WorldWideScience

Sample records for habitat mitigation project

  1. Fish habitat mitigation measures for hydrotechnical projects

    International Nuclear Information System (INIS)

    McPhail, G.D.; MacMillan, D.B.; Katopodis, C.

    1992-01-01

    In recent years, the identification and mitigation of environmental impacts of hydrotechnical projects, particularly on fish and fish habitats, have become a major component of project planning and design. Potential impacts to fish and fish habitat may include increased fish mortality, decreased species diversity, and loss or decreases in fish production due to loss of habitat or alteration of its suitability. These impacts arise from flooding of riverine habitat, alteration of flow quantity and distribution, changes in morphology, and alteration of water quality, including suspended sediments, temperature, dissolved oxygen, and mercury. The results of a study for the Canadian Federal Department of Fisheries and Oceans Central and Arctic Region, examining fish habitat mitigation techniques for their applicability to hydrotechnical projects in Canada are summarized. The requirements for achievement and verification of the no net loss policy for a project are discussed. 10 refs., 2 tabs

  2. L-Reactor Habitat Mitigation Study

    International Nuclear Information System (INIS)

    1988-02-01

    The L-Reactor Fish and Wildlife Resource Mitigation Study was conducted to quantify the effects on habitat of the L-Reactor restart and to identify the appropriate mitigation for these impacts. The completed project evaluated in this study includes construction of a 1000 acre reactor cooling reservoir formed by damming Steel Creek. Habitat impacts identified include a loss of approximately 3,700 average annual habitat units. This report presents a mitigation plan, Plan A, to offset these habitat losses. Plan A will offset losses for all species studied, except whitetailed deer. The South Carolina Wildlife and Marine Resources Department strongly recommends creation of a game management area to provide realistic mitigation for loss of deer habitats. 10 refs., 5 figs., 3 tabs

  3. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  4. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1987.

    Energy Technology Data Exchange (ETDEWEB)

    Petrosky, Charles E.; Holubetz, Terry B. (Idaho Dept. of Fish and Game, Boise, ID (USA)

    1988-04-01

    The Idaho Department of Fish and Game has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) in the Clearwater and Salmon River drainages over the last four years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed to use increased smolt production at full seeding as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on presence of adequate numbers of fish to document actual increases in fish production. The depressed nature of upriver anadromous stocks have precluded attainment of full benefit of any habitat project in Idaho. Partial benefit will be credited to the mitigation record in the interim period of run restoration. According to the BPA Work Plan, project implementors have the primary responsibility for measuring physical habitat and estimating habitat change. To date, Idaho habitat projects have been implemented primarily by the US Forest Service (USFS). The Shoshone-Bannock Tribes (SBT) have sponsored three projects (Bear Valley Mine, Yankee Fork, and the proposed East Fork Salmon River projects). IDFG implemented two barrier-removal projects (Johnson Creek and Boulder Creek) that the USFS was unable to sponsor at that time. The role of IDFG in physical habitat monitoring is primarily to link habitat quality and habitat change to changes in actual, or potential, fish production. Individual papers were processed separately for the data base.

  5. Libby/Hungry Horse Dams Wildlife Mitigation Habitat Protection : Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn

    1991-04-01

    The Columbia River Basin Fish and Wildlife Program identified mitigation goals for Hungry Horse and Libby dams (1987). Specific programs goals included: (1) protect and/or enhance 4565 acres of wetland habitat in the Flathead Valley; (2) protect 2462 acres of prairie habitat within the vicinity of the Tobacco Plains Columbian sharp-tailed grouse; (3) protect 8590 acres riparian habitat in northwest Montana for grizzly and black bears; and (4) protect 11,500 acres of terrestrial furbearer habitat through cooperative agreements with state and federal agencies and private landowners. The purpose of this project is to continue to develop and obtain information necessary to evaluate and implement specific wildlife habitat protection actions in northwestern Montana. This report summarizes project work completed between May 1, 1990, and December 31, 1990. There were three primary project objectives during this time: obtain specific information necessary to develop the mitigation program for Columbian sharp-tailed grouse; continue efforts necessary to develop, refine, and coordinate the mitigation programs for waterfowl/wetlands and grizzly/black bears; determine the opportunity and appropriate strategies for protecting terrestrial furbearer habitat by lease or management agreements on state, federal and private lands. 19 refs., 1 tab.

  6. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Quaempts, Eric

    2003-01-01

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species

  7. Albeni Falls wildlife mitigation project: annual report of mitigation activities

    International Nuclear Information System (INIS)

    Terra-Burns, Mary

    2002-01-01

    The Albeni Falls Interagency Work Group was actively engaged in implementing wildlife mitigation activities in 2001. The Work Group met quarterly to discuss management and budget issues affecting the Albeni Falls Wildlife Mitigation Program. Work Group members protected 851 acres of wetland habitat in 2001. Wildlife habitat protected to date for the Albeni Falls project is approximately 5,248.31 acres (∼4,037.48 Habitat Units). Approximately 14% of the total wildlife habitat lost has been mitigated. Administrative activities increased as funding was more evenly distributed among Work Group members and protection opportunities became more time consuming. In 2001, Work Group members focused on development and implementation of the monitoring and evaluation program as well as completion of site-specific management plans. With the implementation of the monitoring and evaluation program, and as management plans are reviewed and executed, on the ground management activities are expected to increase in 2002

  8. Columbia River wildlife mitigation habitat evaluation procedures report: Scotch Creek Wildlife Area, Berg Brothers, and Douglas County pygmy rabbit projects

    International Nuclear Information System (INIS)

    Ashley, P.R.; Ratassepp, J.; Berger, M.; Judd, S.L.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites

  9. Columbia River Wildlife Mitigation Habitat Evaluation Procedures Report / Scotch Creek Wildlife Area, Berg Brothers, and Douglas County Pygmy Rabbit Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    1997-01-01

    This Habitat Evaluation Procedure study was conducted to determine baseline habitat units (HUs) on the Scotch Creek, Mineral Hill, Pogue Mountain, Chesaw and Tunk Valley Habitat Areas (collectively known as the Scotch Creek Wildlife Area) in Okanogan County, Sagebrush Flat and the Dormaler property in Douglas County, and the Berg Brothers ranch located in Okanogan County within the Colville Reservation. A HEP team comprised of individuals from the Washington Department of Fish and Wildlife, the Confederated Tribes of the Colville Reservation, and the Natural Resources Conservation Service (Appendix A) conducted baseline habitat surveys using the following HEP evaluation species: mule deer (Odocoileus hemionus), sharp-tailed grouse (Tympanuchus phasianellus), pygmy rabbit (Brachylagus idahoensis), white-tailed deer (Odocoileus virginiana), mink (Mustela vison), Canada goose (Branta canadensis), downy woodpecker (Picoides pubescens), Lewis woodpecker (Melanerpes lewis), and Yellow warbler (Dendroica petechia). Results of the HEP analysis are listed below. General ratings (poor, marginal, fair, etc.,) are described in Appendix B. Mule deer habitat was marginal lacking diversity and quantify of suitable browse species. Sharp-tailed grouse habitat was marginal lacking residual nesting cover and suitable winter habitat Pygmy rabbit habitat was in fair condition except for the Dormaier property which was rated marginal due to excessive shrub canopy closure at some sites. This report is an analysis of baseline habitat conditions on mitigation project lands and provides estimated habitat units for mitigation crediting purposes. In addition, information from this document could be used by wildlife habitat managers to develop management strategies for specific project sites.

  10. Hellsgate Winter Range Mitigation Project; Long-term Management Plan, Project Report 1993, Final Draft.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.

    1994-01-01

    A study was conducted on the Hellsgate Winter Range Mitigation Project area, a 4,943 acre ranch purchased for mitigating some habitat losses associated with the original construction of Grand Coulee Dam and innundation of habitat by Lake Roosevelt. A Habitat Evaluation Procedure (HEP) study was used to determine habitat quality and quantity baseline data and future projections. Target species used in the study were sharp-tailed grouse (Tympanuchus phasianellus), mule deer (Odocoileus hemoinus), mink (Mustela vison), spotted sandpiper (Actiius colchicus), bobcat (Felis reufs), blue grouse (Dendragapus obscurus), and mourning dove (Zenaida macroura). From field data collected, limiting life values or HSI's (Habitat Suitability Index's) for each indicator species was determined for existing habitats on project lands. From this data a long term management plan was developed. This report is designed to provide guidance for the management of project lands in relation to the habitat cover types discussed and the indicator species used to evaluate these cover types. In addition, the plan discusses management actions, habitat enhancements, and tools that will be used to enhance, protect and restore habitats to desired conditions. Through planned management actions biodiversity and vegetative structure can be optimized over time to reduce or eliminate, limiting HSI values for selected wildlife on project lands.

  11. Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-01-01

    The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  12. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  13. Hellsgate Winter Range : Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  14. Hellsgate Winter Range: Wildlife mitigation project. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs

  15. Blue Creek Winter Range: Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir

  16. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, Katherine [Idaho Department of Fsh and Game

    2009-04-03

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  17. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  18. Washington Wildlife Mitigation Projects : Final Programmatic Environmental Assessment and Finding of No Significant Impact.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Washington (State). Dept. of Fish and Wildlife.

    1996-08-01

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities.

  19. Washington wildlife mitigation projects. Final programmatic environmental assessment and finding of no significant impact

    International Nuclear Information System (INIS)

    1996-08-01

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities

  20. Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Soults, Scott [Kootenai Tribe of Idaho

    2009-08-05

    The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

  1. Oldman River Dam wildlife habitat mitigation program, Pincher Creek, Alberta: Final report. Summary of the implementation phase, 1987--1993

    International Nuclear Information System (INIS)

    1998-01-01

    This article summarizes the 1987--1993 implementation phase of the Oldman River Dam Wildlife Habitat Mitigation Program, intended to offset the negative impact of dam construction and operation on plant and animal species. Projects carried out during the program included creation of wetlands, tree and shrub planting, installation of snow and wildlife fences, and installation of replacement nesting sites for birds. Summaries are provided of the process that led to the final program design, the projects undertaken to complete the program, the design strategies, and the proposed habitat mitigation projects. Also included are an inventory of completed projects, an evaluation of the program's success in meeting its objectives and of the mitigation techniques used in the program, and a recommended strategy for future management of the program. Appendices include habitat suitability index models, summaries of related reports, vegetation maps, and a grazing management plan

  2. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  3. Libby/Hungry Horse Dams Wildlife Mitigation : Montana Wildlife Habitat Protection : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn

    1992-12-01

    The purpose of this project was to develop and obtain information necessary to evaluate and undertake specific wildlife habitat protection/enhancement actions in northwest Montana as outlined in the Columbia River Basin Fish and Wildlife Program. Three waterfowl projects were evaluated between September 1989 and June 1990. Weaver's Slough project involved the proposed acquisition of 200 acres of irrigated farmland and a donated conservation easement on an additional 213 acres. The proposal included enhancement of the agricultural lands by conversion to upland nesting cover. This project was rated the lowest priority based on limited potential for enhancement and no further action was pursued. The Crow Creek Ranch project involved the proposed acquisition of approximately 1830 acres of grazing and dryland farming lands. The intent would be to restore drained potholes and provide adjacent upland nesting cover to increase waterfowl production. This project received the highest rating based on the immediate threat of subdivision, the opportunity to restore degraded wetlands, and the overall benefits to numerous species besides waterfowl. Ducks Unlimited was not able to participate as a cooperator on this project due to the jurisdiction concerns between State and tribal ownership. The USFWS ultimately acquired 1,550 acres of this proposed project. No mitigation funds were used. The Ashley Creek project involved acquisition of 870 acres adjacent to the Smith Lake Waterfowl Production Area. The primary goal was to create approximately 470 acres of wetland habitat with dikes and subimpoundments. This project was rated second in priority due to the lesser threat of loss. A feasibility analysis was completed by Ducks Unlimited based on a concept design. Although adequate water was available for the project, soil testing indicated that the organic soils adjacent to the creek would not support the necessary dikes. The project was determined not feasible for mitigation

  4. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2001-09-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding the enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such

  5. Bats and bat habitats : guidelines for wind power projects

    International Nuclear Information System (INIS)

    2010-03-01

    Bat mortality has been documented at wind power projects in a number of habitats across North America. Wind power projects in Ontario have reported annual estimates ranging from 4 to 14 bat mortalities per turbine per year. This document presented guidance on identifying and addressing potential negative effects on bats and bat habitats during the planning, construction, and operation of wind power projects in Ontario. The guidelines supported the Ministry of Environment's renewable energy approval regulation and applied on both Crown and privately-owned land. The document presented the regulatory framework and discussed the assessment process for bats and bat habitats. This process included project site; records review; site investigation; and evaluation of significance. Other topics that were presented included an environmental impact study and an environmental effects monitoring plan such as post construction monitoring and post construction mitigation. Several appendices were also included regarding the potential effects of wind power project on bats; best management practices; methods for evaluating bat wildlife habitat; and post construction monitoring methods. 10 refs., 1 tab., 2 figs., 4 appendices.

  6. Bats and bat habitats : guidelines for wind power projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    Bat mortality has been documented at wind power projects in a number of habitats across North America. Wind power projects in Ontario have reported annual estimates ranging from 4 to 14 bat mortalities per turbine per year. This document presented guidance on identifying and addressing potential negative effects on bats and bat habitats during the planning, construction, and operation of wind power projects in Ontario. The guidelines supported the Ministry of Environment's renewable energy approval regulation and applied on both Crown and privately-owned land. The document presented the regulatory framework and discussed the assessment process for bats and bat habitats. This process included project site; records review; site investigation; and evaluation of significance. Other topics that were presented included an environmental impact study and an environmental effects monitoring plan such as post construction monitoring and post construction mitigation. Several appendices were also included regarding the potential effects of wind power project on bats; best management practices; methods for evaluating bat wildlife habitat; and post construction monitoring methods. 10 refs., 1 tab., 2 figs., 4 appendices.

  7. Hellsgate Winter Range: Wildlife Mitigation Project. Final Environmental Assessment

    International Nuclear Information System (INIS)

    1995-03-01

    BPA proposes to fund the Hellsgate Winter Range: Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The Project is intended to mitigate for wildlife and wildlife habitat adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs. The Project would allow the sponsors to secure land and conduct wildlife habitat improvement and long-term management activities within the boundaries of the Colville Indian Reservation. BPA has prepared an Environmental Assessment (EA) (DOE/EA-0940) evaluating the potential environmental effects of the proposed Project (Alternative B) and No Action (Alternative A). Protection and re-establishment of riparian and upland habitat on the Colville Indian Reservation, under Alternative B, would not have a significant adverse environmental impact because: (1) there would be only limited, mostly short-term adverse impacts on soils, water quality, air quality, vegetation, and wildlife (including no effect on endangered species); and (2) there would be no adverse effect on water quantity, cultural resources, or land use. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI

  8. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project

  9. IDF Sagebrush Habitat Mitigation Project: FY2008 Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2008-09-01

    This document provides a review and status of activities conducted in support of the CH2MHill Hanford Group (CHG) Compensatory Mitigation Implementation Plan (MIP) for the Integrated Disposal Facility (IDF). It includes time-zero monitoring results for planting activities conducted in December 2007, annual survival monitoring for all planting years, a summary of artificial burrow observations, and recommendations for the successful completion of DOE mitigation commitments for this project.

  10. Habitat Evaluation Procedures (HEP) Report : Hellsgate Project, 1999-2000 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew

    2000-05-01

    A Habitat Evaluation Procedure (HEP) study was conducted on lands acquired and/or managed (4,568 acres total) by the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate project) to mitigate some of the losses associated with the original construction and operation of Grand Coulee Dam and inundation of habitats behind the dams. Three separate properties, totaling 2,224 acres were purchased in 1998. One property composed of two separate parcels, mostly grassland lies southeast of the town of Nespelem in Okanogan County (770 acres) and was formerly called the Hinman property. The former Hinman property lies within an area the Tribes have set aside for the protection and preservation of the sharp-tailed grouse (Agency Butte unit). This special management area minus the Hinman acquisition contains 2,388 acres in a long-term lease with the Tribes. The second property lies just south of the Silver Creek turnoff (Ferry County) and is bisected by the Hellsgate Road (part of the Friedlander unit). This parcel contains 60 acres of riparian and conifer forest cover. The third property (now named the Sand Hills unit) acquired for mitigation (1,394 acres) lies within the Hellsgate Reserve in Ferry County. This new acquisition links two existing mitigation parcels (the old Sand Hills parcels and the Lundstrum Flat parcel, all former Kuehne purchases) together forming one large unit. HEP team members included individuals from the Colville Confederated Tribes Fish and Wildlife Department (CTCR), Washington Department of Fish and Wildlife (WDFW), and Bureau of Land Management (BLM). The HEP team conducted a baseline habitat survey using the following HEP species models: mule deer (Odocoileus hemionus), mink (Mustela vison), downy woodpecker (Picoides pubescens), bobcat (Lynx rufus), yellow warbler (Dendroica petechia), and sharp-tailed grouse (Tympanuchus phasianellus columbianus). HEP analysis and results are discussed within the body of the text. The cover types

  11. Wildlife Loss Estimates and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume Three, Hungry Horse Project.

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Daniel

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Hungry Horse Dam project on the South Fork of the Flathead River and previous mitigation of theses losses. In order to develop and focus mitigation efforts, it was first necessary to estimate wildlife and wildlife hatitat losses attributable to the construction and operation of the project. The purpose of this report was to document the best available information concerning the degree of impacts to target wildlife species. Indirect benefits to wildlife species not listed will be identified during the development of alternative mitigation measures. Wildlife species incurring positive impacts attributable to the project were identified.

  12. Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel; Peone, Cory

    2009-01-01

    The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.

  13. Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn A.

    1993-02-01

    This report summarizes the habitat protection process developed to mitigate for certain wildlife and wildlife habitat losses due to construction of Hungry Horse and Libby dams in northwestern Montana.

  14. The influence of mitigation on sage-grouse habitat selection within an energy development field.

    Directory of Open Access Journals (Sweden)

    Bradley C Fedy

    Full Text Available Growing global energy demands ensure the continued growth of energy development. Energy development in wildlife areas can significantly impact wildlife populations. Efforts to mitigate development impacts to wildlife are on-going, but the effectiveness of such efforts is seldom monitored or assessed. Greater sage-grouse (Centrocercus urophasianus are sensitive to energy development and likely serve as an effective umbrella species for other sagebrush-steppe obligate wildlife. We assessed the response of birds within an energy development area before and after the implementation of mitigation action. Additionally, we quantified changes in habitat distribution and abundance in pre- and post-mitigation landscapes. Sage-grouse avoidance of energy development at large spatial scales is well documented. We limited our research to directly within an energy development field in order to assess the influence of mitigation in close proximity to energy infrastructure. We used nest-location data (n = 488 within an energy development field to develop habitat selection models using logistic regression on data from 4 years of research prior to mitigation and for 4 years following the implementation of extensive mitigation efforts (e.g., decreased activity, buried powerlines. The post-mitigation habitat selection models indicated less avoidance of wells (well density β = 0.18 ± 0.08 than the pre-mitigation models (well density β = -0.09 ± 0.11. However, birds still avoided areas of high well density and nests were not found in areas with greater than 4 wells per km2 and the majority of nests (63% were located in areas with ≤ 1 well per km2. Several other model coefficients differed between the two time periods and indicated stronger selection for sagebrush (pre-mitigation β = 0.30 ± 0.09; post-mitigation β = 0.82 ± 0.08 and less avoidance of rugged terrain (pre-mitigation β = -0.35 ± 0.12; post-mitigation β = -0.05 ± 0.09. Mitigation efforts

  15. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is

  16. Willow Creek Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    Today's notice announces BPA's proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA's obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council's 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI

  17. 2001 annual report for the Pend Oreille wetlands wildlife mitigation projects; ANNUAL

    International Nuclear Information System (INIS)

    Entz, Ray D.

    2001-01-01

    The Pend Oreille Wetlands project consists of two adjacent parcels totaling about 600 acres. The parcels make up the northern boundary of the Kalispel Indian Reservation, and is also adjacent to the Pend Oreille River about 25 miles north of Newport and Albeni Falls Dam (Figure 1). Located in the Selkirk Mountains in Pend Oreille County Washington, the project is situated on an active floodplain, increasing its effectiveness as mitigation for Albeni Falls Dam. The combination of the River, wetlands and the north-south alignment of the valley have resulted in an important migratory waterfowl flyway. Washington Department of Fish and Wildlife and Kalispel Natural Resource Department have designated both project sites as priority habitats. Seven habitat types exist on the project properties and include four wetland habitats (open water, emergent, and scrub-shrub and forested), riparian deciduous forest, upland mixed coniferous forest and floodplain meadow. Importance of the project to wildlife is further documented by the occurrence of an active Bald Eagle nest aerie

  18. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  19. Northeast Oregon Wildlife Mitigation Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1996-08-01

    Development of the hydropower system in the Columbia River Basin has had far-reaching effects on many species of wildlife. The Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the Federal portion of this system, as allocated to the purpose of power production. BPA needs to mitigate for loss of wildlife habitat in the Snake River Subbasin

  20. Hungry Horse Dam fisheries mitigation program: Fish passage and habitat improvement in the Upper Flathead River basin

    International Nuclear Information System (INIS)

    Knotek, W.L.; Deleray, M.; Marotz, B.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects

  1. Integrated disposal Facility Sagebrush Habitat Mitigation Project: FY2007 Compensation Area Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2007-09-01

    This report summarizes the first year survival of sagebrush seedlings planted as compensatory mitigation for the Integrated Disposal Facility Project. Approximately 42,600 bare root seedlings and 26,000 pluglings were planted at a mitigation site along Army Loop Road in February 2007. Initial baseline monitoring occurred in March 2007, and first summer survival was assessed in September 2007. Overall survival was 19%, with bare root survival being marginally better than pluglings (21% versus 14%). Likely major factors contributing to low survival were late season planting and insufficient soil moisture during seedling establishment.

  2. Blue Creek Winter Range: Wildlife Mitigation Project

    International Nuclear Information System (INIS)

    1994-01-01

    This preliminary Environmental Assessment examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities are analyzed: Habitat protection; Habitat enhancement; Operation and maintenance; and Monitoring and evaluation. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir

  3. Determination of Section 404 Permit and Habitat Mitigation Requirements

    Science.gov (United States)

    2012-09-01

    The Arizona Department of Transportation (ADOT) is committed to developing habitat, mitigation, : monitoring, and maintenance plans that replace the loss of the functions and values of an area and : are self-sustaining, thereby providing long-term co...

  4. Conforth Ranch (Wanaket) Wildlife Mitigation Project. Draft Management Plan and Draft Environmental Assessment

    International Nuclear Information System (INIS)

    1995-03-01

    Bonneville Power Administration (BPA) proposes to mitigate for loss of wildlife habitat caused by the development of Columbia River Basin hydroelectric projects, including McNary dam. The proposed wildlife mitigation project involves wildlife conservation on 1140 hectares (ha)(2817 acres) of land (including water rights) in Umatilla County, Oregon. BPA has prepared an Environmental Assessment (EA)(DOE/EA- 1016) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI)

  5. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  6. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  7. Evaluating aggregate terrestrial impacts of road construction projects for advanced regional mitigation.

    Science.gov (United States)

    Thorne, James H; Girvetz, Evan H; McCoy, Michael C

    2009-05-01

    This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.

  8. Evaluating Aggregate Terrestrial Impacts of Road Construction Projects for Advanced Regional Mitigation

    Science.gov (United States)

    Thorne, James H.; Girvetz, Evan H.; McCoy, Michael C.

    2009-05-01

    This study presents a GIS-based database framework used to assess aggregate terrestrial habitat impacts from multiple highway construction projects in California, USA. Transportation planners need such impact assessment tools to effectively address additive biological mitigation obligations. Such assessments can reduce costly delays due to protracted environmental review. This project incorporated the best available statewide natural resource data into early project planning and preliminary environmental assessments for single and multiple highway construction projects, and provides an assessment of the 10-year state-wide mitigation obligations for the California Department of Transportation. Incorporation of these assessments will facilitate early and more strategic identification of mitigation opportunities, for single-project and regional mitigation efforts. The data architecture format uses eight spatial scales: six nested watersheds, counties, and transportation planning districts, which were intersected. This resulted in 8058 map planning units statewide, which were used to summarize all subsequent analyses. Range maps and georeferenced locations of federally and state-listed plants and animals and a 55-class landcover map were spatially intersected with the planning units and the buffered spatial footprint of 967 funded projects. Projected impacts were summarized and output to the database. Queries written in the database can sum expected impacts and provide summaries by individual construction project, or by watershed, county, transportation district or highway. The data architecture allows easy incorporation of new information and results in a tool usable without GIS by a wide variety of agency biologists and planners. The data architecture format would be useful for other types of regional planning.

  9. Albeni Falls Wildlife Mitigation : Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Terra-Berns, Mary

    2003-01-01

    The Albeni Falls Interagency Work Group continued to actively engage in implementing wildlife mitigation actions in 2002. Regular Work Group meetings were held to discuss budget concerns affecting the Albeni Falls Wildlife Mitigation Program, to present potential acquisition projects, and to discuss and evaluate other issues affecting the Work Group and Project. Work Group members protected 1,386.29 acres of wildlife habitat in 2002. To date, the Albeni Falls project has protected approximately 5,914.31 acres of wildlife habitat. About 21% of the total wildlife habitat lost has been mitigated. Administrative activities have increased as more properties are purchased and continue to center on restoration, operation and maintenance, and monitoring. In 2001, Work Group members focused on development of a monitoring and evaluation program as well as completion of site-specific management plans. This year the Work Group began implementation of the monitoring and evaluation program performing population and plant surveys, data evaluation and storage, and map development as well as developing management plans. Assuming that the current BPA budget restrictions will be lifted in the near future, the Work Group expects to increase mitigation properties this coming year with several potential projects.

  10. Birds and bird habitats: guidelines for wind power projects

    International Nuclear Information System (INIS)

    2010-10-01

    Established in 2009, the Green Energy Act aims to increase the use of renewable energy sources including wind, water, solar and bioenergy in Ontario. The development of these resources is a major component of the province's plan, which aims to mitigate the contribution to climate change and to involve the Ontario's economy in the improvement of the quality of the environment. The Green Energy Act also considers as important the implementation of a coordinated provincial approval process, suggesting the integration of all Ministry requirements into a unique process during the evaluation of newly proposed renewable energy projects. The Ministry of the Environment's Renewable Energy Approval Regulation details the requirements for wind power projects involving significant natural features. Birds are an important part of Ontario's biodiversity and, according to the Ministry of Natural Resources, their habitats are considered as significant wildlife habitat (SWH). The Renewable Energy Approval Regulation and this guideline are meant to provide elements and guidance in order to protect bird SWH during the selection of a location of wind power facilities. . 27 refs., 1 tab., 2 figs.

  11. Mitigation and Compensation under EU Nature Conservation Law in the Flemish Region: Beyond the Deadlock for Development Projects?

    Directory of Open Access Journals (Sweden)

    Hendrik Schoukens

    2014-05-01

    Full Text Available For years, the predicament of many of the European protected habitats and species in the Flemish Region, as in many other Member States, passed relatively unnoticed. The lack of proper rules and clear implementation rules fuelled the impression amongst project developers and planning authorities that the impacts of project developments on biodiversity did not really warrant closer assessment. However, in the past ten years, strict national case law has significantly altered this view. Faced with tighter judicial scrutiny, the Habitats and Birds Directives were seen as an important obstacle to project development. Hence mitigation and compensation have now come up as novel approaches to better align spatial aspirations with the conservation of nature. In reality, mitigation was often used as a cover-up for projects that would not fit the strict requirements enshrined in the derogatory clauses. Interestingly, the Belgian Council of State showed itself quite cautious in reasserting the lax view of some planning authorities on mitigation and compensation. In reviewing the legality of several new approaches to mitigation and compensation, the Belgian Council of State, which was initially very cautious in quashing decisions that would actually jeopardise major infrastructure developments, has rendered some compelling rulings on the specific application of mitigation and compensatory measures in a spatial planning context. By letting the objectives of EU nature conservation law prevail in the face of economic interests, the recent case law of the Belgian Council of State can be seen as a remarkable example of judicial environmental activism.

  12. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.

  13. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  14. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  15. Wildlife mitigation program. Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-08-01

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information

  16. Wildlife mitigation program final environmental impact statement

    International Nuclear Information System (INIS)

    1997-03-01

    BPA is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and improvement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative, i.e., not to establish program-wide standards. Five standardizing (action) alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information

  17. Status Review of Wildlife Mitigation at 14 of 27 Major Hydroelectric Projects in Idaho, 1983-1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Robert C.; Mehrhoff, L.A.

    1985-01-01

    The Pacific Northwest Electric Power Planning and Conservation Act and wildlife and their habitats in the Columbia River Basin and to compliance with the Program, the wildlife mitigation status reports coordination with resource agencies and Indian Tribes. developed the Columbia River Basin Fish and Wildlife Program development, operation, and maintenance of hydroelectric projects on existing agreements; and past, current, and proposed wildlife factual review and documentation of existing information on wildlife meet the requirements of Measure 1004(b)(l) of the Program. The mitigation, enhancement, and protection activities were considered. In mitigate for the losses to those resources resulting from the purpose of these wildlife mitigation status reports is to provide a resources at some of the Columbia River Basin hydroelectric projects the river and its tributaries. To accomplish this goal, the Council were written with the cooperation of project operators, and in within Idaho.

  18. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream

  19. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  20. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  1. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

    2009-08-06

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research

  2. Hungry Horse Mitigation : Flathead Lake : Annual Progress Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Barry; Evarts, Les [Confederated Salish and Kootenai Tribes

    2008-12-22

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research

  3. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-02-01

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public

  4. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey; K. A. Gano

    2008-09-30

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  5. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    K. A. Gano; C. T. Lindsey

    2007-09-27

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  6. W-519 Sagebrush Mitigation Project FY-2004 Final Review and Status

    Energy Technology Data Exchange (ETDEWEB)

    Durham, Robin E.; Sackschewsky, Michael R.

    2004-09-30

    This report summarizes activities conducted as mitigation for loss of sagebrush-steppe habitats due to Project W-519, the construction of the infrastructure for the Tank Waste Remediation System Vitrification Plant. The focus of this report is to provide a review and final status of mitigation actions performed through FY2004. Data collected since FY1999 have been included where appropriate. The Mitigation Action Plan (MAP) for Project W-519 prescribed three general actions to be performed as mitigation for the disturbance of approximately 40 ha (100 acres) of mature sagebrush-steppe habitat. These actions included: (1) transplanting approximately 130,000 sagebrush seedlings on the Fitzner-Eberhardt Arid Lands Ecology Reserve (ALE); (2) rectification of the new transmission line corridor via seeding with native grasses and sagebrush; and (3) research on native plant species with a goal of increasing species diversity in future mitigation or restoration actions. Nearly 130,000 Wyoming big sagebrush seedlings where planted on ALE during FY2000 and FY2001. About 39,000 of those seedlings were burned during the 24-Command Fire of June 2000. The surviving and subsequent replanting has resulted in about 91,000 seedlings that were planted across four general areas on ALE. A 50% survival rate at any monitoring period was defined as the performance standard in the MAP for this project. Data collected in 2004 indicate that of the over 5000 monitored plants, 51.1% are still alive, and of those the majority are thriving and blooming. These results support the potential for natural recruitment and the ultimate goal of wildlife habitat replacement. Thus, the basic performance standard for sagebrush survival within the habitat compensation planting has been met. Monitoring activities conducted in 2004 indicate considerable variation in seedling survival depending on the type of plant material, site conditions, and to a lesser extent, treatments performed at the time of planting

  7. W-519 Sagebrush Mitigation Project FY-2004 Final Review and Status

    International Nuclear Information System (INIS)

    Durham, Robin E.; Sackschewsky, Michael R.

    2004-01-01

    This report/SUMmarizes activities conducted as mitigation for loss of sagebrush-steppe habitats due to Project W-519, the construction of the infrastructure for the Tank Waste Remediation System Vitrification Plant. The focus of this report is to provide a review and final status of mitigation actions performed through FY2004. Data collected since FY1999 have been included where appropriate. The Mitigation Action Plan (MAP) for Project W-519 prescribed three general actions to be performed as mitigation for the disturbance of approximately 40 ha (100 acres) of mature sagebrush-steppe habitat. These actions included: (1) transplanting approximately 130,000 sagebrush seedlings on the Fitzner-Eberhardt Arid Lands Ecology Reserve (ALE); (2) rectification of the new transmission line corridor via seeding with native grasses and sagebrush; and (3) research on native plant species with a goal of increasing species diversity in future mitigation or restoration actions. Nearly 130,000 Wyoming big sagebrush seedlings where planted on ALE during FY2000 and FY2001. About 39,000 of those seedlings were burned during the 24-Command Fire of June 2000. The surviving and subsequent replanting has resulted in about 91,000 seedlings that were planted across four general areas on ALE. A 50% survival rate at any monitoring period was defined as the performance standard in the MAP for this project. Data collected in 2004 indicate that of the over 5000 monitored plants, 51.1% are still alive, and of those the majority are thriving and blooming. These results support the potential for natural recruitment and the ultimate goal of wildlife habitat replacement. Thus, the basic performance standard for sagebrush survival within the habitat compensation planting has been met. Monitoring activities conducted in 2004 indicate considerable variation in seedling survival depending on the type of plant material, site conditions, and to a lesser extent, treatments performed at the time of planting

  8. Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.

    Energy Technology Data Exchange (ETDEWEB)

    Merker, Christopher

    1993-04-01

    This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

  9. The effect of the 'no net loss' of habitat guiding principle on Manitoba Hydro's Conawapa project

    International Nuclear Information System (INIS)

    Dick, C.J.

    1992-04-01

    The potential effect of the 'no net loss' principle on Manitoba Hydro's Conawapa hydroelectric project is assessed, including an examination of the process by which the no net loss principle will likely be implemented at the site, based on a review of past applications of the policy. The no net loss principle was developed by the federal Department of Fisheries of Oceans (DFO) as part of their 1986 Policy for the Management of Fish Habitats. The overall objective of the policy is to achieve a net gain of the productive capacity of fish habitats in Canada. Application of the policy to specific developments is based upon maintaining the productive capacity of fish habitats as well as the needs of users groups. The policy has not yet been applied to an inland hydroelectric project. Achieving no net losses may be difficult in regard to large projects such as a hydro dam, however a review of past applications of the policy reveal a number of concepts that have been employed by the DFO when applying the no net loss principle. These concepts were applied to the Conawapa project to make recommendations to achieve no net loss if the project is developed. Mitigation and compensation measures must be developed for both brook trout and lake sturgeon habitat, and should include a combination of habitat enhancement and increased protection and compliance. Measures should also be developed for other species such as lake cisco and lake whitefish, both of which may be a food source for beluga whales. The Conawapa forebay may be given consideration as compensation for lost habitat. 81 refs., 11 figs., 2 tabs

  10. Bonneville Power Administration Wildlife Mitigation Program : Draft Environmental Impact Statement.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1996-08-01

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information.

  11. Restoration as mitigation: analysis of stream mitigation for coal mining impacts in southern Appalachia.

    Science.gov (United States)

    Palmer, Margaret A; Hondula, Kelly L

    2014-09-16

    Compensatory mitigation is commonly used to replace aquatic natural resources being lost or degraded but little is known about the success of stream mitigation. This article presents a synthesis of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from annual monitoring reports indicate that the ratio of lengths of stream impacted to lengths of stream mitigation projects were <1 for many projects, and most mitigation was implemented on perennial streams while most impacts were to ephemeral and intermittent streams. Regulatory requirements for assessing project outcome were minimal; visual assessments were the most common and 97% of the projects reported suboptimal or marginal habitat even after 5 years of monitoring. Less than a third of the projects provided biotic or chemical data; most of these were impaired with biotic indices below state standards and stream conductivity exceeding federal water quality criteria. Levels of selenium known to impair aquatic life were reported in 7 of the 11 projects that provided Se data. Overall, the data show that mitigation efforts being implemented in southern Appalachia for coal mining are not meeting the objectives of the Clean Water Act to replace lost or degraded streams ecosystems and their functions.

  12. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

    2012-06-01

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

  13. Concept of Operations Evaluation for Mitigating Space Flight-Relevant Medical Issues in a Planetary Habitat

    Science.gov (United States)

    Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy

    2010-01-01

    Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments

  14. 2006 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Johnson; K. A. Gano

    2006-10-03

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. One of the objectives of restoration is the revegetation of remediated waste sites to stabilize the soil and restore the land to native vegetation. The report documents the results of revegetation and mitigation monitoring conducted in 2006 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 2 bat habitat mitigation projects.

  15. Pacific Northwest Salmon Habitat Project Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the Pacific Northwest Salmon Habitat Project Database Across the Pacific Northwest, both public and private agents are working to improve riverine habitat for a...

  16. Integration of Regional Mitigation Assessment and Conservation Planning

    Directory of Open Access Journals (Sweden)

    James H. Thorne

    2009-06-01

    Full Text Available Government agencies that develop infrastructure such as roads, waterworks, and energy delivery often impact natural ecosystems, but they also have unique opportunities to contribute to the conservation of regional natural resources through compensatory mitigation. Infrastructure development requires a planning, funding, and implementation cycle that can frequently take a decade or longer, but biological mitigation is often planned and implemented late in this process, in a project-by-project piecemeal manner. By adopting early regional mitigation needs assessment and planning for habitat-level impacts from multiple infrastructure projects, agencies could secure time needed to proactively integrate these obligations into regional conservation objectives. Such practice can be financially and ecologically beneficial due to economies of scale, and because earlier mitigation implementation means potentially developable critical parcels may still be available for conservation. Here, we compare the integration of regional conservation designs, termed greenprints, with early multi-project mitigation assessment for two areas in California, USA. The expected spatial extent of habitat impacts and associated mitigation requirements from multiple projects were identified for each area. We used the reserve-selection algorithm MARXAN to identify a regional greenprint for each site and to seek mitigation solutions through parcel acquisition that would contribute to the greenprint, as well as meet agency obligations. The two areas differed in the amount of input data available, the types of conservation objectives identified, and local land-management capacity. They are representative of the range of conditions that conservation practitioners may encounter, so contrasting the two illustrates how regional advanced mitigation can be generalized for use in a wide variety of settings. Environmental organizations can benefit from this approach because it provides a

  17. 23 CFR 777.9 - Mitigation of impacts.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Mitigation of impacts. 777.9 Section 777.9 Highways... IMPACTS TO WETLANDS AND NATURAL HABITAT § 777.9 Mitigation of impacts. (a) Actions eligible for Federal funding. There are a number of actions that can be taken to minimize the impact of highway projects on...

  18. Lower Klickitat Riparian and In-channel Habitat Restoration Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Conley, Will

    2003-10-01

    This project focuses on the lower Klickitat River and its tributaries that provide or affect salmonid habitat. The overall goal is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of watersheds supporting anadromous fish production, particularly steelhead (Oncorhyncus mykiss) which are listed as 'Threatened' within the Mid-Columbia ESU. Restoration activities are aimed at restoring stream processes by removing or mitigating watershed perturbances and improving habitat conditions and water quality. In addition to steelhead, habitat improvements benefit Chinook (O. tshawytscha) and coho (O. kisutch) salmon, resident rainbow trout, and enhance habitat for many terrestrial and amphibian wildlife species. Protection activities compliment restoration efforts within the subbasin by securing refugia and preventing degradation. Since 90% of the project area is in private ownership, maximum effectiveness will be accomplished via cooperation with state, federal, tribal, and private entities. The project addresses goals and objectives presented in the Klickitat Subbasin Summary and the 1994 NWPPC Fish and Wildlife Program. Feedback from the 2000 Provincial Review process indicated a need for better information management to aid development of geographic priorities. Thus, an emphasis has been placed on database development and a review of existing information prior to pursuing more extensive implementation. Planning and design was initiated on several restoration projects. These priorities will be refined in future reports as the additional data is collected and analyzed. Tasks listed are for the April 1, 2001 to August 31, 2002 contract cycle, for which work was delayed during the summer of 2001 because the contract was not finalized until mid-August 2001. Accomplishments are provided for the September 1, 2001 to August 31, 2002 reporting period. During this reporting period

  19. Effectiveness of water release as mitigation for hydroelectric impacts to fish

    International Nuclear Information System (INIS)

    Lewis, A.F.; Mitchell, A.C.

    1995-01-01

    Utility companies release water to mitigate the effects of hydroelectric projects on fish habitats. Utility companies, government agencies, and research communities in Canada, the US, Europe, New Zealand, and Australia were surveyed as part of a Canadian Electrical Association study to evaluate the effectiveness of water release as a mitigation. Respondents identified only 28 projects in which water was released specifically to protect fish habitats. Fewer than half of these projects (12) were judged as being effective. Six case histories with preimpact assessment and postimpact monitoring were reviewed. In four cases fish habitat or fish populations or both were maintained; in two cases they were not. The effectiveness of water release differed among rivers and fish species, and was greatest when designed to meet the habitat requirements of each life-history stage. A review of the literature did not support the theory that a particular fraction of the mean annual flow provides the bet fish habitat. Although smaller changes in the flow regime had smaller effects, increasing minimum flows above those historically observed did not necessarily increase fish production

  20. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries

  1. Mitigating for nature in Danish infrastructure projects

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen; Kørnøv, Lone; Christensen, Per

    2015-01-01

    his paper presents results of a Danish study of mitigation efforts directed at nature protection in EIA of Danish infrastructure projects. The projects included in the study comprise road, rail, bridges, tunnels cables and oil- and gas-pipes. The study is based on a document analysis of EIA reports......, a workshop held with EIA professionals, a study of two cases and a survey among EIA professionals. The study reveals whether and how the mitigation hierarchy has been adhered to and what types of mitigation measures have been suggested. The study digs a bit deeper in discussing the dynamics in which...

  2. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  3. Idaho Habitat/Natural Production Monitoring, Pt. I: General Monitoring Subproject : Annual Progress Report 1990.

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bruce A.; Scully, Richard J.; Petrosky, Charles Edward

    1992-01-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss, hereafter called steelhead, and chinook salmon O. tshawytscha, hereafter called chinook, in the Clearwater and Salmon River drainages for the past seven years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. This evaluation project is also funded under the same authority (Fish and Wildlife Program, Northwest Power Planning Council). A mitigation record is being developed using increased carrying capacity and/or survival as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.

  4. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  5. Field review of fish habitat improvement projects in central Idaho

    International Nuclear Information System (INIS)

    Beschta, R.L.; Griffith, J.; Wesche, T.A.

    1993-05-01

    The goal of this field review was to provide information to the Bonneville Power Administration (BPA) regarding previous and ongoing fish habitat improvement projects in central Idaho. On July 14, 1992, the review team met at the Sawtooth National Recreation Area office near Ketchum, Idaho, for a slide presentation illustrating several habitat projects during their construction phases. Following the slide presentation, the review team inspected fish habitat projects that have been implemented in the last several years in the Stanley Basin and adjacent valleys. At each site the habitat project was described to the field team and a brief period for project inspection followed. The review team visited approximately a dozen sites on the Challis, Sawtooth, and Boise National Forests over a period of approximately two and a half days. There are two objectives of this review namely to summarize observations for specific field sites and to provide overview commentary regarding the BPA habitat improvement program in central Idaho

  6. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence

    Science.gov (United States)

    Amstrup, Steven C.; Deweaver, E.T.; Douglas, David C.; Marcot, B.G.; Durner, George M.; Bitz, C.M.; Bailey, D.A.

    2010-01-01

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the worlds polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  7. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence.

    Science.gov (United States)

    Amstrup, Steven C; Deweaver, Eric T; Douglas, David C; Marcot, Bruce G; Durner, George M; Bitz, Cecilia M; Bailey, David A

    2010-12-16

    On the basis of projected losses of their essential sea-ice habitats, a United States Geological Survey research team concluded in 2007 that two-thirds of the world's polar bears (Ursus maritimus) could disappear by mid-century if business-as-usual greenhouse gas emissions continue. That projection, however, did not consider the possible benefits of greenhouse gas mitigation. A key question is whether temperature increases lead to proportional losses of sea-ice habitat, or whether sea-ice cover crosses a tipping point and irreversibly collapses when temperature reaches a critical threshold. Such a tipping point would mean future greenhouse gas mitigation would confer no conservation benefits to polar bears. Here we show, using a general circulation model, that substantially more sea-ice habitat would be retained if greenhouse gas rise is mitigated. We also show, with Bayesian network model outcomes, that increased habitat retention under greenhouse gas mitigation means that polar bears could persist throughout the century in greater numbers and more areas than in the business-as-usual case. Our general circulation model outcomes did not reveal thresholds leading to irreversible loss of ice; instead, a linear relationship between global mean surface air temperature and sea-ice habitat substantiated the hypothesis that sea-ice thermodynamics can overcome albedo feedbacks proposed to cause sea-ice tipping points. Our outcomes indicate that rapid summer ice losses in models and observations represent increased volatility of a thinning sea-ice cover, rather than tipping-point behaviour. Mitigation-driven Bayesian network outcomes show that previously predicted declines in polar bear distribution and numbers are not unavoidable. Because polar bears are sentinels of the Arctic marine ecosystem and trends in their sea-ice habitats foreshadow future global changes, mitigating greenhouse gas emissions to improve polar bear status would have conservation benefits throughout

  8. Modeling the effectiveness of tree planting to mitigate habitat loss in blue oak woodlands

    Science.gov (United States)

    Richard B. Standiford; Douglas McCreary; William Frost

    2002-01-01

    Many local conservation policies have attempted to mitigate the loss of oak woodland habitat resulting from conversion to urban or intensive agricultural land uses through tree planting. This paper models the development of blue oak (Quercus douglasii) stand structure attributes over 50 years after planting. The model uses a single tree, distance...

