully applied to the design of a linear cylindrical actuator with a dual quasi-Halbach array of permanent magnets and a moving-coil. The actuator can produce an axial force of 120 N and a stroke of 80 mm. The paper also presents a comparative analysis between results obtained considering only an electromagnetic model and the thermal-electromagnetic coupled model. This comparison shows that the final designs for both cases differ significantly, especially regarding its active volume and its electrical and magnetic loading. Although in this paper the methodology was employed to design a specific actuator, its structure can be used to design a wide range of linear devices if the parametric models are adjusted for each particular actuator.

  14. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  15. An Overview of the Thermal Calculation and the Cooling Technology for Active Magnetic Bearing

    Science.gov (United States)

    Zhang, Li; Yu, Meiyun; Luo, Yanyan; Liu, Jun; Ren, Yafeng

    2017-10-01

    The cooling process of AMB is that the energy loss is sent out to the outside world when the system is operating. The energy loss transfers to the surrounding medium in the form of heat, which leads to raise the temperature of system components and influences the performance of the system. So it is necessary to study the internal loss of the magnetic bearing system and thermal calculation method. Three kinds of thermal calculation methods are compared, which is important for the design and calculation of cooling. At the same time, the cooling way, the cooling method, and the cooling system is summarized on the basis of cooling technology of active magnetic bearing, and the design method of the cooling system is studied. But for the active magnetic bearing system, when designing the cooling system, heat dissipation of the motor can not be ignored. It is important not only for the performance of the active magnetic bearing system and stable operation, and but also for the improvement of the cooling technology.

  16. Electrostatic stabilizer for a passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2015-11-24

    Electrostatic stabilizers are provided for passive bearing systems composed of annular magnets having a net positive stiffness against radial displacements and that have a negative stiffness for vertical displacements, resulting in a vertical instability. Further embodiments are shown of a radial electrostatic stabilizer geometry (using circuitry similar to that employed in the vertical stabilizer). This version is suitable for stabilizing radial (lateral) displacements of a rotor that is levitated by annular permanent magnets that are stable against vertical displacements but are unstable against radial displacements.

  17. Single axis controlled hybrid magnetic bearing for left ventricular assist device: hybrid core and closed magnetic circuit.

    Science.gov (United States)

    da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P

    2011-05-01

    In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Mechanical characterization of journal superconducting magnetic bearings: stiffness, hysteresis and force relaxation

    International Nuclear Information System (INIS)

    Cristache, Cristian; Valiente-Blanco, Ignacio; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco Antonio; Perez-Diaz, Jose Luis; Pato, Nelson

    2014-01-01

    Superconducting magnetic bearings (SMBs) can provide stable levitation without direct contact between them and a magnetic source (typically a permanent magnet). In this context, superconducting magnetic levitation provides a new tool for mechanical engineers to design non-contact mechanisms solving the tribological problems associated with contact at very low temperatures. In the last years, different mechanisms have been proposed taking advantage of superconducting magnetic levitation. Flywheels, conveyors or mechanisms for high-precision positioning. In this work the mechanical stiffness of a journal SMBs have been experimentally studied. Both radial and axial stiffness have been considered. The influence of the size and shape of the permanent magnets (PM), the size and shape of the HTS, the polarization and poles configuration of PMs of the journal SMB have been studied experimentally. Additionally, in this work hysteresis behavior and force relaxation are considered because they are essential for mechanical engineer when designing bearings that hold levitating axles.

  19. Improving Magnet Designs With High and Low Field Regions

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders

    2011-01-01

    A general scheme for increasing the difference in magnetic flux density between a high and a low magnetic field region by removing unnecessary magnet material is presented. This is important in, e.g., magnetic refrigeration where magnet arrays have to deliver high field regions in close proximity...... to low field regions. Also, a general way to replace magnet material with a high permeability soft magnetic material where appropriate is discussed. As an example, these schemes are applied to a two dimensional concentric Halbach cylinder design resulting in a reduction of the amount of magnet material...

  20. Research on a novel high stiffness axial passive magnetic bearing for DGMSCMG

    International Nuclear Information System (INIS)

    Sun, Jinji; Wang, Chun'e; Le, Yun

    2016-01-01

    To increase the displacement stiffness and decrease power loss of double gimbals magnetically suspended control momentum gyro (DGMSCMG), this paper researches a new structure of axial passive magnetic bearing (APMB). Different from the existing APMB, the proposed APMB is composed of segmented permanent magnets and magnetic rings. The displacement stiffness and angular stiffness expressions are derived by equivalent magnetic circuit method and infinitesimal method based on the end magnetic flux. The relationships are analyzed between stiffness and structure parameters such as length of air gap, length of permanent magnet, height of permanent magnet and end length of magnetic ring. Besides, the axial displacement stiffness measurement method of the APMB is proposed, and it verified the correctness of proposed theoretical method. The DGMSCMG prototype is manufactured and the slow-down characteristic experiment is carried out, and the experimental result reflects the low power loss feature of the APMB. - Highlights: • A novel high stiffness axial passive magnetic bearing for DGMSCMG. • The proposed APMB is composed of segmented permanent magnets and magnetic rings. • The APMB is analyzed by EMCM and infinitesimal method based on the end magnetic flux. • The axial displacement stiffness measurement method of the APMB is proposed. • The DGMSCMG is manufactured and proved the correctness of theoretical analysis.

  1. Research and development project for flywheel energy storage system using high-temperature superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Shinagawa, Jiro; Ishikawa, Fumihiko

    1996-01-01

    Recent progress in the research and development of an yttrium-based oxide high-temperature superconductor has enabled the production of a large-diameter bulk with a strong flux-pinning force. A combination of this superconductor and a permanent magnet makes it feasible to fabricate a non-contact, non-controlled superconducting magnetic bearing with a very small rotational loss. Use of the superconducting magnetic bearing for a flywheel energy storage system may pave the way to the development of a new energy storage system that has great energy storage efficiency. >From relevant data measured with a miniature model of the high-temperature superconducting magnetic bearing, a conceptual design of an 8 MWh flywheel energy storage system was developed, using the new bearing which proved to be potentially capable of achieving a high energy storage efficiency of 84%. A 100 Wh-class experimental system was install that attained a high revolution rate of 17.000 rpm. (author)

  2. Modeling and analysis of mover gaps in tubular moving-magnet linear oscillating motors

    Directory of Open Access Journals (Sweden)

    Xuesong LUO

    2018-05-01

    Full Text Available A tubular moving-magnet linear oscillating motor (TMMLOM has merits of high efficiency and excellent dynamic capability. To enhance the thrust performance, quasi-Halbach permanent magnet (PM arrays are arranged on its mover in the application of a linear electro-hydrostatic actuator in more electric aircraft. The arrays are assembled by several individual segments, which lead to gaps between them inevitably. To investigate the effects of the gaps on the radial magnetic flux density and the machine thrust in this paper, an analytical model is built considering both axial and radial gaps. The model is validated by finite element simulations and experimental results. Distributions of the magnetic flux are described in condition of different sizes of radial and axial gaps. Besides, the output force is also discussed in normal and end windings. Finally, the model has demonstrated that both kinds of gaps have a negative effect on the thrust, and the linear motor is more sensitive to radial ones. Keywords: Air-gap flux density, Linear motor, Mover gaps, Quasi-Halbach array, Thrust output, Tubular moving-magnet linear oscillating motor (TMMLOM

  3. DESIGN AND APPLICATION OF MAGNETIC BEARING SUSPENSION SYSTEM IN A THREE PHASE INDUCTION MOTOR

    Directory of Open Access Journals (Sweden)

    Osman GÜRDAL

    1998-03-01

    Full Text Available The current popularity of suspension and levitation stems no doubt the possibilities in high-speed ground transportation schemes. Although these are both challenging and exciting, there is considerable scope for application of suspension techniques to achieving frictionless bearing. The requirement in this case is often for close tolerances, low power consumption, small airgaps and ingeneral, compactness. Thus, magnetic suspension using DC electromagnets schemes have received more attention than the other techniques of repulsion levitation. Proposed prototype system consists of a conventional stator and its rotor without iron core, set of electromagnets for suspension of rotor shaft and set of compensation circuits feedbacked by optical-transducers. Prototyped system is aimed as a laboratory demonstration tool so there is no challenging to exceed the speeds of 1500 rev/min that is the speed of motor with mechanical bearings. Magnetic bearing suspension system provides a high impact visual demonstration of many principles in undergraduate educational programs in electrical education, e.g., electromagnetic design, PD controlled compensation of a unstable control system and power amplifier design. The system is capable of giving a good comparison between mechanical and magnetic bearing up to speeds 350 rev/min. Power losses without load show about 15% reduction with magnetic bearing. The noise of the motor is also decreased to a low level.

  4. Vacuum chamber-free centrifuge with magnetic bearings.

    Science.gov (United States)

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  5. Redundant unbalance compensation of an active magnetic bearing system

    Science.gov (United States)

    Hutterer, Markus; Kalteis, Gerald; Schrödl, Manfred

    2017-09-01

    To achieve a good running behavior of a magnetic levitated rotor, a well-developed position controller and different compensation methods are required. Two very important structures in this context are the reduction of the gyroscopic effect and the unbalance vibration. Both structures have in common that they need the angular velocity information for calculation. For industrial applications this information is normally provided by an angle sensor which is fixed on the rotor. The angle information is also necessary for the field oriented control of the electrical drive. The main drawback of external position sensors are the case of a breakdown or an error of the motor controller. Therefore, the magnetic bearing can get unstable, because no angular velocity information is provided. To overcome this problem the presented paper describes the development of a selfsensing unbalance rejection in combination with a selfsensing speed control of the motor controller. Selfsensing means in this context that no angle sensor is required for the unbalance or torque control. With such structures two redundant speed and angle information sources are available and can be used for the magnetic bearing and the motor controller without the usage of an angle sensor.

  6. Magnetic bearing flywheels for electric storage

    Energy Technology Data Exchange (ETDEWEB)

    Poubeau, P C

    1981-01-01

    A magnetic bearing flywheel was designed. In order to have a simple, reliable system, magnetic suspension with a single servoloop for one degree of freedom of the rotor was used, four other degrees of freedom being controlled passively and the sixth one, corresponding to the rotation axis. The motor that transfers electric energy to the rotor is of the ironless brushless dc type with electronic commutation. It is operated alternatively for accelerating the wheel and then as a generator for delivering the stored energy. The use of high stress composite materials in the rotor greatly increases the operational limits of this equipment. Key characteristics of kinetic energy storage are mentioned along with a wide range of applications. Besides energy storage for satellites, these include power smoothing for solar and wind energy systems as well as backup power supplies, e.g., for electric vehicles.

  7. Direct measurements of the magnetic entropy change

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Neves Bez, Henrique; von Moos, Lars

    2015-01-01

    An experimental device that can accurately measure the magnetic entropy change, Δs, as a function of temperature, T, and magnetic field, H, is presented. The magnetic field source is in this case a set of counter-rotating concentric Halbach-type magnets, which produce a highly homogeneous applied...... to the ambient are negligible in terms of the calorimetric determination of the magnetic entropy change, while the losses cannot be ignored when correcting for the actual sample temperature. We apply the device to two different types of samples; one is commercial grade Gd, i.e., a pure second-order phase...

  8. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    International Nuclear Information System (INIS)

    Ohashi, S.; Kobayashi, S.

    2009-01-01

    Magnetic levitation using the pinning force of the YBaCuO high-T c bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  9. A superconducting magnetic gear

    International Nuclear Information System (INIS)

    Campbell, A M

    2016-01-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844–46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further. (paper)

  10. Topology optimized permanent magnet systems

    Science.gov (United States)

    Bjørk, R.; Bahl, C. R. H.; Insinga, A. R.

    2017-09-01

    Topology optimization of permanent magnet systems consisting of permanent magnets, high permeability iron and air is presented. An implementation of topology optimization for magnetostatics is discussed and three examples are considered. The Halbach cylinder is topology optimized with iron and an increase of 15% in magnetic efficiency is shown. A topology optimized structure to concentrate a homogeneous field is shown to increase the magnitude of the field by 111%. Finally, a permanent magnet with alternating high and low field regions is topology optimized and a Λcool figure of merit of 0.472 is reached, which is an increase of 100% compared to a previous optimized design.

  11. A feasibility assessment of magnetic bearings for free-piston Stirling space power converters

    International Nuclear Information System (INIS)

    Curwen, P.W.; Rao, D.K.; Wilson, D.S.

    1992-06-01

    This report describes work performed by Mechanical Technology Incorporated (MTI) under NASA Contract NAS3-26061, open-quotes A Feasibility Assessment of Magnetic Bearings for Free-Piston Stirling Space Engines.close quotes The work was performed over the period from July 1990 through August 1991. The objective of the effort was to assess the feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery of the type currently being evaluated for possible use in future long-term space missions

  12. Program for tests on magnetic bearing suspended rotor dynamics for gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Kunitomi, Kazuhiko; Kosugiyama, Shinichi; Yan, Xing

    2003-01-01

    A program for test on rotor dynamics was planned for the turbo-machine of the Gas Turbine High Temperature Reactor (GTHTR300). The rotor system of the turbo-machine consists of a turbo-compressor rotor and a generator rotor connected with a flexible coupling, each suspended with two radial magnetic bearings. The rotors, which are flexible rotors, pass over the critical speeds of bending mode. The magnetic bearing is required to have a high load capacity, about 10 times larger than any built thus far to support a flexible rotor. In the rotor design, the standard limit of the vibration amplitude of 75 μm at the rated rotational speed of 3,600 rpm was fulfilled by optimizing the stiffness of the magnetic bearings. A test apparatus was designed to verify the design of the magnetic bearing suspended turbo-machine rotor of the GTHTR300. The test apparatus is composed of 1/3-scale test rotors, which are connected with a flexible coupling and driven by a variable speed motor. The test magnetic bearing was designed within the state-of-the-art technology to have a load capacity about 1/10 of that of the actual one. The test rotors were designed to closely simulate the critical speeds and vibration modes of the actual ones. This paper shows the test apparatus and the test plan for the magnetic bearing suspended rotor system. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  13. Numerical analysis of magnetically suspended rotor in HTR-10 helium circulator being dropped into auxiliary bearings

    International Nuclear Information System (INIS)

    Zhao Jingxiong; Yang Guojun; Li Yue; Yu Suyuan

    2012-01-01

    Active magnetic bearings (AMB) have been selected to support the rotor of primary helium circulator in commercial 10 Mega-Walt High Temperature Gas-cooled Reactor (HTR-10). In an AMB system, the auxiliary bearings are necessary to protect the AMB components in case of losing power. This paper performs the impact simulation of Magnetically Suspended Rotor in HTR-10 Helium Circulator being dropped into the auxiliary bearings using the finite element program ABAQUS. The dynamic response and the strain field of auxiliary bearings are analyzed. The results achieved by the numerical analysis are in agreement with the experiment results. Therefore, the feasibility of the design of auxiliary bearing and the possibility of using the AMB system in the HTR are proved. (authors)

  14. Permanent-magnet helical undulator for a millimeter-wave free electron laser

    International Nuclear Information System (INIS)

    Lee, Jongmin; Jeong, Young-Uk; Lee, Byung-Cheol; Kim, Sun-Kook; Cho, Sung-Oh

    1995-01-01

    Permanent-magnet helical undulator for a millimeter-wave free-electron laser was designed and constructed. The configuration of the undulator is based on bifilar-type permanent-magnet helical undulator and Halbach-type planar undulator. This new configuration shows enhanced magnetic field and low field error. Period, total length and peak magnetic-field amplitude of the undulator is 36 mm, 900 mm and 1.44 kG, respectively. Adiabatic tapering of the magnetic field in end sides of the undulator was achieved using stepped soft-iron tubes. (author)

  15. The thermodynamic properties of a new type catcher bearing used in active magnetic bearings system

    International Nuclear Information System (INIS)

    Jin, Chaowu; Zhu, Yili; Xu, Longxiang; Xu, Yuanping; Zheng, Yantong

    2015-01-01

    Normally a rotor levitated by active magnetic bearings (AMBs) system would rotate without contacting with any stator component, but the possibility still remains that the supporting force might lose temporarily or permanently, thus requiring the Catcher bearings (CBs) to provide backup protection in case of the failure of AMBs. A new type CB with two separate rolling element bearing series could have the speed distribution between the inner race and intermediate race according to certain ratio, in which the speed of each roller element bearing decreases with the limit speed of the whole CB increasing, offering high capability to sustain its initial rotation speed. Based on the theory of heat transfer, tribology, and rotor dynamics, this paper analyzes the thermal structure of double-decker catcher bearing (DDCB) and single-decker catcher bearing (SDCB), respectively. Through this structure, the thermal resistances and equations of heat transfer can be obtained. Then we calculate the friction heat and temperature distribution in the various CBs upon rotor's dropping on SDCB or DDCB, followed by the discussion on the CBs temperature rise's effects on lubrication conditions and rotor dynamics parameters. Finally various experiments are carried out to measure the temperature rise of different CBs. The results obtained validate the theoretical analysis and also provide main methods to reduce heat generation. Using DDCB is proved to be effective to reduce the temperature rise. - Highlights: • The DDCB is a more suitable catcher bearing for AMBs. • Compared to SDCB, using DDCB, the temperature rise can decrease in the same states. • A lower viscosity of lubricant may induce a lower temperature rise. • The inner raceway temperature of the first layer bearing is the highest. • Reducing the unbalance mass of the rotor is a method to decrease the temperature rise

  16. Comparing superconducting and permanent magnets for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein; Bahl, C. R. H.

    2016-01-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoidwith a permanent magnet (PM) Halbach cylinder for magnetic refrigeration.Assuming a five liter active magnetic regenerator volume, the price of each type ofmagnet is determined as a function of aspect ratio...... of the regenerator and desiredinternal magnetic field. It is shown that to produce a 1 T internal field in theregenerator a permanent magnet of hundreds of kilograms is needed or an area ofsuperconducting tape of tens of square meters. The cost of cooling the SC solenoidis shown to be a small fraction of the cost...... of the SC tape. Assuming a cost ofthe SC tape of 6000 $/m2 and a price of the permanent magnet of 100 $/kg, thesuperconducting solenoid is shown to be a factor of 0.3-3 times more expensive thanthe permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspectratio of the regenerator...

  17. Development of Y-Ba-Cu-O Superconductors for Magnetic Bearings

    Science.gov (United States)

    Selvamanickam, V.; Pfaffenbach, K.; Sokolowski, R. S.; Zhang, Y.; Salama, K.

    1996-01-01

    The material requirements, material manufacturing and magnetic properties that are relevant to fabrication of High Temperature Superconductor (HTS) magnetic bearings have been discussed. It is found that the seeded-melt-texturing method can be used to fabricate the single domain material that is required to achieve the best magnetic properties. Trapped-field mapping has been used as a non-destructive tool to determine the single-domain nature of the HTS material and quantity of the HTS disks. Both the trapped field and the levitation force of the Y-Ba-Cu-O disks are found to be strongly sensitive to the oxygen content.

  18. Numerical analysis of fundamental characteristics of superconducting magnetic bearings for a polarization modulator

    International Nuclear Information System (INIS)

    Terachi, Yusuke; Terao, Yutaka; Ohsaki, Hiroyuki; Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Utsunomiya, Shin; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We have carried out numerical analysis of mechanical properties of a superconducting magnetic bearing (SMB). A contactless bearing operating at below 10 K with low rotational energy loss is an attractive feature to be used as a rotational mechanism of a polarization modulator for a cosmic microwave background experiment. In such application, a rotor diameter of about 400 mm forces us to employ a segmented magnet. As a result, there is inevitable spatial gap between the segments. In order to understand the path towards the design optimizations, 2D and 3D FEM analyses were carried out to examine fundamental characteristics of the SMBs for a polarization modulator. Two axial flux type SMBs were dealt with in the analysis: (a) the SMB with axially magnetized permanent magnets (PMs), and (b) the SMB with radially magnetized PMs and steel components for magnetic flux paths. Magnetic flux lines and density distributions, electromagnetic force characteristics, spring constants, etc. were compared among some variations of the SMBs. From the numerical analysis results, it is discussed what type, configuration and design of SMBs are more suitable for a polarization modulator. (paper)

  19. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  20. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jose V., E-mail: josev.mathew@gmail.com; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-11-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  1. An improved permanent magnet quadrupole design with larger good field region for high intensity proton linacs

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2013-01-01

    The Low Energy High Intensity Proton Accelerator (LEHIPA), being developed at the Bhabha Atomic Research Centre (BARC) will produce a 20 MeV, 30 mA, continuous wave (CW) proton beam. At these low velocities, space-charge forces dominate, and could lead to larger beam sizes and beam halos. Hence in the design of the focusing lattice of the LEHIPA drift tube linac (DTL) using permanent magnet quadrupoles (PMQs), a larger good field region is preferred. Here we study, using the two dimensional (2D) and three dimensional (3D) simulation codes PANDIRA and RADIA, four different types of cylindrical PMQ designs: 16-segment trapezoidal Halbach configuration, bullet-nosed geometry and 8- and 16-segment rectangular geometries. The trapezoidal Halbach geometry is used in a variety of accelerators since it provides very high field gradients in small bores, while the bullet-nosed geometry, which is a combination of the trapezoidal and rectangular designs, is used in some DTLs. This study shows that a larger good field region is possible in the 16-segment rectangular design as compared to the Halbach and bullet-nosed designs, making it more attractive for high-intensity proton linacs. An improvement in good-field region by ∼16% over the Halbach design is obtained in the optimized 16-segment rectangular design, although the field gradient is lower by ∼20%. Tolerance studies show that the rectangular segment PMQ design is substantially less sensitive to the easy axis orientation errors and hence will be a better choice for DTLs. -- Highlights: • An improved permanent magnet quadrupole (PMQ) design with larger good field region is proposed. • We investigate four PMQ designs, including the widely used Halbach and bullet nosed designs. • Analytical calculations are backed by 2D as well as 3D numerical solvers, PANDIRA and RADIA. • The optimized 16 segment rectangular PMQ design is identified to exhibit the largest good field region. • The effect of easy axis orientation

  2. Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho

    Science.gov (United States)

    Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.

    2009-01-01

    A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7

  3. Performance of Infinitely Wide Parabolic and Inclined Slider Bearings Lubricated with Couple Stress or Magnetic Fluids

    Science.gov (United States)

    Oladeinde, Mobolaji Humphrey; Akpobi, John Ajokpaoghene

    2011-10-01

    The hydrodynamic and magnetohydrodynamic (MHD) lubrication problem of infinitely wide inclined and parabolic slider bearings is solved numerically using the finite element method. The bearing configurations are discretized into three-node isoparametric quadratic elements. Stiffness integrals obtained from the weak form of the governing equations are solved using Gauss quadrature to obtain a finite number of stiffness matrices. The global system of equations obtained from enforcing nodal continuity of pressure for the bearings are solved using the Gauss-Seidel iterative scheme with a convergence criterion of 10-10. Numerical computations reveal that, when compared for similar profile and couple stress parameters, greater pressure builds up in a parabolic slider compared to an inclined slider, indicating a greater wedge effect in the parabolic slider. The parabolic slider bearing is also shown to develop a greater load capacity when lubricated with magnetic fluids. The superior performance of parabolic slider bearing is more pronounced at greater Hartmann numbers for identical bearing structural parameters. It is also shown that when load carrying capacity is the yardstick for comparison, the parabolic slider bearings are superior to the inclined bearings when lubricated with couple stress or magnetic lubricants.

  4. Energy efficiency high speed drives with magnetic bearings; Energieeffizienz durch schnell drehende, magnetgelagerte Antriebe

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Matthias [LEViTEC GmbH, Lahnau (Germany)

    2011-07-01

    In modern purification plans the contamination of the wastewater are biologically removed by supplying oxygen. The clarifier is ventilated by compressors around the clock and approximately 60% of the total energy consumption is used for that. It enables a great opportunity for saving energy. This contribution shows that the use of magnetic centrifugal compressors with high-speed drives leads to significant reduction of energy consumption. In addition, the drive is, due to contact free the magnetic bearings, practically wear- and maintenance-free. By the use of integrated sensors in the magnetic bearings a continuous monitoring of the compressor is implemented. Consequently this drive concept provides not only more efficiency and less energy consumption, but also leads to a higher plant availability. (orig.)

  5. A novel permanent maglev rotary LVAD with passive magnetic bearings.

    Science.gov (United States)

    Qian, K X; Yuan, H Y; Zeng, P; Ru, W M

    2005-01-01

    It has been widely acknowledged that permanent maglev cannot achieve stability; however, the authors have discovered that stable permanent maglev is possible under the effect of a combination of passive magnetic and nonmagnetic forces. In addition, a rotary left ventricular assist device (LVAD) with passive magnetic bearings has been developed. It is a radially driven impeller pump, having a rotor and a stator. The rotor consists of driven magnets and impeller; the motor coil and pump housing form the stator. Two passive magnetic bearings counteract the attractive force between motor coil iron core and rotor magnets; the rotor thereafter can be disaffiliated from the stator and become levitated under the action of passive magnetic and haemodynamic forces. Because of the pressure difference between the outlet and the inlet of the pump, there is a small flow passing through the gap of rotor and stator, and then entering the lower pressure area along the central hole of the rotor. This small flow comes to a full washout of all blood contacting surfaces in the motor. Moreover, a decreased Bernoulli force in the larger gap with faster flow produces a centring force that leads to stable levitation of the rotor. Resultantly, neither mechanical wear nor thrombosis will occur in the pump. The rotor position detection reveals that the precondition of levitation is a high rotating speed (over 3250 rpm) and a high flow rate (over 1 l min(-1)). Haemodynamic tests with porcine blood indicate that the device as a LVAD requires a rotating speed between 3500 and 4000 rpm for producing a blood flow of 4 - 6 l min(-1) against 100 mmHg mean pressure head. The egg-sized device has a weight of 200 g and an O.D. of 40 mm at its largest point.

  6. Optimal design of a double-sided linear motor with a multi-segmented trapezoidal magnet array for a high precision positioning system

    International Nuclear Information System (INIS)

    Lee, Moon G.; Gweon, Dae-Gab

    2004-01-01

    A comparative analysis is performed for linear motors adopting conventional and multi-segmented trapezoidal (MST) magnet arrays, respectively, for a high-precision positioning system. The proposed MST magnet array is a modified version of a Halbach magnet array. The MST array has trapezoidal magnets with variable shape and dimensions while the Halbach magnet array generally has a rectangular magnet with identical dimensions. We propose a new model that can describe the magnetic field resulting from the complex-shaped magnets. The model can be applied to both MST and conventional magnet arrays. Using the model, a design optimization of the two types of linear motors is performed and compared. The magnet array with trapezoidal magnets can produce more force than one with rectangular magnets when they are arrayed in a linear motor where there is a yoke with high permeability. After the optimization and comparison, we conclude that the linear motor with the MST magnet array can generate more actuating force per volume than the motor with the conventional array. In order to satisfy the requirements of next generation systems such as high resolution, high speed, and long stroke, the use of a linear motor with a MST array as an actuator in a high precision positioning system is recommended from the results obtained here

  7. Laminated track design for inductrack maglev systems

    Science.gov (United States)

    Post, Richard F.

    2004-07-06

    A magnet configuration comprising a pair of Halbach arrays magnetically and structurally connected together are positioned with respect to each other so that a first component of their fields substantially cancels at a first plane between them, and a second component of their fields substantially adds at this first plane. A track is located between the pair of Halbach arrays and a propulsion mechanism is provided for moving the pair of Halbach arrays along the track. When the pair of Halbach arrays move along the track and the track is not located at the first plane, a current is induced in the windings and a restoring force is exerted on the pair of Halbach arrays.

  8. Five degree-of-freedom control of an ultra-precision magnetically-suspended linear bearing. Ph.D. Thesis - MIT

    Science.gov (United States)

    Trumper, David L.; Slocum, A. H.

    1991-01-01

    The authors constructed a high precision linear bearing. A 10.7 kg platen measuring 125 mm by 125 mm by 350 mm is suspended and controlled in five degrees of freedom by seven electromagnets. The position of the platen is measured by five capacitive probes which have nanometer resolution. The suspension acts as a linear bearing, allowing linear travel of 50 mm in the sixth degree of freedom. In the laboratory, this bearing system has demonstrated position stability of 5 nm peak-to-peak. This is believed to be the highest position stability yet demonstrated in a magnetic suspension system. Performance at this level confirms that magnetic suspensions can address motion control requirements at the nanometer level. The experimental effort associated with this linear bearing system is described. Major topics are the development of models for the suspension, implementation of control algorithms, and measurement of the actual bearing performance. Suggestions for the future improvement of the bearing system are given.

  9. Study on designing of hexapole magnet of ECR ion source

    CERN Document Server

    Sun Liang Ting; Zhao Hong, Wei

    2004-01-01

    Detailed research has been done on the aspects of the design of a Halbach structure permanent hexapole, such as the permanent material adoption, the structure design, the dimension selection, etc. A possible method has been proposed to solve the problem of demagnetization in some magnetic blocks. By optimizing the geometry structure, the magnetic field in the working aperture is made to be the maximum for a certain condition. Some useful codes like POISSON, PERMAG, and TOSCA are used to simulate the sextuple magnetic field. Some useful plots are also presented.

  10. Study of superconducting magnetic bearing applicable to the flywheel energy storage system that consist of HTS-bulks and superconducting-coils

    International Nuclear Information System (INIS)

    Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko

    2010-01-01

    The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.

  11. Concurrent use of magnetic bearings for rotor support and force sensing for the nondestructive evaluation of manufacturing processes

    Science.gov (United States)

    Kasarda, Mary; Imlach, Joseph; Balaji, P. A.; Marshall, Jeremy T.

    2000-06-01

    Active magnetic bearings are a proven technology in turbomachinery applications and they offer considerable promise for improving the performance of manufacturing processes. The Active Magnetic Bearing (AMB) is a feedback mechanism that supports a spinning shaft by levitating it in a magnetic field. AMBs have significantly higher surface speed capability than rolling element bearings and they eliminate the potential for product contamination by eliminating the requirement for bearing lubrication. In addition, one of the most promising capabilities for manufacturing applications is the ability of the AMB to act concurrently as both a support bearing and non-invasive force sensor. The feedback nature of the AMB allows for its use as a load cell to continuously measure shaft forces necessary for levitation based on information about the magnetic flux density in the air gaps. This measurement capability may be exploited to improve the process control of such products as textile fibers and photographic films where changes in shaft loads may indicate changes in product quality. This paper discusses the operation of AMBs and their potential benefits in manufacturing equipment along with results from research addressing accurate AMB force sensing performance in field applications. Specifically, results from the development of enhanced AMB measurement algorithms to better account for magnetic fringing and leakage effects to improve the accuracy of this technique are presented. Results from the development of a new on-line calibration procedure for robust in-situ calibration of AMBs in a field application such as a manufacturing plant scenario are also presented including results of Magnetic Finite Element Analysis (MFEA) verification of the procedure.