  9. Dormaier and Chester Butte 2007 Follow-up Habitat Evaluation Procedures Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    2008-01-01

    Follow-up habitat evaluation procedures (HEP) analyses were conducted on the Dormaier and Chester Butte wildlife mitigation sites in April 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance, and maintain the project sites as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The Dormaier follow-up HEP survey generated 482.92 habitat units (HU) or 1.51 HUs per acre for an increase of 34.92 HUs over baseline credits. Likewise, 2,949.06 HUs (1.45 HUs/acre) were generated from the Chester Butte follow-up HEP analysis for an increase of 1,511.29 habitat units above baseline survey results. Combined, BPA will be credited with an additional 1,546.21 follow-up habitat units from the Dormaier and Chester Butte parcels.

  10. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    Science.gov (United States)

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  11. Habitat Evaluation Procedures (HEP) Report; Big Island - The McKenzie River, Technical Report 1998-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Sieglitz, Greg

    2001-03-01

    The Big Island site is located in the McKenzie River flood plain, containing remnant habitats of what was once more common in this area. A diverse array of flora and fauna, representing significant wildlife habitats, is present on the site. Stands of undisturbed forested wetlands, along with riparian shrub habitats and numerous streams and ponds, support a diversity of wildlife species, including neotropical migratory songbirds, raptors, mammals, reptiles, and amphibians (including two State-listed Sensitive Critical species). The project is located in eastern Springfield, Oregon (Figure 1). The project area encompasses 187 acres under several ownerships in Section 27 of Township 17S, Range 2W. Despite some invasion of non-native species, the site contains large areas of relatively undisturbed wildlife habitat. Over several site visits, a variety of wildlife and signs of wildlife were observed, including an active great blue heron rookery, red-Legged frog egg masses, signs of beaver, and a bald eagle, Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Bonneville Power Administration's (BPA) Mitigation and Enhancement Plan for the Willamette River Basin. Under this Plan, mitigation goals and objectives were developed as a result of the loss of wildlife habitat due to the construction of Federal hydroelectric facilities in the Willamette River Basin. Results of the Habitat Evaluation Procedures (HEP) will be used to: (1) determine the current habitat status of the study area and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area.

  12. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  13. Habitat Demonstration Unit Project Leadership and Management Strategies

    Science.gov (United States)

    Kennedy, Kriss J.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project management team that put in place the key multi-center leadership skills and

  14. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Golder Associates, Inc.

    2003-04-22

    The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a

  15. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    Science.gov (United States)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project

  16. Habitat Evaluation Procedures (HEP) Report; Tacoma/Trimble Area Management Plan, Technical Report 2001-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray; Lockwood, Jr., Neil; Holmes, Darren

    2003-10-01

    In 2000 and 2001, the Kalispel Natural Resource Department (KNRD) continued to mitigate the wildlife habitat losses as part of the Albeni Falls Wildlife Mitigation Project. Utilizing Bonneville Power Administration (BPA) funds, the Kalispel Tribe of Indians (Tribe) purchased three projects totaling nearly 1,200 acres. The Tacoma/Trimble Wildlife Management Area is a conglomeration of properties now estimated at 1,700 acres. It is the Tribe's intent to manage these properties in cooperation and collaboration with the Pend Oreille County Public Utility District (PUD) No. 1 and the U.S. Fish and Wildlife Service (USFWS) to benefit wildlife habitats and associated species, populations, and guilds.

  17. Umatilla River Basin Anadromus Fish Habitat Enhancement Project. 1994 Annual report

    International Nuclear Information System (INIS)

    Shaw, R.T.

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994--95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation

  18. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  19. Quantifying the evidence for co-benefits between species conservation and climate change mitigation in giant panda habitats.

    Science.gov (United States)

    Li, Renqiang; Xu, Ming; Powers, Ryan; Zhao, Fen; Jetz, Walter; Wen, Hui; Sheng, Qingkai

    2017-10-05

    Conservationists strive for practical, cost-effective management solutions to forest-based species conservation and climate change mitigation. However, this is compromised by insufficient information about the effectiveness of protected areas in increasing carbon storage, and the co-benefits of species and carbon conservation remain poorly understood. Here, we present the first rigorous quantitative assessment of the roles of giant panda nature reserves (NRs) in carbon sequestration, and explore the co-benefits of habitat conservation and climate change mitigation. Results show that more than 90% of the studied panda NRs are effective in increasing carbon storage, with the mean biomass carbon density of the whole NRs exhibiting a 4.2% higher growth rate compared with lands not declared as NRs over the period 1988-2012, while this effectiveness in carbon storage masks important patterns of spatial heterogeneity across the giant panda habitats. Moreover, the significant associations have been identified between biomass carbon density and panda's habitat suitability in ~85% NRs and at the NR level. These findings suggest that the planning for carbon and species conservation co-benefits would enhance the greatest return on limited conservation investments, which is a critical need for the giant panda after its conservation status has been downgraded from "endangered" to "vulnerable".

  20. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  1. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.

  2. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    Directory of Open Access Journals (Sweden)

    Erin Coulter Riordan

    Full Text Available Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st century land use and climate change on California sage scrub (CSS, a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century in two ecoregions in California (Central Coast and South Coast. Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change

  3. Project management best practices: forging win-win partnerships and mitigating power project risk

    International Nuclear Information System (INIS)

    Trowsdale, R.

    2006-01-01

    This paper discusses aspects of project management to mitigate power project risk. end-to-end project development involves development phase, permitting phase, implementation phase, and operational phase. Each phase involves a number of different elements. In renewable energy project good management requires maintaining project discipline and schedule throughout all phases. Project success requires commercial competitiveness, fuel availability, power sales contracts, stake holder support, permitting, effective execution, construction and good technical performance

  4. 1998 BPA habitat projects completed within the Asotin Creek Watershed, WA; Ridge-Top to Ridge-Top Habitat Projects; 1998 BPA Completion Report - November 1999

    International Nuclear Information System (INIS)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed

  5. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  6. 75 FR 5765 - NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding

    Science.gov (United States)

    2010-02-04

    ...-02] RIN 0648-ZC05 NOAA Coastal and Marine Habitat Restoration Project Supplemental Funding AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of supplemental funding for NOAA Coastal and Marine Habitat Restoration Projects. SUMMARY...

  7. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value

    International Nuclear Information System (INIS)

    Pellaud, M.

    2007-05-01

    SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km 2 , a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its applicability. Four

  8. Methodological Issues In Forestry Mitigation Projects: A CaseStudy Of Kolar District

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Murthy, I.K.; Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.; Sahana, C.A.; Srivathsa, K.G.; Khan, H.

    2007-06-01

    There is a need to assess climate change mitigationopportunities in forest sector in India in the context of methodologicalissues such as additionality, permanence, leakage, measurement andbaseline development in formulating forestry mitigation projects. A casestudy of forestry mitigation project in semi-arid community grazing landsand farmlands in Kolar district of Karnataka, was undertaken with regardto baseline and project scenariodevelopment, estimation of carbon stockchange in the project, leakage estimation and assessment ofcost-effectiveness of mitigation projects. Further, the transaction coststo develop project, and environmental and socio-economic impact ofmitigation project was assessed.The study shows the feasibility ofestablishing baselines and project C-stock changes. Since the area haslow or insignificant biomass, leakage is not an issue. The overallmitigation potential in Kolar for a total area of 14,000 ha under variousmitigation options is 278,380 tC at a rate of 20 tC/ha for the period2005-2035, which is approximately 0.67 tC/ha/yr inclusive of harvestregimes under short rotation and long rotation mitigation options. Thetransaction cost for baseline establishment is less than a rupee/tC andfor project scenario development is about Rs. 1.5-3.75/tC. The projectenhances biodiversity and the socio-economic impact is alsosignificant.

  9. West Foster Creek 2007 Follow-up Habitat Evaluation Procedures (HEP) Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    2008-02-01

    A follow-up habitat evaluation procedures (HEP) analysis was conducted on the West Foster Creek (Smith acquisition) wildlife mitigation site in May 2007 to determine the number of additional habitat units to credit Bonneville Power Administration (BPA) for providing funds to enhance and maintain the project site as partial mitigation for habitat losses associated with construction of Grand Coulee Dam. The West Foster Creek 2007 follow-up HEP survey generated 2,981.96 habitat units (HU) or 1.51 HUs per acre for a 34% increase (+751.34 HUs) above baseline HU credit (the 1999 baseline HEP survey generated 2,230.62 habitat units or 1.13 HUs per acre). The 2007 follow-up HEP analysis yielded 1,380.26 sharp-tailed grouse (Tympanuchus phasianellus) habitat units, 879.40 mule deer (Odocoileus hemionus) HUs, and 722.29 western meadowlark (Sturnella neglecta) habitat units. Mule deer and sharp-tailed grouse habitat units increased by 346.42 HUs and 470.62 HUs respectively over baseline (1999) survey results due largely to cessation of livestock grazing and subsequent passive restoration. In contrast, the western meadowlark generated slightly fewer habitat units in 2007 (-67.31) than in 1999, because of increased shrub cover, which lowers habitat suitability for that species.

  10. Mitigation for the Construction and Operation of Libby Dam, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Greg; Marotz, Brian L.; Dunnigan, James (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2002-09-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.

  11. Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    1992-06-01

    The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

  12. Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

  13. Burlington Bottoms Wildlife Mitigation Project. Final environmental assessment/management plan and finding of no significant impact

    International Nuclear Information System (INIS)

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property

  14. Grande Ronde Basin Fish Habitat Enhancement Project : 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.

    1999-05-01

    The primary goal of ''The Grande Ronde Basin Fish Habitat Improvement Project'' is to access, create, improve, protect, and restore reparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin.

  15. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  16. An Ecosystem-Based Approach to Habitat Restoration Projects with Emphasis on Salmonids in the Columbia River Estuary, 2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, G.; Thom, R.; Whiting, A. (Pacific Northwest National Laboratory)

    2003-11-01

    Habitat restoration in the Columbia River estuary (CRE) is an important off-site mitigation action in the 2000 Biological Opinion (BiOp), an operation of the Federal Columbia River Power System. The CRE, defined as the tidally influenced stretch of river from the mouth to Bonneville Dam 146 miles upstream, is part of the migration pathway for anadromous fish in the Columbia Basin, including salmon listed under the Endangered Species Act (ESA). Salmon in various stages of life, from fry to adults, use tidal channels and wetlands in the CRE to feed, find refuge from predators, and transition physiologically from freshwater to saltwater. Over the last 100 years, however, the area of some wetland habitats has decreased by as much as 70% because of dike and levee building, flow regulation, and other activities. In response to the decline in available habitat, the BiOp's Reasonable and Prudent Alternative (RPA) included mandates to 'develop a plan addressing the habitat needs of juvenile salmon and steelhead in the estuary' (RPA Action 159) and 'develop and implement an estuary restoration program with a goal of protecting and enhancing 10,000 acres of tidal wetlands and other key habitats' (RPA Action 160). To meet Action 159 and support Action 160, this document develops a science-based approach designed to improve ecosystem functions through habitat restoration activities in the CRE. The CRE habitat restoration program's goal and principles focus on habitat restoration projects in an ecosystem context. Since restoration of an entire ecosystem is not generally practical, individual habitat restoration projects have the greatest likelihood of success when they are implemented with an ecosystem perspective. The program's goal is: Implementation of well-coordinated, scientifically sound projects designed to enhance, protect, conserve, restore, and create 10,000 acres of tidal wetlands and other key habitats to aid rebuilding of ESA

  17. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-07-01

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  18. Sharp-tailed Grouse and Pygmy Rabbit Wildlife Mitigation Project

    International Nuclear Information System (INIS)

    1992-10-01

    The Proposed Action is needed to protect and enhance shrub-steppe and riparian habitat for sharp-tailed grouse (Tympanuchus phasianellus columbianus), Pygmy rabbits (Brachylagus idahoensis), and other indigenous wildlife species. The purpose of the Proposed Action is to compensate, in part, for wildlife habitat lost from the construction of Grand Coulee Dam and the inundation of Lake Roosevelt. Bonneville Power Administration proposes to fund management agreements, conservation easements, acquisition of fee title, or a combination of these on as many as 29,000 acres in Lincoln and Douglas Counties to improve shrub-steppe and riparian habitat for sharp-tailed grouse and pygmy rabbits. The BPA also proposes to fund habitat improvements (enhancements) on project lands including existing public lands. Proposed habitat treatments would include control of grazing; planting of native trees, shrubs, forbs and grasses; protection of wetlands and streambanks; herbicide use; fire prescriptions; and wildfire suppression. Proposed management activities may include predator control, population introductions, and control of crop depredation

  19. Habitat Evaluation Procedures (HEP) Report; Priest River Project, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Priest River property, an acquisition completed by the Kalispel Tribe of Indians in 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Priest River Project provides a total of 140.73 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 60.05 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Grassland meadow habitat provides 7.39 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 71.13 HUs for mallard, yellow warbler, and white-tailed deer. Open water habitat provides 2.16 HUs for Canada goose and mallard. The objective of using HEP at the Priest River Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  20. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Dawley, Earl M.; Coleman, Andre M.

    2010-08-01

    This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary.

  1. Riparian Habitat Management for Reptiles and Amphibians on Corps of Engineers Projects

    National Research Council Canada - National Science Library

    Dickerson, Dena

    2001-01-01

    ... important taxonomic groups such as reptiles and amphibians. This note provides an overview of the importance of riparian habitat at Corps projects for reptiles and amphibians, identifies riparian zone functions and habitat characteristics, provides examples of representative taxa and regional comparisons, and describes impacts of riparian habitat modification.

  2. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  3. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  4. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  5. Ecological response of a multi-purpose river development project using macro-invertebrates richness and fish habitat value[Dissertation 3807

    Energy Technology Data Exchange (ETDEWEB)

    Pellaud, M.

    2007-05-15

    ) general SYNERGIE project optimizer taking into account all the project poles. The system of interest is composed of a buffering reservoir of ca. 1 km{sup 2}, a run-off-the- river dam, a hydro power-plant, and an artificial river ensuring longitudinal continuum. The primary part of the work consisted in an extensive literature review on system understanding, anthropic alterations and quality assessment / prediction tool available. The approach consisted of two levels (1) the general ecological considerations to be followed at the project reservoir scale and (2) the measure of the downstream ecological response through modeling. General ecological considerations at the reservoir scale were the implementation of an artificial river ensuring longitudinal connectivity, implementation of artificial ecotonal boosters and the allocation of a sanctuary zone with limited public access. The downstream measure of ecological integrity was based on the choice of three taxonomic groups of macroinvertebrates and four ecological guilds (groups) of fish. Mayflies (Ephemeroptera), stoneflies (Plecoptera) and caddisflies (Trichoptera) richness were predicted using simple hydrological and morphological covariates (i.e. substrate, current speed,...) coupled to system specific faunistic surveys. Bank, riffle, pool and midstream fish guilds habitat values were determined using existing methods. By using the simulation results of river development project scenarios as inputs, the ecological response (i.e. the measure of ecological integrity) was computed following the assumptions that high predicted macro-invertebrate richness and high guilds habitat values were linked to a high ecological integrity. An emphasis on the hydro peaking effect in relation with river morphology was performed on macroinvertebrates. They were found to respond well to hydrological and morphological changes induced by river development projects while the approach by fish habitat value encountered limitations in its

  6. Wildlife Protection, Mitigation and Enhancement Planning for Grand Coulee Dam, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Creveling, Jennifer

    1986-08-01

    The development and operation of Grand Coulee Dam inundated approximately 70,000 acres of wildlife habitat under the jurisdictions of the Colville Confederated Tribes, the Spokane Tribe, and the State of Washington. Under the provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, this study reviews losses to wildlife and habitat, and proposes mitigation for those losses. Wildlife loss estimates were developed from information available in the literature. Habitat losses and potential habitat gains through mitigation were estimated by a modified Habitat Evaluation Procedure. The mitigation plan proposes (1) acquisition of sufficient land or management rights to land to protect Habitat Units equivalent to those lost (approximately 73,000 acres of land would be required), (2) improvement and management of those lands to obtain and perpetuate target Habitat Units, and (3) protection and enhancement of suitable habitat for bald eagles. Mitigation is presented as four actions to be implemented over a 10-year period. A monitoring program is proposed to monitor mitigation success in terms of Habitat Units and wildlife population trends.

  7. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  8. Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  9. Habitat Evaluation Procedures (HEP) Report; West Beaver Lake Project, Technical Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 82.69 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 8.80 HUs for mallard, muskrat, and Canada goose. Conifer forest habitat provides 70.33 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Open water provides 3.30 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  10. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  11. Mitigative measures for the Laforge-2 hydroelectric development

    International Nuclear Information System (INIS)

    Faucher, O.; Gagnon, R.

    1995-01-01

    Corrective, preventive and enhancement measures undertaken as part of the development of the Laforge-2 Hydroelectric Power Plant, were described. The environment into which the project has been integrated was also described. General background information and technical characteristics of the Laforge-2 and Caniapiscau-Laforge diversion were provided. The Laforge-2 Mitigative Master Plan's measures for improving wildlife potential, cleaning-up of tributaries, protecting wildlife habitats, seeding around ponds and humid zones, installing platforms to encourage and facilitate the nesting of ospreys, and promoting proper harvesting of the territory, were described as corrective measures that will promote sustainable development. Contractual obligations to protect the environment were outlined. Enhancement measures described included reclamation of areas disturbed during construction, landscaping around main structures and construction of scenic lookouts. It was fully expected that the mitigative measures described for the Laforge-2 project will minimize negative impacts of the project and will maximize positive ones by improving wildlife potential in areas near the reservoir. 5 figs

  12. Habitat Evaluation Procedures (HEP) Report; Upper Trimble Project, Technical Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Upper Trimble property, an acquisition completed by the Kalispel Tribe of Indians in March 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Upper Trimble Project provides a total of 250.67 Habitat Units (HUs) for the species evaluated. Wet meadow provides 136.92 HUs for mallard, muskrat, and Canada goose. Mixed forest habitat provides 111.88 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub vegetation provides 1.87 HUs for yellow warbler, and white-tailed deer. The objective of using HEP at the Upper Trimble Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  13. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Sear, Sheri

    2001-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI

  14. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Charles D.

    2000-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI

  15. Napa River Sediment TMDL Implementation and Habitat Enhancement Project

    Science.gov (United States)

    Information about the SFBWQP Napa River Sediment TMDL Implementation and Habitat Enhancement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  16. Environmental mitigation at hydroelectric projects. Volume 2, Benefits and costs of fish passage and protection

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.; Rinehart, B.N.; Sommers, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Cada, G.F.; Jones, D.W. [Oak Ridge National Lab., TN (United States); Dauble, D.D. [Pacific Northwest Lab., Richland, WA (United States); Hunt, R.T. [Hunt (Richard) Associates, Inc., Concord, NH (United States); Costello, R.J. [Northwest Water Resources Advisory Services (United States)

    1994-01-01

    This study examines envirorunental mitigation practices that provide upstream and downstream fish passage and protection at hydroelectric projects. The study includes a survey of fish passage and protection mitigation practices at 1,825 hydroelectric plants regulated by the Federal Energy Regulatory Commission (FERC) to determine frequencies of occurrence, temporal trends, and regional practices based on FERC regions. The study also describes, in general terms, the fish passage/protection mitigation costs at 50 non-Federal hydroelectric projects. Sixteen case studies are used to examine in detail the benefits and costs of fish passage and protection. The 16 case studies include 15 FERC licensed or exempted hydroelectric projects and one Federally-owned and-operated hydroelectric project. The 16 hydroelectric projects are located in 12 states and range in capacity from 400 kilowatts to 840 megawatts. The fish passage and protection mitigation methods at the case studies include fish ladders and lifts, an Eicher screen, spill flows, airburst-cleaned inclined and cylindrical wedgewire screens, vertical barrier screens, and submerged traveling screens. The costs, benefits, monitoring methods, and operating characteristics of these and other mitigation methods used at the 16 case studies are examined.

  17. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    Science.gov (United States)

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  18. A concept for extraction of habitat features from laser scanning and hypersprectral imaging for evaluation of Natura 2000 sites - the ChangeHabitats2 project approach

    Science.gov (United States)

    Székely, B.; Kania, A.; Pfeifer, N.; Heilmeier, H.; Tamás, J.; Szöllősi, N.; Mücke, W.

    2012-04-01

    The goal of the ChangeHabitats2 project is the development of cost- and time-efficient habitat assessment strategies by employing effective field work techniques supported by modern airborne remote sensing methods, i.e. hyperspectral imagery and laser scanning (LiDAR). An essential task of the project is the design of a novel field work technique that on the one hand fulfills the reporting requirements of the Flora-Fauna-Habitat (FFH-) directive and on the other hand serves as a reference for the aerial data analysis. Correlations between parameters derived from remotely sensed data and terrestrial field measurements shall be exploited in order to create half- or fully-automated methods for the extraction of relevant Natura2000 habitat parameters. As a result of these efforts a comprehensive conceptual model has been developed for extraction and integration of Natura 2000 relevant geospatial data. This scheme is an attempt to integrate various activities within ChangeHabitats2 project defining pathways of development, as well as encompassing existing data processing chains, theoretical approaches and field work. The conceptual model includes definition of processing levels (similar to those existing in remote sensing), whereas these levels cover the range from the raw data to the extracted habitat feature. For instance, the amount of dead wood (standing or lying on the surface) is an important evaluation criterion for the habitat. The tree trunks lying on the ground surface typically can be extracted from the LiDAR point cloud, and the amount of wood can be estimated accordingly. The final result will be considered as a habitat feature derived from laser scanning data. Furthermore, we are also interested not only in the determination of the specific habitat feature, but also in the detection of its variations (especially in deterioration). In this approach the variation of this important habitat feature is considered to be a differential habitat feature, that can

  19. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  20. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chris A. (Montana Department of Fish, Wildlife and Parks, Helena, MT); Summerfield, Bob; Young, Lewis (Kootenai National Forest, Libby, MT)

    1987-02-01

    This report summarizes the results of the project activities from September 1, 1984 to December 31, 1986. To date, habitat treatments have been initiated on eight areas. The treatments include selective slash and burn, prescribed fire and fertilization. Inclement weather precluded the completion of the prescribed burns scheduled during fall 1985 and fall 1986. The lower Stonehill prescribed fire was rescheduled from fall 1985 to spring 1986 with the burn accomplished, producing varied results. Extensive pretreatment vegetative information has been collected from all units scheduled for habitat manipulations. Additionally, future projects have been delineated for other areas frequented by bighorn sheep. Ten adult bighorn sheep (5 ewes and 5 rams) have been fitted with radio transmitters. Systematic aerial and ground surveys were utilized to monitor the movements and seasonal habitat preferences of the instrumented sheep. Age and sex information was gathered whenever possible to aid in the development of a population model, Monthly pallet group collections were initiated in May 1985 to provide samples for 2.6 diaminopimetic acid (DAPA), food habits and lungworm larvae analysis. The majority of the data analysis is ongoing and will be presented in later reports.

  1. Evaluating experience with electricity generating GHG mitigation projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    2003-07-01

    Several programmes have been initiated to encourage the development of projects that mitigate emissions of greenhouse gases. Recent programmes have been undertaken at the national level, such as the Dutch five-track approach, including contracts with multilateral institutions, regional development banks, private banks, bilateral contracts with countries, participation in carbon funds and the ERUPT and CERUPT tenders, Japanese Clean Development Mechanism (CDM) feasibility studies, and the more recent Finnish, Austrian and Italian JI/CDM programmes. International programmes, such as the World Bank's Prototype Carbon Fund (and other WB carbon funds), have also been initiated. Individual projects not belonging to particular programmes have also been initiated under the pilot phase of 'activities implemented jointly' (AIJ) under the United Nations Framework Convention on Climate Change (UNFCCC), or developed as CDM or Joint Implementation (JI) projects. Some CDM project activities have been formally submitted to the CDM's Executive Board (EB), who approved the first set of baseline and monitoring methodologies for CDM project activities in July 2003. There is a large variety in the type of projects that have been put forward. These include energy, industry, forestry and waste projects. This paper will focus on CDM-type projects that generate grid-connected electricity for several reasons: demand for electricity is growing rapidly in many potential host countries; many projects in the electricity sector have been developed as potential CDM and JI projects; assessing additionality and baselines is arguably more difficult for projects in the electricity sector (where a range of project types may occur as part of business-as-usual activities) than for end-of-pipe projects such as landfill gas capture and flaring or decomposition of F-gases; much work has been done on assessing appropriate methods to determine baselines in the electricity sector, at the

  2. Wildlife mitigation and monitoring report Gunnison, Colorado, site

    International Nuclear Information System (INIS)

    1997-04-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures

  3. Mitigation of socio-economic impacts due to the construction of energy projects in rural communities: an evaluation of the Hartsville nuclear power plant transportation-mitigation program

    International Nuclear Information System (INIS)

    Whitney, T.C.

    1982-01-01

    This study analyzes the effects of a commuter ride-sharing program in mitigating the harmful socio-economic impacts of a short-term, labor-intensive nuclear-power-plant construction project. The major hypothesis is that transportation-mitigation programs are more cost-effective in reducing the undesirable socio-economic impacts of large-scale construction projects than programs designed to mitigate impacts through the provision of public services for migrating workers. The dissertation begins by delineating the socio-economic effects of large-scale construction projects in rural areas. It proceeds to show how some of the deleterious impacts were mitigated using a commuter ride-sharing program. After the range of potential socio-economic impacts was established, a framework was developed to evaluate the effects of the transportation-mitigation program in mediating the harmful impacts. The framework involved the integration of the cost-benefit technique with social-impact assessment. The evaluation was grounded in a comparative framework whereby the Hartsville project community was compared with a similar community undergoing the construction of a nuclear power plant but without a commuter ride-sharing program, and a community not experiencing a major construction project. The research findings indicated that the transportation-mitigation program substantially reduced the in-migration of construction workers into the Hartsville-Trousdale County area. Further, the program was cost effective, with a benefit-cost ratio of 2.5 and net benefits totalling 28 million dollars

  4. The Effects of Saltwater Intrusion to Flood Mitigation Project

    Science.gov (United States)

    Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad

    2018-03-01

    The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.

  5. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  6. 75 FR 6354 - NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes Restoration...

    Science.gov (United States)

    2010-02-09

    ...-04] RIN 0648-ZC10 NOAA Great Lakes Habitat Restoration Program Project Grants under the Great Lakes... Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of funding availability; Date... on January 19, 2010. That notice announced the NOAA Great Lakes Habitat Restoration Program Project...

  7. Oil patch fitting in with wildlife habitat

    Energy Technology Data Exchange (ETDEWEB)

    Lea, N.

    2003-06-01

    Changes in grizzly bear and caribou populations associated with roads, seismic lines, and pipelines are of great concern to the oil, gas and forestry industries since the presence of structures are providing easier access to wildlife habitats for predatory wolves and humans. This article provides details of this concern and describes efforts, such as the Caribou Range Recovery Project, towards mitigating the impact of the industry and hastening the reclamation of the woodland caribou habitat disturbed by humans. This project, funded by a consortium of government, industry and the University of Alberta, is a three-year project which focuses on the revegetation of disturbed areas in the highly-impacted caribou ranges of northern and west-central Alberta, the development of a preliminary set of guidelines for reclamation of industrial developments in caribou ranges, development of a long-term monitoring strategy for assessing the success of these reclamation efforts, and on promoting First Nations involvement through consultation and participation. Previous projects focused on Little Smoky, Redrock, Red Earth, and Stony Mountain areas. Details are also provided of the Foot Hills Model Forest Grizzly Bear Research project, a five-year, $3 million study deigned to ensure healthy grizzly bear populations in west-central Alberta by better integrating their needs into land management decisions.

  8. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1992-06-01

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained

  9. Landscaping Habitat for Humanity Homes: A Community Outreach Project

    Science.gov (United States)

    Ramsay, Jodie L.

    2008-01-01

    The purpose of this project is to incorporate a community service component into a Biology course at Northern State University (NSU) in Aberdeen, SD. Students in an upper-level botany course (Plant Structure and Function) provide landscaping services to homeowners who have purchased homes through Habitat for Humanity. Homeowner satisfaction with…

  10. Habitat Evaluation Procedures (HEP) Report; Tacoma Creek South Project, Technical Report 2003-2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Tacoma Creek South property, an acquisition completed by the Kalispel Tribe of Indians in June 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Tacoma Creek South Project provides a total of 190.79 Habitat Units (HUs) for the species evaluated. Emergent wetlands provide 20.51 HUs for Canada goose, mallard, and muskrat. Grassland provides 1.65 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 11.76 HUs for mallard, yellow warbler, and white-tailed deer. Conifer forest habitat provides 139.92 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Deciduous forest also provides 19.15 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the Tacoma Creek South Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  11. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  12. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    projects to improve fish habitat. In 1998, the ACCD identified the need for a more detailed analysis of these instream projects to fully evaluate their effectiveness at improving fish habitat. Therefore, ACCD contracted with WDFW's Snake River Lab (SRL) to take pre- and post-construction measurements of the habitat (i.e., pools, LOD, width, depth) at each site, and to evaluate fish use within some of the altered sites. These results have been published annually as progress reports to the ACCD (Bumgarner et al. 1999, Wargo et al. 2000, and Bumgarner and Schuck 2001). The ACCD also contracted with the WDFW SRL to conduct other evaluation and monitoring in the stream such as: (1) conduct snorkel surveys at habitat alteration sites to document fish usage following construction, (2) deploy temperature monitors throughout the basin to document summer water temperatures, and (3) attempt to document adult fish utilization by documenting the number of steelhead redds associated with habitat altered areas. This report provides a summary of pre-construction measurements taken on three proposed Charley Creek habitat sites during 2001, two sites in main Asotin Creek, and one site in George Creek, a tributary that enters in the lower Asotin Creek basin. Further, it provides a comparison of measurements taken pre- and post-construction on three 1999 habitat sites taken two years later, but at similar river flows. It also presents data collected from snorkel surveys, redd counts, and temperature monitoring

  13. RFI Mitigation and Testing Employed at GGAO for NASA's Space Geodesy Project (SGP)

    Science.gov (United States)

    Hilliard, L. M.; Rajagopalan, Ganesh; Turner, Charles; Stevenson, Thomas; Bulcha, Berhanu

    2017-01-01

    Radio Frequency Interference (RFI) Mitigation at Goddard Geophysical and Astronomical Observatory (GGAO) has been addressed in three different ways by NASA's Space Geodesy Project (SGP); masks, blockers, and filters. All of these techniques will be employed at the GGAO, to mitigate the RFI consequences to the Very Long Baseline Interferometer.

  14. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.

    Science.gov (United States)

    Calil, Juliano; Beck, Michael W; Gleason, Mary; Merrifield, Matthew; Klausmeyer, Kirk; Newkirk, Sarah

    2015-01-01

    Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S. Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  15. Aligning Natural Resource Conservation and Flood Hazard Mitigation in California.

    Directory of Open Access Journals (Sweden)

    Juliano Calil

    Full Text Available Flooding is the most common and damaging of all natural disasters in the United States, and was a factor in almost all declared disasters in U.S.Direct flood losses in the U.S. in 2011 totaled $8.41 billion and flood damage has also been on the rise globally over the past century. The National Flood Insurance Program paid out more than $38 billion in claims since its inception in 1968, more than a third of which has gone to the one percent of policies that experienced multiple losses and are classified as "repetitive loss." During the same period, the loss of coastal wetlands and other natural habitat has continued, and funds for conservation and restoration of these habitats are very limited. This study demonstrates that flood losses could be mitigated through action that meets both flood risk reduction and conservation objectives. We found that there are at least 11,243km2 of land in coastal California, which is both flood-prone and has natural resource conservation value, and where a property/structure buyout and habitat restoration project could meet multiple objectives. For example, our results show that in Sonoma County, the extent of land that meets these criteria is 564km2. Further, we explore flood mitigation grant programs that can be a significant source of funds to such projects. We demonstrate that government funded buyouts followed by restoration of targeted lands can support social, environmental, and economic objectives: reduction of flood exposure, restoration of natural resources, and efficient use of limited governmental funds.

  16. A review on disaster risk mitigation in the oil and gas project

    Science.gov (United States)

    Rodhi, N. N.; Anwar, N.; Wiguna, I. P. A.

    2018-01-01

    In addition to the very complex risks, hazards potentially lead to disasters in the oil and gas projects. These risks can certainly be anticipated with the application of risk management, but an unsystematic and ineffective implementation of risk management will still bring adverse impacts. According to the eleven risk management principles in ISO 31000:2009, the application of risk management must pay attention to all aspects, both internal and external factors. Thus, this paper aims to identify variables that could affect the disaster mitigation efforts of oil and gas projects. This research began with literature study to determine the problems of risk management in oil and gas projects, so the affecting variables as the study objectives can be specified subsequently based on the literature review as well. The variables that must be considered in the efforts of disaster risk mitigation of oil and gas project are the risk factors and sustainability aspect.

  17. Tropical coral reef habitat in a geoengineered, high-CO2 world

    Science.gov (United States)

    Couce, E.; Irvine, P. J.; Gregorie, L. J.; Ridgwell, A.; Hendy, E. J.

    2013-05-01

    Continued anthropogenic CO2 emissions are expected to impact tropical coral reefs by further raising sea surface temperatures (SST) and intensifying ocean acidification (OA). Although geoengineering by means of solar radiation management (SRM) may mitigate temperature increases, OA will persist, raising important questions regarding the impact of different stressor combinations. We apply statistical Bioclimatic Envelope Models to project changes in shallow water tropical coral reef habitat as a single niche (without resolving biodiversity or community composition) under various representative concentration pathway and SRM scenarios, until 2070. We predict substantial reductions in habitat suitability centered on the Indo-Pacific Warm Pool under net anthropogenic radiative forcing of ≥3.0 W/m2. The near-term dominant risk to coral reefs is increasing SSTs; below 3 W/m2 reasonably favorable conditions are maintained, even when achieved by SRM with persisting OA. "Optimal" mitigation occurs at 1.5 W/m2 because tropical SSTs overcool in a fully geoengineered (i.e., preindustrial global mean temperature) world.

  18. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  19. Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects Using LCA: Ethanol Biofuel as a Case Study

    DEFF Research Database (Denmark)

    Courchesne, Alexandre; Becaert, Valerie; Rosenbaum, Ralph K.

    2010-01-01

    and comparison of different carbon mitigation projects (e.g. biofuel use, sequestering plant, afforestation project, etc.). The Lashof accounting methodology is chosen amid other methods of greenhouse gas (GHG) emission characterization for its relative simplicity and capability of characterizing all types...... of carbon mitigation projects. It calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg-year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed...... framework is demonstrated with a case study of tree ethanol pathways (maize, sugarcane and willow). Study shows that carbon mitigation assessment through LCA is possible and that it could be a useful tool for decision makers as it can compare different projects regardless of their original context. Case...

  20. Managing habitat for prey recovery - an off-site mitigation tool for wind farms' impacts on top avian predators

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Anabela; Santos, Joana; Cordeiro, Ana; Costa, Hugo M.; Mascarenhas, Miguel; Reis, Christina

    2011-07-01

    Full text: Several studies reveal that wind farms (WF) have a negative impact on avian communities, pointing raptors as one of the vertebrate groups most affected. It has also been verified that top avian predators are attracted to areas of high prey densities and that risk increases when high number of preys occur in the vicinities of WF. In some studies, the reduction of common preys inside the WF area has been proposed as a mitigation measure. In the Mediterranean ecosystem the wild rabbit (Oryctolagus cuniculus) is a key species playing a vital role as a prey for a wide spectrum of endangered top predators, like golden eagle (Aquila chrysaetos). Unfortunately, in Portugal wild rabbit populations have declined dramatically and the species is now considered as 'Near Threatened'. In this context, the reduction of rabbit populations is not a desirable mitigation option, being more advantageous the promotion of these populations in areas inside eagles. home range, but relatively far away from the WF. This measure might mitigate the negative impact by promoting the change of eagles. core areas and compensate the mortality by improving eagles. survival and annual productivity. These measures were tested in Northern Portugal during three years, in order to compensate the impact of a power line in two golden eagle couples. Efforts to restore wild rabbit populations were applied in two study areas and focused upon habitat management. To evaluate the management scheme, we monitored rabbit populations in managed and control areas by pellet counts, and the eagle couples through field observations and satellite telemetry. A Hurdle Model was used to test the abundance of rabbit populations, which was significantly higher in managed areas in relation to control areas. Both eagle couples intensely used managed areas and during our study there was a low use of power line vicinity area. Based on the success of this case study we are starting now applying this technique

  1. Keeping Pace with Climate Change: Habitat Protection in the Face of Uncertainty

    Science.gov (United States)

    Flitcroft, R. L.; Burnett, K.; Giannico, G.

    2014-12-01

    Estuaries provide critical habitat for many economically and culturally important species. In the Pacific Northwest, intertidal and subtidal areas provide critical habitat for production of native and commercial oysters (Olympia oyster Ostrea lurida and Pacific oyster Crassostrea gigas, respectively) that in turn provide refuge and rearing habitat for Dungeness Crab, Metacarcinus magister. Environments ranging from subtidal through freshwater zones provide nursery areas for juvenile salmonids at different development stages in their life history. Most Oregon estuaries have been significantly altered by humans over the past century, reducing the quantity and diversity of available habitats. Management agencies have responded with projects to restore and enhance estuarine habitats. Unfortunately, future climate change and sea-level rise could render many current restoration projects ineffective over time. Planning for habitat restoration that keeps pace with climate change will be critical to the sustainable production of seafood and maintenance of ecosystem function. However, land managers and citizens lack the spatially-explicit data needed to incorporate the potential effects of climate change and sea-level rise into planning for habitat improvement projects in estuarine areas. To meet this need, we developed simple models using LiDAR to characterize the geomorphologies of multiple Oregon estuaries. We were able to map the margin of current mean high tide, and contour intervals associated with different potential increases in mean high tide. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting changes in estuary shape. For each estuary, we assessed changes in the amount and complexity of edge habitats. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance

  2. Academy of Program/Project & Engineering Leadership Orbital Debris Management and Risk Mitigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Academy of Program/Project & Engineering Leadership (APPEL) is excited to announce the public release of Orbital Debris Management and Risk Mitigation,...

  3. Towards a private-public synergy in financing climate change mitigation projects

    NARCIS (Netherlands)

    Zhang, ZX; Maruyama, A

    2001-01-01

    Funding for greenhouse gas mitigation projects in developing countries is crucial for addressing the global climate change problem. By examining current climate change-related financial mechanisms and their limitations, this paper indicates that their roles are limited in affecting developing

  4. Improving extinction projections across scales and habitats using the countryside species-area relationship.

    Science.gov (United States)

    Martins, Inês Santos; Pereira, Henrique Miguel

    2017-10-10

    The species-area relationship (SAR) has been often used to project species extinctions as a consequence of habitat loss. However, recent studies have suggested that the SAR may overestimate species extinctions, at least in the short-term. We argue that the main reason for this overestimation is that the classic SAR ignores the persistence of species in human-modified habitats. We use data collected worldwide to analyse what is the fraction of bird and plant species that remain in different human-modified habitats at the local scale after full habitat conversion. We observe that both taxa have consistent responses to the different land-use types, with strongest reductions in species richness in cropland across the globe, and in pasture in the tropics. We show that the results from these studies cannot be linearly scaled from plots to large regions, as this again overestimates the impacts of land-use change on biodiversity. The countryside SAR provides a unifying framework to incorporate both the effect of species persistence in the landscape matrix and the non-linear response of the proportion of species extinctions to sampling area, generating more realistic projections of biodiversity loss.

  5. Safety equipment list for the 241-SY-101 RAPID mitigation project

    Energy Technology Data Exchange (ETDEWEB)

    MORRIS, K.L.

    1999-06-29

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein.

  6. Safety equipment list for the 241-SY-101 RAPID mitigation project

    International Nuclear Information System (INIS)

    Morris, K.L.

    1999-01-01

    This document provides the safety classification for the safety (safety class and safety RAPID Mitigation Project. This document is being issued as the project SEL until the supporting authorization basis documentation, this document will be superseded by the TWRS SEL (LMHC 1999), documentation istlralized. Upon implementation of the authorization basis significant) structures, systems, and components (SSCS) associated with the 241-SY-1O1 which will be updated to include the information contained herein

  7. Cost control and risk mitigation of major projects

    International Nuclear Information System (INIS)

    Caddy, D.G.

    1993-01-01

    In this paper and presentation, the four major types of estimates will be discussed, i.e., capacity factored, equipment factored, semi-detailed and detailed. Key relationships between particular portions of estimates will be discussed such as the relationship between direct field labor and indirect field costs. Having set the basis for developing a project's cost through estimating, the paper will then list and discuss the fifteen key steps which must be followed to control the costs of a project. Next, the subject of allowances and contingency will be discussed and defined and the differences between the two will be highlighted. Having established exactly what contingency is, the subject of risk analysis through RANGE estimating will be discussed. The methods used to establish a precise contingency and probability of an over/under run will be discussed. Finally, the paper will discuss the methods by which a project manager, owner or contractor can mitigate risks; that is to eliminate, transfer or minimize their effect

  8. Evaluation of impacts and mitigation assessments for the UMTRA Project: Gunnison and Durango pilot studies. Final report

    International Nuclear Information System (INIS)

    Beranich, S.J.

    1994-01-01

    This report evaluates the impacts assessment and proposed mitigations provided in environmental documents concerning the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The projected impacts and proposed mitigations identified in UMTRA Project environmental documents were evaluated for two UMTRA Project sites. These sites are Gunnison and Durango, which are representative of currently active and inactive UMTRA Project sites, respectively. National Environmental Policy Act (NEPA) documentation was prepared for the remedial action at Durango and Gunnison as well as for the provision of an alternate water supply system at Gunnison. Additionally, environmental analysis was completed for mill site demolition Gunnison, and for a new road related to the Durango remedial action. The results in this report pertain only to the impact assessments prepared by the Regulatory Compliance staff as a part of the NEPA compliance requirements. Similarly, the mitigative measures documented are those that were identified during the NEPA process

  9. Eder Acquisition 2007 Habitat Evaluation Procedures Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    2008-01-01

    A habitat evaluation procedures (HEP) analysis was conducted on the Eder acquisition in July 2007 to determine how many protection habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the project site as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. Baseline HEP surveys generated 3,857.64 habitat units or 1.16 HUs per acre. HEP surveys also served to document general habitat conditions. Survey results indicated that the herbaceous plant community lacked forbs species, which may be due to both livestock grazing and the late timing of the surveys. Moreover, the herbaceous plant community lacked structure based on lower than expected visual obstruction readings (VOR); likely a direct result of livestock impacts. In addition, introduced herbaceous vegetation including cultivated pasture grasses, e.g. crested wheatgrass and/or invader species such as cheatgrass and mustard, were present on most areas surveyed. The shrub element within the shrubsteppe cover type was generally a mosaic of moderate to dense shrubby areas interspersed with open grassland communities while the 'steppe' component was almost entirely devoid of shrubs. Riparian shrub and forest areas were somewhat stressed by livestock. Moreover, shrub and tree communities along the lower reaches of Nine Mile Creek suffered from lack of water due to the previous landowners 'piping' water out of the stream channel.

  10. West Foster Creek Expansion Project 2007 HEP Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    2008-02-01

    During April and May 2007, the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) conducted baseline Habitat Evaluation Procedures (HEP) (USFWS 1980, 1980a) analyses on five parcels collectively designated the West Foster Creek Expansion Project (3,756.48 acres). The purpose of the HEP analyses was to document extant habitat conditions and to determine how many baseline/protection habitat units (HUs) to credit Bonneville Power Administration (BPA) for funding maintenance and enhancement activities on project lands as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. HEP evaluation models included mule deer (Odocoileus hemionus), western meadowlark (Sturnella neglecta), sharp-tailed grouse, (Tympanuchus phasianellus), Bobcat (Lynx rufus), mink (Neovison vison), mallard (Anas platyrhynchos), and black-capped chickadee (Parus atricapillus). Combined 2007 baseline HEP results show that 4,946.44 habitat units were generated on 3,756.48 acres (1.32 HUs per acre). HEP results/habitat conditions were generally similar for like cover types at all sites. Unlike crediting of habitat units (HUs) on other WDFW owned lands, Bonneville Power Administration received full credit for HUs generated on these sites.

  11. 77 FR 24505 - Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings

    Science.gov (United States)

    2012-04-24

    ...] Hazard Mitigation Assistance for Wind Retrofit Projects for Existing Residential Buildings AGENCY... for Wind Retrofit Projects for Existing Residential Buildings. DATES: Comments must be received by... must include the agency name and docket ID. Regardless of the method used for submitting comments or...

  12. Mapping habitat for multiple species in the Desert Southwest

    Science.gov (United States)

    Inman, Richard D.; Nussear, Kenneth E.; Esque, Todd C.; Vandergast, Amy G.; Hathaway, Stacie A.; Wood, Dustin A.; Barr, Kelly R.; Fisher, Robert N.

    2014-01-01

    Many utility scale renewable energy projects are currently proposed across the Mojave Ecoregion. Agencies that manage biological resources throughout this region need to understand the potential impacts of these renewable energy projects and their associated infrastructure (for example, transmission corridors, substations, access roads, etc.) on species movement, genetic exchange among populations, and species’ abilities to adapt to changing environmental conditions. Understanding these factors will help managers’ select appropriate project sites and possibly mitigate for anticipated effects of management activities. We used species distribution models to map habitat for 15 species across the Mojave Ecoregion to aid regional land-use management planning. Models were developed using a common 1 × 1 kilometer resolution with maximum entropy and generalized additive models. Occurrence data were compiled from multiple sources, including VertNet (http://vertnet.org/), HerpNET (http://www.herpnet.org), and MaNIS (http://manisnet.org), as well as from internal U.S. Geological Survey databases and other biologists. Background data included 20 environmental covariates representing terrain, vegetation, and climate covariates. This report summarizes these environmental covariates and species distribution models used to predict habitat for the 15 species across the Mojave Ecoregion.

  13. Identifying Impacts of Hydropower Regulation on Salmonid Habitats to Guide River Restoration for Existing Schemes and Mitigate Adverse Effects of Future Developments

    Science.gov (United States)

    Buddendorf, B.; Geris, J.; Malcolm, I.; Wilkinson, M.; Soulsby, C.

    2015-12-01

    A decrease in longitudinal connectivity in riverine ecosystems resulting from the construction of transverse barriers has been identified as a major threat to biodiversity. For example, Atlantic Salmon (Salmo salar) have a seasonal variety of hydraulic habitat requirements for their different life stages. However, hydropower impoundments impact the spatial and temporal connectivity of natural habitat along many salmon rivers in ways that are not fully understood. Yet, these changes may affect the sustainability of habitat at local and regional scales and so ultimately the conservation of the species. Research is therefore needed both to aid the restoration and management of rivers impacted by previous hydropower development and guide new schemes to mitigate potentially adverse effects. To this end we assessed the effects of hydropower development on the flow related habitat conditions for different salmon life stages in Scottish rivers at different spatial scales. We used GIS techniques to map the changes in structural connectivity at regional scales, applying a weighting for habitat quality. Next, we used hydrological models to simulate past and present hydrologic conditions that in turn drive reach-scale hydraulic models to assess the impacts of regulation on habitat suitability in both space and time. Preliminary results indicate that: 1) impacts on connectivity depend on the location of the barrier within the river network; 2) multiple smaller barriers may have a potentially lower impact than a single larger barrier; 3) there is a relationship between habitat and connectivity where losing less but more suitable habitat potentially has a disproportionally large impact; 4) the impact of flow regulation can lead to a deterioration of habitat quality, though the effects are spatially variable and the extent of the impact depends on salmon life stage. This work can form a basis for using natural processes to perform targeted and cost-effective restoration of rivers.

  14. Projections of climate-driven changes in tuna vertical habitat based on species-specific differences in blood oxygen affinity.

    Science.gov (United States)

    Mislan, K A S; Deutsch, Curtis A; Brill, Richard W; Dunne, John P; Sarmiento, Jorge L

    2017-10-01

    Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO 2 , at which blood is 50% saturated (P 50 ) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P 50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P 50 depths (i.e., the vertical position in the water column at which ambient pO 2 is equal to species-specific blood P 50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P 50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P 50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  15. Enhancement and creation of secondary channel habitat: Review of project performance across a range of project types and settings

    Science.gov (United States)

    Epstein, J.; Lind, P.

    2017-12-01

    Secondary channels provide critical off-channel habitat for key life stages of aquatic species. In many systems, interruption of natural processes via anthropogenic influences have reduced the quantity of secondary channel habitat and have impaired the processes that help form and maintain them. Creation and enhancement of secondary channels is therefore a key component of stream rehabilitation, particularly in the Pacific Northwest where the focus has been on enhancement of habitat for ESA-listed salmonids. Secondary channel enhancement varies widely in scope, scale, and approach depending on species requirements, hydrology/hydraulics, geomorphologic setting, sediment dynamics, and human constraints. This presentation will review case studies from numerous secondary channel projects constructed over the last 20 years by different entities and in different settings. Lessons learned will be discussed that help to understand project performance and inform future project design. A variety of secondary channel project types will be reviewed, including mainstem flow splits, year-round flow through, seasonally activated, backwater alcove, natural groundwater-fed, and engineered groundwater-fed (i.e. groundwater collection galleries). Projects will be discussed that span a range of project construction intensities, such as full excavation of side channels, select excavation to increase flow, or utilizing mainstem structures to activate channels. Different configurations for connecting to the main channel, and their relative performance, will also be presented. A variety of connection types will be discussed including stabilized channel entrance, free-formed entrance, using bar apex jams to split flows, using `bleeder' jams to limit secondary channel flow, and obstructing the main channel to divert flows into secondary channels. The performance and longevity of projects will be discussed, particularly with respect to the response to sediment mobilizing events. Lessons

  16. Projected 21st century climate change for wolverine habitats within the contiguous United States

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, Synte, E-mail: synte@ucar.edu [National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, CO 80305 (United States)

    2011-01-15

    Ensembles of 21st century climate projections made using a state of the art global climate model are analyzed to explore possible changes in spring snow cover and summer air temperature in present-day wolverine habitats in the contiguous United States (US). Projected changes in both snow cover and temperature are presented for a range of future emissions scenarios, and implications for the continued survival of the wolverine in the contiguous US are discussed. It is shown that under a high or medium-low emissions scenario there are likely to be dramatic reductions in spring snow cover in present-day wolverine habitats. Under these scenarios there is also likely to be a concomitant increase in summer-time temperatures, with projected maximum daily August temperatures far above those currently tolerated by the wolverine. It is likely that the wolverine, with its many adaptations for cold weather and deep snow pack, would have great difficulty adapting to such changes. The results of the simulations presented here suggest that the very low numbers of wolverines currently living in the contiguous US will likely further decline in response to the deterioration of their habitat in coming decades.

  17. Projected 21st century climate change for wolverine habitats within the contiguous United States

    International Nuclear Information System (INIS)

    Peacock, Synte

    2011-01-01

    Ensembles of 21st century climate projections made using a state of the art global climate model are analyzed to explore possible changes in spring snow cover and summer air temperature in present-day wolverine habitats in the contiguous United States (US). Projected changes in both snow cover and temperature are presented for a range of future emissions scenarios, and implications for the continued survival of the wolverine in the contiguous US are discussed. It is shown that under a high or medium-low emissions scenario there are likely to be dramatic reductions in spring snow cover in present-day wolverine habitats. Under these scenarios there is also likely to be a concomitant increase in summer-time temperatures, with projected maximum daily August temperatures far above those currently tolerated by the wolverine. It is likely that the wolverine, with its many adaptations for cold weather and deep snow pack, would have great difficulty adapting to such changes. The results of the simulations presented here suggest that the very low numbers of wolverines currently living in the contiguous US will likely further decline in response to the deterioration of their habitat in coming decades.

  18. John Day River Subbasin Fish Habitat Enhancement Project, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.; Jerome, James P.

    2002-07-01

    Work undertaken in 2001 included: (1) 3335 structure posts were pounded on six new projects thereby protecting 10 miles of stream (2) Completion of 1000 ft. of barbed wire fence and one watergap on the Middle Fork of the John Day River/ Forrest property. (3) Fence removal of 5010 ft. of barbed wire fence on the Meredith project. (4) Maintenance of all active project fences (66 miles), watergaps (76), spring developments (32) and plantings were checked and repairs performed. (5) Since the initiation of the Fish Habitat Project in 1984 we have 63.74 miles of stream protected using 106.78 miles of fence. With the addition of the Restoration and Enhancement Projects we have 180.64 miles of fence protecting 120.6 miles of stream.

  19. Habitat Evaluation Procedures (HEP) Report; Steigerwald Lake National Wildlife Refuge, Technical Report 2000-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Donna

    2001-09-01

    Steigenvald Lake National Wildlife Refuge (NWR, refuge) was established as a result of the U. S. Army Corps of Engineers (COE) transferring ownership of the Stevenson tract located in the historic Steigerwald Lake site to the U.S. Fish and Wildlife Service (FWS, Service) for the mitigation of the fish and wildlife losses associated with the construction of a second powerhouse at the Bonneville Dam on the Columbia River and relocation of the town of North Bonneville (Public Law 98-396). The construction project was completed in 1983 and resulted in the loss of approximately 577 acres of habitat on the Washington shore of the Columbia River (USFWS, 1982). The COE determined that acquisition and development of the Steigenvald Lake area, along with other on-site project management actions, would meet their legal obligation to mitigate for these impacts (USCOE, 1985). Mitigation requirements included restoration and enhancement of this property to increase overall habitat diversity and productivity. From 1994 to 1999, 317 acres of additional lands, consisting of four tracts of contiguous land, were added to the original refuge with Bonneville Power Administration (BPA) funds provided through the Washington Wildlife Mitigation Agreement. These tracts comprised Straub (191 acres), James (90 acres), Burlington Northern (27 acres), and Bliss (9 acres). Refer to Figure 1. Under this Agreement, BPA budgeted $2,730,000 to the Service for 'the protection, mitigation, and enhancement of wildlife and wildlife habitat that was adversely affected by the construction of Federal hydroelectric dams on the Columbia River or its tributaries' in the state of Washington (BPA, 1993). Lands acquired for mitigation resulting from BPA actions are evaluated using the habitat evaluation procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the Federal Columbia

  20. John Day River Subbasin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Delano, Kenneth H.

    2004-04-01

    Work undertaken in 2003 included: (1) Seven new fence projects were completed thereby protecting 7.6 miles of stream (2) Completion of 0.7 miles of dredge tail leveling on Granite Creek. (3) Maintenance of all active project fences (66.14 miles), watergaps (66), spring developments (33) and plantings were checked and repairs performed. (4) Since the initiation of the Fish Habitat Project in 1984 we have 72.94 miles of stream protected using 131.1 miles of fence. With the addition of the Restoration and Enhancement Projects we have 205.96 miles of fence protecting 130.3 miles of stream.

  1. Computer system requirements specification for 101-SY hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    McNeece, S.G.; Truitt, R.W.

    1994-01-01

    The system requirements specification for SY-101 hydrogen mitigation test project (HMTP) data acquisition and control system (DACS-1) documents the system requirements for the DACS-1 project. The purpose of the DACS is to provide data acquisition and control capabilities for the hydrogen mitigation testing of Tank SY-101. Mitigation testing uses a pump immersed in the waste, directed at varying angles and operated at different speeds and time durations. Tank and supporting instrumentation is brought into the DACS to monitor the status of the tank and to provide information on the effectiveness of the mitigation test. Instrumentation is also provided for closed loop control of the pump operation. DACS is also capable for being expanded to control and monitor other mitigation testing. The intended audience for the computer system requirements specification includes the SY-101 hydrogen mitigation test data acquisition and control system designers: analysts, programmers, instrument engineers, operators, maintainers. It is intended for the data users: tank farm operations, mitigation test engineers, the Test Review Group (TRG), data management support staff, data analysis, Hanford data stewards, and external reviewers

  2. FEMA Hazard Mitigation Assistance Flood Mitigation Assistance (FMA) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Flood Mitigation Assistance (FMA)....

  3. John Day River Subbasin Fish Habitat Enhancement Project, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Jerome, James P.; Delano, Kenneth H.

    2003-03-01

    Work undertaken in 2002 included: (1) Seven new fence projects were completed thereby protecting 6.0 miles of stream (2) Completion of 0.7 miles of dredge tail leveling on Granite Creek. (3) New fence construction (300ft) plus one watergap on Indian Creek/ Kuhl property. (4) Maintenance of all active project fences (58.76 miles), watergaps (56), spring developments (32) and plantings were checked and repairs performed. (5) Restoration and Enhancement projects protected 3 miles of stream within the basin. (6) Since the initiation of the Fish Habitat Project in 1984 we have 67.21 miles of stream protected using 124.2 miles of fence. With the addition of the Restoration and Enhancement Projects we have 199.06 miles of fence protecting 124.57 miles of stream.

  4. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack

    1984-11-01

    This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

  5. Long-Term Field Data and Climate-Habitat Models Show That Orangutan Persistence Depends on Effective Forest Management and Greenhouse Gas Mitigation

    Science.gov (United States)

    Gregory, Stephen D.; Brook, Barry W.; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N.; Fordham, Damien A.

    2012-01-01

    Background Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Methodology/Principal Findings Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. Conclusions/Significance We find strong quantitative support for the Sabah government’s proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests. PMID:22970145

  6. Mitigation for the Construction and Operation of Libby Dam, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dunnigan, James L.; Marotz, Brian L.; DeShazer, Jay (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2003-06-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to ''protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries...'' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May, 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to

  7. Habitat Evaluation Procedures (HEP) Report; Precious Lands Wildlife Management Area, Technical Report 2000-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Kozusko, Shana

    2003-12-01

    The Nez Perce Tribe (NPT) currently manages a 15,325 acre parcel of land known as the Precious Lands Wildlife Management Area that was purchased as mitigation for losses incurred by construction of the four lower Snake River dams. The Management Area is located in northern Wallowa County, Oregon and southern Asotin County, Washington (Figure 1). It is divided into three management parcels--the Buford parcel is located on Buford Creek and straddles the WA-OR state line, and the Tamarack and Basin parcels are contiguous to each other and located between the Joseph Creek and Cottonwood Creek drainages in Wallowa County, OR. The project was developed under the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501), with funding from the Bonneville Power Administration (BPA). The acreage protected under this contract will be credited to BPA as habitat permanently dedicated to wildlife and wildlife mitigation. A modeling strategy known as Habitat Evaluation Procedure (HEP) was developed by the U.S. Fish and Wildlife Service and adopted by BPA as a habitat equivalency accounting system. Nine wildlife species models were used to evaluate distinct cover type features and provide a measure of habitat quality. Models measure a wide range of life requisite variables for each species and monitor overall trends in vegetation community health and diversity. One product of HEP is an evaluation of habitat quality expressed in Habitat Units (HUs). This HU accounting system is used to determine the amount of credit BPA receives for mitigation lands. After construction of the four lower Snake River dams, a HEP loss assessment was conducted to determine how many Habitat Units were inundated behind the dams. Twelve target species were used in that evaluation: Canada goose, mallard, river otter, downy woodpecker, song sparrow, yellow warbler, marsh wren, western meadowlark, chukar, ring-necked pheasant, California quail, and mule deer. The U.S. Army Corp of

  8. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2003-04-01

    The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment

  9. Habitat connectivity and fragmented nuthatch populations in agricultural landscapes

    OpenAIRE

    Langevelde, van, F.

    1999-01-01

    In agricultural landscapes, the habitat of many species is subject to fragmentation. When the habitat of a species is fragmented and the distances between patches of habitat are large relative to the movement distances of the species, it can be expected that the degree of habitat connectivity affects processes at population and individual level. In this thesis, I report on a study of effects of habitat fragmentation and opportunities to mitigate these effects by planning ecological n...

  10. 31 flavors to 50 shades of grey: battling Phytophthoras in native habitats managed by the Santa Clara Valley Water District

    Science.gov (United States)

    Janet Hillman; Tedmund J. Swiecki; Elizabeth A. Bernhardt; Heather K. Mehl; Tyler B. Bourret; David Rizzo

    2017-01-01

    The Santa Clara Valley Water District (District) is a wholesale water supplier for 1.8 million people in Santa Clara County, California. Capital, water utility, and stream maintenance projects result in extensive, long-term mitigation requirements in riparian, wetland, and upland habitats throughout the county. In 2014, several restoration sites on the valley floor and...

  11. Subarray Processing for Projection-based RFI Mitigation in Radio Astronomical Interferometers

    Science.gov (United States)

    Burnett, Mitchell C.; Jeffs, Brian D.; Black, Richard A.; Warnick, Karl F.

    2018-04-01

    Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering techniques such as subspace projection are promising candidates for RFI mitigation; however, for radio interferometric imaging arrays, these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces errors that corrupt the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm that overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In an RFI simulation scenario for the proposed ngVLA interferometric imaging array with 15 kHz channel bandwidth for correlator processing, we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image “phantom” using the SP-SAP algorithm is presented.

  12. The use of regional advance mitigation planning (RAMP) to integrate transportation infrastructure impacts with sustainability; a perspective from the USA

    International Nuclear Information System (INIS)

    Thorne, James H; Huber, Patrick R; O’Donoghue, Elizabeth; Santos, Maria J

    2014-01-01

    Globally, urban areas are expanding, and their regional, spatially cumulative, environmental impacts from transportation projects are not typically assessed. However, incorporation of a Regional Advance Mitigation Planning (RAMP) framework can promote more effective, ecologically sound, and less expensive environmental mitigation. As a demonstration of the first phase of the RAMP framework, we assessed environmental impacts from 181 planned transportation projects in the 19 368 km 2 San Francisco Bay Area. We found that 107 road and railroad projects will impact 2411–3490 ha of habitat supporting 30–43 threatened or endangered species. In addition, 1175 ha of impacts to agriculture and native vegetation are expected, as well as 125 crossings of waterways supporting anadromous fish species. The extent of these spatially cumulative impacts shows the need for a regional approach to associated environmental offsets. Many of the impacts were comprised of numerous small projects, where project-by-project mitigation would result in increased transaction costs, land costs, and lost project time. Ecological gains can be made if a regional approach is taken through the avoidance of small-sized reserves and the ability to target parcels for acquisition that fit within conservation planning designs. The methods are straightforward, and can be used in other metropolitan areas. (papers)

  13. Deep Space Habitat Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Deep Space Habitat was closed out at the end of Fiscal Year 2013 (September 30, 2013). Results and select content have been incorporated into the new Exploration...

  14. Disentangling the effects of land-use change, climate and CO2 on projected future European habitat types

    NARCIS (Netherlands)

    Lehsten, V; Sykes, M.T.; Scott, A.V.; Tzanopoulis, A.; Kallimanis, A.; Verburg, P.H.; Schulp, C.J.E.; Potts, S.G.; Vogiatzakis, I.

    2015-01-01

    Aim: To project the potential European distribution of seven broad habitat categories (needle-leaved, broad-leaved, mixed and mediterranean forest, urban, grassland and cropland) in order to assess effects of land use, climate change and increase in CO2 on predicted habitat changes up to

  15. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  16. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Directory of Open Access Journals (Sweden)

    Elliott L Matchett

    Full Text Available The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration

  17. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    Science.gov (United States)

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  18. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    Science.gov (United States)

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.

  19. Fish passage mitigation of impacts from hydroelectric power projects in the United States

    International Nuclear Information System (INIS)

    Cada, G.F.

    1996-01-01

    Obstruction of fish movements by dams continues to be the major environmental issue facing the hydropower industry in the US. Dams block upstream migrations, which can cut off adult fish form their historical spawning grounds and severely curtail reproduction. Conversely, downstream-migrating fish may be entrained into the turbine intake flow and suffer turbine-passage injury or mortality. Hydroelectric projects can interfere with the migrations of a wide variety of fish. Maintenance, restoration or enhancement of populations of these species may require the construction of facilities to allow for upstream and downstream fish passage. The Federal Energy Regulatory Commission (FERC), by law, must give fish and wildlife resources equal consideration with power production in its licensing decisions, must be satisfied that a project is consistent with comprehensive plans for a waterway (including fisheries management plans), and must consider all federal and state resource agency terms and conditions for the protection of fish and wildlife. As a consequence, FERC often requires fish passage mitigation measures as a condition of the hydropower license when such measures are deemed necessary for the protection of fish. Much of the recent research and development efforts of the US Department of Energy's Hydropower Program have focused on the mitigation of impacts to upstream and downstream fish passage. This paper descries three components of that effort: (1) a survey of environmental mitigation measures at hydropower sites across the country; (2) a critical review of the effectiveness of fish passage mitigation measures at 16 case study sites; and (3) ongoing efforts to develop new turbine designs that minimize turbine-passage mortality

  20. ANALYZE THE IMPACT OF HABITAT PATCHES ON WILDLIFE ROAD-KILL

    Directory of Open Access Journals (Sweden)

    S. Seok

    2015-10-01

    Full Text Available The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-kill and to suggest that spatial location of habitat patches should be considered as one of the important factors when making policies for mitigating road-kill. Habitat patches were presumed from habitat variables and a suitability index on target-species that was chosen by literature review. The road-kill hotspot was calculated using Getis-Ord Gi*. After that, we performed a correlation analysis between Gi Z-score and the distance from habitat patches to the roads. As a result, there is a low negative correlation between two variables and it increases the Gi Z-score if the habitat patches and the roads become closer.

  1. Analyze the Impact of Habitat Patches on Wildlife Road-Kill

    Science.gov (United States)

    Seok, S.; Lee, J.

    2015-10-01

    The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-kill and to suggest that spatial location of habitat patches should be considered as one of the important factors when making policies for mitigating road-kill. Habitat patches were presumed from habitat variables and a suitability index on target-species that was chosen by literature review. The road-kill hotspot was calculated using Getis-Ord Gi*. After that, we performed a correlation analysis between Gi Z-score and the distance from habitat patches to the roads. As a result, there is a low negative correlation between two variables and it increases the Gi Z-score if the habitat patches and the roads become closer.

  2. Biodiversity offsetting and restoration under the European Union Habitats Directive: balancing between no net loss and deathbed conservation?

    Directory of Open Access Journals (Sweden)

    Hendrik Schoukens

    2016-12-01

    Full Text Available Biodiversity offsets have emerged as one of the most prominent policy approaches to align economic development with nature protection across many jurisdictions, including the European Union. Given the increased level of scrutiny that needs to be applied when authorizing economic developments near protected Natura 2000 sites, the incorporation of onsite biodiversity offsets in project design has grown increasingly popular in some member states, such as the Netherlands and Belgium. Under this approach, the negative effects of developments are outbalanced by restoration programs that are functionally linked to the infrastructure projects. However, although taking into consideration that the positive effects of onsite restoration measures leads to more leeway for harmful project development, the EU Court of Justice has recently dismissed the latter approaches for going against the preventative underpinnings of the EU Habitats Directive. Also, the expected beneficial outcomes of the restoration efforts are uncertain and thus cannot be relied upon in an ecological assessment under Article 6(3 of the Habitats Directive. Although biodiversity offsets can still be relied upon whenever application is being made of the derogation clause under Article 6(4 of the Habitats Directive, they cannot be used as mitigation under the generic decision-making process for plans and programs liable to adversely affect Natura 2000 sites. We outline the main arguments pro and contra the stance of the EU Court of Justice with regards to the exact delineation between mitigation and compensation. The analysis is also framed in the ongoing debate on the effectiveness of the EU nature directives. Although ostensibly rigid, it is argued that the recent case-law developments are in line with the main principles underpinning biodiversity offsetting. Opening the door for biodiversity offsetting under the Habitats Directive will certainly not reverse the predicament of the EU

  3. The Future of Suisun Marsh as Mitigation Habitat

    Directory of Open Access Journals (Sweden)

    Peter B. Moyle

    2013-10-01

    Full Text Available Suisun Marsh is the largest tidal wetland in the San Francisco Estuary that has been subject to 6000 years of constant change, which is accelerating. Decisions made today will have maajor effects on its value as habitat for native biota in the future

  4. Some impacts and mitigations for small hydro developments in Newfoundland and Labrador

    International Nuclear Information System (INIS)

    Buchanan, R.

    1993-01-01

    Potential adverse impacts of small hydro power plants were defined and some of the mitigative techniques that can be used to eliminate or alleviate these impacts were outlined. Potential adverse impacts involved in the construction of hydro projects were identified as those associated with construction of dams, borrow areas, access roads, powerhouses, canals, penstocks, and transmission lines. Fish passage and fish habitat maintenance were also among the major issues that confront most of the proposed small hydro projects in Newfoundland. Fish passage and habitat issues received particular attention in view of their obvious importance in a province where fishing is a way of life for large segments of the population. Major challenges included both upstream and downstream fish passage, and maintenance flows downstream of dams. Upstream migration could be facilitated by fishways. Downstream migration of Atlantic salmon smolts was said to be more problematic, but could be addressed by strategies such as intake design, screens, bypasses, sluices, turbine selection, plant shutdowns at critical times and operation of turbines at peak efficiencies. 12 refs., 2 tabs

  5. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  6. Predicting and Mapping Potential Whooping Crane Stopover Habitat to Guide Site Selection for Wind Energy Projects

    Science.gov (United States)

    Migration is one of the most poorly understood components of a bird’s life cycle. For that reason, migratory stopover habitats are often not part of conservation planning and may be overlooked when planning new development projects. This project highlights and addresses an overl...

  7. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final environmental assessment

    International Nuclear Information System (INIS)

    1994-01-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities

  8. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    1994-10-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities.

  9. Salmon River Habitat Enhancement, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  10. Measuring, Reporting and Verifying Nationally Appropriate Mitigation Actions. Reflecting experiences under the Mitigation Momentum Project. Discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    De Vit, C.; Roeser, F.; Fekete, H.; Hoehne, N.; Wartmann, S.; Van Tilburg, X.; Larkin, J.; Escalante, D.; Haensel, G.; Veum, K.; Cameron, L.; Halcomb, J.

    2013-06-15

    The Mitigation Momentum project aims to support the development of Nationally Appropriate Mitigation Actions (NAMAs). It contributes to the concrete design of NAMA proposals in five countries (Peru, Chile, Indonesia, Tunisia and Kenya). A further aim is to foster cooperation and knowledge exchange within the NAMA community while advancing the international climate policy debate on mitigation and related issues, including approaches for the Measurement, Reporting and Verification (MRV) of NAMAs. MRV enables the assessment of the effectiveness of both internationally supported NAMAs (supported NAMAs) and domestically supported NAMAs (unilateral NAMAs) by tracking NAMA impacts including greenhouse gas (GHG) emission reductions and non-GHG related impacts such as sustainable development benefits. MRV also supports improved policy design and decision making through systematic progress reporting and is a key tool to ensure accountability of NAMA stakeholders. Both host countries and funders share the common interest of having strong, implementable MRV systems in place. From both perspectives, this raises a number of questions, as well as potential challenges, on how to adapt the MRV approach to the specific circumstances of each NAMA. The objective of this paper is to identify open issues for the MRV of impacts of NAMAs, understood here as implementable actions, i.e. a project, a policy, a programme or a strategy. It pays particular attention to NAMAs with a supported component and reflects relevant initial experiences with developing NAMA proposals in the five Mitigation Momentum countries (i.e. using country examples where appropriate). As MRV systems for these NAMAs are still under development or at their preliminary stage, we hope to share further lessons learned in a subsequent discussion paper. Key challenges analysed in this paper include: How to design a MRV system that satisfies both the host country's and funder's expectations while complying with

  11. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  12. Habitat Evaluation Procedures (HEP) Report; Burlington Bottoms, Technical Report 1993-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan

    1993-08-01

    Burlington Bottoms, consisting of approximately 417 acres of riparian and wetland habitat, was purchased by the Bonneville Power Administration in November 1991. The site is located approximately 1/2 mile north of the Sauvie Island Bridge (T2N R1W Sections 20, 21), and is bound on the east side by Multnomah Channel and on the west side by the Burlington Northern Railroad right-of-way and U.S. Highway 30 (Figures 1 and 2). Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Columbia and Willamette River Basin's Fish and Wildlife Program and Amendments. Under this Program, mitigation goals were developed as a result of the loss of wildlife habitat due to the development and operation of Federal hydro-electric facilities in the Columbia and Willamette River Basins. In 1993, an interdisciplinary team was formed to develop and implement quantitative Habitat Evaluation Procedures (HEP) to document the value of various habitats at Burlington Bottoms. Results of the HEP will be used to: (1) determine the current status and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area. HEP participants included; Charlie Craig, BPA; Pat Wright, Larry Rasmussen, and Ron Garst, U. S. Fish and Wildlife Service; John Christy, The Nature Conservancy; and Doug Cottam, Sue Beilke, and Brad Rawls, Oregon Department of Fish and Wildlife.

  13. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  14. Bigger is better: Improved nature conservation and economic returns from landscape-level mitigation.

    Science.gov (United States)

    Kennedy, Christina M; Miteva, Daniela A; Baumgarten, Leandro; Hawthorne, Peter L; Sochi, Kei; Polasky, Stephen; Oakleaf, James R; Uhlhorn, Elizabeth M; Kiesecker, Joseph

    2016-07-01

    Impact mitigation is a primary mechanism on which countries rely to reduce environmental externalities and balance development with conservation. Mitigation policies are transitioning from traditional project-by-project planning to landscape-level planning. Although this larger-scale approach is expected to provide greater conservation benefits at the lowest cost, empirical justification is still scarce. Using commercial sugarcane expansion in the Brazilian Cerrado as a case study, we apply economic and biophysical steady-state models to quantify the benefits of the Brazilian Forest Code (FC) under landscape- and property-level planning. We find that FC compliance imposes small costs to business but can generate significant long-term benefits to nature: supporting 32 (±37) additional species (largely habitat specialists), storing 593,000 to 2,280,000 additional tons of carbon worth $69 million to $265 million ($ pertains to U.S. dollars), and marginally improving surface water quality. Relative to property-level compliance, we find that landscape-level compliance reduces total business costs by $19 million to $35 million per 6-year sugarcane growing cycle while often supporting more species and storing more carbon. Our results demonstrate that landscape-level mitigation provides cost-effective conservation and can be used to promote sustainable development.

  15. Projections of rapidly rising surface temperatures over Africa under low mitigation

    International Nuclear Information System (INIS)

    Engelbrecht, Francois; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Adegoke, Jimmy; Thatcher, Marcus; McGregor, John; Katzfey, Jack; Werner, Micha; Ichoku, Charles; Gatebe, Charles

    2015-01-01

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4–6 °C over the subtropics and 3–5 °C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional dowscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of

  16. Prioritizing tiger conservation through landscape genetics and habitat linkages.

    Science.gov (United States)

    Yumnam, Bibek; Jhala, Yadvendradev V; Qureshi, Qamar; Maldonado, Jesus E; Gopal, Rajesh; Saini, Swati; Srinivas, Y; Fleischer, Robert C

    2014-01-01

    Even with global support for tiger (Panthera tigris) conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2) of forest habitat was found to be only 21,290 km(2). After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (FST) between populations were better explained by modeled linkage costs (r>0.5, p<0.05) compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should provide legal status

  17. Prioritizing tiger conservation through landscape genetics and habitat linkages.

    Directory of Open Access Journals (Sweden)

    Bibek Yumnam

    Full Text Available Even with global support for tiger (Panthera tigris conservation their survival is threatened by poaching, habitat loss and isolation. Currently about 3,000 wild tigers persist in small fragmented populations within seven percent of their historic range. Identifying and securing habitat linkages that connect source populations for maintaining landscape-level gene flow is an important long-term conservation strategy for endangered carnivores. However, habitat corridors that link regional tiger populations are often lost to development projects due to lack of objective evidence on their importance. Here, we use individual based genetic analysis in combination with landscape permeability models to identify and prioritize movement corridors across seven tiger populations within the Central Indian Landscape. By using a panel of 11 microsatellites we identified 169 individual tigers from 587 scat and 17 tissue samples. We detected four genetic clusters within Central India with limited gene flow among three of them. Bayesian and likelihood analyses identified 17 tigers as having recent immigrant ancestry. Spatially explicit tiger occupancy obtained from extensive landscape-scale surveys across 76,913 km(2 of forest habitat was found to be only 21,290 km(2. After accounting for detection bias, the covariates that best explained tiger occupancy were large, remote, dense forest patches; large ungulate abundance, and low human footprint. We used tiger occupancy probability to parameterize habitat permeability for modeling habitat linkages using least-cost and circuit theory pathway analyses. Pairwise genetic differences (FST between populations were better explained by modeled linkage costs (r>0.5, p<0.05 compared to Euclidean distances, which was in consonance with observed habitat fragmentation. The results of our study highlight that many corridors may still be functional as there is evidence of contemporary migration. Conservation efforts should

  18. Strategies for successful mitigation of socioeconomic impacts

    International Nuclear Information System (INIS)

    Moore, R.C.

    1987-01-01

    The successful mitigation of socioeconomic impacts requires careful planning for project inception through project completion. Although mitigation of socioeconomic impacts imposes additional responsibilities on project sponsors, benefits derived through increased productivity of the work force can offset costs involved. Cost effective impact mitigation plans can be developed which are flexible to respond to changing circumstances and which focus on prevention of adverse effects. Mitigation plans must, by necessity, begin with proper project planning. Project location and the schedule for various construction activities can have significant effect on impacts. Particular attention should be given to labor requirements, contracting procedures and hiring practices. The effects of layoffs at project completion should also be considered. Accurate forecasts of revenues available to local governments are essential to the development of fair mitigation programs. Increased revenues created as a result of proposed projects should be the basis for mitigation planning. Housing and worker transportation issues should be considered jointly. Depending upon the proximity of a proposed site to different communities, impacts can be radically different given different housing and transportation plans. Housing requirements should be considered by type and location. Per diem and other allowances can be utilized to influence the housing choices made by workers

  19. Burlington Bottoms wildlife mitigation site : five-year habitat management plan, 2001-2005

    International Nuclear Information System (INIS)

    Beilke, Susan G.

    2001-01-01

    Historically the lower Columbia and Willamette River Basins were ecologically rich in both the habitat types and the species diversity they supported. This was due in part to the pattern of floods and periodic inundation of bottomlands that occurred, which was an important factor in creating and maintaining a complex system of wetland, meadow, and riparian habitats. This landscape has been greatly altered in the past 150 years, primarily due to human development and agricultural activities including cattle grazing, logging and the building of hydroelectric facilities for hydropower, navigation, flood control and irrigation in the Columbia and Willamette River Basins. The Burlington Bottoms (BB) wetlands contains some of the last remaining bottomlands in the area, supporting a diverse array of native plant and wildlife species. Located approximately twelve miles northwest of Portland and situated between the Tualatin Mountains to the west and Multnomah Channel and Sauvie Island to the east, the current habitats are remnant of what was once common throughout the region. In order to preserve and enhance this important site, a five-year habitat management plan has been written that proposes a set of actions that will carry out the goals and objectives developed for the site, which includes protecting, maintaining and enhancing wildlife habitat for perpetuity

  20. Protecting Marine Biodiversity: A Comparison of Individual Habitat Quotas (IHQs) and Marine Protected Areas

    OpenAIRE

    Kurt Schnier; Dan Holland

    2005-01-01

    Fisheries managers in the United States are required to identify and mitigate the adverse impacts of fishing activity on essential fish habitat (EFH). There are additional concerns that the viability of noncommercial species, animals that are habitat dependent and/or are themselves constituents of fishery habitat may still be threatened. We consider a cap-and-trade system for habitat conservation, individual habitat quotas for fisheries, to achieve habitat conservation and species protection ...

  1. 2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey; K. A. Gano; R. D. Teel

    2009-09-30

    This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

  2. City of Austin: Green habitat learning project. A green builder model home project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The purpose of the Year 14 UCETF project was to design and construct a residential structure that could serve as a demonstration facility, training site, and testing and monitoring laboratory for issues related to the implementation of sustainable building practices and materials. The Model Home Project builds on the previous and existing efforts, partially funded by the UCETF, of the City of Austin Green Builder Program to incorporate sustainable building practices into mainstream building activities. The Green Builder Program uses the term {open_quotes}green{close_quotes} as a synonym for sustainability. In the research and analysis that was completed for our earlier reports in Years 12 and 13, we characterized specific elements that we associate with sustainability and, thus, green building. In general, we refer to a modified life cycle assessment to ascertain if {open_quotes}green{close_quotes} building options reflect similar positive cyclical patterns found in nature (i.e. recyclability, recycled content, renewable resources, etc.). We additionally consider economic, human health and synergistic ecological impacts associated with our building choices and characterize the best choices as {open_quotes}green.{close_quotes} Our ultimate goal is to identify and use those {open_quotes}green{close_quotes} materials and processes that provide well for us now and do not compromise similar benefits for future generations. The original partnership developed for this project shifted during the year from a project stressing advanced (many prototypical) {open_quotes}green{close_quotes} building materials and techniques in a research and demonstration context, to off-the-shelf but underutilized {open_quotes}green{close_quotes} materials in the practical social context of using {open_quotes}green{close_quotes} technologies for low income housing. That project, discussed in this report, is called the Green Habitat Learning Project.

  3. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  4. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... determinations for a transportation plan or TIP and are included in the project design concept and scope which is...

  5. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  6. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics...

  7. Habitat Evaluation Procedures Report; Graves Property - Yakama Nation.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul; Muse, Anthony

    2008-02-01

    A habitat evaluation procedures (HEP) analysis was conducted on the Graves property (140 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also documented the general ecological condition of the property. The Graves property was significantly damaged from past/present livestock grazing practices. Baseline HEP surveys generated 284.28 habitat units (HUs) or 2.03 HUs per acre. Of these, 275.50 HUs were associated with the shrubsteppe/grassland cover type while 8.78 HUs were tied to the riparian shrub cover type.

  8. South Fork Snake River/Palisades Wildlife Mitigation Project: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land and conservation easement acquisition and wildlife habitat enhancement measures. These measures would be implemented on selected lands along the South Fork of the Snake River between Palisades Dam and the confluence with the Henry`s Fork, and on portions of the Henry`s Fork located in Bonneville, Madison, and Jefferson Counties, Idaho. BPA has prepared an Environmental Assessment evaluating the proposed project. The EA also incorporates by reference the analyses in the South Fork Snake River Activity/Operations Plan and EA prepared jointly in 1991 by the Bureau of Land Management and the Forest Service. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  9. Umatilla River subbasin fish habitat improvement project. Annual report 1993

    International Nuclear Information System (INIS)

    Bailey, T.D.; Laws, T.S.

    1994-05-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. Major activities undertaken during this report period included: (1) procurement of one access easement with a private landowner, (2) design, layout, and implementation of 3.36 miles of instream structure maintenance, (3) inspection and routine maintenance of 15.1 miles of fence, (4) revegetation along 3.36 miles of stream, (5) collection and summarization of physical and biological monitoring data, (6) extensive interagency coordination, and (7) environmental education activities with local high school students

  10. Mitigation for one & all: An integrated framework for mitigation of development impacts on biodiversity and ecosystem services

    Energy Technology Data Exchange (ETDEWEB)

    Tallis, Heather, E-mail: htallis@tnc.org [The Nature Conservancy, 415 Alta Vista Dr., Santa Cruz, CA 95060 (United States); Kennedy, Christina M., E-mail: ckennedy@tnc.org [The Nature Conservancy, 117 East Mountain Ave., Ft. Collins, CO 80524 (United States); Ruckelshaus, Mary [The Natural Capital Project, 371 Serra Mall, Stanford, CA 94305 (United States); Goldstein, Joshua; Kiesecker, Joseph M. [The Nature Conservancy, 117 East Mountain Ave., Ft. Collins, CO 80524 (United States)

    2015-11-15

    Emerging development policies and lending standards call for consideration of ecosystem services when mitigating impacts from development, yet little guidance exists to inform this process. Here we propose a comprehensive framework for advancing both biodiversity and ecosystem service mitigation. We have clarified a means for choosing representative ecosystem service targets alongside biodiversity targets, identified servicesheds as a useful spatial unit for assessing ecosystem service avoidance, impact, and offset options, and discuss methods for consistent calculation of biodiversity and ecosystem service mitigation ratios. We emphasize the need to move away from area- and habitat-based assessment methods for both biodiversity and ecosystem services towards functional assessments at landscape or seascape scales. Such comprehensive assessments more accurately reflect cumulative impacts and variation in environmental quality, social needs and value preferences. The integrated framework builds on the experience of biodiversity mitigation while addressing the unique opportunities and challenges presented by ecosystem service mitigation. These advances contribute to growing potential for economic development planning and execution that will minimize impacts on nature and maximize human wellbeing. - Highlights: • This is the first framework for biodiversity and ecosystem service mitigation. • Functional, landscape scale assessments are ideal for avoidance and offsets. • Servicesheds define the appropriate spatial extent for ecosystem service mitigation. • Mitigation ratios should be calculated consistently and based on standard factors. • Our framework meets the needs of integrated mitigation assessment requirements.

  11. Mitigation for one & all: An integrated framework for mitigation of development impacts on biodiversity and ecosystem services

    International Nuclear Information System (INIS)

    Tallis, Heather; Kennedy, Christina M.; Ruckelshaus, Mary; Goldstein, Joshua; Kiesecker, Joseph M.

    2015-01-01

    Emerging development policies and lending standards call for consideration of ecosystem services when mitigating impacts from development, yet little guidance exists to inform this process. Here we propose a comprehensive framework for advancing both biodiversity and ecosystem service mitigation. We have clarified a means for choosing representative ecosystem service targets alongside biodiversity targets, identified servicesheds as a useful spatial unit for assessing ecosystem service avoidance, impact, and offset options, and discuss methods for consistent calculation of biodiversity and ecosystem service mitigation ratios. We emphasize the need to move away from area- and habitat-based assessment methods for both biodiversity and ecosystem services towards functional assessments at landscape or seascape scales. Such comprehensive assessments more accurately reflect cumulative impacts and variation in environmental quality, social needs and value preferences. The integrated framework builds on the experience of biodiversity mitigation while addressing the unique opportunities and challenges presented by ecosystem service mitigation. These advances contribute to growing potential for economic development planning and execution that will minimize impacts on nature and maximize human wellbeing. - Highlights: • This is the first framework for biodiversity and ecosystem service mitigation. • Functional, landscape scale assessments are ideal for avoidance and offsets. • Servicesheds define the appropriate spatial extent for ecosystem service mitigation. • Mitigation ratios should be calculated consistently and based on standard factors. • Our framework meets the needs of integrated mitigation assessment requirements

  12. 33 CFR 332.3 - General compensatory mitigation requirements.

    Science.gov (United States)

    2010-07-01

    ... resources, providing financial planning and scientific expertise (which often is not practical for permittee... mitigation may be performed using the methods of restoration, enhancement, establishment, and in certain..., habitat connectivity, relationships to hydrologic sources (including the availability of water rights...

  13. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    Science.gov (United States)

    Krstolic, Jennifer L.

    2015-01-01

    This report presents updates to methods, describes additional data collected, documents modeling results, and discusses implications from an updated habitat-flow model that can be used to predict ecological habitat for fish and recreational habitat for canoeing on the main stem Shenandoah River in Virginia. Given a 76-percent increase in population predictions for 2040 over 1995 records, increased water-withdrawal scenarios were evaluated to determine the effects on habitat and recreation in the Shenandoah River. Projected water demands for 2040 vary by watershed: the North Fork Shenandoah River shows a 55.9-percent increase, the South Fork Shenandoah River shows a 46.5-percent increase, and the main stem Shenandoah River shows a 52-percent increase; most localities are projected to approach the total permitted surface-water and groundwater withdrawals values by 2040, and a few localities are projected to exceed these values.