  12. Development of active magnetic bearings and ferrofluid seals toward oil free sodium pumps

    International Nuclear Information System (INIS)

    Sreedhar, B.K.; Kumar, R. Nirmal; Sharma, Prashant; Ruhela, Shivprakash; Philip, John; Sundarraj, S.I.; Chakraborty, N.; Mohana, M.; Sharma, Vijay; Padmakumar, G.; Nashine, B.K.; Rajan, K.K.

    2013-01-01

    Sodium centrifugal pumps employ conventional oil cooled bearings and mechanical seals to support the rotor assembly outside sodium and to seal the cover gas from the atmosphere. Although engineered safety features are incorporated in the design and detailed operational procedures formulated to ensure that no oil contamination of sodium can occur, there have been incidents of oil ingress into sodium. A design variant that eliminates the need for oil in top bearings and seals is therefore a promising option. This paper discusses the work in progress to develop a magnetic bearing and ferrofluid seal combination that can achieve this purpose

  13. Force characteristic analysis of a magnetic gravity compensator with annular magnet array for magnetic levitation positioning system

    Science.gov (United States)

    Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao

    2018-05-01

    Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.

  14. Analysis and Optimization of a Novel 2-D Magnet Array with Gaps and Staggers for a Moving-Magnet Planar Motor

    Science.gov (United States)

    Chen, Xuedong; Zeng, Lizhan

    2018-01-01

    This paper presents a novel 2-D magnet array with gaps and staggers, which is especially suitable for magnetically levitated planar motor with moving magnets. The magnetic flux density distribution is derived by Fourier analysis and superposition. The influences of gaps and staggers on high-order harmonics and flux density were analyzed, and the optimized design is presented. Compared with the other improved structures based on traditional Halbach magnet arrays, the proposed design has the lowest high-order harmonics percentage, and the characteristics of flux density meet the demand of high acceleration in horizontal directions. It is also lightweight and easy to manufacture. The proposed magnet array was built, and the calculation results have been verified with experiment. PMID:29300323

  15. Sliding bearing diagnosis with magnetic field measuring; Gleitlagerdiagnose mittels Magnetfeldmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, H. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik; Kluth, T. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik

    1995-09-01

    Account of their properties sliding bearings are in high demanded and important aggregats. The destruction of a bearing will be almost followed by the destruction of the aggregate. Various methods are existing for sliding bearing diagnosis. This methods often not permit the condition recognition. A new electromagnetical method will be developed. This method permits the condition recognition during working time of the aggregate. It also permits the recognition of wear. The method bases on a measuring of leak current over measuring the generated magnetic fields with Rogowski-coils. (orig.) [Deutsch] Gleitlager befinden sich wegen ihrer Eigenschaften in hoch beanspruchten und exponierten Aggregaten. Die Zerstoerung eines Gleitlagers fuehrt meist auch zur Zerstoerung des gefuehrten Aggregats. Zur Gleitlagerdiagnose existiert eine Reihe Verfahren. Ihnen wird ein elektromagnetisches Verfahren gegenuebergestellt. Damit koennen Gleitlagerzustaende waehrend des Aggregatebetriebs identifiziert werden. Das Verfahren erlaubt gleichermassen die Bestimmung des Lagerverschleisses. Es basiert auf der Ableitstrommessung, bei der sich ausbildende Magnetfelder durch Rogowskispulen ausgemessen werden. (orig.)

  16. Rotation loss characteristics of superconducting magnetic bearings; Chodendo jikijikuju no kaiten sonshitsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Kameno, H.; Miyagawa, Y.; Takahata, R.; Ueyama, H. [Koyo Seiko Co., Ltd., Osaka (Japan)

    1999-11-25

    In order to clarify the rotation loss and levitation force reduction characteristics of two kinds of radial and axial-type superconducting magnetic bearings (SMB) consisting of a ring-shaped YBCO and a permanent magnet composite, we measured rotation losses and levitation forces of each SMB with a new rotation-loss measuring device using active magnetic bearings. The rotation loss of the SMB increased with increased initial load of the SMB. The levitation force of the SMB decreased remarkably just after activating the initial load to the SMB and during acceleration of the rotor suspended by the SMB. The reduction in levitation force was improved by means of applying a pre-load, that means a temporary load, before the initial load against the SMB. But the rotation loss of the SMB was increased as pre-load was increased. When the YBCO was cooled down from 77 to 66 K, the rotation loss of the SMB decreased as the temperature of the SC decreased. (author)

  17. Development of an Anti-Vibration Controller for Magnetic Bearing Cooling Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a program to develop a vibration-free reverse-Brayton cycle cooling system using specially-tuned magnetic bearings. Such a system is critical...

  18. Comparing superconducting and permanent magnets for magnetic refrigeration

    Directory of Open Access Journals (Sweden)

    R. Bjørk

    2016-05-01

    Full Text Available We compare the cost of a high temperature superconducting (SC tape-based solenoid with a permanent magnet (PM Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 $/m2 and a price of the permanent magnet of 100 $/kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  19. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    Science.gov (United States)

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  20. Determining the minimum mass and cost of a magnetic refrigerator

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Smith, Anders; Bahl, Christian Robert Haffenden

    2011-01-01

    An expression is determined for the mass of the magnet and magnetocaloric material needed for a magnetic refrigerator and these are determined using numerical modeling for both parallel plate and packed sphere bed regenerators as function of temperature span and cooling power. As magnetocaloric......, respectively, the cheapest 100 W parallel plate refrigerator with a temperature span of 20 K using Gd and a Halbach magnet has 0.8 kg of magnet, 0.3 kg of Gd and a cost of $35. Using the constant material reduces this cost to $25. A packed sphere bed refrigerator with the constant material costs $7. It is also...

  1. Nonuniform radiation damage in permanent magnet quadrupoles.

    Science.gov (United States)

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  2. Nonuniform radiation damage in permanent magnet quadrupoles

    International Nuclear Information System (INIS)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-01-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components

  3. Nonuniform radiation damage in permanent magnet quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  4. Comparison of lattice preferred orientation and magnetic fabric of a chloritoid-bearing slate

    Science.gov (United States)

    Haerinck, Tom; Wenk, Hans-Rudolf; Debacker, Timothy N.; Sintubin, Manuel

    2014-05-01

    A regional analysis of the anisotropy of the magnetic susceptibility (AMS) on chloritoid-bearing slates of the Paleozoic Plougastel Formation in the low-grade metamorphic conditions (epizonal) of the Monts d'Arrée slate belt in Central Armorica (Brittany, France) reveals very high values for the degree of anisotropy (PJ), up to 1.43 (Haerinck et al. 2013a). In contrast, stratigraphically equivalent slates free of chloritoid, in the very low-grade metamorphic conditions (anchizonal) of the Crozon fold-and-thrust belt, show a lower degree of anisotropy, with PJ values up to 1.27. Classically, very strong magnetic fabrics (i.e. those with PJ above 1.35) are attributed to a contribution of ferromagnetic (s.l.) minerals. Nonetheless, high-field torque magnetometry indicates that the magnetic fabric of the chloritoid-bearing slates is dominantly paramagnetic. The ferromagnetic (sensu lato) contribution to the AMS is less than 10%. Based on these observations, it would seem that chloritoid has an intrinsic magnetic anisotropy that is significantly higher than that of most paramagnetic silicates and the frequently used upper limit for the paramagnetic contribution to the AMS. Using two independent approaches, i.e. (a) directional magnetic hysteresis measurements, and (b) torque magnetometry, on a collection of single chloritoid crystals, collected from different tectonometamorphic settings worldwide, the magnetocrystalline anisotropy of monoclinic chloritoid has been determined (Haerinck et al. 2013b). The determined paramagnetic high-field AMS ellipsoids have a highly oblate shape with the minimum susceptibility direction subparallel to the crystallographic c-axis of chloritoid and the degree of anisotropy of chloritoid is found to be 1.47 ± 0.06. The obtained very high magnetocrystalline degree of anisotropy suggests that chloritoid-bearing slates with a pronounced mineral alignment can have a high degree of anisotropy (PJ) without the need of invoking a significant

  5. Structure design and simulation research of active magnetic bearing for helium centrifugal cold compressor

    Science.gov (United States)

    Y Zhang, S.; Pan, W.; Wei, C. B.; Wu, J. H.

    2017-12-01

    Helium centrifugal cold compressors are utilized to pump gaseous helium from saturated liquid helium tank to obtain super-fluid helium in cryogenic refrigeration system, which is now being developed at TIPC, CAS. Active magnetic bearing (AMB) is replacing traditional oil-fed bearing as the optimal supporting assembly for cold compressor because of its many advantages: free of contact, high rotation speed, no lubrication and so on. In this paper, five degrees of freedom for AMB are developed for the helium centrifugal cold compressor application. The structure parameters of the axial and radial magnetic bearings as well as hardware and software of the electronic control system is discussed in detail. Based on modal analysis and critical speeds calculation, a control strategy combining PID arithmetic with other phase compensators is proposed. Simulation results demonstrate that the control method not only stables AMB system but also guarantees good performance of closed-loop behaviour. The prior research work offers important base and experience for test and application of AMB experimental platform for system centrifugal cold compressor.

  6. Apparatus and method for magnetically unloading a rotor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Seth Robert

    2018-02-13

    An apparatus and method for unloading a rotor bearing is described. The apparatus includes an electromagnet for levitating the rotor. In one embodiment, a sensor of the magnetic field near the electromagnet is used to control the current to levitate the rotor. In another embodiment, a method is provided that includes rotating the rotor, increasing the current to levitate the rotor and decrease the gap between electromagnet and rotor, and then reducing the current to levitate the rotor with a minimal amount of electric power to the electromagnet.

  7. Transpermeance Amplifier Applied to Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Jossana Ferreira

    2017-02-01

    Full Text Available The most conventional approach of controlling magnetic forces in active magnetic bearings (AMBs is through current feedback amplifiers: transconductance. This enables the operation of the AMB to be understood in terms of a relatively simple current-based model as has been widely reported on in the literature. The alternative notion of using transpermeance amplifiers, which approximate the feedback of gap flux rather than current, has been in commercial use in some form for at least thirty years, however is only recently seeing more widespread acceptance as a commercial standard. This study explores how such alternative amplifiers should be modeled and then examines the differences in behavior between AMBs equipped with transconductance and transpermeance amplifiers. The focus of this study is on two aspects. The first is the influence of rotor displacement on AMB force, commonly modeled as a constant negative equivalent mechanical stiffness, and it is shown that either scheme actually leads to a finite bandwidth effect, but that this bandwidth is much lower when transpermeance is employed. The second aspect is the influence of eddy currents. Using a very simple model of eddy currents (a secondary short-circuited coil, it is demonstrated that transpermeance amplifiers can recover significant actuator bandwidth compared with transconductance, but at the cost of needing increased peak current headroom.

  8. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-01-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L) 2 ] n (1) and [Co 3 (L) 4 (N 3 ) 2 ·2MeOH] n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4 2 .6) 2 (4 4 .6 2 .8 8 .10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co 3 ] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groups are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.

  9. Development and characterization of magnetic HTS bearings for a 400 kW synchronous HTS motor

    International Nuclear Information System (INIS)

    Kummeth, P; Ries, G; Nick, W; Neumueller, H-W

    2004-01-01

    Promising results of static and dynamic investigations on various journal type test bearings encouraged us to develop a scaled-up HTS bearing, able to carry the HTS rotor of a 400 kW superconducting motor. The stator, a YBCO hollow cylinder of 203 mm inner diameter and 250 mm length, is cooled by liquid nitrogen. Permanent magnet rings with a diameter of 200 mm were mounted on a shaft with alternating polarity. Characterization of the bearing capacity was performed with three different YBCO stators at temperatures between 66 and 86 K in a test set-up. A significant influence of the temperature was found. At a stator temperature of 72 K and a rotation frequency of 25 Hz (corresponding to nominal motor speed) a radial bearing force of 2700 N was measured for the shaft at centre position. Under rotation of the shaft the bearing capacity is reduced. At present our results range within the highest radial bearing capacities reported world-wide

  10. Dynamics and stability of rigid rotors levitated by passive cylinder-magnet bearings and driven/supported axially by pointwise contact clutch

    DEFF Research Database (Denmark)

    Andersen, Søren Bøgh; Enemark, Søren; Santos, Ilmar

    2013-01-01

    A stable rotor—supported laterally by passive magnetic bearings and longitudinally by magnetic forces and a clutch—loses suddenly its contact to the clutch and executes abruptly longitudinal movements away from its original equilibrium position as a result of small increases in angular velocity...... by MCMB using several configurations of magnet distribution are described based on an accurate nonlinear model able to reliably reproduce the rotor-bearing dynamic behaviour. Such investigations lead to: (a) clear physical explanation about the reasons for the rotor's unstable behaviour, losing its...

  11. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Riedel, T; Goebel, B; Wippich, D; Schirrmeister, P

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN 2 . More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  12. Active Magnetic Bearings Stiffness and Damping Identification from Frequency Characteristics of Control System

    Directory of Open Access Journals (Sweden)

    Chaowu Jin

    2016-01-01

    Full Text Available At present, the stiffness and damping identification for active magnetic bearings (AMBs are still in the stage of theoretical analysis. The theoretical analysis indicates that if the mechanical structure and system parameters are determined, AMBs stiffness and damping are only related to frequency characteristic of control system, ignoring operating condition. More importantly, few verification methods are proposed. Considering the shortcomings of the theoretical identification, this paper obtains these coefficients from the experiment by using the magnetic bearing as a sine exciter. The identification results show that AMBs stiffness and damping have a great relationship with the control system and rotating speed. Specifically, at low rotating speed, the stiffness and damping can be obtained from the rotor static suspension by adding the same excitation frequency. However, at high speed, different from the static suspension situation, the AMBs supporting coefficients are not only related to the frequency characteristics of control system, but also related to the system operating conditions.

  13. Geometric coupling effects on the bifurcations of a flexible rotor response in active magnetic bearings

    International Nuclear Information System (INIS)

    Inayat-Hussain, Jawaid I.

    2009-01-01

    This work reports on a numerical investigation on the bifurcations of a flexible rotor response in active magnetic bearings taking into account the nonlinearity due to the geometric coupling of the magnetic actuators as well as that arising from the actuator forces that are nonlinear function of the coil current and the air gap. For the values of design and operating parameters of the rotor-bearing system investigated in this work, numerical results showed that the response of the rotor was always synchronous when the values of the geometric coupling parameter α were small. For relatively larger values of α, however, the response of the rotor displayed a rich variety of nonlinear dynamical phenomena including sub-synchronous vibrations of periods-2, -3, -6, -9, and -17, quasi-periodicity and chaos. Numerical results further revealed the co-existence of multiple attractors within certain ranges of the speed parameter Ω. In practical rotating machinery supported by active magnetic bearings, the possibility of synchronous rotor response to become non-synchronous or even chaotic cannot be ignored as preloads, fluid forces or other external excitation forces may cause the rotor's initial conditions to move from one basin of attraction to another. Non-synchronous and chaotic vibrations should be avoided as they induce fluctuating stresses that may lead to premature failure of the machinery's main components.

  14. Identification of Parameters in Active Magnetic Bearing Systems

    DEFF Research Database (Denmark)

    Lauridsen, Jonas Skjødt; Voigt, Andreas Jauernik; Mandrup-Poulsen, Christian

    2016-01-01

    A method for identifying uncertain parameters in Active Magnetic Bearing (AMB) based rotordynamic systems is introduced and adapted for experimental application. The Closed Loop Identification (CLI) method is utilised to estimate the current/force factors Ki and the displacement/force factors Ks...... as well as a time constant Τe for a first order approxima-tion of unknown actuator dynamics. To assess the precision with which CLI method can be employed to estimate AMBparameters the factors Ki, estimated using the CLI method, is compared to Ki factors attained through a Static Loading(SL) method....... The CLI method and SL method produce similar results, indicating that the CLI method is able to performclosed loop identification of uncertain AMB parameters....

  15. Prospects of using a permanent magnetic end effector to despin and detumble an uncooperative target

    Science.gov (United States)

    Liu, Xiaoguang; Lu, Yong; Zhou, Yu; Yin, Yuanhao

    2018-04-01

    Space debris, such as defunct satellites and upper stages of rockets, becomes an uncooperative target after losing its attitude control and communication ability. In addition, tumbling motion can occur due to environmental perturbations and residual angular momentum prior to the object's end-of-mission. To minimize the collision risk during docking and capturing of the tumbling target, a non-contact method based on the eddy current effect is put forward to transmit the control torque to the tumbling target. The main idea is to induce a controllable torque on the conducting surface of the tumbling target using a rotational magnetic field generated by a Halbach rotor. The radial and axial Halbach rotors are used to damp the spinning and nutation motions of the target, respectively. The normal and tangential force are evaluated concerning the relative pose between the chaser and the target. A simplified dynamic model of the nutation damping and despinning processes is developed and the influences of the asymmetrical principal moments of inertia and transverse angular velocity are discussed. The numerical simulation results show that the designed Halbach rotor stabilized the target attitude within an acceptable time. The electromagnetic nutation damping and despinning method provides new solutions for the development of on-orbit capture technology.

  16. Fractional Order PID Control of Rotor Suspension by Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Parinya Anantachaisilp

    2017-01-01

    Full Text Available One of the key issues in control design for Active Magnetic Bearing (AMB systems is the tradeoff between the simplicity of the controller structure and the performance of the closed-loop system. To achieve this tradeoff, this paper proposes the design of a fractional order Proportional-Integral-Derivative (FOPID controller. The FOPID controller consists of only two additional parameters in comparison with a conventional PID controller. The feasibility of FOPID for AMB systems is investigated for rotor suspension in both the radial and axial directions. Tuning methods are developed based on the evolutionary algorithms for searching the optimal values of the controller parameters. The resulting FOPID controllers are then tested and compared with a conventional PID controller, as well as with some advanced controllers such as Linear Quadratic Gausian (LQG and H ∞ controllers. The comparison is made in terms of various stability and robustness specifications, as well as the dimensions of the controllers as implemented. Lastly, to validate the proposed method, experimental testing is carried out on a single-stage centrifugal compressor test rig equipped with magnetic bearings. The results show that, with a proper selection of gains and fractional orders, the performance of the resulting FOPID is similar to those of the advanced controllers.

  17. A portable, low-cost, 3D-printed main magnetic field system for magnetic imaging.

    Science.gov (United States)

    Iksung Kang

    2017-07-01

    In this paper, a portable, low-cost, 3D-printed system for main magnetic field is proposed to suggest a solution for accessibility problems of current magnetic imaging systems, e.g. MRI scanner, their size and cost. The system consists of twelve pairs of NdFeB N35 permanent magnets arranged in a Halbach array in a 3D-printed, cylindrical container based on FEM simulation results by COMSOL Multiphysics 4.4b. Its magnetic field homogeneity and field strength were measured by Hall sensors, WSH-135 XPAN2 by Wilson Semiconductor, and the container was printed by 3DISON H700 by Rokit. The system generated a 5-mm imaging quality FOV and main magnetic field of 120 mT with a 12 % error in the field strength. Also, a hundred dollar was enough for the manufacture of the system with a radius of 6 cm and height of 10 cm. Given the results, I believe the system will be useful for some magnetic imaging applications, e.g. EPRI and low-field MRI.

  18. Levitation performance of high-T{sub c} superconductor in sinusoidal guideway magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, J.S.; Jing, H.; Jiang, M.; Zheng, J.; Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-12-01

    The vertical component of the Halbach array's magnetic field exhibits a sinusoid distribution because of the closed magnetic flux area between two neighbouring poles, so this field can be regarded as the sinusoidal magnetic field. This article mainly discusses the influence of the closed flux region on the levitation performance of the bulk high-temperature superconductor (HTS). Moreover, the levitation performance is compared between the closed and diverging region of magnetic flux. The experimental results can be analyzed by the magnetic circuit theory and the frozen-image model. The analysis indicates that the closed region of magnetic flux can influence the levitation performance of bulk HTS obviously and provide an extra useful guidance force. These conclusions are helpful to optimize the HTS Maglev system.

  19. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    Science.gov (United States)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  20. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  1. The design, manufacture and testing of the hydrostatic bearing for the NSF 900 analysing magnet

    International Nuclear Information System (INIS)

    Acton, W.J.; Myers, D.B.

    1978-10-01

    This report describes the design, manufacture and testing of the hydrostatic bearing which will be used to support the 90 0 analysing magnet of the 30 MV tandem electrostatic accelerator now being constructed at Daresbury Lboratory. (author)

  2. Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Dias, D H N; Sotelo, G G; Moysés, L A; Telles, L G T; Bernstein, P; Aburas, M; Noudem, J G; Kenfaui, D; Chaud, X

    2015-01-01

    The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa 2 Cu 3 O x (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors. (paper)

  3. Analytic solution of magnetic induction distribution of ideal hollow spherical field sources

    Science.gov (United States)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2017-12-01

    The Halbach type hollow spherical permanent magnet arrays (HSPMA) are volume compacted, energy efficient field sources, and capable of producing multi-Tesla field in the cavity of the array, which have attracted intense interests in many practical applications. Here, we present analytical solutions of magnetic induction to the ideal HSPMA in entire space, outside of array, within the cavity of array, and in the interior of the magnet. We obtain solutions using concept of magnetic charge to solve the Poisson's and Laplace's equations for the HSPMA. Using these analytical field expressions inside the material, a scalar demagnetization function is defined to approximately indicate the regions of magnetization reversal, partial demagnetization, and inverse magnetic saturation. The analytical field solution provides deeper insight into the nature of HSPMA and offer guidance in designing optimized one.

  4. Calculated and measured fields in superferric wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E.B.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.

  5. Characteristics of motorized spindle supported by active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Xie Zhenyu

    2014-12-01

    Full Text Available A motorized spindle supported by active magnetic bearings (AMBs is generally used for ultra-high-speed machining. Iron loss of radial AMB is very great owing to high rotation speed, and it will cause severe thermal deformation. The problem is particularly serious on the occasion of large power application, such as all electric aero-engine. In this study, a prototype motorized spindle supported by five degree-of-freedom AMBs is developed. Homopolar and heteropolar AMBs are independently adopted as radial bearings. The influences of the two types of radial AMBs on the dynamic characteristics of the motorized spindle are comparatively investigated by theoretical analysis, test modal analysis and actual operation of the system. The iron loss of the two types of radial AMBs is analyzed by finite element software and verified through run-down experiments of the system. The results show that the structures of AMB have less influence on the dynamic characteristics of the motorized spindle. However, the homopolar structure can effectively reduce the iron loss of the radial AMB and it is useful for improving the overall performance of the motorized spindle.

  6. Nonlinear Control of an Active Magnetic Bearing System Achieved Using a Fuzzy Control with Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-01-01

    Full Text Available Studies on active magnetic bearing (AMB systems are increasing in popularity and practical applications. Magnetic bearings cause less noise, friction, and vibration than the conventional mechanical bearings; however, the control of AMB systems requires further investigation. The magnetic force has a highly nonlinear relation to the control current and the air gap. This paper proposes an intelligent control method for positioning an AMB system that uses a neural fuzzy controller (NFC. The mathematical model of an AMB system comprises identification followed by collection of information from this system. A fuzzy logic controller (FLC, the parameters of which are adjusted using a radial basis function neural network (RBFNN, is applied to the unbalanced vibration in an AMB system. The AMB system exhibited a satisfactory control performance, with low overshoot, and produced improved transient and steady-state responses under various operating conditions. The NFC has been verified on a prototype AMB system. The proposed controller can be feasibly applied to AMB systems exposed to various external disturbances; demonstrating the effectiveness of the NFC with self-learning and self-improving capacities is proven.

  7. Automatic bearing fault diagnosis of permanent magnet synchronous generators in wind turbines subjected to noise interference

    Science.gov (United States)

    Guo, Jun; Lu, Siliang; Zhai, Chao; He, Qingbo

    2018-02-01

    An automatic bearing fault diagnosis method is proposed for permanent magnet synchronous generators (PMSGs), which are widely installed in wind turbines subjected to low rotating speeds, speed fluctuations, and electrical device noise interferences. The mechanical rotating angle curve is first extracted from the phase current of a PMSG by sequentially applying a series of algorithms. The synchronous sampled vibration signal of the fault bearing is then resampled in the angular domain according to the obtained rotating phase information. Considering that the resampled vibration signal is still overwhelmed by heavy background noise, an adaptive stochastic resonance filter is applied to the resampled signal to enhance the fault indicator and facilitate bearing fault identification. Two types of fault bearings with different fault sizes in a PMSG test rig are subjected to experiments to test the effectiveness of the proposed method. The proposed method is fully automated and thus shows potential for convenient, highly efficient and in situ bearing fault diagnosis for wind turbines subjected to harsh environments.

  8. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  9. Supercritical CO2 Compressor with Active Magnetic Bearing

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Cho, Seong Kuk; Lee, JeKyoung; Lee, Jeong Ik

    2016-01-01

    For the stable operation of the sCO 2 integral test facility SCIEL, KAERI prepared Active Magnetic Bearing sCO 2 compressor for the 70,000RPM operation. Power generation test with AMB compressor will be finished within first half year of 2016 under supercritical state. The principal advantages of the sCO 2 Cycle are high efficiency at moderate temperature range, compact components size, simple cycle configuration, and compatibility with various heat sources. The Supercritical CO 2 Brayton Cycle Integral Experiment Loop (SCIEL) has been installed in Korea Atomic Energy Research Institute (KAERI) to develop the base technologies for the sCO 2 cycle power generation system. The operation of the SCIEL has mainly focused on sCO 2 compressor development and establishing sCO 2 system control logic

  10. Advances in the design of superconducting magnetic bearings for static and dynamic applications

    International Nuclear Information System (INIS)

    Siems, S O; Canders, W-R

    2005-01-01

    Theoretical and experimental studies have led to an overall design for superconducting magnetic bearings (SMB) that is suitable to meet the requirements of industrial applications. The main benefits are high load capacities, compact dimensions and a 'warm' suspended part of the application. Two applications have been designed with a suspension provided only by SMB; one has already been built and tested successfully

  11. Design, construction and commissioning of a simple, low cost permanent magnet quadrupole doublet

    International Nuclear Information System (INIS)

    Conard, E.M.; Parcell, S.K.; Arnott, D.W.

    1999-01-01

    In the framework of new beam line developments at the Australian National Medical Cyclotron, a permanent magnet quadrupole doublet was designed and built entirely in house. The design proceeded from the classical work by Halbach et al. but emphasised the 'low cost' aspect by using simple rectangular NdFeB blocks and simple assembly techniques. Numerical simulations using the (2-D) Gemini code were performed to check the field strength and homogeneity predictions of analytical calculations. This paper gives the reasons for the selection of a permanent magnet, the design and construction details of the quadrupole doublet and its field measurement results. (authors)

  12. Pumps for cryogenic liquids with superconducting magnetic bearings. Final report; Pumpen fuer kryogene Fluessigkeiten mit supraleitenden Magnetlagern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, G.; Fuchs, G.; Sorber, J.; Brosche, H.; Richter, M.; Frenzel, C.

    2000-07-01

    A liquid nitrogen pump with contactless superconducting magnetic bearings was to be developed on the basis of an available motor with superconducting bearings. Contactless superconducting magnetic bearings require practically no servicing. A high demand for pumps for cryogenic liquids is expected with the impending use of hydrogen as an energy source. The pumping of liquid nitrogen was demonstrated successfully with the new test aggregate. The maximum pumped volume was 17 l/min at a lift of 0.5 m and 6 l/min at a lift of 1 m. In all, 15 hours of operation were registered in the superconducting state of the bearing, which included 2 hours of uninterrupted pump operation. The higher speed range for which magnetic bearings are optimally suited was not reached. Operation at higher frequencies was impossible either because of stronger resonance amplituees or because the power system was too weak. [German] Ziel des Vorhabens war die Entwicklung einer Pumpe fuer fluessigen Stickstoff mit beruehrungslosen supraleitenden Magnetlagern auf der Basis eines vorhandenen supraleitend gelagerten Motors. Die beruehrungslose supraleitende Magnetlager sind praktisch wartungsfrei. Ein Bedarf an Pumpen fuer kryogene Fluessigkeiten entsteht insbesondere durch den in naher Zukunft zu erwartenden Einsatz von Wasserstoff als Energietraeger. Mit dem entworfenen Aggregat wurde das Pumpen von Fluessigstickstoff erfolgreich demonstriert. Der Foerderstrom betrug bei 0,5m Foerderhoehe maximal 17 l/min; beim 1m Foerderhoehe wurden maximal 6 l/min gemessen. Es wurden insgesamt ca. 15 Betriebsstunden in supraleitenden Zustand des Lagers, darunter 2 Stunden ununterbrochener Pumpbetrieb registriert. Der hoehere Drehzahlbereich, fuer den das Magnetlager eigentlich paedestiniert ist, konnte nicht erreicht werden. Ein Betrieb bei hoeheren (Ist-)Frequenzen war nicht moeglich, entweder durch staerkere Resonanzausschlaege oder durch einen zu schwachen Antrieb. (orig.)

  13. Incremental Adaptive Fuzzy Control for Sensorless Stroke Control of A Halbach-type Linear Oscillatory Motor

    Science.gov (United States)

    Lei, Meizhen; Wang, Liqiang

    2018-01-01

    The halbach-type linear oscillatory motor (HT-LOM) is multi-variable, highly coupled, nonlinear and uncertain, and difficult to get a satisfied result by conventional PID control. An incremental adaptive fuzzy controller (IAFC) for stroke tracking was presented, which combined the merits of PID control, the fuzzy inference mechanism and the adaptive algorithm. The integral-operation is added to the conventional fuzzy control algorithm. The fuzzy scale factor can be online tuned according to the load force and stroke command. The simulation results indicate that the proposed control scheme can achieve satisfied stroke tracking performance and is robust with respect to parameter variations and external disturbance.

  14. Vibrational Properties of High- Superconductors Levitated Above a Bipolar Permanent Magnetic Guideway

    Science.gov (United States)

    Liu, Lu; Wang, Jiasu

    2014-05-01

    A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.

  15. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA.

    Science.gov (United States)

    Cheng, Shanbao; Olles, Mark W; Burger, Aaron F; Day, Steven W

    2011-10-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers' initial assumption about the function of this HMB.