  14. Wildlife Mitigation Program. Record of Decision

    International Nuclear Information System (INIS)

    1997-06-01

    Bonneville Power Administration (BPA) has decided to adopt a set of Descriptions (goals, strategies, and procedural requirements) that apply to future BPA-funded wildlife mitigation projects. Various. sources-including Indian tribes, state agencies, property owners, private conservation groups, or other Federal agencies-propose wildlife mitigation projects to the Northwest Power Planning Council (Council) for BPA funding. Following independent scientific and public reviews, Council then selects projects to recommend for BPA funding. BPA adopts this set of prescriptions to standardize the planning and implementation of individual wildlife mitigation projects. This decision is based on consideration of potential environmental impacts evaluated in BPA's Wildlife Mitigation Program Final Environmental Impact Statement (DOE/EIS-0246) published March, 20, 1997, and filed with the Environmental Protection Agency (EPA) the week of March 24, 1997 (EPA Notice of Availability Published April 4, 1997, 62 FR 65, 16154). BPA will distribute this Record of Decision to all known interested and affected persons, groups, tribes, and agencies

  15. Projected Future Distribution of Tsuga canadensis across Alternative Climate Scenarios in Maine, U.S

    Directory of Open Access Journals (Sweden)

    Kathleen Dunckel

    2017-08-01

    Full Text Available Climate change is having an impact on forest ecosystems around the world and is expected to alter the suitable habitat of individual tree species. Forest managers require resources about potential impacts of climate change at the regional scale to aid in climate mitigation efforts. By understanding the geographic distribution of changes in suitable habitat, migration corridors can be identified for conservation and active management. With the increased availability of climate projection data, ancillary Geographic Information Systems data, and field observations, modeling efforts at the regional scale are now possible. Here, we modeled and mapped the continuous distribution of Tsuga canadensis throughout the state of Maine at the regional scale(30 m with high precision (89% of pixels had a coefficient of variation ≤ 4.0%. The random forest algorithm was used to create a strong prediction of suitable habitat for the years 2050 and 2100 from both high and low emission climate projections. The results clearly suggest a significant gain in suitable habitat for Tsuga canadensis range with a general northwest expansion.

  16. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Directory of Open Access Journals (Sweden)

    Stephen G Hamilton

    Full Text Available Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling.Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands.Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  17. Observational studies to mitigate seismic risks in mines: a new Japanese-South African collaborative research project

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2010-10-01

    Full Text Available and High Stress Mining, 6-8 October 2010, Santiago CHILE 1 Observational studies to mitigate seismic risks in mines: a new Japanese - South African collaborative research project R.J. Durrheim SATREPS*, CSIR Centre for Mining Innovation.... 3. To upgrade the South African national seismic network. The project is carried out under the auspices of the SATREPS (Science and Technology Research Partnership for Sustainable Development) program "Countermeasures towards Global Issues through...

  18. Information needs for habitat protection: Marbled murrelet habitat identification. Restoration project 93051b. Exxon Valdez oil spill restoration project final report

    Energy Technology Data Exchange (ETDEWEB)

    Kuletz, K.J.; Marks, D.K.; Naslund, N.L.; Goodson, N.G.; Cody, M.B.

    1994-12-01

    To define murrelet nesting habitat in southcentral Alaska, we surveyed inland activity of murrelets and measured habitat features between 1991 and 1993, in Prince William Sound, Kenai Fjords National Park and Afognak Island, Alaska (N=262 sites). Using all study areas, we developed statistical models that explain variation in murrelet activity levels and predict the occurrence of behaviors indicative of nesting, based on temporal, geographic, topographic, weather and habitat variables. The multiple regression analyses explained 52 percent of the variation in murrelet activity level. Stepwise logistic regression was used to identify variables that could predict the occurrence of nesting behaviors. The best model included survey method (from a boat, shore or inland), location relative to the head of a bay, tree diameter and number of potential nesting platforms on trees. Overall, the features indicative of murrelet nesting habitat included low elevation locations near the heads of bays, with extensive forest cover of large old-growth trees.

  19. Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change

    International Nuclear Information System (INIS)

    Rogger, Cyrill; Beaurain, Francois; Schmidt, Tobias S.

    2011-01-01

    The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects, composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.

  20. Hungry Horse Dam Fisheries Mitigation Implementation Plan, 1990-2003 Progress (Annual) Report.

    Energy Technology Data Exchange (ETDEWEB)

    Montana Department of Fish, Wildlife and Parks; Confederated Salish and Kootenai Tribes

    1993-03-10

    In this document the authors present mitigation implementation activities to protect and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan only addresses non-operational actions (mitigation measures that do not affect dam operation) described in the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' (Mitigation Plan) submitted to the Northwest Power Planning Council (Council) in March 1991 and in accordance with subsequent Council action on that Mitigation Plan. Operational mitigation was deferred for consideration under the Columbia Basin System Operation Review (SOR) process. This document represents an implementation plan considered and conditionally approved by the Council in March of 1993.

  1. Standardizing instream flow requirements at hydropower projects in the Cascade Mountains, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I.M.; Sale, M.J.

    1993-06-01

    Instream flow requirements are common mitigation measures instituted in the bypassed reaches of hydroelectric diversion projects. Currently, there are two extremes among the ways to determine instream flow requirements: generic standard-setting methods and detailed, habitat-based, impact assessment methods such as the Instream Flow Incremental Methodology (IFIM). Data from streams in Washington state show a consistent pattern in the instream flow requirements resulting from the IFIM. This pattern can be used to refine the simpler standard-setting approaches and thereby provide better estimates of flow needs during early stages of project design.

  2. Testing projected wild bee distributions in agricultural habitats: predictive power depends on species traits and habitat type.

    Science.gov (United States)

    Marshall, Leon; Carvalheiro, Luísa G; Aguirre-Gutiérrez, Jesús; Bos, Merijn; de Groot, G Arjen; Kleijn, David; Potts, Simon G; Reemer, Menno; Roberts, Stuart; Scheper, Jeroen; Biesmeijer, Jacobus C

    2015-10-01

    Species distribution models (SDM) are increasingly used to understand the factors that regulate variation in biodiversity patterns and to help plan conservation strategies. However, these models are rarely validated with independently collected data and it is unclear whether SDM performance is maintained across distinct habitats and for species with different functional traits. Highly mobile species, such as bees, can be particularly challenging to model. Here, we use independent sets of occurrence data collected systematically in several agricultural habitats to test how the predictive performance of SDMs for wild bee species depends on species traits, habitat type, and sampling technique. We used a species distribution modeling approach parametrized for the Netherlands, with presence records from 1990 to 2010 for 193 Dutch wild bees. For each species, we built a Maxent model based on 13 climate and landscape variables. We tested the predictive performance of the SDMs with independent datasets collected from orchards and arable fields across the Netherlands from 2010 to 2013, using transect surveys or pan traps. Model predictive performance depended on species traits and habitat type. Occurrence of bee species specialized in habitat and diet was better predicted than generalist bees. Predictions of habitat suitability were also more precise for habitats that are temporally more stable (orchards) than for habitats that suffer regular alterations (arable), particularly for small, solitary bees. As a conservation tool, SDMs are best suited to modeling rarer, specialist species than more generalist and will work best in long-term stable habitats. The variability of complex, short-term habitats is difficult to capture in such models and historical land use generally has low thematic resolution. To improve SDMs' usefulness, models require explanatory variables and collection data that include detailed landscape characteristics, for example, variability of crops and

  3. Session: Avoiding, minimizing, and mitigating avian and bat impacts

    Energy Technology Data Exchange (ETDEWEB)

    Thelander, Carl; Kerlinger, Paul

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question answer period. The session addressed a variety of questions related to avoiding, minimizing, and mitigating the avian and bat impacts of wind power development including: what has been learned from operating turbines and mitigating impacts where they are unavoidable, such as at Altamont Pass WRA, and should there be mitigation measures such as habitat creation or land conservation where impacts occur. Other impact minimization and mitigation approaches discussed included: location and siting evaluations; options for construction and operation of wind facilities; turbine lighting; and the physical alignment/orientation. Titles and authors of the presentations were: 'Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part II' by Carl Thelander and 'Prevention and Mitigation of Avian Impacts at Wind Power Facilities' by Paul Kerlinger.

  4. Session: Avoiding, minimizing, and mitigating avian and bat impacts

    International Nuclear Information System (INIS)

    Thelander, Carl; Kerlinger, Paul

    2004-01-01

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question answer period. The session addressed a variety of questions related to avoiding, minimizing, and mitigating the avian and bat impacts of wind power development including: what has been learned from operating turbines and mitigating impacts where they are unavoidable, such as at Altamont Pass WRA, and should there be mitigation measures such as habitat creation or land conservation where impacts occur. Other impact minimization and mitigation approaches discussed included: location and siting evaluations; options for construction and operation of wind facilities; turbine lighting; and the physical alignment/orientation. Titles and authors of the presentations were: 'Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part II' by Carl Thelander and 'Prevention and Mitigation of Avian Impacts at Wind Power Facilities' by Paul Kerlinger

  5. Implications of Climate Mitigation for Future Agricultural Production

    Science.gov (United States)

    Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many

  6. Implications of climate mitigation for future agricultural production

    International Nuclear Information System (INIS)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A M; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  7. Evaluation of habitat restoration needs at Yucca Mountain, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Mitchell, D.L.

    1984-04-01

    Adverse environmental impacts due to site characterization and repository development activities at Yucca Mountain, Nevada Test Site (NTS), Nye County, Nevada, must be minimized and mitigated according to provisions of the Nuclear Waste Policy Act (NWPA) of 1982 and the National Environmental Policy Act (NEPA). The natural Transition Desert ecosystem in the 27.5-sq-mi Yucca Mountain project area is now and will continue to be impacted by removal of native vegetation and topsoil and the destruction and/or displacement of faunal communities. Although it is not known at this time exactly how much land will be affected, it is estimated that about 300 to 400 acres will be disturbed by construction of facility sites, mining spoils piles, roadways, and drilling pads. Planned habitat restoration at Yucca Mountain will mitigate the effects of plant and animal habitat loss over time by increasing the rate of plant succession on disturbed sites. Restoration program elements should combine the appropriate use of native annual and perennial species, irrigation and/or water-harvesting techniques, and salvage and reuse of topsoil. Although general techniques are well-known, specific program details (i.e., which species to use, methods of site preparation with available equipment, methods of saving and applying topsoil, etc.) must be worked out empirically on a site-specific basis over the period of site characterization and any subsequent repository development. Large-scale demonstration areas set up during site characterization will benefit both present abandonments and, if the project is scaled up to include repository development, larger facilities areas including spoils piles. Site-specific demonstration studies will also provide information on the costs per acre associated with alternative restoration strategies

  8. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  9. Managing multiple diffuse pressures on water quality and ecological habitat: Spatially targeting effective mitigation actions at the landscape scale.

    Science.gov (United States)

    Joyce, Hannah; Reaney, Sim

    2015-04-01

    Catchment systems provide multiple benefits for society, including: land for agriculture, climate regulation and recreational space. Yet, these systems also have undesirable externalities, such as flooding, and the benefits they create can be compromised through societal use. For example, agriculture, forestry and urban land use practices can increase the export of fine sediment and faecal indicator organisms (FIO) delivered to river systems. These diffuse landscape pressures are coupled with pressures on the in stream temperature environment from projected climate change. Such pressures can have detrimental impacts on water quality and ecological habitat and consequently the benefits they provide for society. These diffuse and in-stream pressures can be reduced through actions at the landscape scale but are commonly tackled individually. Any intervention may have benefits for other pressures and hence the challenge is to consider all of the different pressures simultaneously to find solutions with high levels of cross-pressure benefits. This research presents (1) a simple but spatially distributed model to predict the pattern of multiple pressures at the landscape scale, and (2) a method for spatially targeting the optimum location for riparian woodland planting as mitigation action against these pressures. The model follows a minimal information requirement approach along the lines of SCIMAP (www.scimap.org.uk). This approach defines the critical source areas of fine sediment diffuse pollution, rapid overland flow and FIOs, based on the analysis of the pattern of the pressure in the landscape and the connectivity from source areas to rivers. River temperature was modeled using a simple energy balance equation; focusing on temperature of inflowing and outflowing water across a catchment. The model has been calibrated using a long term observed temperature record. The modelling outcomes enabled the identification of the severity of each pressure in relative rather

  10. Management aspects of Building with Nature projects in the context of the EU Bird and Habitat Directives

    NARCIS (Netherlands)

    Vikolainen, Vera; Bressers, Hans; Lulofs, Kris

    2011-01-01

    The implementation of the EU Bird and Habitat Directives by the ports and dredging industry caused severe project disruptions across North-West Europe in the past. The prevalence of negative experience triggered a new approach, which aims to integrate site-specific ecosystem characteristics and

  11. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    Science.gov (United States)

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  12. Determining Coastal Hazards Risk Perception to Enhance Local Mitigation Planning through a Participatory Mapping Approach

    Science.gov (United States)

    Bethel, M.; Braud, D.; Lambeth, T.; Biber, P.; Wu, W.

    2017-12-01

    Coastal community leaders, government officials, and natural resource managers must be able to accurately assess and predict a given coastal landscape's sustainability and/or vulnerability as coastal habitat continues to undergo rapid and dramatic changes associated with natural and anthropogenic activities such as accelerated relative sea level rise (SLR). To help address this information need, a multi-disciplinary project team conducted Sea Grant sponsored research in Louisiana and Mississippi with traditional ecosystem users and natural resource managers to determine a method for producing localized vulnerability and sustainability maps for projected SLR and storm surge impacts, and determine how and whether the results of such an approach can provide more useful information to enhance hazard mitigation planning. The goals of the project are to develop and refine SLR visualization tools for local implementation in areas experiencing subsidence and erosion, and discover the different ways stakeholder groups evaluate risk and plan mitigation strategies associated with projected SLR and storm surge. Results from physical information derived from data and modeling of subsidence, erosion, engineered restoration and coastal protection features, historical land loss, and future land projections under SLR are integrated with complimentary traditional ecological knowledge (TEK) offered by the collaborating local ecosystem users for these assessments. The data analysis involves interviewing stakeholders, coding the interviews for themes, and then converting the themes into vulnerability and sustainability factors. Each factor is weighted according to emphasis by the TEK experts and number of experts who mention it to determine which factors are the highest priority. The priority factors are then mapped with emphasis on the perception of contributing to local community vulnerability or sustainability to SLR and storm surge. The maps are used by the collaborators to benefit

  13. Cephalopod Experimental Projected Habitat (CEPH: Virtual Reality for Underwater Organisms

    Directory of Open Access Journals (Sweden)

    Noam Josef

    2018-03-01

    Full Text Available Cephalopods' visually driven, dynamic, and diverse skin display makes them a key animal model in sensory ethology and camouflage research. Development of novel methods is critically important in order to monitor and objectively quantify cephalopod behavior. In this work, the development of Cephalopod Experimental Projected Habitat (CEPH is described. This newly developed experimental design bridges computational and ethological sciences, providing a visually controlled arena which requires limited physical space and minimal previous technical background. Created from relatively inexpensive and readily available materials, the experimental apparatus utilizes reflected light which closely resembles natural settings. Preliminary results suggest the experimental design reproducibly challenges marine organisms with visually dynamic surroundings, including videos of prey and predator. This new approach should offer new avenues for marine organism sensory research and may serve researchers from various fields.

  14. Natural canopy bridges effectively mitigate tropical forest fragmentation for arboreal mammals.

    Science.gov (United States)

    Gregory, Tremaine; Carrasco-Rueda, Farah; Alonso, Alfonso; Kolowski, Joseph; Deichmann, Jessica L

    2017-06-20

    Linear infrastructure development and resulting habitat fragmentation are expanding in Neotropical forests, and arboreal mammals may be disproportionately impacted by these linear habitat clearings. Maintaining canopy connectivity through preservation of connecting branches (i.e. natural canopy bridges) may help mitigate that impact. Using camera traps, we evaluated crossing rates of a pipeline right-of-way in a control area with no bridges and in a test area where 13 bridges were left by the pipeline construction company. Monitoring all canopy crossing points for a year (7,102 canopy camera nights), we confirmed bridge use by 25 mammal species from 12 families. With bridge use beginning immediately after exposure and increasing over time, use rates were over two orders of magnitude higher than on the ground. We also found a positive relationship between a bridge's use rate and the number of species that used it, suggesting well-used bridges benefit multiple species. Data suggest bridge use may be related to a combination of bridge branch connectivity, multiple connections, connectivity to adjacent forest, and foliage cover. Given the high use rate and minimal cost, we recommend all linear infrastructure projects in forests with arboreal mammal populations include canopy bridges.

  15. Cumulative biological impacts framework for solar energy projects in the California Desert

    Science.gov (United States)

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  16. System design description for SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.; Pounds, T.S.; Smith, S.O.

    1994-01-01

    This document describes the hardware subsystems of the data acquisition and control system (DACS) used in mitigation tests conducted on waste tank SY-101 at the Hanford Nuclear Reservation. The system was designed and implemented by Los Alamos National Laboratory (LANL) and supplied to Westinghouse Hanford Company (WHC). The mitigation testing uses a pump immersed in the waste tank, directed at certain angles and operated at different speeds and time durations. The SY-101 tank has experienced recurrent periodic gas releases of hydrogen, nitrous oxide, ammonia, and (recently discovered) methane. The hydrogen gas represents a danger, as some of the releases are in amounts above the lower flammability limit (LFL). These large gas releases must be mitigated. Several instruments have been added to the tank to monitor the gas compositions, the tank level, the tank temperature, and other parameters. A mixer pump has been developed to stir the tank waste to cause the gases to be released at a slow rate. It is the function of the DACS to monitor those instruments and to control the mixer pump in a safe manner. During FY93 and FY94 the mixer pump was installed with associated testing operations support equipment and a mitigation test project plan was implemented. These activities successfully demonstrated the mixer pump's ability to mitigate the SY-101 tank hydrogen gas hazard

  17. 44 CFR 201.6 - Local Mitigation Plans.

    Science.gov (United States)

    2010-10-01

    ..., require a local mitigation plan for the Repetitive Flood Claims Program. A local government must have a... eligible for FMA project grants. However, these plans must be clearly identified as being flood mitigation... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Local Mitigation Plans. 201.6...

  18. Review of mitigation methods for fish passage, instream flows, and water quality

    International Nuclear Information System (INIS)

    Railsback, S.F.

    1991-01-01

    This paper reports on current environmental mitigation practices at nonfederal hydropower projects. Information was obtained from project operators on dissolved oxygen (DO) mitigation, instream flows, upstream fish passage facilities, and downstream fish passage facilities. The most common method for DO mitigation is the use of spill flows, which are costly because of lost power generation. DO concentrations are commonly monitored, but biological effects of DO mitigation are not. At many projects, instream flow requirements have been set without reference to formalized methods. About half of the projects with instream flow requirements monitor flow rates, but few monitor fish populations to verify that instream flows are effective. Angled bar racks are the most commonly used downstream fish passage devices and fish ladders are the most commonly used upstream fish passage devices. Fish passage rates or populations have been monitored to verify the effectiveness of passage mitigation at few projects. This analysis is the first phase of an evaluation of the costs, benefits, and effectiveness of mitigation measures

  19. Mitigation effectiveness for improving nesting success of greater sage-grouse influenced by energy development

    Science.gov (United States)

    Kirol, Christopher P.; Sutphin, Andrew L.; Bond, Laura S.; Fuller, Mark R.; Maechtle, Thomas L.

    2015-01-01

    Sagebrush Artemisia spp. habitats being developed for oil and gas reserves are inhabited by sagebrush obligate species — including the greater sage-grouse Centrocercus urophasianus (sage-grouse) that is currently being considered for protection under the U.S. Endangered Species Act. Numerous studies suggest increasing oil and gas development may exacerbate species extinction risks. Therefore, there is a great need for effective on-site mitigation to reduce impacts to co-occurring wildlife such as sage-grouse. Nesting success is a primary factor in avian productivity and declines in nesting success are also thought to be an important contributor to population declines in sage-grouse. From 2008 to 2011 we monitored 296 nests of radio-marked female sage-grouse in a natural gas (NG) field in the Powder River Basin, Wyoming, USA, and compared nest survival in mitigated and non-mitigated development areas and relatively unaltered areas to determine if specific mitigation practices were enhancing nest survival. Nest survival was highest in relatively unaltered habitats followed by mitigated, and then non-mitigated NG areas. Reservoirs used for holding NG discharge water had the greatest support as having a direct relationship to nest survival. Within a 5-km2 area surrounding a nest, the probability of nest failure increased by about 15% for every 1.5 km increase in reservoir water edge. Reducing reservoirs was a mitigation focus and sage-grouse nesting in mitigated areas were exposed to almost half of the amount of water edge compared to those in non-mitigated areas. Further, we found that an increase in sagebrush cover was positively related to nest survival. Consequently, mitigation efforts focused on reducing reservoir construction and reducing surface disturbance, especially when the surface disturbance results in sagebrush removal, are important to enhancing sage-grouse nesting success.

  20. Habitat Evaluation Procedures Report; Carl Property - Yakama Nation.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul; Muse, Anthony

    2008-02-01

    A baseline habitat evaluation procedures (HEP) analysis was conducted on the Carl property (160 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also helped assess the general ecological condition of the property. The Carl property appeared damaged from livestock grazing and exhibited a high percentage of invasive forbs. Exotic grasses, while present, did not comprise a large percentage of the available cover in most areas. Cover types were primarily grassland/shrubsteppe with a limited emergent vegetation component. Baseline HEP surveys generated 356.11 HUs or 2.2 HUs per acre. Habitat units were associated with the following HEP models: California quail (47.69 HUs), western meadowlark (114.78 HUs), mallard (131.93 HUs), Canada goose (60.34 HUs), and mink (1.38 HUs).

  1. Habitat modeling for biodiversity conservation.

    Science.gov (United States)

    Bruce G. Marcot

    2006-01-01

    Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...

  2. Observational studies in South African mines to mitigate seismic risks: a mid-project progress report

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2013-10-01

    Full Text Available such as Japan. A 5-year collaborative project entitled "Observational studies in South African mines to mitigate seismic risks" was launched in 2010 to address these risks, drawing on over a century of South African and Japanese research experience... network in the mining districts. Figure 1. Schematic illustration of the research design. Jpn - Japanese researchers; CSIR - Council for Scientific and Industrial Research; CGS - Council for Geoscience The knowledge gained during the course...

  3. Sea-level rise and refuge habitats for tidal marsh species: can artificial islands save the California Ridgway's rail?

    Science.gov (United States)

    Overton, Cory T.; Takekawa, John Y.; Casazza, Michael L.; Bui, Thuy-Vy D.; Holyoak, Marcel; Strong, Donald R.

    2014-01-01

    Terrestrial species living in intertidal habitats experience refuge limitation during periods of tidal inundation, which may be exacerbated by seasonal variation in vegetation structure, tidal cycles, and land-use change. Sea-level rise projections indicate the severity of refuge limitation may increase. Artificial habitats that provide escape cover during tidal inundation have been proposed as a temporary solution to alleviate these limitations. We tested for evidence of refuge habitat limitation in a population of endangered California Ridgway's rail (Rallus obsoletus obsoletus; hereafter California rail) through use of artificial floating island habitats provided during two winters. Previous studies demonstrated that California rail mortality was especially high during the winter and periods of increased tidal inundation, suggesting that tidal refuge habitat is critical to survival. In our study, California rail regularly used artificial islands during higher tides and daylight hours. When tide levels inundated the marsh plain, use of artificial islands was at least 300 times more frequent than would be expected if California rails used artificial habitats proportional to their availability (0.016%). Probability of use varied among islands, and low levels of use were observed at night. These patterns may result from anti-predator behaviors and heterogeneity in either rail density or availability of natural refuges. Endemic saltmarsh species are increasingly at risk from habitat change resulting from sea-level rise and development of adjacent uplands. Escape cover during tidal inundation may need to be supplemented if species are to survive. Artificial habitats may provide effective short-term mitigation for habitat change and sea-level rise in tidal marsh environments, particularly for conservation-reliant species such as California rails.

  4. Report of the Project Research on Disaster Reduction using Disaster Mitigating Information Sharing Technology

    Science.gov (United States)

    Suzuki, Takeyasu

    For the purpose of reducing disaster damage by applying information sharing technologies, "the research on disaster reduction using crisis-adaptive information sharing technologies" was carried out from July, 2004 through March 2007, as a three year joint project composed of a government office and agency, national research institutes, universities, lifeline corporations, a NPO and a private company. In this project, the disaster mitigating information sharing platform which is effective to disaster response activities mainly for local governments was developed, as a framework which enables information sharing in disasters. A prototype of the platform was built by integrating an individual system and tool. Then, it was applied to actual local governments and proved to be effective to disaster responses. This paper summarizes the research project. It defines the platform as a framework of both information contents and information systems first and describes information sharing technologies developed for utilization of the platform. It also introduces fields tests in which a prototype of the platform was applied to local governments.

  5. Trends and habitat associations of waterbirds using the South Bay Salt Pond Restoration Project, San Francisco Bay, California

    Science.gov (United States)

    De La Cruz, Susan E. W.; Smith, Lacy M.; Moskal, Stacy M.; Strong, Cheryl; Krause, John; Wang, Yiwei; Takekawa, John Y.

    2018-04-02

    Executive SummaryThe aim of the South Bay Salt Pond Restoration Project (hereinafter “Project”) is to restore 50–90 percent of former salt evaporation ponds to tidal marsh in San Francisco Bay (SFB). However, hundreds of thousands of waterbirds use these ponds over winter and during fall and spring migration. To ensure that existing waterbird populations are supported while tidal marsh is restored in the Project area, managers plan to enhance the habitat suitability of ponds by adding islands and berms to change pond topography, manipulating water salinity and depth, and selecting appropriate ponds to maintain for birds. To help inform these actions, we used 13 years of monthly (October–April) bird abundance data from Project ponds to (1) assess trends in waterbird abundance since the inception of the Project, and (2) evaluate which pond habitat characteristics were associated with highest abundances of different avian guilds and species. For comparison, we also evaluated waterbird abundance trends in active salt production ponds using 10 years of monthly survey data.We assessed bird guild and species abundance trends through time, and created separate trend curves for Project and salt production ponds using data from every pond that was counted in a year. We divided abundance data into three seasons—fall (October–November), winter (December–February), and spring (March–April). We used the resulting curves to assess which periods had the highest bird abundance and to identify increasing or decreasing trends for each guild and species.

  6. The Dust Management Project: Characterizing Lunar Environments and Dust, Developing Regolith Mitigation Technology and Simulants

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon A.

    2010-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.

  7. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds.

    Science.gov (United States)

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-07-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.

  8. Burrowing Owl and Other Migratory Bird Mitigation for a Runway Construction Project at Edwards AFB

    OpenAIRE

    Hoehn, Amber L.; Hagan, Mark; Bratton, Mark

    2009-01-01

    Edwards Air Force Base (AFB) scheduled the construction of a runway in the spring of 2007. The runway would be in an area that contained migratory birds and their habitat. The construction project would be near Edwards AFB main runway and had the potential not only to impact species protected under the Migratory Bird Treaty Act (MBTA), including the burrowing owl (Athene cunicularia), but also to increase bird and wildlife–aircraft strike hazards in the active flightline areas. To discourage ...

  9. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    International Nuclear Information System (INIS)

    1995-04-01

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location

  10. Bowhead whale aggregation areas and their role in the mitigation of seismic noise

    Energy Technology Data Exchange (ETDEWEB)

    Joynt, A.A.; Harwood, L.A. [Department of Fisheries and Oceans, Ottawa, ON (Canada)

    2007-07-01

    Aerial surveys have been conducted to document the distribution and relative abundance of bowhead whales in the offshore Beaufort Sea. They have shown that bowhead feeding aggregations form in traditional areas where oceanographic conditions favour the concentration of zooplankton. However, not all aggregation areas are attractive to bowheads due to varying oceanographic conditions. Some of the feeding aggregation areas are located in offshore waters which have been subject to seismic exploration activity. There is limited knowledge of the effects of underwater noise or industrial activity on Arctic marine mammals in their critical habitat because of the difficulty of studying in a marine Arctic environment. This has presented a challenge regarding the establishment of proper mitigation specific to critical habitats. Data from emerging science and industry's input from experiences in similar environments like the Chukchi Sea is bringing about new data from which to develop better and realistic mitigation. It was concluded that continuing cooperation between regulators, science, and industry is the key to creating innovative approaches to mitigate the effects of industry on marine mammals. figs.

  11. Present and Future Projections of Habitat Suitability of the Asian Tiger Mosquito, a Vector of Viral Pathogens, from Global Climate Simulations.

    Science.gov (United States)

    Proestos, Y.; Christophides, G.; Erguler, K.; Tanarhte, M.; Waldock, J.; Lelieveld, J.

    2014-12-01

    Climate change can influence the transmission of vector borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian Tiger mosquito (Aedes albopictus), which can transmit pathogens that cause Chikungunya, Dengue fever, yellow fever and various encephalitides. Using a general circulation model (GCM) at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the 21st century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that about 2.4 billion individuals in a land area of nearly 20 million square kilometres will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making.

  12. Solent Disturbance and Mitigation Project Phase II: Predicting the impact of human disturbance on overwintering birds in the Solent.

    OpenAIRE

    Stillman, Richard A.; West, Andrew D.; Clarke, Ralph T.; Liley, D.

    2012-01-01

    The Solent coastline provides feeding grounds for internationally protected populations of overwintering waders and wildfowl, and is also extensively used for recreation. In response to concerns over the impact of recreational pressure on birds within protected areas in the Solent, the Solent Forum initiated the Solent Disturbance and Mitigation Project to determine visitor access patterns around the coast and how their activities may influence the birds. The project has been divided into two...

  13. A Contemporary Analysis of the O'Neill-Glaser Model for Space-Based Solar Power and Habitat Construction

    Science.gov (United States)

    Curreri, Peter A.; Detweiler, Michael K.

    2011-01-01

    In 1975 Gerard O Neill published in the journal Science a model for the construction of solar power satellites. He found that the solar power satellites suggested by Peter Glaser would be too massive to launch economically from Earth, but could be financially viable if the workforce was permanently located in free space habitats and if lunar and asteroid materials were used for construction. All new worldwide electrical generating capacity could be then achieved by solar power satellites. The project would financially break even in about 20 years after which it would generate substantial income selling power below fossil fuel prices. Two NASA / Stanford University led studies at Ames Research center during the summers of 1974 and 1976 found the concept technically sound and developed a detailed financial parametric model. Although the project was not undertaken when suggested in the 1970s, several contemporary issues make pursuing the O Neill -- Glaser concept more compelling today. First, our analysis suggests that if in the first ten years of construction that small habitats (compared to the large vista habitats envisioned by O Neill) supporting approximately 300 people were utilized, development costs of the program and the time for financial break even could be substantially improved. Second, the contemporary consensus is developing that carbon free energy is required to mitigate global climate change. It is estimated that 300 GW of new carbon free energy would be necessary per year to stabilize global atmospheric carbon. This is about 4 times greater energy demand than was considered by the O Neill Glaser model. Our analysis suggests that after the initial investments in lunar mining and space manufacturing and transportation, that the profit margin for producing space solar power is very high (even when selling power below fossil fuel prices). We have investigated the financial scaling of ground launched versus space derived space solar power satellites. We

  14. Temporal changes in giant panda habitat connectivity across boundaries of Wolong Nature Reserve, China.

    Science.gov (United States)

    Viña, Andrés; Bearer, Scott; Chen, Xiaodong; He, Guangming; Linderman, Marc; An, Li; Zhang, Hemin; Ouyang, Zhiyun; Liu, Jianguo

    2007-06-01

    Global biodiversity loss is largely driven by human activities such as the conversion of natural to human-dominated landscapes. A popular approach to mitigating land cover change is the designation of protected areas (e.g., nature reserves). Nature reserves are traditionally perceived as strongholds of biodiversity conservation. However, many reserves are affected by land cover changes not only within their boundaries, but also in their surrounding areas. This study analyzed the changes in habitat for the giant panda (Ailuropoda melanoleuca) inside Wolong Nature Reserve, Sichuan, China, and in a 3-km buffer area outside its boundaries, through a time series of classified satellite imagery and field observations. Habitat connectivity between the inside and the outside of the reserve diminished between 1965 and 2001 because panda habitat was steadily lost both inside and outside the reserve. However, habitat connectivity slightly increased between 1997 and 2001 due to the stabilization of some panda habitat inside and outside the reserve. This stabilization most likely occurred as a response to changes in socioeconomic activities (e.g., shifts from agricultural to nonagricultural economies). Recently implemented government policies could further mitigate the impacts of land cover change on panda habitat. The results suggest that Wolong Nature Reserve, and perhaps other nature reserves in other parts of the world, cannot be managed as an isolated entity because habitat connectivity declines with land cover changes outside the reserve even if the area inside the reserve is well protected. The findings and approaches presented in this paper may also have important implications for the management of other nature reserves across the world.

  15. Study of the Cherokee Nuclear Station: projected impacts, monitoring plan, and mitigation options for Cherokee County, South Carolina

    International Nuclear Information System (INIS)

    Peelle, E.; Schweitzer, M.; Scharre, P.; Pressman, B.

    1979-07-01

    This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possible through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability

  16. Study of the Cherokee Nuclear Station: projected impacts, monitoring plan, and mitigation options for Cherokee County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, E.; Schweitzer, M.; Scharre, P.; Pressman, B.

    1979-07-01

    This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possible through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability.

  17. Columbia County Habitat for Humanity Passive Townhomes

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-03-01

    Columbia County Habitat for Humanity (CCHH) (New York, Climate Zone 5A) built a pair of townhomes to Passive House Institute U.S. (PHIUS+ 2015) criteria to explore approaches for achieving Passive House performance (specifically with respect to exterior wall, space-conditioning, and ventilation strategies) within the labor and budget context inherent in a Habitat for Humanity project. CCHH’s goal is to eventually develop a cost-justified Passive House prototype design for future projects.

  18. Is wetland mitigation successful in Southern California?

    Science.gov (United States)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  19. Habitat reclamation plan to mitigate for the loss of habitat due to oil and gas production activities under maximum efficient rate, Naval Petroleum Reserve No. 1, Kern County, California

    International Nuclear Information System (INIS)

    Anderson, D.C.

    1994-11-01

    Activities associated with oil and gas development under the Maximum Efficiency Rate (MER) from 1975 to 2025 will disturb approximately 3,354 acres. Based on 1976 aerial photographs and using a dot grid methodology, the amount of land disturbed prior to MER is estimated to be 3,603 acres. Disturbances on Naval Petroleum Reserve No. 1 (NPR-1) were mapped using 1988 aerial photography and a geographical information system. A total of 6,079 acres were classified as disturbed as of June, 1988. The overall objective of this document is to provide specific information relating to the on-site habitat restoration program at NPRC. The specific objectives, which relate to the terms and conditions that must be met by DOE as a means of protecting the San Joaquin kit fox from incidental take are to: (1) determine the amount and location of disturbed lands on NPR-1 and the number of acres disturbed as a result of MER activities, (2) develop a long term (10 year) program to restore an equivalent on-site acres to that lost from prior project-related actions, and (3) examine alternative means to offset kit fox habitat loss

  20. Industry initiatives in impact mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Metz, W.C.

    1982-08-01

    The author concludes that mitigation is the focus of conflicting opinions regarding responsibility, strategy, and effort. There are no hard, fast, or tried and true rules for company involvement in mitigation efforts. Each mitigation effort must be tailored and negotiated to match the unique characteristics of individual projects and circumstances of specific locales. Companies must assume financial responsibility for the temporary impacts and area needs created by their projects. They must also offer financial and technical assistance to impact areas, not just the host political jurisdiction, when local, state, federal, and special fund sources of revenue or technical assistance are not available or insufficient. But, local, state, and federal governments must also recognize their responsibilities and make adjustments in tax jurisdiction boundaries and disbursement formulas so that impacted areas are properly defined and receive an adequate share of lease, royalty, severance tax, permit fee, special use and service charges, and sales tax payments. Laws need to allow innovative uses of tax pre-payments, housing mortgage bonds, changeable debt and bounding limits, industrial loans with delayed prepayment, and revised revenue assistance formulas. Enabling legislation is required in most states to allow impact areas to negotiate the mitigation efforts. A review of 7 types of mitigation effort is presented: transportation; housing; public utilities; health, public safety and recreation; miscellaneous; and company-community interaction. (PBS)

  1. Final environmental impact statement Kenetech/PacifiCorp Windpower Project Carbon County, Wyoming

    International Nuclear Information System (INIS)

    1995-08-01

    The Draft and Final Environmental Impact Statements (DEIS and FEIS) assess the environmental consequences of a proposed windpower energy development in Carbon County, Wyoming. This abbreviated FEIS revises and supplements the DEIS for the project and addresses comments expressed for the DEIS. The proposed project entails the erection of approximately 1,390 wind turbine generators and associated facilities (e.g., roads, substations, distribution and communications lines) by KENETECH Windpower, Inc. A 230-kV transmission line would be built by PacifiCorp, Inc. to connect a proposed substation on Foote Creek Rim near Arlington to the Miner's substation near Hanna. The proposed project would use standard procedures as currently employed by other right-of-way projects, plus additional project-specific and site-specific mitigation measures to ensure that project impacts are minimized on all important resources. Impacts to most resources would be negligible to moderate during the life-of-project. Potentially significant impacts from the project include avian mortality; declining avian populations; threatened, endangered, candidate, and/or state sensitive species mortality and/or habitat loss; disturbance to nearby residents due to noise; changes in visual resources; disturbance of important Native American traditional sites; changes in plant community species composition due to snow redistribution; displacement of big game due to windfarm operation; and loss of sage grouse nesting habitat. The proposed project could also have numerous beneficial impacts including increased revenues generated by taxes, increased employment, and benefits derived from using a nonpolluting resource for electric power generation

  2. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries.

    Directory of Open Access Journals (Sweden)

    Steven B Scyphers

    Full Text Available Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards "living shoreline" approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m(-2 at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus were the most clearly enhanced (+297% by the presence of breakwater reefs, while red drum (Sciaenops ocellatus (+108%, spotted seatrout (Cynoscion nebulosus (+88% and flounder (Paralichthys sp. (+79% also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study

  3. Hood River and Pelton Ladder monitoring and evaluation project and Hood River fish habitat project : annual progress report 1999-2000.; ANNUAL

    International Nuclear Information System (INIS)

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-01-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat[contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000

  4. Appalachian Stream Mitigation Workshop

    Science.gov (United States)

    A 5 day workshop in 2011 developed for state and federal regulatory and resource agencies, who review, comment on and/or approve compensatory mitigation plans for surface coal mining projects in Appalachia

  5. Mitigation by design

    International Nuclear Information System (INIS)

    Cairns, W.J.

    1992-01-01

    Mitigation or 'the act of bringing together' is not to be confused with applied architectural or landscape cosmetics to render development which has been predesigned in terms of engineering parameters to be more 'seemly' or 'attractive'. It is more profoundly an exercise in simultaneous engineering and environmental analysis in which the level of synthesis between the elements of construction and the elements of the physical environment is fundamental to the ultimate design success of projects. This text, having looked firstly at the nature of design and the characteristics of design processes and procedures, considers the linkages and interaction between design and the statutory land use planning system through which major development projects in Scotland are authorised. A case study of the development of the oil handling terminal at Flotta, Orkney, is included to demonstrate the implications of certain problems related to mitigation by design. (author)

  6. Stream habitat structure influences macroinvertebrate response to pesticides

    International Nuclear Information System (INIS)

    Rasmussen, Jes Jessen; Wiberg-Larsen, Peter; Baattrup-Pedersen, Annette; Friberg, Nikolai; Kronvang, Brian

    2012-01-01

    Agricultural pesticides continue to impair surface water ecosystems, although there are few assessments of interactions with other modifications such as fine sediment and physical alteration for flood drainage. We, therefore, surveyed pesticide contamination and macroinvertebrates in 14 streams along a gradient of expected pesticide exposure using a paired-reach approach to differentiate effects between physically modified and less modified sites. Apparent pesticides effects on the relative abundance of SPEcies At Risk (SPEAR) were increased at sites with degraded habitats primarily due to the absence of species with specific preferences for hard substrates. Our findings highlight the importance of physical habitat degradation in the assessment and mitigation of pesticide risk in agricultural streams. - Highlights: ► %SPEAR abundance significantly decreased with increasing TU (D. magna). ► %SPEAR abundance was significantly lower when soft sediment was dominant. ► Species specific habitat preferences influenced the total effect of pesticides. ► This study has strong implications for future stream management and risk assessment. - Ecological impacts of pesticides on stream macroinvertebrates are influenced by the heterogeneity and physical structure of micro-habitats.

  7. Pollution, habitat loss, fishing, and climate change as critical threats to penguins.

    Science.gov (United States)

    Trathan, Phil N; García-Borboroglu, Pablo; Boersma, Dee; Bost, Charles-André; Crawford, Robert J M; Crossin, Glenn T; Cuthbert, Richard J; Dann, Peter; Davis, Lloyd Spencer; De La Puente, Santiago; Ellenberg, Ursula; Lynch, Heather J; Mattern, Thomas; Pütz, Klemens; Seddon, Philip J; Trivelpiece, Wayne; Wienecke, Barbara

    2015-02-01

    Cumulative human impacts across the world's oceans are considerable. We therefore examined a single model taxonomic group, the penguins (Spheniscidae), to explore how marine species and communities might be at risk of decline or extinction in the southern hemisphere. We sought to determine the most important threats to penguins and to suggest means to mitigate these threats. Our review has relevance to other taxonomic groups in the southern hemisphere and in northern latitudes, where human impacts are greater. Our review was based on an expert assessment and literature review of all 18 penguin species; 49 scientists contributed to the process. For each penguin species, we considered their range and distribution, population trends, and main anthropogenic threats over the past approximately 250 years. These threats were harvesting adults for oil, skin, and feathers and as bait for crab and rock lobster fisheries; harvesting of eggs; terrestrial habitat degradation; marine pollution; fisheries bycatch and resource competition; environmental variability and climate change; and toxic algal poisoning and disease. Habitat loss, pollution, and fishing, all factors humans can readily mitigate, remain the primary threats for penguin species. Their future resilience to further climate change impacts will almost certainly depend on addressing current threats to existing habitat degradation on land and at sea. We suggest protection of breeding habitat, linked to the designation of appropriately scaled marine reserves, including in the High Seas, will be critical for the future conservation of penguins. However, large-scale conservation zones are not always practical or politically feasible and other ecosystem-based management methods that include spatial zoning, bycatch mitigation, and robust harvest control must be developed to maintain marine biodiversity and ensure that ecosystem functioning is maintained across a variety of scales. © 2014 The Authors. Conservation Biology

  8. Mitigation action plan for liquid waste sites in the 100-BC-1, 100-DR-1, and 100-HR-1 units

    International Nuclear Information System (INIS)

    Weiss, S.G.

    1996-05-01

    A Record of Decision (ROD) was issued for remediation of waste sites in the 100-BC-1, 100-DR-1, and 100-HR-1 Operable Units in the 100 Area of the Hanford Site. This Mitigation Action Plan (MAP) explains how mitigation measures for these remedial activities will be planned and implemented. The new activities planned in the ROD are not anticipated to result in releases of hazardous substances and will minimize disturbance of currently undisturbed areas. However, certain actions required by the ROD may result in the redisturbance of areas of recovering vegetation. This MAP presents a strategy for limiting disturbances and identifies an opportunity for revegetating a previously disturbed site; the knowledge gained from this demonstration project can be applied to final revegetation of the rest of the remediated sites and sites disturbed during cleanup when remediation of an area is completed. This work will be conducted in coordination with the Natural Resource Trustees Council and Native American Tribes to help minimize impacts to natural resources and cultural resources from project activities and to restore the remediated sites to an appropriate level of habitat

  9. Economic aspects of hydro geological risk mitigation measures management in Italy: the ReNDiS project experience

    Science.gov (United States)

    Spizzichino, D.; Campobasso, C.; Gallozzi, P. L.; Dessi', B.; Traversa, F.