  16. R+D works for the further development of high temperature reactors. Development and testing of a pilot blower with magnetic bearings. Phase 1 - plans ready for construction. Phase 2 - construction and testing

    International Nuclear Information System (INIS)

    1991-01-01

    The development of helium compressors in magnetic bearings as cooling blowers for HTR's made a considerable contribution to the extension of Germany's technical potential. Magnetic bearings open up new possibilities with simultaneous savings due to the reduction in friction and wear. With the use of active magnetic bearings for cooling gas blowers any potential contamination of the primary circuit by oil is completely excluded. The oil system is omitted and therefore so are a large number of safety requirements and technical layout conditions. The keywords here are: safe inclusion of radio-activity, fire and explosion protection, omission of oil plant spatially separated but necessarily close to the blowers and the reactor, omission of removal of used bearing oil from the primary area. One would expect that the dynamic rotor properties of blower shafts with magnetic bearings are better than those with oil bearings, as bearing damping can be provided in the region of critical speeds. (orig./GL) [de

  17. Test equipment for a flywheel energy storage system using a magnetic bearing composed of superconducting coils and superconducting bulks

    International Nuclear Information System (INIS)

    Ogata, M; Matsue, H; Yamashita, T; Hasegawa, H; Nagashima, K; Maeda, T; Matsuoka, T; Mukoyama, S; Shimizu, H; Horiuchi, S

    2016-01-01

    Energy storage systems are necessary for renewable energy sources such as solar power in order to stabilize their output power, which fluctuates widely depending on the weather. Since ‘flywheel energy storage systems’ (FWSSs) do not use chemical reactions, they do not deteriorate due to charge or discharge. This is an advantage of FWSSs in applications for renewable energy plants. A conventional FWSS has capacity limitation because of the mechanical bearings used to support the flywheel. Therefore, we have designed a superconducting magnetic bearing composed of a superconducting coil stator and a superconducting bulk rotor in order to solve this problem, and have experimentally manufactured a large scale FWSS with a capacity of 100 kWh and an output power of 300 kW. The superconducting magnetic bearing can levitate 4 tons and enables the flywheel to rotate smoothly. A performance confirmation test will be started soon. An overview of the superconducting FWSS is presented in this paper. (paper)

  18. Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials

    Science.gov (United States)

    Lee, Jaewook; Yoon, Minho; Nomura, Tsuyoshi; Dede, Ercan M.

    2018-03-01

    This paper presents multi-material topology optimization for the co-design of permanent magnet segments and iron material. Specifically, a co-design methodology is proposed to find an optimal border of permanent magnet segments, a pattern of magnetization directions, and an iron shape. A material interpolation scheme is proposed for material property representation among air, permanent magnet, and iron materials. In this scheme, the permanent magnet strength and permeability are controlled by density design variables, and permanent magnet magnetization directions are controlled by angle design variables. In addition, a scheme to penalize intermediate magnetization direction is proposed to achieve segmented permanent magnet arrays with discrete magnetization directions. In this scheme, permanent magnet strength is controlled depending on magnetization direction, and consequently the final permanent magnet design converges into permanent magnet segments having target discrete directions. To validate the effectiveness of the proposed approach, three design examples are provided. The examples include the design of a dipole Halbach cylinder, magnetic system with arbitrarily-shaped cavity, and multi-objective problem resembling a magnetic refrigeration device.

  19. A linear magnetic bearing with integrated long stroke propulsion - design and realization of an IU-module

    NARCIS (Netherlands)

    Laro, D.A.H.; Ven, van de S.C.L.; Spronck, J.W.; Lebedev, A.; Lomonova, E.A.; Dag, B.

    2004-01-01

    The active magnetic bearings (AMB) and linear electrical actuators (LEA) are the important elements for high precision systems such as semiconductor equipment and machine tools. This paper concerns the initial design of a single I U-shaped electromagnetic module as a part of six degrees of freedom

  20. Nonlinear vibration analysis of a rotor supported by magnetic bearings using homotopy perturbation method

    Directory of Open Access Journals (Sweden)

    Aboozar Heydari

    2017-09-01

    Full Text Available In this paper, the effects of nonlinear forces due to the electromagnetic field of bearing and the unbalancing force on nonlinear vibration behavior of a rotor is investigated. The rotor is modeled as a rigid body that is supported by two magnetic bearings with eight-polar structures. The governing dynamics equations of the system that are coupled nonlinear second order ordinary differential equations (ODEs are derived, and for solving these equations, the homotopy perturbation method (HPM is used. By applying HPM, the possibility of presenting a harmonic semi-analytical solution, is provided. In fact, with equality the coefficient of auxiliary parameter (p, the system of coupled nonlinear second order and non-homogenous differential equations are obtained so that consists of unbalancing effects. By considering some initial condition for displacement and velocity in the horizontal and vertical directions, free vibration analysis is done and next, the forced vibration analysis under the effect of harmonic forces also is investigated. Likewise, various parameters on the vibration behavior of rotor are studied. Changes in amplitude and response phase per excitation frequency are investigated. Results show that by increasing excitation frequency, the motion amplitude is also increases and by passing the critical speed, it decreases. Also it shows that the magnetic bearing system performance is in stable maintenance of rotor. The parameters affecting on vibration behavior, has been studied and by comparison the results with the other references, which have a good precision up to 2nd order of embedding parameter, it implies the accuracy of this method in current research.

  1. Rock magnetic and geochemical evidence for authigenic magnetite formation via iron reduction in coal-bearing sediments offshore Shimokita Peninsula, Japan (IODP Site C0020)

    Science.gov (United States)

    Phillips, Stephen C.; Johnson, Joel E.; Clyde, William C.; Setera, Jacob B.; Maxbauer, Daniel P.; Severmann, Silke; Riedinger, Natascha

    2017-06-01

    Sediments recovered at Integrated Ocean Drilling Program (IODP) Site C0020, in a fore-arc basin offshore Shimokita Peninsula, Japan, include numerous coal beds (0.3-7 m thick) that are associated with a transition from a terrestrial to marine depositional environment. Within the primary coal-bearing unit (˜2 km depth below seafloor) there are sharp increases in magnetic susceptibility in close proximity to the coal beds, superimposed on a background of consistently low magnetic susceptibility throughout the remainder of the recovered stratigraphic sequence. We investigate the source of the magnetic susceptibility variability and characterize the dominant magnetic assemblage throughout the entire cored record, using isothermal remanent magnetization (IRM), thermal demagnetization, anhysteretic remanent magnetization (ARM), iron speciation, and iron isotopes. Magnetic mineral assemblages in all samples are dominated by very low-coercivity minerals with unblocking temperatures between 350 and 580°C that are interpreted to be magnetite. Samples with lower unblocking temperatures (300-400°C), higher ARM, higher-frequency dependence, and isotopically heavy δ56Fe across a range of lithologies in the coal-bearing unit (between 1925 and 1995 mbsf) indicate the presence of fine-grained authigenic magnetite. We suggest that iron-reducing bacteria facilitated the production of fine-grained magnetite within the coal-bearing unit during burial and interaction with pore waters. The coal/peat acted as a source of electron donors during burial, mediated by humic acids, to supply iron-reducing bacteria in the surrounding siliciclastic sediments. These results indicate that coal-bearing sediments may play an important role in iron cycling in subsiding peat environments and if buried deeply through time, within the subsequent deep biosphere.

  2. Image tuning techniques for enhancing the performance of pure permanent magnet undulators with small gap/period ratios

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, R. [Stanford Univ., CA (United States)

    1995-12-31

    The on-axis field of a small-gap undulator constricted out of pure permanent magnet (PM) blocks arranged in an alternating-dipole (i.e., 2 dipoles/period) array can be substantially varied by positioning monolithic permeable plates above and below the undulator jaws. This simple technique, which can be used to control the 1st harmonic energy in conventional synchrotron radiation (SR) or Free Electron Laser (FEL) applications requiring sub-octave tuning, can also be shown to suppress magnetic inhomogeneities that can contribute to the undulator`s on-axis field errors. If a standard 4 block/period Halbach undulator, composed of PM blocks with square cross sections, is rearranged into an alternating-dipole array with the same period, the peak field that can be generated with superimposed image plates can substantially exceed that of the pure-PM Halbach array. This design technique, which can be viewed as intermediate between the {open_quotes}pure-PM{close_quotes} and standard {open_quotes}hybrid/PM{close_quotes} configurations, provides a potentially cost-effective method of enhancing the performance of small-gap, pure-PM insertion devices. In this paper we report on the analysis and recent characterization of pure-PM undulator structures with superimposed image plates, and discuss possible applications to FEL research.

  3. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic ther

    OpenAIRE

    Unterweger, H; Subatzus, D; Tietze, R; Janko, C; Poettler, M; Stiegelschmitt, A; Schuster, M; Maake, C; Boccaccini, A R; Alexiou, C

    2015-01-01

    Combining the concept of magnetic drug targeting and photodynamic therapy is a promising approach for the treatment of cancer. A high selectivity as well as significant fewer side effects can be achieved by this method, since the therapeutic treatment only takes place in the area where accumulation of the particles by an external electromagnet and radiation by a laser system overlap. In this article, a novel hypericin-bearing drug delivery system has been developed by synthesis of superparama...

  4. A superconducting thrust-bearing system for an energy storage flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Cansiz, A.; Campbell, A.M. [IRC in Superconductivity, Cambridge (United Kingdom)

    2002-05-01

    We have constructed a bearing system for an energy storage flywheel. This bearing system uses a combination of permanent magnets and superconductors in an arrangement commonly termed as an Evershed bearing. In an Evershed system there are in fact two bearings which act in concert. In our system we have one bearing constructed entirely out of permanent magnets acting in attraction. This system bears the weight of the flywheel (43.6 kg) but would not, on its own, be stable. Stability is provided by a superconducting bearing which is formed by the interaction between the magnetic field of a permanent magnet sited on the rotor and superconductors on the stator. This overall arrangement is stable over a range of levitation heights and has been tested at rotation speeds of up to around 12 Hz (the maximum speed is dictated by the drive system not the bearing system). There is a sharp resonance peaking at between 2 and 3 Hz and spin down tests indicate that the equivalent coefficient of friction is of the order of 10{sup -5}. The rate of change of velocity is, however, not constant so the drag is clearly not solely frictional. The position of the resonance is dictated by the stiffness of the bearing relative to the mass of the flywheel but the amplitude of the resonance is dictated by the variation in magnitude of the magnetic field of the permanent magnets. Large magnets are (at present) fabricated in sections and this leads to a highly inhomogeneous field. The field has been smoothed by using a combination of iron which acts passively and copper which provides magnetic shielding due to the generation of eddy currents and therefore acts as an 'active' component. Calculations based on the spin down tests indicate that the resultant variation in field is of the order of 3% and measurements are being carried out to confirm this. (author)

  5. Supercritical CO{sub 2} Compressor with Active Magnetic Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun [KAERI, Daejeon (Korea, Republic of); Cho, Seong Kuk; Lee, JeKyoung; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    For the stable operation of the sCO{sub 2} integral test facility SCIEL, KAERI prepared Active Magnetic Bearing sCO{sub 2} compressor for the 70,000RPM operation. Power generation test with AMB compressor will be finished within first half year of 2016 under supercritical state. The principal advantages of the sCO{sub 2} Cycle are high efficiency at moderate temperature range, compact components size, simple cycle configuration, and compatibility with various heat sources. The Supercritical CO{sub 2} Brayton Cycle Integral Experiment Loop (SCIEL) has been installed in Korea Atomic Energy Research Institute (KAERI) to develop the base technologies for the sCO{sub 2} cycle power generation system. The operation of the SCIEL has mainly focused on sCO{sub 2} compressor development and establishing sCO{sub 2} system control logic.

  6. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  7. Field cooling of a MgB2 cylinder around a permanent magnet stack: prototype for superconductive magnetic bearing

    International Nuclear Information System (INIS)

    Perini, E; Giunchi, G

    2009-01-01

    The behaviour of bulk superconductors as levitators of permanent magnets (PMs) has been extensively studied for the textured YBCO high-temperature superconductor material, in the temperature range lower than 77 K, obtaining extremely high trapped fields but also experiencing limitations on the mechanical characteristics of the material and on the possibility to produce large objects. Alternatively, bulk MgB 2 , even if it is superconducting at lower temperatures, has fewer mechanical problems, when fully densified, and presents stable magnetization in the temperature range between 10 and 30 K. With the reactive Mg-liquid infiltration technique we have produced dense MgB 2 bulk cylinders of up to 65 mm diameter and 100 mm height. This kind of cylinder can be consider as a prototype of a passive magnetic bearing for flywheels or other rotating electrical machines. We have conductively cooled one of these superconducting cylinders inside a specially constructed cryostat, and the levitation forces and stiffness, with respect to axial movements of various arrangements of the PM, have been measured as a function of the temperature below T c . We verified the very stable characteristics of the induced magnetization after several cycles of relative movements of the PM and the superconducting cylinder.

  8. Force and stiffness characteristics of superconducting bearing prototype

    International Nuclear Information System (INIS)

    Matveev, V.; Nizhelskiy, N.; Poluschenko, O.

    2004-01-01

    The radial-axial superconducting bearing prototype was designed, fabricated and tested. The YBaCuO high-temperature superconducting (HTS) monodomain disks diameter 28 mm and thickness of h = 4; 6; 8; 10 mm, capable to trap magnetic field 1 T, were fabricated to be employed in bearing prototype. Force interaction of single field cooled HTS disks with NdFeB magnets depending on disk thickness under 1 mm magnet air gap was studied. It was found that the increase in disk thickness results in reducing radial stiffness and in growing axial one. The results obtained were used for optimization of HTS-PM arrangement, and for developing the bearing design. The designed bearing incorporates a rotor with 7 HTS disks of 4 mm thickness, total mass 90 g, and stator with two pairs of permanent annular magnets of NdFeB. It is established that the force-displacement dependencies of the bearing have three zones: non-hysteresis (elastic) zone with high stiffness up to 560 N/mm; zone of elastic interaction with stiffness 190 N/mm; hysteretic zone with stiffness 150 N/mm in which a rotor residual displacement being observed after unloading. The outer bearing diameter is 130 mm, thickness 30 mm, and mass 1.8 kg. The maximal radial load capacity of the bearing is 190 N at the rotor displacement of 1.3 mm, and the maximal axial load capacity is 85 N at the displacement of 1 mm

  9. TU-H-CAMPUS-TeP1-03: Magnetically Focused Proton Irradiation of Small Volume Radiosurgery Targets

    Energy Technology Data Exchange (ETDEWEB)

    McAuley, GA; Slater, JM [Loma Linda University, Loma Linda, CA (United States); Wroe, AJ [Loma Linda University, Loma Linda, CA (United States); Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To investigate the use of magnetic focusing for small volume proton radiosurgery targets using a triplet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Fourteen quadrupole magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into k=3 Halbach cylinders with various field gradients (100 to 250 T/m) were designed and manufactured. Triplet combinations of the magnets were placed on a positioning track on our Gantry 1 treatment table. Unmodulated 127 MeV proton beams with initial diameters of 3 to 20 mm were delivered to a water tank using single-stage scattering. Depth and transverse dose distributions were measured using a PTW PR60020 diode detector and EBT3 film, respectively. This data was compared with unfocused passively collimated beams. Monte Carlo simulations were also performed - both for comparison with experimental data and to further investigate the potential of triplet magnetic focusing. Results: Experimental results using 150 T/m gradient magnets and 15 to 20 mm initial diameter beams show peak to entrance dose ratios that are ∼ 43 to 48 % larger compared with spot size matched 8 mm collimated beams (ie, transverse profile full-widths at 90% maximum dose match within 0.5 mm of focused beams). In addition, the focusing beams were ∼ 3 to 4.4 times more efficient per MU in dose to target delivery. Additional results using different magnet combinations will also be presented. Conclusion: Our results suggest that triplet magnetic focusing could reduce entrance dose and beam number while delivering dose to small (∼≤ 10 mm diameter) radiosurgery targets in less time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however other treatment sites can be also envisioned. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).

  10. Application of rare-earth magnets in high-performance electric machines

    International Nuclear Information System (INIS)

    Ramsden, V.S.

    1998-01-01

    Some state of the art developments of high-performance machines using rare-earth magnets are reviewed with particular examples drawn from a number of novel machine designs developed jointly by the Faculty of Engineering, University of Technology, Sydney (UTS) and CSIRO Telecommunications and Industrial Physics. These designs include an 1800 W, 1060 rev/min, 98% efficient solar car in-wheel motor using a Halbach magnet array, axial flux, and ironless winding; a 1200 W, 3000 rev/min, 91% efficient solar-powered, water-filled, submersible, bore-hole pump motor using a surface magnet rotor; a 500 W, 10000 rev/min, 87% efficient, oil-filled, oil-well tractor motor using a 2-pole cylindrical magnet rotor and slotless winding; a 75 kW, 48000 rev/min, 97% efficient, high-speed compressor drive with 2-pole cylindrical magnet rotor, slotted stator, and refrigerant cooling; and a 20 kW, 211 rev/min, 87% efficient, direct-drive generator for wind turbines with very low starting torque using an outer rotor with surface magnets and a slotted stator. (orig.)

  11. An active magnetic bearing with high Tc superconducting coils and ferromagnetic cores

    International Nuclear Information System (INIS)

    Brown, G.V.; DiRusso, E.; Provenza, A.J.

    1996-01-01

    A proof-of-feasibility demonstration showed that high-T c , superconductor (HTS) coils can be used in a high-load, active magnetic bearing in LN 2 . A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 890 N (200 lb) radial load capacity (measured nonrotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that for Cu in LN 2 . The bias coil, wound with nontwisted, multifilament HTS conductor, dissipated negligible power for its direct current. The control coils, wound with monofilament HTS sheathed in Ag, dissipated negligible power for direct current. AC losses increased rapidly with frequency and quadratically with AC amplitude. Above about 2 Hz, the effective resistance of the control coils exceeds that of the silver which is in electrical parallel with the oxide superconductor. These results show that twisted multifilament conductor is not needed for stable levitation but may be desired to reduce control power for sizable dynamic loads

  12. Soft-edged magnet models for higher-order beam-optics map codes

    International Nuclear Information System (INIS)

    Walstrom, P.L.

    2004-01-01

    Continuously varying surface and volume source-density distributions are used to model magnetic fields inside of cylindrical volumes. From these distributions, a package of subroutines computes on-axis generalized gradients and their derivatives at arbitrary points on the magnet axis for input to the numerical map-generating subroutines of the Lie-algebraic map code Marylie. In the present version of the package, the magnet menu includes: (1) cylindrical current-sheet or radially thick current distributions with either open boundaries or with a surrounding cylindrical boundary with normal field lines (which models high-permeability iron), (2) Halbach-type permanent multipole magnets, either as sheet magnets or as radially thick magnets, (3) modeling of arbitrary fields inside a cylinder by use of a fictitious current sheet. The subroutines provide on-axis gradients and their z derivatives to essentially arbitrary order, although in the present third- and fifth-order Marylie only the zeroth through sixth derivatives are needed. The formalism is especially useful in beam-optics applications, such as magnetic lenses, where realistic treatment of fringe-field effects is needed

  13. Superconducting bearings for flywheel applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2001-05-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)

  14. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540 (Japan)

    2010-11-15

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  15. Levitation properties of superconducting magnetic bearings using superconducting coils and bulk superconductors

    International Nuclear Information System (INIS)

    Arai, Yuuki; Seino, Hiroshi; Nagashima, Ken

    2010-01-01

    We have been developing a flywheel energy storage system (FESS) with 36 MJ energy capacity for a railway system with superconducting magnetic bearings (SMBs). We prepared two kinds of models using superconducting coils and bulk superconductors (SCs). One model demonstrated SMB load capacity of 20 kN and the other model proved non-contact stable levitation and non-contact rotation with SMBs. Combining these results, the feasibility of a 36 MJ energy capacity FESS with SMBs completely inside a cryostat has been confirmed. In this paper, we report the levitation properties of SMBs in these models.

  16. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    Science.gov (United States)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  17. Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness

    Science.gov (United States)

    Wu, R. Q.; Zhang, W.; Yao, M. H.

    2018-02-01

    In this paper, we analyze the complicated nonlinear dynamics of rotor-active magnetic bearings (rotor-AMB) with 16-pole legs and the time varying stiffness. The magnetic force with 16-pole legs is obtained by applying the electromagnetic theory. The governing equation of motion for rotor-active magnetic bearings is derived by using the Newton's second law. The resulting dimensionless equation of motion for the rotor-AMB system is expressed as a two-degree-of-freedom nonlinear system including the parametric excitation, quadratic and cubic nonlinearities. The averaged equation of the rotor-AMB system is obtained by using the method of multiple scales when the primary parametric resonance and 1/2 subharmonic resonance are taken into account. From the frequency-response curves, it is found that there exist the phenomena of the soft-spring type nonlinearity and the hardening-spring type nonlinearity in the rotor-AMB system. The effects of different parameters on the nonlinear dynamic behaviors of the rotor-AMB system are investigated. The numerical results indicate that the periodic, quasi-periodic and chaotic motions occur alternately in the rotor-AMB system.

  18. Bearing design for flywheel energy storage using high-TC superconductors

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    2000-01-01

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  19. A novel integrated 4-DOF radial hybrid magnetic bearing for MSCMG

    Energy Technology Data Exchange (ETDEWEB)

    Jinji, Sun; Ziyan, Ju [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China); Weitao, Han, E-mail: hanweitaotao@163.com [CRRC Qingdao Sifang CO., LTD, Qingdao 266111 (China); Gang, Liu [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China)

    2017-01-01

    This paper proposes a novel integrated radial hybrid magnetic bearing (RHMB) for application with the small-sized magnetically suspended control moment gyroscope (MSCMG), which can control four degrees of freedom (4-DOFs), including two radial translational DOFs and two radial tilting DOFs, and provide the axial passive resilience. The configuration and working principle of the RHMB are introduced. Mathematical models of radial force, axial resilience and moment are established by using equivalent magnetic circuit method (EMCM), from which the radial force–radial displacement, radial force–current relationships are derived, as well as axial resilience–axial displacement, moment–tilting angle and moment–current. Finite element method (FEM) is also applied to analyze the performance and characteristics of the RHMB. The analysis results are in good agreement with that calculated by the EMCM, which is helpful in designing, optimizing and controlling the RHMB. The comparisons between the performances of the integrated 4-DOF RHMB and the traditional 4-DOF RHMB are made. The contrast results indicate that the proposed integrated 4-DOF RHMB possesses better performance compared to the traditional structure, such as copper loss, current stiffness, and tilting current stiffness. - Highlights: • An integrated 4-DOF RHMB is proposed for the small-sized MSCMG. • The 4-DOF RHMB has good linear force–displacement and force–current characteristics. • The RHMB has good linear moment–current and the moment–tilting angle characteristic.

  20. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  1. Dynamic characteristics of a flywheel energy storage system using superconducting magnetic bearings

    CERN Document Server

    Kim, J S

    2003-01-01

    The high-temperature superconducting magnetic bearing flywheel energy storage system (SMB-FESS) is proposed as an efficient energy storage system. It is important to identify the dynamic behaviour and the characteristics of the SMB-FESS. First, a new method for identifying SMB characteristics has been suggested. The suggested modelling method is verified by comparing the experimental and analytical frequency response functions. In this study, the analyses of critical speed and unbalance response are performed using the analytical model. The experimental test has been carried out to verify the result of simulation. A good agreement has been observed between the experiment and the simulation result.

  2. Bearing structures

    International Nuclear Information System (INIS)

    Lee, A.S.; Preece, G.E.

    1988-01-01

    A hydrostatic bearing for the lower end of the vertical shaft of a sodium pump comprises a support shell encircling the shaft and a bush located between the shell and shaft. Liquid sodium is fed from the pump outlet to the bush/shaft and bush/shell interfaces to provide hydrostatic support. The bush outer surface and the shell inner surface are of complementary part-spherical shape and the bush floats relative to the shaft so that the bush can align itself with the shaft axis. Monitoring of the relative rotational speed of the bush with respect to the shaft (such rotation being induced by the viscous drag forces present) is also performed for the purposes of detecting abnormal operation of the bearing or partial seizure, at least one magnet is rotatable with the bush, and a magnetic sensor provides an output having a frequency related to the speed of the bush. (author)

  3. Dynamic Performance Characteristics of a Curved Slider Bearing Operating with Ferrofluids

    Directory of Open Access Journals (Sweden)

    Udaya P. Singh

    2012-01-01

    Full Text Available In the present theoretical investigation, the effect of ferrofluid on the dynamic characteristics of curved slider bearings is presented using Shliomis model which accounts for the rotation of magnetic particles, their magnetic moments, and the volume concentration in the fluid. The modified Reynolds equation for the dynamic state of the bearing is obtained. The results of dynamic stiffness and damping characteristics are presented. It is observed that the effect of rotation of magnetic particles improves the stiffness and damping capacities of the bearings.

  4. Development of superconductor application technology - Flywheel energy storage system using superconducting magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hun; Oh, Hueng Kuk; Yun, Keyng Reyl; Lee, Jeung Kun [Ahju University, Suwon (Korea, Republic of)

    1996-06-01

    Electricity must be used simultaneously with its generation. Existing storage methods either are dependent on special geography, are too expensive,= or are too inefficient. Electricity demand changes by as much as 30% over a 12-hour period and result in significant costs for utilities as power output get adjusted to meet these changes. The purpose of HTS FES is to store unused nighttime electricity until it is needed during the daytime. If every element of a rotating flywheel is stressed to a prescribed allowable value, the flywheel material will clearly be used in most efficient manner. The uniformlt stressed flywheel is about 25% stronger than a flat disk. The gap between superconductor and permanent magnet was 1.85 mm, and using bearing connector with the values, joining superconductor to permanent magnet Using bolt connector, joining permanent magnet to flywheel. Joined system is excited by exciting function that magnitude is 1, range is 0 up to 4000 HZ. 3 rd and 4 th natural frequency, 1857 HZ and 2340 HZ, in X direction and 2 nd natural frequency, 28.57 HZ, are avoided to prevent resonance. 15 refs., 11 tabs., 53 figs. (author)

  5. Design and implementation of FPGA-based LQ control of active magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Jastrzebski, R.

    2007-07-01

    The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in

  6. On the future of controllable fluid film bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar

    2011-01-01

    lubrication regimes, i.e., as tilting-pad journal bearings, multi-recess journal bearings and plain journal bearings. After a comprehensive overview of the theoretical and experimental technological advancements achieved in university laboratories, the feasibility of industrial applications is highlighted......This work gives an overview of the theoretical and experimental achievements of mechatronics applied to fluid film bearings. Compressible and uncompressible fluids are addressed. Rigid and elastic (deformable) bearing profiles are investigated. Hydraulic, pneumatic, magnetic and piezoelectric...

  7. An Evershed type superconducting flywheel bearing

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A.; Campbell, A.M.; Coombs, T.A

    2003-07-15

    The objective of this work is to develop a bearing using high temperature superconductors (HTSs) for use in an energy storage flywheel. The experimental apparatus includes a cylindrical rotor levitated with the Evershed design in which the majority of the levitation force is provided by a permanent magnet arrangement and the stabilization of the system is achieved by HTS elements. The design characteristics and dynamics of the bearing associated with the rotor part are presented. The instrumentation measures the out of balance force and magnetomechanical stiffness associated with the rotor. A study of the rotational losses was performed using free spin down experiments associated with magnetic field variation measurements. The results are consistent with the loss being caused by hysteresis in the superconductor due to magnet inhomogeneity.

  8. Force analysis of magnetic bearings with power-saving controls

    International Nuclear Information System (INIS)

    Johnson, D.; Brown, G.V.; Inman, D.J.

    1992-01-01

    Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods

  9. The use of double-decker catcher bearing with face-to-face installed inner layer bearings

    Science.gov (United States)

    Zhu, Yi-Li; Zheng, Zhong-Qiao

    2017-07-01

    In active magnetic bearing (AMB) system, the catcher bearings (CB) are indispensable to temporarily support the rotor from directly impacting the stators. In most cases, traditional CB cannot bear the ultra-high speed, vibrations and impacts after a rotor drop event. To address the shortcomings, a double-decker ball bearing (DDBB) with inner two face-to-face angular contact ball bearings are proposed to be used as CB in an AMB system, and the dynamic response of the rotor after a rotor drop event is experimentally analyzed. The results indicate that using a DDBB as a CB helps to reduce the following collision forces after a rotor drop. Larger ball initial contact angles and smaller pre-load force on the inner layer bearings, larger radial clearance of the outer layer bearing and choosing AISI 10AISI 1045 steel which has a larger density for the adapter ring can effectively reduce the maximum impact force after a rotor drop event.

  10. Lift to Drag Ratio Analysis in Magnetic Levitation with an Electrodynamic Wheel

    Science.gov (United States)

    Gutarra-Leon, Angel; Cordrey, Vincent; Majewski, Walerian

    Our experiments explored inductive magnetic levitation (MagLev) using simple permanent magnets and conductive tracks. Our investigations used a circular Halbach array with a 1 Tesla variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above or below a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields, which interact with the magnets of the EDW. We constructed a four-inch diameter Electrodynamic Wheel using twelve Neodymium permanent magnets and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW. These forces can be used for levitation and propulsion of the EDW to produce magnetic levitation without coils and complex control circuitry. We achieved full levitation of the non-magnetic aluminum and copper plates. Our results confirm the expected behavior of lift to drag ratio as proportional to (L/R) ω, with L and R being the inductance and resistance of the track plate, and ω being the angular velocity of the magnetic flux. Supported by grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  11. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    Science.gov (United States)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Utsunomiya, Shin; Yamamoto, Ryo

    2017-07-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions.

  12. Vibrational characteristics of a superconducting magnetic bearing employed for a prototype polarization modulator

    International Nuclear Information System (INIS)

    Sakurai, Yuki; Matsumura, Tomotake; Sugai, Hajime; Katayama, Nobuhiko; Utsunomiya, Shin; Ohsaki, Hiroyuki; Terao, Yutaka; Terachi, Yusuke; Kataza, Hirokazu; Yamamoto, Ryo

    2017-01-01

    We present the vibrational characteristics of a levitating rotor in a superconducting magnetic bearing (SMB) system operating at below 10 K. We develop a polarization modulator that requires a continuously rotating optical element, called half-wave plate (HWP), for a cosmic microwave background polarization experiment. The HWP has to operate at the temperature below 10 K, and thus an SMB provides a smooth rotation of the HWP at the cryogenic temperature of about 10 K with minimal heat dissipation. In order to understand the potential interference to the cosmological observations due to the vibration of the HWP, it is essential to characterize the vibrational properties of the levitating rotor of the SMB. We constructed a prototype model that consists of an SMB with an array of high temperature superconductors, YBCO, and a permanent magnet ring, NdFeB. The rotor position is monitored by a laser displacement gauge, and a cryogenic Hall sensor via the magnetic field. In this presentation, we present the measurement results of the vibration characteristics using our prototype SMB system. We characterize the vibrational properties as the spring constant and the damping, and discuss the projected performance of this technology toward the use in future space missions. (paper)

  13. Magnetic field mapping of the UCNTau magneto-gravitational trap: design study

    Energy Technology Data Exchange (ETDEWEB)

    Libersky, Matthew Murray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN r experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near the surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. The design of the system and initial results will be described here.

  14. Design of multi-input multi-output controller for magnetic bearing which suspends helium gas-turbine generator rotor for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Takada, Shoji; Funatake, Yoshio; Inagaki, Yoshiyuki

    2009-01-01

    A design of a MIMO controller, which links magnetic forces of multiple magnetic bearings by feedback of multiple measurement values of vibration of a rotor, was proposed for the radial magnetic bearings for the generator rotor of helium gas turbine with a power output of 300 MWe. The generator rotor is a flexible rotor, which passes over the forth critical speed. A controller transfer function was derived at the forth critical speed, in which the bending vibration mode is similar to the one which is excited by unbalance mass to reduce a modeling error. A 1404-dimensional un-symmetric coefficient matrix of equation of state for the rotating rotor affected by Jayro effect was reduced by a modal decomposition using Schur decomposition to reduce a reduction error. The numerical results showed that unbalance response of rotor was 53 and 80 μm p-p , respectively, well below the allowable limits both at the rated and critical speeds. (author)

  15. Magnetostatic analysis of a rotor system supported by radial active magnetic bearings

    Directory of Open Access Journals (Sweden)

    Ferfecki P.

    2009-06-01

    Full Text Available The development and the design of a radial active magnetic bearing (AMB reflects a complex process of the multidisciplinary rotor dynamics, electromagnetism and automatic control analysis. Modelling is performed by application of the physical laws from different areas, e.g. Newton's laws of motion and Maxwell's equations. The new approach in the numerical modelling of radial AMB and design methodology allowing automatic generation of primary dimensions of the radial AMB is proposed. Instead of the common way of computation of electromagnetic forces by linearizing at the centre position of the rotor with respect to rotor displacement and coil current, the finite element computation of electromagnetic forces is used. The heteropolar radial AMB consisting of eight pole shoes was designed by means of the built up algorithms for rotor system with two discs fixed on the cantilever shaft. A study of the influence of the nonlinear magnetization characteristics of a rotor and stator material on the equilibrium position of a rotor system is carried out. The performed numerical study shows that results obtained from the analytical nonlinear relation for electromagnetic forces can be considerably different from forces computed with magnetostatic finite element analysis.

  16. An active homopolar magnetic bearing with high temperature superconductor (HTS) coils and ferromagnetic cores

    Science.gov (United States)

    Brown, G. V.; Dirusso, E.; Provenza, A. J.

    1995-01-01

    A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.

  17. Two design of the S4.BEN01 magnet for the CBETA splitter/merger

    Energy Technology Data Exchange (ETDEWEB)

    Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tuozzolo, J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-10

    The splitter/merger section of the CBETA project [1] consists of 4 beam lines as shown in Fig. 1. Two of the functions of the splitter’s/merger’s lines is to match the beam parameters at the exit of the Energy Recovery Linac (ERL) to the beam parameters at the entrance of the Fixed Field Alternating Gradient (FFAG) arc, and also place the reference particles of the beam bunches at the entrance of the FFAG arc on specified trajectories according to their energies. In this technical note we are presenting results from the 2D and 3D electromagnetic analysis of the S4.BEN01 magnet which is one of the dipole magnets of the 150 MeV line of the splitter/merger. In particular we present results from two designs of the S4.BEN01 magnet, one based on iron dominated current-excited magnet, and the other design based on Halbach-type permanent magnet. An evaluation of the two designs will be given in the section under “conclusion”.

  18. Development of a neutron-polarizing device based on a quadrupole magnet and its application to a focusing SANS instrument

    International Nuclear Information System (INIS)

    Oku, Takayuki

    2009-01-01

    We have investigated suitable magnetic field distribution to polarize neutrons based only on the electromagnetic interaction between a neutron magnetic moment and magnetic field, and found out a quadrupole field was the most suitable among simple multipole fields. Then we constructed a quadrupole magnet with a Halbach magnetic circuit as the neutron polarizing device. A cold neutron polarizing experiment of the quadrupole magnet was performed at the beamline C3-1-2-1 (NOP) of JRR-3 at JAEA. By passing through the aperture of the quadrupole magnet, positive and negative polarity neutrons are accelerated in opposite directions and spatially separated. Therefore, we extracted the one-spin component and analyzed its polarization degree. As a result very high neutron polarization degree P=0.9993±0.0025 was obtained. Then the quadrupole magnet was installed into the polarized neutron focusing geometry SANS instrument SANS-J-II of JRR-3. The instrument performance was enhanced by about 10 times compared with the case with the magnetic supermirror as the neutron polarizing device. The details are shown and discussed. (author)

  19. Advantage of superconducting bearing in a commercial flywheel system

    Energy Technology Data Exchange (ETDEWEB)

    Viznichenko, R; Velichko, A V; Hong, Z; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)], E-mail: tac1000@cam.ac.uk

    2008-02-01

    The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system.

  20. Development and test of model apparatus of non-contact spin processor for photo mask production applying radial-type superconducting magnetic bearing

    International Nuclear Information System (INIS)

    Saito, Kimiyo; Fukui, Satoshi; Maezawa, Masaru; Ogawa, Jun; Oka, Tetsuo; Sato, Takao

    2013-01-01

    Highlights: ► We develop test spinner for non-contact spinning process in photo mask production. ► This test spinner shows improved spinning ability compared with our previous one. ► Large vertical movement of turn table still occurs during acceleration. ► Method to control vertical movement of turn table should be developed in next step. -- Abstract: In semiconductor devices, miniaturization of circuit patterning on wafers is required for higher integrations of circuit elements. Therefore, very high tolerance and quality are also required for patterning of microstructures of photo masks. The deposition of particulate dusts generated from mechanical bearings of the spin processor in the patterns of the photo mask is one of main causes of the deterioration of pattern preciseness. In our R and D, application of magnetic bearing utilizing bulk high temperature superconductors to the spin processors has been proposed. In this study, we develop a test spinner for the non-contact spinning process in the photo mask production system. The rotation test by using this test spinner shows that this test spinner accomplishes the improvement of the spinning ability compared with the test spinner developed in our previous study. This paper describes the rotation test results of the new test spinner applying the magnetic bearing with bulk high temperature superconductors

  1. Comparison of Achievable Magnetic Fields with Superconducting and Cryogenic Permanent Magnet Undulators – A Comprehensive Study of Computed and Measured Values

    Energy Technology Data Exchange (ETDEWEB)

    Moog, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Dejus, R. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sasaki, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-01-01

    Magnetic modeling was performed to estimate achievable magnetic field strengths of superconducting undulators (SCUs) and to compare them with those of cryogenically cooled permanent magnet undulators (CPMUs). Starting with vacuum (beam stay-clear) gaps of 4.0 and 6.0 mm, realistic allowances for beam chambers (in the SCU case) and beam liners (in the CPMU case) were added. (A 6.0-mm vacuum gap is planned for the upgraded APS). The CPMU magnetic models consider both CPMUs that use NdFeB magnets at ~150 K and PrFeB magnets at 77 K. Parameters of the magnetic models are presented along with fitted coefficients of a Halbach-type expression for the field dependence on the gap-to-period ratio. Field strengths for SCUs are estimated using a scaling law for planar SCUs; an equation for that is given. The SCUs provide higher magnetic fields than the highest-field CPMUs – those using PrFeB at 77 K – for period lengths longer than ~14 mm for NbTi-based SCUs and ~10 mm for Nb3Sn-based SCUs. To show that the model calculations and scaling law results are realistic, they are compared to CPMUs that have been built and NbTi-based SCUs that have been built. Brightness tuning curves of CPMUs (PrFeB) and SCUs (NbTi) for the upgraded APS lattice are also provided for realistic period lengths.

  2. Numerical analysis of hydrodynamic journal bearings lubricated with ferrofluid

    NARCIS (Netherlands)

    Montazeri, H.

    2008-01-01

    The current work focuses on studying the hydrodynamic characteristics of flow in journal bearings lubricated with ferrofluid. The bearing has an infinite length and operates under incompressible laminar flow and steady conditions. Assuming linear behaviour for the magnetic material of the

  3. Design of permanent magnet quadrupole for LEHIPA DTL

    International Nuclear Information System (INIS)

    Mathew, Jose V.; Rao, S.V.L.S.; Krishnagopal, S.; Singh, P.

    2011-01-01

    The drift tube linac (DTL) of the low energy high intensity proton accelerator (LEHIPA) has been designed to accelerate 30 mA proton beam from 3 MeV to 20 MeV in a distance of around 13 m. A FFDD lattice structure is selected to provide strong transverse focusing, where each drift tube includes one quadrupole magnet. Beam dynamics simulations specified an effective magnet length of 47 mm, maximum field gradient of 47 T/m, and bore aperture of 24 mm. For these specifications, a detailed design of a very thin permanent magnet quadrupole (PMQ) is presented. Four types of PMQ designs have been compared: a 16-segment trapezoidal design in the Halbach configuration, two 16-segment rectangular designs (with and without gaps), and an 8-segment rectangular design. 2D and 3D modeling codes, POISSON and CST Studio suite are used for the design studies. The good field region is calculated based on field gradient deviation in the transverse plane and integral field homogeneity. The very low aspect ratio of these PMQs leads to edge effects, thereby reducing the central field strength. The 3D simulations are used to study these edge effects. (author)

  4. A six-degree-of-freedom magnetic levitation fine stage for a high-precision and high-acceleration dual-servo stage

    International Nuclear Information System (INIS)

    Kim, MyeongHyeon; Jeong, Jae-heon; Gweon, DaeGab; Kim, HyoYoung

    2015-01-01

    This paper presents a novel six-degree-of-freedom magnetic levitation fine stage for a dual-servo stage. The proposed fine stage is levitated and actuated, using a voice coil motor actuator with a Halbach magnet array. For a dual-servo stage, fine stage performance is deeply intertwined with coarse stage performance. Because the fine stage is installed over the coarse stage, the overall size of the fine stage can be limited by the moving plate of the coarse stage. Therefore, magnetic flux modeling and optimization are performed to manufacture optimal fine stages. To control the fine stage, actuator kinetics and sensor kinematics are proposed. Homing control is implemented by using linear variable differential transformers, whereas fine control is implemented by capacitance sensors and laser interferometers. Finally, experimental results of in-position stability, moving range, and repeatability are presented. (paper)

  5. A theoretical-experimental study of backup bearings

    DEFF Research Database (Denmark)

    Lampe Linhares da Fonseca, Cesar Augusto

    of two types of backup bearings, which are investigated experimentally and theoretically. The first type is a conventional ball bearing commonly used in industrial applications. The second is an unconventional bearing that, which contains pins inside the clearance for the rotor to impact on. The main...... both types of bearings for further investigation. Also, a full failure of the control and a rotor drop on the ball bearing as backup bearing is investigated by removing the magnetic forces. The nonlinear features of the dynamics of the rotor are assessed for different levels of unbalance. It has been...... radial forces. Remaining in this condition, it may lead to permanent damage or total failure of the machine. This is why the backup bearing design has to be carefully planned and investigated as to whether it helps to protect the integrity of the machine. This PhD thesis provides a comprehensive study...

  6. Report on achievements in fiscal 1999. Research and development of electric power storage using high-temperature super-conductive flywheels (research and development on manufacture of super-conductive magnetic bearings); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Chodendo jiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Introduction of electric power storage equipment is sought, which will be discretely installed in power distribution substations. Therefore, elementary technologies were researched on 'manufacture of super-conductive magnetic bearings' intended for practical application of an electric power storage system of 10-MWh class using high-temperature super-conductive flywheels. Research and development has been performed on different kinds of super-conductive magnetic bearings which combine high-temperature super-conductive materials with permanent magnets. In order to measure the characteristics of the super-conductive magnetic bearings, measurements were executed on rotation loss, loading power and bearing constants. In the measurement of the rotation loss, a {phi} 180 axial type super-conductive magnetic bearing using an Sm-based superconductor ({phi} 180AxSMB2) was given various kinds of tests by using a rotation loss measuring and testing machine. The results were compared with those for the {phi} 180AxSMB1 using the YBCO-based superconductor and other SMBs. In the measurements for the other items, various items were measured on dynamic rotation properties of the {phi} 180AxSMB and {phi} 180RaSMB by using a static bearing constant testing machine. In discussing the loading power characteristics, the dynamic rotation properties of the {phi} 180RaSMB were measured, and the loading power characteristics were discussed on super-conductive magnetic bearings for medium size models and super-conductive magnetic bearings for large system FS. (NEDO)

  7. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M [ORNL; Kisner, Roger A [ORNL; Fugate, David L [ORNL; Holcomb, David Eugene [ORNL

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  8. Metal-organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    Science.gov (United States)

    Hu, Bo-Wen; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-01

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L)2]n (1) and [Co3(L)4(N3)2·2MeOH]n (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (42.6)2(44.62.88.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co3] units. And the magnetic properties of 1 and 2 have been studied.

  9. Superconducting bearings in flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Campbell, A.M.; Ganney, I.; Lo, W. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Twardowski, T. [International Energy Systems, Chester High Road, Neston, South Wirral (United Kingdom); Dawson, B. [British Nuclear Fuels, Capenhurst, South Wirral (United Kingdom)

    1998-05-01

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.) 5 refs.

  10. Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing

    International Nuclear Information System (INIS)

    Lee, J. P.; Kim, H. G.; Han, S. C.

    2012-01-01

    In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

  11. Design and suspension experiments of the full-size active magnetic bearing test rig for the HTR-10GT

    International Nuclear Information System (INIS)

    Lu Qiyue; Shi Lei; Zhao Lei; Yu Suyuan

    2005-01-01

    In this paper, we introduce the fundamental properties of the full-size active magnetic bearing experimental set system (AMB-F), including control unit, data I/O channel, feedback unit and executor. Besides, the 72-hours continuously running experiment of the AMB-F, with special attention to the vibration of stators' shell, is presented. This experiment is designed mainly for validating the total system's stability. It is the basis of further characteristic experiments. (authors)

  12. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    International Nuclear Information System (INIS)

    Tang, Jiqiang; Sun, Jinji; Fang, Jiancheng; Shuzhi Sam, Ge

    2013-01-01

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability. - Highlights: ► Control methods of rotor driven by AHMBs and their characteristics are researched. ► Optimized stator and rotor of AHMB reduce its eddy losses greatly. ► Presented the factors affecting the eddy losses of AHMBs. ► The good performances of AHMB with low eddy loss are proved by experiments.

  13. Auxiliary bearing design considerations for gas cooled reactors

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Rodwell, E.

    2001-01-01

    The need to avoid contamination of the primary system, along with other perceived advantages, has led to the selection of electromagnetic bearings (EMBs) in most ongoing commercial-scale gas cooled reactor (GCR) designs. However, one implication of magnetic bearings is the requirement to provide backup support to mitigate the effects of failures or overload conditions. The demands on these auxiliary or 'catcher' bearings have been substantially escalated by the recent development of direct Brayton cycle GCR concepts. Conversely, there has been only limited directed research in the area of auxiliary bearings, particularly for vertically oriented turbomachines. This paper explores the current state-of-the-art for auxiliary bearings and the implications for current GCR designs. (author)

  14. The BEAR Beamline at Elettra

    International Nuclear Information System (INIS)

    Nannarone, S.; Pasquali, L.; Selvaggi, G.; Borgatti, F.; DeLuisa, A.; Doyle, B.P.; Gazzadi, G.C.; Giglia, A.; Finetti, P.; Pedio, M.; Mahne, N.; Naletto, G.; Pelizzo, M.G.; Tondello, G.

    2004-01-01

    The BEAR (Bending Magnet for Emission Absorption and Reflectivity) beamline is installed at the right exit of the 8.1 bending magnet at ELETTRA. The beamline - in operation since January 2003 - delivers linear and circularly polarized radiation in the 5 - 1600 eV energy range. The experimental station is composed of a UHV chamber for reflectivity, absorption, fluorescence and angle resolved photoemission measurements and a UHV chamber for in-situ sample preparation

  15. Superconducting-electromagnetic hybrid bearing using YBCO bulk blocks for passive axial levitation

    Science.gov (United States)

    Nicolsky, R.; de Andrade, R., Jr.; Ripper, A.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Gawalek, W.; Habisreuther, T.; Strasser, T.

    2000-06-01

    A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90° from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance.

  16. 5th workshop 'Magnetic bearings'. Proceedings; 5. Workshop Magnetlagertechnik. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, S.; Rottenbach, T. (comps.)

    2001-07-01

    The workshop investigated the state of the art of magnetic bearings and their applications. It was attended by experts from industry, research institutions and universities who took the chance to exchange their experience and keep abreast of new developments. The proceedings volume contains all papers presented at the meeting, in chronological order. [German] Der Workshop stellt sich zur Aufgabe, sowohl die Fortschritte in Forschung und Entwicklung in der Magnetlagertechnik aufzuzeigen als auch den Stand der Technik an speziellen Anwendungen darzustellen. Die Veranstaltung versteht sich als Forum fuer Forscher und Anwender aus der Industrie, industriellen Forschungseinrichtungen sowie Universitaeten und Hochschulen. Daher steht der Erfahrungsaustausch zwischen Entwicklern, Herstellern und Betreibern im Mittelpunkt. Interessierte Fachleute aus Wissenschaft und Industrie haben hier die Moeglichkeit, sich ueber die Grundlagen, Einsatzmoeglichkeiten und Anwendungsgebiete der Magnetlagertechnologie zu informieren. Im vorliegenden Tagungsband sind die von den Autoren eingereichten Beitraege in der Reihenfolge des Tagungsprogramms wiedergegeben. (orig.)

  17. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. R and D of characteristic analysis of superconducting magnetic bearing; 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. chodendo jiki jikuuke no tokusei kaiseki no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    This paper explains fiscal 1997 results of the development of technologies for characteristic analysis of superconducting magnetic bearings (SMB), the development aimed at putting a 10 MWh high temperature superconducting flywheel power storage system to practical use. Following fiscal 1996, calculation programs were prepared for a load capacity and bearing constant (spring constant, damping constant) on an axial type SMB, with validity of the program examined through comparison with experimental values. A finite element method was applied to a complex magnetic field by a magnet arrangement devised for the purpose of improving load capacity, dividing a superconductor into divided sections so that the effect of a complex magnetic field distribution could be reflected, determining the magnetization generating in each divided section by using a two-dimensional Bean model, and developing a method for calculating load capacity of each divided section by a magnetic moment method. A program was completed for calculating the load capacity and bearing constant of the entire bearing in the axial type SMB. The calculated value of the load capacity and the bearing constant showed a superior agreement with the experimental value. (NEDO)

  18. Comment on “Performance of Halbach magnet with finite coercivity” [J. Magn. Magn. Mater. 407, 369–376 (2016)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiaonong, E-mail: xnxu@nju.edu.cn

    2017-05-01

    In the recent study given by Insinga et al. [J. Magn. Magn. Mater. 407, 369–376 (2016)], two kind of magnetic hysteresis loops, magnetization versus magnetic field strength (M-H), and magnetic induction versus magnetic field strength (B-H) of the permanent magnetic material with finite coercivity are involved. However, M-H and B-H functions are sensitive to the shape of magnetic element, moreover, M and B are possibly the multivalue functions at H=H{sub c}, perhaps the third kind magnetic hysteresis loop of magnetization versus magnetic induction (M-B) is more appropriate for predicting the phenomena of demagnetization and reversal of original remanence in magnet array. - Highlights: • Demagnetization is analyzed by the magnetic induction dependent remanence function M(B). • Partial demagnetization and remanence reversal may be distinguished by M(B) function.

  19. Reproducible synthesis of YBCO high-temperature superconducting ceramics (step 1) and parameters and optimized design of superconducting Magnetic Bearings (step 2). Final report

    International Nuclear Information System (INIS)

    Floegel-Delor, U.; Rothfeld, R.; Wippich, D.; Werfel, F.

    1999-11-01

    A method for selective and economically efficient production of large HTSL bodies on the basis of polycrystalline YBCO material (CCG - CeramoCrystalGrowth) was developed which does not require nucleation and achieves macroscopic grain orientation and high intrinsic current densities of 30 A/cm (intrinsic field). Formed bodies up to a diameter of 150 mm and a mass of 2 kg were grown. In the second stage, frictionless and contactless magnetic bearings with HTS were investigated. They were found to have advantages over the current technologies, e.g. extremely high speed and bearing of unbalanced rotors [de

  20. Adjustable, short focal length permanent-magnet quadrupole based electron beam final focus system

    Directory of Open Access Journals (Sweden)

    J. K. Lim

    2005-07-01

    Full Text Available Advanced high-brightness beam applications such as inverse-Compton scattering (ICS depend on achieving of ultrasmall spot sizes in high current beams. Modern injectors and compressors enable the production of high-brightness beams having needed short bunch lengths and small emittances. Along with these beam properties comes the need to produce tighter foci, using stronger, shorter focal length optics. An approach to creating such strong focusing systems using high-field, small-bore permanent-magnet quadrupoles (PMQs is reported here. A final-focus system employing three PMQs, each composed of 16 neodymium iron boride sectors in a Halbach geometry has been installed in the PLEIADES ICS experiment. The field gradient in these PMQs is 560   T/m, the highest ever reported in a magnetic optics system. As the magnets are of a fixed field strength, the focusing system is tuned by adjusting the position of the three magnets along the beam line axis, in analogy to familiar camera optics. This paper discusses the details of the focusing system, simulation, design, fabrication, and experimental procedure in creating ultrasmall beams at PLEIADES.

  1. Design of Active Magnetic Bearing Controllers for Rotors Subjected to Gas Seal Forces

    DEFF Research Database (Denmark)

    Lauridsen, Jonas Skjødt; Santos, Ilmar F.

    2018-01-01

    Proper design of feedback controllers is crucial for ensuring high performance of Active Magnetic Bearing (AMB) supported rotor dynamic systems. Annular seals in those systems can contribute with significant forces, which, in many cases, are hard to model in advance due to complex geometries...... of the seal and multiphase fluids. Hence, it can be challenging to design AMB controllers that will guarantee robust performance for these kinds of systems. This paper demonstrates the design, simulation and experimental results of model based controllers for AMB systems, subjected to dynamic seal forces....... The controllers are found using H-infinity - and µ synthesis and are based on a global rotor dynamic model in-which the seal coefficients are identified in-situ. The controllers are implemented in a rotor-dynamic test facility with two radial AMBs and one annular seal with an adjustable inlet pressure. The seal...

  2. KIAE-1.5-3 undulator performance

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, A.A.; Ivanchenko, S.N.; Khlebnikov, A.S. [Kurchatov Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    Hybrid type undulator with 60 periods of {lambda}{sub w} = 1.5 cm and tunable gap in wide range has been designed and manufactured. Additional side magnet arrays provide high magnetic field (near Halbach limit) along with transverse field profiles for e.b. focusing.

  3. Development of a high-performance magnetic gear

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Andersen, Torben Ole; Jørgensen, Frank Thorleif

    2005-01-01

    components in the magnetic gear is also performed in order to figure out why the efficiency for the actual construction was only 81 %. A large magnetic 1055 component originated in the bearings, where an unplanned extra bearing was necessary due to mechanical problems. Without the losses of magnetic origin...

  4. Precision formed micro magnets: LDRD project summary report

    Energy Technology Data Exchange (ETDEWEB)

    CHRISTENSON,TODD R.; GARINO,TERRY J.; VENTURINI,EUGENE L.

    2000-02-01

    A microfabrication process is described that provides for the batch realization of miniature rare earth based permanent magnets. Prismatic geometry with features as small as 5 microns, thicknesses up through several hundred microns and with submicron tolerances may be accommodated. The processing is based on a molding technique using deep x-ray lithography as a means to generate high aspect-ratio precision molds from PMMA (poly methyl methacrylate) used as an x-ray photoresist. Subsequent molding of rare-earth permanent magnet (REPM) powder combined with a thermosetting plastic binder may take place directly in the PMMA mold. Further approaches generate an alumina form replicated from the PMMA mold that becomes an intermediate mold for pressing higher density REPM material and allows for higher process temperatures. Maximum energy products of 3--8 MGOe (Mega Gauss Oersted, 1 MGOe = 100/4{pi} kJ/m{sup 3}) are obtained for bonded isotropic forms of REPM with dimensions on the scale of 100 microns and up to 23 MGOe for more dense anisotropic REPM material using higher temperature processing. The utility of miniature precision REPMs is revealed by the demonstration of a miniature multipole brushless DC motor that possesses a pole-anisotropic rotor with dimensions that would otherwise prohibit multipole magnetization using a multipole magnetizing fixture at this scale. Subsequent multipole assembly also leads to miniaturized Halbach arrays, efficient magnetic microactuators, and mechanical spring-like elements which can offset miniaturized mechanical scaling behavior.

  5. Vibration Reduction System Using Magnetic Suspension Technology

    Directory of Open Access Journals (Sweden)

    Spychała Jarosław

    2015-01-01

    Full Text Available The article presents considerations concerning the construction of vibration reduction system using magnetic suspension technology. Presents the results of simulation, numerical and experimental the bearingless electric motor, for which successfully used this type of solution. Positive results of research and testing have become the basis for the development of the concept of building this type of active vibration reduction system , at the same time acting as a support for a technical object, which is a jet engine. Bearing failures are manifested by loss or distortion of their mass, which leads to a total destruction of the roller bearing, and thus reflected in the security. The article presents the concept of building active magnetic suspension to eliminate the bearing system of classical rolling bearing and replace it with magnetic bearing.

  6. Magnetic leviation. ; Challenge for control design in mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Bleuler, H.

    1992-12-01

    The purpose of this paper is to show that development of active magnetic bearing is far from being under closed circumstanses. In this paper, magnetic levitation is classified and it is shown that the industrially applied magnetic levitation is a typical mechatronics system. Control problems for active magnetic bearings are then presented. It is introduced that there are several very interesting control issues to be solved and the potential for industrial applications is vast. Among the application areas, clean-room and vacuum handling, precision optics, scanning, machining, and turbo machines are described. In addition, is introduced the emerging of new fields of research, such as micro-scale active magnetic bearings, in which a project has been started. Furthermore, status of other current research is provided, which includes identification and control methods and the position sensorless bearing. 9 refs., 5 figs.

  7. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Science.gov (United States)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.

  8. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    International Nuclear Information System (INIS)

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations. (paper)

  9. Measuring Magnetic Declination With Compass, GPS and Virtual Globes

    Science.gov (United States)

    O'Brien, W. P.

    2006-12-01

    Using virtual globe (VG) imagery to determine geographic bearing and a compass to determine magnetic bearing yielded acceptable experimental magnetic declination values for large linear physical features at 13 sites in the western continental United States. The geographic bearing of each feature was determined from measurements involving the latitude/longitude coordinate system associated with the VG image (from World Wind or Google Earth). The corresponding magnetic bearing was measured on the ground at the feature with a hand-bearing compass calibrated in 1-degree subdivisions. A sequence of GPS trackpoints, recorded while traveling along the feature either in an automobile or on foot, unambiguously identified the pertinent portion of the feature (a straight segment of a road, for example) when plotted on the VG image. For each physical feature located on a VG image, its geographic bearing was determined directly using on-screen measurement tools available with the VG program or by hand using ruler/protractor methods with printed copies of the VG image. An independent (no use of VG) geographic bearing was also extracted from the slope of a straight-line fit to a latitude/longitude plot of each feature's GPS coordinates, a value that was the same (to within the inherent uncertainty of the data) as the VG-determined bearing, thus validating this procedure for finding geographic bearings. Differences between the VG bearings and the magnetic bearings yielded experimental magnetic declination values within one degree (8 within 0.5 degree) of expected values. From the point of view of physics and geophysics pedagogy, this project affords students a simple magnetism/geodesy field experiment requiring only a good compass and a GPS receiver with memory and a data port. The novel and straightforward data analysis with VG software yields reliable experimental values for an important abstract geophysical quantity, magnetic declination. Just as the compass has long provided

  10. Rotor-bearing system integrated with shape memory alloy springs for ensuring adaptable dynamics and damping enhancement-Theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar F.

    2016-01-01

    nonlinear coupled dynamics of the rotor-bearing system. The nonlinear forces from the thermomechanical shape memory alloy springs and from the passive magnetic bearings are coupled to the rotor and bearing housing dynamics. The equations of motion describing rotor tilt and bearing housing lateral motion......Helical pseudoelastic shape memory alloy (SMA) springs are integrated into a dynamic system consisting of a rigid rotor supported by passive magnetic bearings. The aim is to determine the utility of SMAs for vibration attenuation via their mechanical hysteresis, and for adaptation of the dynamic...

  11. Application of a local linearization technique for the solution of a system of stiff differential equations associated with the simulation of a magnetic bearing assembly

    Science.gov (United States)

    Kibler, K. S.; Mcdaniel, G. A.

    1981-01-01

    A digital local linearization technique was used to solve a system of stiff differential equations which simulate a magnetic bearing assembly. The results prove the technique to be accurate, stable, and efficient when compared to a general purpose variable order Adams method with a stiff option.

  12. Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Jeong, N. H.; Sung, T. H.; Han, Y. H.

    2008-01-01

    A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  13. Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability.

    Science.gov (United States)

    Becher, Christoph; Fleischer, Benjamin; Rase, Marten; Schumacher, Thees; Ettinger, Max; Ostermeier, Sven; Smith, Tomas

    2017-08-01

    This study analysed the effects of upright weight bearing and the knee flexion angle on patellofemoral indices, determined using magnetic resonance imaging (MRI), in patients with patellofemoral instability (PI). Healthy volunteers (control group, n = 9) and PI patients (PI group, n = 16) were scanned in an open-configuration MRI scanner during upright weight bearing and supine non-weight bearing positions at full extension (0° flexion) and at 15°, 30°, and 45° flexion. Patellofemoral indices included the Insall-Salvati Index, Caton-Deschamp Index, and Patellotrochlear Index (PTI) to determine patellar height and the patellar tilt angle (PTA), bisect offset (BO), and the tibial tubercle-trochlear groove (TT-TG) distance to assess patellar rotation and translation with respect to the femur and alignment of the extensor mechanism. A significant interaction effect of weight bearing by flexion angle was observed for the PTI, PTA, and BO for subjects with PI. At full extension, post hoc pairwise comparisons revealed a significant effect of weight bearing on the indices, with increased patellar height and increased PTA and BO in the PI group. Except for the BO, no such changes were seen in the control group. Independent of weight bearing, flexing the knee caused the PTA, BO, and TT-TG distance to be significantly reduced. Upright weight bearing and the knee flexion angle affected patellofemoral MRI indices in PI patients, with significantly increased values at full extension. The observations of this study provide a caution to be considered by professionals when treating PI patients. These patients should be evaluated clinically and radiographically at full extension and various flexion angles in context with quadriceps engagement. Explorative case-control study, Level III.