    2009-04-01

    ReNDiS project is a useful tool for monitoring, analysis and management of information data on mitigation measures and restoration works of soil protection at national scale. The main scope of the project, and related monitoring activities, is to improve the knowledge about the use of national funds and efforts against floods and landslides risk and, as a consequence, to better address the preventive policies in future. Since 1999 after the disastrous mudflow event occurred in Sarno in 1998, which caused the loss of 160 human lives, an extraordinary effort was conducted by the Italian Government in order to promote preventive measures against the hydro geological risk over the entire Italian territory. The Italian Ministry for the Environment promoted several and annual soil protection programmes. The ReNDiS project (Repertory of mitigation measures for National Soil Protection) is carried out by ISPRA - Institute for Environmental protection and Research, with the aim of improving the knowledge about the results of preventive policies against floods and landslides in order to better address national funds as requested by the Minister itself. The repertory is composed by a main archive and two secondary interface, the first for direct data management (ReNDiS-ist) and the latter (ReNDiS-web) for the on-line access and public consultation. At present, ReNDiS database contains about 3000 records concerning those programmes, focused on restoration works but including also information on landslide typologies and processes. The monitoring project is developed taking into account all the information about each step of every mitigation measure from the initial funding phase until the end of the work. During present work, we have statistically analyzed the ReNDiS database in order to highlight the conformity between the characteristic and type of the hazard (identified in a specific area) and the corresponding mitigation measures adopted for risk reduction. Through specific

  10. A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING

    Directory of Open Access Journals (Sweden)

    A. KUN

    2007-01-01

    Full Text Available Today the documentation of natural heritage with scientific methods but for conservation practice – like mapping of actual vegetation – becomes more and more important. For this purpose mapping guides containing only the names and descriptions of vegetation types are not sufficient. Instead, new, mapping-oriented vegetation classification systems and handbooks are needed. There are different standardised systems fitted to the characteristics of a region already published and used successfully for surveying large territories. However, detailed documentation of the aims and steps of their elaboration is still missing. Here we present a habitat-classification method developed specifically for mapping and the steps of its development. Habitat categories and descriptions reflect site conditions, physiognomy and species composition as well. However, for species composition much lower role was given deliberately than in the phytosociological systems. Recognition and mapping of vegetation types in the field is highly supported by a definition, list of subtypes and list of ‘types not belonging to this habitat category’. Our system is two-dimensional: the first dimension is habitat type, the other is naturalness based habitat quality. The development of the system was conducted in two steps, over 200 mappers already tested it over 7000 field days in different projects.

  11. Managing water, fish and power : trends in environmental regulation of hydropower projects

    Energy Technology Data Exchange (ETDEWEB)

    Bursey, D.; McLean, J.; Longe, R. [Bull, Housser and Tupper LLP, Vancouver, BC (Canada)

    2009-07-01

    Recent trends in federal legislation related to the environmental impacts of hydroelectric power projects were reviewed. The study focused on a discussion of recent and proposed amendments to the Species at Risk Act, the Fisheries Act, and the Navigable Waters Protection Act. Challenges associated with risk management, the public perception of risk, and the communication of decisions related to the management and protection of aquatic ecosystems were discussed. The Brilliant Expansion Power Project (BRX) examined the interactions with white sturgeon on the Kootenay River in British Columbia (BC). A monitoring program was conducted during the project's construction in order to reduce the risk to sturgeon from blasting. A habitat enhancement feature was also constructed. It was concluded that the mitigation strategies used during the BRX project provide a useful example of innovation and adaptive management. 19 refs.

  12. Burlington Bottoms Wildlife Mitigation Site : Five-Year Habitat Management Plan, 2001-2005, 2000-2001 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan G.

    2001-09-01

    Historically the lower Columbia and Willamette River Basins were ecologically rich in both the habitat types and the species diversity they supported. This was due in part to the pattern of floods and periodic inundation of bottomlands that occurred, which was an important factor in creating and maintaining a complex system of wetland, meadow, and riparian habitats. This landscape has been greatly altered in the past 150 years, primarily due to human development and agricultural activities including cattle grazing, logging and the building of hydroelectric facilities for hydropower, navigation, flood control and irrigation in the Columbia and Willamette River Basins. The Burlington Bottoms (BB) wetlands contains some of the last remaining bottomlands in the area, supporting a diverse array of native plant and wildlife species. Located approximately twelve miles northwest of Portland and situated between the Tualatin Mountains to the west and Multnomah Channel and Sauvie Island to the east, the current habitats are remnant of what was once common throughout the region. In order to preserve and enhance this important site, a five-year habitat management plan has been written that proposes a set of actions that will carry out the goals and objectives developed for the site, which includes protecting, maintaining and enhancing wildlife habitat for perpetuity.

  13. 76 FR 61070 - Disaster Assistance; Hazard Mitigation Grant Program

    Science.gov (United States)

    2011-10-03

    ...) to revise the categories of projects eligible for funding under the Hazard Mitigation Grant Program (HMGP). The NPRM proposed to define eligible mitigation activities under the HMGP to include minor flood... FEMA-2011-0004] RIN 1660-AA02;Formerly 3067-AC69 Disaster Assistance; Hazard Mitigation Grant Program...

  14. Wildlife habitat management on college and university campuses

    Science.gov (United States)

    Bosci, Tierney; Warren, Paige S.; Harper, Rick W.; DeStefano, Stephen

    2018-01-01

    With the increasing involvement of higher education institutions in sustainability movements, it remains unclear to what extent college and university campuses address wildlife habitat. Many campuses encompass significant areas of green space with potential to support diverse wildlife taxa. However, sustainability rating systems generally emphasize efforts like recycling and energy conservation over green landscaping and grounds maintenance. We sought to examine the types of wildlife habitat projects occurring at schools across the United States and whether or not factors like school type (public or private), size (number of students), urban vs. rural setting, and funding played roles in the implementation of such initiatives. Using case studies compiled by the National Wildlife Federation’s Campus Ecology program, we documented wildlife habitat-related projects at 60 campuses. Ten management actions derived from nationwide guidelines were used to describe the projects carried out by these institutions, and we recorded data about cost, funding, and outreach and education methods. We explored potential relationships among management actions and with school characteristics. We extracted themes in project types, along with challenges and responses to those challenges. Native plant species selection and sustainable lawn maintenance and landscaping were the most common management actions among the 60 campuses. According to the case studies we examined, we found that factors like school type, size, and location did not affect the engagement of a campus in wildlife habitat initiatives, nor did they influence the project expenditures or funding received by a campus. Our results suggest that many wildlife habitat initiatives are feasible for higher education institutions and may be successfully implemented at relatively low costs through simple, but deliberate management actions.

  15. Deep Space Habitat Concept Demonstrator

    Science.gov (United States)

    Bookout, Paul S.; Smitherman, David

    2015-01-01

    This project will develop, integrate, test, and evaluate Habitation Systems that will be utilized as technology testbeds and will advance NASA's understanding of alternative deep space mission architectures, requirements, and operations concepts. Rapid prototyping and existing hardware will be utilized to develop full-scale habitat demonstrators. FY 2014 focused on the development of a large volume Space Launch System (SLS) class habitat (Skylab Gen 2) based on the SLS hydrogen tank components. Similar to the original Skylab, a tank section of the SLS rocket can be outfitted with a deep space habitat configuration and launched as a payload on an SLS rocket. This concept can be used to support extended stay at the Lunar Distant Retrograde Orbit to support the Asteroid Retrieval Mission and provide a habitat suitable for human missions to Mars.

  16. Coalbed gas environmental resource information project : fish population and habitat study review : Similkameen and Tulameen coalfields : final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-15

    This paper provided an overview of fish and fish habitats in the Similkameen and Tulameen coalfields area. The report consisted of a literature review as well as the examination of a regional-specific database. Discussions and interviews were conducted with First Nations, members of the oil and gas industry, and various governmental and non-governmental organizations. The report identified fish species in the region, and provided details of fish distribution and habitat, and obstructions and constraints to fish populations. Information on sensitive species was also provided. Watershed and hydrological overviews were provided, as well as summary tables for all relevant data. Online mapping and resource databases were used to prepare a profile of fish and fish habitat studies. Sensitive species information was obtained from online governmental mapping resources. The acquired data were then used to produce resource lists and habitat tables for streams and rivers residing within or transiting through the area. Four fish species were identified as species at risk, and an additional fish species was considered to be endangered. It was concluded that a centralized and mandatory reporting system must be developed to ensure that all documents are deposited within a single central library. Approximately 80 per cent of the information gathered for the report did not exist in the Environmental Resources Information Project (ERIP) database. 16 refs., 11 tabs., 1 fig.

  17. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland rover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2} plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  18. Sulimar Queen environmental restoration project closure package Sandia environmental stewardship exemplar.

    Energy Technology Data Exchange (ETDEWEB)

    Tillman, Jack B.

    2008-09-01

    In March 2008, Sandia National Laboratories (Sandia), in partnership with the Bureau of Land Management, Roswell Field Office, completed its responsibilities to plug and abandon wells and restore the surface conditions for the Sulimar Queens Unit, a 2,500 acre oil field, in Chaves County, Southeast New Mexico. Sandia assumed this liability in an agreement to obtain property to create a field laboratory to perform extensive testing and experimentation on enhanced oil recovery techniques for shallow oil fields. In addition to plugging and abandoning 28 wells, the project included the removal of surface structures and surface reclamation of disturbed lands associated with all plugged and abandoned wells, access roads, and other auxiliary facilities within unit boundaries. A contracting strategy was implemented to mitigate risk and reduce cost. As the unit is an important wildlife habitat for prairie chickens, sand dune lizards, and mule deer, the criteria for the restoration and construction process were designed to protect and enhance the wildlife habitat. Lessons learned from this project include: (1) extreme caution should be exercised when entering agreements that include future liabilities, (2) partnering with the regulator has huge benefits, and (3) working with industry experts, who were familiar with the work, and subcontractors, who provided the network to complete the project cost effectively.

  19. Draft environmental impact statement: KENETECH/PacifiCorp Windpower Project, Carbon County, Wyoming

    International Nuclear Information System (INIS)

    1995-01-01

    This Draft Environmental Impact Statement assesses the environmental consequences of a proposed windpower development project in Carbon County, between Arlington and Hanna, Wyoming. Public scoping commenced in January 1994. All issues raised during scoping and interdisciplinary team preparation of the analysis are addressed. The proposed project entails the erection of approximately 1,390 wind turbine generators and associated facilities (e.g., roads, substations, distribution and communications lines) by KENETECH Windpower, Inc. A 230-kV transmission line would be built by PacifiCorp, Inc. to connect a proposed substation on Foote Creek Rim near Arlington to the Miner's substation near Hanna. The proposed project would use standard procedures as currently employed by other right-of-way projects, plus additional project-specific and site-specific mitigation measures to ensure that project impacts are minimized on all important resources. Impacts to most resources would be negligible to moderate during the life-of-project. Potentially significant impacts resulting from the project include avian mortality; declining avian populations; threatened, endangered, candidate, and/or state sensitive species mortality and/or habitat loss; disturbance to nearby residents due to noise; changes in visual resources; disturbance of important Native American traditional sites; changes in plant community species composition due to snow redistribution; displacement of big game due to windfarm operation; and loss of sage grouse nesting habitat. The proposed project could also have numerous beneficial impacts including increased revenues generated by taxes, increased employment, and benefits derived from using a nonpolluting resource for electric power generation

  20. Science evaluation of the environmental impact statement for the lower Churchill hydroelectric generation project to identify deficiencies with respect to fish and fish habitat

    International Nuclear Information System (INIS)

    Clarke, K.

    2009-01-01

    This report evaluated an environmental impact statement (EIS) submitted by a company proposing to develop a hydroelectric generation project in the lower Churchill River in Labrador. Construction of the facilities will alter the aquatic environment of the river as well as the receiving environment of lakes. The alterations are expected to have an impact on fish and fish habitats. The study evaluated the methods used to describe and predict impacts in the aquatic environment and examined models used for predictions in order to assess uncertainty levels. Results of the evaluation demonstrated that additional efforts are needed to document local knowledge of fish use and fish habitat, and that the magnitude of expected changes to fish habitat must be considered relative to the loss of fish habitat. The study also highlighted areas within the EIS that will require further clarification. A number of the studies used in the EIS had small sample sizes that increased the uncertainty of predictions made using the data. Uncertainties related to potential changes in flushing rates and morphological features was also needed. The impact of direct fish mortality from turbine operations was not addressed in a population context, and further information is needed to evaluate potential project-related effects on a species-by-species basis. 3 refs., 4 tabs.

  1. Monitoring habitat restoration projects: U.S. Fish and Wildlife Service Pacific Region Partners for Fish and Wildlife Program and Coastal Program Protocol

    Science.gov (United States)

    Woodward, Andrea; Hollar, Kathy

    2011-01-01

    Refuges, Contribute to the implementation of the State Comprehensive Wildlife Conservation Strategies, and Help achieve the objectives of the National Fish Habitat Partnerships and regionally based bird conservation plans (for example, North American Waterfowl Management Plan, U.S. Pacific Island Shorebird Conservation Plans, Intermountain West Regional Shorebird Plan, etc.). The Partners Program accomplishes these priorities by: Developing and maintaining strong partnerships, and delivering on-the-ground habitat restoration projects designed to reestablish habitat function and restore natural processes; Addressing key habitat limiting factors for declining species; Providing corridors for wildlife and decrease impediments to native fish and wildlife migration; and Enhancing native plant communities by reducing invasive species and improving native species composition. The Coastal Program is a voluntary fish and wildlife conservation program that focuses on watershed-scale, long-term collaborative resource planning and on-the-ground restoration projects in high-priority coastal areas. The Coastal Program conducts planning and restoration work on private, State, and Federal lands, and partnerships with other agencies-Native American Tribes, citizens, and organizations are emphasized. Coastal Program goals include restoring and protecting coastal habitat, providing technical and cost-sharing assistance where appropriate, supporting community-based restoration, collecting and developing information on the status of and threats to fish and wildlife, and using outreach to promote stewardship of coastal resources. The diversity of habitats and partners in Region 1 present many opportunities for conducting restoration projects. Faced with this abundance of opportunity, the Partners Program and Coastal Program must ensure that limited staffing and project dollars are allocated to benefit the highest priority resources and achieve the highest quality results for Federal trust

  2. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    Science.gov (United States)

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.

  3. Predicting 21st-century polar bear habitat distribution from global climate models

    Science.gov (United States)

    Durner, George M.; Douglas, David C.; Nielson, R.M.; Amstrup, Steven C.; McDonald, T.L.; Stirling, I.; Mauritzen, Mette; Born, E.W.; Wiig, O.; Deweaver, E.; Serreze, Mark C.; Belikov, Stanislav; Holland, M.M.; Maslanik, J.; Aars, Jon; Bailey, D.A.; Derocher, A.E.

    2009-01-01

    Projections of polar bear (Ursus maritimus) sea ice habitat distribution in the polar basin during the 21st century were developed to understand the consequences of anticipated sea ice reductions on polar bear populations. We used location data from satellitecollared polar bears and environmental data (e.g., bathymetry, distance to coastlines, and sea ice) collected from 1985 to 1995 to build resource selection functions (RSFs). RSFs described habitats that polar bears preferred in summer, autumn, winter, and spring. When applied to independent data from 1996 to 2006, the RSFs consistently identified habitats most frequently used by polar bears. We applied the RSFs to monthly maps of 21st-century sea ice concentration projected by 10 general circulation models (GCMs) used in the Intergovernmental Panel of Climate Change Fourth Assessment Report, under the A1B greenhouse gas forcing scenario. Despite variation in their projections, all GCMs indicated habitat losses in the polar basin during the 21st century. Losses in the highest-valued RSF habitat (optimal habitat) were greatest in the southern seas of the polar basin, especially the Chukchi and Barents seas, and least along the Arctic Ocean shores of Banks Island to northern Greenland. Mean loss of optimal polar bear habitat was greatest during summer; from an observed 1.0 million km2 in 1985-1995 (baseline) to a projected multi-model mean of 0.32 million km2 in 2090-2099 (-68% change). Projected winter losses of polar bear habitat were less: from 1.7 million km2 in 1985-1995 to 1.4 million km2 in 2090-2099 (-17% change). Habitat losses based on GCM multi-model means may be conservative; simulated rates of habitat loss during 1985-2006 from many GCMs were less than the actual observed rates of loss. Although a reduction in the total amount of optimal habitat will likely reduce polar bear populations, exact relationships between habitat losses and population demographics remain unknown. Density and energetic

  4. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  5. Fish habitat considerations associated with hydro-electric developments in Quebec region

    International Nuclear Information System (INIS)

    Bain, H.; Stoneman, M.

    2005-01-01

    Alternative approaches for evaluating the effects of 2 large Hydro Quebec proposed facilities on fish habitats were presented. The proposed projects will convert long stretches of river into water reservoirs and reduce the flow in the rivers below the impoundments for parts of the year. Rivers will be transformed into water reservoirs upstream by the dams, and a moderately large river will be transformed downstream into a much smaller river with a regulated flow. Productive capacity of fish populations is difficult to measure in large water bodies, and complications in the evaluation process have posed problems in the application of a traditional no-net-loss policy. It was suggested that estimates of biomass and productivity should be obtained from established methods of electrofishing combined with maps of the river and stream characteristics. For lakes and reservoirs, biomass and production will be estimated from models using a morphoedaphic index and measures of lake reservoir areas. Productivity will be partitioned among species according to surveys of existing lakes and reservoirs. It was also proposed that mitigation and compensation should be considered on a case-by-case basis related to importance of impact on fish production; geographic range of the impacts; regional fisheries management objectives for commercial, recreational, and subsistence fisheries and biodiversity conservation. Special attention will be given to listed species such as Atlantic salmon and lake sturgeon. Additional field sampling was recommended in areas impacted by the developments. Concerns about the technical methods used in sampling and monitoring data were reviewed, as well as issues concerning protected and unprotected species. It was suggested that predictive models of fish population characteristics will need to be parameterized for temperature ranges associated with the projects. It was noted that habitat suitability index methods do not consider the ecological flexibility

  6. Develop an asset management tool for collecting and tracking commitments on selected environmental mitigation features.

    Science.gov (United States)

    2009-05-01

    Wisconsin has constructed many environmental mitigation projects in conjunction with transportation projects that have been implemented according : to the National Environmental Policy Act. Other mitigation projects have been constructed pursuant to ...

  7. Assessment of indirect losses and costs of emergency for project planning of alpine hazard mitigation

    Science.gov (United States)

    Amenda, Lisa; Pfurtscheller, Clemens

    2013-04-01

    By virtue of augmented settling in hazardous areas and increased asset values, natural disasters such as floods, landslides and rockfalls cause high economic losses in Alpine lateral valleys. Especially in small municipalities, indirect losses, mainly stemming from a breakdown of transport networks, and costs of emergency can reach critical levels. A quantification of these losses is necessary to estimate the worthiness of mitigation measures, to determine the appropriate level of disaster assistance and to improve risk management strategies. There are comprehensive approaches available for assessing direct losses. However, indirect losses and costs of emergency are widely not assessed and the empirical basis for estimating these costs is weak. To address the resulting uncertainties of project appraisals, a standardized methodology has been developed dealing with issues of local economic effects and emergency efforts needed. In our approach, the cost-benefit-analysis for technical mitigation of the Austrian Torrent and Avalanche Control (TAC) will be optimized and extended using the 2005-debris flow as a design event, which struggled a small town in the upper Inn valley in southwest Tyrol (Austria). Thereby, 84 buildings were affected, 430 people were evacuated and due to this, the TAC implemented protection measures for 3.75 million Euros. Upgrading the method of the TAC and analyzing to what extent the cost-benefit-ratio is about to change, is one of the main objectives of this study. For estimating short-run indirect effects and costs of emergency on the local level, data was collected via questionnaires, field mapping, guided interviews, as well as intense literature research. According to this, up-to-date calculation methods were evolved and the cost-benefit-analysis of TAC was recalculated with these new-implemented results. The cost-benefit-ratio will be more precise and specific and hence, the decision, which mitigation alternative will be carried out

  8. Duck Valley Habitat Enhancement and Protection, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, Guy; Pero, Vincent (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2000-01-01

    The Duck Valley Indian Reservations' Habitat Enhancement project is an ongoing project designed to enhance and protect the critical riparian areas, natural springs, and native fish spawning areas on the Reservation. The project was begun in 1997 with the hiring of a fisheries biologist and the creation of a new department for the Tribes. The project's goals are to protect and enhance the springs, Owyhee River, its tributaries, and to develop a database that can be used by other fisheries professionals which includes information on water quality and fish composition, health, abundance, and genetic makeup. One habitat portion of the project is a focus on protection the numerous springs that provide clean, cool water to the Owyhee River. This will be accomplished through enclosure fences of the spring heads and water troughs to provide clean cool drinking water for wildlife and livestock. Another habitat portion of the project involves protecting headwater areas of streams with native fish populations. This is accomplished through enclosure fencing and riparian plantings on any eroded or degraded banks in the enclosure area. Finally, we monitor and evaluate the areas protected and enhanced. This is accomplished through biological sampling for temperature, Oxygen, sedimentation, and measurements of water depth, bank height and undercut, and width of stream. With the habitat and biological indices we will be able to evaluate how well protective measures are doing, and where to focus future efforts.

  9. Mitigation assessment results and priorities in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongxin; Wei Zhihong [Tsinghua Univ., Beijing (China)

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  10. Forest inventory, Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final report

    International Nuclear Information System (INIS)

    Narolski, S.W.

    1996-12-01

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area

  11. Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Narolski, Steven W.

    1996-12-01

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.

  12. Habitat Evaluation Procedures (HEP) Report : Oleson Tracts of the Tualatin River National Wildlife Refuge, 2001-2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Donna; Smith, maureen; Schmidt, Peter

    2004-09-01

    Located in the northern Willamette River basin, Tualatin River National Wildlife Refuge (Refuge) was established in 1992 with an approved acquisition boundary to accommodate willing sellers with potentially restorable holdings within the Tualatin River floodplain. The Refuge's floodplain of seasonal and emergent wetlands, Oregon ash riparian hardwood, riparian shrub, coniferous forest, and Garry oak communities are representative of remnant plant communities historically common in the Willamette River valley and offer an opportunity to compensate for wildlife habitat losses associated with the Willamette River basin federal hydroelectric projects. The purchase of the Oleson Units as additions to the Refuge using Bonneville Power Administration (BPA) funds will partially mitigate for wildlife habitat and target species losses incurred as a result of construction and inundation activities at Dexter and Detroit Dams. Lands acquired for mitigation of Federal Columbia River Power System (FCRPS) impacts to wildlife are evaluated using the Habitat Evaluation Procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the FCRPS Loss Assessments and adopted as part of the Northwest Power and Conservation Council's Fish and Wildlife Program as a BPA obligation (NWPCC, 1994 and 2000). There are two basic management scenarios to consider for this evaluation: (1) Habitats can be managed without restoration activities to benefit wildlife populations, or (2) Habitats can be restored using a number of techniques to improve habitat values more quickly. Without restoration, upland and wetland areas may be periodically mowed and disced to prevent invasion of exotic vegetation, volunteer trees and shrubs may grow to expand forested areas, and cooperative farming may be employed to provide forage for migrating and wintering waterfowl. Abandoned cropland

  13. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

  14. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-12-01

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site's contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b)

  15. Defining critical habitats of threatened and endemic reef fishes with a multivariate approach.

    Science.gov (United States)

    Purcell, Steven W; Clarke, K Robert; Rushworth, Kelvin; Dalton, Steven J

    2014-12-01

    Understanding critical habitats of threatened and endemic animals is essential for mitigating extinction risks, developing recovery plans, and siting reserves, but assessment methods are generally lacking. We evaluated critical habitats of 8 threatened or endemic fish species on coral and rocky reefs of subtropical eastern Australia, by measuring physical and substratum-type variables of habitats at fish sightings. We used nonmetric and metric multidimensional scaling (nMDS, mMDS), Analysis of similarities (ANOSIM), similarity percentages analysis (SIMPER), permutational analysis of multivariate dispersions (PERMDISP), and other multivariate tools to distinguish critical habitats. Niche breadth was widest for 2 endemic wrasses, and reef inclination was important for several species, often found in relatively deep microhabitats. Critical habitats of mainland reef species included small caves or habitat-forming hosts such as gorgonian corals and black coral trees. Hard corals appeared important for reef fishes at Lord Howe Island, and red algae for mainland reef fishes. A wide range of habitat variables are required to assess critical habitats owing to varied affinities of species to different habitat features. We advocate assessments of critical habitats matched to the spatial scale used by the animals and a combination of multivariate methods. Our multivariate approach furnishes a general template for assessing the critical habitats of species, understanding how these vary among species, and determining differences in the degree of habitat specificity. © 2014 Society for Conservation Biology.

  16. Evaluation of the varying Naturally Occurring Asbestos mitigation measures at School and Commercial construction projects in California

    Science.gov (United States)

    Kalika, S.

    2012-12-01

    In commercial development or K-12 school construction, project sites are often purchased and much of the planning process completed prior to an assessment of the soils proposed for excavation or potential offhaul. Geologic maps, while initially helpful for identifying potential hazards such as landslides and earthquake faults, are less helpful in the identification of naturally occurring hazardous minerals, such as the seven regulated minerals currently classified as asbestos. Geologic maps identify mafic and ultramafic bedrock zones; however, a skilled geologist with knowledge of asbestos hazards will further visualize the earth-shaping processes that may have resulted in the deposition of naturally occurring asbestos in locations outside mapped ultramafic zones including the base of an alluvial fan or within streambed channels. When sampled as an afterthought prior to disposal, property owners are surprised by the budget-crippling costs of waste handling and disposal of NOA, as well as mitigations required to protect the health of construction workers, the public, and future site occupants. The California Air Resources Board (CARB) continues to lead the way in evaluation and regulation of NOA, through development of the CARB 435 preparation and laboratory analytical method, local enforcement of the Asbestos Airborne Toxic Control Measure for Construction, Grading, Quarrying, and Surface Mining Operations (ATCM), and implementation of dust control measures to protect public health. A thorough site evaluation and construction design includes utilization of the sampling methods developed by the California Geological Survey, laboratory analytical methods within CARB 435, and mitigation measures required by CARB, DTSC, and OSHA for the protection of worker and public health after NOA is discovered. The site evaluation should additionally include an assessment of the future site usage, as regulations differ based on potential health affects to future occupants

  17. Developing statistical wildlife habitat relationships for assessing cumulative effects of fuels treatments: Final Report for Joint Fire Science Program Project

    Science.gov (United States)

    Samuel A. Cushman; Kevin S. McKelvey

    2006-01-01

    The primary weakness in our current ability to evaluate future landscapes in terms of wildlife lies in the lack of quantitative models linking wildlife to forest stand conditions, including fuels treatments. This project focuses on 1) developing statistical wildlife habitat relationships models (WHR) utilizing Forest Inventory and Analysis (FIA) and National Vegetation...

  18. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  19. Transport policies related to climate change mitigation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Kappel, Jannik

    and their results are introduced as well. To provide an overview of current trends, related scientific projects and other analyses on climate change mitigation and transport are given in the report. The references used in this report can also serve as a source of data and inspiration for the reader. This report......This report presents the Danish national policies on reducing the emissions of greenhouse gasses and reducing Denmark’s dependency on fossil fuels in the transport sector, as well as some of the results of the policies. Systematic focus on efficient transport and climate mitigation started in 2008...... challenges for the transport sectors, which has not yet been systematically analysed from any Governmental body. In this report we list projects which have done so. The first chapter describes policies and initiatives of international relevance within climate mitigation. The following chapters explain...

  20. Linking Mitigation and Adaptation in Carbon Forestry Projects: Evidence from Belize

    DEFF Research Database (Denmark)

    Kongsager, Rico; Corbera, Esteve

    2015-01-01

    that linking mitigation and adaptation has not been possible, because the mandate of forest carbon markets does not incorporate adaptation concerns. The projects’ contribution to forest ecosystems’ adaptation, for instance, by reducing human encroachments and by increasing ecosystem connectivity, has been...... instead to promote more holistic and territorial-based approaches targeting both mitigation and adaptation goals....

  1. Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to project potential habitats under 1.5°C-4.0°C global warming.

    Science.gov (United States)

    Takano, Kohei Takenaka; Hibino, Kenshi; Numata, Ayaka; Oguro, Michio; Aiba, Masahiro; Shiogama, Hideo; Takayabu, Izuru; Nakashizuka, Tohru

    2017-12-01

    Rapid expansion of exotic bamboos has lowered species diversity in Japan's ecosystems by hampering native plant growth. The invasive potential of bamboo, facilitated by global warming, may also affect other countries with developing bamboo industries. We examined past (1975-1980) and recent (2012) distributions of major exotic bamboos ( Phyllostachys edulis and P. bambusoides ) in areas adjacent to 145 weather stations in central and northern Japan. Bamboo stands have been established at 17 sites along the latitudinal and altitudinal distributional limit during the last three decades. Ecological niche modeling indicated that temperature had a strong influence on bamboo distribution. Using mean annual temperature and sun radiation data, we reproduced bamboo distribution (accuracy = 0.93 and AUC (area under the receiver operating characteristic curve) = 0.92). These results infer that exotic bamboo distribution has shifted northward and upslope, in association with recent climate warming. Then, we simulated future climate data and projected the climate change impact on the potential habitat distribution of invasive bamboos under different temperature increases (i.e., 1.5°C, 2.0°C, 3.0°C, and 4.0°C) relative to the preindustrial period. Potential habitats in central and northern Japan were estimated to increase from 35% under the current climate (1980-2000) to 46%-48%, 51%-54%, 61%-67%, and 77%-83% under 1.5°C, 2.0°C, 3.0°C, and 4.0°C warming levels, respectively. These infer that the risk areas can increase by 1.3 times even under a 1.5°C scenario and expand by 2.3 times under a 4.0°C scenario. For sustainable ecosystem management, both mitigation and adaptation are necessary: bamboo planting must be carefully monitored in predicted potential habitats, which covers most of Japan.

  2. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  3. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    Science.gov (United States)

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  4. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.

  5. West Valley demonstration project: Implementation of the kerosene mitigation plan

    International Nuclear Information System (INIS)

    Blickwedehl, R.R.; Goodman, J.; Valenti, P.J.

    1987-05-01

    An aggressive program was implemented to mitigate the migration of radioactive kerosene believed to have originated from the West Valley NRC-Licensed Disposal Area (NDA) disposal trenches designated as SH-10 and SH-11 (Special Holes 10 and 11). This report provides a historical background of the events leading to the migration problem, the results of a detailed investigation to determine the location and source of the kerosene migration, the remediation plan to mitigate the migration, and the actions taken to successfully stabilize the kerosene. 7 refs., 19 figs., 1 tab

  6. Public private partnerships for climate change mitigation – An Indian case

    Directory of Open Access Journals (Sweden)

    Tharun Dolla

    2017-01-01

    Full Text Available Cities are one of the major contributors to greenhouse gas emissions. Climate change poses serious threat to urban infrastructure, quality of life, and entire urban systems. Cities need to adopt an integrated approach for improvement of city services in order to adapt to climate change and reduce their greenhouse emissions. However, the magnitude of investment required to bridge the widening infrastructure service provision demand-supply gap along with the additional investment to mitigate climate change demands the need to look for innovative financing solutions. Private investments through public private partnership (PPP route offer an innovative mechanism for meet both the goals of infrastructure development and climate change mitigation. Private parties in PPP, however, focuses on the project economics only though they have the potential to provide innovative technical, financial and managerial solutions. The paper aims to answer the question how to integrate climate change mitigation objective in procurement process of PPP projects. The study has focused only on PPP projects in Municipal Solid Waste Management sector. The integration of climate change mitigation objective has been through design of a modified procurement protocol which promote private sector to devise project structure that fulfil both the objectives of climate change mitigation and provision of quality infrastructure services.

  7. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004

    International Nuclear Information System (INIS)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems

  8. Government programs for climate change mitigation in Japan. An analysis based on public budget documents and Government Project Review Sheets

    International Nuclear Information System (INIS)

    Kimura, Osamu

    2016-01-01

    The Japanese government has been spending huge public budgets for various programs to mitigate climate change, such as subsidy programs for energy efficient and renewable technologies, and R and D programs to develop innovative low carbon technologies. This report makes a comprehensive review of government projects and expenditure related to climate change mitigation in order to grasp their total expenditure and to analyze portfolio of supported technology and activity types, outcome, and the cost-effectiveness. It is estimated that the total expenditure for climate change mitigation excluding nuclear energy and forest sink projects amounts to 4.8 trillion JPY (approximately 40 billion USD) in the period of 2008 to 2014. 40% of the total expenditure went to only three largest programs, namely the Eco Car Subsidy, the Eco Point Programs for Appliances and Houses, all of which have gone through virtually no or only poor evaluations by the implementing ministries. While some programs had decent cost-effectiveness of reducing carbon dioxide emission at below 10,000 JPY/t-CO 2 (approximately 90 USD), there are also programs with very low cost-effectiveness at more than 100,000 JPY/t-CO 2 . Moreover, all of the evaluation was based on 'gross' reduction, not on 'net' of freeriders, rebound and other factors, which may lead to overestimation of performances. The result shows the need for a much larger resource for evaluation activities by the government. (author)

  9. Global screening for Critical Habitat in the terrestrial realm.

    Science.gov (United States)

    Brauneder, Kerstin M; Montes, Chloe; Blyth, Simon; Bennun, Leon; Butchart, Stuart H M; Hoffmann, Michael; Burgess, Neil D; Cuttelod, Annabelle; Jones, Matt I; Kapos, Val; Pilgrim, John; Tolley, Melissa J; Underwood, Emma C; Weatherdon, Lauren V; Brooks, Sharon E

    2018-01-01

    Critical Habitat has become an increasingly important concept used by the finance sector and businesses to identify areas of high biodiversity value. The International Finance Corporation (IFC) defines Critical Habitat in their highly influential Performance Standard 6 (PS6), requiring projects in Critical Habitat to achieve a net gain of biodiversity. Here we present a global screening layer of Critical Habitat in the terrestrial realm, derived from global spatial datasets covering the distributions of 12 biodiversity features aligned with guidance provided by the IFC. Each biodiversity feature is categorised as 'likely' or 'potential' Critical Habitat based on: 1. Alignment between the biodiversity feature and the IFC Critical Habitat definition; and 2. Suitability of the spatial resolution for indicating a feature's presence on the ground. Following the initial screening process, Critical Habitat must then be assessed in-situ by a qualified assessor. This analysis indicates that a total of 10% and 5% of the global terrestrial environment can be considered as likely and potential Critical Habitat, respectively, while the remaining 85% did not overlap with any of the biodiversity features assessed and was classified as 'unknown'. Likely Critical Habitat was determined principally by the occurrence of Key Biodiversity Areas and Protected Areas. Potential Critical Habitat was predominantly characterised by data representing highly threatened and unique ecosystems such as ever-wet tropical forests and tropical dry forests. The areas we identified as likely or potential Critical Habitat are based on the best available global-scale data for the terrestrial realm that is aligned with IFC's Critical Habitat definition. Our results can help businesses screen potential development sites at the early project stage based on a range of biodiversity features. However, the study also demonstrates several important data gaps and highlights the need to incorporate new and

  10. Methodological issues in developing a community forestry greenhouse gas emissions mitigation project in Mancherial forest division of Andhra Pradesh, India

    International Nuclear Information System (INIS)

    Murthy, I.K.; Hegde, G.T.; Sudha, P.; Ravindranath, N.H.

    2006-01-01

    There are several contentious issues related to forestry mitigation projects. The special report of the IPCC and literature published so far have shown that permanence, leakage, baseline establishment, measurement, monitoring, etc., could be addressed satisfactorily using existing scientific methods and accounting rules. To understand the methodological issues of developing community forestry projects, a case study was conducted in Mancherial forest division of Adilabad district in Andhra Pradesh, India. This paper addresses: the setting of project boundaries, baseline selection, establishment of additionality and the calculation of carbon sequestration as a result of the project, prior to project implementation. The steps involved in development of the project and the different methods used for establishing baseline, estimating leakage and transaction cost of developing a community forestry project are presented. The stock is projected to increase by 1480 x 10 3 t C during 2000-2012 over the baseline scenario under the modeling approach and the cost of establishing a baseline and project formulation for a project extending over 32,956 ha is estimated to be US$ 1.25 ha -1 and US$ 4 t C -1

  11. Spatiotemporal patterns and habitat associations of smallmouth bass (Micropterus dolomieu) invading salmon-rearing habitat

    Science.gov (United States)

    Lawrence, David J.; Olden, Julian D.; Torgersen, Christian E.

    2012-01-01

    1. Smallmouth bass (Micropterus dolomieu) have been widely introduced to fresh waters throughout the world to promote recreational fishing opportunities. In the Pacific Northwest (U.S.A.), upstream range expansions of predatory bass, especially into subyearling salmon-rearing grounds, are of increasing conservation concern, yet have received little scientific inquiry. Understanding the habitat characteristics that influence bass distribution and the timing and extent of bass and salmon overlap will facilitate the development of management strategies that mitigate potential ecological impacts of bass.2. We employed a spatially continuous sampling design to determine the extent of bass and subyearling Chinook salmon (Oncorhynchus tshawytscha) sympatry in the North Fork John Day River (NFJDR), a free-flowing river system in the Columbia River Basin that contains an upstream expanding population of non-native bass. Extensive (i.e. 53 km) surveys were conducted over 2 years and during an early and late summer period of each year, because these seasons provide a strong contrast in the river’s water temperature and flow condition. Classification and regression trees were applied to determine the primary habitat correlates of bass abundance at reach and channel-unit scales.3. Our study revealed that bass seasonally occupy up to 22% of the length of the mainstem NFJDR where subyearling Chinook salmon occur, and the primary period of sympatry between these species was in the early summer and not during peak water temperatures in late summer. Where these species co-occurred, bass occupied 60–76% of channel units used by subyearling Chinook salmon in the early summer and 28–46% of the channel units they occupied in the late summer. Because these rearing salmon were well below the gape limitation of bass, this overlap could result in either direct predation or sublethal effects of bass on subyearling Chinook salmon. The upstream extent of bass increased 10–23

  12. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2

  13. Habitat capacity for Sacramento delta - Life Cycle Modeling of Life History Diversity and Habitat Relationships

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of this project are to examine 1) the relative importance of multiple aquatic habitats (streams, estuaries, and nearshore areas, for example) used by...

  14. Habitat characteristics provide insights of carbon storage in seagrass meadows

    KAUST Repository

    Mazarrasa, Inés

    2018-02-17

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence Corg sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence Corg sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows.

  15. Report and recommendations of the Pingston Hydroelectric Project Committee with respect to the issuance of a project approval certificate pursuant to the Environmental Assessment Act, R.S.B.C. 1966, c.119 and fulfilling the requirements for a screening report pursuant to the Canadian Environmental Assessment Act, 1992 c.37, V.1

    International Nuclear Information System (INIS)

    1999-05-01

    A final application was submitted in March 1998 by Canadian Hydro Developers (CHD) with the intent of obtaining a Project Approval certificate under the Act for development of the Project. The purpose of the project committee report is to summarize the application and project report, to describe the potential environmental, economic, social, cultural, heritage and health effects of the project and measures required to mitigate significant adverse effects and to document the recommendations of the committee. The Project is composed of five main parts including the headworks, tunnel, penstock, powerhouse and transmission line. The potential environmental effects of the Project relate mainly to fisheries resources including entrainment at the intake, instream flow needs downstream from the headworks, alteration of fish habitat, sedimentation, and blockage of fish passage. CHD expects to minimize these effects through facility design modifications, operational changes and monitoring programs as required. Other concerns such as alteration of creek temperature, generation of methyl mercury in reservoirs, greenhouse gas flux in reservoirs and total gas pressures have been examined in light of the Project's size and operational schenarios, and the proponent expects these effects to be of minor concern. The Project Committee concluded that the project, with successful implementation and compliance of mitigation and compensation strategies, is not expected to cause significant adverse effects

  16. Evaluation of nekton use and habitat characteristics of restored Louisiana marsh

    Science.gov (United States)

    Thom, C.S.B.; Peyre, M.K.G.L.; Nyman, J.A.

    2004-01-01

    Marsh terracing and coconut fiber mats are two wetland restoration techniques implemented at Sabine National Wildlife Refuge, Louisiana, USA. Using nekton as an indicator of habitat quality, nekton community assemblages were compared between terraced, coconut-matted, unmanaged marsh (restoration goal), and open water (pre-restoration) habitats. Using a throw trap and a 3 m ?? 2 m straight seine, 192 nekton samples were collected over four dates in 2001 and 2002 at all habitats. Nekton abundance was similar at unmanaged marsh (restoration goal), coconut mat, and terrace edge, and significantly higher than at open water (pre-restoration) sites (P Coconut-matted habitat and unmanaged marsh edges had significantly higher numbers of benthic dependent species than terrace edges (P coconut-matted sites. Future restoration projects may evaluate the combined use of coconut mats with terracing projects in order to enhance habitat for benthic dependent nekton.

  17. Management and research of desert tortoises for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; Cox, M.K.; Doerr, T.B.; Green, R.A.; Mueller, J.M.; O'Farrell, T.P.; Rakestraw, D.L.

    1991-01-01

    A program has been developed for the Yucca Mountain Project (YMP) to manage and study the desert tortoise (Gopherus agassizi), a threatened species that occurs at low densities at Yucca Mountain. The goals of this program are to better understand the biology and status of the desert tortoise population at Yucca Mountain, assess impacts on tortoises of site characterization (SC) activities, and minimize those impacts. The first steps we took to develop this program were to compile the available information on tortoise biology at Yucca Mountain, ascertain what information was lacking, and identify the potential impacts on tortoises of SC. We then developed a technical design for identifying and mitigating direct and cumulative impacts and providing information on tortoise biology. Interrelated studies were developed to achieve these objectives. The primary sampling unit for the impact monitoring studies is radiomarked tortoises. Three populations of tortoises will be sampled: individuals isolated from disturbances (control), individuals near major SC activities (direct effects treatment and worst-case cumulative effects treatment), and individuals from throughout Yucca Mountain (cumulative effects treatment). Impacts will be studied by measuring and comparing survival, reproduction, movements, habitat use, health, and diet of these tortoises. A habitat quality model also will be developed and the efficacy of mitigation techniques, such as relocating tortoises, will be evaluated. 29 refs

  18. Weaver Bottoms Wildlife Habitat Restoration: A Case Study

    National Research Council Canada - National Science Library

    Davis, Mary M; Damberg, Carol

    1994-01-01

    .... The Weaver Bottoms Rehabilitation Project is a large scale wetland restoration project that is directed at regaining lost habitat by creating hydrological and energy conditions conducive to marsh growth and production. Davis et al. (1993...

  19. Stormwater runoff mitigation and nutrient leaching from a green roof designed to attract native pollinating insects

    Science.gov (United States)

    Fogarty, S.; Grogan, D. S.; Hale, S. R.

    2013-12-01

    A green roof is typically installed for one of two reasons: to mitigate the 'urban heat island' effect, reducing ambient temperatures and creating energy savings, or to reduce both the quantity and intensity of stormwater runoff, which is a major cause of river erosion and eutrophication. The study of green roofs in the United States has focused on commercial systems that use a proprietary expanded shale or clay substrate, along with succulent desert plants (mainly Sedum species). The green roof has the potential not only to provide thermal insulation and reduce storm runoff, but also to reclaim some of the natural habitat that has been lost to the built environment. Of special importance is the loss of habitat for pollinating insects, particularly native bees, which have been in decline for at least two decades. These pollinators are essential for crop production and for the reproduction of at least 65% of wild plants globally. Our study involves the installation of a small (4ft by 4ft), self-designed green roof system built with readily available components from a hardware store. The garden will be filled with a soilless potting mix, combined with 15% compost, and planted with grasses and wildflowers native to the Seacoast, New Hampshire region. Some of the plant species are used by bees for nesting materials, while others provide food in the form of nectar, pollen, and seeds for bees, butterflies, hummingbirds, and granivorous birds. We monitor precipitation on the roof and runoff from the garden on a per storm basis, and test grab samples of runoff for dissolved organic nitrogen and phosphorous. Runoff and nutrient concentration results are compared to a non-vegetated roof surface, and a proprietary Green Grid green roof system. This project is designed to address three main questions of interest: 1) Can these native plant species, which potentially provide greater ecosystem services than Sedum spp. in the form of food and habitat, survive in the conditions on

  20. Habitat Management: A Tool to Modify Ecosystem Impacts of Nitrogen Deposition?

    Directory of Open Access Journals (Sweden)

    S.A. Power

    2001-01-01

    Full Text Available Atmospheric nitrogen deposition has been shown to affect both the structure and the function of heathland ecosystems. Heathlands are semi-natural habitats and, as such, undergo regular management by mowing or burning. Different forms of management remove more or less nutrients from the system, so habitat management has the potential to mitigate some of the effects of atmospheric deposition. Data from a dynamic vegetation model and two field experiments are presented. The first involves nitrogen addition following different forms of habitat management. The second tests the use of habitat management to promote heathland recovery after a reduction in nitrogen deposition. Both modelling and experimental approaches suggest that plant and microbial response to nitrogen is affected by management. Shoot growth and rates of decomposition were lowest in plots managed using more intensive techniques, including mowing with litter removal and a high temperature burn. Field data also indicate that ecosystem recovery from prolonged elevated inputs of nitrogen may take many years, or even decades, even after the removal of plant and litter nitrogen stores which accompanies the more intensive forms of habitat management.

  1. Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control Systemm (DACS-1)

    International Nuclear Information System (INIS)

    Truitt, R.W.