  14. Analysis of Nonlinear Vibration in Permanent Magnet Synchronous Motors under Unbalanced Magnetic Pull

    Directory of Open Access Journals (Sweden)

    Ao Zhang

    2018-01-01

    Full Text Available The vibration and noise of permanent magnet synchronous motors (PMSM are mainly caused by unbalanced magnetic pull (UMP. This paper aims to investigate nonlinear vibration in PMSMs. Firstly, the analytical model of the air-gap magnetic field with an eccentric rotor in PMSM is studied, and the analytical model is verified by the finite element method. Then the dynamic model of an offset rotor-bearing system is established, and the gyroscopic effect, nonlinear bearing force and UMP are taken into consideration. Finally, the dynamic characteristics of different static displacement eccentricities, rotor offsets and radial clearances are investigated in both the time domain and the frequency domain. The results show that the amplitudes of dynamic responses increase with the static displacement eccentricity and rotor offset and high integer multiples of rotating frequency appear with the increase of displacement eccentricity. The coupling effects of bearing force, unbalanced mass force and UMP are observed in the frequency domain, and the frequency components in the dynamic responses indicate that the bearings have an effect on the system.

  15. Influence of unbalance levels on nonlinear dynamics of a rotor-backup rolling bearing system

    DEFF Research Database (Denmark)

    Fonseca, Cesar A.; Santos, Ilmar; Weber, Hans I.

    2017-01-01

    of nonlinear dynamics applied to the practical use. The theoretical and numerical analyses are shown through orbit plots, phase plans, Poincaré maps, force response in time and double sided spectrum. The latter is important to characterize the condition at different levels of unbalance between forward......Rotor drops in magnetic bearing and unbalance in rotors have been objective of study for many years. The combination of these two well-known phenomena led to an interesting chaotic response, when the rotor touches the inner race of the back-up bearing. The present work explores the nonlinear rotor...... backup bearing dynamics both theoretically and experimentally using a fully instrumented test rig, where the position of shaft, its angular velocity and the contact forces between the shaft and the backup bearing are sampled at 25 kHz. The test rig is built by a removable passive magnetic bearing, which...

  16. Recent research and development of bearings for helium circulator

    International Nuclear Information System (INIS)

    Taniguchi, S.; Ezaki, Z.; Kawaguchi, K.; Matsumura, N.; Kozima, M.

    1988-01-01

    This paper mainly describes recent studies and successful applications of water lubricated bearing and gas lubricated bearing. Both types of bearing seem to be suitable for a turbo machine installed in an atomic energy plant - such as the helium circulator of a HTGR - not to be affected by radioactivity, so we have been attracted by them for about 10 years. The former was investigated theoretically taking account of turbulent flow due to the low viscosity of water, and compared with the experimental data. Good agreement was obtained, and a successful example applied to a small-sized high speed air compressor is shown. The latter was investigated using a large-sized bearing test rig simulated to an actual machine. The tilting pad journal bearing and the tilting pad thrust bearing were taken and improved for some aspects. These bearings have been taken into service on an actual circulator and are now operating successfully. Currently, a magnetic bearing is being studied to pay special attention to endurance for an earthquake and catcher bearing system. We would like to have an opportunity to present these results in the near future. (author). 5 refs, 15 figs, 2 tabs

  17. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    Science.gov (United States)

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  18. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Science.gov (United States)

    Oka, T.; Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Yokoyama, K.; Tsujimura, M.; Terasawa, T.

    2013-01-01

    The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni-P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  19. Controllable sliding bearings and controllable lubrication principles-an overview

    DEFF Research Database (Denmark)

    Santos, Ilmar F.

    2018-01-01

    -mechanical actuators have been coupled to such bearings. Depending on (i) the actuator type; (ii) the actuation principle, i.e., hydraulic, pneumatic, piezoelectric or magnetic among others; and (iii) how such an actuator is coupled to the sliding bearings, different regulation and control actions of fluid film...... bearing gap and its preload via moveable and compliant sliding surfaces; and (d) the control of the lubricant viscosity. All four parameters, i.e., pressure, flow (velocity profiles), gap and viscosity, are explicit parameters in the modified form of Reynolds' equations for active lubrication....... In this framework, this paper gives one main original contribution to the state-of-the-art of radial sliding bearings and controllable lubrication: a comprehensive overview about the different types of controllable sliding bearings and principles used by several authors. The paper ends with some conclusive remarks...

  20. A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release

    International Nuclear Information System (INIS)

    Banerjee, Shashwat S; Chen, D-H

    2009-01-01

    We report a novel nanoformulation for targeted drug delivery which utilizes nanophotonics through the fusion of nanotechnology with biomedical application. The approach involves an energy-transferring magnetic nanoscopic co-assembly fabricated of rhodamine B (RDB) fluorescent dye grafted gum arabic modified Fe 3 O 4 magnetic nanoparticle and photosensitive linker by which dexamethasone drug is conjugated to the magnetic nano-assembly. The advantage offered by this nanoformulation is the indirect photo-triggered-on-demand drug release by efficient up-converting energy of the near-IR (NIR) light to higher energy and intraparticle energy transfer from the dye grafted magnetic nanoparticle to the linker for drug release by cleavage. The synthesized nanoparticles were found to be of ultra-small size (13.33 nm) and are monodispersed in an aqueous suspension. Dexamethasone (Dexa) drug conjugated to RDB-GAMNP by photosensitive linker showed appreciable release of Dexa by photo-triggered response on exposure to radiation having a wavelength in the NIR region whereas no detectable release was observed in the dark. Photo-triggered response for the nanoformulation not bearing the rhodamine B dye was drastically less as less Dexa was released on exposure to NIR radiation which suggest that the photo-cleavage of linker and release of Dexa mainly originated from the indirect excitation through the uphill energy conversions based on donor-acceptor model FRET. The promising pathway of nanophotonics for the on-demand release of the drug makes this nanocarrier very promising for applications in nanomedicine.

  1. Superconducting Meissner effect bearings for cryogenic turbomachines, phase 2

    Science.gov (United States)

    Valenzuela, Javier A.; Martin, Jerry L.

    1994-02-01

    This is the final report of a Phase 2 SBIR project to develop Meissner effect bearings for miniature cryogenic turbomachines. The bearing system was designed for use in miniature cryogenic turboexpanders in reverse-Brayton-cycle cryocoolers. The cryocoolers are designed to cool sensors on satellites. Existing gas bearings for this application run in a relatively warm state. The heat loss from the bearings into the shaft and into the cold process gas imposes a penalty on the cycle efficiency. By using cold Meissner effect bearings, this heat loss could be minimized, and the input power per unit of cooling for these cryocoolers could be reduced. Two bearing concepts were explored in this project. The first used an all-magnetic passive radial suspension to position the shaft over a range of temperatures from room temperature to 77 K. This bearing concept was proven to be feasible, but impractical for the miniature high-speed turbine application since it lacked the required shaft positioning accuracy. A second bearing concept was then developed. In this concept, the Meissner effect bearings are combined with self-acting gas bearings. The Meissner effect bearing provides the additional stiffness and damping required to stabilize the shaft at low temperature, while the gas bearing provides the necessary accuracy to allow very small turbine tip clearances (5mm) and high speeds (greater than 500,000 rpm).

  2. Laminar motion of the incompressible fluids in self-acting thrust bearings with spiral grooves.

    Science.gov (United States)

    Velescu, Cornel; Popa, Nicolae Calin

    2014-01-01

    We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the "pumping" direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances) and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc.), for the laminar and permanent motion regime.

  3. Laminar Motion of the Incompressible Fluids in Self-Acting Thrust Bearings with Spiral Grooves

    Directory of Open Access Journals (Sweden)

    Cornel Velescu

    2014-01-01

    Full Text Available We analyze the laminar motion of incompressible fluids in self-acting thrust bearings with spiral grooves with inner or external pumping. The purpose of the study is to find some mathematical relations useful to approach the theoretical functionality of these bearings having magnetic controllable fluids as incompressible fluids, in the presence of a controllable magnetic field. This theoretical study approaches the permanent motion regime. To validate the theoretical results, we compare them to some experimental results presented in previous papers. The laminar motion of incompressible fluids in bearings is described by the fundamental equations of fluid dynamics. We developed and particularized these equations by taking into consideration the geometrical and functional characteristics of these hydrodynamic bearings. Through the integration of the differential equation, we determined the pressure and speed distributions in bearings with length in the “pumping” direction. These pressure and speed distributions offer important information, both quantitative (concerning the bearing performances and qualitative (evidence of the viscous-inertial effects, the fluid compressibility, etc., for the laminar and permanent motion regime.

  4. Vibration due to non-circularity of a rotating ring having discrete radial supports - With application to thin-walled rotor/magnetic bearing systems

    Science.gov (United States)

    Fakkaew, Wichaphon; Cole, Matthew O. T.

    2018-06-01

    This paper investigates the vibration arising in a thin-walled cylindrical rotor subject to small non-circularity and coupled to discrete space-fixed radial bearing supports. A Fourier series description of rotor non-circularity is incorporated within a mathematical model for vibration of a rotating annulus. This model predicts the multi-harmonic excitation of the rotor wall due to bearing interactions. For each non-circularity harmonic there is a set of distinct critical speeds at which resonance can potentially arise due to flexural mode excitation within the rotor wall. It is shown that whether each potential resonance occurs depends on the multiplicity and symmetry of the bearing supports. Also, a sufficient number of evenly spaced identical supports will eliminate low order resonances. The considered problem is pertinent to the design and operation of thin-walled rotors with active magnetic bearing (AMB) supports, for which small clearances exist between the rotor and bearing and so vibration excitation must be limited to avoid contacts. With this motivation, the mathematical model is further developed for the case of a distributed array of electromagnetic actuators controlled by feedback of measured rotor wall displacements. A case study involving an experimental system with short cylindrical rotor and a single radial AMB support is presented. The results show that flexural mode resonance is largely avoided for the considered design topology. Moreover, numerical predictions based on measured non-circularity show good agreement with measurements of rotor wall vibration, thereby confirming the validity and utility of the theoretical model.

  5. Models for dynamic analysis of backup ball bearings of an AMB-system

    Science.gov (United States)

    Halminen, Oskari; Aceituno, Javier F.; Escalona, José L.; Sopanen, Jussi; Mikkola, Aki

    2017-10-01

    Two detailed models of backup bearing are introduced for dynamic analysis of the dropdown event of a rotor supported by an active magnetic bearing (AMB). The proposed two-dimensional models of the backup bearings are based on a multibody approach. All parts of the bearing are modeled as rigid bodies with geometrical surfaces and the bodies interact with each other through contact forces. The first model describes a backup bearing without a cage, and the second model describes a backup bearing with a cage. The introduced models, which incorporate a realistic elastic contact model, are compared with previously presented simplified models through parametric study. In order to ensure the durability of backup bearings in challenging applications where ball bearings with an oversized bore are necessary, analysis of the forces affecting the bearing's cage and balls is required, and the models introduced in this work assist in this task as they enable optimal properties for the bearing's cage and balls to be found.

  6. Computed tomographic, magnetic resonance imaging, and cross-sectional anatomic features of the manus in a normal American black bear (Ursus americanus).

    Science.gov (United States)

    Ober, C P; Freeman, L E

    2010-06-01

    The purpose of this study was to provide a detailed description of cross-sectional anatomic structures of the manus of a black bear cadaver and correlate anatomic findings with corresponding features in computed tomographic (CT) and magnetic resonance (MR) images. CT, MR imaging, and transverse sectioning were performed on the thoracic limb of a cadaver female black bear which had no evidence of lameness or thoracic limb abnormality prior to death. Features in CT and MR images corresponding to clinically important anatomic structures in anatomic sections were identified. Most of the structures identified in transverse anatomic sections were also identified using CT and MR imaging. Bones, muscles and tendons were generally easily identified with both imaging modalities, although divisions between adjacent muscles were rarely visible with CT and only visible sometimes with MR imaging. Vascular structures could not be identified with either imaging modality.

  7. Inductive Displacement Sensors with a Notch Filter for an Active Magnetic Bearing System

    Directory of Open Access Journals (Sweden)

    Seng-Chi Chen

    2014-07-01

    Full Text Available Active magnetic bearing (AMB systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  8. MEDULLOBLASTOMA IN A GRIZZLY BEAR (URSUS ARCTOS HORRIBLIS).

    Science.gov (United States)

    Mitchell, Jeffrey W; Thomovsky, Stephanie A; Chen, Annie V; Layton, Arthur W; Haldorson, Gary; Tucker, Russell L; Roberts, Gregory

    2015-09-01

    A 3-yr-old female spayed grizzly bear (Ursus arctos horribilis) was evaluated for seizure activity along with lethargy, inappetence, dull mentation, and aggressive behavior. Magnetic resonance (MR) examination of the brain revealed a contrast-enhanced right cerebellar mass with multifocal smaller nodules located in the left cerebellum, thalamus, hippocampus, and cerebrum with resultant obstructive hydrocephalus. Cerebrospinal fluid analysis revealed mild mononuclear pleocytosis, with differentials including inflammatory versus neoplastic processes. Blood and cerebrospinal fluid were also submitted for polymerase chain reaction and agar gel immunodiffusion to rule out infectious causes of meningitis/encephalitis. While awaiting these results, the bear was placed on steroid and antibiotic therapy. Over the next week, the bear deteriorated; she died 1 wk after MR. A complete postmortem examination, including immunohistochemisty, revealed the cerebellar mass to be a medulloblastoma. This is the only case report, to the authors' knowledge, describing a medulloblastoma in a grizzly bear.

  9. A control method of the rotor re-levitation for different orbit responses during touchdowns in active magnetic bearings

    Science.gov (United States)

    Lyu, Mindong; Liu, Tao; Wang, Zixi; Yan, Shaoze; Jia, Xiaohong; Wang, Yuming

    2018-05-01

    Touchdown can make active magnetic bearings (AMB) unable to work, and bring severe damages to touchdown bearings (TDB). To resolve it, we presents a novel re-levitation method consisting of two operations, i.e., orbit response recognition and rotor re-levitation. In the operation of orbit response recognition, the three orbit responses (pendulum vibration, combined rub and bouncing, and full rub) can be identified by the expectation of radial displacement of rotor and expectation of instantaneous frequency (IF) of rotor motion in the sampling period. In the rotor re-levitation operation, a decentralized PID control algorithm is employed for pendulum vibration and combined rub and bouncing, and the decentralized PID control algorithm and another whirl damping algorithm, in which the weighting factor is determined by the whirl frequency, are jointly executed for the full rub. The method has been demonstrated by the simulation results of an AMB model. The results reveal that the method is effective in actively suppressing the whirl motion and promptly re-levitating the rotor. As the PID control algorithm and the simple operations of signal processing are employed, the algorithm has a low computation intensity, which makes it more easily realized in practical applications.

  10. Magnetic precipitate separation for Ni plating waste liquid using HTS bulk magnets

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Kimura, T.; Mimura, D.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan); Tsujimura, M. [Aichi Giken Co., 2-1-47 Shiobaru, Minami-ku, Fukuoka 815-8520 (Japan); Terasawa, T. [IMRA Material R and D Co., Ltd., 2-1 Asahimachi, Kariya, Aichi 448-0032 (Japan)

    2013-01-15

    Highlights: ► The magnetic separation was operated for recycling the electroless plating waste. ► The HTS bulk magnet effectively attracted the ferromagnetic precipitates with Ni. ► The separation ratios over 90% were reported under flow rates up to 1.35 L/min. -- Abstract: The magnetic separation experiment for recycling the nickel-bearing precipitates in the waste liquid from the electroless plating processes has been practically conducted under the high gradient magnetic separation technique with use of the face-to-face HTS bulk magnet system. A couple of facing magnetic poles containing Sm123 bulk superconductors were activated through the pulsed field magnetization process to 1.86 T at 38 K and 2.00 T at 37 K, respectively. The weakly magnetized metallic precipitates of Ni crystals and Ni–P compounds deposited from the waste solution after heating it and pH controlling. The high gradient magnetic separation technique was employed with the separation channels filled with the stainless steel balls with dimension of 1 and 3 mm in diameter, which periodically moved between and out of the facing magnetic poles. The Ni-bearing precipitates were effectively attracted to the magnetized ferromagnetic balls. We have succeeded in obtaining the separation ratios over 90% under the flow rates less than 1.35 L/min.

  11. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    International Nuclear Information System (INIS)

    Li, Y.J.; Dai, Q.; Zhang, Y.; Wang, H.; Chen, Z.; Sun, R.X.; Zheng, J.; Deng, C.Y.; Deng, Z.G.

    2016-01-01

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  12. Design and analysis of an electromagnetic turnout for the superconducting Maglev system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Dai, Q. [School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Wang, H.; Chen, Z. [School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Sun, R.X.; Zheng, J. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Deng, C.Y. [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Deng, Z.G., E-mail: deng@swjtu.cn [Applied Superconductivity Laboratory, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China)

    2016-09-15

    Highlights: • The switching principle of electromagnetic turnout for a Halbach-type magnetic rail was presented. • Shape design and optimization of the electromagnet for electromagnetic turnout were conducted. • Magnetic field distribution over the working area of electromagnetic turnout was analyzed. • Feasibility of the electromagnetic turnout was proved. - Abstract: Turnout is a crucial track junction device of the ground rail transportation system. For high temperature superconducting (HTS) Maglev system, the permanent magnet guideway (PMG) makes the strong magnetic force existing between rail segments, which may cause moving difficulties and increase the operation cost when switching a PMG. In this paper, a non-mechanical ‘Y’ shaped Halbach-type electromagnetic turnout was proposed. By replacing the PMs with electromagnets, the turnout can guide the maglev vehicle running into another PMG by simply controlling the current direction of electromagnets. The material and structure parameters of the electromagnets were optimized by simulation. The results show that the optimized electromagnet can keep the magnetic field above it as strong as the PMs’, meanwhile feasible for design and manufacture. This work provides valuable references for the future design in non-mechanical PMG turnout.

  13. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7-x high-Tc superconducting bulks and NdFeB magnets

    Science.gov (United States)

    Li, Jipeng; Zheng, Jun; Huang, Huan; Li, Yanxing; Li, Haitao; Deng, Zigang

    2017-10-01

    The flux pinning effect of YBa2Cu3O7-x high temperature superconducting (HTS) bulk can achieve self-stable levitation over a permanent magnet or magnet array. Devices based on this phenomenon have been widely developed. However, the self-stable flux pinning effect is not unconditional, under disturbances, for example. To disclose the roots of this amazing self-stable levitation phenomenon in theory, mathematical and mechanical calculations using Lyapunov's stability theorem and the Hurwitz criterion were performed under the conditions of magnetic levitation and suspension of HTS bulk near permanent magnets in Halbach array. It is found that the whole dynamical system, in the case of levitation, has only one equilibrium solution, and the singular point is a stable focus. In the general case of suspension, the system has two singular points: one is a stable focus, and the other is an unstable saddle. With the variation of suspension force, the two first-order singular points mentioned earlier will get closer and closer, and finally degenerate to a high-order singular point, which means the stable region gets smaller and smaller, and finally vanishes. According to the center manifold theorem, the high-order singular point is unstable. With the interaction force varying, the HTS suspension dynamical system undergoes a saddle-node bifurcation. Moreover, a deficient damping can also decrease the stable region. These findings, together with existing experiments, could enlighten the improvement of HTS devices with strong anti-interference ability.

  14. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  15. Application of active magnetic bearings in flexible rotordynamic systems - A state-of-the-art review

    Science.gov (United States)

    Siva Srinivas, R.; Tiwari, R.; Kannababu, Ch.

    2018-06-01

    In this paper a critical review of literature on applications of Active Magnetic Bearings (AMBs) systems in flexible rotordynamic systems have been presented. AMBs find various applications in rotating machinery; however, this paper mainly focuses on works in vibration suppression and associated with the condition monitoring using AMBs. It briefly introduces reader to the AMB working principle, provides details of various hardware components of a typical rotor-AMB test rig, and presents a background of traditional methods of vibration suppression in flexible rotors and the condition monitoring. It then moves on to summarize the basic features of AMB integrated flexible rotor test rigs available in literature with necessary instrumentation and its main objectives. A couple of lookup tables provide summary of important information of test rigs in papers within the scope of this article. Finally, future directions in AMB research within the paper's scope have been suggested.

  16. Multi-pulse chaotic motions of a rotor-active magnetic bearing system with time-varying stiffness

    International Nuclear Information System (INIS)

    Zhang, W.; Yao, M.H.; Zhan, X.P.

    2006-01-01

    In this paper, we investigate the Shilnikov type multi-pulse chaotic dynamics for a rotor-active magnetic bearings (AMB) system with 8-pole legs and the time-varying stiffness. The stiffness in the AMB is considered as the time-varying in a periodic form. The dimensionless equation of motion for the rotor-AMB system with the time-varying stiffness in the horizontal and vertical directions is a two-degree-of-freedom nonlinear system with quadratic and cubic nonlinearities and parametric excitation. The asymptotic perturbation method is used to obtain the averaged equations in the case of primary parametric resonance and 1/2 subharmonic resonance. It is found from the numerical results that there are the phenomena of the Shilnikov type multi-pulse chaotic motions for the rotor-AMB system. A new jumping phenomenon is discovered in the rotor-AMB system with the time-varying stiffness

  17. Superconducting permanent magnets and their application in magnetic levitation

    International Nuclear Information System (INIS)

    Schultz, L.; Krabbes, G.; Fuchs, G.; Pfeiffer, W.; Mueller, K.H.

    2002-01-01

    Superconducting permanent magnets form a completely new class of permanent magnets. Of course, they must be cooled to 77 K or below. At very low temperatures (24 K) their magnetization can be a factor of 10 higher than that of the best conventional magnets, providing magnetic forces and energies which are up to two orders of magnitude higher. These new supermagnets became only recently available by the extreme improvement of the quality of melt-textured massive YBa 2 Cu 3 O x samples. Besides having a high magnetization, these superconducting permanent magnets can freeze in any given magnetic field configuration allowing completely new applications like superconducting transport systems or superconducting magnetic bearings. (orig.)

  18. Allogenic sedimentary components of Bear Lake, Utah and Idaho

    Science.gov (United States)

    Rosenbaum, J.G.; Dean, W.E.; Reynolds, R.L.; Reheis, M.C.

    2009-01-01

    Bear Lake is a long-lived lake filling a tectonic depression between the Bear River Range to the west and the Bear River Plateau to the east, and straddling the border between Utah and Idaho. Mineralogy, elemental geochemistry, and magnetic properties provide information about variations in provenance of allogenic lithic material in last-glacial-age, quartz-rich sediment in Bear Lake. Grain-size data from the siliciclastic fraction of late-glacial to Holocene carbonate-rich sediments provide information about variations in lake level. For the quartz-rich lower unit, which was deposited while the Bear River fl owed into and out of the lake, four source areas are recognized on the basis of modern fluvial samples with contrasting properties that reflect differences in bedrock geology and in magnetite content from dust. One of these areas is underlain by hematite-rich Uinta Mountain Group rocks in the headwaters of the Bear River. Although Uinta Mountain Group rocks make up a small fraction of the catchment, hematite-rich material from this area is an important component of the lower unit. This material is interpreted to be glacial fl our. Variations in the input of glacial flour are interpreted as having caused quasi-cyclical variations in mineralogical and elemental concentrations, and in magnetic properties within the lower unit. The carbonate-rich younger unit was deposited under conditions similar to those of the modern lake, with the Bear River largely bypassing the lake. For two cores taken in more than 30 m of water, median grain sizes in this unit range from ???6 ??m to more than 30 ??m, with the coarsest grain sizes associated with beach or shallow-water deposits. Similar grain-size variations are observed as a function of water depth in the modern lake and provide the basis for interpreting the core grain-size data in terms of lake level. Copyright ?? 2009 The Geological Society of America.

  19. Advances in studying order and dynamics in condensed matter by NMR

    International Nuclear Information System (INIS)

    Voda, M.A.

    2006-01-01

    In this thesis, molecular transport in liquid samples is studied in terms of susceptibility induced magnetic field inhomogeneities and spectral distortions for interdiffusion in binary mixtures. Molecular order and dynamics are topics for two different soft solids, natural rubber and polyurethane. The influence of the mixture heterogeneity on the magnetic field homogeneity was investigated in terms of a spatial and time-dependent magnetic susceptibility. The effect of the heterogeneous distribution of magnetic susceptibility in liquid mixtures on the static and rf field homogeneity was simulated together with the corresponding spectral distortions. The problem of low magnetic field homogeneity provided by the Halbach type of magnets is discussed. The design of modified Halbach magnets is studied in order to increase the field homogeneity. The work was focused on two types of Halbach magnets, consisting of 16 and 24 magnet blocks, respectively. Different modifications were applied to these magnet designs, and the field homogeneity was significantly improved. The changes induced in molecular dynamics and order in stretched elastomers was investigated using multispin moments edited by multiple-quantum NMR. The main purpose of this part is to investigate the changes in proton residual dipolar coupling and the sensitivity of multiple quantum coherences of higher order for cross-linked natural rubber under uniaxial deformation. The effect of uniaxial deformation of a natural rubber band was investigated by measurements of second van Vleck moments and fourth moments edited by double-quantum and triple-quantum coherences, respectively. A spin diffusion experiment was employed for the elucidation of the morphology and domain sizes of a series of polyurethane samples. A proton DQ dipolar filer was used to select the magnetization of the rigid phase. The most probable morphology is three-dimensional for the TPU samples with a high content in HS as was established by a

  20. Advances in studying order and dynamics in condensed matter by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Voda, M.A.

    2006-07-13

    In this thesis, molecular transport in liquid samples is studied in terms of susceptibility induced magnetic field inhomogeneities and spectral distortions for interdiffusion in binary mixtures. Molecular order and dynamics are topics for two different soft solids, natural rubber and polyurethane. The influence of the mixture heterogeneity on the magnetic field homogeneity was investigated in terms of a spatial and time-dependent magnetic susceptibility. The effect of the heterogeneous distribution of magnetic susceptibility in liquid mixtures on the static and rf field homogeneity was simulated together with the corresponding spectral distortions. The problem of low magnetic field homogeneity provided by the Halbach type of magnets is discussed. The design of modified Halbach magnets is studied in order to increase the field homogeneity. The work was focused on two types of Halbach magnets, consisting of 16 and 24 magnet blocks, respectively. Different modifications were applied to these magnet designs, and the field homogeneity was significantly improved. The changes induced in molecular dynamics and order in stretched elastomers was investigated using multispin moments edited by multiple-quantum NMR. The main purpose of this part is to investigate the changes in proton residual dipolar coupling and the sensitivity of multiple quantum coherences of higher order for cross-linked natural rubber under uniaxial deformation. The effect of uniaxial deformation of a natural rubber band was investigated by measurements of second van Vleck moments and fourth moments edited by double-quantum and triple-quantum coherences, respectively. A spin diffusion experiment was employed for the elucidation of the morphology and domain sizes of a series of polyurethane samples. A proton DQ dipolar filer was used to select the magnetization of the rigid phase. The most probable morphology is three-dimensional for the TPU samples with a high content in HS as was established by a

  1. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy.

    Science.gov (United States)

    Unterweger, Harald; Subatzus, Daniel; Tietze, Rainer; Janko, Christina; Poettler, Marina; Stiegelschmitt, Alfons; Schuster, Matthias; Maake, Caroline; Boccaccini, Aldo R; Alexiou, Christoph

    2015-01-01

    Combining the concept of magnetic drug targeting and photodynamic therapy is a promising approach for the treatment of cancer. A high selectivity as well as significant fewer side effects can be achieved by this method, since the therapeutic treatment only takes place in the area where accumulation of the particles by an external electromagnet and radiation by a laser system overlap. In this article, a novel hypericin-bearing drug delivery system has been developed by synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) with a hypericin-linked functionalized dextran coating. For that, sterically stabilized dextran-coated SPIONs were produced by coprecipitation and crosslinking with epichlorohydrin to enhance stability. Carboxymethylation of the dextran shell provided a functionalized platform for linking hypericin via glutaraldehyde. Particle sizes obtained by dynamic light scattering were in a range of 55-85 nm, whereas investigation of single magnetite or maghemite particle diameter was performed by transmission electron microscopy and X-ray diffraction and resulted in approximately 4.5-5.0 nm. Surface chemistry of those particles was evaluated by Fourier transform infrared spectroscopy and ζ potential measurements, indicating successful functionalization and dispersal stabilization due to a mixture of steric and electrostatic repulsion. Flow cytometry revealed no toxicity of pure nanoparticles as well as hypericin without exposure to light on Jurkat T-cells, whereas the combination of hypericin, alone or loaded on particles, with light-induced cell death in a concentration and exposure time-dependent manner due to the generation of reactive oxygen species. In conclusion, the combination of SPIONs' targeting abilities with hypericin's phototoxic properties represents a promising approach for merging magnetic drug targeting with photodynamic therapy for the treatment of cancer.

  2. Laboratory Scale Prototype of a Low-Speed Electrodynamic Levitation System Based on a Halbach Magnet Array

    Science.gov (United States)

    Iniguez, J.; Raposo, V.

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical…

  3. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Science.gov (United States)

    Hull, John R.

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  4. Bearing system

    Science.gov (United States)

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  5. Magnetic suspension and flywheels: Spaceborne and terrestrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Poubeau, P C

    1981-01-01

    Satellite attitude control, using inertia wheels, is discussed. Elimination of friction effects through application of magnetic bearings is considered. The inertia wheel/magnetic bearing configuration can also be used to store kinetic energy. Higher rotational velocities create a need for stronger rotor construction materials, improved mechanical properties can be achieved with composite materials. Kinetic energy storage for earthside applications (solar energy storage electric vehicles) is mentioned.

  6. Rotor dynamic behaviour of a high-speed oil-free motor compressor with a rigid coupling supported on four radial magnetic bearings

    Science.gov (United States)

    Schmied, J.; Pradetto, J. C.

    1994-01-01

    The combination of a high-speed motor, dry gas seals, and magnetic bearings realized in this unit facilitates the elimination of oil. The motor is coupled with a quill shaft to the compressor. This yields higher natural frequencies of the rotor than with the use of a diaphragm coupling and helps to maintain a sufficient margin of the maximum speed to the frequency of the second compressor bending mode. However, the controller of each bearing then has to take the combined modes of both machines into account. The requirements for the controller to ensure stability and sufficient damping of all critical speeds are designed and compared with the implemented controller. The calculated closed loop behavior was confirmed experimentally, except the stability of some higher modes due to slight frequency deviations of the rotor model to the actual rotor. The influence of a mechanical damper as a device to provide additional damping to high models is demonstrated theoretically. After all, it was not necessary to install the damper, since all modes cold be stabilized by the controller.