    1994-08-01

    The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable

  2. Habitat Evaluation Procedures (HEP) Report; Gamblin Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 12, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Gamblin Lake property, an acquisition completed by the Kalispel Tribe of Indians in December 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Gamblin Lake Project provides a total of 273.28 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 127.92 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 21.06 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Wet meadow provides 78.05 HUs for Canada goose and mallard. Emergent wetland habitat provides 46.25 HUs for mallard, muskrat, and Canada goose. The objective of using HEP at the Gamblin Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  3. Fuel Flexibility: Landfill Gas Contaminant Mitigation for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Storey, John Morse [ORNL; Theiss, Timothy J [ORNL; Kass, Michael D [ORNL; FINNEY, Charles E A [ORNL; Lewis, Samuel [Oak Ridge National Laboratory (ORNL); Kaul, Brian C [ORNL; Besmann, Theodore M [ORNL; Thomas, John F [ORNL; Rogers, Hiram [ORNL; Sepaniak, Michael [University of Tennessee, Knoxville (UTK)

    2014-04-01

    This research project focused on the mitigation of silica damage to engine-based renewable landfill gas energy systems. Characterization of the landfill gas siloxane contamination, combined with characterization of the silica deposits in engines, led to development of two new mitigation strategies. The first involved a novel method for removing the siloxanes and other heavy contaminants from the landfill gas prior to use by the engines. The second strategy sought to interrupt the formation of hard silica deposits in the engine itself, based on inspection of failed landfill gas engine parts. In addition to mitigation, the project had a third task to develop a robust sensor for siloxanes that could be used to control existing and/or future removal processes.

  4. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics

    Science.gov (United States)

    Jantz, Patrick; Goetz, Scott; Laporte, Nadine

    2014-02-01

    A key issue in global conservation is how biodiversity co-benefits can be incorporated into land use and climate change mitigation activities, particularly those being negotiated under the United Nations to reduce emissions from tropical deforestation and forest degradation. Protected areas have been the dominant strategy for tropical forest conservation and they have increased substantially in recent decades. Avoiding deforestation by preserving carbon stored in vegetation between protected areas provides an opportunity to mitigate the effects of land use and climate change on biodiversity by maintaining habitat connectivity across landscapes. Here we use a high-resolution data set of vegetation carbon stock to map corridors traversing areas of highest biomass between protected areas in the tropics. The derived corridors contain 15% of the total unprotected aboveground carbon in the tropical region. A large number of corridors have carbon densities that approach or exceed those of the protected areas they connect, suggesting these are suitable areas for achieving both habitat connectivity and climate change mitigation benefits. To further illustrate how economic and biological information can be used for corridor prioritization on a regional scale, we conducted a multicriteria analysis of corridors in the Legal Amazon, identifying corridors with high carbon, high species richness and endemism, and low economic opportunity costs. We also assessed the vulnerability of corridors to future deforestation threat.

  5. Hungry Horse Mitigation Plan; Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam, 1990-2003 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Fraley, John J.; Marotz, Brian L. (Montana Department of Fish, Wildlife and Parks, Helena, MT); DosSantos, Joseph M. (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2003-04-01

    In this document we present fisheries losses, mitigation alternatives, and recommendations to protect, mitigate, and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan addresses six separate program measures in the 1987 Columbia Basin Fish and Wildlife Program. We designed the plan to be closely coordinated in terms of dam operations, funding, and activities with the Kerr Mitigation Plan presently before the Federal Energy Regulatory Commission. This document represents a mitigation plan for consideration by the Northwest Power Planning Council process; it is not an implementation plan. Flathead Lake is one of the cleanest lakes of its size in the world. The exceptional water quality and unique native fisheries make the Flathead Lake/River system extremely valuable to the economy and quality of life in the basin. The recreational fishery in Flathead Lake has an estimated value of nearly eight million dollars annually. This mitigation process represents our best opportunity to reduce the impacts of hydropower in this valuable aquatic system and increase angling opportunity. We based loss estimates and mitigation alternatives on an extensive data base, agency reports, nationally and internationally peer-reviewed scientific articles, and an innovative biological model for Hungry Horse Reservoir and the Flathead River. We conducted an extensive, 14-month scoping and consultation process with agency representatives, representatives of citizen groups, and the general public. This consultation process helped identify issues, areas of agreement, areas of conflict, and advantages and disadvantages of mitigation alternatives. The results of the scoping and consultation process helped shape our mitigation plan. Our recommended plan is based firmly on principles of adaptive management and recognition of biological uncertainty. After we receive direction from the NPPC, we will add more detailed hypotheses and

  6. The VUELCO project consortium: new interdisciplinary research for improved risk mitigation and management during volcanic unrest

    Science.gov (United States)

    Gottsmann, J.

    2012-04-01

    Volcanic unrest is a complex multi-hazard phenomenon of volcanism. The fact that unrest may, but not necessarily must lead to an imminent eruption contributes significant uncertainty to short-term hazard assessment of volcanic activity world-wide. Although it is reasonable to assume that all eruptions are associated with precursory activity of some sort, the knowledge of the causative links between subsurface processes, resulting unrest signals and imminent eruption is, today, inadequate to deal effectively with crises of volcanic unrest. This results predominantly from the uncertainties in identifying the causative processes of unrest and as a consequence in forecasting its short-term evolution. However, key for effective risk mitigation and management during unrest is the early and reliable identification of changes in the subsurface dynamics of a volcano and their assessment as precursors to an impending eruption. The VUELCO project consortium has come together for a multi-disciplinary attack on the origin, nature and significance of volcanic unrest from the scientific contributions generated by collaboration of ten partners in Europe and Latin America. Dissecting the science of monitoring data from unrest periods at six type volcanoes in Italy, Spain, the West Indies, Mexico and Ecuador the consortium will create global strategies for 1) enhanced monitoring capacity and value, 2) mechanistic data interpretation and 3) identification of reliable eruption precursors; all from the geophysical, geochemical and geodetic fingerprints of unrest episodes. Experiments will establish a mechanistic understanding of subsurface processes capable of inducing unrest and aid in identifying key volcano monitoring parameters indicative of the nature of unrest processes. Numerical models will help establish a link between the processes and volcano monitoring data to inform on the causes of unrest and its short-term evolution. Using uncertainty assessment and new short

  7. The seismic project of the National Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Oppenheimer, D.H.; Bittenbinder, A.N.; Bogaert, B.M.; Buland, R.P.; Dietz, L.D.; Hansen, R.A.; Malone, S.D.; McCreery, C.S.; Sokolowski, T.J.; Whitmore, P.M.; Weaver, C.S.

    2005-01-01

    In 1997, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), U.S. Geological Survey (USGS), and the five western States of Alaska, California, Hawaii, Oregon, and Washington joined in a partnership called the National Tsunami Hazard Mitigation Program (NTHMP) to enhance the quality and quantity of seismic data provided to the NOAA tsunami warning centers in Alaska and Hawaii. The NTHMP funded a seismic project that now provides the warning centers with real-time seismic data over dedicated communication links and the Internet from regional seismic networks monitoring earthquakes in the five western states, the U.S. National Seismic Network in Colorado, and from domestic and global seismic stations operated by other agencies. The goal of the project is to reduce the time needed to issue a tsunami warning by providing the warning centers with high-dynamic range, broadband waveforms in near real time. An additional goal is to reduce the likelihood of issuing false tsunami warnings by rapidly providing to the warning centers parametric information on earthquakes that could indicate their tsunamigenic potential, such as hypocenters, magnitudes, moment tensors, and shake distribution maps. New or upgraded field instrumentation was installed over a 5-year period at 53 seismic stations in the five western states. Data from these instruments has been integrated into the seismic network utilizing Earthworm software. This network has significantly reduced the time needed to respond to teleseismic and regional earthquakes. Notably, the West Coast/Alaska Tsunami Warning Center responded to the 28 February 2001 Mw 6.8 Nisqually earthquake beneath Olympia, Washington within 2 minutes compared to an average response time of over 10 minutes for the previous 18 years. ?? Springer 2005.

  8. Yakima Basin Fish Passage Project, Phase 2

    International Nuclear Information System (INIS)

    1991-08-01

    Implementation of the Yakima Basin Fish Passage Project -- Phase 2 would significantly improve the production of anadromous fish in the Yakima River system. The project would provide offsite mitigation and help to compensate for lower Columbia River hydroelectric fishery losses. The Phase 2 screens would allow greater numbers of juvenile anadromous fish to survive. As a consequence, there would be higher returns of adult salmon and steelhead to the Yakima River. The proposed action would play an integral part in the overall Yakima River anadromous fish enhancement program (fish passage improvement, habitat enhancement, hatchery production increases, and harvest management). These would be environmental benefits associated with implementation of the Fish Passage and Protective Facilities Phase 2 Project. Based on the evaluation presented in this assessment, there would be no significant adverse environmental impacts if the proposed action was carried forward. No significant adverse environmental effects have been identified from construction and operation of the Yakima Phase 2 fish passage project. Proper design and implementation of the project will ensure no adverse effects will occur. Based on the information in this environmental analysis, BPA's and Reclamation's proposal to construct these facilities does not constitute a major Federal action that could significantly affect the quality of the human environment. 8 refs., 4 figs., 6 tabs

  9. Results of preliminary reconnaissance trip to determine the presence of wetlands in wet forest habitats on the Island of Hawaii as part of the Hawaii Geothermal Project, October 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wakeley, J.S.; Sprecher, S.W.; Lichvar, R.

    1994-02-25

    In October 1993, the authors sampled soils, vegetation, and hydrology at eight sites representing a range of substrates, elevations, soil types, and plant community types within rainforest habitats on the Island of Hawaii. Their purpose was to determine whether any of these habitats were wetlands according to the 1987 Corps of Engineers Wetlands Delineation Manual. None of the rainforest habitats they sampled was wetland in its entirety. However, communities established on pahoehoe lava flows contained scattered wetlands in depressions and folds in the lava, where water could accumulate. Therefore, large construction projects, such as that associated with proposed geothermal energy development in the area, have the potential to impact a significant number and/or area of wetlands. To estimate those impacts more accurately, they present a supplementary scope of work and cost estimate for additional sampling in the proposed geothermal project area.

  10. Habitat characteristics provide insights of carbon storage in seagrass meadows.

    Science.gov (United States)

    Mazarrasa, Inés; Samper-Villarreal, Jimena; Serrano, Oscar; Lavery, Paul S; Lovelock, Catherine E; Marbà, Núria; Duarte, Carlos M; Cortés, Jorge

    2018-02-16

    Seagrass meadows provide multiple ecosystem services, yet they are among the most threatened ecosystems on earth. Because of their role as carbon sinks, protection and restoration of seagrass meadows contribute to climate change mitigation. Blue Carbon strategies aim to enhance CO 2 sequestration and avoid greenhouse gasses emissions through the management of coastal vegetated ecosystems, including seagrass meadows. The implementation of Blue Carbon strategies requires a good understanding of the habitat characteristics that influence C org sequestration. Here, we review the existing knowledge on Blue Carbon research in seagrass meadows to identify the key habitat characteristics that influence C org sequestration in seagrass meadows, those factors that threaten this function and those with unclear effects. We demonstrate that not all seagrass habitats have the same potential, identify research priorities and describe the implications of the results found for the implementation and development of efficient Blue Carbon strategies based on seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. A World at Risk: Aggregating Development Trends to Forecast Global Habitat Conversion

    Science.gov (United States)

    Oakleaf, James R.; Kennedy, Christina M.; Baruch-Mordo, Sharon; West, Paul C.; Gerber, James S.; Jarvis, Larissa; Kiesecker, Joseph

    2015-01-01

    A growing and more affluent human population is expected to increase the demand for resources and to accelerate habitat modification, but by how much and where remains unknown. Here we project and aggregate global spatial patterns of expected urban and agricultural expansion, conventional and unconventional oil and gas, coal, solar, wind, biofuels and mining development. Cumulatively, these threats place at risk 20% of the remaining global natural lands (19.68 million km2) and could result in half of the world’s biomes becoming >50% converted while doubling and tripling the extent of land converted in South America and Africa, respectively. Regionally, substantial shifts in land conversion could occur in Southern and Western South America, Central and Eastern Africa, and the Central Rocky Mountains of North America. With only 5% of the Earth’s at-risk natural lands under strict legal protection, estimating and proactively mitigating multi-sector development risk is critical for curtailing the further substantial loss of nature. PMID:26445282

  12. A World at Risk: Aggregating Development Trends to Forecast Global Habitat Conversion.

    Science.gov (United States)

    Oakleaf, James R; Kennedy, Christina M; Baruch-Mordo, Sharon; West, Paul C; Gerber, James S; Jarvis, Larissa; Kiesecker, Joseph

    2015-01-01

    A growing and more affluent human population is expected to increase the demand for resources and to accelerate habitat modification, but by how much and where remains unknown. Here we project and aggregate global spatial patterns of expected urban and agricultural expansion, conventional and unconventional oil and gas, coal, solar, wind, biofuels and mining development. Cumulatively, these threats place at risk 20% of the remaining global natural lands (19.68 million km2) and could result in half of the world's biomes becoming >50% converted while doubling and tripling the extent of land converted in South America and Africa, respectively. Regionally, substantial shifts in land conversion could occur in Southern and Western South America, Central and Eastern Africa, and the Central Rocky Mountains of North America. With only 5% of the Earth's at-risk natural lands under strict legal protection, estimating and proactively mitigating multi-sector development risk is critical for curtailing the further substantial loss of nature.

  13. A World at Risk: Aggregating Development Trends to Forecast Global Habitat Conversion.

    Directory of Open Access Journals (Sweden)

    James R Oakleaf

    Full Text Available A growing and more affluent human population is expected to increase the demand for resources and to accelerate habitat modification, but by how much and where remains unknown. Here we project and aggregate global spatial patterns of expected urban and agricultural expansion, conventional and unconventional oil and gas, coal, solar, wind, biofuels and mining development. Cumulatively, these threats place at risk 20% of the remaining global natural lands (19.68 million km2 and could result in half of the world's biomes becoming >50% converted while doubling and tripling the extent of land converted in South America and Africa, respectively. Regionally, substantial shifts in land conversion could occur in Southern and Western South America, Central and Eastern Africa, and the Central Rocky Mountains of North America. With only 5% of the Earth's at-risk natural lands under strict legal protection, estimating and proactively mitigating multi-sector development risk is critical for curtailing the further substantial loss of nature.

  14. Mitigating Reptile Road Mortality: Fence Failures Compromise Ecopassage Effectiveness

    Science.gov (United States)

    Baxter-Gilbert, James H.; Riley, Julia L.; Lesbarrères, David; Litzgus, Jacqueline D.

    2015-01-01

    Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures). Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively evaluate road

  15. Mitigating reptile road mortality: fence failures compromise ecopassage effectiveness.

    Directory of Open Access Journals (Sweden)

    James H Baxter-Gilbert

    Full Text Available Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures. Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively

  16. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    Science.gov (United States)

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large

  17. Habitat Evaluation Procedures (HEP) Report; Beaver Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    On August 14, 2003, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2002. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Beaver Lake Project provides a total of 232.26 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 136.58 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Forested wetland habitat provides 20.02 HUs for bald eagle, black-caped chickadee, mallard, and white-tailed deer. Scrub-shrub wetland habitat provides 7.67 HUs for mallard, yellow warbler, and white-tailed deer. Grassland meadow provides 22.69 HUs for Canada goose and mallard. Emergent wetlands provide 35.04 HUs for Canada goose, mallard, and muskrat. Open water provided 10.26 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  18. 44 CFR 78.12 - Eligible types of projects.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD MITIGATION ASSISTANCE § 78.12 Eligible types of projects. The following types of projects are eligible for.... (g) Minor physical flood mitigation projects that reduce localized flooding problems and do not...

  19. Coeur d'Alene Tribe Fish and Wildlife Program Habitat Protection Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, Angelo; Roberts, Frank; Peters, Ronald

    2002-06-01

    restoration projects throughout the northwest have inadvertently improved habitats for non-targeted species. Landscape level restoration addresses the overall habitat condition of the regional area (macrohabitat), restoring the native species composition, density, and diversity by restoring the native ecosystem function. In the context of the development and implementation of this Habitat Protection Plan, it is important to understand that this is primarily a conservation tool, and is not intended to displace efforts that mitigate for lost resources. This plan is intended to primarily address long-term conservation needs and may not accommodate immediate short-term needs that address lost resources. Therefore, areas selected to address short-term mitigation needs may not be located in the high priority areas identified in this Plan. It needs to be clear that these projects and areas are no less important than those identified in this Plan.

  20. Distribution and habitat of brazilian-pine according to global climate change

    Directory of Open Access Journals (Sweden)

    Marcos Silveira Wrege

    2017-09-01

    Full Text Available Araucaria angustifolia (Bertol. O. Kuntze., also known as brazilian-pine, is a forest native species from Brazil. A. angustifolia is more vulnerable to global climate change, considering it is living in cold and humid mountain regions from southern and southeastern Brazil. Among the native Brazilian forest species, it presents one of the greatest growth and genetic gain potential. It shows excellent wood quality and can still be used in human and animal food, presenting great economic, social and environmental value. In order to determine current distribution of the species and better know its habitat, we worked in the regions representing the borders of natural occurrence, identifying populations and getting trees altitude and geographycal position. Field information along with secondary data from the Environmental Information Center (CRIA were used to map current distribution of brazilian-pine and to project the distribution in the next decades, with the projection of future climate scenarios. Mapping studies of ecological niches in present and future climate scenarios characterizing the environments in which they are living is essential for a better understanding of the risks of species extinction and which mitigating measures could be adequate to reduce the impacts of global climate change on species, thus contributing to the conservation and knowledge of this important species.

  1. 77 FR 36287 - Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander, Calaveras...

    Science.gov (United States)

    2012-06-18

    ...-FXES11120800000F2-123-F2] Proposed Low-Effect Habitat Conservation Plan for the California Tiger Salamander... animal, the threatened Central California Distinct Population Segment of the California tiger salamander (tiger salamander). The applicant would implement a conservation program to minimize and mitigate the...

  2. Habitat Evaluation Procedures (HEP) Report; North Eaton Lake, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-11-01

    On July 6, 2005, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the North Eaton Lake property, an acquisition completed by the Kalispel Tribe of Indians in November 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The North Eaton Lake Project provides a total of 235.05 Habitat Units (HUs) for the species evaluated. Open water habitat provides 9.38 HUs for Canada goose, mallard and muskrat. Emergent wetland habitat provides 11.36 HUs for Canada goose, mallard and muskrat. Forested wetland provides 10.97 HUs for bald eagle, black-capped chickadee, mallard and white-tailed deer. Conifer forest habitat provides 203.34 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the North Eaton Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  3. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Directory of Open Access Journals (Sweden)

    Chihiro Takahata

    Full Text Available When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF. Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  4. Habitat selection of a large carnivore along human-wildlife boundaries in a highly modified landscape.

    Science.gov (United States)

    Takahata, Chihiro; Nielsen, Scott Eric; Takii, Akiko; Izumiyama, Shigeyuki

    2014-01-01

    When large carnivores occupy peripheral human lands conflict with humans becomes inevitable, and the reduction of human-carnivore interactions must be the first consideration for those concerned with conflict mitigation. Studies designed to identify areas of high human-bear interaction are crucial for prioritizing management actions. Due to a surge in conflicts, against a background of social intolerance to wildlife and the prevalent use of lethal control throughout Japan, Asiatic black bears (Ursus thibetanus) are now threatened by high rates of mortality. There is an urgent need to reduce the frequency of human-bear encounters if bear populations are to be conserved. To this end, we estimated the habitats that relate to human-bear interactions by sex and season using resource selection functions (RSF). Significant seasonal differences in selection for and avoidance of areas by bears were estimated by distance-effect models with interaction terms of land cover and sex. Human-bear boundaries were delineated on the basis of defined bear-habitat edges in order to identify areas that are in most need of proactive management strategies. Asiatic black bears selected habitats in close proximity to forest edges, forest roads, rivers, and red pine and riparian forests during the peak conflict season and this was correctly predicted in our human-bear boundary maps. Our findings demonstrated that bears selected abandoned forests and agricultural lands, indicating that it should be possible to reduce animal use near human lands by restoring season-specific habitat in relatively remote areas. Habitat-based conflict mitigation may therefore provide a practical means of creating adequate separation between humans and these large carnivores.

  5. Managing harvest and habitat as integrated components

    Science.gov (United States)

    Osnas, Erik; Runge, Michael C.; Mattsson, Brady J.; Austin, Jane E.; Boomer, G. S.; Clark, R. G.; Devers, P.; Eadie, J. M.; Lonsdorf, E. V.; Tavernia, Brian G.

    2014-01-01

    In 2007, several important initiatives in the North American waterfowl management community called for an integrated approach to habitat and harvest management. The essence of the call for integration is that harvest and habitat management affect the same resources, yet exist as separate endeavours with very different regulatory contexts. A common modelling framework could help these management streams to better understand their mutual effects. Particularly, how does successful habitat management increase harvest potential? Also, how do regional habitat programmes and large-scale harvest strategies affect continental population sizes (a metric used to express habitat goals)? In the ensuing five years, several projects took on different aspects of these challenges. While all of these projects are still on-going, and are not yet sufficiently developed to produce guidance for management decisions, they have been influential in expanding the dialogue and producing some important emerging lessons. The first lesson has been that one of the more difficult aspects of integration is not the integration across decision contexts, but the integration across spatial and temporal scales. Habitat management occurs at local and regional scales. Harvest management decisions are made at a continental scale. How do these actions, taken at different scales, combine to influence waterfowl population dynamics at all scales? The second lesson has been that consideration of the interface of habitat and harvest management can generate important insights into the objectives underlying the decision context. Often the objectives are very complex and trade-off against one another. The third lesson follows from the second – if an understanding of the fundamental objectives is paramount, there is no escaping the need for a better understanding of human dimensions, specifically the desires of hunters and nonhunters and the role they play in conservation. In the end, the compelling question is

  6. Habitat Evaluation Procedures (HEP) Report : West Beaver Lake, 2004-2005 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On September 7, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the West Beaver Lake property, an acquisition completed by the Kalispel Tribe of Indians in September 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, mallard, muskrat, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The West Beaver Lake Project provides a total of 103.08 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 7.17 HUs for mallard and muskrat. Conifer forest habitat provides 95.91 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the West Beaver Lake Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  7. Modelling habitat preference and estimating the spatial distribution of Australian Sea Lions (Neophoca cinerea); "A first exploration "

    NARCIS (Netherlands)

    Aarts, G.M.; Brasseur, S.M.J.M.

    2008-01-01

    Managing the Australian sea lion (Neophoca cinerea) population and mitigating its interactions with commercial fisheries, requires an understanding of their spatial distribution and habitat preference at sea. Numerous wildlife telemetry devices have been attached to individual seals from different

  8. Air pollution prevention through urban heat island mitigation: An update on the urban heat island pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, V.; Taha, H.; Quattrochi, D.; Luvall, J.

    1998-07-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively cool the metropolitan landscape. In addition to the economic benefits, using less energy leads to reductions in emission of CO{sub 2}--a greenhouse gas--as well as ozone (smog) precursors such as NOx and VOCs. Because ozone is created when NOx and VOCs photochemically combine with heat and solar radiation, actions taken to lower ambient air temperature can significantly reduce ozone concentrations in certain areas. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three US cities. As part of the pilot, NASA will use remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. This information will be used by scientists at Lawrence Berkeley National Laboratory (LBNL) along with other data as inputs to model various scenarios that will help quantify the potential benefits of urban heat island mitigation measures in terms of reduced energy use and pollution. This paper will briefly describe this pilot project and provide an update on the progress to date.

  9. Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd., 12 Lentara St, Kenmore, Brisbane 4069 (Australia); Smith, Geoff [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007 (Australia)

    2011-05-15

    A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO{sub 2} which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO{sub 2} emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant - the ''business as usual'' case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects. (author)

  10. ANALYZE THE IMPACT OF HABITAT PATCHES ON WILDLIFE ROAD-KILL

    OpenAIRE

    Seok, S.; Lee, J.

    2015-01-01

    The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-...

  11. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from the McNary Dam, 1994-1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beiningen, Kirk T. [Oregon Dept. of Fish and Wildlife, Portland, OR (US)

    1996-03-01

    The author reports on progress from April 1994 through March 1995 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on sub-adult and adult life histories, population dynamics, quantity and quality of habitat, and production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of sub-adult a nd adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River.

  12. Instream flow needs below peaking hydroelectric projects

    International Nuclear Information System (INIS)

    Milhous, R.T.

    1991-01-01

    This paper reports on a method developed to assist in the determination of instream flow needs below hydroelectric projects operated in a peaking mode. Peaking hydroelectric projects significantly change streamflow over a short period of time; consequently, any instream flow methodology must consider the dual flows associated with peaking projects. The dual flows are the lowest flow and the maximum generation flow of a peaking cycle. The methodology is based on elements of the Physical Habitat Simulation System of the U.S. Fish and Wildlife Service and uses habitat, rather than fish numbers or biomas, as at basic response variable. All aquatic animals are subject to the rapid changes in streamflow which cause rapid swings in habitat quality. Some aquatic organisms are relatively fixed in location in the stream while others can move when flows change. The habitat available from a project operated in peaking mode is considered to be the minimum habitat occurring during a cycle of habitat change. The methodology takes in to consideration that some aquatic animals can move and others cannot move during a peaking cycle

  13. Proposed modifications to the Lower Mokelumne River Project, California: FERC Project No. 2916-004. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This final environmental impact statement (FEIS) has been prepared for the Federal Energy Regulatory Commission (Commission) to consider modifications to the existing Lower Mokelumne River Project (LMRP) (FERC Project No. 2916-004) in California. Chinook salmon and steelhead trout populations in the lower Mokelumne River have experienced recent declines and fish kills associated, in part, with discharges from Camanche Dam. The California Department of Fish and Game and the California Sportfishing Protection Alliance have asked the Commission to investigate and correct these problems. A wide range of different mitigation actions has been proposed by parties participating in the scoping of this proceeding, and staff has evaluated these proposed actions in this assessment. The staff is recommending a combination of flow and non-flow modifications to the existing license, including new minimum flow and minimum pool elevation requirements at Camanche Reservoir, ramping rates on dam releases, interim attraction and out-migrant spike flows, instream habitat improvements, and a series of studies and monitoring to determine feasible means for solving off-site fish passage problems.

  14. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  15. Sustainable and non-conventional monitoring systems to mitigate natural hazards in low income economies: the 4onse project approach.

    Science.gov (United States)

    Cannata, Massimiliano; Ratnayake, Rangajeewa; Antonovic, Milan; Strigaro, Daniele

    2017-04-01

    Environmental monitoring systems in low economies countries are often in decline, outdated or missing with the consequence that there is a very scarce availability and accessibility to these information that are vital for coping and mitigating natural hazards. Non-conventional monitoring systems based on open technologies may constitute a viable solution to create low cost and sustainable monitoring systems that may be fully developed, deployed and maintained at local level without lock-in dependances on copyrights or patents or high costs of replacements. The 4onse research project , funded under the Research for Development program of the Swiss National Science Foundation and the Swiss Office for Development and Cooperation, propose a complete monitoring system that integrates Free & Open Source Software, Open Hardware, Open Data, and Open Standards. After its engineering, it will be tested in the Deduru Oya catchment (Sri Lanka) to evaluate the system and develop a water management information system to optimize the regulation of artificial basins levels and mitigate flash floods. One of the objective is to better scientifically understand strengths, criticalities and applicabilities in terms of data quality; system durability; management costs; performances; sustainability. Results, challenges and experiences from the first six months of the projects will be presented with particular focus on the activities of synergies building and data collection and dissemination system advances.

  16. Report and recommendations of the Brilliant powerplant expansion project committee

    International Nuclear Information System (INIS)

    2001-01-01

    An application was submitted in December 2000 for a project approval certificate for the Brilliant Powerplant Expansion Project (BEP). It included the construction and operation of a new powerhouse with a generating capacity of close to 100 MW, a new intake and tailrace channels, as well as tailrace channel improvements, a powerhouse access bridge over the Kootenay River downstream from the Brilliant Dam, a 600 metre 230 kV transmission link and 230 kV switchyard (the switchyard is no longer part of the project), a construction site and excavation materials disposal areas, and access to the site from Highway 3A and also from Robson Road. Both before and during the environmental assessment review, comprehensive public consultation was undertaken. The issues that were examined were environmental effects, operations, socio-economic effects, health effects, and the cultural and heritage effects. It was concluded that the effects issues related to the construction of the project had been resolved, based on the information provided in the Application and on the mitigation and compensation measures. The potential impact on fish and fish habitat were examined under the operations heading. Again, the committee determined that the proponent had committed to target minimum flows and restrictions, and that the effects issues associated with the operations of the project had been resolved. Increased traffic through the community of Brilliant represented the main focus of the evaluation of the socio-economic effects. Positive economic and employment effects on local communities were expected, and the proponent was ready to address any potential negative social effects to the satisfaction of the committee. Groundwater resources were the only potentially significant effect identified under the heading health effects, and adequate compensation and mitigation measures were committed by the proponent to address the issue. The cultural and heritage effects identified archaeological

  17. Renewed mining and reclamation: Imapacts on bats and potential mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.E. [Univ. of California, Los Angeles, CA (United States); Berry, R.D. [Brown-Berry Biological Consulting, Bishop, CA (United States)

    1997-12-31

    Historic mining created new roosting habitat for many bat species. Now the same industry has the potential to adversely impact bats. Contemporary mining operations usually occur in historic districts; consequently the old workings are destroyed by open pit operations. Occasionally, underground techniques are employed, resulting in the enlargement or destruction of the original workings. Even during exploratory operations, historic mine openings can be covered as drill roads are bulldozed, or drills can penetrate and collapse underground workings. Nearby blasting associated with mine construction and operation can disrupt roosting bats. Bats can also be disturbed by the entry of mine personnel to collect ore samples or by recreational mine explorers, since the creation of roads often results in easier access. In addition to roost disturbance, other aspects of renewed mining can have adverse impacts on bat populations, and affect even those bats that do not live in mines. Open cyanide ponds, or other water in which toxic chemicals accumulate, can poison bats and other wildlife. The creation of the pits, roads and processing areas often destroys critical foraging habitat, or change drainage patterns. Finally, at the completion of mining, any historic mines still open may be sealed as part of closure and reclamation activities. The net result can be a loss of bats and bat habitat. Conversely, in some contemporary underground operations, future roosting habitat for bats can be fabricated. An experimental approach to the creation of new roosting habitat is to bury culverts or old tires beneath waste rock. Mining companies can mitigate for impacts to bats by surveying to identify bat-roosting habitat, removing bats prior to renewed mining or closure, protecting non-impacted roost sites with gates and fences, researching to identify habitat requirements and creating new artificial roosts.

  18. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification.

    Science.gov (United States)

    Pacella, Stephen R; Brown, Cheryl A; Waldbusser, George G; Labiosa, Rochelle G; Hales, Burke

    2018-04-10

    The role of rising atmospheric CO 2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO 2 burden in the habitat was estimated for the years 1765-2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO 2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat's ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pH T , minimum Ω arag , and maximum pCO 2(s.w.) ] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO 2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO 2 driven by aerobic metabolism. This study provides estimates of how high-frequency pH T , Ω arag , and pCO 2(s.w.) dynamics are altered by rising atmospheric CO 2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  19. Compensatory stream and wetland mitigation in North Carolina: an evaluation of regulatory success.

    Science.gov (United States)

    Hill, Tammy; Kulz, Eric; Munoz, Breda; Dorney, John R

    2013-05-01

    Data from a probability sample were used to estimate wetland and stream mitigation success from 2007 to 2009 across North Carolina (NC). "Success" was defined as whether the mitigation site met regulatory requirements in place at the time of construction. Analytical results were weighted by both component counts and mitigation size. Overall mitigation success (including preservation) was estimated at 74 % (SE = 3 %) for wetlands and 75 % (SE = 4 %) for streams in NC. Compared to the results of previous studies, wetland mitigation success rates had increased since the mid-1990s. Differences between mitigation providers (mitigation banks, NC Ecosystem Enhancement Program's design-bid-build and full-delivery programs, NC Department of Transportation and private permittee-responsible mitigation) were generally not significant although permittee-responsible mitigation yielded higher success rates in certain circumstances. Both wetland and stream preservation showed high rates of success and the stream enhancement success rate was significantly higher than that of stream restoration. Additional statistically significant differences when mitigation size was considered included: (1) the Piedmont yielded a lower stream mitigation success rate than other areas of the state, and (2) recently constructed wetland mitigation projects demonstrated a lower success rate than those built prior to 2002. Opportunities for improvement exist in the areas of regulatory record-keeping, understanding the relationship between post-construction establishment and long-term ecological trajectories of stream and wetland restoration projects, incorporation of numeric ecological metrics into mitigation monitoring and success criteria, and adaptation of stream mitigation designs to achieve greater success in the Piedmont.

  20. Using Video to Communicate Scientific Findings -- Habitat Connections in Urban Streams

    Science.gov (United States)

    Harned, D. A.; Moorman, M.; Fitzpatrick, F. A.; McMahon, G.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film examining effects of urbanization on stream habitat. "Habitat Connections in Urban Streams" explores how urbanization changes some of the physical features that provide in-stream habitat and examines examples of stream restoration projects designed to improve stream form and function. The "connections" theme is emphasized, including the connection of in-stream habitats from the headwaters to the stream mouth; connections between stream habitat and the surrounding floodplains, wetlands and basin; and connections between streams and people-- resource managers, public officials, scientists, and the general public. Examples of innovative stream restoration projects in Baltimore Maryland; Milwaukee, Wisconsin; and Portland Oregon are shown with interviews of managers, engineers, scientists, and others describing the projects. The film is combined with a website with links to extended film versions of the stream-restoration project interviews. The website and films are an example of USGS efforts aimed at improving science communication to a general audience. The film is available for access from the EUSE website: http://water.usgs.gov/nawqa/urban/html/podcasts.html. Additional films are

  1. Advanced CO2 Leakage Mitigation using Engineered Biomineralization Sealing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee [Montana State Univ., Bozeman, MT (United States); Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Phillips, Adrienne [Montana State Univ., Bozeman, MT (United States)

    2015-03-31

    This research project addresses one of the goals of the DOE Carbon Sequestration Program (CSP). The CSP core R&D effort is driven by technology and is accomplished through laboratory and pilot scale research aimed at new technologies for greenhouse gas mitigation. Accordingly, this project was directed at developing novel technologies for mitigating unwanted upward leakage of carbon dioxide (CO2) injected into the subsurface as part of carbon capture and storage (CCS) activities. The technology developed by way of this research project is referred to as microbially induced calcite precipitation (MICP).

  2. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  3. Methane emission from ruminants and solid waste: A critical analysis of baseline and mitigation projections for climate and policy studies

    Science.gov (United States)

    Matthews, E.

    2012-12-01

    Current and projected estimates of methane (CH4) emission from anthropogenic sources are numerous but largely unexamined or compared. Presented here is a critical appraisal of CH4 projections used in climate-chemistry and policy studies. We compare emissions for major CH4 sources from several groups, including our own new data and RCP projections developed for climate-chemistry models for the next IPCC Assessment Report (AR5). We focus on current and projected baseline and mitigation emissions from ruminant animals and solid waste that are both predicted to rise dramatically in coming decades, driven primarily by developing countries. For waste, drivers include increasing urban populations, higher per capita waste generation due to economic growth and increasing landfilling rates. Analysis of a new global data base detailing waste composition, collection and disposal indicates that IPCC-based methodologies and default data overestimate CH4 emission for the current period which cascades into substantial overestimates in future projections. CH4 emission from solid waste is estimated to be ~10-15 Tg CH4/yr currently rather than the ~35 Tg/yr often reported in the literature. Moreover, emissions from developing countries are unlikely to rise rapidly in coming decades because new management approaches, such as sanitary landfills, that would increase emissions are maladapted to infrastructures in these countries and therefore unlikely to be implemented. The low current emission associated with solid waste (~10 Tg), together with future modest growth, implies that mitigation of waste-related CH4 emission is a poor candidate for slowing global warming. In the case of ruminant animals (~90 Tg CH4/yr currently), the dominant assumption driving future trajectories of CH4 emission is a substantial increase in meat and dairy consumption in developing countries to be satisfied by growing animal populations. Unlike solid waste, current ruminant emissions among studies exhibit a

  4. Improving Decision Making about Natural Disaster Mitigation Funding in Australia—A Framework

    Directory of Open Access Journals (Sweden)

    Robin C. van den Honert

    2016-09-01

    Full Text Available Economic losses from natural disasters pose significant challenges to communities and to the insurance industry. Natural disaster mitigation aims to reduce the threat to people and assets from natural perils. Good decisions relating to hazard risk mitigation require judgments both about the scientific and financial issues involved, i.e., the efficacy of some intervention, and the ethical or value principles to adopt in allocating resources. A framework for selecting a set of mitigation options within a limited budget is developed. Project selection about natural disaster mitigation options needs to trade off benefits offered by alternative investments (e.g., fatalities and injuries avoided, potential property and infrastructure losses prevented, safety concerns of citizens, etc. against the costs of investment. Such costs include capital and on-going operational costs, as well as intangible costs, such as the impact of the project on the visual landscape or the loss of societal cohesion in the event of the relocation of part of a community. Furthermore, dollar costs of any potential project will need to be defined within some prescribed budget and time frame. Taking all of these factors into account, this paper develops a framework for good natural hazard mitigation decision making and selection.

  5. Habitat amount modulates the effect of patch isolation on host-parasitoid interactions

    Directory of Open Access Journals (Sweden)

    Valérie eCoudrain

    2014-06-01

    Full Text Available 1.Habitat amount and patch isolation are important determinants of biodiversity and ecosystem functioning. We studied the separate and interactive effects of these two components of habitat fragmentation on host-parasitoid interactions in a replicated landscape-scale study. 2.We used trap-nesting solitary bees, wasps and their natural enemies as study system. We exposed trap nests in 30 tree patches in agricultural landscapes in northern Switzerland. Study sites were either (i adjacent to forest (adjacent, (ii distant from forest but connected through woody elements (connected or (iii distant from forest with no connecting woody elements (isolated. Independent of the three levels of isolation, the amount of woody habitat in the landscapes covered a gradient from 4 to 74%. 3.Host and parasitoid species richness increased with the amount of habitat in the landscape and was strongly reduced at isolated compared to adjacent and connected sites. Loss of host species richness was 21% at isolated compared to non-isolated sites, whereas parasitoid species richness decreased by 68%, indicating that the higher trophic level was more adversely affected by isolation. Most importantly, habitat amount and isolation had a pronounced interactive effect on parasitism: while isolation resulted in a strong decrease in parasitism in landscapes with low habitat amount, this effect was mitigated by high habitat amount. These interactive effects were consistent across the three years of the study. 4.The observed interplay between habitat amount and patch isolation may explain the often conflicting results in the habitat fragmentation literature and should be considered in future research on multitrophic communities and ecosystem functioning in fragmented landscapes.

  6. Effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and determine status and habitat requirements of white sturgeon populations in the Columbia and Snake Rivers upstream from the McNary Dam. Annual progress report, April 1994--March 1995

    International Nuclear Information System (INIS)

    Beiningen, K.T.

    1996-03-01

    The author reports on progress from April 1994 through March 1994 of research on white sturgeon in the lower Columbia River. The study began in July 1986 and is a cooperative effort of federal, state and tribal fisheries entities to determine the (1) the status and habitat requirements, and (2) the effects of mitigative measures on productivity of white sturgeon populations in the lower Columbia River. This report describes activities conducted during the third year of this contract's second phase. Information was collected, analyzed, and evaluated on subadult and adult life histories, population dynamics, quantity and quality of habitat, and production enhancement strategies. The report is divided into sections that evaluate success of developing and implementing a management plan for white sturgeon; evaluate growth, mortality, and contributions to fisheries of juvenile white sturgeon transplanted from areas downstream; describe the life history and population dynamics of subadult and adult white sturgeon; define habitat requirements for spawning and rearing of white sturgeon and quantify the extent of habitat available; describe reproductive and early life history characteristics of white sturgeon; and quantify physical habitat used by spawning and rearing white sturgeon in the free-flowing portion of the Columbia River

  7. The idiosyncrasies of streams: local variability mitigates vulnerability of trout to changing conditions

    Science.gov (United States)

    Andrea Watts; Brooke Penaluna; Jason Dunham

    2016-01-01

    Land use and climate change are two key factors with the potential to affect stream conditions and fish habitat. Since the 1950s, Washington and Oregon have required forest practices designed to mitigate the effects of timber harvest on streams and fish. Yet questions remain about the extent to which these practices are effective. Add in the effects of climate change—...

  8. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G A; Turkson, J K; Davidson, O R [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  9. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  10. Using Habitat Equivalency Analysis to Assess the Cost Effectiveness of Restoration Outcomes in Four Institutional Contexts

    Science.gov (United States)

    Scemama, Pierre; Levrel, Harold

    2016-01-01

    At the national level, with a fixed amount of resources available for public investment in the restoration of biodiversity, it is difficult to prioritize alternative restoration projects. One way to do this is to assess the level of ecosystem services delivered by these projects and to compare them with their costs. The challenge is to derive a common unit of measurement for ecosystem services in order to compare projects which are carried out in different institutional contexts having different goals (application of environmental laws, management of natural reserves, etc.). This paper assesses the use of habitat equivalency analysis (HEA) as a tool to evaluate ecosystem services provided by restoration projects developed in different institutional contexts. This tool was initially developed to quantify the level of ecosystem services required to compensate for non-market impacts coming from accidental pollution in the US. In this paper, HEA is used to assess the cost effectiveness of several restoration projects in relation to different environmental policies, using case studies based in France. Four case studies were used: the creation of a market for wetlands, public acceptance of a port development project, the rehabilitation of marshes to mitigate nitrate loading to the sea, and the restoration of streams in a protected area. Our main conclusion is that HEA can provide a simple tool to clarify the objectives of restoration projects, to compare the cost and effectiveness of these projects, and to carry out trade-offs, without requiring significant amounts of human or technical resources.

  11. Moses Lake Fishery Restoration Project : FY 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    None given

    2000-12-01

    The Moses Lake Project consists of 3 phases. Phase 1 is the assessment of all currently available physical and biological information, the collection of baseline biological data, the formulation of testable hypotheses, and the development of a detailed study plan to test the hypotheses. Phase 2 is dedicated to the implementation of the study plan including data collection, hypotheses testing, and the formulation of a management plan. Phase 3 of the project is the implementation of the management plan, monitoring and evaluation of the implemented recommendations. The project intends to restore the failed recreational fishery for panfish species (black crappie, bluegill and yellow perch) in Moses Lake as off site mitigation for lost recreational fishing opportunities for anadromous species in the upper Columbia River. This report summarizes the results of Phase 1 investigations and presents the study plan directed at initiating Phase 2 of the project. Phase 1of the project culminates with the formulation of testable hypotheses directed at investigating possible limiting factors to the production of panfish in Moses Lake. The limiting factors to be investigated will include water quality, habitat quantity and quality, food limitations, competition, recruitment, predation, over harvest, environmental requirements, and the physical and chemical limitations of the system in relation to the fishes.

  12. Scoping key soil issues for the Suncor Voyageur Oil Sands Project EIA

    Energy Technology Data Exchange (ETDEWEB)

    Doram, D.; Gulley, J. [Golder Associates, Calgary, AB (Canada); Fordham, C. [Suncor Energy, Calgary, AB (Canada)

    2002-07-01

    An issue scoping process to focus the soil impact assessment undertaken in conjunction with Suncor Energy's Voyageur Project near Fort McMurray, Alberta, is described. Potential impacts to soils considered include disturbances from mining and in-situ developments, re-constructing soils to meet equivalent capability and predicting how soils will respond to acid deposition. The assessment also provides an opportunity to evaluate unique soil mitigation strategies at both the local and regional levels. New regulatory and soil reclamation challenges include developing soil salvage criteria for restoring the biodiversity which existed prior to the disturbance necessitated by the mining and in-situ operations and creating a suitable habitat for the caribou in the Firebag lease.

  13. Navy Radon Assessment and Mitigation Program: Work/quality assurance project plan screening phase

    International Nuclear Information System (INIS)

    1991-03-01

    In 1987, the military services of the United States were tasked to take appropriate action to establish an indoor radon assessment and mitigation program. As a result, the Naval Facilities Engineering Command (NAVFACENGCOM) was assigned the responsibility of identifying potential hazards to personnel from exposure to naturally occurring radon gas and prioritizing corrective actions and to coordinating these actions with the major claimants. NAVRAMP is based upon current US Environmental Protection Agency (EPA) guidelines. The program has been separated into four phases. The screening phase will concentrate on evaluating radon levels, based on statistical samples, in those buildings that have been determined to be at most at risk to elevated levels of radon, such as base housing, schools, day-care centers, hospitals, brigs, Base Officer Quarters, and Base Enlisted Quarters. During the assessment phase, every building that contains personnel for over 4 h/day will be evaluated. Mitigation work will be accomplished by Navy or Navy-contracted personnel. HAZWRAP services during the mitigation phase will consist of determining the extent of reduction in radon levels after the mitigation effort. 7 refs., 11 figs

  14. Simulation of flow and habitat conditions under ice, Cache la Poudre River - January 2006

    Science.gov (United States)

    Waddle, Terry

    2007-01-01

    The U.S. Forest Service authorizes the occupancy and use of Forest Service lands by various projects, including water storage facilities, under the Federal Land Policy and Management Act. Federal Land Policy and Management Act permits can be renewed at the end of their term. The U.S. Forest Service analyzes the environmental effects for the initial issuance or renewal of a permit and the terms and conditions (for example, mitigations plans) contained in the permit for the facilities. The U.S. Forest Service is preparing an environmental impact statement (EIS) to determine the conditions for the occupancy and use for Long Draw Reservoir on National Forest System administered lands. The scope of the EIS includes evaluating current operations and effects to fish habitat of an ongoing winter release of 0.283 m3 /s (10 ft3 /s) from headwater reservoirs as part of a previously issued permit. The field conditions observed during this study included this release.

  15. Net climate change mitigation of the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Erickson, Peter; Lazarus, Michael; Spalding-Fecher, Randall

    2014-01-01

    The Clean Development Mechanism (CDM) has allowed industrialized countries to buy credits from developing countries for the purpose of meeting targets under the Kyoto Protocol. In principle, the CDM simply shifts the location of emission reductions, with no net mitigation impact. Departing from this zero-sum calculus, the Cancun Agreements reached at the sixteenth session of the Conference of the Parties (COP) in 2010 called for “one or more market-based mechanisms” capable of “ensuring a net decrease and/or avoidance of global greenhouse gas emissions”, an intention reiterated at COP 17 and COP 18. This article explores the extent to which the CDM may or may not already lead to such a “net decrease.” It finds that the CDM's net mitigation impact likely hinges on the additionality of large-scale power projects, which are expected to generate the majority of CDM credits going forward. If these projects are truly additional and continue to operate well beyond the credit issuance period, they will decrease global greenhouse gas emissions. However, if they are mostly non-additional, as research suggests, they could increase global greenhouse gas emissions. The article closes with a discussion of possible means to increase mitigation benefit. - Highlights: • The CDM's method for assessing additionality remains controversial and contested. • We develop two scenarios of the net emissions impact of the CDM. • The integrity of the CDM hinges on the emissions impact of power supply projects. • Additionality is hard to demonstrate with confidence for most power-supply projects. • A number of options are available to increase the mitigation benefit of the CDM

  16. Habitat or matrix: which is more relevant to predict road-kill of vertebrates?

    Science.gov (United States)

    Bueno, C; Sousa, C O M; Freitas, S R

    2015-11-01

    We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most relevant factor to explain road-kill events. To test this hypothesis, we chose vertebrates as the studied assemblage and a highway crossing in an Atlantic Forest region in southeastern Brazil as the study site. Logistic regression models were designed using presence/absence of road-kill events as dependent variables and landscape characteristics as independent variables, which were selected by Akaike's Information Criterion. We considered a set of candidate models containing four types of simple regression models: Habitat effect model; Matrix types effect models; Highway effect model; and, Reference models (intercept and buffer distance). Almost three hundred road-kills and 70 species were recorded. River proximity and herbaceous vegetation cover, both matrix effect models, were associated to most road-killed vertebrate groups. Matrix was more relevant than habitat to predict road-kill of vertebrates. The association between river proximity and road-kill indicates that rivers may be a preferential route for most species. We discuss multi-species mitigation measures and implications to movement ecology and conservation strategies.

  17. Risk and mitigation in the privately financed hydropower project Birecik, Turkey; Privat finanzierte Wasserkraft, Birecik, Tuerkei - Risiken und Risikoverteilung

    Energy Technology Data Exchange (ETDEWEB)

    Koselleck, F.; Ishay, D. [PH Ventures GmbH, Neu-Isenburg (Germany)

    2003-07-01

    The 627 MW Hydroelectric Power Plant Birecik, Turkey, is the largest privately financed hydropower project realized wordwide under a BOT (Build Operate Transfer) scheme. The total investment volume adds up to almost 1 Bll Euro. Ther financial structure of the project mostly relies on export credits, which have been arranged under an international consortium of 50 banks. A complex contractual structure between the government, the investors and the contractors succeeded in establishing a fair risk mitigation mechanism, which was a central factor for the overall success of the project. [German] Das 672 MW Wasserkraftwerk Birecik, Tuerkei, ist mit einem Investitionsvolumen von rund Euro 1 Mrd. das bisher weltweit groesste Wasserkraftprojekt, das nach dem BOT-Modell realisiert wurde. Die auf Exportkredite basierende Finanzierung wurde ueber ein internationales Konsortium von 50 Banken dargestellt. Eine komplexe Vertragsstruktur zwischen dem Staat, den Investoren und den Auftragsnehmern fuehrte zu einem ausgeglichenen Risikoverteilungsmechanismus, der ausschlaggebend fuer den Erfolg des Projektes war. (orig.)

  18. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations.

    Directory of Open Access Journals (Sweden)

    Erin E Poor

    Full Text Available Terrestrial long-distance migrations are declining globally: in North America, nearly 75% have been lost. Yet there has been limited research comparing habitat suitability and connectivity models to identify migration corridors across increasingly fragmented landscapes. Here we use pronghorn (Antilocapra americana migrations in prairie habitat to compare two types of models that identify habitat suitability: maximum entropy (Maxent and expert-based (Analytic Hierarchy Process. We used distance to wells, distance to water, NDVI, land cover, distance to roads, terrain shape and fence presence to parameterize the models. We then used the output of these models as cost surfaces to compare two common connectivity models, least-cost modeling (LCM and circuit theory. Using pronghorn movement data from spring and fall migrations, we identified potential migration corridors by combining each habitat suitability model with each connectivity model. The best performing model combination was Maxent with LCM corridors across both seasons. Maxent out-performed expert-based habitat suitability models for both spring and fall migrations. However, expert-based corridors can perform relatively well and are a cost-effective alternative if species location data are unavailable. Corridors created using LCM out-performed circuit theory, as measured by the number of pronghorn GPS locations present within the corridors. We suggest the use of a tiered approach using different corridor widths for prioritizing conservation and mitigation actions, such as fence removal or conservation easements.

  19. Comparing habitat suitability and connectivity modeling methods for conserving pronghorn migrations.

    Science.gov (United States)

    Poor, Erin E; Loucks, Colby; Jakes, Andrew; Urban, Dean L

    2012-01-01

    Terrestrial long-distance migrations are declining globally: in North America, nearly 75% have been lost. Yet there has been limited research comparing habitat suitability and connectivity models to identify migration corridors across increasingly fragmented landscapes. Here we use pronghorn (Antilocapra americana) migrations in prairie habitat to compare two types of models that identify habitat suitability: maximum entropy (Maxent) and expert-based (Analytic Hierarchy Process). We used distance to wells, distance to water, NDVI, land cover, distance to roads, terrain shape and fence presence to parameterize the models. We then used the output of these models as cost surfaces to compare two common connectivity models, least-cost modeling (LCM) and circuit theory. Using pronghorn movement data from spring and fall migrations, we identified potential migration corridors by combining each habitat suitability model with each connectivity model. The best performing model combination was Maxent with LCM corridors across both seasons. Maxent out-performed expert-based habitat suitability models for both spring and fall migrations. However, expert-based corridors can perform relatively well and are a cost-effective alternative if species location data are unavailable. Corridors created using LCM out-performed circuit theory, as measured by the number of pronghorn GPS locations present within the corridors. We suggest the use of a tiered approach using different corridor widths for prioritizing conservation and mitigation actions, such as fence removal or conservation easements.

  20. Systematic review of the influence of foraging habitat on red-cockaded woodpecker reproductive success.

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, James E. [North Carolina State University

    2014-04-01

    Relationships between foraging habitat and reproductive success provide compelling evidence of the contribution of specific vegetative features to foraging habitat quality, a potentially limiting factor for many animal populations. For example, foraging habitat quality likely will gain importance in the recovery of the threatened red-cockaded woodpecker Picoides borealis (RCW) in the USA as immediate nesting constraints are mitigated. Several researchers have characterized resource selection by foraging RCWs, but emerging research linking reproductive success (e.g. clutch size, nestling and fledgling production, and group size) and foraging habitat features has yet to be synthesized. Therefore, we reviewed peer-refereed scientific literature and technical resources (e.g. books, symposia proceedings, and technical reports) that examined RCW foraging ecology, foraging habitat, or demography to evaluate evidence for effects of the key foraging habitat features described in the species’ recovery plan on group reproductive success. Fitness-based habitat models suggest foraging habitat with low to intermediate pine Pinus spp. densities, presence of large and old pines, minimal midstory development, and herbaceous groundcover support more productive RCW groups. However, the relationships between some foraging habitat features and RCW reproductive success are not well supported by empirical data. In addition, few regression models account for > 30% of variation in reproductive success, and unstandardized multiple and simple linear regression coefficient estimates typically range from -0.100 to 0.100, suggesting ancillary variables and perhaps indirect mechanisms influence reproductive success. These findings suggest additional research is needed to address uncertainty in relationships between foraging habitat features and RCW reproductive success and in the mechanisms underlying those relationships.

  1. ISU Team Project: An Integral View on Space Debris Mitigation and Removal

    Science.gov (United States)

    Maier, Philipp; Ricote Navarro, Carmon; Jehn, Rudiger; Gini, Andrea; Faure, Pauline; Adriaensen, Maarten; Datta, Iman; Hilbich, Daniel; Jacimovic, Aleksandar; Jacques, Lionel; Penent, Guilhem; Sinn, Thomas; Shioi, Hiroaki

    2013-08-01

    The issue of space debris poses challenges not only in technical, but also legal, political and economic dimensions. A sustainable solution needs to take into account all of them. This paper investigates such a potential solution in a multidisciplinary approach. To this end, it addresses the effectiveness of the existing debris mitigation guidelines, and identifies technical improvements for mitigation. It continues examining technical concepts for debris removal and performing proper cost-benefit trade-offs. The results of new simulations to assess the damage cost caused by space debris are presented. Based on these findings, an organizational framework and political recommendations are developed which will enable a sustainable use of space starting in 2020. The findings are compiled into a roadmap, which outlines 1) a path to the full adherence to debris mitigation guidelines and 2) the removal of ten large pieces of debris per year by a dedicated international organization, including expected expenditures necessary for its implementation.

  2. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used......).  Hydromorphological conditions in the stream are measured through field study, using a habitat mapping approach and modelled using a habitat hydraulic model (RHYHABSIM). Using RHYHABSIM and both "site-specific" and general HSI's, Weighted Usable Area (WUA) for the trout population at different discharges is assessed...... and differences between simulated WUA using "site-specific" and general habitat preferences are discussed. In RHYHABSIM it is possible to use two different approaches to investigate the hydromorphological conditions in a river, the habitat mapping approach used in this project and the representative reach...

  3. Habitat Selection and Activity Pattern of GPS Collared Sumateran Tigers

    Directory of Open Access Journals (Sweden)

    Dolly Priatna

    2012-12-01

    Full Text Available Although translocation has been used in mitigating human-carnivore conflict for decades, few studies have been conducted on the behavioral ecology of released animals. Such information is necessary in the context of sustainable forest management. In this study we determine the type of land cover used as main habitat and examine the activity pattern of translocated tigers. Between 2008 and 2010 we captured six conflict tigers and translocated them 74-1,350 km from their capture sites in Sumatera. All tigers were fitted with global positioning system (GPS collars. The collars were set to fix 24-48 location coordinates per day.  All translocated tigers showed a preference for a certain habitat type within their new home range, and tended to select the majority of natural land cover type within the landscape as their main habitat, but the availability of natural forest habitat within the landscape remains essensial for their survival. The activity of male translocated tigers differed significantly between the six time intervals of 24 hours, and their most active periods were in the afternoon (14:00-18:00 hours and in the evening (18:00-22:00 hours. Despite being preliminary, the findings of this study-which was the first such study conducted in Sumatera-highlight the conservation value of tiger translocation and provide valuable information for improving future management of conflict tigers.Keywords: activity pattern, GPS collars, habitat selection, sumateran tiger, translocation

  4. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    Science.gov (United States)

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  5. Earthquake Risk Mitigation in the Tokyo Metropolitan area

    Science.gov (United States)

    Hirata, N.; Sakai, S.; Kasahara, K.; Nakagawa, S.; Nanjo, K.; Panayotopoulos, Y.; Tsuruoka, H.

    2010-12-01

    Seismic disaster risk mitigation in urban areas constitutes a challenge through collaboration of scientific, engineering, and social-science fields. Examples of collaborative efforts include research on detailed plate structure with identification of all significant faults, developing dense seismic networks; strong ground motion prediction, which uses information on near-surface seismic site effects and fault models; earthquake resistant and proof structures; and cross-discipline infrastructure for effective risk mitigation just after catastrophic events. Risk mitigation strategy for the next greater earthquake caused by the Philippine Sea plate (PSP) subducting beneath the Tokyo metropolitan area is of major concern because it caused past mega-thrust earthquakes, such as the 1703 Genroku earthquake (magnitude M8.0) and the 1923 Kanto earthquake (M7.9) which had 105,000 fatalities. A M7 or greater (M7+) earthquake in this area at present has high potential to produce devastating loss of life and property with even greater global economic repercussions. The Central Disaster Management Council of Japan estimates that the M7+ earthquake will cause 11,000 fatalities and 112 trillion yen (about 1 trillion US$) economic loss. This earthquake is evaluated to occur with a probability of 70% in 30 years by the Earthquake Research Committee of Japan. In order to mitigate disaster for greater Tokyo, the Special Project for Earthquake Disaster Mitigation in the Tokyo Metropolitan Area (2007-2011) was launched in collaboration with scientists, engineers, and social-scientists in nationwide institutions. The results that are obtained in the respective fields will be integrated until project termination to improve information on the strategy assessment for seismic risk mitigation in the Tokyo metropolitan area. In this talk, we give an outline of our project as an example of collaborative research on earthquake risk mitigation. Discussion is extended to our effort in progress and

  6. Accessing international financing for climate change mitigation - A guidebook for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Limaye, D.R.; Zhu, X.

    2012-08-15

    This guidebook has been prepared by the UNEP Risoe Centre (URC) as part of its Technology Needs Assessment (TNA) project. The TNA project assists developing countries to identify national mitigation and adaptation technology priorities and to develop Technology Action Plans (TAPs) for mitigation of greenhouse gas (GHG) emissions and climate change adaptation. This guidebook provides information to help TNA countries better identify and access financial resources for the mitigation activities included in their national TAPs. This guidebook covers both mitigation 'projects' (such as a wind farm or a solar PV generation facility) and 'programmes' (such as a credit line for financing energy efficiency projects in small and medium-sized enterprises (SMEs), or bulk procurement and distribution of compact fluorescent lamps to households). The primary emphasis is on multilateral and bilateral sources of financing but the guidebook also includes an overview of private funding sources and public-private partnerships (PPPs). This guidebook only covers international financing for mitigation actions in developing countries. For example, EU funding for EU member countries and Chinese funding for mitigation in China are not covered in this guidebook. However, the EU funding for mitigation in developing countries and Chinese funding supporting mitigation in other developing countries are included. Special funds established in some developing countries by pooling financing support from developed countries are also covered in this guidebook. Information on the financing sources was compiled in a standard format and reviewed and analysed to categorise the financing sources. For the multilateral and bilateral financing sources, the available information was used to define their major characteristics (such as geographic coverage, technology/sector focus, funding sources, financing objectives, financing mechanisms, and management and governance). In addition, the

  7. Diel habitat selection of largemouth bass following woody structure installation in Table Rock Lake, Missouri

    Science.gov (United States)

    Harris, J.M.; Paukert, Craig P.; Bush, S.C.; Allen, M.J.; Siepker, Michael

    2018-01-01

    Largemouth bass Micropterus salmoides (Lacepède) use of installed habitat structure was evaluated in a large Midwestern USA reservoir to determine whether or not these structures were used in similar proportion to natural habitats. Seventy largemouth bass (>380 mm total length) were surgically implanted with radio transmitters and a subset was relocated monthly during day and night for one year. The top habitat selection models (based on Akaike's information criterion) suggest largemouth bass select 2–4 m depths during night and 4–7 m during day, whereas littoral structure selection was similar across diel periods. Largemouth bass selected boat docks at twice the rate of other structures. Installed woody structure was selected at similar rates to naturally occurring complex woody structure, whereas both were selected at a higher rate than simple woody structure. The results suggest the addition of woody structure may concentrate largemouth bass and mitigate the loss of woody habitat in a large reservoir.

  8. 44 CFR 78.11 - Minimum project eligibility criteria.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program FLOOD... activity in an approved Flood Mitigation Plan does not mean it meets FMA eligibility criteria. Projects... with the Flood Mitigation Plan; the type of project being proposed must be identified in the plan. (f...

  9. Projections of NH3 emissions from manure generated by livestock production in China to 2030 under six mitigation scenarios.

    Science.gov (United States)

    Xu, Peng; Koloutsou-Vakakis, Sotiria; Rood, Mark J; Luan, Shengji

    2017-12-31

    China's rapid urbanization, large population, and increasing consumption of calorie-and meat-intensive diets, have resulted in China becoming the world's largest source of ammonia (NH 3 ) emissions from livestock production. This is the first study to use provincial, condition-specific emission factors based on most recently available studies on Chinese manure management and environmental conditions. The estimated NH 3 emission temporal trends and spatial patterns are interpreted in relation to government policies affecting livestock production. Scenario analysis is used to project emissions and estimate mitigation potential of NH 3 emissions, to year 2030. We produce a 1km×1km gridded NH 3 emission inventory for 2008 based on county-level activity data, which can help identify locations of highest NH 3 emissions. The total NH 3 emissions from manure generated by livestock production in 2008 were 7.3TgNH 3 ·yr -1 (interquartile range from 6.1 to 8.6TgNH 3 ·yr -1 ), and the major sources were poultry (29.9%), pigs (28.4%), other cattle (27.9%), and dairy cattle (7.0%), while sheep and goats (3.6%), donkeys (1.3%), horses (1.2%), and mules (0.7%) had smaller contributions. From 1978 to 2008, annual NH 3 emissions fluctuated with two peaks (1996 and 2006), and total emissions increased from 2.2 to 7.3Tg·yr -1 increasing on average 4.4%·yr -1 . Under a business-as-usual (BAU) scenario, NH 3 emissions in 2030 are expected to be 13.9TgNH 3 ·yr -1 (11.5-16.3TgNH 3 ·yr -1 ). Under mitigation scenarios, the projected emissions could be reduced by 18.9-37.3% compared to 2030 BAU emissions. This study improves our understanding of NH 3 emissions from livestock production, which is needed to guide stakeholders and policymakers to make well informed mitigation decisions for NH 3 emissions from livestock production at the country and regional levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    Directory of Open Access Journals (Sweden)

    Aaron D Flesch

    Full Text Available Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70 than weather (0.17 or conspecifics (0.13, evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways

  11. Halifax Lateral Pipeline Project : comprehensive study report

    International Nuclear Information System (INIS)

    1998-12-01

    The National Energy Board has requested the preparation of a comprehensive study report (CSR) for the proposed Halifax Lateral Pipeline Project in support of Maritimes and Northeast Pipeline Company's proposal to construct the lateral pipeline to transport natural gas produced in offshore Nova Scotia to the Tufts Cove electric generating station in the Halifax Regional Municipality. The project will also enhance the access of natural gas to potential markets located along the pipeline route. This CSR was prepared according to guidelines of the Canadian Environmental Assessment Agency. The report presents: (1) an overview of the project, (2) a summary of the regulatory requirements for assessment, (3) a description of the environmental assessment and regulatory process to date, (4) a summary of the predicted residual environmental and socio-economic effects associated with the project, and (5) a summary of the public consultation process. The environmental and socio-economic assessment focused on these eleven issues: groundwater resources, surface water resources, wetlands, soils, air quality, fish habitat, rare herpetiles, mammals, avifauna, rare plants and archaeological heritage resources. The report identified potential interactions between the project and valued socio-economic and environmental components. These were addressed in combination with recommended mitigative measures to reduce potential adverse effects. It was concluded that the overall environmental effects from the proposed project are likely to be minimal and can be effectively managed with good environmental management methods. 14 refs., 5 tabs., 5 figs., 2 appendices

  12. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  13. Habitat Evaluation Procedures (HEP) Report : Priest River, 2004-2005 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Priest River property, an acquisition completed by the Kalispel Tribe of Indians in 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Priest River Project provides a total of 105.41 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 26.95 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Grassland habitat provides 23.78 HUs for Canada goose and mallard. Scmb-shrub vegetation provides 54.68 HUs for mallard, yellow warbler, and white-tailed deer.

  14. CONTRACTUAL RISKS IN THE NEW ZEALAND CONSTRUCTION INDUSTRY: ANALYSIS AND MITIGATION MEASURES

    Directory of Open Access Journals (Sweden)

    Jasper Mbachu

    2014-12-01

    Full Text Available While tendering for jobs, a contractor is expected to analyse the various risks in each prospective project and price them appropriately. Contingencies are included in the tender price to cater for the various risks based on their impacts on the project targets and profit margin. Currently in New Zealand (NZ, there is little or no information on the various contractual risks and their mitigation measures. This has led to contractors over compensating or under compensating for risks with costly consequences. This study aimed to establish priority contractual risks in the NZ construction industry, and their mitigation measures. The research was based on a questionnaire survey of consultants and contractors. Descriptive statistics and multi-attribute techniques were used in the data analysis. Results showed 21 risk factors which were segregated into 6 broad categories in diminishing levels of significance as follows: Site conditions, main contractor, pricing, subcontractor, external and client- related risks. Putting tags and conditions to risky price items in the tender bids, and transferring the risks onto other parties were analysed as the 2 most effective out of the 5 key risk mitigation measures identified. Being cautious of the priority risks and application of the identified effective risk mitigation measures could guide contractors and the project team to more appropriately budget for and respond to risks, thereby ensuring more satisfactory project outcomes.

  15. Forestry for mitigating the greenhouse effect : an ecological and economic assessment of the potential of land use to mitigate CO2 emissions in the Highlands of Chiapas, Mexico

    NARCIS (Netherlands)

    Jong, de B.H.J.

    2000-01-01

    The present study intends to answer some of the important questions that arise when translating projects that have an ecological potential to mitigate carbon excesses, into actual implementation of these projects in a farmer-dominated landscape. Farm and community forestry projects for

  16. The fate of threatened coastal dune habitats in Italy under climate change scenarios.

    Science.gov (United States)

    Prisco, Irene; Carboni, Marta; Acosta, Alicia T R

    2013-01-01

    Coastal dunes worldwide harbor threatened habitats characterized by high diversity in terms of plant communities. In Italy, recent assessments have highlighted the insufficient state of conservation of these habitats as defined by the EU Habitats Directive. The effects of predicted climate change could have dramatic consequences for coastal environments in the near future. An assessment of the efficacy of protection measures under climate change is thus a priority. Here, we have developed environmental envelope models for the most widespread dune habitats in Italy, following two complementary approaches: an "indirect" plant-species-based one and a simple "direct" one. We analyzed how habitats distribution will be altered under the effects of two climate change scenarios and evaluated if the current Italian network of protected areas will be effective in the future after distribution shifts. While modeling dune habitats with the "direct" approach was unsatisfactory, "indirect" models had a good predictive performance, highlighting the importance of using species' responses to climate change for modeling these habitats. The results showed that habitats closer to the sea may even increase their geographical distribution in the near future. The transition dune habitat is projected to remain stable, although mobile and fixed dune habitats are projected to lose most of their actual geographical distribution, the latter being more sensitive to climate change effects. Gap analysis highlighted that the habitats' distribution is currently adequately covered by protected areas, achieving the conservation target. However, according to predictions, protection level for mobile and fixed dune habitats is predicted to drop drastically under the climate change scenarios which we examined. Our results provide useful insights for setting management priorities and better addressing conservation efforts to preserve these threatened habitats in future.

  17. Modeling the Habitat of the Red-Crowned Crane (Grus japonensis Wintering in Cheorwon-Gun to Support Decision Making

    Directory of Open Access Journals (Sweden)

    Ho Gul Kim

    2016-06-01

    Full Text Available Cheorwon-gun is an important wintering area for the red-crowned crane (Grus japonensis. Although eco-tourism has been recently proposed as a means to stimulate the local economy, it may have adverse effects on the crane. We believe a science-based conservation plan is needed to mitigate these negative effects. To this end, our study had three objectives: (1 to analyze the red-crowned crane habitat and its suitability in Cheorwon-gun, using field surveys and habitat modeling; (2 to check the feasibility of alternative habitat patches across demilitarized zones (DMZs; and (3 to propose a conceptual diagram that minimizes habitat loss during development activities. We aim to quantify habitat suitability, the farmland area needed to support existing crane populations in wintertime, disturbance caused by human activities, and vehicular spatial patterns. These data could be used in spatial planning. The framework of this study and the process of making a conceptual diagram could be applied to other areas where there is a conflict between development and habitat conservation.

  18. Critical success factors in infrastructure projects

    Science.gov (United States)

    Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; Mohd Rahim, E. M. Roodienyanto

    2017-11-01

    Construction of infrastructure project is different from buildings. The main difference is term of project site where infrastructure project need to command a long stretch while building mostly confine to a limited area. As such factors that are critical to infrastructure project may not be that significant to building project and vice versa. Flood mitigation can be classified under infrastructure projects under which their developments are planned by the government with the specific objective to reduce or avoid the negative effects of flood to the environment and livelihood. One of the indicators in project success is delay. The impact of project delay in construction industry is significant that it decelerates the projects implementation, specifically the government projects. This study attempted to identify and compare the success factors between infrastructure and building projects, as such comparison rarely found in the current literature. A model of flood mitigation projects' success factors was developed by merging the experts' views and reports from the existing literature. The experts' views were obtained from the responses to open-ended questions on the required fundamentals to achieve successful completion of flood mitigation projects. An affinity analysis was applied to these responses to develop the model. The developed model was then compared to the established success factors found in building project, extracted from the previous studies to identify the similarities and differences between the two models. This study would assist the government and construction players to become more effective in constructing successful flood mitigation projects for the future practice in a flood-prone country like Malaysia.

  19. FEMA Hazard Mitigation Assistance Severe Repetitive Loss (SRL) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Severe Repetitive Loss (SRL). The...

  20. FEMA Hazard Mitigation Assistance Repetitive Flood Claims (RFC) Data

    Data.gov (United States)

    Department of Homeland Security — This dataset contains closed and obligated projects funded under the following Hazard Mitigation Assistance (HMA) grant programs: Repetitive Flood Claims (RFC). The...

  1. Projected impacts to the production of outdoor recreation opportunities across US state park systems due to the adoption of a domestic climate change mitigation policy

    International Nuclear Information System (INIS)

    Smith, Jordan W.; Leung, Yu-Fai; Seekamp, Erin; Walden-Schreiner, Chelsey; Miller, Anna B.

    2015-01-01

    Highlights: • A technical efficiency model identifies where state park systems can be improved. • The technical efficiency model is joined with output of CC policy simulations. • Shifts in operating expenditure under the CC mitigation policy are estimated. • Results reveal substantial variability across states. • Increasing technical efficiency is the best solution to adapt to CC policy impacts. - Abstract: Numerous empirical and simulation-based studies have documented or estimated variable impacts to the economic growth of nation states due to the adoption of domestic climate change mitigation policies. However, few studies have been able to empirically link projected changes in economic growth to the provision of public goods and services. In this research, we couple projected changes in economic growth to US states brought about by the adoption of a domestic climate change mitigation policy with a longitudinal panel dataset detailing the production of outdoor recreation opportunities on lands managed in the public interest. Joining empirical data and simulation-based estimates allow us to better understand how the adoption of a domestic climate change mitigation policy would affect the provision of public goods in the future. We first employ a technical efficiency model and metrics to provide decision makers with evidence of specific areas where operational efficiencies within the nation's state park systems can be improved. We then augment the empirical analysis with simulation-based changes in gross state product (GSP) to estimate changes to the states’ ability to provide outdoor recreation opportunities from 2014 to 2020; the results reveal substantial variability across states. Finally, we explore two potential solutions (increasing GSP or increasing technical efficiency) for addressing the negative impacts on the states’ park systems operating budgets brought about by the adoption of a domestic climate change mitigation policy; the

  2. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in dete...... rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.......Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...

  3. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification

    Science.gov (United States)

    Pacella, Stephen R.; Brown, Cheryl A.; Waldbusser, George G.; Labiosa, Rochelle G.; Hales, Burke

    2018-04-01

    The role of rising atmospheric CO2 in modulating estuarine carbonate system dynamics remains poorly characterized, likely due to myriad processes driving the complex chemistry in these habitats. We reconstructed the full carbonate system of an estuarine seagrass habitat for a summer period of 2.5 months utilizing a combination of time-series observations and mechanistic modeling, and quantified the roles of aerobic metabolism, mixing, and gas exchange in the observed dynamics. The anthropogenic CO2 burden in the habitat was estimated for the years 1765–2100 to quantify changes in observed high-frequency carbonate chemistry dynamics. The addition of anthropogenic CO2 alters the thermodynamic buffer factors (e.g., the Revelle factor) of the carbonate system, decreasing the seagrass habitat’s ability to buffer natural carbonate system fluctuations. As a result, the most harmful carbonate system indices for many estuarine organisms [minimum pHT, minimum Ωarag, and maximum pCO2(s.w.)] change up to 1.8×, 2.3×, and 1.5× more rapidly than the medians for each parameter, respectively. In this system, the relative benefits of the seagrass habitat in locally mitigating ocean acidification increase with the higher atmospheric CO2 levels predicted toward 2100. Presently, however, these mitigating effects are mixed due to intense diel cycling of CO2 driven by aerobic metabolism. This study provides estimates of how high-frequency pHT, Ωarag, and pCO2(s.w.) dynamics are altered by rising atmospheric CO2 in an estuarine habitat, and highlights nonlinear responses of coastal carbonate parameters to ocean acidification relevant for water quality management.

  4. Nationally Appropriate Mitigation Action: Understanding NAMA Cycle

    DEFF Research Database (Denmark)

    Sharma, Sudhir; Desgain, Denis DR

    There is no internationally defined or agreed Nationally Appropriate Mitigation Action(NAMA) cycle, as was the case, for example, with the Clean Development Mechanisms (CDM) project cycle. However, there are some common steps that NAMA identification, formulation, and implementation will all go...

  5. Comparing wildlife habitat and biodiversity across green roof type

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Oklahoma Univ., Tulsa, OK (United States). Dept. of Landscape Architecture

    2007-07-01

    Green roofs represent restorative practices within human dominated ecosystems. They create habitat, increase local biodiversity, and restore ecosystem function. Cities are now promoting this technology as a part of mitigation for the loss of local habitat, making the green roof necessary in sustainable development. While most green roofs create some form of habitat for local and migratory fauna, some systems are designed to provide specific habitat for species of concern. Despite this, little is actually known about the wildlife communities inhabiting green roofs. Only a few studies have provided broad taxa descriptions across a range of green roof habitats, and none have attempted to measure the biodiversity across green roof class. Therefore, this study examined two different vegetated roof systems representative of North America. They were constructed under alternative priorities such as energy, stormwater and aesthetics. The wildlife community appears to be a result of the green roof's physical composition. Wildlife community composition and biodiversity is expected be different yet comparable between the two general types of green roofs, known as extensive and intensive. This study recorded the community composition found in the two classes of ecoroofs and assessed biodiversity and similarity at the community and group taxa levels of insects, spiders and birds. Renyi family of diversity indices were used to compare the communities. They were further described through indices and ratios such as Shannon's, Simpson's, Sorenson and Morsita's. In general, community biodiversity was found to be slightly higher in the intensive green roof than the extensive green roof. 26 refs., 4 tabs., 4 figs.

  6. Habitat or matrix: which is more relevant to predict road-kill of vertebrates?

    Directory of Open Access Journals (Sweden)

    C. Bueno

    Full Text Available Abstract We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most relevant factor to explain road-kill events. To test this hypothesis, we chose vertebrates as the studied assemblage and a highway crossing in an Atlantic Forest region in southeastern Brazil as the study site. Logistic regression models were designed using presence/absence of road-kill events as dependent variables and landscape characteristics as independent variables, which were selected by Akaike’s Information Criterion. We considered a set of candidate models containing four types of simple regression models: Habitat effect model; Matrix types effect models; Highway effect model; and, Reference models (intercept and buffer distance. Almost three hundred road-kills and 70 species were recorded. River proximity and herbaceous vegetation cover, both matrix effect models, were associated to most road-killed vertebrate groups. Matrix was more relevant than habitat to predict road-kill of vertebrates. The association between river proximity and road-kill indicates that rivers may be a preferential route for most species. We discuss multi-species mitigation measures and implications to movement ecology and conservation strategies.

  7. Salton Sea Ecosystem Monitoring Project

    Science.gov (United States)

    Miles, A. Keith; Ricca, Mark A.; Meckstroth, Anne; Spring, Sarah E.

    2009-01-01

    The Salton Sea is critically important for wintering and breeding waterbirds, but faces an uncertain future due to water delivery reductions imposed by the Interstate and Federal Quantification Settlement Agreement of 2003. The current preferred alternative for wetland restoration at the Salton Sea is saline habitat impoundments created to mitigate the anticipated loss of wetland habitat. In 2006, a 50-hectare experimental complex that consisted of four inter-connected, shallow water saline habitat ponds (SHP) was constructed at the southeastern shoreline of the Salton Sea and flooded with blended waters from the Alamo River and Salton Sea. The present study evaluated ecological risks and benefits of the SHP concept prior to widespread restoration actions. This study was designed to evaluate (1) baseline chemical, nutrient, and contaminant measures from physical and biological constituents, (2) aquatic invertebrate community structure and colonization patterns, and (3) productivity of and contaminant risks to nesting waterbirds at the SHP. These factors were evaluated and compared with those of nearby waterbird habitat, that is, reference sites.

  8. A critical assessment of the ecological assumptions underpinning compensatory mitigation of salmon-derived nutrients

    Science.gov (United States)

    Collins, Scott F.; Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2015-01-01

    We critically evaluate some of the key ecological assumptions underpinning the use of nutrient replacement as a means of recovering salmon populations and a range of other organisms thought to be linked to productive salmon runs. These assumptions include: (1) nutrient mitigation mimics the ecological roles of salmon, (2) mitigation is needed to replace salmon-derived nutrients and stimulate primary and invertebrate production in streams, and (3) food resources in rearing habitats limit populations of salmon and resident fishes. First, we call into question assumption one because an array of evidence points to the multi-faceted role played by spawning salmon, including disturbance via redd-building, nutrient recycling by live fish, and consumption by terrestrial consumers. Second, we show that assumption two may require qualification based upon a more complete understanding of nutrient cycling and productivity in streams. Third, we evaluate the empirical evidence supporting food limitation of fish populations and conclude it has been only weakly tested. On the basis of this assessment, we urge caution in the application of nutrient mitigation as a management tool. Although applications of nutrients and other materials intended to mitigate for lost or diminished runs of Pacific salmon may trigger ecological responses within treated ecosystems, contributions of these activities toward actual mitigation may be limited.

  9. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  10. A broad scale analysis of tree risk, mitigation and potential habitat for cavity-nesting birds

    Science.gov (United States)

    Brian Kane; Paige S. Warren; Susannah B. Lerman

    2015-01-01

    Trees in towns and cities provide habitat for wildlife. In particular, cavity-nesting birds nest in the deadand decayed stems and branches of these trees. The same dead and decayed stems and branches alsohave a greater likelihood of failure, which, in some circumstances, increases risk. We examined 1760trees in Baltimore, MD, USA and western MA, USA, assessing tree...

  11. Fuels planning: science synthesis and integration; environmental consequences fact sheet 15: The Wildlife Habitat Response Model

    Science.gov (United States)

    David Pilliod

    2005-01-01

    The Wildlife Habitat Response Model (WHRM) is a Web-based computer tool for evaluating the potential effects of fuel-reduction projects on terrestrial wildlife habitats. It uses species-habitat associations in ponderosa pine (Pinus ponderosa), dry-type Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus...

  12. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  13. Stress analysis and mitigation measures for floating pipeline

    Science.gov (United States)

    Wenpeng, Guo; Yuqing, Liu; Chao, Li

    2017-03-01

    Pipeline-floating is a kind of accident with contingency and uncertainty associated to natural gas pipeline occurring during rainy season, which is significantly harmful to the safety of pipeline. Treatment measures against pipeline floating accident are summarized in this paper on the basis of practical project cases. Stress states of pipeline upon floating are analyzed by means of Finite Element Calculation method. The effectiveness of prevention ways and subsequent mitigation measures upon pipeline-floating are verified for giving guidance to the mitigation of such accidents.

  14. CRCP Trap effects on coralline habitats 2001-2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is derived from a Coral Reef Conservation Program-funded project to access effects of trap fishing on coral reefs and associated habitats in Puerto...

  15. Modular Architecture for the Deep Space Habitat Instrumentation System

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is focused on developing a continually evolving modular backbone architecture for the Deep Space Habitat (DSH) instrumentation system by integrating new...

  16. Ecological Forecasting Project Management with Examples

    Science.gov (United States)

    Skiles, J. W.; Schmidt, Cindy; Estes, Maury; Turner, Woody

    2017-01-01

    Once scientists publish results of their projects and studies, all too often they end up on the shelf and are not otherwise used. The NASA Earth Science Division established its Applied Sciences Program (ASP) to apply research findings to help solve and manage real-world problems and needs. ASP-funded projects generally produce decision support systems for operational applications which are expected to last beyond the end of the NASA funding. Because of NASAs unique perspective of looking down on the Earth from space, ASP studies involve the use of remotely sensed information consisting of satellite data and imagery as well as information from sub-orbital platforms. ASP regularly solicits Earth science proposals that address one or more focus areas; disasters mitigation, ecological forecasting, health and air quality, and water resources. Reporting requirements for ASP-funded projects are different from those typical for research grants from NASA and other granting agencies, requiring management approaches different from other programs. This presentation will address the foregoing in some detail and give examples of three ASP-funded ecological forecasting projects that include: 1) the detection and survey of chimpanzee habitat in Africa from space, 2) harmful algal blooms (HABs) in the California Current System affecting aquaculture facilities and marine mammal populations, and 3) a call for the public to identify North America wildlife in Wisconsin using trail camera photos. Contact information to propose to ASP solicitations for those PIs interested is also provided.

  17. Water quality mitigation banking : final report, December 2009.

    Science.gov (United States)

    2009-12-01

    Current practice in New Jersey for mitigating stormwater impacts caused by transportation infrastructure : projects is established by NJDEP Stormwater Regulations (N.J.A.C. 7:8). These rules outline specific : processes to offset impacts to water qua...

  18. Drainage filter technologies to mitigate site-specific phosphorus losses

    DEFF Research Database (Denmark)

    Kjærgaard, Charlotte; Heckrath, Goswin Johann; Iversen, Bo Vangsø

    2014-01-01

    -specific nutrient losses in drainage. The “SUPREME-TECH” project (2010-2015), funded by the Danish Strategic Research Council, aims at providing the scientific basis for developing cost-effective drainage filter technologies to retain P in agricultural drainage waters. The project studies different approaches...... high risks areas of P loss and applying site-specific measures therefore seems a more cost-efficient approach. The Danish Commission for Nature and Agriculture has now called for a shift of paradigm towards targeted mitigation and development of new, cost-efficient technologies to mitigate site......-scale surface-flow constructed wetland. In the former, various natural and industrial P filter substrates have been tested for their ability to reduce inlet P concentrations to below environmental threshold values (

  19. Habitat selection of the Mauritian lowland forest day gecko at multiple spatial scales: A baseline for translocation

    Directory of Open Access Journals (Sweden)

    Steeves Buckland

    2014-08-01

    Full Text Available Of 30 known subpopulations of Phelsuma guimbeaui, 18 are in patches of exotic forest and are predicted to disappear in the next decade. One possible means of mitigating the reduction in genetic diversity associated with the loss of subpopulations is to translocate “at risk” subpopulations to more secure habitats. Prior to any such intervention, it is important to identify a species’ basic ecological needs. We had three main objectives: to calculate home range sizes of adult geckos; characterise habitat selection among age groups; and identify the order of importance of each habitat predictor. Habitat selection of P. guimbeaui was explored at the population, home range and microhabitat levels. Males had larger home ranges than females, and overlapped temporally with more females than males. We showed that habitat selection differed between age groups. In order of importance, tree diversity, tree species, tree height, trunk dbh and cavity density were important habitat predictors. We discuss how these data can be used to inform the choice of sites for the translocation of threatened subpopulations. Our results also highlight the importance of undertaking habitat restoration for the long-term conservation of the 12 subpopulations that survive in patches of endemic forest.

  20. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    OpenAIRE

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-01-01

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health -- changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and othe...

  1. Monitoring and mitigating measures to reduce potential impacts of oil and gas exploration and development on bears in the Inuvik region

    Energy Technology Data Exchange (ETDEWEB)

    Branigan, M. [Government of the Northwest Territories, Inuvik, NT (Canada). Dept. of Environment and Natural Resources

    2007-07-01

    The Inuvik Region consists of the Northwest Territories portion of the Inuvialuit Settlement Region and the Gwich'in Settlement Area. The range of grizzly bears, polar bears and black bears extends to different parts of the region. The potential impact of development depends on the season of the development and the species of bear found in the footprint. As such, monitoring and mitigation measures should take this into consideration. This presentation focused on the potential impacts and current practices to monitor and mitigate the impacts in the region. Mitigation measures currently used include: communication with stakeholders; waste management guidelines; use of wildlife monitors to identify key habitat and den sites and to deter bears; minimum flight altitudes; and safety training. Suggestions for additional mitigation measures were also presented. figs.

  2. Mapping Oyster Reef Habitats in Mobile Bay

    Science.gov (United States)

    Bolte, Danielle

    2011-01-01

    Oyster reefs around the world are declining rapidly, and although they haven t received as much attention as coral reefs, they are just as important to their local ecosystems and economies. Oyster reefs provide habitats for many species of fish, invertebrates, and crustaceans, as well as the next generations of oysters. Oysters are also harvested from many of these reefs and are an important segment of many local economies, including that of Mobile Bay, where oysters rank in the top five commercial marine species both by landed weight and by dollar value. Although the remaining Mobile Bay oyster reefs are some of the least degraded in the world, projected climate change could have dramatic effects on the health of these important ecosystems. The viability of oyster reefs depends on water depth and temperature, appropriate pH and salinity levels, and the amount of dissolved oxygen in the water. Projected increases in sea level, changes in precipitation and runoff patterns, and changes in pH resulting from increases in the amount of carbon dioxide dissolved in the oceans could all affect the viability of oyster reefs in the future. Human activities such as dredging and unsustainable harvesting practices are also adversely impacting the oyster reefs. Fortunately, several projects are already under way to help rebuild or support existing or previously existing oyster reefs. The success of these projects will depend on the local effects of climate change on the current and potential habitats and man s ability to recognize and halt unsustainable harvesting practices. As the extent and health of the reefs changes, it will have impacts on the Mobile Bay ecosystem and economy, changing the resources available to the people who live there and to the rest of the country, since Mobile Bay is an important national source of seafood. This project identified potential climate change impacts on the oyster reefs of Mobile Bay, including the possible addition of newly viable

  3. Lighting Automation Flying an Earthlike Habitat

    Science.gov (United States)

    Clark, Toni A.; Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  4. Lighting Automation - Flying an Earthlike Habitat

    Science.gov (United States)

    Clark, Tori A. (Principal Investigator); Kolomenski, Andrei

    2017-01-01

    Currently, spacecraft lighting systems are not demonstrating innovations in automation due to perceived costs in designing circuitry for the communication and automation of lights. The majority of spacecraft lighting systems employ lamps or zone specific manual switches and dimmers. This type of 'hardwired' solution does not easily convert to automation. With advances in solid state lighting, the potential to enhance a spacecraft habitat is lost if the communication and automation problem is not tackled. If we are to build long duration environments, which provide earth-like habitats, minimize crew time, and optimize spacecraft power reserves, innovation in lighting automation is a must. This project researched the use of the DMX512 communication protocol originally developed for high channel count lighting systems. DMX512 is an internationally governed, industry-accepted, lighting communication protocol with wide industry support. The lighting industry markets a wealth of hardware and software that utilizes DMX512, and there may be incentive to space certify the system. Our goal in this research is to enable the development of automated spacecraft habitats for long duration missions. To transform how spacecraft lighting environments are automated, our project conducted a variety of tests to determine a potential scope of capability. We investigated utilization and application of an industry accepted lighting control protocol, DMX512 by showcasing how the lighting system could help conserve power, assist with lighting countermeasures, and utilize spatial body tracking. We hope evaluation and the demonstrations we built will inspire other NASA engineers, architects and researchers to consider employing DMX512 "smart lighting" capabilities into their system architecture. By using DMX512 we will prove the 'wheel' does not need to be reinvented in terms of smart lighting and future spacecraft can use a standard lighting protocol to produce an effective, optimized and

  5. Impact assessment and mitigation in existing lake regulation projects in the Oulujoki river system

    International Nuclear Information System (INIS)

    Kaatra, K.; Marttunen, M.