  7. Size Reduction Techniques for Large Scale Permanent Magnet Generators in Wind Turbines

    Science.gov (United States)

    Khazdozian, Helena; Hadimani, Ravi; Jiles, David

    2015-03-01

    Increased wind penetration is necessary to reduce U.S. dependence on fossil fuels, combat climate change and increase national energy security. The U.S Department of Energy has recommended large scale and offshore wind turbines to achieve 20% wind electricity generation by 2030. Currently, geared doubly-fed induction generators (DFIGs) are typically employed in the drivetrain for conversion of mechanical to electrical energy. Yet, gearboxes account for the greatest downtime of wind turbines, decreasing reliability and contributing to loss of profit. Direct drive permanent magnet generators (PMGs) offer a reliable alternative to DFIGs by eliminating the gearbox. However, PMGs scale up in size and weight much more rapidly than DFIGs as rated power is increased, presenting significant challenges for large scale wind turbine application. Thus, size reduction techniques are needed for viability of PMGs in large scale wind turbines. Two size reduction techniques are presented. It is demonstrated that 25% size reduction of a 10MW PMG is possible with a high remanence theoretical permanent magnet. Additionally, the use of a Halbach cylinder in an outer rotor PMG is investigated to focus magnetic flux over the rotor surface in order to increase torque. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.

  8. Report of fiscal 1997 R and D result on high temperature superconducting flywheel power storage. R and D of manufacture of superconducting magnetic bearing; 1997 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu seika hokokusho. Chodendo denjiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Element technologies were developed for the manufacture of superconducting magnetic bearing (SMB) with the purpose of putting to practical use a 10 MWh class high-temperature superconducting flywheel power storage system. This paper explains the fiscal 1997 results. A {phi} 180 radial type SMB was designed and fabricated that satisfied the rotational strength at 17,200 rpm for a medium-sized model for measuring characteristics. Compared with the bearing made in the preceding year, improvements in the bearing dynamics were contrived such as flux creep, load capacity and rotational loss, with the maximum flux density improved by 30%; however, only a few percent improvement was attained in field uniformity. An SMB characteristics measuring and testing machine was built, with the characteristics measured. It was confirmed that the rotational loss of a control type magnetic bearing and the intrinsic performance of the testing machine were unchanged regardless of the operation/non-operation of the radial type SMB. The characteristics of the {phi} 180 axial bearing were measured by a stationary type bearing constant testing machine made in 1995, which provided a load capacity characteristics curve with the initially set gap as a parameter as well as a minor loop curve and a load capacity. Also obtained were the maximum average bearing pressure and the maximum load capacity. (NEDO)

  9. A double-superconducting axial bearing system for an energy storage flywheel model

    Science.gov (United States)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  10. An identification method of orbit responses rooting in vibration analysis of rotor during touchdowns of active magnetic bearings

    Science.gov (United States)

    Liu, Tao; Lyu, Mindong; Wang, Zixi; Yan, Shaoze

    2018-02-01

    Identification of orbit responses can make the active protection operation more easily realize for active magnetic bearings (AMB) in case of touchdowns. This paper presents an identification method of the orbit responses rooting on signal processing of rotor displacements during touchdowns. The recognition method consists of two major steps. Firstly, the combined rub and bouncing is distinguished from the other orbit responses by the mathematical expectation of axis displacements of the rotor. Because when the combined rub and bouncing occurs, the rotor of AMB will not be always close to the touchdown bearings (TDB). Secondly, we recognize the pendulum vibration and the full rub by the Fourier spectrum of displacement in horizontal direction, as the frequency characteristics of the two responses are different. The principle of the whole identification algorithm is illustrated by two sets of signal generated by a dynamic model of the specific rotor-TDB system. The universality of the method is validated by other four sets of signal. Besides, the adaptability of noise is also tested by adding white noises with different strengths, and the result is promising. As the mathematical expectation and Discrete Fourier transform are major calculations of the algorithm, the calculation quantity of the algorithm is low, so it is fast, easily realized and embedded in the AMB controller, which has an important engineering value for the protection of AMBs during touchdowns.

  11. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Unterweger H

    2014-08-01

    Full Text Available Harald Unterweger,1 Rainer Tietze,1 Christina Janko,1 Jan Zaloga,1 Stefan Lyer,1 Stephan Dürr,1 Nicola Taccardi,2 Ourania-Menti Goudouri,3 Alexander Hoppe,3 Dietmar Eberbeck,4 Dirk W Schubert,5 Aldo R Boccaccini,3 Christoph Alexiou1 1ENT Department, Section of Experimental Oncology and Nanomedicine (SEON, Else Kroener-Fresenius-Stiftung-Professorship, University Hospital Erlangen, 2Chair of Chemical Engineering I (Reaction Engineering, 3Institute of Biomaterials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, 4Physikalisch-Technische Bundesanstalt, Berlin, 5Institute of Polymer Materials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, Germany Abstract: A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 µg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta

  12. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  13. On-site Identification of Dynamic Annular Seal Forces in Turbo Machinery Using Active Magnetic Bearings - An Experimental Investigation

    DEFF Research Database (Denmark)

    Lauridsen, Jonas S.; Santos, Ilmar F.

    2017-01-01

    Significant dynamic forces can be generated by annular seals in rotordynamics and can under certain conditions destabilize the system leading to machine failure. Mathematical modelling of dynamic seal forces are still challenging, especially for multiphase fluids and for seals with complex...... geometries. This results in much uncertainty in the estimation of the dynamic seal forces which often leads to unexpected system behaviour. This paper presents the results of a method suitable for on-site identification of uncertain dynamic annular seal forces in rotordynamic systems supported by Active...... Magnetic Bearings (AMB). An excitation current is applied through the AMBs to obtain perturbation forces and a system response, from which, the seal coefficients are extracted by utilizing optimization and a-priori information about the mathematical model structure and its known system dynamics. As a study...

  14. Camshaft bearing arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Aoi, K.; Ozawa, T.

    1986-06-10

    A bearing arrangement is described for the camshaft of an internal combustion engine or the like which camshaft is formed along its length in axial order with a first bearing surface, a first cam lobe, a second bearing surface, a second cam lobe, a third bearing surface, a third cam lobe and a fourth bearing surface, the improvement comprising first bearing means extending around substantially the full circumference of the first bearing surface and journaling the first bearing surface, second bearing means extending around substantially less than the circumference of the second bearing surface and journaling the second bearing surface, third bearing means extending around substantially less than the circumference of the third bearing surface and journaling the third bearing surface, and fourth bearing means extending around substantially the full circumference of the fourth bearing surface and journaling the first bearing surface.

  15. Characteristic analysis of rotor dynamics and experiments of active magnetic bearing for HTR-10GT

    International Nuclear Information System (INIS)

    Yang Guojun; Xu Yang; Shi Zhengang; Gu Huidong

    2005-01-01

    A 10 MW high-temperature gas-cooled reactor (HTR-10) was constructed by the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University of China. The helium turbine and generator system of 10 MW high temperature gas-cooled reactor (HTR-10GT) is the second phase for the HTR-10 project. It is to set up a direct helium cycle to replace the current steam cycle. The active magnetic bearing (AMB) instead of ordinary mechanical bearing was chosen to support the rotor in the HTR-10GT. This rotor is vertically mounted to hold the turbine machine, compressors and the power generator together. The rotor's length is 7 m, its weight is about 1500 kg and the rotating speed is 15000 r/min. The structure of the rotor is so complicated that dynamic analysis of the rotor becomes difficult. One of the challenging problems is to exceed natural frequencies with enough stability and safety during reactor start up, power change and shutdown. The dynamic analysis of the rotor is the base for the design of control system. It is important for the rotor to exceed critical speeds. Some kinds of software and methods, such as MSC.Marc, Ansys, and the Transfer Matrix Method, are compared to fully analyze rotor dynamics characteristic in this paper. The modal analysis has been done for the HTR-10GT rotor. MSC.Marc was finally selected to analyze the vibration mode and the natural frequency of the rotor. The effects of AMB stiffness on the critical speeds of the rotor were studied. The design characteristics of the AMB control system for the HTR-10GT were studied and the related experiment to exceed natural frequencies was introduced. The experimental results demonstrate the system functions and validate the control scheme, which will be used in the HTR-10GT project. (authors)

  16. Laboratory scale prototype of a low-speed electrodynamic levitation system based on a Halbach magnet array

    International Nuclear Information System (INIS)

    Iniguez, J; Raposo, V

    2009-01-01

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical calculations. 3D-numerical simulations are also used to highlight the significance of the edge effects and to extrapolate the results to higher speeds

  17. Laboratory scale prototype of a low-speed electrodynamic levitation system based on a Halbach magnet array

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez, J; Raposo, V [Departamento de Fisica Aplicada, Universidad de Salamanca, E-37071 (Spain)

    2009-03-15

    In this paper we analyse the behaviour of a small-scale model of a magnetic levitation system based on the Inductrack concept. Drag and lift forces acting on our prototype, moving above a continuous copper track, are studied analytically following a simple low-speed approach. The experimental results are in good agreement with the theoretical calculations. 3D-numerical simulations are also used to highlight the significance of the edge effects and to extrapolate the results to higher speeds.

  18. Effect of Magnetohydrodynamic Couple Stresses on Dynamic Characteristics of Exponential Slider Bearing

    Directory of Open Access Journals (Sweden)

    N.B. Naduvinamani

    2017-05-01

    Full Text Available The effect of couple stresses on static and dynamic characteristics of exponential slider bearing in the presence of magnetic field considering squeeze action is theoretically analyzed in this paper. The modified magnetohydrodynamic couple stress Reynolds type equation is derived on the basis of Stokes couple stress model and closed form expressions are obtained for static and dynamic character coefficients. Comparing with bearing lubricated with non-conducting Newtonian lubricants, the magnetohydrodynamic couple stress lubrication provides the higher steady load carrying capacity, dynamic stiffness and damping coefficient. The exponential bearing shows higher efficiency for small film thickness at higher value of couple stress parameter and Hartmann number.

  19. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Science.gov (United States)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  20. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    International Nuclear Information System (INIS)

    Oka, T.; Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Tsujimura, M.; Yokoyama, K.

    2014-01-01

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow

  1. Collection of Ni-bearing material from electroless plating waste by magnetic separation with HTS bulk magnet

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: okat@eng.niigata-u.ac.jp [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Fukazawa, H.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M. [Niigata University, 8050 Ikarashi-Ninocho, Nishi-ku, Niigata 950-2181 (Japan); Tsujimura, M. [Aichi Giken Co., 50-1 Takeshita, Hitotugi-cho, Kariya, Aichi 448-0003 (Japan); Yokoyama, K. [Ashikaga Institute of Technology, 268-1 Ohmae-cho, Ashikaga, Tochigi 326-8558 (Japan)

    2014-01-15

    Highlights: ► The magnetic separation for Ni compounds was conducted by HTS bulk magnet. ► The coarse Ni-sulfate crystals were formed from the Ni-phosphite precipitates. ► Ni-sulfate crystals was separated from the mixture of Ni-sulfate and Ni-phosphite compounds. -- Abstract: The magnetic separation experiment to collect the Ni compounds from the waste liquid of electroless plating processes was conducted in the open-gradient magnetic separation process with the high temperature superconducting bulk magnet system. The magnetic pole containing Gd-based bulk superconductors was activated to 3.45 T at 35 K in the static magnetic field of 5 T with use of a superconducting solenoid magnet. The coarse Ni-sulfate crystals were formed by adding the concentrated sulfuric acid to the Ni-phosphite precipitates which yielded from the plating waste liquid by controlling the temperature and the pH value. The open-gradient magnetic separation technique was employed to separate the Ni-sulfate crystals from the mixture of the Ni-sulfate and Ni-phosphite compounds by the difference between their magnetic properties. And we succeeded in collecting Ni-sulfate crystals preferentially to the Ni-phosphite by attracting them to the magnetic pole soon after the Ni-sulfate crystals began to grow.

  2. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry.

    Science.gov (United States)

    Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  3. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry

    Science.gov (United States)

    Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  4. Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Unterweger H

    2015-11-01

    Full Text Available Harald Unterweger,1 Daniel Subatzus,1 Rainer Tietze,1 Christina Janko,1 Marina Poettler,1 Alfons Stiegelschmitt,2 Matthias Schuster,3 Caroline Maake,4 Aldo R Boccaccini,5 Christoph Alexiou11ENT Department, Section of Experimental Oncology and Nanomedicine (SEON, Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen; 2Institute of Glass and Ceramics, Department of Materials Science and Engineering, University Erlangen-Nuremberg, 3Materials for Electronics and Energy Technology, Department of Materials Science and Engineering, University Erlangen-Nürnberg, Erlangen, Germany; 4Institute of Anatomy, University of Zurich, Winterthurerstr, Zurich, Switzerland; 5Institute of Biomaterials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, Germany Abstract: Combining the concept of magnetic drug targeting and photodynamic therapy is a promising approach for the treatment of cancer. A high selectivity as well as significant fewer side effects can be achieved by this method, since the therapeutic treatment only takes place in the area where accumulation of the particles by an external electromagnet and radiation by a laser system overlap. In this article, a novel hypericin-bearing drug delivery system has been developed by synthesis of superparamagnetic iron oxide nanoparticles (SPIONs with a hypericin-linked functionalized dextran coating. For that, sterically stabilized dextran-coated SPIONs were produced by coprecipitation and crosslinking with epichlorohydrin to enhance stability. Carboxymethylation of the dextran shell provided a functionalized platform for linking hypericin via glutaraldehyde. Particle sizes obtained by dynamic light scattering were in a range of 55–85 nm, whereas investigation of single magnetite or maghemite particle diameter was performed by transmission electron microscopy and X-ray diffraction and resulted in approximately 4.5–5.0 nm. Surface chemistry of those

  5. High-transmission excited-state Faraday anomalous dispersion optical filter edge filter based on a Halbach cylinder magnetic-field configuration.

    Science.gov (United States)

    Rudolf, Andreas; Walther, Thomas

    2012-11-01

    We report on the realization of an excited-state Faraday anomalous dispersion optical filter (ESFADOF) edge filter based on the 5P(3/2)→8D(5/2) transition in rubidium. A maximum transmission of 81% has been achieved. This high transmission is only possible by utilizing a special configuration of magnetic fields taken from accelerator physics to provide a strong homogeneous magnetic field of approximately 6000 G across the vapor cell. The two resulting steep transmission edges are separated by more than 13 GHz, enabling its application in remote sensing.

  6. Magnetic enhancement caused by hydrocarbon migration in the Mawangmiao Oil Field, Jianghan Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingsheng; Yang, Tao [Department of Geophysics, China University of Geosciences, Wuhan 430074 (China); Liu, Qingsong [National Oceanography Centre Southampton, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Chan, Lungsang [Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Xia, Xianghua; Cheng, Tongjin [Wuxi Institute of Petroleum Geology, SNOPEC, Jiangsu Wuxi 214151 (China)

    2006-08-15

    Magnetic parameters (volume-specific susceptibility k, and hysteresis parameters and ratios) of 47 samples, collected from an oil-producing well (M{sub 36}) and a dry well (M{sub 46}) from the oil-bearing II-You Formation of Paleogene Xingouzui Group in the Mawangmiao Oil Field in China, were measured to address the secondary alteration of iron-bearing minerals associated with hydrocarbon migration. Our results indicated that both k and magnetization (saturation magnetization J{sub s} and saturation isothermal remanent magnetization J{sub rs}) of oil-bearing formation have been dramatically enhanced. Further grain size estimation reveals that the background samples (samples both in M{sub 46} and outside the oil-bearing formation in M{sub 36}) contain coarser-grained magnetic particles (circa 30{mu}m) of detrital origin. In contrast, the alteration of hydrocarbon produces finer-grained (circa 25nm) magnetic particles. The new constraints on grain sizes and its origin of the hydrocarbon-related magnetic particles improve our understanding of the mechanism of formation of these secondary finer-grained particles, even though the precise nature of this process is still unknown. (author)

  7. Oil-free bearing development for high-speed turbomachinery in distributed energy systems – dynamic and environmental evaluation

    Directory of Open Access Journals (Sweden)

    Tkacz Eliza

    2015-09-01

    Full Text Available Modern distributed energy systems, which are used to provide an alternative to or an enhancement of traditional electric power systems, require small size highspeed rotor turbomachinery to be developed. The existing conventional oil-lubricated bearings reveal performance limits at high revolutions as far as stability and power loss of the bearing are concerned. Non-conventional, oil-free bearings lubricated with the machine working medium could be a remedy to this issue. This approach includes a correct design of the machine flow structure and an accurate selection of the bearing type. Chosen aspects of the theoretical and experimental investigations of oil-free bearings and supports; including magnetic, tilting pad, pressurized aerostatic and hydrostatic bearings as well as some applications of oil-free bearing technology for highspeed turbomachinery; are described in the paper.

  8. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  9. Fault diagnosis of active magnetic bearings based on Gaussian GLRT detector

    DEFF Research Database (Denmark)

    Nagel, Leon; Galeazzi, Roberto; Voigt, Andreas Jauernik

    2016-01-01

    generalized likelihood ratio test is proposed for detecting faults striking the electromagnet. The detector is capable of detecting and isolating the occurrence of faults in e.g. the windings of bearing by tracking changes in the mean value of a Gaussian distribution. The statistical distribution...

  10. Magnetic suspension of the rotor of a ventricular assist device of mixed flow type.

    Science.gov (United States)

    Horikawa, Oswaldo; de Andrade, Aron José Pazin; da Silva, Isaías; Bock, Eduardo Guy Perpetuo

    2008-04-01

    This work presents results of preliminary studies concerning application of magnetic bearing in a ventricular assist device (VAD) being developed by Dante Pazzanese Institute of Cardiology-IDPC (São Paulo, Brazil). The VAD-IDPC has a novel architecture that distinguishes from other known VADs. In this, the rotor has a conical geometry with spiral impellers, showing characteristics that are intermediate between a centrifugal VAD and an axial VAD. The effectiveness of this new type of blood pumping principle was showed by tests and by using it in heart surgery for external blood circulation. However, the developed VAD uses a combination of ball bearings and mechanical seals, limiting the life for some 10 h, making impossible its long-term use or its use as an implantable VAD. As a part of development of an implantable VAD, this work aims at the replacement of ball bearings by a magnetic bearing. The most important magnetic bearing principles are studied and the magnetic bearing developed by Escola Politécnica of São Paulo University (EPUSP-MB) is elected because of its very simple architecture. Besides presenting the principle of the EPUSP-MB, this work presents one possible alternative for applying the EPUSP-MB in the IDPC-VAD.

  11. Plastic superconductor bearings any size-any shape: 77 K and up

    Science.gov (United States)

    Reick, Franklin G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  12. Plastic superconductor bearings any size-any shape: 77 K and up

    International Nuclear Information System (INIS)

    Reick, F.G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics

  13. TEST BED FOR THE SIMULATION OF MAGNETIC FIELD MEASUREMENTS OF LOW EARTH ORBIT SATELLITES

    Directory of Open Access Journals (Sweden)

    Alberto Gallina

    2018-03-01

    Full Text Available The paper presents a test bed designed to simulate magnetic environment experienced by a spacecraft on low Earth orbit. It consists of a spherical air bearing located inside a Helmholtz cage. The spherical air bearing is used for simulating microgravity conditions of orbiting bodies while the Helmholtz cage generates a controllable magnetic field resembling the one surrounding a satellite during its motion. Dedicated computer software is used to initially calculate the magnetic field on an established orbit. The magnetic field data is then translated into current values and transmitted to programmable power supplies energizing the cage. The magnetic field within the cage is finally measured by a test article mounted on the air bearing. The paper provides a description of the test bed and the test article design. An experimental test proves the good performance of the entire system.

  14. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Science.gov (United States)

    2012-11-26

    ... Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of..., 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor) and Black Bear Development Holdings, LLC and Black Bear SO, LLC (transferees) filed an application for the partial the transfer of licenses...

  15. A filament supported by different magnetic field configurations

    Science.gov (United States)

    Guo, Y.; Schmieder, B.; Démoulin, P.; Wiegelmann, T.; Aulanier, G.; Török, T.; Bommier, V.

    2011-08-01

    A nonlinear force-free magnetic field extrapolation of vector magnetogram data obtained by THEMIS/MTR on 2005 May 27 suggests the simultaneous existence of different magnetic configurations within one active region filament: one part of the filament is supported by field line dips within a flux rope, while the other part is located in dips within an arcade structure. Although the axial field chirality (dextral) and the magnetic helicity (negative) are the same along the whole filament, the chiralities of the filament barbs at different sections are opposite, i.e., right-bearing in the flux rope part and left-bearing in the arcade part. This argues against past suggestions that different barb chiralities imply different signs of helicity of the underlying magnetic field. This new finding about the chirality of filaments will be useful to associate eruptive filaments and magnetic cloud using the helicity parameter in the Space Weather Science.

  16. Rare-earth magnet ingestion: a childhood danger reaches adolescence.

    Science.gov (United States)

    Agha, Beesan Shalabi; Sturm, Jesse J; Costello, Brian E

    2013-10-01

    Ingestion of multiple magnets may cause serious gastrointestinal morbidity, such as pressure necrosis, perforation, fistula formation, or intestinal obstruction due to forceful attraction across bowel wall. Although the consequences of multiple magnet ingestion are well documented in young children, the current popularity of small, powerful rare-earth magnets marketed as "desk toys" has heightened this safety concern in all pediatric age groups. A recent US Consumer Product Safety Commission product-wide warning additionally reports the adolescent practice of using toy high-powered, ball-bearing magnets to simulate tongue and lip piercings, a behavior that may increase risk of inadvertent ingestion. We describe 2 cases of older children (male; aged 10 and 13 years, respectively) with unintentional ingestion of multiple rare-earth magnets. Health care providers should be alerted to the potential for misuse of these high-powered, ball-bearing magnets among older children and adolescents.

  17. Design and Experiment of Auxiliary Bearing for Helium Blower of HTR-PM

    International Nuclear Information System (INIS)

    Yang Guojun; Shi Zhengang; Liu Xingnan; Zhao Jingjing

    2014-01-01

    The helium blower is the important equipment for HTR-PM. Active magnetic bearing (AMB) instead of mechanical bearing is selected to support the rotor of the helium blower. However, one implication of AMB is the requirement to provide the auxiliary bearing to mitigate the effects of failures or overload conditions. The auxiliary bearing is used to support the rotor when the AMB fails to work. It must support the dropping rotor and bear the great impact force and friction heat. The design of the auxiliary bearing is one of the challenging problems in the whole system. It is very important for the helium blower with AMB of HTR-PM to make success. The rotor’s length of helium blower of HTR-PM is about 3.3 m, its weight is about 4000 kg and the rotating speed is 4000 r/min. The axial load is 4500kg, and the radial load is 1950kg. The angular contact ball bearing was selected as the auxiliary bearing. The test rig has been finished. It is difficult to analyze the falling course of the rotor. The preliminary analysis of the dropping rotor was done in the special condition. The impact force of auxiliary bearing was computed for the axial and radial load. And the dropping test of the blower rotor for HTR-10 will be introduced also in this paper. Results offer the important theoretical base for the protector design of the helium blower with AMB for HTR-PM. (author)

  18. Phylogeography of mitochondrial DNA variation in brown bears and polar bears.

    Science.gov (United States)

    Shields, G F; Adams, D; Garner, G; Labelle, M; Pietsch, J; Ramsay, M; Schwartz, C; Titus, K; Williamson, S

    2000-05-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples. Copyright 2000 Academic Press.

  19. Phylogeography of mitochondrial DNA variation in brown bears and polar bears

    Science.gov (United States)

    Shields, Gerald F.; Adams, Deborah; Garner, Gerald W.; Labelle, Martine; Pietsch, Jacy; Ramsay, Malcolm; Schwartz, Charles; Titus, Kimberly; Williamson, Scott

    2000-01-01

    We analyzed 286 nucleotides of the middle portion of the mitochondrial cytochrome b gene of 61 brown bears from three locations in Alaska and 55 polar bears from Arctic Canada and Arctic Siberia to test our earlier observations of paraphyly between polar bears and brown bears as well as to test the extreme uniqueness of mitochondrial DNA types of brown bears on Admiralty, Baranof, and Chichagof (ABC) islands of southeastern Alaska. We also investigated the phylogeography of brown bears of Alaska's Kenai Peninsula in relation to other Alaskan brown bears because the former are being threatened by increased human development. We predicted that: (1) mtDNA paraphyly between brown bears and polar bears would be upheld, (2) the mtDNA uniqueness of brown bears of the ABC islands would be upheld, and (3) brown bears of the Kenai Peninsula would belong to either clade II or clade III of brown bears of our earlier studies of mtDNA. All of our predictions were upheld through the analysis of these additional samples.

  20. Calculation methods for externally pressurised (hydrostatic) journal bearings with capillary restrictor control

    Science.gov (United States)

    1992-09-01

    ESDU 92026 provides a procedure for the design and performance analysis of the bearings with five or more identical equally-spaced rectangular recesses (or pockets) fed by identical capillary restrictors from a constant pressure supply. The method takes account of stiffness and overload capacity requirements and determines the bearing overall size and proportions from the required load, speed and shaft diameter, recommends the clearance and supply pressure, and defines the recess dimensions and capillary restrictor size from the properties of the chosen lubricant. Equations and charts allow prediction of the journal displacement under load, the power loss, the lubricant flow rate, and the bearing and lubricant temperatures. The method applies to laminar flow and guidance is given for assessing the onset of non-laminar flow in the bearing and restrictors. Guidance is also given on the likelihood of bearing-induced instability. The user is assisted by flowcharts in applying the method, and two practical worked examples illustrate the procedure. ESDU 92037 introduces a FORTRAN program that implements the method, and magnetic media are available in ESDUpac A9237.

  1. Application of hydrophilic magnetic fluid to oil seal

    Science.gov (United States)

    Kim, Y. S.; Nakatsuka, K.; Fujita, T.; Atarashi, T.

    1999-07-01

    Bearing and gear are important components in machines. Lubricant for bearing or gear is usually confined in working space by rubber retainer or mechanical seal, and its lifetime which is determined by the friction wear of sealing material is important. In this report, the basic characteristics of magnetic fluid seal applied to lubricant retainer is studied. The fluid used for this purpose is ethyleneglycol-based magnetic fluid in which silica-coated iron particles are dispersed. The lubricant oil seal set consisting of six stages of pole piece and Nd-permanent magnets (4.0 Wb/m 2) in seal housing showed an excellent pressure resistance of 618 kPa under a rotating speed of 1800 rpm.

  2. Permanent magnet system to guide superparamagnetic particles

    Science.gov (United States)

    Baun, Olga; Blümler, Peter

    2017-10-01

    A new concept of using permanent magnet systems for guiding superparamagnetic nano-particles on arbitrary trajectories over a large volume is proposed. The basic idea is to use one magnet system which provides a strong, homogeneous, dipolar magnetic field to magnetize and orient the particles, and a second constantly graded, quadrupolar field, superimposed on the first, to generate a force on the oriented particles. In this configuration the motion of the particles is driven predominantly by the component of the gradient field which is parallel to the direction of the homogeneous field. As a result, particles are guided with constant force and in a single direction over the entire volume. The direction is simply adjusted by varying the angle between quadrupole and dipole. Since a single gradient is impossible due to Gauß' law, the other gradient component of the quadrupole determines the angular deviation of the force. However, the latter can be neglected if the homogeneous field is stronger than the local contribution of the quadrupole field. A possible realization of this idea is a coaxial arrangement of two Halbach cylinders. A dipole to evenly magnetize and orient the particles, and a quadrupole to generate the force. The local force was calculated analytically for this particular geometry and the directional limits were analyzed and discussed. A simple prototype was constructed to demonstrate the principle in two dimensions on several nano-particles of different size, which were moved along a rough square by manual adjustment of the force angle. The observed velocities of superparamagnetic particles in this prototype were always several orders of magnitude higher than the theoretically expected value. This discrepancy is attributed to the observed formation of long particle chains as a result of their polarization by the homogeneous field. The magnetic moment of such a chain is then the combination of that of its constituents, while its hydrodynamic radius

  3. Proposal of Magnetic Circuit using Magnetic Shielding with Bulk-Type High Tc Superconductors

    Science.gov (United States)

    Fukuoka, Katsuhiro; Hashimoto, Mitsuo; Tomita, Masaru; Murakami, Masato

    Recently, bulk-type high Tc superconductors having a characteristic of critical current density over 104 A/cm2 in liquid nitrogen temperature (77K) on 1T, can be produced. They are promising for many practical applications such as a magnetic bearing, a magnetic levitation, a flywheel, a magnetic shielding and others. In this research, we propose a magnetic circuit that is able to use for the magnetic shield of plural superconductors as an application of bulk-type high Tc superconductors. It is a closed magnetic circuit by means of a toroidal core. Characteristics of the magnetic circuit surrounded with superconductors are evaluated and the possibility is examined. As the magnetic circuit of the ferrite core is surrounded with superconductors, the magnetic flux is shielded even if it leaked from the ferrite core.

  4. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. © 2015 John Wiley & Sons Ltd.

  5. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    International Nuclear Information System (INIS)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G.

    2014-01-01

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems

  6. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  7. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  8. Levitated Duct Fan (LDF) Aircraft Auxiliary Generator

    Science.gov (United States)

    Eichenberg, Dennis J.; Emerson, Dawn C.; Gallo, Christopher A.; Thompson, William K.

    2011-01-01

    This generator concept includes a novel stator and rotor architecture made from composite material with blades attached to the outer rotating shell of a ducted fan drum rotor, a non-contact support system between the stator and rotor using magnetic fields to provide levitation, and an integrated electromagnetic generation system. The magnetic suspension between the rotor and the stator suspends and supports the rotor within the stator housing using permanent magnets attached to the outer circumference of the drum rotor and passive levitation coils in the stator shell. The magnets are arranged in a Halbach array configuration.

  9. BIG KARL and COSY: Examples for high performance magnet design taught by {open_quotes}Papa Klaus{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Bechtstedt, U.; Hacker, U.; Maier, R.; Martin, S. [Institut fuer Kernphysik, Juelich (Germany); Berg, G.P.A. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States); Hardt, A. [Fachhochschule Aachen Juelich (Germany); Huerlimann, W. [Power Consulting Ltd., Baden (Switzerland); Meissburger, J. [Institut fuer angewandte Mathematik, Juelich (Germany); Roemer, J.G.M. [Leybold-Heraeus GmbH, Koeln (Germany)] [and others

    1995-02-01

    The past decades have seen a tremendous development in nuclear, middle, and high energy physics. This advance was in a great part promoted by the availability of newer and more powerful instruments. Over time, these instruments grew in size as well as in sophistication and precision. Nearly all these devices had one fundamental thing in common - magnetic fields produced with currents and iron. The precision demanded by the new experiments and machines did bring the magnet technology to new frontiers requiring the utmost in the accuracy of magnetic fields. The complex properties of the iron challenged innumerable physicists in the attempt to force the magnetic fields into the desired shape. Experience and analytical insight were the pillars for coping with those problems and only few mastered the skills and were in addition able to communicate their intricate knowledge. It was a fortuitous situation that the authors got to know Klaus Halbach who belonged to those few and who shared his knowledge contributing thus largely to the successful completion of two large instruments that were built at the Forschungszentrum Juelich, KFA, for nuclear and middle energy physics. In one case the efforts went to the large spectrometer named BIG KARL whose design phase started in the early 70`s. In the second case the work started in the early 80`s with the task to build a high precision 2.5 GeV proton accelerator for cooled stored and extracted beams known as COSY-Juelich.

  10. Bearing development program for a 25 kWe solar-powered organic Rankine-cycle engine

    Science.gov (United States)

    Nesmith, B.

    1985-01-01

    The bearing development program is summarized for a 25-kWe power conversion subsystem (PCS) consisting of an organic Rankine-cycle engine, and permanent magnetic alternator (PMA) and rectifier to be used in a 100-kWe point-focusing distributed receiver solar power plant. The engine and alternator were hermetically sealed and used toluene as the working fluid. The turbine, alternator, and feed pump (TAP) were mounted on a single shaft operating at speeds up to 60,000 rev/min. Net thermal-to-electric efficiencies in the range of 21 to 23% were demonstrated at the maximum working fluid temperature of 400 C (750 F). A chronological summary of the bearing development program is presented. The primary causes of bearing wear problems were traced to a combination of rotordynamic instability and electrodynamic discharge across the bearing surfaces caused by recirculating currents from the PMA. These problems were resolved by implementing an externally supplied, flooded-bearing lubrication system and by electrically insulating all bearings from the TAP housing. This program resulted in the successful development of a stable, high-speed, toluene-lubricated five-pad tilting-pad journal bearing and Rayleigh step thrust bearing system capable of operating at all inclinations between horizontal and vertical.

  11. Plantar fascia evaluation with a dedicated magnetic resonance scanner in weight-bearing position: our experience in patients with plantar fasciitis and in healthy volunteers.

    Science.gov (United States)

    Sutera, R; Iovane, A; Sorrentino, F; Candela, F; Mularo, V; La Tona, G; Midiri, M

    2010-03-01

    This study assessed the usefulness of upright weight-bearing examination of the ankle/hind foot performed with a dedicated magnetic resonance (MR) imaging scanner in the evaluation of the plantar fascia in healthy volunteers and in patients with clinical evidence of plantar fasciitis. Between January and March 2009, 20 patients with clinical evidence of plantar fasciitis (group A) and a similar number of healthy volunteers (group B) underwent MR imaging of the ankle/hind foot in the upright weight-bearing and conventional supine position. A 0.25-Tesla MR scanner (G-Scan, Esaote SpA, Genoa, Italy) was used with a dedicated receiving coil for the ankle/hind foot. Three radiologists, blinded to patients' history and clinical findings, assessed in consensus morphological and dimensional changes and signal intensity alterations on images acquired in both positions, in different sequences and in different planes. In group A, MR imaging confirmed the diagnosis in 15/20 cases; in 4/15 cases, a partial tear of the plantar fascia was identified in the upright weight-bearing position alone. In the remaining 5/20 cases in group A and in all cases in group B, the plantar fascia showed no abnormal signal intensity. Because of the increased stretching of the plantar fascia, in all cases in group A and B, thickness in the proximal third was significantly reduced (pplantar fascia, which could be overlooked in the supine position.

  12. Bearing technology in turbopumps; Lagerungstechnik fuer Turbopumpen. Eine naehere Betrachtung von Kugel- und Magnetlagerungen und ihre Eigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Bernhardt, Helmut; Ganswindt, Christoph [Pfeiffer Vacuum GmbH, Asslar (Germany)

    2012-06-15

    This contribution provides an overview of the development undergone by bearing technology in turbomolecular pumps or, in short, turbopumps. It not only describes which conventional bearing configurations are encountered today, but also explains the pros and cons of the various configurations. The path to using turbopumps with full magnetic bearings was paved with various difficulties in the early nineties. The concluding description of the current state of the art, with the focus on safety, reliability, user-friendliness, maintenance-free design and energy efficiency, illustrates how the development of turbopumps has undergone fundamental changes. (orig.)

  13. EcoBears

    DEFF Research Database (Denmark)

    Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager

    2015-01-01

    In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setting....... We present our initial design and implementation of the EcoBears that consist of two bear modules (a mother and her cub). We also present our preliminary concept validations and lessons learned to be considered for future directions....

  14. Magnetic suspension of a rotating system. Application to inertial flywheels

    International Nuclear Information System (INIS)

    Lemarquand, Guy

    1984-01-01

    The various possible magnetic suspension configurations compatible with rotating mechanical systems are defined from studies of the characteristics of different types of magnetic bearings. The results obtained are used in the design and realization of a magnetic suspension for an inertial flywheel. (author) [fr

  15. Improvement of the cooldown time of LSF 9599 flexure bearing SADA cooler

    NARCIS (Netherlands)

    Mullié, J.; Groep, van der W.; Bruins, P.; Benschop, T.; Koning, de A.; Dam, J.A.M.; Andresen, B.F.; Fulop, G.F.; Norton, P.R.

    2006-01-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing

  16. Performance assessment of auxiliary bearing in HTR-10 AMB helium circulator on the event of rotor drop

    International Nuclear Information System (INIS)

    Xiao Zhen; Yang Guojun; Li Yue; Shi Zhengang; Yu Suyuan

    2014-01-01

    In this paper, a model for analyzing internal contact stress arid external load of ball bearing from rotor displacement was developed based on the Hertz contact theory and applied to the analysis of the rotor drop test in HTR-10 helium circulator equipped with AMB (Active Magnetic Bearing) to gain a better understanding of auxiliary bearing performance at different stages after the rotor drop. It was shown that the auxiliary bearing can well resist axial impact produced by rotor drop, avoiding of internal severe plastic deformation and damage to the performance of the auxiliary bearing. Rotor's rotary motion and the heat accumulation of the inner ring resulted from the initial acute acceleration are the main contributor of radial load during the rotor idling and may cause the failure of auxiliary bearing. This paper analyzed the influence of this load and confirmed that the auxiliary bearing can still work in its loading limits. (authors)

  17. Contactless Mechanical Components: Gears, Torque Limiters and Bearings

    Directory of Open Access Journals (Sweden)

    Jose Luis Perez-Diaz

    2014-12-01

    Full Text Available Contactless mechanical components are mechanical sets for conversion of torque/speed, whose gears and moving parts do not touch each other, but rather they provide movement with magnets and magnetic materials that exert force from a certain distance. Magneto-mechanical transmission devices have several advantages over conventional mechanisms: no friction between rotatory elements (no power losses or heat generation by friction so increase of efficiency, no lubrication is needed (oil-free mechanisms and no lubrication auxiliary systems, reduced maintenance (no lubricant so no need of oil replacements, wider operational temperature ranges (no lubricant evaporation or freezing, overload protection (if overload occurs magnet simply slides but no teeth brake, through-wall connection (decoupling of thermal and electrical paths and environmental isolation, larger operative speeds (more efficient operative conditions, ultralow noise and vibrations (no contact no noise generation. All these advantages permit us to foresee in the long term several common industrial applications in which including contactless technology would mean a significant breakthrough for their performance. In this work, we present three configurations of contactless mechanical passive components: magnetic gears, magnetic torque limiters and superconducting magnetic bearings. We summarize the main characteristic and range of applications for each type; we show experimental results of the most recent developments showing their performance.

  18. Estimating relic magnetic fields from CMB temperature correlations

    CERN Document Server

    Giovannini, Massimo

    2009-01-01

    The temperature and polarization inhomogeneities of the Cosmic Microwave Background might bear the mark of pre-decoupling magnetism. The parameters of a putative magnetized background are hereby estimated from the observed temperature autocorrelation as well as from the measured temperature-polarization cross-correlation.

  19. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management

    Science.gov (United States)

    Hopkins, John B.; Koch, Paul L.; Schwartz, Charles C.; Ferguson, Jake M.; Greenleaf, Schuyler S.; Kalinowski, Steven T.

    2012-01-01

    We used genetic and stable isotope analysis of hair from free-ranging black bears (Ursus americanus) in Yosemite National Park, California, USA to: 1) identify bears that consume human food, 2) estimate the diets of these bears, and 3) evaluate the Yosemite human–bear management program. Specifically, we analyzed the isotopic composition of hair from bears known a priori to be food-conditioned or non-food-conditioned and used these data to predict whether bears with an unknown management status were food-conditioned (FC) or non-food-conditioned (NFC). We used a stable isotope mixing model to estimate the proportional contribution of natural foods (plants and animals) versus human food in the diets of FC bears. We then used results from both analyses to evaluate proactive (population-level) and reactive (individual-level) human–bear management, and discussed new metrics to evaluate the overall human–bear management program in Yosemite. Our results indicated that 19 out of 145 (13%) unknown bears sampled from 2005 to 2007 were food-conditioned. The proportion of human food in the diets of known FC bears likely declined from 2001–2003 to 2005–2007, suggesting proactive management was successful in reducing the amount of human food available to bears. In contrast, reactive management was not successful in changing the management status of known FC bears to NFC bears, or in reducing the contribution of human food to the diets of FC bears. Nine known FC bears were recaptured on 14 occasions from 2001 to 2007; all bears were classified as FC during subsequent recaptures, and human–bear management did not reduce the amount of human food in the diets of FC bears. Based on our results, we suggest Yosemite continue implementing proactive human–bear management, reevaluate reactive management, and consider removing problem bears (those involved in repeated bear incidents) from the population.

  20. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics.

    Science.gov (United States)

    Tse, Peter W; Wang, Dong

    2017-02-14

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL). Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI) so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  1. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    Directory of Open Access Journals (Sweden)

    Peter W. Tse

    2017-02-01

    Full Text Available Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL. Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  2. Design of bearings for rotor systems based on stability

    Science.gov (United States)

    Dhar, D.; Barrett, L. E.; Knospe, C. R.

    1992-01-01

    Design of rotor systems incorporating stable behavior is of great importance to manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from bearings, seals, aerodynamic cross coupling, noncolocation effects from magnetic bearings, etc.) increase with machine efficiency and power density. A new method of designing bearing parameters (stiffness and damping coefficients or coefficients of the controller transfer function) is proposed, based on a numerical search in the parameter space. The feedback control law is based on a decentralized low order controller structure, and the various design requirements are specified as constraints in the specification and parameter spaces. An algorithm is proposed for solving the problem as a sequence of constrained 'minimax' problems, with more and more eigenvalues into an acceptable region in the complex plane. The algorithm uses the method of feasible directions to solve the nonlinear constrained minimization problem at each stage. This methodology emphasizes the designer's interaction with the algorithm to generate acceptable designs by relaxing various constraints and changing initial guesses interactively. A design oriented user interface is proposed to facilitate the interaction.

  3. Research on vibration properties of auxiliary bearing cage used in HTR-10 GT project

    International Nuclear Information System (INIS)

    Qin Qingquan; Yang Guojun; Shi Zhengang; Yu Suyuan

    2009-01-01

    Auxiliary Bearings (ABs) is one of the most important parts in Active Magnetic Bearing (AMB) system, which was used in HTR-10 GT project. This paper uses finite element method to analyze the centrifugal stress and free vibration properties of the cage according to its work condition. And different geometric parameters of the cage that has effects on its vibration performance are discussed. The results show that the highest centrifugal stress is in the middle of the cage side sill. The low odder vibration modes of the cage can be induced when the auxiliary bearings are working. Proper geometric parameters and ball pocket number can enhance the performance of the cage. (authors)

  4. Transient heat transfer analysis of superconducting magnetic levitating flywheel rotor operating in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, A.; Kudo, K.; Higasa, H.

    1999-07-01

    In the present study, transient temperature rise is analyzed in a flywheel type power storage system operated in vacuum environment. The flywheel rotor is levitated by high-temperature-superconducting magnetic bearing to reduce the bearing loss. Though the superconductor is cooled by liquid nitrogen, the temperature of the whole system rises due to Joule heating in the coils of the bearings and the motor during the operation. If the temperature should reach the critical temperature of the permanent magnet used for the magnetic bearings after long time operation, the magnetic bearings lose their effect. The heat generated in the levitated rotor diffuses within it by heat conduction and finally emitted to its surrounding solid materials by thermal radiation from the rotor surfaces across vacuum layer. Numerical simulation is carried out calculating the transient radiative-conductive heat transfer and time-dependent profiles of temperature within the rotor are obtained. The results are compared with the experimentally obtained temperatures by measured a test model of 1kWh power storage and the measured profiles of the temperature rise of the rotor fit very well with the calculated ones. Using this simulation tool, the effects of the surface emissivity of the materials of the rotor and the stator, the temperature of the surrounding casings and the thermal conductivity of the materials on the temperature profiles in the system are estimated.

  5. Comparison of Alignment Correction Angles Between Fixed-Bearing and Mobile-Bearing UKA.

    Science.gov (United States)

    Inoue, Atsuo; Arai, Yuji; Nakagawa, Shuji; Inoue, Hiroaki; Yamazoe, Shoichi; Kubo, Toshikazu

    2016-01-01

    Good outcomes have been reported with both fixed-bearing and mobile-bearing unicompartmental knee arthroplasty (UKA). However, overcorrected alignment could induce the progression of arthritis on the non-arthroplasty side. Changes of limb alignment after UKA with both types of bearings (fixed bearing: 24 knees, mobile bearing: 28 knees) were investigated. The mean difference between the preoperative standing femoral-tibial angle (FTA) and postoperative standing FTA was significantly larger in mobile bearing UKA group. In fixed-bearing UKA, there must be some laxity in MCL tension so that a 2-mm tension gauge can be inserted. In mobile-bearing UKA, appropriate MCL tension is needed to prevent bearing dislocation. This difference in MCL tension may have caused the difference in the correction angle between the groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Acquisition of chemical remanent magnetization during experimental ferrihydrite-hematite conversion in Earth-like magnetic field-implications for paleomagnetic studies of red beds

    NARCIS (Netherlands)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J.; Tauxe, Lisa; Qin, Huafeng; Barrón, Vidal; Torrent, José

    2015-01-01

    Hematite-bearing red beds are renowned for their chemical remanent magnetization (CRM). If the CRM was acquired substantially later than the sediment was formed, this severely compromises paleomagnetic records. To improve our interpretation of the natural remanent magnetization, the intricacies of

  7. SU-F-T-211: Evaluation of a Dual Focusing Magnet System for the Treatment of Small Proton Targets

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, TT; McAuley, GA; Heczko, S; Slater, J [Loma Linda University, Loma Linda, CA (United States); Wroe, A [Loma Linda University, Loma Linda, CA (United States); Loma Linda University Medical Center, Loma Linda, CA (United States)

    2016-06-15

    Purpose: To investigate magnetic focusing for small volume proton targets using a doublet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Monte Carlo computer simulations were performed using the Geant4 toolkit to compare dose depositions of proton beams transported through two focusing magnets or in their absence. Proton beams with energies of 127 MeV and initial diameters of 5, 8 and 10 mm were delivered through two identical focusing magnets similar to those currently in experimental use at Loma Linda University Medical Center. Analogous experiments used optimized configurations based on the simulation results. Dose was measured by a diode detector and Gafchromic EBT3 film and compared to simulation data. Based on results from the experimental data, an additional set of simulations was performed with an initial beam diameter of 18 mm and a two differing length magnets (40mm & 68mm). Results: Experimental data matched well with Monte Carlo simulations. However, under conditions necessary to produce circular beam spots at target depth, magnetically focused beams using two identical 40 mm length magnets did not meet all of our performance criteria of circular beam spots, improved peak to entrance (P/E) dose ratios and dose delivery efficiencies. The simulations using the longer 68 mm 2nd magnet yielded better results with 34% better P/E dose ratio and 20–50% better dose delivery efficiencies when compared to unfocused 10 mm beams. Conclusion: While magnetic focusing using two magnets with identical focusing power did not yield desired results, ongoing Monte Carlo simulations suggest that increasing the length of the 2nd magnet to 68 mm could improve P/E dose ratios and dose efficiencies. Future work includes additional experimental validation of the longer 2nd magnet setup as well as experiments with triplet magnet systems. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).

  8. Two dimensional model of a permanent magnet spur gear

    DEFF Research Database (Denmark)

    Jørgensen, Frank Thorleif; Andersen, Torben Ole; Rasmussen, Peter Omand

    2005-01-01

    This paper presents calculation and measurement results of a high-performance permanent-magnetic gear. The analyzed permanent-magnetic gear has a gear ratio of 5.5 and is able to deliver 27 N/spl middot/m. The analysis has shown that special attention needs to be paid to the system where the gear...... is to be installed because of a low natural torsion spring constant. The analyzed gear was also constructed in practice in order to validate the analysis and predict the efficiency. The measured torque from the magnetic gear was only 16 N/spl middot/m reduced by the large end-effects. A systematic analysis...... of the loss components in the magnetic gear is also performed in order to figure out why the efficiency for the actual construction was only 81%. A large magnetic loss component originated in the bearings, where an unplanned extra bearing was necessary due to mechanical problems. Without the losses...

  9. On verifying magnetic dipole moment of a magnetic torquer by experiments

    Science.gov (United States)

    Kuyyakanont, Aekjira; Kuntanapreeda, Suwat; Fuengwarodsakul, Nisai H.

    2018-01-01

    Magnetic torquers are used for the attitude control of small satellites, such as CubeSats with Low Earth Orbit (LEO). During the design of magnetic torquers, it is necessary to confirm if its magnetic dipole moment is enough to control the satellite attitude. The magnetic dipole moment can affect the detumbling time and the satellite rotation time. In addition, it is also necessary to understand how to design the magnetic torquer for operation in a CubeSat under the space environment at LEO. This paper reports an investigation of the magnetic dipole moment and the magnetic field generated by a circular air-coil magnetic torquer using experimental measurements. The experiment testbed was built on an air-bearing under a magnetic field generated by a Helmholtz coil. This paper also describes the procedure to determine and verify the magnetic dipole moment value of the designed circular air-core magnetic torquer. The experimental results are compared with the design calculations. According to the comparison results, the designed magnetic torquer reaches the required magnetic dipole moment. This designed magnetic torquer will be applied to the attitude control systems of a 1U CubeSat satellite in the project “KNACKSAT.”

  10. First lasings at IR-and FIR range using hybrid type undulator (FEL facility 4) and Halbach type undulator

    International Nuclear Information System (INIS)

    Takii, T.; Oshita, E.; Okuma, S.; Wakita, K.; Koga, A.; Tomimasu, T.; Ohasi, K.

    1997-01-01

    First lasing at 18μm was achieved by using a 2.7-m long hybrid type undulator (undulator 4) for far-infrared FELs and a 6.72-m long optical cavity installed at the 33-MeV beam line of the downstream of the FEL facility 1 (FEL-1). We are challenged at two-color FEL oscillation in mid-infrared range using the undulator 1 (λ u=3.4mm) and in far-infrared range using the undulator 4 (λ u=9mm). At first, a 30-MeV, 60-A beam passed through the undulator 1 without lasing is transported using a QFQDBQFQDBQFQDQF system and is used for lasing at the undulator 4. However, six pairs of steering coils had to be attached on the beam duct to reduce the deviation of the electron beam trajectory due to the vertical field distribution induced by the built-in electromagnets. The minimum gap of the undulator 4 was designed to be 35mm. However, the steering coils attached on the beam duct increased the gap up to 52mm. Therefore, the hybrid type undulator was replaced by a new Halbach type one (λ u=8mm, N=30) after the first lasing at 18μm on October 24, '96. The New FEL facility 4 was installed in the middle of December and first lasing at 18.6μm was achieved on December 26, within 10 hours operation. (author)

  11. Performance of a superconducting large-angle magnetic suspension

    International Nuclear Information System (INIS)

    Downer, J.R.; Bushko, D.A.; Gondhalekar, V.; Torti, R.P.

    1992-01-01

    SatCon Technology Corporation is working toward the development of an advanced-concept Control Moment Gyro (CMG). The advanced-concept CMG is sized for use as a slewing actuator for large space-based payloads. The design features a magnetically suspended composite rotor which contains a persistent-mode superconducting solenoid magnet. The rotor is suspended and gimballed by the interaction of the fields produced by the superconductor and an array of cryoresistive coils. The rotor spins in a liquid helium environment, while the control coils are liquid-hydrogen cooled. This design is capable of meeting the requirements of many high-performance slewing applications (27,000 Nm). The use of the magnetic suspension as rotor bearings, gimbal bearings, and gimbal torquers also substantially reduces the mass of the CMG system

  12. A linear magnetic motor and generator

    Science.gov (United States)

    Studer, P. A.

    1980-01-01

    In linear magnetic motor and generator suitable for remote and hostile environments, magnetic forces drive reciprocating shaft along its axis. Actuator shaft is located in center of cylindrical body and may be supported by either contacting or noncontacting bearings. When device operates as bidirectional motor, drive coil selectively adds and subtracts magnetic flux to and from flux paths, producing forces that drive actuator along axis. When actuator is driven by external reciprocating engine, device becomes ac generator.

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... MRI) exam. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, ...

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... MRI) procedure View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic ...

  15. Estimating relic magnetic fields from CMB temperature correlations

    International Nuclear Information System (INIS)

    Giovannini, Massimo

    2009-01-01

    The temperature and polarization inhomogeneities of the cosmic microwave background might bear the mark of predecoupling magnetism. The parameters of a putative magnetized background are hereby estimated, for the first time, from the observed temperature autocorrelation as well as from the measured temperature-polarization cross correlation.

  16. A review of bear farming and bear trade in Lao People's Democratic Republic

    Directory of Open Access Journals (Sweden)

    E. Livingstone

    2018-01-01

    Full Text Available This study reviews the bear farming industry in Lao PDR with the objective of documenting the current number of commercial bear facilities (i.e. captive bear facilities judged to be trading in bear bile and/or bears and bear parts and the number of bears contained within these facilities, noting changes since it was last examined between 2000 and 2012 by Livingstone and Shepherd (2014. We surveyed all known commercial bear facilities and searched for previously unrecorded facilities. We compared our records with Livingstone and Shepherd (2014 and corrected some duplicate records from their study. In 2017, we recorded seven commercial facilities; four dedicated bear farms, and three tiger farms that were reportedly also keeping bears. We found that between 2012 and 2017 the recorded number of dedicated bear farms reduced by two, and the recorded number of tiger farms also keeping bears increased by one. Within the same period, the total number of captive bears among all facilities in Lao PDR hardly changed (+one, but the number of bears within each facility did. The northern facilities, owned by ethnic Chinese, have expanded since 2012, and central and southern facilities have downsized or closed. While bear farming appears to be downsizing in Lao PDR overall, efforts to phase it out are undermined by the expansion of foreign owned facilities in the north, within Special and Specific Economic Zones that largely cater to a Chinese market, and where the Lao government's efforts to enforce laws and protect wildlife appear to be lacking. Closing the facilities in the north will require political will and decisive law enforcement. Keywords: Bear farms, Bear bile, Gall bladder, Urso-deoxycholic acid, Bear bile extraction facilities, Lao PDR, Ursus thibetanus

  17. Waste water purification by magnetic separation technique using HTS bulk magnet system

    International Nuclear Information System (INIS)

    Oka, T.; Kanayama, H.; Tanaka, K.; Fukui, S.; Ogawa, J.; Sato, T.; Ooizumi, M.; Terasawa, T.; Itoh, Y.; Yabuno, R.

    2009-01-01

    We have investigated the feasibility of strong magnetic field generators composed of the high temperature superconducting (HTS) bulk magnet systems to the magnetic separation techniques for the waste water including thin emulsion bearing the cutting oil. Two types of the strong field generators were prepared by the face-to-face HTS bulk magnet systems, which emit the magnetic field density of 1 and 2 T in the open spaces between the magnetic poles activated by the pulsed field magnetization and the field cooling methods, respectively. A couple of water channels containing iron balls were settled in the strong field to trap the magnetized flocks in the waste water. The separation ratios of flocks containing 200 ppm magnetite powder were evaluated with respect to the flow rates of the waste water. The performances of bulk magnet system have kept showing values of around 100% until the flowing rate reached up to 18 l/min. This suggests that the magnetic separation by using bulk magnets is effective for the practical water purification systems.

  18. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    Science.gov (United States)

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears.

  19. Design of a magnetic lead screw for wave energy conversion

    DEFF Research Database (Denmark)

    Holm, Rasmus Koldborg; Berg, Nick Ilsø; Rasmussen, Peter Omand

    2012-01-01

    on the bearing supports used to compensate for the magnetic attraction forces and the resulting deflection of the rotor. Also, in order to avoid some of the production related disadvantages of using surface mounted magnets, an embedded magnet topology is proposed. To demonstrate the technology a scaled 17 kN MLS...

  20. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... also screened for safety in the magnetic environment. Children will be given appropriately sized earplugs or headphones ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media MR Angiography ( ...

  1. X-ray tube incorporating a rotating anode with magnetic bearings

    International Nuclear Information System (INIS)

    1979-01-01

    This patent describes an X-ray tube incorporating a rotating anode. The rotor consists of a single, soft-magnetic dish which is fixed on the axis and which seals the magnetic yoke of the stator. Looking in the direction of the axis, one side is equipped with two circular pole surfaces, one at least of which is provided with circular pole-shoes, separated from one another by concentric grooves. (T.P.)

  2. Use of a ring-shaped, passively stable, superconducting magnetic bearing in the ring spinning process; Einsatz eines ringfoermigen, passiv stabilen, supraleitenden Magnetlagers im Ringspinnprozess

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Anne; Sparing, Maria; Berger, Dietmar; Fuchs, Guenter; Schultz, Ludwig [IFW Dresden (Germany). Inst. fuer Metallische Werkstoffe; Hossain, Mahmud; Abdkader, Anwar; Cherif, Chokri [TU Dresden (Germany). ITM

    2015-07-01

    For the integration of a superconducting magnetic bearing in a ring spinning machine a LN{sub 2} continuous flow cryostat was developed, which is needed to cool the superconductor below its transition temperature of ∝91 K and simultaneously ensures that the spinning process takes place at room temperature. The ring spinning process is the most widely used process for spinning yarn. In this case, a loose fiber connection is first stretched in a roller system, then twisted by the so-called spinning ring-ring traveler system, and finally wound on a spindle. The spinning ring is a circular guide, which is mounted around the spindle. On this the ring traveler rotates as yarn guide. The yarn is driven by the rotation of the spindle and there is a balloon-shaped movement of the yarn which results the twist. The productivity of the process is limited by the systematic frictional heat between the yarn, spinning ring and ring travelers. This leads at high speeds to yarn breakage and limits the maximum spindle speed depending on the type of fiber to a maximum of 25,000 U/min. To increase the speed and thus the productivity of the process, the conventional spinning ring-ring rotor system is replaced by a superconducting magnetic bearing. Here floats a NdFeB permanent magnet passively stable over the LN{sub 2} cooled ceramic high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7-x}. Driven by the yarn the permanent magnet rotates, thus ensuring the necessary balloon-shaped yarn movement to twist. Such a bearing has been successfully tested in a ring spinning machine. Preliminary results show a similar yarn quality. [German] Fuer die Integration eines supraleitenden Magnetlagers in eine Ringspinnmaschine wurde ein LN{sub 2}-Durchflusskryostat entwickelt, der noetig ist, um den Supraleiter unter seine Sprungtemperatur von ∝91 K zu kuehlen und gleichzeitig dafuer sorgt, dass der Spinnprozess bei Raumtemperatur ablaeuft. Der Ringspinnprozess ist der am weitesten verbreitete

  3. Large-scale HTS bulks for magnetic application

    International Nuclear Information System (INIS)

    Werfel, Frank N.; Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter

    2013-01-01

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN 2 and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN 2 allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved

  4. Large-scale HTS bulks for magnetic application

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank N., E-mail: werfel@t-online.de [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany); Floegel-Delor, Uta; Riedel, Thomas; Goebel, Bernd; Rothfeld, Rolf; Schirrmeister, Peter; Wippich, Dieter [Adelwitz Technologiezentrum GmbH (ATZ), Rittergut Adelwitz 16, 04886 Arzberg-Adelwitz (Germany)

    2013-01-15

    Highlights: ► ATZ Company has constructed about 130 HTS magnet systems. ► Multi-seeded YBCO bulks joint the way for large-scale application. ► Levitation platforms demonstrate “superconductivity” to a great public audience (100 years anniversary). ► HTS magnetic bearings show forces up to 1 t. ► Modular HTS maglev vacuum cryostats are tested for train demonstrators in Brazil, China and Germany. -- Abstract: ATZ Company has constructed about 130 HTS magnet systems using high-Tc bulk magnets. A key feature in scaling-up is the fabrication of YBCO melts textured multi-seeded large bulks with three to eight seeds. Except of levitation, magnetization, trapped field and hysteresis, we review system engineering parameters of HTS magnetic linear and rotational bearings like compactness, cryogenics, power density, efficiency and robust construction. We examine mobile compact YBCO bulk magnet platforms cooled with LN{sub 2} and Stirling cryo-cooler for demonstrator use. Compact cryostats for Maglev train operation contain 24 pieces of 3-seed bulks and can levitate 2500–3000 N at 10 mm above a permanent magnet (PM) track. The effective magnetic distance of the thermally insulated bulks is 2 mm only; the stored 2.5 l LN{sub 2} allows more than 24 h operation without refilling. 34 HTS Maglev vacuum cryostats are manufactured tested and operate in Germany, China and Brazil. The magnetic levitation load to weight ratio is more than 15, and by group assembling the HTS cryostats under vehicles up to 5 t total loads levitated above a magnetic track is achieved.

  5. Method and apparatus for control of a magnetic structure

    Science.gov (United States)

    Challenger, Michael P.; Valla, Arthur S.

    1996-06-18

    A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.

  6. Control design for axial flux permanent magnet synchronous motor which operates above the nominal speed

    Directory of Open Access Journals (Sweden)

    Xuan Minh Tran

    2017-04-01

    Full Text Available The axial flux permanent magnet synchronous motor (AFPM motor using magnet bearings instead of ball-bearings at both two shaft ends could allow rotational speed of shaft much greater than nominal speed. One of the solutions to increase motor speed higher than its nameplate speed is reducing rotor’s pole magnetic flux of rotor (Yp. This paper proposes a method to boost the speed of AFPM motor above nominal speed by adding a reversed current isd of (Yp.

  7. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  8. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    2014-01-01

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...... bears have traditionally centred on interpersonal relations within the nuclear family, but have recently been institutionalized and commercialized....

  9. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... or thyroid problems. Any of these conditions may influence the decision on whether contrast material will be ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  10. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  12. Bear-ly” learning: Limits of abstraction in black bear cognition

    Directory of Open Access Journals (Sweden)

    Jennifer Vonk

    2018-02-01

    Full Text Available We presented two American black bears (Ursus americanus with a serial list learning memory task, and one of the bears with a matching-to-sample task. After extended training, both bears demonstrated some success with the memory task but failed to generalize the overarching rule of the task to novel stimuli. Matching to sample proved even more difficult for our bear to learn. We conclude that, despite previous success in training bears to respond to natural categories, quantity discriminations, and other related tasks, that bears may possess a cognitive limitation with regards to learning abstract rules. Future tests using different procedures are necessary to determine whether this is a limit of bears’ cognitive capacities, or a limitation of the current tasks as presented. Future tests should present a larger number of varying stimuli. Ideally, bears of various species should be tested on these tasks to demonstrate species as well as individual differences.