    1993-01-01

    The objective of the project was to determine how regulation practices and shore zone maintenance and improvement should be developed in order to give more attention to recreational requirements and factors affecting the aquatic environment. The proposals must not, however, cause flooding damage or significant energy economy losses. The effects of four alternative regulation practices on hydrology flooding damage, recreational utilization, the aquatic, environment, fisheries and the hydropower production were compared in lakes Oulujaervi, Kiantajaervi, Vuokkijaervi, Ontojaervi and Sotkamonjaervi. An extensive sub-study was made on the maintenance and improvement of the shore zones of the regulated lakes. Ways of reducing excessive vegetation were studied in Lake Oulujaervi, and experiments testing the feasibility of various plants in protecting and landscaping the littoral zone were conducted in Lake Ontojaervi. Enquiries in to the perceptions of and the needs for mitigating harmful impacts, as experienced by the people living within the area affected by the river development projects, were also included in the analysis. The alternative regulation practices for Lake Oulujaervi were compared using the decision analysis interview method, in which the data acquired through the environmental impact analysis of effects were combined with the values of the local people and interest groups. The impact of alternative regulation practices was also weighed from the viewpoint of sustainability in various scales. Recommendations were made for regulation patterns and maintenance and improvement programmes for individual lakes

  6. Fuel carbon intensity standards may not mitigate climate change

    International Nuclear Information System (INIS)

    Plevin, Richard J.; Delucchi, Mark A.; O’Hare, Michael

    2017-01-01

    To mitigate the climate change effects of transportation, the US states of California and Oregon, the Canadian province of British Columbia, and the European Union have implemented regulations to reduce the life cycle greenhouse gas (GHG) emissions intensity of transport fuel, commonly referred to as 'carbon intensity', or CI. In this article, we unpack the theory and practice of fuel CI standards, examining claims regarding climate-change mitigation. We show that these standards do not reliably mitigate climate change because estimates of GHG reductions rely primarily on models that are not designed to estimate changes in emissions and climate impacts. Some regulations incorporate models that estimate a subset of changes in emissions, but the models must project changes in global markets over decades, and there is little agreement about the best model structure or parameter values. Since multiple models and projections may be equally plausible, fuel CI is inevitably subjective and unverifiable. We conclude that regulating or taxing observable emissions would more reliably achieve emission reduction. - Highlights: • Use of fuel carbon intensity (CI) standards has been expanding recently. • Fuel CI ratings are subjective, scenario- and model-dependent. • Uncertainty in fuel CI ratings creates uncertainty in policy outcomes. • There is no reliable test of whether fuel CI standards mitigate climate change. • Regulating or taxing observable emissions would be a more reliable approach.

  7. Energy mitigation, adaptation and biodiversity: Synergies and antagonisms

    International Nuclear Information System (INIS)

    Berry, P M; Paterson, J S

    2009-01-01

    In this paper we review the current impacts of different energy producers (and energy conservation) on biodiversity and investigate the potential for achieving positive biodiversity effects along with mitigation and adaptation objectives. Very few energy producers achieve all three aims - although it may be possible with careful choice of location and management. In some instances, energy conservation can provide mitigation, adaptation and biodiversity benefits. There is still a gap in knowledge regarding the effects of newer energy technologies on biodiversity. There is an additional concern that many supposedly 'green' renewable energy projects may actually harm biodiversity to such a degree that their overall human benefits are negated. The increasing understanding that ecosystem services are vital for human well-being though means that attempting positive mitigation, adaptation and biodiversity conservation in the energy sector should be an imperative goal for international policy. Whilst research into synergies between mitigation and adaptation is established, there has been very little that has examined the impacts on biodiversity as well. Further work is required to identify and provide evidence of the best ways of optimising mitigation, adaptation and biodiversity in the energy sector.

  8. Annual monitoring report for the Gunnison, Colorado, wetlands mitigation plan

    International Nuclear Information System (INIS)

    1995-10-01

    The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites is near the town of Gunnison, Colorado; surface remediation and the environmental impacts of remedial action are described in the Gunnison environmental assessment (EA) (DOE, 1992). Remedial action resulted in the elimination of 4.3 acres (ac) 1.7 hectares (ha) of wetlands and mitigation of this loss of wetlands is being accomplished through the enhance of 18.4 ac (7.5 ha) of riparian plant communities in six spring feed areas on Bureau of Land Management (BLM) land. The description of the impacted and mitigation wetlands is provided in the Mitigation and Monitoring Plan for Impacted Wetlands at the Gunnison UMTRA Project Site, Gunnison, Colorado (DOE, 1994), which is attached to the US Army corps of Engineers (USACE) Section 404 Permit. As part of the wetlands mitigation plan, the six mitigation wetlands were fenced in the fall of 1993 to exclude livestock grazing. Baseline of grazed conditions of the wetlands vegetation was determined during the summer of 1993 (DOE, 1994). A 5-year monitoring program of these six sites has been implemented to document the response of vegetation and wildlife to the exclusion of livestock. This annual monitoring report provides the results of the first year of the 5-year monitoring period

  9. Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss

    Science.gov (United States)

    Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.

    2014-12-01

    Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.

  10. Ecological Compliance Assessment Project: 1994 Summary report

    International Nuclear Information System (INIS)

    Brandt, C.A.

    1994-11-01

    The Ecological Compliance Assessment Project (ECAP) began full operation on March 1, 1994. The project is designed around a baseline environmental data concept that includes intensive biological field surveys of key areas of the Hanford Site where the majority of Site activities occur. These surveys are conducted at biologically appropriate times of year to ensure that the data gathered are current and accurate. The data are entered into the ECAP database, which serves as a reference for the evaluation of review requests coming in to the project. This methodology provided the basis for over 90 percent of the review requests received. Field surveys conducted under ECAP are performed to document occurrence information for species of concern and to obtain habitat descriptions. There are over 200 species of concern on the Hanford Site, including plants, birds, mammals, reptiles, amphibians, fish, and invertebrates. In addition, Washington State has designated mature sagebrush-steppe habitat as a Priority Habitat meriting special protective measures. Of the projects reviewed, 17 resulted or will result in impacts to species or habitats of concern on the Hanford Site. The greatest impact has been on big sagebrush habitat. Most of the impact has been or will be within the 600 Area of the Site

  11. Leapfrogging over development? Promoting rural renewables for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Zerriffi, Hisham [Liu Institute for Global Issues, 6476 NW Marine Dr., University of British Columbia, Vancouver BC (Canada); Wilson, Elizabeth [Hubert Humphrey Institute of Public Affairs, University of Minnesota, Minneapolis MN (United States)

    2010-04-15

    Renewable energy technologies have the potential to help solve two pressing problems. On one hand, carbon-free energy sources must play a role in climate change mitigation. On the other hand, renewables might help meet needs of rural people without access to modern energy services. However, if renewables are deployed to combat climate change (primarily resulting from emissions in the developed economies) then providing basic energy services in the developing world may be compromised. The tendency to conflate the two drivers by installing renewables in rural areas for carbon mitigation reasons rather than for development reasons could compromise both goals. The danger is supporting sub-optimal policies for mitigating carbon and for rural energy. This is problematic given the limited funds available for energy development and reducing greenhouse gases. This paper analyzes how these goals have been balanced by the Global Environment Facility (GEF). Project documents are used to determine whether incremental costs of installing renewables were covered by GEF funds and whether the costs are comparable with other carbon mitigation options. The results raise concerns about the effectiveness and appropriateness of GEF funding of such projects and highlight the importance of post-Kyoto framework design to reduce emissions and promote development. (author)

  12. Leapfrogging over development? Promoting rural renewables for climate change mitigation

    International Nuclear Information System (INIS)

    Zerriffi, Hisham; Wilson, Elizabeth

    2010-01-01

    Renewable energy technologies have the potential to help solve two pressing problems. On one hand, carbon-free energy sources must play a role in climate change mitigation. On the other hand, renewables might help meet needs of rural people without access to modern energy services. However, if renewables are deployed to combat climate change (primarily resulting from emissions in the developed economies) then providing basic energy services in the developing world may be compromised. The tendency to conflate the two drivers by installing renewables in rural areas for carbon mitigation reasons rather than for development reasons could compromise both goals. The danger is supporting sub-optimal policies for mitigating carbon and for rural energy. This is problematic given the limited funds available for energy development and reducing greenhouse gases. This paper analyzes how these goals have been balanced by the Global Environment Facility (GEF). Project documents are used to determine whether incremental costs of installing renewables were covered by GEF funds and whether the costs are comparable with other carbon mitigation options. The results raise concerns about the effectiveness and appropriateness of GEF funding of such projects and highlight the importance of post-Kyoto framework design to reduce emissions and promote development.

  13. Multi-species genetic connectivity in a terrestrial habitat network.

    Science.gov (United States)

    Marrotte, Robby R; Bowman, Jeff; Brown, Michael G C; Cordes, Chad; Morris, Kimberley Y; Prentice, Melanie B; Wilson, Paul J

    2017-01-01

    Habitat fragmentation reduces genetic connectivity for multiple species, yet conservation efforts tend to rely heavily on single-species connectivity estimates to inform land-use planning. Such conservation activities may benefit from multi-species connectivity estimates, which provide a simple and practical means to mitigate the effects of habitat fragmentation for a larger number of species. To test the validity of a multi-species connectivity model, we used neutral microsatellite genetic datasets of Canada lynx ( Lynx canadensis ), American marten ( Martes americana ), fisher ( Pekania pennanti ), and southern flying squirrel ( Glaucomys volans ) to evaluate multi-species genetic connectivity across Ontario, Canada. We used linear models to compare node-based estimates of genetic connectivity for each species to point-based estimates of landscape connectivity (current density) derived from circuit theory. To our knowledge, we are the first to evaluate current density as a measure of genetic connectivity. Our results depended on landscape context: habitat amount was more important than current density in explaining multi-species genetic connectivity in the northern part of our study area, where habitat was abundant and fragmentation was low. In the south however, where fragmentation was prevalent, genetic connectivity was correlated with current density. Contrary to our expectations however, locations with a high probability of movement as reflected by high current density were negatively associated with gene flow. Subsequent analyses of circuit theory outputs showed that high current density was also associated with high effective resistance, underscoring that the presence of pinch points is not necessarily indicative of gene flow. Overall, our study appears to provide support for the hypothesis that landscape pattern is important when habitat amount is low. We also conclude that while current density is proportional to the probability of movement per unit area

  14. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  15. The reHABITAT Guide: For Energy- and Resource-Efficient Retrofit Strategies; February 2003--February 2004

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    The reHABITAT Guide for Energy- and Resource-Efficient Retrofit Strategies seeks to advance the goal of the U.S. Department of Energy's Existing Residential Buildings Program (ERBP): to develop approaches that will enable the housing retrofit industry to deliver energy-efficient housing improvements and to ensure that energy-efficient retrofit technologies incorporated into projects are viable over conventional approaches. This guide was developed for Habitat for Humanity International and is the result of lessons learned from demonstration retrofit projects undertaken by Habitat for Humanity affiliates in Newburgh, New York; Baltimore, Maryland; and Philadelphia, Pennsylvania; with building systems consulting and technical assistance provided by Steven Winter Associates, Inc. (SWA).

  16. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    Energy Technology Data Exchange (ETDEWEB)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  17. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    1999-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995-96, triggering widespread flooding, mass erosion, and, possibly altering salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin.

  18. Japanese-South African collaboration to mitigate seismic risks in deep gold mines

    CSIR Research Space (South Africa)

    Ogasawara, H

    2009-09-01

    Full Text Available Japanese-South African collaborative project entitled "Observational study to mitigate seismic risks in mines". The project will build on previous studies carried out by Japanese seismologists in South African mines, and will develop human and instrumental...

  19. Kalispel Resident Fish Project : Annual Report, 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Todd [Kalispel Natural Resource Department

    2009-07-08

    In 2008, the Kalispel Natural Resource Department (KNRD) continued to implement its habitat enhancement projects for bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarki lewisi). Baseline fish population and habitat assessments were conducted in Upper West Branch Priest River. Additional fish and habitat data were collected for the Granite Creek Watershed Assessment, a cooperative project between KNRD and the U.S. Forest Service Panhandle National Forest (FS) . The watershed assessment, funded primarily by the Salmon Recovery Funding Board of the State of Washington, will be completed in 2009.

  20. Offsets and conservation of the species of the EU habitats and birds directives.

    Science.gov (United States)

    Regnery, Baptiste; Couvet, Denis; Kerbiriou, Christian

    2013-12-01

    Biodiversity offsets are intended to achieve no net loss of biodiversity due to economic and human development. A variety of biodiversity components are addressed by offset policies. It is required that loss of protected species due to development be offset under the EU Habitats and Birds Directives in Europe. We call this type of offset a species-equality offset because the offset pertains to the same species affected by the development project. Whether species equality can be achieved by offset design is unknown. We addressed this gap by reviewing derogation files (i.e., specific files that describe mitigation measures to ensure no net loss under the EU Habitats and Birds Directives) from 85 development projects in France (2009-2010). We collected information on type of effect (reversible vs. irreversible) and characteristics of affected and offset sites (i.e., types of species, total area). We analyzed how the type of effect and the affected-site characteristics influenced the occurrence of offset measures. The proportion of species targeted by offset measures (i.e., offset species) increased with the irreversibility of the effect of development and the conservation status of the species affected by development (i.e., affected species). Not all effects on endangered species (International Union for Conservation of Nature Red List) were offset; on average, 82% of affected species would be offset. Twenty-six percent of species of least concern were offset species. Thirty-five percent of development projects considered all affected species in their offset measures. Species richness was much lower in offset sites than in developed sites even after offset proposals. For developed areas where species richness was relatively high before development, species richness at offset sites was 5-10 times lower. The species-equality principle appears to have been applied only partially in offset policies, as in the EU directives. We suggest the application of this principle

  1. Mitigation - how to buy time

    International Nuclear Information System (INIS)

    Gunasekera, D.

    2007-01-01

    Full text: Full text: There is growing consensus in the global scientific community that human induced greenhouse gas emissions have increased the atmospheric concentration of these gases which has led, and will continue to lead to changes in regional and global climate. Climate change is projected to impact on Australian and global economic, biophysical, social and environmental systems. The impacts of climate change can be reduced by implementing a range of mitigation and adaptation strategies. The optimal policy response will depend on the relative costs and benefits of climate change impacts, and mitigation and adaptation responses. The focus in this presentation is to identify the key determinants that can reduce the cost of international mitigation responses. It is important to recognise that since cumulative emissions are the primary driver of atmospheric concentrations, mitigation policies should be assessed against their capacity to reduce cumulative emissions overtime, rather than at given time points only. If global greenhouse gas abatement costs are to be minimised, it is desirable that the coverage of countries, emission sources and technologies that are a part of any multilateral effort be as wide as possible. In this context the development and diffusion of clean technologies globally can play a key role in the future reduction of greenhouse gas emissions, according to scenarios analysed by ABARE. Furthermore, technology 'push' (for example, research and development policies) and 'pull' (for example, emission trading) policies will be required to achieve such an outcome

  2. Impacts of Water Levels on Breeding Canada Geese and Methods for Mitigation and Management in the Southern Flathead Valley, Montana, 1983-1987 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Dennis L.; Gregory, Shari K.; Matthews, William C. Jr.; Claar, James J.; Ball, I. Joseph

    1987-11-01

    Kerr Hydroelectric Dam is located at the south end of Flathead Lake, controls water levels on the lake and the Flathead River below the dam, and is currently operated as a load control facility. Current operation of Kerr Dam creates the greatest yearly water level fluctuations on both the lake and river during the Canada goose (Branta canadensis moffitti) brood and nesting period. Data collected from 1980-1982 indicated that goose nest numbers on the river were lower than during the 1950's, and that brood habitat on the lake may be limiting the goose population there. Our study was conducted from 1983-1987 to determine the effects of Kerr Dam operation on Canada goose populations and habitat on the south half of Flathead Lake and the Flathead River, and to formulate management and mitigation recommendations. Nesting geese on the river appeared to be negatively affected by a lack of nest sites free from predators, and responded to available artificial nest structures with an increase in nest numbers and nesting success. Under current dam operation, river channel depths and widths do not discourage access to nesting islands by mammalian predators during some years and high predation on ground nests occurs. Intensively used brood areas on the lake and river were identified and described. Brood habitat on the lake was lower in quality and quantity than on the river due to dam operations. Gosling mortality on the lake was high, almost 2 times higher than on the river. Lake broods expended more energy obtaining food than river broods. Losses of brood habitat in the form of wet meadow marshes were documented and mitigation options developed. Management/mitigation alternatives and monitoring methods for nesting and brooding geese were identified.

  3. Tamarix as habitat for birds: Implications for riparian restoration in the Southwestern United States

    Science.gov (United States)

    Sogge, M.K.; Sferra, S.J.; Paxton, E.H.

    2008-01-01

    Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high-quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high-quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution. ?? 2008 Society for Ecological Restoration International.

  4. Rainwater Wildlife Area Management Plan : Executive Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.; Confederated Tribes of the Umatilla Indian Reservation in Oregon.

    2002-02-01

    The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Northwest Power Act directs the NPPC to develop a program to ''protect, mitigate, and enhance'' fish and wildlife of the Columbia River and its tributaries. The overarching goals include: A Columbia River ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife; Mitigation across the basin for the adverse effects to fish and wildlife caused by the development and operation of the hydrosystem; Sufficient populations of fish and wildlife for abundant opportunities for tribal trust and treaty right harvest and for non-tribal harvest; and Recovery of the fish and wildlife affected by the development and operation of the hydrosystem that are listed under the Endangered Species Act.

  5. Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.

    1998-01-15

    This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment

  6. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  7. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  8. Ocean acidification in the coastal zone from an organism's perspective: multiple system parameters, frequency domains, and habitats.

    Science.gov (United States)

    Waldbusser, George G; Salisbury, Joseph E

    2014-01-01

    Multiple natural and anthropogenic processes alter the carbonate chemistry of the coastal zone in ways that either exacerbate or mitigate ocean acidification effects. Freshwater inputs and multiple acid-base reactions change carbonate chemistry conditions, sometimes synergistically. The shallow nature of these systems results in strong benthic-pelagic coupling, and marine invertebrates at different life history stages rely on both benthic and pelagic habitats. Carbonate chemistry in coastal systems can be highly variable, responding to processes with temporal modes ranging from seconds to centuries. Identifying scales of variability relevant to levels of biological organization requires a fuller characterization of both the frequency and magnitude domains of processes contributing to or reducing acidification in pelagic and benthic habitats. We review the processes that contribute to coastal acidification with attention to timescales of variability and habitats relevant to marine bivalves.

  9. Ecological Restoration of Coastal Sage Scrub and Its Potential Role in Habitat Conservation Plans.

    Science.gov (United States)

    BOWLER

    2000-07-01

    Extensive acreage loss of coastal sage scrub (CSS), isolation of surviving stands, and the federal listing of several animal species with obligate relationships to this plant community, particularly the threatened California gnatcatcher (Polioptila californica), have led to attempts to create CSS to mitigate habitat lost to urban development and other causes. Many of these creations lie within habitat conservation plan (HCP) sites, and they could play a more prominent role by being repositories for plants taken from a single site having site-specific genetics. Among others, one technique that increases initial resemblance to natural stands uses digitized, to-scale photography, which has been ground-truthed to verify vascular plant associations, which appear as mosaics on a landscape. A combination of placing patches of salvaged, mature canopy plants within larger matrices of imprinted or container plant plots appears to significantly enhance immediate use by CSS obligate bird species, accelerate "spread" or expansion of CSS, and can also introduce many epiphytic taxa that otherwise would be slow or unable to occupy developing CSS creations. Reptile, amphibian, butterfly, and rodent diversity in a salvaged canopy restoration case study at the University of California, Irvine, showed CSS species foraging and inhabiting transplanted canopy patches. Using restoration techniques to expand existing CSS stands has more promise than creating isolated patches, and the creation of canopies resembling CSS mid-fire cycle stands is now common. Gnatcatchers and other birds use restorations for foraging and occasional nesting, and in some cases created stands along "biological corridors" appear to be useful to bird movement. Patches of transplanted sage scrub shrubs along habitat edges appear to break up linear edge effects. There are no data on which long-term survival, succession, or postfire behavior can be predicted for CSS restoration sites, and postfire community changes

  10. 44 CFR 201.5 - Enhanced State Mitigation Plans.

    Science.gov (United States)

    2010-10-01

    ... to State and regional agencies. (2) Documentation of the State's project implementation capability, identifying and demonstrating the ability to implement the plan, including: (i) Established eligibility...) Demonstration that the State has the capability to effectively manage the HMGP as well as other mitigation grant...

  11. The European PASSAM project. R and D outcomes towards enhanced severe accident source term mitigation

    International Nuclear Information System (INIS)

    Albiol, T.; Herranz, L.; Riera, E.; Dalibart, C.; Lind, T.; Corno, A. Del; Kärkelä, T.; Losch, N.; Azambre, B.

    2017-01-01

    The European PASSAM project (Passive and Active Systems on Severe Accident source term Mitigation) involved nine partners from six countries during four year (2013 - 2016): IRSN (project coordinator), EDF and University of Lorraine (France); CIEMAT and CSIC (Spain); PSI (Switzerland); RSE (Italy); VTT (Finland) and AREVA GmbH (Germany). It was mainly of an R and D experimental nature and aimed at investigating phenomena that might enhance source term mitigation in case of a severe accident in a LWR. Both already existing systems and innovative ones were experimentally studied. This paper presents the main outcomes of this project, including experimental results, understanding of phenomena and corresponding models and correlations with some preliminary analyses for potential use in severe accident management strategies, taking into account the passive or non-passive nature of the systems studied. Pool scrubbing represented the most studied domain of the PASSAM project. As an example of results, it was shown that gas hydrodynamics, at least in some relevant scenarios, is significantly different from what is nowadays encapsulated in severe accident analysis codes, particularly at high velocities and, that in the long run, maintaining an alkaline pH in the scrubber solution is absolutely necessary for preventing a delayed iodine release. Regarding sand bed filters plus metallic pre-filters, implemented on all French nuclear power plants, filtration efficiency for gaseous molecular and organic iodine was checked. Other experiments showed that under severe accident conditions, cesium iodide aerosols trapped in the sand filter are unstable and may constitute a delayed source term, which is not the case for CsI particles trapped on the metallic pre-filter. As innovative processes, both acoustic agglomeration and high pressure spray systems were studied mainly in the aim of leading to bigger particles upstream of filtered containment venting systems (FCVS), and so enhancing

  12. Guidelines for evaluating performance of oyster habitat restoration

    Science.gov (United States)

    Baggett, Lesley P.; Powers, Sean P.; Brumbaugh, Robert D.; Coen, Loren D.; DeAngelis, Bryan M.; Greene, Jennifer K.; Hancock, Boze T.; Morlock, Summer M.; Allen, Brian L.; Breitburg, Denise L.; Bushek, David; Grabowski, Jonathan H.; Grizzle, Raymond E.; Grosholz, Edwin D.; LaPeyre, Megan K.; Luckenbach, Mark W.; McGraw, Kay A.; Piehler, Michael F.; Westby, Stephanie R.; zu Ermgassen, Philine S. E.

    2015-01-01

    Restoration of degraded ecosystems is an important societal goal, yet inadequate monitoring and the absence of clear performance metrics are common criticisms of many habitat restoration projects. Funding limitations can prevent adequate monitoring, but we suggest that the lack of accepted metrics to address the diversity of restoration objectives also presents a serious challenge to the monitoring of restoration projects. A working group with experience in designing and monitoring oyster reef projects was used to develop standardized monitoring metrics, units, and performance criteria that would allow for comparison among restoration sites and projects of various construction types. A set of four universal metrics (reef areal dimensions, reef height, oyster density, and oyster size–frequency distribution) and a set of three universal environmental variables (water temperature, salinity, and dissolved oxygen) are recommended to be monitored for all oyster habitat restoration projects regardless of their goal(s). In addition, restoration goal-based metrics specific to four commonly cited ecosystem service-based restoration goals are recommended, along with an optional set of seven supplemental ancillary metrics that could provide information useful to the interpretation of prerestoration and postrestoration monitoring data. Widespread adoption of a common set of metrics with standardized techniques and units to assess well-defined goals not only allows practitioners to gauge the performance of their own projects but also allows for comparison among projects, which is both essential to the advancement of the field of oyster restoration and can provide new knowledge about the structure and ecological function of oyster reef ecosystems.

  13. Evaluating Stream Restoration Projects: What Do We Learn from Monitoring?

    Directory of Open Access Journals (Sweden)

    Zan Rubin

    2017-02-01

    Full Text Available Two decades since calls for stream restoration projects to be scientifically assessed, most projects are still unevaluated, and conducted evaluations yield ambiguous results. Even after these decades of investigation, do we know how to define and measure success? We systematically reviewed 26 studies of stream restoration projects that used macroinvertebrate indicators to assess the success of habitat heterogeneity restoration projects. All 26 studies were previously included in two meta-analyses that sought to assess whether restoration programs were succeeding. By contrast, our review focuses on the evaluations themselves, and asks what exactly we are measuring and learning from these evaluations. All 26 studies used taxonomic diversity, richness, or abundance of invertebrates as biological measures of success, but none presented explicit arguments why those metrics were relevant measures of success for the restoration projects. Although changes in biodiversity may reflect overall ecological condition at the regional or global scale, in the context of reach-scale habitat restoration, more abundance and diversity may not necessarily be better. While all 26 studies sought to evaluate the biotic response to habitat heterogeneity enhancement projects, about half of the studies (46% explicitly measured habitat alteration, and 31% used visual estimates of grain size or subjectively judged ‘habitat quality’ from protocols ill-suited for the purpose. Although the goal of all 26 projects was to increase habitat heterogeneity, 31% of the studies either sampled only riffles or did not specify the habitats sampled. One-third of the studies (35% used reference ecosystems to define target conditions. After 20 years of stream restoration evaluation, more work remains for the restoration community to identify appropriate measures of success and to coordinate monitoring so that evaluations are at a scale capable of detecting ecosystem change.

  14. Mitigation options in forestry, land-use change and biomass burning in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.L. [Univ. of California, Lawrence Berkeley National Lab. (United States)

    1998-10-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs.

  15. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    International Nuclear Information System (INIS)

    Makundi, Willy R.

    1998-01-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries.; copyrighted ; Y

  16. Mitigation options in forestry, land-use change and biomass burning in Africa

    International Nuclear Information System (INIS)

    Makundi, Willy R.L.

    1998-01-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs

  17. Birds and Bird Habitat: What Are the Risks from Industrial Wind Turbine Exposure?

    Science.gov (United States)

    Sprague, Terry; Harrington, M. Elizabeth; Krogh, Carmen M. E.

    2011-01-01

    Bird kill rate and disruption of habitat has been reported when industrial wind turbines are introduced into migratory bird paths or other environments. While the literature could be more complete regarding the documentation of negative effects on birds and bird habitats during the planning, construction, and operation of wind power projects,…

  18. The current biodiversity extinction event: scenarios for mitigation and recovery.

    Science.gov (United States)

    Novacek, M J; Cleland, E E

    2001-05-08

    The current massive degradation of habitat and extinction of species is taking place on a catastrophically short timescale, and their effects will fundamentally reset the future evolution of the planet's biota. The fossil record suggests that recovery of global ecosystems has required millions or even tens of millions of years. Thus, intervention by humans, the very agents of the current environmental crisis, is required for any possibility of short-term recovery or maintenance of the biota. Many current recovery efforts have deficiencies, including insufficient information on the diversity and distribution of species, ecological processes, and magnitude and interaction of threats to biodiversity (pollution, overharvesting, climate change, disruption of biogeochemical cycles, introduced or invasive species, habitat loss and fragmentation through land use, disruption of community structure in habitats, and others). A much greater and more urgently applied investment to address these deficiencies is obviously warranted. Conservation and restoration in human-dominated ecosystems must strengthen connections between human activities, such as agricultural or harvesting practices, and relevant research generated in the biological, earth, and atmospheric sciences. Certain threats to biodiversity require intensive international cooperation and input from the scientific community to mitigate their harmful effects, including climate change and alteration of global biogeochemical cycles. In a world already transformed by human activity, the connection between humans and the ecosystems they depend on must frame any strategy for the recovery of the biota.

  19. Kalispel Resident Fish Project : Annual Report, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Todd; Olson, Jason

    2003-03-01

    In 2002 the Kalispel Natural Resource Department (KNRD) continued monitoring enhancement projects (implemented from 1996 to 1998) for bull trout (Salvelinus confluentus), westslope cutthroat (Oncorhynchus clarki lewisi) and largemouth bass (Micropterus salmoides). Additional baseline fish population and habitat assessments were conducted, in 2002, in tributaries to the Pend Oreille River. Further habitat and fish population enhancement projects were also implemented in 2002.

  20. Potential climate change effects on the habitat of antarctic krill in the weddell quadrant of the southern ocean.

    Science.gov (United States)

    Hill, Simeon L; Phillips, Tony; Atkinson, Angus

    2013-01-01

    Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21(st) century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.

  1. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L. (Oregon Department of Fish and Wildlife)

    2004-02-01

    We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  2. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L.

    2003-12-01

    We report on our progress from April 2001 through March 2002 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  3. Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake

    Science.gov (United States)

    Meng, Lingsen; Ampuero, Jean-Paul; Luo, Yingdi; Wu, Wenbo; Ni, Sidao

    2012-12-01

    Comparing teleseismic array back-projection source images of the 2011 Tohoku-Oki earthquake with results from static and kinematic finite source inversions has revealed little overlap between the regions of high- and low-frequency slip. Motivated by this interesting observation, back-projection studies extended to intermediate frequencies, down to about 0.1 Hz, have suggested that a progressive transition of rupture properties as a function of frequency is observable. Here, by adapting the concept of array response function to non-stationary signals, we demonstrate that the "swimming artifact", a systematic drift resulting from signal non-stationarity, induces significant bias on beamforming back-projection at low frequencies. We introduce a "reference window strategy" into the multitaper-MUSIC back-projection technique and significantly mitigate the "swimming artifact" at high frequencies (1 s to 4 s). At lower frequencies, this modification yields notable, but significantly smaller, artifacts than time-domain stacking. We perform extensive synthetic tests that include a 3D regional velocity model for Japan. We analyze the recordings of the Tohoku-Oki earthquake at the USArray and at the European array at periods from 1 s to 16 s. The migration of the source location as a function of period, regardless of the back-projection methods, has characteristics that are consistent with the expected effect of the "swimming artifact". In particular, the apparent up-dip migration as a function of frequency obtained with the USArray can be explained by the "swimming artifact". This indicates that the most substantial frequency-dependence of the Tohoku-Oki earthquake source occurs at periods longer than 16 s. Thus, low-frequency back-projection needs to be further tested and validated in order to contribute to the characterization of frequency-dependent rupture properties.

  4. Mitigating the Insider Threat Using High-Dimensional Search and Modeling

    National Research Council Canada - National Science Library

    Van Den Berg, Eric; Uphadyaya, Shambhu; Ngo, Phi H; Muthukrishnan, Muthu; Palan, Rajago

    2006-01-01

    In this project a system was built aimed at mitigating insider attacks centered around a high-dimensional search engine for correlating the large number of monitoring streams necessary for detecting insider attacks...

  5. GREENGRASS. Sources and sinks of greenhouse gases from managed European grasslands and mitigation strategies. Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Soussana, J.F. [Institut National de la Recherche Agronomique INRA Clermont-Ferrand, 63122 Saint-Genes-Champanelle (FR)] (and others)

    2005-03-15

    In support of the European post-Kyoto policy, the GREENGRASS project will measure the net global warming potential resulting from the exchange of CO2, N2O and Twitch managed European grasslands and assess the European wide mitigation potential of key field and farm management scenarios. Long-term micrometeorological measurements at sites in a European wide network will be complemented by experimental assessment of the effects of management options bonnet fluxes. The results will be used to refine emission factors used in national inventories and to evaluate farm-level mitigation scenarios with respect to tenet global warming potential associated to grassland management. These evaluations will be conducted at the field and farm level, and by upscaling simulation results to the Europe scale. (Contributions by Risoe National Laboratory (Denmark), INRA Clermont Ferrand (France), INRA Grignon (France), INRA Dijon (France), Institut de l'Elevage Angers (France), LSCE Gif-sur-Yvette (France), Cetre Interprofessionel Technique d'Etudes de la Pollution Atmospherique (France), Forest Research Institute (Hungary), Szent Istvan University (Hungary), Eoetvoes Lorand University Elte (Hungary), Trinity College of Dublin (Ireland), Istituto di Biometeorologia (IBIMET) del Consiglio Nazionale delle Ricerche (Italy), University of Tuscia (Italy), Energy research Centre of the Netherlands ECN (Netherlands), Wageningen University (Netherlands), Plant Research International (Netherlands), Centre of Ecology and Hydrology (United Kingdom), Scottish Agricultural College (Scotland), University of Aberdeen (Scotland), Federal Research Station for Agroecology and Agriculture (Switzerland))

  6. 44 CFR 201.4 - Standard State Mitigation Plans.

    Science.gov (United States)

    2010-10-01

    ... resources to reducing the effects of natural hazards. (b) Planning process. An effective planning process is... location of all natural hazards that can affect the State, including information on previous occurrences of... updating the plan. (ii) A system for monitoring implementation of mitigation measures and project closeouts...

  7. Mitigation measures for the La Grande 1 hydroelectric development

    International Nuclear Information System (INIS)

    Faucher, O.; Gagnon, R.

    1992-01-01

    Measures to mitigate environmental impacts of the La Grande 1 hydroelectric development are described. An overview is presented of the La Grande 1 project, its surrounding environment, and the principle environmental repercussions of the reservoir, hydrological changes between the dam and river mouth, construction activities and permanent and temporary structures, and presence of workers. Mitigation measures including compensation, corrective measures (deforestation, selective cutting, fish populations, wildlife populations, land rehabilitation, access roads, fisheries, and erosion control), protective measures, enhancement measures, and contract and employment opportunities for the Cree population are described. 10 refs., 2 figs

  8. Technologies for climate change mitigation - Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Uprety, D.C.; Dhar, S.; Hongmin, D.; Kimball, B.A.; Garg, A.; Upadhyay, J.

    2012-07-15

    This guidebook describes crop and livestock management technologies and practices that contribute to climate change mitigation while improving crop productivity, reducing reliance on synthetic fertilizers, and lowering water consumption. It is co-authored by internationally recognised experts in the areas of crops, livestock, emissions, and economics, and we are grateful for their efforts in producing this cross disciplinary work. This publication is part of a technical guidebook series produced by the UNEP Risoe Centre on Energy, Climate and Sustainable Development (URC) as part of the Technology Needs Assessment (TNA) project (http://tech-action.org) that is assisting developing countries in identifying and analysing the priority technology needs for mitigating and adapting to climate change. The TNA process involves different stakeholders in a consultative process, enabling all stakeholders to understand their technology needs in a cohesive manner, and prepare Technology Action Plans (TAPs) accordingly. The TNA project is funded by the Global Environment Facility (GEF) and is being implemented by UNEP and the URC in 36 developing countries. (Author)

  9. Selecting habitat to survive: the impact of road density on survival in a large carnivore.

    Directory of Open Access Journals (Sweden)

    Mathieu Basille

    Full Text Available Habitat selection studies generally assume that animals select habitat and food resources at multiple scales to maximise their fitness. However, animals sometimes prefer habitats of apparently low quality, especially when considering the costs associated with spatially heterogeneous human disturbance. We used spatial variation in human disturbance, and its consequences on lynx survival, a direct fitness component, to test the Hierarchical Habitat Selection hypothesis from a population of Eurasian lynx Lynx lynx in southern Norway. Data from 46 lynx monitored with telemetry indicated that a high proportion of forest strongly reduced the risk of mortality from legal hunting at the home range scale, while increasing road density strongly increased such risk at the finer scale within the home range. We found hierarchical effects of the impact of human disturbance, with a higher road density at a large scale reinforcing its negative impact at a fine scale. Conversely, we demonstrated that lynx shifted their habitat selection to avoid areas with the highest road densities within their home ranges, thus supporting a compensatory mechanism at fine scale enabling lynx to mitigate the impact of large-scale disturbance. Human impact, positively associated with high road accessibility, was thus a stronger driver of lynx space use at a finer scale, with home range characteristics nevertheless constraining habitat selection. Our study demonstrates the truly hierarchical nature of habitat selection, which aims at maximising fitness by selecting against limiting factors at multiple spatial scales, and indicates that scale-specific heterogeneity of the environment is driving individual spatial behaviour, by means of trade-offs across spatial scales.

  10. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  11. City life makes females fussy: sex differences in habitat use of temperate bats in urban areas

    Science.gov (United States)

    Lintott, Paul R.; Bunnefeld, Nils; Fuentes-Montemayor, Elisa; Minderman, Jeroen; Mayhew, Rebekah J.; Olley, Lena; Park, Kirsty J.

    2014-01-01

    Urbanization is a major driver of the global loss of biodiversity; to mitigate its adverse effects, it is essential to understand what drives species' patterns of habitat use within the urban matrix. While many animal species are known to exhibit sex differences in habitat use, adaptability to the urban landscape is commonly examined at the species level, without consideration of intraspecific differences. The high energetic demands of pregnancy and lactation in female mammals can lead to sexual differences in habitat use, but little is known of how this might affect their response to urbanization. We predicted that female Pipistrellus pygmaeus would show greater selectivity of forging locations within urban woodland in comparison to males at both a local and landscape scale. In line with these predictions, we found there was a lower probability of finding females within woodlands which were poorly connected, highly cluttered, with a higher edge : interior ratio and fewer mature trees. By contrast, habitat quality and the composition of the surrounding landscape were less of a limiting factor in determining male distributions. These results indicate strong sexual differences in the habitat use of fragmented urban woodland, and this has important implications for our understanding of the adaptability of bats and mammals more generally to urbanization. PMID:26064557

  12. Climate effects on the distribution of wetland habitats and connectivity in networks of migratory waterbirds

    Science.gov (United States)

    Bellisario, Bruno; Cerfolli, Fulvio; Nascetti, Giuseppe

    2014-07-01

    The establishment and maintenance of conservation areas are among the most common measures to mitigate the loss of biodiversity. However, recent advances in conservation biology have challenged the reliability of such areas to cope with variation in climate conditions. Climate change can reshuffle the geographic distribution of species, but in many cases suitable habitats become scarce or unavailable, limiting the ability to migrate or adapt in response to modified environments. In this respect, the extent to which existing protected areas are able to compensate changes in habitat conditions to ensure the persistence of species still remains unclear. We used a spatially explicit model to measure the effects of climate change on the potential distribution of wetland habitats and connectivity of Natura 2000 sites in Italy. The effects of climate change were measured on the potential for water accumulation in a given site, as a surrogate measure for the persistence of aquatic ecosystems and their associated migratory waterbirds. Climate impacts followed a geographic trend, changing the distribution of suitable habitats for migrants and highlighting a latitudinal threshold beyond which the connectivity reaches a sudden collapse. Our findings show the relative poor reliability of most sites in dealing with changing habitat conditions and ensure the long-term connectivity, with possible consequences for the persistence of species. Although alterations of climate suitability and habitat destruction could impact critical areas for migratory waterbirds, more research is needed to evaluate all possible long-term effects on the connectivity of migratory networks.

  13. Climate change sensitivity index for Pacific salmon habitat in southeast Alaska.

    Directory of Open Access Journals (Sweden)

    Colin S Shanley

    Full Text Available Global climate change may become one of the most pressing challenges to Pacific Salmon conservation and management for southeast Alaska in the 21st Century. Predicted hydrologic change associated with climate change will likely challenge the ability of specific stocks to adapt to new flow regimes and resulting shifts in spawning and rearing habitats. Current research suggests egg-to-fry survival may be one of the most important freshwater limiting factors in Pacific Salmon's northern range due to more frequent flooding events predicted to scour eggs from mobile spawning substrates. A watershed-scale hydroclimatic sensitivity index was developed to map this hypothesis with an historical stream gauge station dataset and monthly multiple regression-based discharge models. The relative change from present to future watershed conditions predicted for the spawning and incubation period (September to March was quantified using an ensemble global climate model average (ECHAM5, HadCM3, and CGCM3.1 and three global greenhouse gas emission scenarios (B1, A1B, and A2 projected to the year 2080. The models showed the region's diverse physiography and climatology resulted in a relatively predictable pattern of change: northern mainland and steeper, snow-fed mountainous watersheds exhibited the greatest increases in discharge, an earlier spring melt, and a transition into rain-fed hydrologic patterns. Predicted streamflow increases for all watersheds ranged from approximately 1-fold to 3-fold for the spawning and incubation period, with increased peak flows in the spring and fall. The hydroclimatic sensitivity index was then combined with an index of currently mapped salmon habitat and species diversity to develop a research and conservation priority matrix, highlighting potentially vulnerable to resilient high-value watersheds. The resulting matrix and observed trends are put forth as a framework to prioritize long-term monitoring plans, mitigation

  14. Distribution of clonal growth traits among wetland habitats

    Czech Academy of Sciences Publication Activity Database

    Sosnová, Monika; van Diggelen, R.; Macek, Petr; Klimešová, Jitka

    2011-01-01

    Roč. 95, č. 2 (2011), 88-93 ISSN 0304-3770 R&D Projects: GA ČR GD206/08/H044 Institutional research plan: CEZ:AV0Z60050516 Keywords : functional traits * The Netherlands * wetland habitats Subject RIV: EF - Botanics Impact factor: 1.516, year: 2011

  15. Watershed evaluation and habitat response to recent storms : annual report for 1998; ANNUAL

    International Nuclear Information System (INIS)

    Huntington, Charles W.; Rhodes, Jonathan J.

    1999-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995-96, triggering widespread flooding, mass erosion, and, possibly altering salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin

  16. Contrast of degraded and restored stream habitat using an individual-based salmon model

    Science.gov (United States)

    S. F. Railsback; M. Gard; Bret Harvey; Jason White; J.K.H. Zimmerman

    2013-01-01

    Stream habitat restoration projects are popular, but can be expensive and difficult to evaluate. We describe inSALMO, an individual-based model designed to predict habitat effects on freshwater life stages (spawning through juvenile out-migration) of salmon. We applied inSALMO to Clear Creek, California, simulating the production of total and large (>5 cm FL)...

  17. Dam operations may improve aquatic habitat and offset negative effects of climate change.

    Science.gov (United States)

    Benjankar, Rohan; Tonina, Daniele; McKean, James A; Sohrabi, Mohammad M; Chen, Quiwen; Vidergar, Dmitri

    2018-05-01

    Dam operation impacts on stream hydraulics and ecological processes are well documented, but their effect depends on geographical regions and varies spatially and temporally. Many studies have quantified their effects on aquatic ecosystem based mostly on flow hydraulics overlooking stream water temperature and climatic conditions. Here, we used an integrated modeling framework, an ecohydraulics virtual watershed, that links catchment hydrology, hydraulics, stream water temperature and aquatic habitat models to test the hypothesis that reservoir management may help to mitigate some impacts caused by climate change on downstream flows and temperature. To address this hypothesis we applied the model to analyze the impact of reservoir operation (regulated flows) on Bull Trout, a cold water obligate salmonid, habitat, against unregulated flows for dry, average, and wet climatic conditions in the South Fork Boise River (SFBR), Idaho, USA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Habitat or matrix: which is more relevant to predict road-kill of vertebrates?

    OpenAIRE

    Bueno,C.; Sousa,C. O. M.; Freitas,S. R.

    2015-01-01

    Abstract We believe that in tropics we need a community approach to evaluate road impacts on wildlife, and thus, suggest mitigation measures for groups of species instead a focal-species approach. Understanding which landscape characteristics indicate road-kill events may also provide models that can be applied in other regions. We intend to evaluate if habitat or matrix is more relevant to predict road-kill events for a group of species. Our hypothesis is: more permeable matrix is the most r...

  19. Assessment of GHG mitigation technology measures in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  20. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    Science.gov (United States)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of