  13. GAS BEARING

    Science.gov (United States)

    Skarstrom, C.W.

    1960-09-01

    A gas lubricated bearing for a rotating shaft is described. The assembly comprises a stationary collar having an annular member resiliently supported thereon. The collar and annular member are provided with cooperating gas passages arranged for admission of pressurized gas which supports and lubricates a bearing block fixed to the rotatable shaft. The resilient means for the annular member support the latter against movement away from the bearing block when the assembly is in operation.

  14. Finite element analysis on the electromagnetic fields of active magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Ren, S; Liu, J [School of Mechanical Engineering, Shenyang Ligong University, Shenyang, 110168 (China); Bian, C [Institute of Information Science and Engineering, Northeastern University, Shenyang, 110004 (China)], E-mail: renshy@sina.com

    2008-02-15

    To increase the carrying capacity and reduce the weight and size of AMBs, it is necessary to use a ferromagnetic material with high magnetic flux density, which can make AMBs run in the nonlinear region. The simple linear model before is not gratifying, so some more precise analysis methods are demanded, the finite element method(shorted as FEM) is one of such methods. In this paper, the mathematic model and the simplified calculation of AMB rotor are introduced, and the finite elemental model and its boundary condition are produced. Then, the coupling phenomena of the magnetic fields and the effects of different parameters on the magnetic fields of AMB with a non-homocentric rotor are simulated using the FEM analysis software of ANSYS. The distributions of 2D magnetic lines of force and the flux density in rotor and stator are given. The conclusions are of instructed meaning for the design of AMBs.

  15. Finite element analysis on the electromagnetic fields of active magnetic bearing

    International Nuclear Information System (INIS)

    Ren, S; Liu, J; Bian, C

    2008-01-01

    To increase the carrying capacity and reduce the weight and size of AMBs, it is necessary to use a ferromagnetic material with high magnetic flux density, which can make AMBs run in the nonlinear region. The simple linear model before is not gratifying, so some more precise analysis methods are demanded, the finite element method(shorted as FEM) is one of such methods. In this paper, the mathematic model and the simplified calculation of AMB rotor are introduced, and the finite elemental model and its boundary condition are produced. Then, the coupling phenomena of the magnetic fields and the effects of different parameters on the magnetic fields of AMB with a non-homocentric rotor are simulated using the FEM analysis software of ANSYS. The distributions of 2D magnetic lines of force and the flux density in rotor and stator are given. The conclusions are of instructed meaning for the design of AMBs

  16. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.

    Science.gov (United States)

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-03-01

    Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  17. EFFECT OF CLEARANCE THE BALL BEARINGS ON INCORRECT WORK OF THREE-SUPORT BEARING SHAFT

    Directory of Open Access Journals (Sweden)

    Jarosław KACZOR

    2014-06-01

    Full Text Available Durability deep groove ball bearings depends on factors (called attributes design, technological and operational. Among the design features one of the most important is play in the bearings. Polish Norm shows five groups of looseness in the bearings, in which the play range from 0 to 105 microns. Manufacturers of rolling bearings they only play group, which has a bearing data, without giving the exact value of the slack. Aim of this study is to determine how it affects the play in the bearings to work three-bearing shafts, including elasticity and resilience three-bearing shafts.

  18. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  19. Theory of nuclear magnetic moments - LT-35

    Energy Technology Data Exchange (ETDEWEB)

    Kerman, A. K.

    1952-09-15

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  20. Study on magnetic separation system using high Tc superconducting bulk magnets for water purification technique

    International Nuclear Information System (INIS)

    Oka, T; Kanayama, H; Tanaka, K; Fukui, S; Ogawa, J; Sato, T; Ooizumi, M; Yamaguchi, M; Yokoyama, K; Noto, K

    2009-01-01

    The application of superconducting bulk magnets to the magnetic separation techniques has been investigated for the Mn-bearing waste water drained from the university laboratories. The research has been conducted in comparison with the electromagnets, and the cryo-cooled superconducting solenoid magnet. The separation ratios of ferrite precipitates including Mn element in the waste slurry were estimated by means of the high gradient magnetic separation method with ferromagnetic iron filters in the water channel and open gradient magnetic separation without them. As the magnetic force acting on the particles is given by the product of a magnetization of particles and a gradient of magnetic field, and a superconducting bulk magnet shows a sharp gradient of the magnetic field on the surface, the performances of the bulk magnet system were almost equivalent to those of the superconducting solenoid magnet with wide bore with respect to the magnetic separation ratios. The separation ratios for Mn have reached over 80 % for HGMS and 10 % for OGMS under the flow rates less than 3 liter/min.

  1. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    OpenAIRE

    Peter W. Tse; Dong Wang

    2017-01-01

    Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To exten...

  2. Evaluation of bearing configurations using the single bearing tester in liquid nitrogen

    Science.gov (United States)

    Jett, T.; Hall, P.; Thom, R.

    1991-01-01

    Various bearing configurations were tested using the Marshall Space Flight Center single bearing tester with LN2 as the cryogenic coolant. The baseline was one Rocketdyne phase one high pressure oxidizer turbopump (HPOTP) pump end 45-mm bore bearing. The bearing configurations that were tested included a Salox/M cage configuration, a silicon nitride ball configuration, an elongated cage configuration, and a Bray 601 grease configuration.

  3. Improvement of journal bearing operation at heavy misalignment using bearing flexibility and compliant liners

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder

    2012-01-01

    A flexure journal bearing design is proposed that will improve operational behaviour of a journal bearing at pronounced misalignment. Using a thermoelastohydrodynamic model, it is shown that the proposed flexure journal bearing has vastly increased the hydrodynamic performance compared to the stiff...... bearing when misaligned. The hydrodynamic performance is evaluated on lubricant film thickness, pressure and temperature. Furthermore, the influence of a compliant bearing liner is investigated and it is found that it increases the hydrodynamic performance when applied to a stiff bearing, whereas...... the liner has practically no influence on the flexure journal bearing's performance....

  4. Observations of vector magnetic fields with a magneto-optic filter

    Science.gov (United States)

    Cacciani, Alessandro; Varsik, John; Zirin, Harold

    1990-01-01

    The use of the magnetooptic filter to observe solar magnetic fields in the potassium line at 7699 A is described. The filter has been used in the Big Bear videomagnetograph since October 23. It gives a high sensitivity and dynamic range for longitudnal magnetic fields and enables measurement of transverse magnetic fields using the sigma component. Examples of the observations are presented.

  5. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

    Science.gov (United States)

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Klassert, Denise; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2012-04-20

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

  6. An early Brunhes (age for the Lower Paleolithic tool-bearing Kozarnika cave sediments, Bulgaria

    Science.gov (United States)

    Muttoni, Giovanni; Sirakov, Nikolas; Guadelli, Jean-Luc; Kent, Dennis V.; Scardia, Giancarlo; Monesi, Edoardo; Zerboni, Andrea; Ferrara, Enzo

    2017-12-01

    We present a new sedimentological profile and a magnetostratigraphy of the tool-bearing Kozarnika cave sediments from Bulgaria. Modal analysis of cave infilling sedimentary texture indicates that the tool-bearing layers contain a sizable fraction of sediment interpreted as loess. We also find evidence for a relatively thick and well defined normal magnetic polarity in the upper-middle part of the section interpreted as a record of the Brunhes Chron, followed down-section by reverse polarity directions interpreted as a record of the Matuyama Chron. The lowermost levels with Lower Paleolithic tools (Layers 13a-c) lie in the early Brunhes at a nominal maximum age of ∼0.75 Ma, while the Brunhes-Matuyama boundary (0.78 Ma) falls in Layer 13 Lower immediately below. This finding represents a conspicuous revision of previous age estimates for the same tool-bearing layers.

  7. Large batch recycling of waste Nd–Fe–B magnets to manufacture sintered magnets with improved magnetic properties

    International Nuclear Information System (INIS)

    Li, X.T.; Yue, M.; Liu, W.Q.; Li, X.L.; Yi, X.F.; Huang, X.L.; Zhang, D.T.; Chen, J.W.

    2015-01-01

    The waste Nd–Fe–B sintered magnets up to 500 kg per batch were recycled to manufacture anisotropic sintered magnets by combination of hydrogen decrepitation (HD) and alloying technique. Magnetic properties and thermal stability of both the waste magnets and recycled magnets were investigated. The recycled magnet exhibits magnetic properties with remanence (B r ) of 12.38 kGs, coercivity (H ci ) of 24.89 kOe, and maximum energy product [(BH) max ] of 36.51 MGOe, respectively, which restores 99.20% of B r , 105.65% of H ci , and 98.65% of (BH) max of the waste magnets, respectively. The volume fraction of Nd-rich phase in the recycled magnets is about 10.1 vol.%, which is bigger than that of the waste magnets due to the additive of Nd 3 PrFe 14 B alloy containing more rare earth. The remanence temperature coefficient (α) and coercivity temperature coefficient (β) of the recycled magnets are −0.1155%/K and −0.5099%/K in the range of 288–423 K, respectively, which are comparative to those of the waste magnets. - Highlights: • Large batch recycling of waste Nd–Fe–B sintered magnets were performed. • The recycled magnet restores 99.20% of B r , 105.65% of H ci and 98.65% of (BH) max of the magnet. • The recycled magnets bears bigger volume fraction and better distribution of Nd-rich phase. • The recycled magnets exhibit similar temperature coefficients and maximum working temperature

  8. Vibration model of rolling element bearings in a rotor-bearing system for fault diagnosis

    Science.gov (United States)

    Cong, Feiyun; Chen, Jin; Dong, Guangming; Pecht, Michael

    2013-04-01

    Rolling element bearing faults are among the main causes of breakdown in rotating machines. In this paper, a rolling bearing fault model is proposed based on the dynamic load analysis of a rotor-bearing system. The rotor impact factor is taken into consideration in the rolling bearing fault signal model. The defect load on the surface of the bearing is divided into two parts, the alternate load and the determinate load. The vibration response of the proposed fault signal model is investigated and the fault signal calculating equation is derived through dynamic and kinematic analysis. Outer race and inner race fault simulations are realized in the paper. The simulation process includes consideration of several parameters, such as the gravity of the rotor-bearing system, the imbalance of the rotor, and the location of the defect on the surface. The simulation results show that different amplitude contributions of the alternate load and determinate load will cause different envelope spectrum expressions. The rotating frequency sidebands will occur in the envelope spectrum in addition to the fault characteristic frequency. This appearance of sidebands will increase the difficulty of fault recognition in intelligent fault diagnosis. The experiments given in the paper have successfully verified the proposed signal model simulation results. The test rig design of the rotor bearing system simulated several operating conditions: (1) rotor bearing only; (2) rotor bearing with loader added; (3) rotor bearing with loader and rotor disk; and (4) bearing fault simulation without rotor influence. The results of the experiments have verified that the proposed rolling bearing signal model is important to the rolling bearing fault diagnosis of rotor-bearing systems.

  9. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  10. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-dependent Non-linear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2002-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.

  11. Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity.

    Science.gov (United States)

    Dubois, Sara; Fraser, David

    2013-09-12

    The "pot bears" received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.

  12. Genetic relationships of extant brown bears (Ursus arctos) and polar bears (Ursus maritimus).

    Science.gov (United States)

    Cronin, Matthew A; MacNeil, Michael D

    2012-01-01

    Polar bears (Ursus maritimus) and brown bears (Ursus arctos) are closely related species for which extensive mitochondrial and nuclear phylogenetic comparisons have been made. We used previously published genotype data for 8 microsatellite DNA loci from 930 brown bears in 19 populations and 473 polar bears in 16 populations to compare the population genetic relationships of extant populations of the species. Genetic distances (Nei standard distance = 1.157), the proportion of private alleles (52% of alleles are not shared by the species), and Bayesian cluster analysis are consistent with morphological and life-history characteristics that distinguish polar bears and brown bears as different species with little or no gene flow among extant populations.

  13. EFFECT OF BEARING MACROGEOMETRY ON BEARING PERFORMANCE IN ELASTOHYDRODYNAMIC LUBRICATION

    Directory of Open Access Journals (Sweden)

    Emin GÜLLÜ

    2000-01-01

    Full Text Available During manufacturing, ideal dimension and mutual positioning of machine elements proposed in project desing can be achieved only within certain range of tolerances. These tolerances, being classified in two groups, related to micro and macro geometry of machine elements, don't have to effect the functioning of these elements. So, as for all machine elements, investigation of the effects of macro and micro tolerances for journal bearings is important. In this study, we have investigated the effect of macro geometric irregularities of journal bearings on performance characteristics. In this regard, we have studied the change of bearing performance in respect to deviation from ideal circle for an elliptic shaft with small ovality rolling in circular journal bearing.

  14. Use of high-temperature superconducting films in superconducting bearings

    International Nuclear Information System (INIS)

    Cansiz, A.

    1999-01-01

    We have investigated the effect of high-temperature superconductor (HTS) films deposited on substrates that are placed above bulk HTSs in an attempt to reduce rotational drag in superconducting bearings composed of a permanent magnet levitated above the film/bulk HTS combination. According to the critical state model, hysteresis energy loss is inversely proportional to critical current density, J c , and because HTS films typically have much higher J c than that of bulk HTS, the film/bulk combination was expected to reduce rotational losses by at least one order of magnitude in the coefficient of fiction, which in turn is a measure of the hysteresis losses. We measured rotational losses of a superconducting bearing in a vacuum chamber and compared the losses with and without a film present. The experimental results showed that contrary to expectation, the rotational losses are increased by the film. These results are discussed in terms of flux drag through the film, as well as of the critical state model

  15. Comparison of fixed-bearing and mobile-bearing total knee arthroplasty after high tibial osteotomy.

    Science.gov (United States)

    Hernigou, Philippe; Huys, Maxime; Pariat, Jacques; Roubineau, François; Flouzat Lachaniette, Charles Henri; Dubory, Arnaud

    2018-02-01

    There is no information comparing the results of fixed-bearing total knee replacement and mobile-bearing total knee replacement in the same patients previously treated by high tibial osteotomy. The purpose was therefore to compare fixed-bearing and mobile-bearing total knee replacements in patients treated with previous high tibial osteotomy. We compared the results of 57 patients with osteoarthritis who had received a fixed-bearing prosthesis after high tibial osteotomy with the results of 41 matched patients who had received a rotating platform after high tibial osteotomy. The match was made for length of follow-up period. The mean follow-up was 17 years (range, 15-20 years). The patients were assessed clinically and radiographically. The pre-operative knee scores had no statistically significant differences between the two groups. So was the case with the intra-operative releases, blood loss, thromboembolic complications and infection rates in either group. There was significant improvement in both groups of knees, and no significant difference was observed between the groups (i.e., fixed-bearing and mobile-bearing knees) for the mean Knee Society knee clinical score (95 and 92 points, respectively), or the Knee Society knee functional score (82 and 83 points, respectively) at the latest follow-up. However, the mean post-operative knee motion was higher for the fixed-bearing group (117° versus 110°). In the fixed-bearing group, one knee was revised because of periprosthetic fracture. In the rotating platform mobile-bearing group, one knee was revised because of aseptic loosening of the tibial component. The Kaplan-Meier survivorship for revision at ten years of follow-up was 95.2% for the fixed bearing prosthesis and 91.1% for the rotating platform mobile-bearing prosthesis. Although we did manage to detect significant differences mainly in clinical and radiographic results between the two groups, we found no superiority or inferiority of the mobile-bearing

  16. Hydrodynamic sliding bearings vs. roller bearings. Segmented sliding bearings for higher rotational speed; Hydrodynamische Gleitlager versus Waelzlager. Segmentgleitlager fuer hoehere Drehzahlen

    Energy Technology Data Exchange (ETDEWEB)

    Hagenhoff, M.; Sauer, M. [Main-Metall-Giesserei Fritz Schorr GmbH und Co. KG, Altenglan (Germany)

    2004-10-01

    Hydrodynamic sliding bearings are considered only in cases when roller bearings reach their speed limits and there is no other solution. However, this view neglects the fact that there are modern, optimised sliding bearings which have more advantages over roller bearings than should be expected. Many producers of sliding bearings also have computer programs enabling them to offer customised solutions, i.e. optimal adaptation of the bearings to their specific operating conditions. (orig.) [German] Hydrodynamische Gleitlager werden oft erst dann in Betracht gezogen, wenn man an die Drehzahlgrenzen von Waelzlagern stoesst und keine andere sinnvolle Alternative mehr in Frage kommt. Dabei uebersieht man leicht, dass es moderne, optimierte Gleitlagerkonstruktionen gibt, die weitaus haeufiger ihre Staerken im Vergleich zu Waelzlagern ausspielen koennen als zunaechst vermutet. Viele Gleitlagerhersteller haben zudem heute Berechnungsprogramme zur Verfuegung, die eine optimale Anpassung der Lager an die speziellen Betriebsbedingungen erlauben. (orig.)

  17. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears

    OpenAIRE

    Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth

    2015-01-01

    © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd. Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we...

  18. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Directory of Open Access Journals (Sweden)

    Andrew Ladle

    Full Text Available Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a occurrence of grizzly bears and black bears relative to habitat variables (b occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for

  19. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Science.gov (United States)

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S

    2018-01-01

    Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised

  20. Unbalance Response Prediction for Rotors on Ball Bearings Using Speed and Load Dependent Nonlinear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2003-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant bearing stiffness. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.

  1. Local Attitudes towards Bear Management after Illegal Feeding and Problem Bear Activity

    Directory of Open Access Journals (Sweden)

    David Fraser

    2013-09-01

    Full Text Available The “pot bears” received international media attention in 2010 after police discovered the intentional feeding of over 20 black bears during the investigation of an alleged marijuana-growing operation in Christina Lake, British Columbia, Canada. A two-phase random digit dialing survey of the community was conducted in 2011 to understand local perspectives on bear policy and management, before and after a summer of problem bear activity and government interventions. Of the 159 households surveyed in February 2011, most had neutral or positive attitudes towards bears in general, and supported the initial decision to feed the food-conditioned bears until the autumn hibernation. In contrast to wildlife experts however, most participants supported relocating the problem bears, or allowing them to remain in the area, ahead of killing; in part this arose from notions of fairness despite the acknowledged problems of relocation. Most locals were aware of the years of feeding but did not report it, evidently failing to see it as a serious form of harm, even after many bears had been killed. This underscores the importance of preventive action on wildlife feeding and the need to narrow the gap between public and expert opinion on the likely effects of relocation versus killing.

  2. Bearing construction for refrigeration compresssor

    Science.gov (United States)

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  3. A semi-analytical bearing model considering outer race flexibility for model based bearing load monitoring

    Science.gov (United States)

    Kerst, Stijn; Shyrokau, Barys; Holweg, Edward

    2018-05-01

    This paper proposes a novel semi-analytical bearing model addressing flexibility of the bearing outer race structure. It furthermore presents the application of this model in a bearing load condition monitoring approach. The bearing model is developed as current computational low cost bearing models fail to provide an accurate description of the more and more common flexible size and weight optimized bearing designs due to their assumptions of rigidity. In the proposed bearing model raceway flexibility is described by the use of static deformation shapes. The excitation of the deformation shapes is calculated based on the modelled rolling element loads and a Fourier series based compliance approximation. The resulting model is computational low cost and provides an accurate description of the rolling element loads for flexible outer raceway structures. The latter is validated by a simulation-based comparison study with a well-established bearing simulation software tool. An experimental study finally shows the potential of the proposed model in a bearing load monitoring approach.

  4. Design and Calibration of a Full Scale Active Magnetic Bearing Based Test Facility for Investigating Rotordynamic Properties of Turbomachinery Seals in Multiphase Flow

    DEFF Research Database (Denmark)

    Voigt, Andreas Jauernik; Mandrup-Poulsen, Christian; Nielsen, Kenny Krogh

    2016-01-01

    of the subsea installed rotating machinery. It is well known that careful design of turbomachinery seals, such as interstage and balance piston seals, is pivotal for the performance of pumps and compressors. Consequently, the ability to predict the complex interaction between fluid dynamics and rotordynamics...... University of Denmark and Lloyd's Register Consulting are currently establishing a purpose built state of the art multiphase seal test facility, which is divided into three modules. Module I consists of a full scale Active Magnetic Bearing (AMB) based rotor dynamic test bench. The internally designed custom...... AMBs are equipped with an embedded Hall sensor system enabling high precision non-contact seal force quantification. Module II is a fully automatised calibration facility for the Hall sensor based force quantification system. Module III consists of the test seal housing assembly. This paper provides...

  5. The improved damping of superconductor bearings for 35 kWh superconductor flywheel energy storage system

    International Nuclear Information System (INIS)

    Han, Y.H.; Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C.

    2013-01-01

    Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown

  6. EFFECT OF CLEARANCE THE BALL BEARINGS ON INCORRECT WORK OF THREE-SUPORT BEARING SHAFT

    OpenAIRE

    Jarosław KACZOR

    2014-01-01

    Durability deep groove ball bearings depends on factors (called attributes) design, technological and operational. Among the design features one of the most important is play in the bearings. Polish Norm shows five groups of looseness in the bearings, in which the play range from 0 to 105 microns. Manufacturers of rolling bearings they only play group, which has a bearing data, without giving the exact value of the slack. Aim of this study is to determine how it affects the play in the bea...

  7. The development on-line monitoring system of active magnetic bearings for HTR-10GT

    International Nuclear Information System (INIS)

    Shi Zhengang; Shi Lei; Zha Meisheng; Yu Suyuan

    2005-01-01

    High Temperature Gas-cooled Reactor (HTR) is recognized as an advanced type of reactor incorporating many design enhancements such as inherent safety features, fuel cycle flexibility, highly fuel utilization, highly efficient electricity generation and process heat application. The research and development of HTR started at the middle of the 1970's, and came to be a part of the Chinese High Technology Program in 1986. A plan to build a 10 MW High Temperature Gas-cooled Reactor (HTR-10) was approved by the State Science and Technology Commission in 1990, and in 1995 the construction was initiated at the Institute of Nuclear Energy Technology (INET), Tsinghua University. The full power 10 MW operation for 72 hours have reached in 2003, and have been checked and accepted by the State Science and Technology Commission. In order to advance the HTR-10 performance, the project of the Helium Gas Turbine Generator for the HTR-10 was authorized by the State Science and Technology Commission, and stared in 2003. In this project, active magnetic bearings (AMBs) are chosen to support the generator rotor and the turbocompressor rotor in the power conversion unit because of their numerous advantages over the conventional bearings. In order to detect how the AMB system works in operation and make diagnosis whether the system behaves normally or not, the monitoring system based on the virtual instruments is designed to monitor the working conditions of the PCU, and to ensure its normal operation. This monitoring system consists of the industry personal computer (PC), the data acquisition system, the measurement transmitters and the LabVIEW system platform. It is located at the PCU control room, and communicates with the master control room by Controller Area Net (CAN). The development is divided into the following three steps: First, a data acquisition platform to collect and acquire all the necessary and useful data from the operation of the AMB system is developed. Second, the

  8. Design and fabrication of the MFTF-B magnet system

    International Nuclear Information System (INIS)

    Tatro, R.E.; Kozman, T.A.

    1985-09-01

    The MFTF-B superconducting magnet system consists of 40 NbTi magnets and two Nb 3 Sn magnets. General Dynamics (GD) designed all magnets except for the small trim coils. GD then fabricated 20 NbTi magnets, while LLNL fabricated 20 NbTi magnets and two Nb 3 Sn magnets. The design phase was completed in February 1984 and included the competitive procurement of magnet structural fabrication, superconductor, G-10CR insulation, support struts and bearings, vapor-cooled leads, and thermal shields for all magnets. Fabrication of all magnets was completed in March 1985. At GD, dual assembly lines were necessary during fabrication in order to meet the aggressive LLNL schedule. The entire magnet system has been installed and aligned at LLNL, and Tech Demo tests will be performed during September-November 1985

  9. Bearing restoration by grinding

    Science.gov (United States)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  10. Use of structured surfaces for friction and wear control on bearing surfaces

    International Nuclear Information System (INIS)

    Wang, Ling

    2014-01-01

    Surface texturing with purposely made regular micropatterns on flat or curved surfaces, as opposed to random roughness inherited from machining processes, has attracted significant attention in recent years. At the 2013 World Tribology Congress in Turin alone there were over 40 presentations related to surface texturing for tribological applications, from magnetic hard discs and hydrodynamic bearings to artificial joints. Although surface texturing has been reported being successfully applied in industrial applications such as seals, pistons, and thrust pad bearings, the demand for robust design is still high. Etsion has recently reviewed the modeling research mainly conducted by his group Etsion I (2013 Friction 1 195–209). This paper aims to review the state-of-the-art development of surface texturing made by a wider range of researchers. (topical review)

  11. Impact of Fixed-Bearing and Mobile-Bearing Tibial Insert in Unicondylar Knee Arthroplasty

    Directory of Open Access Journals (Sweden)

    Mehmet Faruk Çatma

    2016-06-01

    Full Text Available INTRODUCTION: The aim of the study is to investigate the impact of fixed or mobile-bearing tibial inserts on patellofemoral arthrosis and evaluate which one to be preferred for patients with patellofemoral arthrosis. METHODS: Operated in our clinic between January 2009 and February 2013, 33 with patellofemoral arthritis together with anteromedial compartment arthritis were included in the study. Patellofemoral joints of patients were evaluated according to the scoring system defined by Fulkerson-Shea. RESULTS: Unicondylar knee arthroplasty with fixed-bearing tibial insertsand 22 (66,6% (male: 3, female: 19 and unicondylar knee arthroplasty with mobile-bearing tibial inserts 11 (33,9 % (male: 2, female: 9 were implanted.Average knee flexion was found to be 116,5 (100-135 degrees in 22 patients with mobile-bearing tibial inserts, and 114,5 (95-135 in 11 patients with fixed-bearing tibial inserts. DISCUSSION AND CONCLUSION: Patellofemoral arthrosis is an important factor for unicondylar knee arthroplasty prognosis and one of the determinants of patient satisfaction. Significantly less patellofemoral complaints were seen with UKA with fixed-bearing tibial insert compared to mobile-bearing tibial insert.

  12. The first insertion devices at SSRL - some personal recollections

    Energy Technology Data Exchange (ETDEWEB)

    Winick, H. [Stanford Linear Accelerator Center, CA (United States)

    1995-02-01

    The author recounts his experiences with insertion devices at the Stanford Synchrotron Radiation Laboratory. His first experiences with wigglers occured at the Cambridge Electron Accelerator, and was carried over to SSRL with the proposal for a six pole electromagnetic wiggler. Most modern undulators, and many wigglers are now designed around permanent magnets, and the origin of this transition at SSRL was rather fortuitous and humorous. It reflects some of the personality characteristics of Klaus Halbach.

  13. Fast discharging homopolar drum-type generator with gas bearing and flexible copper-fiber brushes

    International Nuclear Information System (INIS)

    Kibardin, A.S.; Komin, A.V.; Sojkin, V.F.; Frolkin, V.I.

    1984-01-01

    The description and results of testing schock-excited homopolar generator (SEHG) with a drum-type rotor, a gas bearing and flexible copper-fiber brushes are presented. SEHG has a magnetic core with two excitation coils with the designed field of 1.8-2 T in the gap. The drum-type titanium rotor has 80 kg, is 0.5 m in diameter, 0.25 m length and 0.05 m thick. SEHG power is 3.6 MJ, overall dimensions are 0.8x1 m. Single- and double-row bearings, representing an aluminium shell of 15 mm thick, established inside an external backward current lead and isolated from it, are used to control serviceability of a radial gas-static bearing, which is a support for an SEHG rotor. The bearing surface was covered with the colloidal graphite and had one or two rows by 24 openings for swelling. Brush units represent a bronze brush ring, containing 44 copper-fiber brushes. Tests results confirm serviceability of copper-fiber brushes with quite large dimensions and permit to count on producing the 2.4 MA electric discharge and 12 ms pulse rise time

  14. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  15. Recent advances in magnetic liquid sealing

    International Nuclear Information System (INIS)

    Raj, K.; Stahl, P.; Bottenberg, W.; True, D.; Martis, G.; Zook, C.

    1979-01-01

    In this paper recent work in design and testing of two special magnetic liquid seals extending the state-of-the-art of ferrofluidic sealing is discussed. These custom seals are a moving belt edge seal and an exclusion seal. The first seal provides a hermetic barrier to solid particulates expected to be present in enclosed nuclear environments. The second seal is used on a magnetic disk drive spindle and reduces the particulate contaminants in the memory disk pack area by up to three orders of magnitude. In addition, bearing life in the spindle is found to be doubled due to reduction of operating temperature. The fundamentals of magnetic fluid sealing are presented in terms of magnetic circuit design and physical properties of ferrofluids

  16. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Directory of Open Access Journals (Sweden)

    Shigeki Nakagome

    Full Text Available Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA and matrilineal mitochondrial DNA (mtDNA. Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA or more than 14 times (mtDNA larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  17. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    Science.gov (United States)

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  18. Bearing for liquid metal pump

    International Nuclear Information System (INIS)

    Dickinson, R.J.; Pennell, W.E.; Wasko, J.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance

  19. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed

    Science.gov (United States)

    Renaudin, L.; Bonnardot, F.; Musy, O.; Doray, J. B.; Rémond, D.

    2010-10-01

    The challenge in many production activities involving large mechanical devices like power transmissions consists in reducing the machine downtime, in managing repairs and in improving operating time. Most online monitoring systems are based on conventional vibration measurement devices for gear transmissions or bearings in mechanical components. In this paper, we propose an alternative way of bearing condition monitoring based on the instantaneous angular speed measurement. By the help of a large experimental investigation on two different applications, we prove that localized faults like pitting in bearing generate small angular speed fluctuations which are measurable with optical or magnetic encoders. We also emphasize the benefits of measuring instantaneous angular speed with the pulse timing method through an implicit angular sampling which ensures insensitivity to speed fluctuation. A wide range of operating conditions have been tested for the two applications with varying speed, load, external excitations, gear ratio, etc. The tests performed on an automotive gearbox or on actual operating vehicle wheels also establish the robustness of the proposed methodology. By the means of a conventional Fourier transform, angular frequency channels kinematically related to the fault periodicity show significant magnitude differences related to the damage severity. Sideband effects are evidently seen when the fault is located on rotating parts of the bearing due to load modulation. Additionally, slip effects are also suspected to be at the origin of enlargement of spectrum peaks in the case of double row bearings loaded in a pure radial direction.

  20. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin